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Aims Atrial fibrillation (AF) is associated with adverse outcome. Whether recently discovered genetic risk markers
improve AF risk prediction is unknown.

Methods
and results

We derived and validated a novel AF risk prediction model from 32 possible predictors in the Women’s Health Study
(WHS), a cohort of 20 822 women without cardiovascular disease (CVD) at baseline followed prospectively for in-
cident AF (median: 14.5 years). We then created a genetic risk score (GRS) comprised of 12 risk alleles in nine loci
and assessed model performance in the validation cohort with and without the GRS. The newly derived WHS AF risk
algorithm included terms for age, weight, height, systolic blood pressure, alcohol use, and smoking (current and past).
In the validation cohort, this model was well calibrated with good discrimination [C-index (95% CI) ¼ 0.718 (0.684–
0.753)] and improved all reclassification indices when compared with age alone. The addition of the genetic score to
the WHS AF risk algorithm model improved the C-index [0.741 (0.709–0.774); P ¼ 0.001], the category-less net
reclassification [0.490 (0.301–0.670); P , 0.0001], and the integrated discrimination improvement [0.00526
(0.0033–0.0076); P , 0.0001]. However, there was no improvement in net reclassification into 10-year risk categor-
ies of ,1, 1–5, and 5+% [0.041 (20.044–0.12); P ¼ 0.33].

Conclusion Among women without CVD, a simple risk prediction model utilizing readily available risk markers identified women
at higher risk for AF. The addition of genetic information resulted in modest improvements in predictive accuracy that
did not translate into improved reclassification into discrete AF risk categories.
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Introduction
Atrial fibrillation (AF) is the most common sustained cardiac ar-
rhythmia and is associated with enormous societal costs, including
an increased risk of stroke, heart failure (HF), and death.1 – 3 The
prevalence of AF is increasing even among those individuals
thought to be at low risk, such as women or those without cardio-
vascular disease (CVD) or HF.4,5 Treatment of AF remains challen-
ging and associated with risk; therefore, prevention is an important
public health objective. Recently, investigators working in the Fra-
mingham Heart Study (FHS) and the Atherosclerosis Risk in

Communities (ARIC) study derived separate AF risk prediction
models among individuals with and without heart disease, but
neither study considered routine blood biomarkers or genetic
markers for inclusion in those models.6– 11 These prediction algo-
rithms also require electrocardiograms (ECGs), which may not be
readily available among individuals without clinical heart disease.

The first aim of this study was to derive and validate an AF risk
prediction algorithm that could be employed in our healthy popu-
lation of 20 822 women without prevalent CVD, HF, or ECGs at
baseline. The second aim of the study was to determine whether
a genetic risk score (GRS) based on recently published risk
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alleles11 could improve AF risk prediction beyond traditional risk
factors and biomarkers among this population without established
CVD, where genetic factors might contribute a greater proportion
of risk.

Methods

Study participants
Study participants were American female health professionals enrolled
in the Women’s Genome Health Study (WGHS), a subset of the
Women’s Health Study (WHS), and included 20 822 women of Euro-
pean ancestry for whom genetic information was available and who did
not have CVD, HF, or AF at baseline. Details of the design of the WHS
and the WGHS are contained in the Supplementary material online.
All participants provided written informed consent, and the study
complies with the Declaration of Helsinki and was approved by the
institutional review board of the Brigham and Women’s Hospital.

Endpoint ascertainment
The methods of AF ascertainment have been reported previously3 and
are described in detail in the Supplementary material online. Briefly,
women were asked to report date of any AF diagnosis at enrolment,
at 48 months, and then annually thereafter. Those reporting an AF
event were asked for permission to obtain medical records, which
were then reviewed by a physician endpoint committee to confirm
AF. Only confirmed events are included in the present analysis.

Laboratory evaluation and genotyping
Assay characteristics for plasma biomarkers and details of the genotyp-
ing and imputation methods are contained in the Supplementary
material online.

Derivation and validation of a novel atrial
fibrillation prediction algorithm
Of the 20 822 WGHS participants eligible for this study, two-thirds
(n ¼ 13 743) were randomly assigned to the model derivation data
set, and the remaining one-third (n ¼ 7079) were reserved as an inde-
pendent validation data set. Variables considered for inclusion in the
AF risk prediction algorithm are displayed in Table 1 and include trad-
itional and lifestyle risk factors easily measured in clinical practice as
well as available biomarkers. In the model derivation set, participants
without complete information on these variables were excluded
(n ¼ 682), for a total sample size of 13 061, including 404 validated
cases of AF. The best model was fit using Cox proportional hazards
models with both forward and backward stepwise procedures for vari-
able selection. Minimization of the Bayes Information Criteria (BIC)12

was utilized to select covariates for inclusion. Because the BIC
imposes a penalty for each additional covariate added to a model,
the number of covariates included was also limited. The final WHS
AF risk prediction model was then tested for discrimination (Harrell
c-index)13 and calibration (Nam and D’Agostino modification of the
Hosmer–Lemeshow goodness-of-fit statistic)14 in the validation set.
Participants without complete information on the covariates selected
for inclusion in the final WHS model were excluded (n ¼ 200) for a
total sample size in the validation set of 6879, including 212 cases of
AF. In exploratory secondary analyses, the GRSs described below
were added to the list of variables considered for inclusion in the
derivation cohort.

Genetic risk score
Twelve single-nucleotide polymorphisms (SNPs) in nine loci reported
to associate with AF were included in the GRS.11,15,16 Seven of the
SNPs (rs13376333, rs2200733, rs10033464, rs3853445, rs3807989,
rs7164883, and rs7193343) were directly genotyped, while the rest
(rs3903239, rs17570669, rs10821415, rs10824026, and rs1152591)
were imputed. In the primary analysis, a weighted GRS was created
by summing the product of the natural logarithm of the published
risk ratio for each SNP (Supplementary material online, Table S1)
times the gene dose at that SNP for each participant. Because allele
weights were calculated by taking the natural logarithm of published
risk ratios, alleles with risk ratios .1 had positive weights, while
those with risk ratios ,1 had negative weights. In order to eliminate
bias, risk estimates from replication (rather than discovery) cohorts
were used wherever possible. As a secondary analysis, an unweighted
GRS was constructed to evaluate the sensitivity of our results to these
published risk estimates. For this score, the allele associated with
increased AF risk at each SNP was identified, and the measured or
imputed allele dose at each of the 12 SNPs was then summed for
each participant.

Clinical reclassification of atrial fibrillation
prediction models
The models developed in the derivation set were used to estimate the
10-year risk of AF in the validation set (n ¼ 6879) and improvement in
measures of discrimination and calibration with the addition of clinical
and/or genetic covariates were calculated in this cohort. While there is
no broad consensus on what risk categories are clinically informative,
10-year clinical risk categories of ,1, 1 to ,5, and 5% and higher were
utilized on an a priori basis given the low-risk nature of this healthy
population.6,17,18 To test whether the WHS score and/or the addition
of genetic information improved clinical risk classification across cat-
egories, the net reclassification improvement (NRI) and the reclassifi-
cation calibration test were calculated.19 To address potential finer
increments in reclassification, the continuous NRI and the integrated
discrimination improvement (IDI) were calculated for each base
model with and without genetic information.18 Modifications appropri-
ate for survival data were used.18,20 Bootstrap resampling was used to
calculate confidence intervals and P-values for each discrimination and
reclassification statistic. As a sensitivity analysis, changes in WHS AF
risk prediction algorithm performance after the addition of genetic in-
formation were calculated in all available women in the WGHS cohort
with complete information on all model covariates (n ¼ 20 222). Stat-
istical analyses were performed using SAS version 9.1 (SAS Institute
Inc., Cary, NC, USA).

Results

Study characteristics
The derivation and validation cohorts were similar with respect to
the baseline characteristics and variables considered for inclusion
in the AF risk prediction algorithm (Table 1). Established AF risk
factors such as age, body mass index, weight, height, hypertension,
and alcohol use were similar in the two cohorts. Levels of biomar-
kers previously associated with AF such as markers of inflamma-
tion, haemoglobin A1c, creatinine, and lipids were similar in the
two cohorts.
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Women’s Health Study atrial fibrillation
model derivation and validation
In the derivation cohort, 32 potential variables outlined in Table 1
were evaluated for model inclusion. Univariable association
between each potential variable and incident AF in the derivation
cohort are presented in Supplementary material online, Table S2.
Of these, the inclusion of terms for the natural logarithm of age,
weight, height, systolic blood pressure, ≥2 alcoholic drinks per
day, and a history of either current or past smoking (ever
smokers) resulted in the best fitting prediction model with the
smallest BIC (7319.7). Model coefficients from the derivation

cohort for these variables are presented in Table 2. The BIC for
a model including the body mass index instead of height and
weight was 7347.8, and the BIC for a model including age
instead of the natural logarithm of age was 7321.8. Although
none of the blood-based biomarkers were included in the final
model, high-sensitivity C-reactive protein (hsCRP) would have
been the next variable included (P ¼ 0.02), but inclusion resulted
in a small increase in the BIC (BIC ¼ 7320.7 with hsCRP).

We then tested this AF prediction model in the validation
cohort. Using coefficients calculated in the derivation set, the
c-index (95% CI) for the WHS predictive model [0.718 (0.684–

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics and covariables considered for inclusion in the atrial fibrillation risk prediction
algorithm among women in the derivation and validation cohorts

Characteristic Derivation cohort (n 5 13 061) Validation cohort (n 5 6879)

Events/person-years of follow-up 404/181 350 212/95 253

Incidence rate, per 1000 person-years of observation 2.23 2.23

Age [median (IQR), years] 52.9 (48.9–58.8) 52.9 (48.9–58.8)

Body mass index [median (IQR), kg/m2] 24.8 (22.5–28.3) 24.9 (22.5–28.3)

Weight [median (IQR), kg] 67.1 (59.9–77.1) 68.0 (59.9–77.1)

Height [median (IQR), cm] 165.0 (159.9–167.5) 165.0 (159.9–167.5)

Systolic blood pressure [median (IQR), mmHg] 125 (115–135) 125 (115–135)

Diastolic blood pressure [median (IQR), mmHg] 80 (70–80) 80 (70–80)

Physical activity [n (%)]

1–3 times per week 4193 (32.1) 2263 (32.9)

4+ times per week 1520 (11.6) 798 (11.5)

Ever smoker [n (%)] 6375 (48.8) 3338 (48.5)

Alcohol use, 2+ drinks/day [n (%)] 527 (4.0) 289 (4.2)

History of hypertension [n (%)] 3143 (24.1) 1640 (23.9)

History of treatment for high blood pressure [n (%)] 1618 (12.4) 874 (12.7)

History of treatment for high cholesterol [n (%)] 387 (3.0) 246 (3.6)

History of diabetes [n (%)] 314 (2.4) 163 (2.4)

History of menopause [n (%)] 7005 (53.6) 3729 (54.3)

Hormone therapy use [n (%)] 5827 (44.6) 3008 (43.8)

Aspirin use [n (%)] 6553 (50.2) 3458 (50.3)

Vitamin E use [n (%)] 6502 (49.8) 3500 (50.9)

Beta carotene use [n (%)] 6535 (50.1) 3450 (50.2)

Cholesterol [median (IQR), mmol/L]

Total 5.39 (4.74–6.11) 5.39 (4.77–6.09)

Low-density lipoprotein 3.13 (2.59–3.72) 3.14 (2.61–3.74)

High-density lipoprotein 1.35 (1.13–1.62) 1.35 (1.12–1.62)

Non-high-density lipoprotein 3.98 (3.33–4.69) 3.99 (3.34–4.71)

Triglycerides [median (IQR), mmol/L] 1.33 (0.94–1.95) 1.33 (0.95–1.97)

Apolipoprotein B100 [median (IQR), g/L] 0.995 (0.834–1.208) 1.001 (0.841–1.207)

Apolipoprotein A-I [median (IQR), g/L] 1.494 (1.329–1.683) 1.498 (1.325–1.684)

Lipoprotein(a) [median (IQR), mmol/L] 0.37 (0.15–1.13) 0.37 (0.15–1.15)

hsCRP [median (IQR), mg/L] 2.0 (0.8–4.4) 2.0 (0.8–4.2)

s-ICAM-1 [median (IQR), mg/L] 341.2 (300.2–393.0) 343.2 (302.8–394.5)

Fibrinogen [median (IQR), mmol/L] 10.29 (9.02–11.77) 10.21 (8.97–11.75)

Homocysteine [median (IQR), mmol/L] 10.4 (8.7–12.9) 10.5 (8.7–12.8)

Creatinine [median (IQR), mmol/L] 54.1 (48.0–61.0) 53.9 (48.2–60.7)

Haemoglobin A1c [median (IQR), %] 4.99 (4.83–5.17) 4.99 (4.83–5.17)
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0.753)] was significantly better than that for age alone [0.671
(0.636–0.710), P , 0.0001], and the model was well calibrated
(P ¼ 0.43). The WHS AF risk score substantially improved classifi-
cation into 10-year risk categories of ,1, 1 to ,5, and 5+%, with
an NRI of 0.211 (P , 0.0001) and resulted in a significant improve-
ment in the continuous NRI and IDI (Table 3, Figure 1).

Genetic risk scores and atrial fibrillation
risk
The association with incident AF across quintiles of the weighted
and unweighted GRS in the entire WHS (n ¼ 20 347) is displayed
in Figure 2. As shown, women in the top quintile of the weighted
and unweighted score had a 2.25-fold (95% CI: 1.75–2.90,
P-trend , 0.0001) and a 2.85-fold (95% CI: 2.18–3.73, P-trend
, 0.0001) increase in the risk of AF, respectively, after adjustment
for the WHS prediction model covariates. The per-allele relative
risks for each of the individual SNPs included in the GRS are dis-
played in Supplementary material online, Table S3. When modelled
as continuous variables, both the weighted and the unweighted
GRS were significantly associated with incident AF in the validation

and entire cohort (each P , 0.0001). When either the weighted or
unweighted score was included among the candidate AF risk pre-
dictors considered for inclusion in a secondary, exploratory AF risk
prediction model, each score was chosen for inclusion.

Clinical reclassification of atrial
fibrillation with and without genetic
information
When tested in the validation set, the addition of the weighted
GRS to a model including age alone improved the C-index
[0.704 (0.667–0.739), P ¼ 0.0006], the NRI [0.107 (0.0286–
0.1830), P ¼ 0.006], the continuous NRI [0.459 (0.261–0.643),
P , 0.0001], and the IDI [0.00474 (0.00316–0.00672),
P , 0.0001] (Table 4). The addition of the weighted GRS to
the WHS AF risk prediction algorithm improved AF risk predic-
tion as measured by the C-index [0.741 (0.709–0.774), P ¼
0.001], the continuous NRI [0.490 [0.301–0.670), P , 0.0001],
and the IDI [0.00526 (0.00625–0.00759), P , 0.0001].
However, reclassification into our pre-specified clinical risk
categories did not improve after the addition of the weighted
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Table 2 Beta-coefficients and multivariable adjusted hazard ratios for atrial fibrillation for each covariate selected for
inclusion in the WHS atrial fibrillation risk prediction model

Base model covariables Beta (SE) Adjusted HR (95% CI) P-value

Age 0.0924 (0.0060) 1.10 (1.08–1.11) ,0.0001

WHS model

Ln(age)a 5.480 (0.40) 239.79 (109.96–522.94) ,0.0001

Weight (per 10 kg) 0.157 (0.035) 1.17 (1.09–1.25) ,0.0001

Height (per 10 cm) 0.306 (0.082) 1.36 (1.16–1.60) 0.0002

Systolic blood pressure, (per 10 mmHg) 0.155 (0.037) 1.17 (1.09–1.26) ,0.0001

2+ drinks per day 0.491 (0.20) 1.63 (1.10–2.43) 0.015

Ever smoker 0.254 (0.10) 1.29 (1.06–1.57) 0.01

Coefficients displayed here were calculated in the derivation cohort and were used to test the model in the validation cohort.
aFor context, a 10-year increase in age (e.g. from age 50 to 60) would be associated with a 2.72-fold increase in atrial fibrillation risk.
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Table 3 Fit, calibration, and discrimination statistics for the age and WHS atrial fibrillation risk prediction models in
the validation cohort

Risk prediction algorithm

Age alone WHS P-value

Model fit (x2)a 55.3 87.9 —

Model calibration [x2(P-value)]b 7.01 (0.54) 8.07 (0.43) —

C-index (95% CI) 0.671 (0.636–0.710) 0.718 (0.684–0.753) ,0.0001

NRI (95% CI) 0.211 (0.117–0.303) ,0.0001

Continuous NRI (95% CI) 0.578 (0.406–0.751) ,0.0001

IDI 0.0064 (0.0045–0.0088) ,0.0001

CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification improvement; WHS, Women’s Health Study.
aEach likelihood ratio x2 statistic was highly significant (P , 0.0001).
bP-value of ,0.01 required to reject the hypothesis that a model is well calibrated.
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Figure 2 Adjusted relative risk of incident atrial fibrillation for increasing quintiles of the weighted and unweighted genetic risk scores in the
entire Women’s Health Study cohort (n ¼ 20 437). Estimates of relative risk and 95% confidence intervals are adjusted for the covariates
included in the Women’s Health Study atrial fibrillation risk prediction algorithm [ln(age), weight, height, systolic blood pressure, alcohol
use (≥2 drinks per day) and ever smoking status].

Figure 1 Clinical reclassification of participants in the validation cohort for the age alone model when compared with the novel Women’s
Health Study atrial fibrillation risk prediction algorithm (WHS Model). In total, 1546 participants were reclassified, 1546 (100%) correctly. Re-
classification x2 calibration statistics calculated from this table were 25.3 (P ¼ 0.0001) for the age alone model and 4.51 (P ¼ 0.48) for the novel
Women’s Health Study atrial fibrillation risk prediction algorithm.

Novel genetic markers improve measures 2247



genetic score to the WHS AF risk prediction algorithm
[NRI: 0.041 (20.0444–0.123), P ¼ 0.33]. Nevertheless, many
(591, 58.5%) of the 1011 reclassified participants were reclassi-
fied correctly on the basis of the genetic information (Figure 3).
In a secondary analysis, we observed similar results for the
unweighted GRS when it was added to the WHS AF risk

prediction algorithm (Supplementary material online, Table S4
and Figure S1). Finally, in a sensitivity analysis conducted in the
entire WGHS, we observed similar changes in the indices of re-
classification after the addition of the GRS to the WHS AF risk
prediction algorithm (Supplementary material online, Table S5
and Figures S2 and S3).

Figure 3 Clinical reclassification of participants in the validation cohort for the Women’s Health Study model plus the atrial fibrillation
weighted genetic risk score, when compared with the Women’s Health Study model without genetic information. In total, 1011 participants
were reclassified, 591 (58.5%) correctly. Reclassification x2 calibration statistics calculated from this table were 6.12 (P ¼ 0.30) for the
Women’s Health Study model and 3.96 (P ¼ 0.56) for the Women’s Health Study model plus the atrial fibrillation genetic risk score.
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Table 4 Indices of model fit, calibration, discrimination, and reclassification in the validation cohort after the addition
of genetic information to the age alone and WHS atrial fibrillation risk prediction algorithm

Age alone Age 1 AF weighted
genetic risk score

P-valuea WHS alone WHS 1 weighted AF
genetic risk score

P-valueb

Model fit (x2)c 55.3 62.7 – 87.9 104.1

Model calibration
[x2 (P-value)]d

7.01 (0.54) 2.76 (0.95) – 8.07 (0.43) 3.29 (0.91) –

C-index (95% CI) 0.671 (0.636–0.710) 0.704 (0.667–0.739) 0.0006 0.718 (0.684–0.753) 0.741 (0.709–0.774) 0.001

NRI (95% CI) 0.107 (0.0286–0.183) 0.006 0.041 (20.0444–0.123) 0.33

Continuous NRI
(95% CI)

0.459 (0.261–0.643) ,0.0001 0.490 (0.301–0.670) ,0.0001

IDI (95% CI) 0.00474 (0.00316–0.00672) ,0.0001 0.00526 (0.00325–0.00759) ,0.0001

Coefficients used to test the models were calculated in the derivation cohort.
CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification improvement; WHS, Women’s Health Study.
aP-value for comparison with the age alone risk prediction algorithm.
bP-value for comparison with the WHS risk prediction algorithm.
cAll model fit likelihood ratio x2 statistics were highly significant (P , 0.0001).
dP-value of ,0.01 required to reject the hypothesis that a model was well calibrated.
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Discussion
In this prospective cohort of 20 822 women without CVD at base-
line, we derived and validated a novel WHS AF risk prediction al-
gorithm, which despite being relatively simple, demonstrated good
discrimination, calibration, and improved reclassification into
10-year risk categories when compared with age alone. We then
tested whether our ability to predict incident AF was improved
by the addition of a weighted or unweighted GRS to the risk pre-
diction algorithm. The addition of either GRS improved the c-index
and other continuous measures of risk discrimination, but did
not appreciably improve the ability to classify participants into
pre-specified 10-year risk categories.

Our AF risk prediction model derived among women without
pre-existing CVD shares many AF risk predictors with those
derived in the FHS and ARIC populations, which included men
and women with and without established CVD.6,7 The exceptions
included physical exam findings and electrocardiographic variables,
which were unavailable in this cohort. Despite the absence of this
information, our model performed well and was able to reclassify
22.5% of women in a separate validation cohort. The six variables
selected for inclusion in the AF risk prediction model—age, weight,
height, systolic blood pressure, alcohol use, and past or current
smoking—are readily available in nearly every primary prevention
population. In addition, several of these variables are modifiable
through lifestyle interventions. Therefore, patients can be coun-
selled regarding lifestyle changes that might lower their 10-year
risk of AF. Potential future clinical applications of this simple AF
risk prediction algorithm could include identification of populations
where targeted screening for asymptomatic AF might be cost-
effective and/or where interventions designed to lower AF risk
might be tested in randomized trials. Given the expanding indica-
tions for anticoagulation in lower risk populations21,22 and
advances in rhythm monitoring devices,23 targeted screening for
asymptomatic AF may have clinical utility in the near future.

When compared with the traditional AF risk factors described
above, none of the 14 blood biomarkers we considered met our
pre-specified criteria for inclusion in the WHS AF risk prediction
algorithm, even though several, such as CRP and haemoglobin
A1c, have previously been associated with AF in this or other
cohorts.9,10 While our inclusion of these biomarkers in the
model derivation process is a strength of our study, B-type natri-
uretic peptide levels were not available for analysis. B-type natri-
uretic peptide levels have been strongly associated with incident
AF24,25 and improved the measures of discrimination when
added to the FHS AF risk algorithm.8 Whether they would offer
similar improvements in risk prediction in our relatively healthy
cohort of women is unclear and requires further study.

Data are sparse regarding the contribution of genetic data to AF
risk prediction. Recently, investigators from the Malmo Diet and
Cancer Study did not find an improvement in AF risk prediction,
as measured by the C-statistic, when two genetic variants at two
loci strongly associated with AF (4q25 and 16q22) were added
to traditional risk factors.26 In contrast, we found that a risk
score comprised of 12 variants at nine AF loci improved several
measures of AF risk prediction including the c-index, the continu-
ous NRI, and the IDI in our population of women without

established CVD. These data suggest that genetic information has
the potential to improve the identification of individuals at higher
risk for AF among healthy populations and raise the possibility
that the inclusion of more genetic risk markers may improve our
ability to predict AF in the future. Although the present GRS did
not improve our ability to classify women into discrete 10-year
AF risk categories, the continued search for additional genetic var-
iants associated with AF may improve discriminatory ability in the
future. Also, since there is currently no consensus regarding clinic-
ally meaningful AF risk categories, the continuous NRI and IDI may
be more appropriate measures of model performance since they
are not based upon arbitrary risk categories.18,27,28 Regardless,
the data presented here are not yet strong enough to justify wide-
spread genetic screening to assess AF risk.

The strengths of our study include the size of the study popula-
tion, the duration of follow-up, the number of prospectively ascer-
tained and physician-validated AF cases, and the breadth of risk
factors and biomarkers considered for inclusion in the model. In
addition, we were able to validate both the AF risk prediction
model and the contribution of genetic information to risk predic-
tion, in a reserved validation cohort of women. To our knowledge,
this has not been done previously with prior AF risk prediction
scores.

Our study also has important limitations which merit consider-
ation. The generalizability of our findings may be limited to women
with a low prevalence of CVD and HF and to those of European an-
cestry. As such, the WHS AF risk score may not perform as well in
other populations. This is a limitation common to risk scores and
was found to be the case when the FHS AF risk score was applied
to external populations.29 Future studies are needed to validate
our model in other populations and to determine if our strategy of
using the BIC to select a small number of covariates for the model
translates to good performance outside of the WHS.

Second, we did not collect baseline ECGs, and therefore, we
were unable to evaluate whether information on PR interval, left
atrial enlargement, and left ventricular hypertrophy, which have
been included in other risk prediction algorithms6,7 would add to
AF risk prediction among women without CVD. Thus, we were
unable to compare our model performance to that of the FHS
and ARIC scores. We also did not perform screening ECGs
during follow-up and some asymptomatic cases of AF may have
gone undetected. Third, we did not collect information on the
family history of AF at baseline and thus were unable to
compare the predictive value of this information to that provided
by the GRS.17 Fourth, as mentioned above, although we were able
to test numerous blood biomarkers for inclusion in our model, we
were not able to test all blood biomarkers that have been asso-
ciated with AF in our study population.

In conclusion, in this large-scale, prospective cohort of initially
healthy women of European ancestry, we derived and validated a
novel, simple AF risk prediction algorithm utilizing six easily mea-
sured AF risk factors (age, weight, height, systolic blood pressure,
alcohol use, and smoking). Beyond this information, a GRS based
on recently published risk alleles showed potential for improving
the ability to identify individuals at higher risk for AF; however,
we did not find definitive evidence that the currently identified
AF risk alleles can be utilized as a clinically meaningful risk
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stratification tool at present. Discovery of additional genetic var-
iants and/or application to targeted populations may improve the
clinical performance of GRSs. At the same time, research directed
at developing effective AF screening and prevention strategies will
increase the clinical impact of AF risk prediction scores.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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Granulomatous mass adherent to a patent foramen ovale occluder
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A 70-year-old woman with a history of repeated
cerebrovascular events and patent foramen
ovale (PFO) closure with PREMERE occluder
(St Jude Medical, St Paul, MN, USA) had a recur-
rence of transient left hemi paresis. Transoeso-
phageal echocardiography (TOE) revealed an
intracardiac mass on the left side of the PFO
closure system (8 × 8 mm) (Panel A). Despite
oral anticoagulation, TOE performed 2 months
later found persistent mass (Panel B). Surgical
removal of the PFO occluder with the linked
mass (Panel C, arrow) and the closure of
the atrial communication were, therefore, per-
formed. Histology concluded to a granuloma-
tous formation. Exogenous structures (Panel
D) that may come from the occluder were
found in the tissue and participated to an
inflammatory reaction associated with fibrosis.
To our knowledge, this is the first report of a
granulomatous mass which needed removal of
a PFO occluder. Beyond its debated indication,
this highlights that the PFO closure may
have rare but still unknown and not negligible
complications.

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2013. For permissions please email: journals.permissions@oup.com
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