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Abstract

This thesis develops several tools and techniques using ideas from information theory, optimization,

and online learning, and applies them to a number of highly related fundamental problems in complexity

theory, pseudorandomness theory, and cryptography.

First, we give a new, more constructive proof of von Neumann’s Min-Max Theorem for two-player

zero-sum game, extending previous work of Freund and Schapire (Games and Economic Behavior ‘99). The

resulting Uniform Min-Max Theorem enables a number of applications in cryptography and complexity

theory, often yielding uniform security versions of results that were previously only proved for nonuniform

security (due to use of the non-constructive Min-Max Theorem), and often with optimal parameters.

We then develop several applications of the Uniform Min-Max Theorem, including: Regularity Theo-

rems that provide efficient simulation of distributions within any sufficiently nice convex set; an improved

version of the Weak Regularity Lemma for graphs; a simple and more modular uniform version of the

Hardcore Theorem for boolean circuits; Dense Model Theorems for uniform algorithms; and impossibil-

ity of constructing Succinct Non-Interactive Arguments (SNARGs) via black-box reductions under uniform

hardness assumptions.

Next, we provide a new characterization of computational Shannon-entropy, in terms of the hardness

of sampling a distribution. Given any joint distribution (X,B) where B takes values in a polynomial-

sized set, we show that (X,B) is computationally indistinguishable to some joint distribution (X,C) with

Hsh(C|X) ≥ Hsh(B|X) + δ, if and only if there is no poly-sized circuit S such that the KL divergence

from B to S(X) is smaller than δ. We then use this characterization to show that if f is a one-way

function, then (f(Un), Un) has “next-bit pseudoentropy” at least n + logn, establishing a conjecture of

Haitner, Reingold, and Vadhan (STOC ‘10). Plugging this into the construction of Haitner et al., this yields

a simpler construction of pseudorandom generators from one-way functions. With an additional idea, we
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Abstract

also show how to improve the seed length of the pseudorandom generator to Õ(n3), compared to Õ(n4) in

the construction of Haitner et al. In addition, this characterization establishes a connection to prediction

markets based on market scoring rules.

We also provide a new characterization of pseudo-avg-min-entropy, generalizing the Hardcore Theorem

to polynomial-sized (rather than binary) alphabets. The Uniform Min-Max Theorem is used to obtain

uniform versions of both characterizations.
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Chapter 1

Introduction

Information theory and optimization theory have proved to be extremely useful in

many fields of theoretical computer science. For example, much of modern cryptography

and pseudorandomness theory was founded on (generalizations of) information-theoretic

notions; machine learning has benefitted tremendously from tools in optimization. In this

work, we bring together concepts and techniques from information theory, optimization, and

online learning in the context of complexity theory, pseudorandomness, and cryptography.

1.1 A Uniform Min-Max Theorem and Applications

Von Neumann’s Min-Max Theorem (equivalent to Linear Programming Duality and the

finite-dimensional Hahn-Banach Theorem) is a fundamental result about zero-sum games

between 2 players. It tells us that if for every Player 1 strategy (which can be randomized)

Player 2 can respond accordingly to achieve a payoff of at least k, then Player 2 has a

universal strategy (which is randomized) that guarantees such payoff regardless of Player

1’s strategy. The Min-Max Theorem has proved to be an extremely useful tool in theoreti-

cal computer science. In cryptography and complexity theory, it gives rise to a number of

1



Chapter 1: Introduction

results such as Impagliazzo’s Hardcore Theorem [Imp], equivalence of different notions of

computational entropy [BSW], the Dense Model Theorem [RTTV], leakage-resilient cryp-

tography [DP2, FR], efficient simulation of high entropy distributions [TTV], impossibil-

ity of constructing succinct non-interactive arguments (SNARGs) via black-box reductions

[GW], cryptographic studies of forecast testing [FV, CLP1], and simpler construction of

pseudorandom generators from one-way functions [VZ1].

A limitation of the Min-Max Theorem is that it is non-constructive; it only asserts

the existence of such universal strategy for Player 2, but does not say how it can be found

(algorithmically). In a typical result in cryptography or complexity, where the statement

is of the form “hardness of A” implies “hardness of B,” the proof is often a “reduction,”

constructing an adversary for A from an adversary for B. This is the case for most of the

aforementioned cryptographic applications, where the Min-Max Theorem is applied during

the construction of the adversary for A. Consequently, non-constructivity of the Min-Max

Theorem means we can only nonuniformly construct an adversary for A. In other words,

such results must make the stronger assumption that A is hard even for nonuniform boolean

circuits, and not just uniform algorithms.

In Chapter 2 we give a new, more constructive proof of the Min-Max Theorem, using

techniques from optimization and online learning [HW], and extending previous work of

Freund and Schapire [FS]. The resulting Uniform Min-Max Theorem, when used in place of

the Min-Max Theorem, can often yield a uniform construction of an adversary for B. With

the Uniform Min-Max Theorem, we are thus able to prove uniform versions of some of the

aforementioned results (where hardness is with respect to uniform algorithms), throughout

Chapter 3, 4 and 6.

Remark. The statement of a uniform result is often incomparable to the statement of

the corresponding nonuniform result, whose assumption and conclusion are both stronger

2
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(i.e. hardness for boolean circuits). However, a uniform result often can also be stated as

a uniform “reduction” that works for both uniform and nonuniform settings. In this sense,

our uniform results in Chapter 3, 4 and 6 are stronger than the known nonuniform results,

but for simplicity we choose not to state them in that way.

Regularity Theorems for Distributions Restricted to a Convex Set. In Chapter

2 we also apply the Uniform Min-Max Theorem to show a generalization and quantitative

improvement to the “Regularity Theorem” of Trevisan, Tulsiani, and Vadhan [TTV], which

(informally) says that any high min-entropy distribution X is indistinguishable from some

high min-entropy, low complexity distribution Y . The result of [TTV] is itself a quantitative

improvement of regularity and “decomposition” theorems in additive combinatorics [GT,

TZ]. It is shown in [TTV] that such results can be used to deduce the Dense Model

Theorem [TZ, RTTV, Gow], Impagliazzo’s Hardcore Theorem [Imp], and other results,

by replacing any unknown distribution X with an “equivalent” distribution Y that can

be efficiently analyzed and manipulated. Among applications of our Regularity Theorems

are an improved and optimal Weak Regularity Lemma for graphs of density o(1), and a

strengthening of a recent result of Jetchev and Pietrzak [JP].

Uniform Hardcore Theorem. Impagliazzo’s Hardcore Theorem ([Imp] and later strength-

ened in [KS, Hol1, BHK]) is a fundamental result in complexity theory that says if a boolean

function f is somewhat hard on average, then there must be a subset of inputs (the hard-

core) on which f is extremely hard, and outside of which f is easy. There are two approaches

to proving the theorem. One is constructive [Imp, KS, Hol1, BHK] and leads to a Uniform

Hardcore Theorem where hardness of f is measured against uniform algorithms, rather

than nonuniform boolean circuits, and has several important applications in cryptography

[KS, Hol1, Hol2, HHR1, HRV]. However, the existing proofs either do not achieve all of the

3
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optimal parameters simultaneously for a Uniform Hardcore Theorem, or when they do they

tend to be somewhat ad hoc. Another approach due to Nisan [Imp] (and strengthened in

[Hol1]) uses the (non-constructive) Min-Max Theorem and has the advantage of simplicity,

but is restricted to the nonuniform measure of hardness.

In Chapter 3, Section 3.1, we show that by replacing the use of Min-Max Theorem

in the proof of Nisan [Imp] or Holenstein [Hol1] with our Uniform Min-Max Theorem, we

obtain a new proof of the Uniform Hardcore Theorem with the advantages of (i) optimal

hardcore density; (ii) optimal complexity blow-up; and (iii) modularity and simplicity.

Uniform Dense Model Theorem. A celebrated result of Green and Tao [GT] shows

that there exist arbitrarily long arithmetic progressions of prime numbers. A key new

component of their proof is the Dense Model Theorem which, in the generalized form of Tao

and Ziegler [TZ], says if X is a pseudorandom distribution and D is a distribution dense in

X, then D is indistinguishable to a distribution M that is dense in the uniform distribution.

Using the Min-Max Theorem, Reingold et al. [RTTV] provided another proof of Dense

Model Theorem where the indistinguishability and complexity blow-ups are polynomial

(rather than exponential); a similar proof was given by Gowers [Gow]. The polynomial

blow-ups are crucial for applications in leakage-resilient cryptography [DP2, DP1, FOR],

and for connections to computational differential privacy [MPRV]. In Chapter 3, Section

3.2, as another application of the Uniform Min-Max Theorem, we show how to obtain a

Dense Model Theorem where the distinguishers are efficient (uniform) algorithms, with

polynomial blow-ups in running time and indistinguishability.

Characterizations of Computational Entropy. In Chapter 4 we give new charac-

terizations of notions of computational randomness, whose proof in the nonuniform set-

ting involves the Min-Max Theorem. Our characterization of “computational average min-

4
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entropy” (known as “pseudo-avg-min-entropy”) is a generalization of the Hardcore Theorem

to larger alphabets. Our characterization of computational conditional entropy (known as

“conditional pseudoentropy”) leads to simpler constructions of pseudorandom generators

from arbitrary one-way functions in Chapter 5 (building on the work of Haitner, Reingold,

and Vadhan [HRV]). Using the Uniform Min-Max Theorem, we proved our characteriza-

tions in the uniform setting. For computational conditional entropy, the uniform result

gives rise to (simpler) pseudorandom generator from arbitrary one-way functions that are

secure against uniform algorithms.

Impossibility of Black-Box Construction of Succinct Non-Interactive Argument.

A result of Gentry and Wichs [GW] shows that there is no black-box construction of succinct

non-interactive arguments (SNARGs) from any natural cryptographic assumption. Their

result relies on the (mild) assumption that there exist hard subset membership problems,

which is equivalent to the existence of subexponentially hard one-way functions. One lim-

itation is that they need to assume nonuniformly secure one-way functions, in part due to

their use of the non-constructive Min-Max theorem in Lemma 3.1 of [GW].

In Chapter 6, we show how to obtain the analogous result in the uniform setting by using

the Uniform Min-Max Theorem. We show that, assuming that there exist subexponentially

hard one-way functions that are secure against uniform algorithms, there is no construction

of SNARGs whose security can be reduced in a black-box way to a cryptographic assumption

against uniform algorithms (unless the assumption is already false).

Unlike some of the previous applications, Gentry and Wich’s proof (for the nonuni-

form setting) relies on nonuniformity even outside the use of the Min-Max Theorem. A

considerable amount of extra work is needed for us to remove these uses of nonuniformity.

5
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1.2 Characterizing Computational Entropy and Applications

Computational analogues of information-theoretic notions have given rise to some of

the most interesting phenomena in cryptography and pseudorandomness theory. For exam-

ple, indistinguishability [GM2], which is the computational analogue of statistical distance,

enabled bypassing Shannon’s impossibility results on perfectly secure encryption [Sha], and

provided the basis for the computational theory of pseudorandomness [BM, Yao2]. In-

formally, two distributions X and Y are said to be indistinguishable if for all efficient

randomized algorithms P , the probabilities that P (X) = 1 and P (Y ) = 1 differ negligibly

(where the probability is over X, Y , and coins of P ).

Computational analogues of entropy were introduced by Yao [Yao2] and Håstad, Im-

pagliazzo, Levin, and Luby [HILL]. The Håstad et al. notions, known as pseudoentropy and

pseudo-min-entropy, were key to their fundamental result establishing the equivalence of

pseudorandom generators and one-way functions, and have also now become a basic concept

in complexity theory and cryptography. A distribution X is said to have pseudoentropy at

least k if there exists a distribution Y indistinguishable from X such that Y has entropy1 at

least k. Analogously, a distribution X is said to have pseudo-min-entropy at least k if there

exists a distribution Y indistinguishable from X such that Y has min-entropy2 at least k.

Conditional versions of the Håstad et al. notions are known as conditional pseudoentropy

[HRV] and pseudo-avg-min-entropy [HLR], respectively. Pseudo-avg-min-entropy, in the

special case involving only a binary alphabet, is equivalent to “hardcore distributions” intro-

duced by Impagliazzo [Imp] (see the discussion on Impagliazzo’s Hardcore Theorem above).

Conditional pseudoentropy was introduced by Haitner, Reingold, and Vadhan [HRV] to

give a simpler and more efficient construction of pseudorandom generators from one-way

1The (Shannon) entropy of a distribution X is defined to be Hsh(X) = Ex←X [log(1/Pr[X = x])] .

2The min-entropy of a distribution X is defined to be Hsh(X) = minx [log(1/Pr[X = x])] .

6
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functions.

In Chapter 4, we give new characterizations of pseudo-avg-min-entropy, pseudoentropy,

and conditional pseudoentropy in terms of certain (different) notions of “hardness” for dis-

tributions, using concepts and techniques from information theory, optimization, and pseu-

dorandomness theory. Our characterizations of pseudo-avg-min-entropy and conditional

pseudoentropy are as follows:

Theorem 1.1 (Characterizing pseudo-avg-min-entropy, informal). Let (X,B) be a polynomial-

time samplable joint distribution where B takes values in a polynomial-sized set. Then B has

pseudo-avg-min-entropy at least k given X if and only if there is no probabilistic polynomial-

time algorithm S such that Pr[S(X) = B] ≥ 2−k.

Theorem 1.2 (Characterizing conditional pseudoentropy, informal). Let (X,B) be a joint

distribution where B takes values in a polynomial-sized set. Then B has pseudoentropy at

least Hsh(B|X)+δ3 given X if and only if there is no probabilistic polynomial-time algorithm

S such that the KL divergence4 from (X,B) to (X,S(X)) is at most δ.

We note that the characterization of pseudo-avg-min-entropy is a generalization of

the Hardcore Theorem to polynomial-sized (rather than binary) alphabets. Some of our

techniques are rather generic, and can be used to deduce a meta theorem characterizing a

class of computational entropy notions (in which pseudoentropy is a special case).

In addition, using the Uniform Min-Max Theorem, we obtain uniform versions of the

these characterizations, namely with respect to probabilistic polynomial-time algorithms S.

In Chapter 5, we study how to further simplify and improve the construction of pseu-

dorandom generators from arbitrary one-way functions, building on the recent work of

3Hsh(B|X) denotes the conditional entropy of B given X.
4KL divergence is a common notion of “distance” between distributions.

7
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Haitner, Reingold, and Vadhan [HRV]. In particular, we apply the characterization of

conditional pseudoentropy to show that all one-way functions directly contain “next-bit

pseudoentropy,” establishing a conjecture of Haitner, Reingold, and Vadhan. This yields

a further simplified construction of pseudorandom generators from arbitrary one-way func-

tions. In addition, we will explore how to further improve the efficiency of the pseudorandom

generator from the previous state-of-the-art Õ(n4) to Õ(n3).

In Chapter 7, we introduce the notion of algorithmic prediction markets based on

market scoring rules, and prove lower bounds using our characterizations of conditional

pseudoentropy.

1.3 Preliminaries

For more background on information theory, including the definitions and proofs of

their basic properties stated in this section, see [CT].

1.3.1 Notations and Conventions

For a natural number n, [n] denotes the set {1, . . . , n}, Un denotes the uniform distri-

bution on binary strings of length n. For a finite set Σ, UΣ denotes the uniform distribution

on Σ. For a distribution X, supp(X) denotes the support of X, x ← X and x ∼ X mean

that x is a random sample drawn from distribution X. We write Avga≤i≤b as a shorthand

for the average over all i ∈ {a, . . . , b}. Conv(·) denotes the convex hull. Where there is no

ambiguity, a symbol may be used to denote both a function and a variable, e.g. g = g(n);

in such case we write g(·) to denote the function. All logs are base 2.

When we say n is a security parameter and K = K(n) (e.g. when talking about uniform

algorithms), what we mean is that there is a sequence of objects (which can be numbers,

distributions, etc) K(1),K(2), . . . , and K is used as a shorthand for K(n) wherever n has

8



Chapter 1: Introduction

been quantified (explicitly or implicitly).

For a joint distribution (X,C), we write C(a|x) to denote the conditional probability

Pr[C = a|X = x], whenever X is clear from the context. For a function P : Σ → R≥0

where Σ is a finite set, we write ΦP to denote the distribution C where Pr[C = a] =

P (a)/
∑

a∈Σ P (a). For a distribution X that is clear from context and a function P :

supp(X) × Σ → R≥0, we write ΦP to denote the distribution C jointly distributed with

X, where C(a|x) = P (x, a)/
∑

a∈Σ P (x, a) for each x ∈ supp(X). In particular, if P is

[0, 1]-valued then P is called a measure:

Definition 1.3 (Measure and conditional measure). For a distribution C, a function P :

supp(C)→ [0, 1] is said to be a measure for C if C = ΦP .

For a joint distribution (X,C), a function P : supp(X) × supp(C) → [0, 1] is a condi-

tional measure for C|X if (X,C) = (X,ΦP ).

1.3.2 Entropies, Divergences, and Projection

Definition 1.4 (Entropy). For a distribution X, the (Shannon) entropy of X is

Hsh(X) = E
x←X

[
log 1

Pr[X = x]

]
.

For α = 2, 3, . . . , the Renyi entropy of X of order α is

Hα(X) = log 1(∑
x∈supp(X) Pr[X = x]α

)1/(α−1) ,
and the min-entropy of X is

H∞(X) = lim
α→+∞

Hα(X) = min
x∈supp(X)

(
log 1

Pr[X = x]

)
.

Definition 1.5. For a joint distribution (X,B), the conditional (Shannon) entropy of B

given X (or, conditional (Shannon) entropy of B when X is clear from the context) is

Hsh(B|X) = E
x←X

[Hsh(B|X=x)] .

9
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Proposition 1.6 (Chain rule for Shannon entropy). Hsh(X,B) = Hsh(X) +Hsh(B|X).

Bregman divergence is a notion of distance between distributions:5

Definition 1.7 (Bregman divergence). Let Σ be any finite set, andH : {distributions on Σ} →

R≥0 be any strictly concave function that is differentiable in the interior of the simplex in

|Σ|-space. Let A and B be distributions on Σ. The Bregman divergence associated with H

from A to B is defined to be

DH(A ∥ B) = H(B)−H(A)− ⟨∇H(B), B −A⟩

where∇H(B) is the gradient vector, and we view B−A as the difference between probability

vectors.

For ⟨∇H(B), B −A⟩, if H(B) is not differentiable w.r.t. Pr[B = a] for some a ∈ Σ,

then by convention:

• If Pr[A = a] > Pr[B = a] = 0, then DH(A ∥ B) = +∞;

• If Pr[A = a] = Pr[B = a] = 0, then it contributes zero to the inner product.

While Bregman divergence is not a metric (it is not symmetric and does not satisfy

the triangle inequality), it does satisfy nonnegativity, and equals zero if and only if the

distributions are identical:

Proposition 1.8 (Nonnegativity of Bregman divergence). For all distributions A and B,

DH(A ∥ B) ≥ 0. Moreover, DH(A ∥ B) = 0 if and only if A = B.

A canonical example of Bregman divergence is the KL divergence, with H being the

Shannon entropy function Hsh.

5In fact Bregman divergence can be defined between elements in an arbitrary convex subset of Rn, rather
than the unit simplex. However, the more restricted definition suffices for our purpose.
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Definition 1.9 (KL divergence and conditional KL divergence). The Bregman divergence

associated with Shannon entropy is known as the Kullback-Leibler (KL) divergence. For

distributions A and B, it is easily verified that the KL divergence from A to B equals

KL(A ∥ B) = DH(A ∥ B) = E
a←A

[
log Pr[A = a]

Pr[B = a]

]
,

or conventionally +∞ if supp(A) ̸⊆ supp(B).

For joint distributions (X,A) and (Y,B), the conditional KL divergence from A|X to

B|Y is defined to be

KL((A|X) ∥ (B|Y )) = E
(x,a)←(X,A)

[
log Pr[A = a|X = x]

Pr[B = a|Y = x]

]
= E

x←X
[KL(A|X=x ∥ BY=x)] .

Intuitively, the KL divergence from distribution A to distribution B measures how

dense A is within B, on average (with zero divergence representing maximum density, i.e.

A = B, and large divergence meaning that A is concentrated in a small portion of B). Like

Shannon entropy, KL divergence has a chain rule:

Proposition 1.10 (Chain rule for KL divergence). KL(X,A ∥ Y,B) = KL(X ∥ Y ) +

KL((A|X) ∥ (B|Y )).

Like other distance measures between distributions, applying any (deterministic) func-

tion never increases the KL divergence:

Proposition 1.11 (Entropy-like property of KL divergence). KL(g(A)||g(B)) ≤ KL(A||B)

for any function g.6

Next we define KL projection, which can be seen as the analogue of Euclidean projection

that minimizes KL divergence rather than Euclidean distance:

6This is in fact equivalent to the log-sum inequality [CT]. For a more direct proof, see [GV].

11



Chapter 1: Introduction

Definition 1.12 (KL projection). Let X be a distribution on Σ, and V be a non-empty

closed convex set of distributions on Σ. Y ∗ ∈ V is called a KL projection of X on V if

Y ∗ = argmin
Y ∈V

KL(Y ∥ X).

A nice property of KL projection is the following geometric structure (see [CT], Chap

11, Section 6):

Theorem 1.13 (Pythagorean Theorem). Let V be a non-empty closed convex set of distri-

butions on Σ. Let Y ∗ be a KL projection of X on V. Then for all Y ∈ V,

KL(Y ∥ Y ∗) +KL(Y ∗ ∥ X) ≤ KL(Y ∥ X).

In particular,

KL(Y ∥ Y ∗) ≤ KL(Y ∥ X).

Assuming KL(Y ∗ ∥ X) is finite, then the Pythagorean Theorem implies that the KL

projection is unique:

Proposition 1.14. The KL projection is unique.

Proof. Suppose Y ∗ and Y are both KL projections of X on V. Then by the Pythagorean

Theorem (Theorem 1.13) KL(Y ∥ Y ∗) = 0, which implies Y = Y ∗ by Proposition 1.8.

Finding the exact KL projection is often computationally infeasible, so we consider

approximate KL projection:

Definition 1.15 (Approximate KL projection). We say Y ∗ is a σ-approximate KL projec-

tion of X on V, if Y ∗ ∈ V and for all Y ∈ V,

KL(Y ∥ Y ∗) ≤ KL(Y ∥ X) + σ.

In particular, by the Pythagorean Theorem (Theorem 1.13) Y ′ is a σ-approximate KL

projection of X if KL(Y ∥ Y ′) ≤ KL(Y ∥ Y ∗) + σ for all Y ∈ V, where Y ∗ is the (exact)

KL projection of X.
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1.3.3 Indistinguishability

(Computational) indistinguishability is the computational analogue of two distributions

being statistically close (i.e. small total variation distance), by considering a restricted class

of statistical tests W rather than all statistical tests:

Definition 1.16 ((Computational) indistinguishability). Let W be any set of functions

W : Σ→ [0, 1], for some finite set Σ. Two distributionsX and Y on Σ are ϵ-indistinguishable

by W if for all W ∈ W,

|E[W (X)]− E[W (Y )]| < ϵ.

E[W (X)] − E[W (Y )] is said to be the distinguishing advantage of W , and W is an ϵ-

distinguisher between X and Y if its distinguishing advantage is at least ϵ.

WhenW is closed under “negation” i.e. W ∈ W ⇐⇒ 1−W ∈ W, ϵ-indistinguishability

can be equivalently stated without taking absolute value:

E[W (X)]− E[W (Y )] < ϵ.
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Chapter 2

Uniform Min-Max Theorem and

Regularity Theorems

Von Neumann’s Min-Max Theorem (which is equivalent to Linear Programming Dual-

ity and the finite-dimensional Hahn-Banach Theorem) has proved to be an extremely useful

tool in theoretical computer science, giving rise to a number of results in cryptography and

complexity theory. In this chapter we give a new, more constructive proof of the Min-Max

Theorem (extending previous work of Freund and Schapire [FS]), and use the resulting

Uniform Min-Max Theorem to deduce new Regularity Theorems for distributions. These

results will be applied throughout Chapter 3, 4 and 6 to obtain new “uniform” results in

cryptography and complexity theory.

2.1 Introduction

Consider a zero-sum game between two players where for every mixed strategy V for

Player 1 (as a distribution over his strategy space V), Player 2 has a response W ∈ W that

guarantees E [f(V,W )] ≥ 0, where f (payoff) can be an arbitrary function. The Min-Max

14
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Theorem says that there must exist a Player 2’s mixed strategy W ∗ (as a distribution over

his strategy spaceW) that guarantees E [f(V,W ∗)] ≥ 0 for all strategies V ∈ V of Player 1.

The Min-Max Theorem gives rise to a number of results in cryptography and complex-

ity theory such as Impagliazzo’s Hardcore Theorem [Imp], equivalence of different notions of

computational entropy [BSW], the Dense Model Theorem [RTTV], leakage-resilient cryp-

tography [DP2, FR], efficient simulation of high entropy distributions [TTV], impossibil-

ity of constructing succinct non-interactive arguments (SNARGs) via black-box reductions

[GW], cryptographic studies of forecast testing [FV, CLP1], and simple construction of

pseudorandom generators from one-way functions [VZ1]. In a typical application like these,

Player 1 chooses V from a convex set V of distributions over {0, 1}n, and Player 2 chooses

W from a set W of (possibly randomized) boolean functions {0, 1}n → {0, 1} and receives

expected payoff E[f(V,W )] where f(V,W ) = E[W (V )], i.e. the expected output of W when

input is drawn from the distribution V . For example, V contains all high entropy distribu-

tions over {0, 1}n and W contains all boolean functions of small circuit size.

A limitation of the Min-Max Theorem is that it is highly non-constructive; it only

asserts the existence of the optimal strategy W ∗ but does not say how it can be found

(algorithmically). Consequently, applications of the Min-Max Theorem only give rise to

results about nonuniform boolean circuits, rather than uniform algorithms (e.g. we set

cryptographic protocols based on nonuniform hardness rather than uniform hardness as-

sumptions).

To overcome this, we consider the natural algorithmic task of constructing such an

optimal strategy W ∗ for Player 2, assuming f is efficiently computable. When the sizes of

strategy spaces V andW are small (e.g. polynomial) this can be done by linear programming,

for which efficient algorithms are well-known. However, applications in cryptography and

complexity theory such as ones just mentioned involve exponentially large strategy spaces,
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and an optimal strategy W ∗ cannot be found in polynomial time in general. Thus we also

require that, given any mixed strategy V for Player 1, not only does there exist a strategy

W ∈ W for Player 2 with E [f(V,W )] ≥ 0, but such response W can be obtained efficiently

by an oracle (or an efficient uniform algorithm).

Assuming such an oracle, Freund and Schapire [FS] show how to find an approximately

optimal W ∗ for Player 2 in polynomial time and by making O((log |V|)/ϵ2) adaptive oracle

queries, using the idea of multiplicative weight updates. However, their algorithm still falls

short in some of aforementioned applications where V is a set of distributions over {0, 1}n,

and thus V can have doubly-exponentially many vertices. For example, consider the set of

distributions on {0, 1}n of min-entropy at least k; the vertices of V are uniform distributions

on a subset of size 2k, and there are
(
2n

2k

)
such subsets.

In this chapter, we present a Uniform Min-Max Theorem that efficiently finds an ap-

proximately optimal strategy W ∗ for Player 2, given an oracle that for any of Player 1’s

mixed strategy V ∈ V returns some Player 2’s strategy that guarantees reasonable payoff,

even when V is a (sufficiently nice) set of distributions over {0, 1}n. Our theorem is in-

spired by the proof of Uniform Hardcore Theorem of Barak, Hardt, and Kale [BHK]. Like

[BHK], the underlying algorithm uses “relative entropy (KL) projections” together with

multiplicative weight updates (a technique originally due to Herbster and Warmuth [HW]).

Our contribution is providing the right abstraction: formulating this algorithm as providing

a Uniform Min-Max Theorem.

An advantage of our formulation of a Uniform Min-Max Theorem is that it is more

modular, and not specific to the Hardcore Theorem. Consequently, it immediately enables

a number of applications, including (but not limited to) deriving uniform versions of many

of the aforementioned results, where we now deal with algorithms rather than nonuniform

boolean circuits. Even for the Hardcore Theorem, where the uniform version was already
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known [Hol1, BHK], there are advantages to deducing it using the Uniform Min-Max The-

orem. Furthermore, even in nonuniform settings, replacing the use of standard Min-Max

Theorem with the Uniform Min-Max Theorem can often yield improved, optimal parame-

ters.

Regularity Theorems for Distributions Restricted to a Convex Set. We then

apply the Uniform Min-Max Theorem to show a generalization and quantitative improve-

ment to the “Regularity Theorem” of Trevisan, Tulsiani, and Vadhan [TTV] which (infor-

mally) says that any high min-entropy distribution X is indistinguishable from some high

min-entropy, low complexity distribution Y . The result of [TTV] is itself a quantitative im-

provement of regularity and “decomposition” theorems in additive combinatorics [GT, TZ].

It is shown in [TTV] that such results can be used to deduce the Dense Model Theorem

[TZ, RTTV, Gow], Impagliazzo’s Hardcore Theorem [Imp], and other results, by replacing

any unknown distribution X with an “equivalent” distribution Y that can be efficiently

analyzed and manipulated.

Our result is more general than [TTV] in the sense that we are no longer restricted

to distributions of high min-entropy. We show that for any sufficiently nice convex set of

distributions V, every distribution X ∈ V is indistinguishable from some distribution Y ∈ V

where Y has “low complexity”, for various notions of complexity and indistinguishability. In

the case of min-entropy distributions, we obtain a high min-entropy Y with lower complexity

than [TTV]. This also yields an improved and optimal Weak Regularity Lemma for graphs

of density o(1) (Section 2.3.2).

Average-case versions of our Regularity Theorems can be used to deduce “low com-

plexity” versions of a technical lemma of [GW]. We note that our average-case Regularity

Theorem for circuit complexity is a strengthening of a recent result of Jetchev and Pietrzak

17



Chapter 2: Uniform Min-Max Theorem and Regularity Theorems

[JP], with a simpler proof. The low circuit complexity version of the [GW] lemma (with

slightly weaker parameters) was initially proved by Jetchev and Pietrzak [JP], and an inter-

active extension was proved by Chung, Lui, and Pass [CLP2] for applications in the context

of distributional zero-knowledge.

2.2 A Uniform Min-Max Theorem

Consider a zero-sum game between two players, where the space of pure strategies for

Player 1 is a V = [N ], the space of pure strategies for Player 2 is W, and the payoff to

Player 2 is defined to be f(V,W ) for some function f : V × W → [0, 1]. Von Neumann’s

Min-Max Theorem says that

min
V ∈Conv(V)

max
W∈W

E[f(V,W )] = max
W∈Conv(W)

min
V ∈V

E[f(V,W )].

Equivalently, if for every mixed strategy V ∈ Conv(V) for Player 1, Player 2 has a response

W ∈ W that guarantees E [f(V,W )] ≥ p, then there must exist a Player 2’s mixed strategy

W ∗ ∈ Conv(W) that guarantees E [f(V,W ∗)] ≥ p for all strategies V ∈ V of Player 1:

Theorem 2.1 (Min-Max Theorem). Consider a two-player zero-sum game where V and

W are the finite sets of pure strategies for Player 1 and Player 2 (resp.), and the payoff to

Player 2 is defined to be f(V,W ) for some function f : V ×W → [0, 1].

Suppose for all Player 1’s mixed strategies V ∈ Conv(V) there exists a Player 2 “re-

sponse” strategy W ∈ W with expected payoff E[f(V,W )] ≥ p. Then there exists some

W ∗ ∈ Conv(W) such that E[f(V,W ∗)] ≥ p for all V ∈ V.

A natural algorithmic task is to find such optimal mixed strategy W ∗. This is easy

(and well-known) in the nonuniform setting, where we want to compute W ∗ by a small

circuit, assuming Player 2 responses can be computed by a small circuit:
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Theorem 2.2 (Nonuniform Min-Max Theorem). Consider a two-player zero-sum game

where the sets of pure strategies for Player 1 and Player 2 are V = [N ] and W, and the

payoff to Player 2 is defined to be f(V,W ) for some function f : V ×W → [0, 1].

Suppose for all Player 1’s mixed strategies V ∈ Conv(V) there exists a Player 2 “re-

sponse” strategy W ∈ W with expected payoff E[f(V,W )] ≥ p. Then for every ϵ > 0, there

exists some W ∗ ∈ Conv(W) such that E[f(V,W ∗)] ≥ p − ϵ for all V ∈ V, and W ∗ is the

uniform distribution over a multiset of S = O(logN/ϵ2) elements of W.

Proof. By the Min-Max Theorem there is a mixed strategy W ∈ Conv(W) with an expected

payoff of E[f(V,W )] ≥ p for all V ∈ V. Take S random samples from W and let W ∗ be

uniformly distributed over these S samples. By a Chernoff bound, for each V ∈ V w.p. at

least 1 − 2−Ω(S·ϵ2) we have E[f(V,W ∗)] ≥ E[f(V,W )] − ϵ ≥ p − ϵ. The result follows by a

union bound.

Note that W ∗ has small circuit size because W ∗ can be computed by picking a random

element of the small S element multiset; if W contain circuits of size at most t, then W ∗

has circuit size O(S · t). Also note that it implies the standard Min-Max Theorem by taking

ϵ→ 0.

In many applications (including the Hardcore Theorem), the game must be set up such

that the set of pure strategies for Player 1 is a convex set V of distributions over [N ], with

the expected payoff still defined to be E [f(V,W )] for some function f : [N ] ×W → [0, 1].

For example, V contains all the high entropy distributions over [N ]. The Min-Max Theorem

still holds for such generalized settings. And the Nonuniform Min-Max Theorem holds as

well (with the same proof as before):

Theorem 2.3 (Nonuniform Min-Max Theorem (generalized)). Consider a two-player zero-

sum game where the sets of pure strategies for Player 1 and Player 2 are V ⊆ {distributions over [N ]}
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and W, and the expected payoff to Player 2 is defined to be E [f(V,W )] for some function

f : [N ]×W → [0, 1].

Suppose for all Player 1’s mixed strategies V ∈ Conv(V) there exists a Player 2 “re-

sponse” strategy W ∈ W with expected payoff E[f(V,W )] ≥ p. Then for every ϵ > 0,

there exists some W ∗ ∈ Conv(W) such that E[f(V,W ∗)] ≥ p − ϵ, and W ∗ is the uniform

distribution over a multiset of S = O(logN/ϵ2) elements of W.

This version of the Nonuniform Min-Max Theorem is implicit in Nisan’s proof of the

Hardcore Theorem [Imp], and has been used often since then.

A more ambitious goal to find such optimal mixed strategy W ∗ by a uniform algorithm.

We now present a Uniform Min-Max Theorem that efficiently finds an approximately op-

timal strategy W ∗ ∈ Conv(W) for Player 2, given an oracle which, when fed any of Player

1’s mixed strategies V ∈ Conv(V), returns a strategy for Player 2 that guarantees good

expected payoff. Our algorithm is inspired by the proof of Uniform Hardcore Theorem of

Barak, Hardt, and Kale [BHK]. Like [BHK], our algorithm uses “relative entropy (KL) pro-

jections” together with multiplicative weight updates (a technique originally due to Herbster

and Warmuth [HW]).

Theorem 2.4 (A Uniform Min-Max Theorem). Consider a two-player zero-sum game

where the sets of pure strategies for Player 1 and Player 2 are V ⊆ {distributions over [N ]}

and W, and the expected payoff to Player 2 is defined to be E [f(V,W )] for some function

f : [N ] ×W → [0, 1]. Then for every 0 < ϵ ≤ 1 and S, Algorithm 2.1 (Finding Universal

Strategy) always outputs a mixed strategy W ∗ for Player 2 such that

E[f(V,W ∗)] ≥ Avg
1≤i≤S

E[f(V (i),W (i))]−O(ϵ)

for all Player 1 strategies V ∈ V where KL(V ∥ V1) ≤ S · ϵ2. (This holds regardless of the

arbitrary choice of W (i) and V (i+1) in the algorithm.)
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In particular, taking S ≥ (logN −minV ∈V Hsh(V )) /ϵ2 where we set V (1) = U[N ] ∈

Conv(V) yields that for all V ∈ V,

E[f(V,W ∗)] ≥ Avg
1≤i≤S

E[f(V (i),W (i))]−O(ϵ).

Arbitrarily choose an initial strategy V (1) ∈ Conv(V) for Player 1

for i← 1 to S do
Obtain an arbitrary strategy W (i) ∈ W for Player 2, in response to V (i)

Weight Update:

Let V (i)′ be such that Pr[V (i)′ = x] ∝ e−ϵ·f(x,W
(i))/2k · Pr[V (i) = x]

Projection:

V (i+1) ← an arbitrary ϵ2-approximate KL projection of V (i)′ on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 2.1: Finding Universal Strategy

By taking each W (i) to be a response to V (i) s.t. E[f(V (i),W (i))] ≥ p, Theorem

2.4 implies the Nonuniform Min-Max Theorem (Theorem 2.3) with an improved S =

(logN −minV ∈V Hsh(V )) /ϵ2. Such setting of S is shown to be tight in N and ϵ when

V is set of all distributions [FS], and when V is the set of all δ-dense distributions, for any

δ [LTW, Zha]. Even in nonuniform settings, it is often better to use the Uniform Min-Max

Theorem (where the multiset W (1), . . . ,W (S) is constructed adaptively) rather than The-

orem 2.3 (where the multiset W (1), . . . ,W (S) is constructed probabilistically); see Section

3.1 and 3.2 for discussions in more concrete settings.

Note that the number of iterations is at most logN/ϵ2, so we can hope for running time

poly(logN, 1/ϵ). However, Algorithm 2.1 is only an “algorithm template.” To implement it
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efficiently in particular applications, we need to specify:

1. An compact representation of the mixed strategies V (i) (the full pmf consists of N

numbers, whereas we want running time poly(logN, 1/ϵ)).

2. An efficient algorithm to obtain a good responseW (i) ∈ W in response to a (compactly

described) mixed strategy V (i). Typically this comes from our assumption/hypothesis

in a given application.

3. An efficient algorithm to perform weight update and projection onto Conv(V) for the

compact representation of mixed strategies.

We do not present an abstract formulation of these requirements, since it will be rather

complex to capture all of the applications. For example, in the application in Section 2.3

we are able to obtain a good response W (i) for V (i) only when V (i) is constructed by an

efficient uniform algorithm.

Proof of Theorem 2.4. Consider any V ∈ V such that KL(V ∥ V1) ≤ S · ϵ2. We show in

Lemma A.1 that

KL(V ∥ V (i))−KL(V ∥ V (i)′) ≥ (log e)ϵ
(
E[f(V (i),W (i))]− E[f(V,W (i))]− ϵ

)
.

Since V (i+1) is an ϵ2-approximate KL projection of V (i)′ on Conv(V), by definition we have

KL(V ∥ V (i+1)) ≤ KL(V ∥ V (i)′) + ϵ2. Therefore

KL(V ∥ V (i))−KL(V ∥ V (i+1)) ≥ (log e)ϵ
(
E[f(V (i),W (i))]− E[f(V,W (i))]− ϵ

)
− ϵ2.
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Summing over i = 1, . . . , S and telescoping, we obtain

KL(V ∥ V (1))−KL(V ∥ V (S+1))

≥ (log e)ϵ
S∑

i=1

(
E[f(V (i),W (i))]− E[f(V,W (i))]− ϵ

)
− Sϵ2

= (log e)Sϵ
(

Avg
1≤i≤S

E[f(V (i),W (i))]− E[f(V,W ∗)]− ϵ

)
− Sϵ2.

Since KL(V ∥ V (S+1)) ≥ 0 and KL(V ∥ V1) ≤ S · ϵ2, rearranging yields

Avg
1≤i≤S

E[f(V (i),W (i))]− E[f(V,W ∗)] ≤
KL(V ∥ V (1)) + Sϵ2

(log e)Sϵ + ϵ = O(ϵ).

Next, we describe an average case variant, where the set V of strategies for Player 1 is

a set of distributions of the form (X,C) where C may vary, but the marginal distribution

of X is fixed. This is convenient for a number of applications (e.g. Chapter 4 and 6) that

involve distinguishers on such joint distributions (X,C).

Theorem 2.5 (Uniform Min-Max Theorem – Average Case). Let V be a subset of dis-

tributions over [N ] × [q] of the form (X,C) where C may vary, but the marginal distri-

bution of X is fixed. That is, for every (X,C), (X ′, C ′) ∈ V and every x ∈ [N ] we have∑
c Pr[(X,C) = (x, c)] =

∑
c Pr[(X ′, C ′) = (x, c)].

Consider a two-player zero-sum game where the sets of pure strategies for Player 1 and

Player 2 are V and W, and the expected payoff to Player 2 is defined to be E [f((X,C),W )]

for some function f : [N ] × [q] ×W → [0, 1]. Then for every 0 < ϵ ≤ 1 and S, Algorithm

2.2 (Finding Universal Strategy – Average Case) always outputs a mixed strategy W ∗ for

Player 2 such that

E[f((X,C),W ∗)] ≥ Avg
1≤i≤S

E[f((X,C(i)),W (i))]−O(ϵ)
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for all Player 1 strategies (X,C) ∈ V where KL(X,C ∥ X,C(1)) ≤ S · ϵ2. (This holds

regardless of the arbitrary choice of W (i) and C(i+1) in the algorithm.)

In particular, taking S ≥
(
log q −min(X,C)∈V Hsh(C|X)

)
/ϵ2 where we set (X,C(1)) =

(X,U[q]) ∈ Conv(V) (U[q] being independent of X) yields that for all (X,C) ∈ V,

E[f((X,C),W ∗)] ≥ Avg
1≤i≤S

E[f((X,C(i)),W (i))]−O(ϵ).

Arbitrarily choose an initial strategy (X,C(1)) ∈ Conv(V) for Player 1

for i← 1 to S do
Obtain an arbitrary strategy W (i) ∈ W for Player 2, in response to

(X,C(i))

Weight Update:

Let C(i)′ be such that ∀x, a,

Pr[C(i)′ = a|X = x] ∝ e−ϵ·f(x,a,W
(i))/2k · Pr[C(i) = a|X = x]

Projection:

(X,C(i+1))← an arbitrary ϵ2-approximate KL projection of (X,C(i)′)

on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 2.2: Finding Universal Strategy – Average Case

Proof. Note that Algorithm 2.2 is the same as Algorithm 2.1, except for the difference

that here we update C(i) instead of V (i). We show that the combined effect of the update

and KL projection steps is identical in the two algorithms. Note that we can write V (i)′

as (X(i)′ , gi(X
(i)′)) for the randomized function gi where Pr[gi(x) = a] ∝ eϵ·f(x,a,W

(i))/2k ·

Pr[C(i) = a|X = x] for every x and a. For the same function gi, we have (X, gi(X)) =

(X,C(i)′). Thus, we can apply the following lemma.
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Lemma 2.6. Let X ′ be a distribution on [N ] with supp(X ′) ⊇ supp(X ′), and let g : [N ]→

[q] be a randomized function. Then the KL projection of (X ′, g(X ′)) on Conv(V) equals the

KL projection of (X, g(X)) on Conv(V).

Proof. Consider any (X,C) ∈ Conv(V). We have

KL(X,C ∥ X ′, g(X ′))

= KL(X ∥ X ′) +KL((C|X) ∥ (g(X ′)|X ′)) (by the chain rule for KL divergence)

= KL(X ∥ X ′) +KL((C|X) ∥ (g(X)|X)) (by definition of conditional KL divergence)

= KL(X ∥ X ′) +KL(X,C ∥ X, g(X)). (by the chain rule for KL divergence)

Thus the KL projections are the same.

2.3 Regularity Theorems for Distributions Restricted to a

Convex Set

Another application of the Uniform Min-Max Theorem is to give a generalization and

quantitative improvement to the “Regularity Theorem” of Trevisan, Tulsiani, and Vadhan

[TTV] which (informally) says that any high min-entropy distribution X is indistinguish-

able from some high min-entropy, low complexity distribution Y . The result of [TTV] is

itself a quantitative improvement of regularity and “decomposition” theorems in additive

combinatorics [GT, TZ]. It is shown in [TTV] that such results can be used to deduce

the Dense Model Theorem [TZ, RTTV, Gow], Impagliazzo’s Hardcore Theorem [Imp], and

other results, by replacing any unknown distribution X with an “equivalent” distribution

Y that can be efficiently analyzed and manipulated, thus translating the problem to a sim-

pler one. It also implies the Weak Regularity Lemma in graph theory [FK], mostly by a

translation of notation.
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Our result is more general than [TTV] in the sense that we are no longer restricted

to distributions of high min-entropy. We show that for any sufficiently nice convex set

of distributions V, every distribution X ∈ V is indistinguishable from some distribution

Y ∈ V where Y has “low complexity”. In the case of min-entropy distributions, we obtain a

high min-entropy Y with lower complexity than [TTV]. This also yields an improved and

optimal Weak Regularity Lemma for graphs of density o(1) (Section 2.3.2).

This section is divided into three parts, each proving results for a different notions of

“complexity”: Section 2.3.1 for information-theoretic notion of complexity, Section 2.3.3 for

circuit complexity, and Section 2.3.4 for time complexity of uniform algorithms.

In addition, using the Uniform Min-Max Theorem – Average Case (Theorem 2.5) we

obtain average-case variants, which can be used to deduce “low complexity” versions of a

technical lemma of [GW]. We note that a special case of the average-case variant for circuits

is a strengthening of a recent result of Jetchev and Pietrzak [JP], with a simpler proof. The

low circuit complexity version of the [GW] lemma (with slightly weaker parameters) was

initially proved by Jetchev and Pietrzak [JP], and an interactive extension was proved

by Chung, Lui, and Pass [CLP2] for applications in the context of distributional zero-

knowledge.

2.3.1 Regularity Theorems for Feature Complexity

Let W be an arbitrary class of functions W : Σ → [0, 1] for some finite set Σ.

Two distributions X and Y on Σ are ϵ-indistinguishable by W if for every W ∈ W,

|E[W (X)]− E[W (Y )]| < ϵ. For starters, we shall consider the setting where the com-

plexity of a distribution Y is purely information-theoretic: We say Y has feature complexity

at most m w.r.t. W if its mass function x 7→ Pr[Y = x] is a function of W1(x), . . . ,Wm(x),

for some W1, . . . ,Wm ∈ W. Notice that we can assume W to be closed under negation,
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i.e. if W ∈ W then we can add 1−W to W without affecting the meaning of complexity.

In order to obtain a low feature complexity approximation within a convex set V of

distributions on Σ, we require V to be permutation-invariant. That is, for all permutations

π : Σ → Σ we have X ∈ V ⇐⇒ π(X) ∈ V. Permutation invariance is a natural condition;

for example, the set of high entropy distributions should be permutation-invariant for any

reasonable notion of entropy. However, for a fixed distribution X0, {(X,C) : Hsh(C|X) ≥

k,X = X0} is not permutation-invariant in general. We will use the following properties of

a permutation-invariant convex set:

Lemma 2.7. Let V be a permutation-invariant nonempty convex set of distributions on Σ.

Then

1. V contains the uniform distribution on Σ.

2. Let X be a distribution on Σ having feature complexity at most m w.r.t. W. Then the

KL projection of X on V also has feature complexity at most m w.r.t. W.

Proof. 1. For any Y ∈ V, the average of π(Y ) over all permutations π is still in V (by

convexity and permutation-invariance), and is clearly the uniform distribution.

2. Let Y ∗ denote the KL projection of X on V. For all x1, x2 ∈ Σ where Pr[X = x1] =

Pr[X = x2], we must also have Pr[Y ∗ = x1] = Pr[Y ∗ = x2]; otherwise, swapping

Pr[Y ∗ = x1] and Pr[Y ∗ = x2] yields some Ŷ ∗ ∈ V (by permutation-invariance) that is

also a KL projection of X, violating the uniqueness of KL projection (Lemma 1.14).

Therefore Pr[Y ∗ = x] is a function of Pr[X = x], and Y ∗ has feature complexity at

most that of X.

We show that every distribution X ∈ V is indistinguishable to some Y ∈ V of low

feature complexity, as long as V is permutation-invariant:
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Theorem 2.8 (A Regularity Theorem for feature complexity). Let Σ be a finite set, W be

an arbitrary class of functions W : Σ → [0, 1], V be a permutation-invariant convex set of

distributions on Σ, and ϵ > 0. Then for every distribution X ∈ V there exists Y ∈ V such

that

1. X and Y are O(ϵ)-indistinguishable by W;

2. Y has feature complexity at most S = (log |Σ| − Hsh(X))/ϵ2 w.r.t. W. That is, there

exist W1, . . . ,WS ∈ W and a function θ : [0, 1]S → [0, 1] such that ∀x,

Pr[Y = x] = θ(W1(x), . . . ,WS(x)).

Remark. The main theorem of [TTV] (when considering feature complexity) is equivalent

to Theorem 2.8 with V being fixed to be the set of distributions of min-entropy at least

log |Σ|− log(1/δ), and has a worse bound on the feature complexity of Y . For a distribution

X with H∞(X) = log |Σ|−log(1/δ), [TTV] obtains a distribution Y with feature complexity

at most 1/ϵ2δ2 such that Y is O(ϵ)-indistinguishable to X and H∞(Y ) ≥ H∞(X), whereas

Theorem 2.8 obtains such Y with feature complexity at most log(1/δ)/ϵ2.

Theorem 2.8 is interesting even if we do not require the low complexity Y to lie in

V. As mentioned in [TTV] (and pointed out by Elad Verbin), it easily follows from a

Chernoff bound and a union bound that the uniform distribution over certain O(log |W| /ϵ2)

elements of Σ (which may not lie in V) is ϵ-indistinguishable from X by W. However, for

large W the feature complexity of O(log |W| /ϵ2) is potentially much higher than S =

(log |Σ| −Hsh(X))/ϵ2. Indeed, we do not use the fact that Y ∈ V when deducing the Weak

Regularity Lemma of Frieze and Kannan [FK] from Theorem 2.8 (see Theorem 2.10 below);

as shown in [TTV], the argument of Frieze and Kannan can be used to obtain a weaker

variant of Theorem 2.8 where Y may not lie in V, and the bound on S is worse.

28



Chapter 2: Uniform Min-Max Theorem and Regularity Theorems

Proof of Theorem 2.8. Suppose for contradiction that for every low feature complexity Y ∈

V there is some W ∈ W such that E [W (X)]−E [W (Y )] ≥ ϵ′ (recall that w.l.o.g.W is closed

under negation), where ϵ′ = c · ϵ for a sufficiently large constant c. Consider the zero-sum

game where Player 1 selects some distribution Y ∈ V, Player 2 selects some W ∈ W and

receives (expected) payoff E[W (X)]−E[W (Y )]. Consider Algorithm 2.1 (Finding Universal

Strategy) where we set the initial strategy V (1) for Player 1 to be the uniform distribution

on Σ (which lies in V, by Lemma 2.7) and number of iterations to be S. Note that in each

iteration the feature complexity of V (i) increases by at most one, due to the weight update

using W (i), since KL projection on the permutation-invariant set V does not increase feature

complexity (Lemma 2.7). Hence by assumption, in each iteration there exists W (i) ∈ W

such that E
[
W (i)(X)

]
−E

[
W (i)(V (i))

]
≥ ϵ′. By the Uniform Min-Max Theorem (Theorem

2.4), W ∗ (the uniform distribution over W (1), . . . ,W (S)) satisfies

E [W ∗(X)]− E [W ∗(V )] ≥ ϵ′ −O(ϵ) > 0

for all Player 1 strategies V ∈ V such that Hsh(V ) ≥ Hsh(X). Taking V = X yields a

contradiction.

2.3.2 Improved Weak Regularity Lemma for Graphs of Density o(1)

An information-theoretic application of [TTV] is deducing the Weak Regularity Lemma

of Frieze and Kannan [FK]. Our Theorem 2.8, with the improved bound, implies a Weak

Regularity Lemma with parameters stronger than [FK] for graphs that are o(1)-dense. The

Weak Regularity Lemma says that any graph G = (V,E) is approximated within “cut-

distance” σ by some edge-weighted graph G′ on the vertices {1, . . . , t}, where t depends

only on σ (i.e. independent of the size of G), and each vertex i corresponds to a block

Vi ⊆ V in a partition {V1, . . . , Vt} of V . The edge weight of (i, j) in the approximator G′ is

defined to be the edge density between Vi and Vj :
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Definition 2.9 (Edge density). The density of a directed graphG = (V,E) equals |E| / |V |2.

The edge density between two sets of vertices V1, V2 of G equals

dG(V1, V2) =
|(V1 × V2) ∩ E|
|V1 × V2|

.

Theorem 2.10 (A Weak Regularity Lemma). For every directed graph G = (V,E) of

density δ = |E| / |V |2 > 0 and σ > 0, there is a partition of V into t = exp(O(δ/σ)2 log(1/δ))

disjoint sets V1, . . . , Vt, such that for all A, B ⊆ V ,∣∣∣∣∣∣|(A×B) ∩ E| −
∑
i,j

|A ∩ Vi| |B ∩ Vj | · dG(Vi, Vj)

∣∣∣∣∣∣ < σ · |V |2 .

Note that the only interesting setting of parameters is δ > σ, δ > 1/ |V |O(1) (i.e. G has

average degree greater than 1), because if δ ≤ σ then the trivial partition V1 = V would

work, and if σ < δ ≤ 1/ |V |O(1) we could take t = |V | and use the trivial partition into single

vertices. As pointed out to us by Jacob Fox, the number of partitions exp(O(δ/σ)2 log(1/δ))

in Theorem 2.10 (as a function of δ and σ) is optimal up to a constant factor, which can be

shown by adapting a lower bound argument in [CF].

Theorem 2.10 is stronger than Frieze and Kannan [FK] when G has density δ = o(1).

For example, when |V | = N and δ = 2σ = 1/poly(logN), Theorem 2.10 produces a partition

of size poly(logN), whereas [FK] only yields a trivial partition into more than N sets.

Proof of Theorem 2.10. We apply Theorem 2.8 with Σ = V × V , W = {χS×T , 1 − χS×T :

S, T ⊆ V } (where χS×T denotes the characteristic function of S×T ), V being the set of all

δ-dense distributions on Σ, X = UE ∈ V (the uniform distribution on E), and ϵ = O(σ/δ).

By Theorem 2.8 there is some δ-dense distribution Y where:

1. Y has feature complexity at mostm = O((2 log |V |−Hsh(UE))/ϵ
2) = O((δ/σ)2 log(1/δ)).

That is, Pr[Y = e] = ϕ(χS1×T1(e), . . . , χSm×Tm(e)) for a function ϕ and sets S1,T1, …,

Sm, Tm ⊆ V .
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2. UE and Y are ϵ-indistinguishable for W. That is, for every S, T ⊆ V ,

|E [χS×T (UE)]− E [χS×T (Y )]| < ϵ.

The fact that Y has feature complexity at most m yields a partition {V1, . . . , Vt},

t ≤ 22m, such that Pr[Y = e] has the same value for all e ∈ Vi × Vj . (Specifically, the

partition is the overlay of S1, T1, . . . , Sm, Tm, i.e. formed by taking the intersection of, for

each i, either Si or V − Si, and either Ti or V − Ti.)

Consider any A, B ⊆ V . Taking S = A, T = B in Item 2 yields∣∣∣∣ 1

|E|
|(A×B) ∩ E| − E [χA×B(Y )]

∣∣∣∣ = |E [χA×B(UE)]− E [χA×B(Y )]| < ϵ.

Thus, by triangle inequality it suffices to show that∣∣∣∣∣ 1

|E|
∑

e∈A×B
weight(e)− E [χA×B(Y )]

∣∣∣∣∣ < ϵ.

To do so, we randomly generate a set Ã as follows: For each i, w.p. |Vi ∩A| / |Vi| include

all elements of Vi in Ã, otherwise include none of the elements in Ã. Similarly generate

a random B̃. Note that EY [χA×B(Y )] = EÃ,B̃,Y

[
χ
Ã×B̃(Y )

]
since within every Vi × Vj ,

Pr[Y = e] is constant for all e ∈ Vi × Vj , and

1

|E|
∑

e∈A×B
weight(e) = 1

|E|
∑
i,j

|Vi ∩A| · |Vj ∩B| · |(Vi × Vj) ∩ E|
|Vi| · |Vj |

= E
Ã,B̃,UE

[
χ
Ã×B̃(UE)

]
by linearity of expectation. Taking S = Ã, T = B̃ in Item 2 yields the required bound.

2.3.3 Regularity Theorems for Circuit Complexity

In this section, we extend the notion of complexity to be computational and consider

(boolean) circuit complexity. Let W be the set of functions having low circuit complexity.

Indeed, the highly constructive proof for Theorem 2.8 already provides a Y with low circuit
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complexity, as long as there exist approximate KL projections computed by small circuits.

Thus we require V to be KL-projectable:

Definition 2.11. Let V be a convex set of distributions on {0, 1}n. The ϵ-neighborhood of

V, denoted Vϵ, is the set of all distributions X on {0, 1}n such that for some Y ∈ V and for

all x ∈ {0, 1}n,

Pr[X = x] ∈ [e−2ϵ, e2ϵ] · Pr[Y = x].

V is said to be KL-projectable if for all ϵ > 0, for every X ∈ Vϵ there exists some Y ∈ V

such that

1. Y is an ϵ2-approximate KL projection of X on V;

2. If there is a size t circuit computing a measure M for X with outputs M(x) of bit-

length at most m, then there is a size t + poly(m, log(1/ϵ)) circuit M ′ computing a

measure for Y with outputs M ′(x) of bit-length at most m + polylog(1/ϵ). (Recall

that measures are [0, 1] bounded, unnormalized mass functions; see Definition 1.3.)

Many natural convex sets of distributions are KL-projectable. Examples include the

set of distributions with min-entropy at least k (Theorem A.3) and the set of distributions

with Shannon entropy at least k (Chapter 4 Theorem 4.52), for any k > 0.

We show that every distribution X ∈ V is indistinguishable, by all small circuits, to

some Y ∈ V that has low circuit complexity, as long as V is permutation-invariant and

KL-projectable:

Theorem 2.12 (A Regularity Theorem for circuit complexity). Let V be a KL-projectable

convex set of distributions on {0, 1}n that contains Un, t > 0, and ϵ > 0. Then for every

distribution X ∈ V there exists Y ∈ V such that

1. X and Y are O(ϵ)-indistinguishable by size t circuits;
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2. Y has low complexity: Y has a measure of circuit size t′ = S · t + poly(S, log(1/ϵ)),

for S = (n−Hsh(X))/ϵ2.

Proof. The proof is essentially the same as Theorem 2.8. Suppose for contradiction that for

every low complexity Y ∈ V there is some size t circuit W such that E [W (X)]−E [W (Y )] ≥

ϵ′, where ϵ′ = c · ϵ for a sufficiently large constant c. We will apply Theorem 2.4 (Uniform

Min-Max Theorem), with

• V = V;

• W = {(deterministic) circuits of size t};

• f(z,W ) = E[W (X)]−W (z).

This corresponds to the two-player zero-sum game where Player 1 chooses some distribution

Y ∈ V, and Player 2 chooses a t sized circuit W , with expected payoff E[W (X)]−E[W (Y )]

for Player 2. We implement Algorithm 2.1 (Finding Universal Strategy) with KL projection

on the set V as follows. Start with an initial distribution V (1) that is uniform on {0, 1}n

(which lies in V). In each of the S = (n−Hsh(X))/ϵ2 iterations we represent the distribution

V (i) by a circuit M (i) computing a measure for V (i), where M (i)(x) has bit-length at most

i · polylog(1/ϵ). We implement the ith iteration as follows. For technical convenience we

assume that e−ϵ has bit-length at most log(1/ϵ) (if not, we replace ϵ by some ϵ̃ = O(ϵ) > ϵ

such that e−ϵ̃ has bit-length at most log(1/ϵ)).

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti ≤ t′

sized circuit M (i) computing a measure for V (i), and M (i)(x) has bit-length at most

i · polylog(1/ϵ). By assumption, there is a size t circuit W (i) such that

E
[
W (i)(X)

]
− E

[
W (i)(V (i))

]
≥ ϵ′.
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2. Weight Update: We represent the resulting distribution V (i)′ by the circuitM (i)′(x) =

exp
(
−ϵ · (1−W (i)(x))

)
·M (i)(x) that computes a measure for V (i)′ . Since W (i)(x) ∈

{0, 1}, exp
(
−ϵ · (1−W (i)(x))

)
has bit-length at most log(1/ϵ). M (i)(x) has bit-length

at most i ·polylog(1/ϵ), thus multiplication takes time i ·polylog(1/ϵ). Thus M (i)′ has

circuit size t′i = ti+t+i·polylog(1/ϵ), and bit-length at most i·polylog(1/ϵ)+log(1/ϵ).

3. KL Projection: By KL-projectability of V and the fact that V (i)′ ∈ Vϵ, we have a cir-

cuitM (i+1) computing a measure for V (i+1) of size ti+1 = t′i+poly(i·polylog(1/ϵ), log(1/ϵ)),

and M (i+1)(x) has bit-length at most i · polylog(1/ϵ) + log(1/ϵ) + polylog(1/ϵ) =(i+

1) · polylog(1/ϵ).

Note that t1 = O(1) and ti+1 = ti + t + poly(i · polylog(1/ϵ), log(1/ϵ)), thus ti ≤ S · t +

poly(S, log(1/ϵ)) and the assumption that ti ≤ t′ is satisfied for all i ∈ [S]. By Theorem

2.4, W ∗ (the uniform distribution over W (1), . . . ,W (S)) satisfies

E [W ∗(X)]− E [W ∗(V )] ≥ ϵ′ −O(ϵ) > 0.

for all Player 1 strategies V ∈ V such that Hsh(V ) ≥ Hsh(X). Taking V = X yields a

contradiction.

Remark. Most of our results in this section (Theorem 2.12, 2.14) hold not just for small

circuits, but for an arbitrary class of distinguishersW (like our Theorem 2.8) with a suitable

definition of “complexity w.r.t.W” (see [TTV] Theorem 1.1 for one such example). However,

we avoid stating results in greater generality since the appropriate definition of “complexity”

may vary depending on the choice of V (to account for the complexity of KL projections)

and the application.

The above theorem also has an average-case variant. To express nonuniform complex-

ity in the average-case setting, we consider conditional measures. Recall that for a joint
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distribution (X,C), a function M is a conditional measure for C|X if for all x ∈ supp(X),

the function f(y) = M(x, y) is a measure for C|X=x.

Definition 2.13. Let V be a convex set of joint distributions (X,C) on {0, 1}n × {0, 1}ℓ

where X is fixed and C may vary. The ϵ-neighborhood of V, denoted Vϵ, is the set of all

joint distributions (X,C) on {0, 1}n × {0, 1}ℓ such that for some (X,B) ∈ V and for all

(x, a) ∈ {0, 1}n × {0, 1}ℓ,

Pr[C = a|X = x] ∈ [e−2ϵ, e2ϵ] · Pr[B = a|X = x].

V is said to be KL-projectable if for all ϵ > 0, for every (X,C) ∈ Vϵ there exists some

(X,B) ∈ V such that

1. (X,B) is an ϵ2-approximate KL projection of (X,C) on V;

2. If there is a size t circuit computing a conditional measure M for C|X with outputs

M(x, a) of bit-length at most m, then there is a size t+ poly(m, log(1/ϵ)) circuit M ′

computing a conditional measure for B|X with outputs M ′(x, a) of bit-length at most

m+ polylog(1/ϵ).

Many natural convex sets of such joint distributions are KL-projectable. Examples

include the set of all distributions (X,C) on {0, 1}n×{0, 1}ℓ, the set of distributions (X,C)

on {0, 1}n×{0, 1}O(logn) with C having average min-entropy at least k given X (Chapter 4

Theorem 4.20), and the set of distributions (X,C) on {0, 1}n×{0, 1}O(logn) with C having

conditional Shannon entropy at least k given X (Chapter 4 Theorem 4.52), for any k > 0.

Theorem 2.14 (A Regularity Theorem for circuit complexity – average case). Let V be a

KL-projectable set of joint distributions (X,C) on {0, 1}n × {0, 1}ℓ where X is fixed and C

may vary, and V contains (X,Uℓ). For every t > 0, ϵ > 0, and joint distribution (X,B) ∈ V,

there is a joint distribution (X,C) ∈ V such that
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1. (X,B) and (X,C) are O(ϵ)-indistinguishable by size t circuits;

2. C has low complexity given X: C|X has a conditional measure of circuit size t′ =

S · t+ poly(S, log(1/ϵ)), for S = (ℓ− Hsh(C|X))/ϵ2. Moreover, if V equals the set of

all joint distributions (X,C) on {0, 1}n × {0, 1}ℓ, then t′ = S · t+ (S · log(1/ϵ))2.

Proof. The proof is identical to Theorem 2.12, except we use the UniformMin-Max Theorem

– Average Case (Theorem 2.5). If V equals the set of all joint distributions (X,C) on

{0, 1}n × {0, 1}ℓ, the better bound on the complexity of C|X follows from the fact that we

do not need KL projections for such V.

With V being the set of all joint distributions (X,C) on {0, 1}n×{0, 1}ℓ (thus involving

no KL projections), Theorem 2.14 gives a slight strengthening of a recent result of Jetchev

and Pietrzak [JP], with a simpler proof. In [JP] they obtain an (X,C) where given x, C|X=x

is samplable by a circuit of size O
((

2ℓ · ℓ · (1/ϵ)2 log(1/ϵ)
)2 · t). Theorem 2.14 provides an

(X,C) where given x, C|X=x can be sampled by a circuit of size O(2ℓ · (ℓ · (1/ϵ)2 · t + (ℓ ·

(1/ϵ)2log(1/ϵ))2)) by computing M(x, y) for all y ∈ {0, 1}ℓ and sampling C|X=x using its

mass function.

Finally, we show an application of Theorem 2.14: deducing a technical lemma of [GW],

which says if X and U are indistinguishable then for any short B jointly distributed with X,

there is some C (the “auxilliary information”) jointly distributed with U such that (X,B)

and (U,C) are indistinguishable. Not only is our proof simpler, but also it guarantees that

C has low circuit complexity given U . This “low complexity” version (with slightly weaker

parameters) was initially proved by Jetchev and Pietrzak [JP], and an interactive extension

was proved by Chung, Lui, and Pass [CLP2] for applications in the context of distributional

zero-knowledge.
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Lemma 2.15 (Low circuit complexity version of [GW] Lemma 3.1). Let X and U be

distributions over {0, 1}n, and B be a distribution over {0, 1}ℓ jointly distributed with X.

Suppose X and U are ϵ-indistinguishable by circuits of size t. Then there exists some

C ∈ {0, 1}ℓ jointly distributed with U such that:

1. (X,B) and (U,C) are 2ϵ-indistinguishable by circuits of size s = t/(2ℓ · ℓ · (1/ϵ)2)− ℓ ·

((1/ϵ)log(1/ϵ))2.

2. C has low complexity given U : C|U has a conditional measure of circuit size ℓ ·(1/ϵ)2 ·

s+ (ℓ · (1/ϵ)2log(1/ϵ))2.

Proof. We first apply Theorem 2.14 to obtain a distribution (X,P (X)) such that (X,B) and

(X,P (X)) are ϵ-indistinguishable by size s circuits, where P is a randomized function, and

there is a size ℓ·(1/ϵ)2 ·s+(ℓ·(1/ϵ)2log(1/ϵ))2 circuit M computing a conditional measure for

P (X)|X. Thus P (x) can be sampled in time s′ = O
(
2ℓ ·

(
ℓ · (1/ϵ)2 · s+

(
ℓ · (1/ϵ)2log(1/ϵ)

)2))
by computing M(x, y) for all y ∈ {0, 1}ℓ and sampling P (x) from its mass function.

Let C = P (U). Since P is efficient, indistinguishability of X and U implies that

(X,P (X)) and (U,P (U)) are ϵ-indistinguishable by circuits of size s. (Otherwise, given

an s-sized ϵ-distinguisher D for (X,P (X)) and (U,P (U)) we get an ϵ-distinguisher T (x) =

D(x, P (x)) for X and U , of circuit size O(s + s′) ≤ t.) By triangle inequality, (X,B) and

(U,P (U)) = (U,C) must be 2ϵ-indistinguishable by circuits of size s.

2.3.4 Regularity Theorems for Time Complexity

In this section, we use the full strength of the Uniform Min-Max Theorem to obtain

a low complexity approximation where complexity is measured using uniform algorithms.

We prove a uniform analogue of Theorem 2.14 (i.e. the average-case setting), but for sim-

plicity we take V to be the set of all joint distributions (X,C) on {0, 1}n × {0, 1}ℓ, thus
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no KL-projection is needed. As an immediate corollary, we provide a “sampling” version

of it (Theorem 2.17), which is cleaner and convenient for several applications, but involves

exponential dependence on ℓ.

Theorem 2.16 (A Regularity Theorem for time complexity – average case). Let n be a

security parameter, ℓ = ℓ(n), t = t(n) ≥ n, ϵ = ϵ(n) > 0 all computable in poly(n) time.

Let (X,B) = (X,B)(n) be a joint distribution on {0, 1}n × {0, 1}ℓ. Let A be a t-time

randomized oracle algorithm. Then there is a t′ = poly(t, 1/ϵ)-time randomized algorithm

R such that w.p. Ω(ϵ2/ℓ) over M ← R(1n) and W ← AM (1n), if we interpret M as a

deterministic circuit computing a conditional measure for C|X and W as a randomized

circuit W : {0, 1}n × {0, 1}ℓ → [0, 1], we have:

E[W (X,B)]− E[W (X,C)] < ϵ.

Proof. We will let R be an implementation of Algorithm 2.2 (Finding Universal Strategy –

Average Case), using A as a subroutine. We then show R satisfies the desired properties by

applying Theorem 2.5 (Uniform Min-Max Theorem – Average Case), with

• V being the set of all joint distributions (X,C) on {0, 1}n×{0, 1}ℓ (where the marginal

distribution of X is fixed, and C may vary);

• W = {randomized circuits of size t};

• f((x, y),W ) = E[W (X,B)]− E[W (x, y)].

This corresponds to the two-player zero-sum game where Player 1 selects a distribution

(X,C) ∈ V, Player 2 selects a size t circuit W and receives expected payoff E[W (X,B)] −

E[W (X,C)].

Our implementation of Algorithm 2.2 using A is as follows. We set the ϵ in Algorithm

2.2 to be ϵ′ = ϵ/c for a sufficiently large constant c, and start with an initial distribution
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(X,C(1)) = (X,Uℓ) (where Uℓ is independent ofX). In each of the S = O(ℓ/ϵ2) iterations we

represent C(i) by a circuitM (i) computing a conditional measure for C(i)|X, i.e.M (i)(x, y) ∝

Pr[C(i) = y|X = x]. So we can take M (1)(x, y) = 1 for all x, y. We implement the ith

iteration as follows, with γ = 1/3S:

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti-size

circuit M (i) where M (i)(x, y) has bit-length i · polylog(1/ϵ). There are two steps.

(a) We run AM(i)
(1n) to obtain a t-size randomized circuit Ŵ (i), and convert it into

a O(tm)-size deterministic circuit W̃ (i) by hardwiring m = O((1/ϵ2) log(1/γ))

samples of the coins of Ŵ (i), so that w.p. at least 1− γ,

E
[
W̃ (i)(X,B)

]
− E

[
W̃ (i)(X,C(i))

]
≥ E

[
Ŵ (i)(X,B)

]
− E

[
Ŵ (i)(X,C(i))

]
− ϵ′.

(b) Our choice of W (i) is the following approximation to W̃ (i), so that exp(−ϵ′ · (1−

W (i)(x, y))) can be computed precisely and efficiently. First, we use Newton’s

method to compute a polylog(1/ϵ)-bit approximation E(x, y) ∈ (0, 1] of exp(−ϵ′ ·

(1−W̃ (i)(x, y))) within ±ϵ′2 error, in time O(tm)+polylog(1/ϵ). We define W (i)

to be such that exp(−ϵ′·(1−W (i)(x, y))) = E(x, y). Thus
∣∣∣W (i)(x, y)− W̃ (i)(x, y)

∣∣∣ ≤
ϵ′, and

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[W̃ (i)(X,B)]− E[W̃ (i)(X,C(i))]− 2ϵ′.

2. Weight Update: We represent the resulting distribution C(i+1) by the circuit

M (i+1)(x, y) = exp
(
−ϵ′ · (1−W (i)(x, y))

)
·M (i)(x, y)

computing a conditional measure for C(i+1)|X. Since exp
(
−ϵ′ · (1−W (i)(x, y))

)
=

E(x, y) has bit-length polylog(1/ϵ) and M (i)(x, y) has bit-length i ·polylog(1/ϵ), mul-

tiplication takes time i ·polylog(1/ϵ). Thus M (i+1) has circuit size ti+1 = ti+O(tm)+
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i · polylog(1/ϵ) and bit-length (i+1) · polylog(1/ϵ), and can be constructed in similar

time.

3. KL projection: Do nothing as Player 1 strategies can be arbitrary conditional dis-

tributions C(i)|X=x.

Now let R be the algorithm that chooses a random i← [S], runs the above implementation

of Algorithm 2.2 for i − 1 iterations to construct and output M (i). Since t1 = O(1), we

have ti = O(1) + S · (O(tm) + S · polylog(1/ϵ)) for all i ∈ [S]. Thus R runs in total time

poly(t, S,m, log(1/ϵ)) ≤ t′.

Suppose for contradiction that w.p. at least 1−γ over coins of R used to generate M (i)

and A, AM(i)
(1n) outputs a randomized circuit Ŵ (i) s.t. E[Ŵ (i)(X,B)]−E[Ŵ (i)(X,C(i))] ≥

ϵ. By union bound w.p. at least 1− 2γ · S = 1/3, in all iterations we have

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[Ŵ (i)(X,B)]− E[Ŵ (i)(X,C(i))]− 3ϵ′ ≥ ϵ− 3ϵ′.

Let W ∗ be the uniform distribution over W (1), . . . ,W (S). By the Uniform Min-Max Theo-

rem – Average Case (Theorem 2.5), w.p. at least 1/3, W ∗ satisfies

E [W ∗(X,B)]− E [W ∗(X,C)] ≥ ϵ− 3ϵ′ −O(ϵ′) > 0

for all Player 1 strategies (X,C) ∈ V . Taking (X,C) = (X,B) yields a contradiction.

As an immediate corollary, we obtain a “sampling” version, which is cleaner, and

convenient for several applications. Recall that for a distribution Z, we denote by OZ the

sampling oracle of Z, i.e. on each query OZ returns a random sample of Z.

Theorem 2.17 (A Regularity Theorem for time complexity – average case (sampling ver-

sion)). Let n be a security parameter, ℓ = ℓ(n), t = t(n) ≥ n, ϵ = ϵ(n) > 0 all computable

in poly(n) time. Let (X,B) = (X,B)(n) be a joint distribution on {0, 1}n × {0, 1}ℓ, and
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Q = Q(n) be any poly(n)-time samplable distribution on {0, 1}n. Let A be a t-time ran-

domized oracle algorithm. Then there is a t′ = poly(2ℓ, t, 1/ϵ)-time randomized algorithm

R that w.p. at least Ω(ϵ2/ℓ) outputs a randomized circuit P of size at most t′ satisfying:

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(X,P (X))] < ϵ.

Proof. Given a t-time randomized oracle algorithm A, we define a 2ℓ · poly(t, 1/ϵ)-time

randomized oracle algorithm A′ to which we apply Theorem 2.16, as follows. First define

the randomized function Â(x, y; a) to equal A(x, y) where we fix the outputs of the sampling

oracle to be a ∈
(
{0, 1}n × {0, 1}ℓ

)t. For every M : {0, 1}n × {0, 1}ℓ → [0, 1], let A′M (1n)

generate a(1), . . . , a(m) as m = O((1/ϵ2) · log(cℓ/ϵ2)) random samples of (Q,PM (Q))t, where

PM is the randomized function such that M is a conditional measure for PM (Q)|Q, and c is

a constant to be determined later. Recall that Q is poly(n)-time samplable by assumption,

and we can construct from M a circuit that samples (Q,PM (Q)) by computing M(x, y) for

all y ∈ {0, 1}ℓ. We then let A′M (1n) output a randomized circuit W (x, y) computing the

average of Â(x, y; a(i)) over all i. By a Chernoff bound, w.p. at least ϵ2/cℓ overW ← A′M (1n)

we have

E [W (X,B)]−E [W (X,PM (X))] ≥ E
[
AOQ,PM (Q)(X,B)

]
−E

[
AOQ,PM (Q)(X,PM (X))

]
−ϵ/2.

By applying Theorem 2.16 toA′, there is a poly(2ℓ, t, 1/ϵ)-algorithmR such that w.p. Ω(ϵ2/ℓ)

over M ← R(1n) and W ← A′M (1n) we have

E[W (X,B)]− E[W (X,C)] < ϵ/2.

Thus w.p. at least Ω(ϵ2/ℓ)− ϵ2/cℓ = Ω(ϵ2/ℓ) (for a sufficiently large c) over M ← R(1n),

E[AOQ,PM (Q)(X,B)]− E[AOQ,PM (Q)(X,PM (X))] < ϵ.
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We now apply Theorem 2.17 to show Theorem 2.18, the uniform analogue of Theorem

2.15 (which in turn is the low circuit complexity version of [GW] Lemma 3.1). We do so

mainly because it is convenient for applications, including (i) deriving a uniform Dense

Model Theorem (see Section 3.2, Theorem 3.11); (ii) showing impossibility of construct-

ing succinct non-interactive arguments (SNARGs) via black-box reductions under uniform

hardness assumptions (see Section 6, Theorem 6.7).

Theorem 2.18 (Low time complexity version of Lemma 3.1 of [GW]). Let n be a secu-

rity parameter, ℓ = ℓ(n), s = s(n) ≥ n, ϵ = ϵ(n) > 0 all computable in poly(n) time.

Let X = X(n) and U = U(n) be poly(n)-time samplable distributions on {0, 1}n that are

ϵ-indistinguishable for s-time randomized algorithms. Let B = B(n) be a distribution on

{0, 1}ℓ jointly distributed with X, and let Q = Q(n) be any poly(n)-time samplable distribu-

tion on {0, 1}n. Let A be a t-time randomized oracle algorithm, for t = sΩ(1)/poly(2ℓ, 1/ϵ).

Then there is a t′ = poly(2ℓ, t, 1/ϵ)-time randomized algorithm R such that w.p. at least

Ω(ϵ2/ℓ), R outputs a randomized circuit P satisfying

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(U,P (U))] < 2ϵ.

Proof. By Theorem 2.17, there is a t′-time algorithm R that w.p. at least γ = Ω(ϵ2/ℓ)

outputs a randomized circuit P satisfying

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(X,P (X))] < 0.9ϵ.

Since P is efficient, ϵ-indistinguishability of X and U implies that with probability at least

1− γ/2 over P ,

E[AOQ,P (Q)(X,P (X))]− E[AOQ,P (Q)(U,P (U))] < 1.1ϵ.

Indeed, suppose that AQ,P (Q) achieves distinguishing advantage at least 1.1ϵ w.p. at least

γ/2 over P , then we could obtain an ϵ-distinguisher for X and U by running R for
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O((1/γ) log(1/ϵ)) times, each time testing the distinguisher T (x) = AQ,P ′(Q)(x, P ′(x)) where

P ′ is the randomized circuit output by R (by running on O((1/ϵ2) log(1/ϵ)) random samples

of X, U and (Q,P ′(Q))), and finally taking the best one. This yields an ϵ-distinguisher for

X and U that runs in time O((1/ϵ2) log(1/ϵ)) · (poly(n)+ (1/γ) log(1/ϵ) · (t+poly(t′))) ≤ s,

violating their indistinguishability.

Combining the two inequalities, we get with probability at least γ/2 over P ← R,

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(U,P (U))] < 2ϵ.
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Uniform Hardcore Theorem and

Dense Model Theorem

A fundamental result in complexity theory is Impagliazzo’s Hardcore Theorem [Imp],

which says that a boolean function f that is hard on average must contain a large subset

of inputs on which f is indistinguishable to a random function.

Closely related is the Dense Model Theorem of Green and Tao [GT], Tao and Ziegler

[TZ], various formulations of which are due to Reingold et al. and Gowers [RTTV, Gow].

Green and Tao used it as a key in their celebrated result of on arithmetic progressions

of prime numbers. Roughly, the Dense Model Theorem says that a dense subset of a

pseudorandom set must be indistinguishable to a dense set.

In this chapter, we apply the Uniform Min-Max Theorem and related results from

Chapter 2 to obtain simpler proofs of Uniform Hardcore Theorem and Uniform Dense

Model Theorem, where uniform means that indistinguishability is with respect to uniform

polynomial-time algorithms.
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3.1 Uniform Hardcore Theorem

Impagliazzo’s Hardcore Theorem [Imp], in strengthened versions due to Klivans and

Servedio [KS] and Holenstein [Hol1], says that every function f : {0, 1}n → {0, 1} that is

δ-hard for poly-sized boolean circuits (that is, every poly-sized circuit fails to compute f

on at least δ fraction of inputs) must be extremely hard on a subset of inputs of density

at least 2δ (the hardcore set) (and may be easy elsewhere). Following [Imp], we will deal

with hardcore distributions instead of hardcore sets, which are equivalent up to a negligible

additive difference in density, where density of a distribution is defined as follows:

Definition 3.1 (Density of distribution). Let X and Y be distributions over some finite

set Σ. We say X is δ-dense in Y if Pr [Y = x] ≥ δ · Pr [X = x] for all x ∈ Σ. We say X is

δ-dense if it is δ-dense in UΣ (equivalently, having min-entropy at least log |Σ| − log(1/δ)).

We denote by Cm,δ the set of all δ-dense distributions on {0, 1}m.

The asymptotically optimal nonuniform Hardcore Theorem is due to [KS], using tech-

niques from boosting and an idea of iteratively increasing hardcore size due to Wigderson,

and can be stated as follows:

Theorem 3.2 (Hardcore Theorem [KS]). Let (X,B)1 be a joint distribution on {0, 1}n ×

{0, 1} and ϵ > 0. Let B be (t, δ)-hard given X, i.e. for every size t circuit P it holds

that Pr[P (X) = B] ≤ 1 − δ. Then there is a joint distribution (X̂, B̂) that is 2δ-dense in

(X,B), such that for every size t′ = t/O(log(1/δ)/ϵ2) circuit A it holds that Pr[A(X̂) =

B̂] ≤ (1 + ϵ)/2.

Theorem 3.2 is asymptotically optimal as it achieves optimal hardcore density 2δ, as

1The version we state is a slight generalization of the version in [KS], which only allows B to be a
deterministic boolean function of X. However, the more general version follows readily from almost the
same proof.
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well as optimal complexity blow-up O(log(1/δ)/ϵ2), where the lower bound of Ω(log(1/δ)/ϵ2)

is due to Lu, Tsai, and Wu [LTW]2.

The original paper of Impagliazzo [Imp] contains both a non-trivial constructive proof,

as well as a much simpler, yet non-constructive proof due to Nisan that uses the Min-Max

Theorem. Nisan’s proof has an appealing simplicity: Assume for contradiction that there

is no hardcore distribution of high density. Then, by the Min-Max Theorem there is a

universal predictor A∗ such that for every (X̂, B̂) that is dense in (X,B) it holds that

Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. A∗ is a distribution over circuits of size t, and its prediction

probability is taken over this distribution as well as (X̂, B̂). By subsampling we can assume

that A∗ is uniform over a multiset of S = O((1/ϵ2) log(1/ϵδ)) circuits of size t, while changing

the advantage ϵ by at most a constant fraction. Given the universal predictor A∗, one can

build a good predictor for B, contradicting the hardness of B given X, as formalized in

Lemma 3.3:

Lemma 3.3 (From universal circuit to predictor [Imp]). Let (X,B) be a joint distribu-

tion on {0, 1}n × {0, 1}. Let A∗ be the uniform distribution over a multiset of S circuits

of size t. Suppose for every joint distribution (X̂, B̂) that is δ-dense in (X,B) it holds

that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. Then there is a circuit P of size O(S · t) such that

Pr [P (X) = B] > 1− δ.

Specifically, we can let P (x) = majority{A(x) : A ∈ A∗}. Equivalently, P (x) outputs 1

with probability
1

2

(
1 + sign

(
Pr[A∗(x) = 1]− 1

2

))
.

Unfortunately, both proofs in [Imp] yield a suboptimal hardcore density of δ. Following

Nisan’s proof using Min-Max Theorem, Holenstein [Hol1] proves the Hardcore Theorem with

2[LTW] showed a black-box lower bound on the number of t′-sized circuits that a black-box reduction
needs to obtain to construct some P with Pr[P (X) = B] > 1− δ.
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optimal hardcore density of 2δ (Theorem 3.2), by strengthening the above lemma to Lemma

3.4 below (using a trick from Levin’s proof of the XOR Lemma).

Lemma 3.4 (From universal circuit to optimal predictor [Hol1]). Let (X,B) be a joint

distribution on {0, 1}n × {0, 1}. Let A∗ be the uniform distribution over a multiset of S

circuits of size t. Suppose for every joint distribution (X̂, B̂) that is 2δ-dense in (X,B) it

holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. Then there is a circuit P of size O(S · t) such that

Pr [P (X) = B] > 1− (1− ϵ) δ.

Specifically, we can let P (x) output 1 with probability p(x) truncated at 0 and 1

(i.e. P (x) = min{max{p(x), 0}, 1}), for

p(x) =
1

2

(
1 +

PrA∗ [A∗(x) = 1]− 1
2

ϕ

)

where ϕ is the least number s.t. PrX,B [PrA∗ [A∗(X) = B] ≤ 1/2 + ϕ] ≥ 2δ. (w.l.o.g. ϕ is a

multiple of 1/S.)

One drawback of proofs based on the standard Min-Max Theorem is the suboptimal

complexity blow-up (due to suboptimal settings of S from the probabilistic construction of

the multiset defining A∗). By replacing the use of Min-Max Theorem with the Uniform

Min-Max Theorem, we immediately achieve optimal complexity blow-up (by replacing the

probabilistic construction of the multiset with a smarter online learning/boosting algo-

rithm).

Remark 3.5. In Chapter 4 we prove a generalization of the Hardcore Theorem where B,

rather than being binary, can be O(logn) bits long. While the proof also begins with the

Min-Max Theorem, it differs substantially thereafter. In particular, it achieves optimal

hardcore density without explicitly relying on Lemma 3.4 (i.e. the trick from the XOR

Lemma). Nonetheless, the complexity blow-up in that version is not known to be optimal

(even after replacing its use of the Min-Max Theorem by the Uniform Min-Max Theorem).
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Another drawback of proofs based on the standard Min-Max Theorem is that they are

non-constructive. Indeed, a constructive proof such as the one by Impagliazzo [Imp] can be

interpreted as a Hardcore Theorem for the uniform setting of hardness, where the hardness

is with respect to efficient algorithms rather than small circuits. (See Theorem 3.6 below for

the exact formulation). This Uniform Hardcore Theorem is needed for several important

applications ([KS, Hol1, Hol2, HHR1, HRV]). Building on the constructive proof in [Imp],

Holenstein [Hol1] also shows a Uniform Hardcore Theorem with optimal hardcore density,

but is rather involved and fails to achieve the optimal complexity blow-up O(log(1/δ)/ϵ2).

Subsequently, Barak, Hardt, and Kale ([BHK]) gave an alternative proof of Uniform Hard-

core Theorem achieving optimal complexity blow-up of O(log(1/δ)/ϵ2) as well as optimal

hardcore density 2δ (by using Lemma 3.4), based on ideas of multiplicative weights and

Bregman projection.

As an application of the Uniform Min-Max Theorem (which itself is inspired by [BHK]),

we offer a new proof of the Uniform Hardcore Theorem of [BHK] (with optimal hardcore

density and complexity blow-up). The advantage of the new proof is that it is more modular:

we simply replace the use of Min-Max Theorem in Holenstein’s proof (of the nonuniform

Hardcore Theorem, Theorem 3.2) with the Uniform Min-Max Theorem. In contrast, [BHK]

adapt the analysis of multiplicative weights and Bregman projection (from [HW]) to the

specific context of the Hardcore Theorem.

Notation. For a distribution Z, let OZ denote the oracle that gives a random sample from

Z when queried.

Theorem 3.6 (Uniform Hardcore Theorem). Let n be a security parameter, m = m(n) =

poly(n), δ = δ(n), ϵ′ = ϵ′(n), q = q(n) all computable in poly(n) time, and (X,B) = g(Um)

be a joint distribution where g : {0, 1}m → {0, 1}n × {0, 1} is computable in poly(n) time.

Suppose that (X,B) has no hardcore distribution of density at least 2δ, i.e. there is a t-time
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oracle algorithm A such that for infinitely many n and every C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[
AOC (x) = b

]
>

1

2
+ ϵ′.

Then there is a poly(t, n, 1/δ, 1/ϵ′)-time randomized algorithm P such that for infinitely

many n,

Pr[P (X) = B] > 1− δ.

Moreover, P is constructed by making O(log(1/δ)/ϵ′2) calls to A.

For the proof of Uniform Hardcore Theorem, we will need the notion of measures.

Recall that measures are simply [0, 1] bounded, unnormalized mass functions.

Definition 3.7 (Density of measure). A measure M : X → [0, 1] is δ-dense if its density

µ(M) =
∑

x∈X M(x)/ |X | is at least δ. We denote byMm,δ the set of all δ-dense measures

defined on {0, 1}m. One can verify that if M ∈Mm,δ then ΦM ∈ Cm,δ (but not conversely).

Proof of Theorem 3.6. We will apply Chapter 2, Theorem 2.4 (Uniform Min-Max Theo-

rem), with

• V = Cm,2δ;

• W = {(deterministic) circuits of size tm+ poly(t)};

• f(z,W ) = I(W (x) = b), where (x, b) = g(z) and I(·) is the indicator function.

This corresponds to the two-player zero-sum game where Player 1 chooses some distribution

C ∈ Cm,2δ, and Player 2 chooses a tm + poly(t) sized circuit W , with expected payoff

E[f(C,W )] = Pr(x,b)←g(C) [W (x) = b] for Player 2. We will use A to show that Chapter 2,

Algorithm 2.1 (Finding Universal Strategy) with KL projection on the set V = Cm,2δ can be

implemented efficiently, such that for infinitely many n, in each iteration we obtain some

W with good prediction probability. This gives us an efficient universal predictor A∗ of B
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given X, by the Uniform Min-Max Theorem. From the universal predictor, we then show

how to obtain a (1− δ)-predictor of B using Lemma 3.4.

In Algorithm 2.1, we start with an initial distribution V (1) that is uniform on {0, 1}m.

Let ϵ = ϵ′/c for a sufficiently large constant c, and γ = ϵ/2S. The number of iterations is

S =

(
m− min

C∈Cm,2δ

Hsh(C)

)
/ϵ2 = (m− (m− log(1/2δ)))/ϵ2 = (log(1/δ)− 1)/ϵ2.

In each iteration we represent the distribution V (i) (the current C) by a circuit M (i) com-

puting a measure for V (i). So we can take M (1)(x) = 1 for all x. We will need the following

claim to implement an iteration.

Claim 3.8. There is a randomized algorithm that, given oracle access to a measure M ∈

Mm,2δ, w.p. at least 1 − γ outputs a tm + poly(t) sized (deterministic) boolean circuit

W such that Pr(x,b)←g(ΦM )[W (x) = b] > 1/2 + ϵ′ − 4ϵ. Moreover it runs in time t +

poly(n, s, t, 1/δ, 1/ϵ′, log(1/γ)) time where s is a bound on the bit length of M(x).

Proof of Claim 3.8. Given oracle access to M , we can generate t random samples of ΦM

in time t′ = t ·O((1/δ) log(t/ϵ)) · (s+m) + poly(n) and w.p. at least 1− ϵ, using rejection

sampling (see Lemma A.2). Thus we can eliminate all A’s oracle queries to OΦM
and obtain

some t′ time randomized algorithm A′ such that Pr(x,b)←g(ΦM )[A
′(x) = b] > 1/2 + ϵ′ − ϵ.

Write A′(x) = A′(x; r) where r is the coin tosses of A′ (which consists of coin tosses

for A and at most t′ random bits for the rejection sampling). For each r we compute

an estimate E(r) of Pr(x,b)←g(ΦM )[A
′(x; r) = b] within ±ϵ error with probability at least

γ/2q, for q = O((1/ϵ) log(1/γ)). By a Chernoff bound, this can be done by testing A′(·; r)

on q′ = O((1/ϵ2) log(q/γ)) random samples of (x, b) ← g(ΦM ) (which we generate with

probability at least 1 − Θ(γ/q), again using Lemma A.2). We repeat this for q randomly

chosen r, and if E(r) > 1/2 + ϵ′ − 3ϵ output a circuit W computing A′(·; r).

By union bound with probability at least 1 − γ/2, all q estimates E(r) are within ϵ
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error. By the Markov inequality, w.p. 1 − (1 − Ω(ϵ))q ≥ 1 − γ/2 at least one of the r’s

satisfies Pr(x,b)←g(Φ)[A
′(x; r) = b] > 1/2+ ϵ′− 2ϵ so E(r) ≥ 1/2+ ϵ′− 3ϵ. Moreover we have

Pr(x,b)←g(C)[A(x, r) = b] > 1/2 + ϵ′ − 4ϵ whenever E(r) > 1/2 + ϵ′ − 3ϵ. We conclude that

w.p. at least 1−γ we output the desired circuit, all in time q′q ·(t′+O((1/δ) log(qq′/γ)) ·(s+

m))+poly(n) = poly(n, s, t, 1/δ, 1/ϵ′, log(1/γ)). Finally, the circuit W is of size tm+poly(t)

as it simply runs A using the t fixed samples of ΦM (which can be stored as tm nonuniform

bits).

We now implement the ith iteration as follows. For technical convenience we assume

that e−ϵ has bit-length log(1/ϵ) (if not, we replace ϵ by some ϵ̃ = O(ϵ) such that e−ϵ̃ has

bit-length log(1/ϵ)).

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti sized

circuitM (i) computing a measure for V (i), and outputs ofM (i) have bit-length at most

O(i · log(1/ϵ)). Using Claim 3.8, we can obtain a (deterministic) circuit W (i) such that

Pr
(x,b)←g(V (i))

[W (i)(x) = b] >
1

2
+ ϵ′ − 4ϵ,

in time poly(ti, n, t, 1/δ, 1/ϵ, log(1/γ)) and w.p. at least 1−γ. Note, however, that the

circuit size of W (i) is tm+ poly(t), independent of ti.

2. Weight Update: We represent the resulting distribution V (i)′ by the circuitM (i)′(z) =

exp
(
−ϵ · I

(
W (i)(x) = b

))
· M (i)(z), where (x, b) = g(z), which computes a mea-

sure for V (i)′ . Since I
(
W (i)(x) = b

)
∈ {0, 1}, exp

(
−ϵ · I

(
W (i)(x) = b

))
has bit-

length log(1/ϵ). M (i)(z) has bit-length O(i · log(1/ϵ)), thus multiplication takes time

poly(i · log(1/ϵ)). Thus M (i)′ has circuit size t′i = ti + tm+ poly(t) + i · polylog(1/ϵ),

bit-length at most O(i · log(1/ϵ) + log(1/ϵ)), and can be constructed in similar time.

3. KL Projection: It is shown in Lemma A.3 (approximating KL projection on high
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min-entropy distributions, which is based on Lemma 2.3 of [BHK]) that given M (i)′ ,

w.p. 1− γ one can generate a ti+1 = t′i + polylog(1/ϵ) sized circuit M (i+1) computing

a measure for a distribution V (i+1) that is an ϵ2-approximate KL projection of V (i)′ =

ΦM(i)′ on Cm,2δ. Furthermore, outputs of M (i+1) have bit-length at most O((i +

1) log(1/ϵ)). This can be done in time poly(n, 1/ϵ, log(1/δ), log(1/γ)) · t′i.

By union bound w.p. at least 1− 2γS = 1− ϵ all S iterations complete successfully. Since

t1 = O(1) and ti+1 = ti+ tm+poly(t)+ i ·polylog(1/ϵ), we have ti = poly(n, t, 1/ϵ, log(1/δ))

for all i ∈ [S]. Let A∗ be the uniform distribution over W (1), . . . ,W (S), thus A∗ can be

computed in total time poly(n, t, 1/δ, 1/ϵ). By Chapter 2, Theorem 2.4 (Uniform Min-Max

Theorem), for all Player 1 strategies C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[A∗(x) = b] > (1− ϵ)

(
1

2
+ ϵ′ − 4ϵ

)
−O(ϵ) ≥ 1 + ϵ′

2
.

Equivalently, for every joint distribution (X̂, B̂) that is 2δ-dense in (X,B) = g(Um) we have

Pr[A∗(X̂) = B̂] >
1 + ϵ′

2

(since (X̂, B̂) equals g(C) for some C ∈ Cm,2δ).

From Universal Weak Predictor to (1− δ)-Predictor. Now that we have a universal

weak predictor A∗ as the uniform distribution over S = O(log(1/δ)/ϵ′2) circuits, applying

Lemma 3.3 already proves a version of the Uniform Hardcore Theorem with suboptimal

hardcore density.

To achieve optimal hardcore density, we apply Lemma 3.4 by guessing the value of

ϕ ∈ [0, 1/2], which is a multiple of 1/S. More concretely, for each λ = 1/S, 2/S, . . . , 1/2, we

compute some estimate Eλ of Pr[Pλ(X) = B], where Pλ denotes the predictor in Lemma

3.4 with ϕ set to λ. Our final (uniform) predictor P will run Pλ for the λ where the estimate

Eλ is the highest.
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We compute Eλ by taking O((1/ϵ′2δ2) log(1/ϵ′δ)) samples of (X,B) and coins of Pλ, so

that by a Chernoff bound, for each λ w.p. at least 1−ϵ′δ/4 we have |Eλ − Pr[Pλ(X) = B]| ≤

ϵ′δ/4. The probability that either Eϕ or the highest estimate is off by more than ±ϵ′δ/4 is

at most ϵ′δ/2 . So it follows from Lemma 3.4 that

Pr [P (X) = B] ≥ Pr [Pϕ(X) = B]− ϵ′δ/2− ϵ′δ/2 > 1−
(
1− ϵ′

)
δ − ϵ′δ = 1− δ

completing the proof.

3.2 Uniform Dense Model Theorem

A celebrated result of Green and Tao [GT] shows that there exist arbitrarily long

arithmetic progressions of prime numbers. A key new component of their proof is the

Dense Model Theorem which, in the generalized form of Tao and Ziegler [TZ], says if X is a

pseudorandom distribution and D is a distribution dense in X, then D is indistinguishable

to a distribution M that is dense in the uniform distribution. Like our results in Chapter

2, Section 2.3.1, notions of indistinguishability and pseudorandomness in the Dense Model

Theorem can be defined with respect to an arbitrary class of distinguishers W, and are not

restricted to classes of circuit distinguishers.

In the original proof, the indistinguishability (i.e. the bound on distinguishing proba-

bility) between D and M is exponentially larger than the indistinguishability between X

and the uniform distribution, making it inapplicable for the typical complexity-theoretic or

cryptographic settings of parameters. Using the Min-Max Theorem, Reingold et al. [RTTV]

provided another proof where the indistinguishability and complexity blow-ups are only

polynomial; a similar proof was given by Gowers [Gow]. These requirements are crucial

for applications in leakage-resilient cryptography [DP2, DP1, FOR], and for connections to

computational differential privacy [MPRV].
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We now state a Dense Model Theorem due to Zhang [Zha], where the complexity

blow-up O((δ/ϵ)2 log(1/δ)) is asymptotically optimal.3

Recall from Definition 3.1 that for distributions X and Y on Σ, we say X is δ-dense

in Y if Pr [Y = x] ≥ δ ·Pr [X = x] for all x ∈ Σ, and say X is δ-dense if it is δ-dense in UΣ.

It will be convenient to denote by Tht(x) the boolean threshold function i.e. Tht(x) = 1 if

x ≥ t and Tht(x) = 0 if x < t.

Theorem 3.9 (Dense Model Theorem [Zha]). Let Σ be a finite set, W be an arbitrary

class of functions W : Σ → [0, 1], ϵ > 0, δ > 0. Then the following holds for some

S = O((δ/ϵ)2 log(1/δ)).

Let W ′ be the set of all functions W ′ : Σ→ {0, 1} defined by

W ′(x) = Tht

(
S∑

i=1

Wi(x)/S

)
for some W1, . . . ,WS ∈ W and t ∈ [0, 1]. Let X be a distribution on Σ that is ϵ-

indistinguishable from UΣ by W ′. Let D be a distribution δ-dense in X. Then there is

a δ-dense distribution M such that D and M are O(ϵ/δ)-indistinguishable by W.

A Min-Max Theorem based proof with a suboptimal blow-up of S = O((δ/ϵ)2 log(1/ϵ))

proceeds as follows. (Note that we may assume δ > ϵ, else the conclusion of O(ϵ/δ)-

indistinguishability is trivial.) Assume for contradiction that for every δ-dense M there

is a distinguisher W ∈ W. By the Min-Max Theorem there is a universal distinguisher

W ∗ such that E [W ∗(D)]− E [W ∗(M)] ≥ O(ϵ/δ) for every δ-dense M . By subsampling we

can assume that W ∗ is the average over a multiset of O((δ/ϵ)2 log(1/ϵ)) elements of W,

while changing the distinguishing advantage by at most a constant fraction. Given such

universal distinguisher W ∗ we can construct an ϵ-distinguisher in W ′ between X and UΣ,

as formalized in Lemma 3.10:

3Zhang [Zha] shows optimality by proving a black-box lower bound on the number of elements of W that
a black-box reduction needs to obtain to construct a distinguisher between X and the uniform distribution.
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Lemma 3.10 (Implicit in [RTTV]). Let Σ be a finite set, ϵ > 0, δ > 0. Let X, D be

distributions on Σ, and D is δ-dense in X. Let W ∗ : Σ→ [0, 1] be a function such that for

every δ-dense distribution M we have

E [W ∗(D)]− E [W ∗(M)] ≥ O(ϵ/δ).

Then for some t as a multiple of O(ϵ/δ), we have

E [Tht(W
∗(X))]− E [Tht(W

∗(UΣ))] ≥ ϵ.

This proves a Dense Model Theorem, but with a suboptimal complexity blow-up of

O((δ/ϵ)2 log(1/ϵ)) (due to the probabilistic construction of the multiset definingW ∗). Zhang

[Zha] achieved optimal blow-up in Theorem 3.9 by adapting the technique of multiplicative

weights with KL projection from Barak, Hardt, and Kale [BHK].

Replacing the use of the Min-Max Theorem in the above argument by our Uniform Min-

Max Theorem (Chapter 2, Theorem 2.4), we immediate obtain a simple proof of Theorem

3.9, with an optimal complexity blow-up that comes from the setting of

S =
(log |Σ| −minM∈V Hsh(M))

Ω(ϵ/δ)2
= O

(
log(1/δ)
(ϵ/δ)2

)
in Theorem 2.4, with V being the set of δ-dense distribution on Σ. Compared to [Zha],

the proof using the Uniform Min-Max Theorem is more modular, and avoids adapting the

analysis of [HW] and [BHK] to the specific setting of the Dense Model Theorem.

In the rest of the section, we prove a Uniform Dense Model Theorem where the distin-

guishers are (uniform) algorithms rather than (nonuniform) [0, 1]-valued functions. Rather

than directly applying the Uniform Min-Max Theorem and using Lemma 3.10, we follow

[TTV] and deduce the Dense Model Theorem from a Regularity Theorem. Specifically,

[TTV] shows how to deduce the nonuniform Dense Model Theorem from a Nonuniform
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Regularity Theorem analogous to Chapter 2, Theorem 2.12; we prove our Uniform Dense

Model Theorem using a Uniform Regularity Theorem (Chapter 2, Theorem 2.18).

We begin with an overview of the proof of the nonuniform Dense Model Theorem in

[TTV]. The distribution D being δ-dense in X means that there is a (possibly inefficient)

binary random variable B jointly distributed with X such that D = X|B=1, and Pr[B =

1] ≥ δ. By a Regularity Theorem, there is an efficient randomized function P such that

(X,B) and (X,P (X)) are indistinguishable. Since P is efficient, indistinguishability of

X and Un implies that (X,P (X)) and (Un, P (Un)) are also indistinguishable. So we can

take M = Un|P (Un)=1. M is δ-dense because Pr[P (Un) = 1] ≈ Pr[P (X) = 1], again by

indistinguishability of X and Un. (Note that we use indistinguishability of X and Un twice.

In the uniform setting, the uniform distinguisher will have to determine which case to use,

by testing whether Pr[P (Un) = 1] ≈ Pr[P (X) = 1] or not.)

Theorem 3.11 (Uniform Dense Model Theorem). Let n be a security parameter, ϵ = ϵ(n),

δ = δ(n), s = s(n) ≥ n all computable in poly(n) time. Let X = X(n) and U = U(n) be

poly-time samplable distributions on {0, 1}n such that X and U are ϵ-indistinguishable for

s-time randomized algorithms. Let D = D(n) be a distribution that is δ-dense in X. Then

for some t = sΩ(1)/poly(1/ϵ, 1/δ) and all t-time randomized oracle algorithms A, there is a

distribution M = M(n) that is (δ −O(ϵ))-dense in U such that for all n,

E
[
AOM (D)

]
− E

[
AOM (M)

]
≤ O(ϵ/δ).

Moreover, M is constructive: M = U |P (U)=1 for some randomized circuit P such that

some poly(t, 1/ϵ)-time randomized algorithm R outputs P w.p. at least Ω(1/ϵ2).

Proof. w.l.o.g. we assume 1 > δ > cϵ for a sufficiently large constant c. D being δ-dense inX

means that there is a (possibly inefficient) binary random variable B jointly distributed with

X such that D = X|B=1, and δB = Pr[B = 1] = δ. Consider any t-time randomized oracle
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algorithm A. Let A′ be the randomized oracle algorithm where for every joint distribution

(U,C) over {0, 1}n × {0, 1}, A′OU,C on input (x, y) does the following:

1. Compute an estimate δ̂C of δC = Pr[C = 1] such that
∣∣∣δ̂C − δC

∣∣∣ ≤ ϵ w.p. at least

1 − ϵ. To do so we take O((1/ϵ2) log(1/ϵ)) random samples of (U,C) and let δ̂C be

the fraction on which C equals 1.

2. If δ̂C < δB − 5ϵ then return y; if δ̂C > δB + 5ϵ then return 1− y.

3. Otherwise,
∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ, and

(a) If y = 0 then return zero.

(b) If y = 1 then simulate AON (x) for the distribution N = U |C=1, and return the

output. To simulate AON (x), we obtain t random samples of N w.p. at least

1 − ϵ, where each sample is generated using rejection sampling from OU,C for

O((1/δC) log(t/ϵ)) times, where δC ≥ δB − 4ϵ ≥ δ/2.

A′ runs in time t′ = t+O((1/ϵ2) log(1/ϵ)) · poly(n) +O((1/δ) log(t/ϵ)) · t · poly(n). By

Chapter 2, Theorem 2.18, there is a poly(t′, 1/ϵ)-time randomized algorithm R that w.p. at

least Ω(ϵ2) outputs a randomized circuit P satisfying

2ϵ > E
[
A′OU,P (U)(X,B)

]
− E

[
A′OU,P (U)(U,P (U))

]
≥ Pr

δ̂C

[
δ̂C − δB > 5ϵ

]
· (δC − δB) + Pr

δ̂C

[
δ̂C − δB < −5ϵ

]
· (δB − δC)

+ Pr
δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
·
(
δB · E[AOM (D)]− δC · E[AOM (M)]− ϵ

)
. (3.1)

Take (U,C) = (U,P (U)) and M = U |C=1. We claim that δC ≥ δB − 6ϵ, i.e. M is

(δ −O(ϵ))-dense in U . Indeed, if δC < δB − 6ϵ then a Chernoff bound implies

Pr
δ̂C

[
δ̂C − δB > 5ϵ

]
· (δC − δB) + Pr

δ̂C

[
δ̂C − δB < −5ϵ

]
· (δB − δC) > 5ϵ
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violating Eq. 3.1. By symmetry, we must have δC ∈ [δB − 6ϵ, δB + 6ϵ].

We now show thatD andM are indistinguishable by AOM . Suppose that δC ∈ [δB, δB+

6ϵ] (the case δC ∈ [δB − 6ϵ, δB] is similar). Then Prδ̂C
[
δ̂C − δB < −5ϵ

]
≤ ϵ and Eq. 3.1

implies

2ϵ ≥

(
1− ϵ− Pr

δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
])
· (δC − δB)− ϵ

+ Pr
δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
·
(
δB
(
E[AOM (D)]− E[AOM (M)]

)
− (δC − δB)− ϵ

)
which simplifies to

δB ·
(
E[AOM (D)]− E[AOM (M)]

)
<

3ϵ− (1− ϵ) (δC − δB)

Pr
[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
] + 2 (δC − δB) + ϵ. (3.2)

Consider these cases:

• If 0 ≤ δC − δB < 4ϵ, then Pr
[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
≥ 1− ϵ hence RHS of Eq. 3.2 is at most

3ϵ/(1− ϵ) + (2− (1− ϵ)/(1− ϵ)) (δC − δB) + ϵ ≤ O(ϵ).

• If 4ϵ ≤ δC − δB ≤ 6ϵ, then RHS of Eq. 3.2 is at most 2 (δC − δB) + ϵ ≤ O(ϵ).

Thus we conclude that E[AOM (D)]− E[AOM (M)] ≤ O(ϵ)/δB ≤ O(ϵ/δ).
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Chapter 4

Characterizations of

Computational Entropies

Computational analogues of information-theoretic notions have given rise to some of

the most interesting phenomena in cryptography and pseudorandomness theory. For ex-

ample, (computational) indistinguishability [GM2], which is the computational analogue of

statistical distance, enabled bypassing Shannon’s impossibility results on perfectly secure

encryption [Sha], and provided the basis for the computational theory of pseudorandom-

ness [BM, Yao2].

Computational analogues of entropy were introduced by Yao [Yao2] and Håstad, Im-

pagliazzo, Levin, and Luby [HILL]. The Håstad et al. notions, known as pseudo-min-entropy

and pseudoentropy1, were key to their fundamental result establishing the equivalence of

pseudorandom generators and one-way functions, and have also now become a basic concept

in complexity theory and cryptography.

Average-case variants of the Håstad et al. notions are known as pseudo-avg-min-entropy

1Håstad et al. uses a somewhat different terminology, e.g. pseudoentropy is called “computational en-
tropy.”
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[HLR] and conditional pseudoentropy [HRV], respectively. Pseudo-avg-min-entropy, in the

special case involving only a binary alphabet, is equivalent to dense “hardcore distributions”

introduced by Impagliazzo [Imp] (see Chapter 3 for discussions on Impagliazzo’s Hardcore

Theorem). Conditional pseudoentropy was recently introduced by Haitner, Reingold, and

Vadhan [HRV] to give a simpler and more efficient construction of pseudorandom generators

from one-way functions.

In this chapter, we establish new characterizations of pseudo-avg-min-entropy, pseu-

doentropy, and conditional pseudoentropy, in terms of certain (different) measures of “hard-

ness” for distributions.

4.1 Introduction

4.1.1 Characterizing Pseudo-Avg-Min-Entropy

Håstad et al. introduced the following computational analogue of min-entropy:

Definition 4.1 (Pseudo-min-entropy [HILL], informal). A distribution X has pseudo-min-

entropy at least k if there exists a distribution Y such that:

1. X is indistinguishable from Y .

2. H∞(Y ) ≥ k, where H∞(·) denotes min-entropy.

Pseudo-min-entropy is interesting because a distribution can have much higher pseudo-

min-entropy than its min-entropy. Indeed, if G : {0, 1}n → {0, 1}m is a pseudorandom

generator, then G(Un) has min-entropy at most n, but is indistinguishable from Um (by

definition) and hence has pseudo-min-entropy m > n.

A conditional version is known as pseudo-avg-min-entropy:
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Definition 4.2 (Pseudo-avg-min-entropy [HLR], informal). Let (X,B) be a joint distri-

bution. We say that B has pseudo-avg-min-entropy at least k given X if there exists a

distribution C jointly distributed with X such that

1. (X,B) is indistinguishable from (X,C).

2. H̃∞(C | X), the average min-entropy of C given X, is at least k, where

H̃∞(C | X) = log

 1

Ex∼X

[
1

2H∞(C|X=x)

]
 = log

(
1

Ex∼X [maxa Pr[C = a|X = x]]

)
.

It can be shown that H̃∞(C | X) ≥ k iff for every (computationally unbounded)

randomized predictor S, Pr[S(X) = C] ≤ 2−k. Our result is a computational analogue of

this equivalence:

Theorem 4.3 (Characterizing pseudo-avg-min-entropy, informal). Let (X,B) be a joint

distribution where B takes values in a polynomial-sized set Σ. Then B has pseudo-avg-min-

entropy at least k given X if and only if there is no probabilistic polynomial-time algorithm

S such that Pr[S(X) = B] ≥ 2−k ± n−ω(1).

In other words, we show that pseudo-avg-min-entropy coincides with unpredictability

entropy [HLR] for polynomial-sized alphabets. To provide some more intuition, we compare

two previous results relating forms of computational randomness and unpredictability, both

as special cases of Theorem 4.3:

1. Yao [Yao1] showed that if B is a single bit, then (X,B) is indistinguishable from

(X,U1) (i.e. B has pseudo-avg-min-entropy 1 given X) iff B cannot be predicted

from X with probability noticeably more than 1/2. This can be generalized to B

taking values in a polynomial-sized alphabet Σ: B ∈ Σ has pseudo-avg-min-entropy

k = log |Σ| given X iff B cannot be predicted with probability noticeably greater
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than 2−k = 1/|Σ|. Thus, Theorem 4.3 has been known to hold in the extreme case of

maximal entropy (k = log |Σ|).

2. The Hardcore Theorem of Impagliazzo [Imp] (and subsequent strengthenings [KS,

Hol1, BHK]) can be interpreted (as done in [STV]) as saying that when B is a single

bit, B cannot be predicted from X with probability greater than 1 − δ iff “B is

indistinguishable from a random bit on a 2δ fraction of the probability space (X,B)”

(this fraction of the probability space is typically called the “hardcore measure”).

The latter condition is equivalent to saying that (X,B) has pseudo-avg-min-entropy

at least log(1/(1 − δ)) given X (see discussions in Section 4.2 for details). Thus,

Theorem 4.3 can be viewed as a generalization of the Hardcore Theorem to larger

alphabets. We refer to Chapter 3 for more discussions on the Hardcore Theorem.

We note that the constraint that B takes values in a polynomial-sized set is essential for

Theorem 4.3. If f : {0, 1}n → {0, 1}n is a one-way permutation and X is a uniformly

random output, then it is very hard to predict f−1(X) given X, but the pseudo-avg-min-

entropy of f−1(X) given X is negligible (since we can efficiently recognize f−1(X) given

X).

For B that takes values exponentially large set, Goldreich and Levin [GL] showed that

if B is very hard to predict from X (i.e. cannot be predicted with nonnegligible probability),

then we can choose a random hash function H whose range is a polynomial-sized set Σ and

it will hold that H(B) ∈ Σ has pseudo-avg-min-entropy log |Σ| given X and H. While

this is very useful and has many applications, it does not characterize the pseudo-avg-min-

entropy of B itself (but rather a hash of it), requires a hash function that supports “local

list-decoding,” and again only talks about maximal entropy (log |Σ|).
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4.1.2 Characterizing (Conditional) Pseudoentropy

Håstad et al. also introduced the following computational analogue of Shannon entropy:

Definition 4.4 (Pseudoentropy [HILL], informal). A distribution X has pseudoentropy at

least k if there exists a distribution Y such that:

1. X is indistinguishable from Y .

2. Hsh(Y ) ≥ k, where Hsh(·) denotes Shannon entropy.

Pseudoentropy is interesting because a distribution can have much higher pseudoen-

tropy than its min-entropy. As in the case of pseudo-min-entropy, a canonical example is

the output distribution of a pseudorandom generator.

A useful, average-case generalization is the notion of conditional pseudoentropy:

Definition 4.5 (Conditional pseudoentropy [HRV], informal). Let (X,B) be a joint distri-

bution. We say that B has (conditional) pseudoentropy at least k given X if there exists a

distribution C jointly distributed with X such that

1. (X,B) is indistinguishable from (X,C).

2. Hsh(C|X) ≥ k.

Note that if B has pseudoentropy at least k given X, then (X,B) has pseudoentropy at

least Hsh(X) + k, but the converse is false (consider X that has pseudoentropy Hsh(X) + k

on its own, with a B that has no pseudoentropy).

Conditional pseudoentropy is useful because it captures the pseudoentropy from the

perspective of an adversary who first sees X and later B, instead of both X and B at once.

Thus, the sum of the pseudoentropy of X and the pseudoentropy of B given X can be larger

than the pseudoentropy of the joint distribution (X,B).
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We give an exact characterization of (conditional) pseudoentropy, which bears a lot of

similarity to the characterization of pseudo-avg-min-entropy (Theorem 4.3). Unlike Theo-

rem 4.3, our result here refers to “hardness of sampling” rather than unpredictability:

Theorem 4.6 (Characterizing conditional pseudoentropy, informal). Let (X,B) be a joint

distribution where B takes values in a polynomial-sized set. Then B has pseudoentropy at

least Hsh(B|X)+δ given X if and only if there is no probabilistic polynomial-time algorithm

S such that the KL divergence from (X,B) to (X,S(X)) is at most δ.

A nice feature of Theorem 4.6 compared to Theorem 4.3 is that it focuses on the

computational hardness in B given X, as measured by the pseudoentropy gap δ. For ex-

ample, suppose that B is a uniform random bit, independent of X. Then B has 1 bit of

pseudo-avg-min-entropy given X and cannot be predicted from X with probability better

than randomly guessing, but these are not for computational reasons (i.e. they also hold for

computationally unbounded algorithms). It is often desirable to focus solely on the com-

putational randomness in B. For pseudoentropy, we can do this by subtracting Hsh(B|X)

(from the pseudoentropy of B). For unpredictability, we can do this by considering the

feasibility of sampling the distribution B|X=x given a sample x← X. Thus, in the example

that B is a random bit independent of X, this sampling is easy to do (in contrast to the

task of predicting B from X).

The constraint that B takes values in a polynomial-sized set is essential here, for the

same reason as Theorem 4.3. However, we do have an alternative version of our result that

holds for B taking values in an exponentially large range. In that version, we replace the

task of sampling a distribution S(X) from X with that of computing a “measure” that,

when normalized to be a distribution, has small KL divergence from (X,B). In particular,

this alternative formulation is interesting even when X is empty and gives a characterization

of pseudoentropy of an arbitrary distribution B:
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Theorem 4.7 (Characterizing pseudoentropy, informal (nonuniform setting only)). Let

(X,B) be a joint distribution. Then B has pseudoentropy at least Hsh(B|X) + δ given X if

and only if there is no polynomial-sized circuit P that computes a conditional measure for

a joint distribution (X,C) such that the KL divergence from (X,B) to (X,C) is at most δ.

In Chapter 5, we use Theorem 4.6 to obtain simplified and more efficient constructions

of pseudorandom generators from one-way functions.

We also establish uniform versions of Theorem 4.3 and 4.6, namely with respect to

probabilistic polynomial-time algorithms S.

4.1.3 Our Techniques

We give a high-level view of proof techniques for the more interesting direction of

Theorem 4.3 and 4.6: unpredictability (or hardness of sampling) implies pseudo-avg-min-

entropy (or conditional pseudoentropy). First, let us assume the nonuniform model of

computation (i.e. boolean circuits).

1. In light of relation between Theorem 4.3 and the Hardcore Theorem, it is natural

that our proofs also begin by applying the Min-Max Theorem, following Nisan and

Holenstein’s proofs of the Hardcore Theorem [Imp, Hol1]. Suppose for contradiction

that B does not have high pseudo-avg-min-entropy (or pseudoentropy) given X. That

is, for every joint distribution (X,C) where C has high pseudo-avg-min-entropy (or

pseudoentropy) given X, there is a poly-sized boolean circuit W that achieves dis-

tinguishing advantage E[W (X,B)] − E[W (X,C)] ≥ ϵ, for ϵ = 1/poly(n). By the

Nonuniform Min-Max Theorem (Chapter 2 Theorem 2.3), there is a single poly-sized

boolean circuit W ∗ that achieves E[W ∗(X,B)] − E[W ∗(X,C)] ≥ Ω(ϵ) for all (X,C)

where C has high pseudo-avg-min-entropy (or pseudoentropy).
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2. Let (X,C∗) be the distribution that maximizes E[W ∗(X,C)] among all C that have

high pseudo-avg-min-entropy (or pseudoentropy) given X. Thus of all such (X,C),

(X,C∗) is the hardest to distinguish from (X,B) for W ∗. We show that C∗ can be

“represented” efficiently using the poly-sized circuit for W ∗, where the meaning of

“represent” differs for pseudo-avg-min-entropy and conditional pseudoentropy.

3. From W ∗ we construct some circuit S such that S’s performance, i.e. Pr[S(X) =

B] (or KL(X,B ∥ X,S(X))), is expressed in terms of the distinguishing advantage

E[W ∗(X,B)]−E[W ∗(X,C∗)]. We then plug in the fact E[W ∗(X,B)]−E[W ∗(X,C∗)] ≥

Ω(ϵ) to conclude Pr[S(X) = B] ≥ 2−k (or KL(X,B ∥ X,S(X)) ≤ δ). Thus we

violate the assumption that B is unpredictable (or infeasible to sample within δ KL

divergence) given X.

For pseudo-avg-min-entropy, the S we construct in Step 3 is a generalization of the predictor

constructed in Holenstein’s proofs of the Hardcore Theorem to larger alphabets. Nonethe-

less, even when B is a single bit, our proof of Theorem 4.3 differs notably from existing

approaches to the Hardcore Theorem. In particular, by looking at the hardest-to-distinguish

(X,C∗) in Step 2, we achieve optimal “hardcore density” without relying on the technical

lemma of Holenstein (see Chapter 3, Remark 3.5).

For conditional pseudoentropy, the S we construct in Step 3 is simply so that S(X) =

C∗. To prove such S achieves KL(X,B ∥ X,S(X)) ≤ δ, we develop a generic framework

that potentially applies to any “sufficiently nice”, concave function H, not just the Shannon

entropy function. The generic framework relates “pseudo-H” (e.g. pseudoentropy when

H is Shannon entropy) of a distribution B to the infeasibility of sampling a distribution

close to B where closeness is measured by the “Bregman divergence” associated with H

(cf. Definition 1.7). This generic framework, combined with Step 1 and 2, gives rise to a
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meta characterization theorem:

Informal Theorem 4.8 (Meta characterization theorem). Let (X,B) be a joint distribution

where B takes value in a polynomial-sized set. For all “sufficiently nice,” strictly concave

functions H (e.g. H is Shannon entropy), the following are equivalent:

1. There exists a joint distribution (X,C) such that (X,C) and (X,B) are indistinguish-

able for poly-sized circuits, and H(C|X) ≥ H(B|X) + δ − 1/nω(1);

2. For all polynomial-sized circuits S, we have DH(X,B ∥ X,S(X)) > δ − 1/nω(1).

Theorem 4.6 is an instantiation of the meta theorem, since if H = Hsh then DH = KL

(see Definition 1.9). We do not prove the meta theorem, but rather describe more concretely

in Section 4.3.3 how it follows as an immediate corollary of a few underlying lemmas, where

the exact requirement of “suffciently nice” is made clear.

Uniform Settings. In the uniform model of computation, we replace the use of Nonuni-

form Min-Max Theorem in Step 1 by the Uniform Min-Max Theorem in Chapter 2. In order

to apply the Uniform Min-Max Theorem, we develop efficient algorithms to approximately

compute KL projections on the set of all distributions with high average min-entropy, and

on the set of all distributions with high conditional Shannon-entropy.

4.1.4 Relation to Inaccessible Entropy

A variety of computational notions of entropy have been studied in the cryptography

and complexity literature, e.g. [Yao1, HILL, BSW, HLR, HRVW, HRV, HHR+3, FR, Rey].

In addition to the notions discussed above, our work was also inspired by the works on

inaccessible entropy [HRVW, HHR+3].

Like our characterization of conditional pseudoentropy, inaccessible entropy refers to

a difficulty of sampling a distribution B from a jointly distributed X. However, there are
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important differences. In our characterization (Theorem 4.6), the sample of X is generated

externally and fed to the adversary, who tries then to sample the conditional distribution

B|X. In the [HHR+3] notion of inaccessible entropy, the adversary is also given the random

coins used to generate X, and we compare its output distribution conditioned on those coins

to B|X. And in the original notion of inaccessible entropy, from [HRVW], the adversary is

the one who generates X (or some approximation to it). These three notions are analogous

to the security conditions for one-way functions, target collision-resistant hash functions

(i.e. UOWHFs), and collision-resistant hash functions, respectively (thinking of X = f(B)

for B ∈R {0, 1}n). We note that the hardness of sampling we consider also differs from inac-

cessible entropy in the way it measures how well an adversary approximates the conditional

distribution B|X. Roughly speaking, in our notion (measuring the KL divergence from B|X

to the adversary’s output), the adversary’s goal is to produce an output distribution that

contains B|X as tightly as possible. In the notions of inaccessible entropy, the adversary’s

goal is to produce an output distribution that is contained within B|X as tightly as possible.

There is also significant similarity between how one-way functions can be used to gen-

erate inaccessible entropy [HRVW], and conditional pseudoentropy (see Chapter 5, Section

5.3). In [HRVW], it is shown that if f is a one-way function, then (f(Un), Un) is a next-bit

inaccessible entropy generator, just like we show that it is a next-bit pseudoentropy gen-

erator in Chapter 5, Theorem 5.5. However, for inaccessible entropy, it is only necessary

to break f(Un) into bits (Un can be treated as a single block), and for pseudoentropy it is

only necessary to break Un into bits (f(Un) can be treated as a single block). Nevertheless,

there are enough similarities to suggest that there may be a deeper connection between in-

accessible entropy and pseudoentropy; trying to formalize this connection is an interesting

question for future work.
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4.2 Characterizing Pseudo-Avg-Min-Entropy

4.2.1 Definitions

The conditional version of min-entropy we consider is defined as follows:

Definition 4.9 (Average min-entropy [DORS]). For every joint distribution (X,B), the

average min-entropy of B given X is defined to be

H̃∞(B | X) = log

 1

Ex∼X

[
1

2H∞(B|X=x)

]
 = log

(
1

Ex∼X
[
maxa∈supp(B)B(a|x)

]) .

We remark that there are other ways to define conditional entropies, but the above

definition has turned out to be the most convenient, and has an unpredictability interpre-

tation. That is, H̃∞(B | X) ≥ k if and only if it is impossible to predict B from X with

probability more than 2−k:

Proposition 4.10. For every joint distribution (X,B),

H∞(B|X) ≥ k ⇐⇒ ∀(randomized) S,Pr[S(X) = B] ≤ 2−k.

Proof. To maximize Pr[S(X) = B], S should output the most probable value of B|X=x,

thus achieves Pr[S(X) = B] = Ex∼X [maxa Pr[B = a|X = x]] = 2−H∞(B|X).

A computational analogue of average min-entropy is pseudo-avg-min-entropy, intro-

duced by Hsiao, Lu, and Reyzin [HLR] (for the nonuniform setting). We begin with the

nonuniform definition because it is simpler:

Definition 4.11 (Pseudo-avg-min-entropy, nonuniform setting). Let (X,B) be a joint dis-

tribution. We say B has (T, ϵ) nonuniform pseudo-avg-min-entropy at least k given X if

there exists a random variable C jointly distributed with X such that the following holds:

• H̃∞(C|X) ≥ k;
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• (X,B) and (X,C) are ϵ-indistinguishable by all size T circuits.

If (X,B) = (X,B)(n) for a security parameter n, we say B has pseudo-avg-min-entropy at

least k = k(n) given X if for every constant c, B has (nc, 1/nc) pseudo-avg-min-entropy at

least k given X for all sufficiently large n.

In the uniform setting, where we consider randomized algorithms instead of circuits as

the distinguishers, the right definitions are more subtle. It turns out that we must require

indistinguishability even against algorithms equipped with an sampling oracle. (See remark

below for more discussion.)

Notation. For a distribution Z, let OZ denote the oracle that gives a random sample from

Z when queried.

Definition 4.12 (Pseudo-avg-min-entropy, uniform setting). Let n be a security parameter,

T = T (n), ϵ = ϵ(n), k = k(n), ℓ = ℓ(n). Let (X,B) = (X,B)(n) be a joint distribution on

{0, 1}n × {0, 1}ℓ. We say B has (T, ϵ) uniform pseudo-avg-min-entropy at least k given X

if for every randomized oracle algorithm A computable in time T , there is a distribution C

jointly distributed with X such that the following holds for all sufficiently large n:

• H̃∞(C|X) ≥ k;

• (X,B) and (X,C) are indistinguishable by AOX,B,C :

|Pr[AOX,B,C (X,B) = 1]− Pr[AOX,B,C (X,C) = 1]| < ϵ.

We say B has uniform pseudo-avg-min-entropy at least k = k(n) given X if for every

constant c, B has (nc, 1/nc) uniform pseudo-avg-min-entropy at least k given X.

The reason to give the distinguishers oracle access to OX,B,C is to ensure that the

definition composes: if (X1, B1) and (X2, B2) are iid copies of (X,B), we would like to
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say that (B1, B2) has pseudo-avg-min-entropy at least 2k given (X1, X2). Indeed we would

want to say that (X1, B1, X2, B2) is indistinguishable from (X1, C1, X2, C2) where C1, C2 are

iid copies of C. However, indistinguishability against uniform algorithms is not preserved

under taking multiple independent samples in general [GM1]. Requiring indistinguishability

against distinguishers with oracle access to OX,B,C ensures that indistinguishability will be

preserved under taking multiple independent samples.

However, a consequence of our results is that the definition with oracle OX,B,C is equiv-

alent to the definition with oracle OX,B provided B comes from a polynomial-sized alphabet.

In particular, if (X,B) is also polynomial-time samplable, the definition is equivalent to

one without oracle OX,B,C . (See Corollary 4.22.)

In the definition of pseudo-avg-min-entropy, a question asked by Leo Reyzin is whether

allowing changing both X and B (rather than changing (X,B) to (X,C), with X fixed)

makes any difference. Another consequence of our results is that this is equivalent to the

above definition. (See Corollary 4.22.)

For a joint distribution (X,B), it is a basic complexity-theoretic question how well B

can be efficiently predicted given X:

Definition 4.13 (Hardness of prediction, nonuniform setting). Let (X,B) be a joint dis-

tribution on {0, 1}n × {0, 1}ℓ. We say B is nonuniformly (t, δ)-hard to predict given X if

for all size t circuits S it holds that Pr[S(X) = B] < 1− δ.

We say B is nonuniformly δ-hard to predict given X if for every constant c, B is

nonuniformly (nc, δ − 1/nc)-hard to predict given X for all sufficiently large n.

Note that the (nonuniform) hardness of prediction generalizes the average-case hardness

of a function f : {0, 1}n → {0, 1}ℓ by taking X = Un, B = f(X), and is equivalent to

unpredictability entropy studied by Hsiao, Lu, and Reyzin [HLR].
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We can also define hardness of prediction with respect to uniform algorithms. Note

that we give the predictor oracle access to the sampling oracle OX,B (which is redundant

in case (X,B) is efficiently samplable):

Definition 4.14 (Hardness of prediction, uniform setting). Let n be a security parameter,

δ = δ(n) > 0, t = t(n) ∈ N, ℓ = ℓ(n). Let (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ.

We say B is uniformly (t, δ)-hard to predict given X if for all time t randomized oracle

algorithms S and all sufficiently large n, Pr[SOX,B (X) = B] < 1− δ.

We say B is uniformly δ-hard to predict given X if for every constant c, B is uniformly

(nc, δ − 1/nc)-hard to predict given X.

4.2.2 Main Results

For a joint distribution (X,B) on {0, 1}n × {0, 1}ℓ where ℓ = O(logn), we give a

characterization of the pseudo-avg-min-entropy of B given X, in terms of the hardness of

predicting B given X:

Theorem 4.15 (Characterizing pseudo-avg-min-entropy). Let n be a security parameter,

ℓ = ℓ(n) = O(logn), r = r(n) ≤ ℓ(n). Let (X,B) = (X,B)(n) be a joint distribution on

{0, 1}n × {0, 1}ℓ. Then B has (non)uniform pseudo-avg-min-entropy at least r given X if

and only if B is (non)uniformly (1− 2−r)-hard to predict given X.

Note that this is an computational analogue of Proposition 4.10, which proves an equiv-

alence between average min-entropy and unpredictability for computationally unbounded

algorithms.

Relation to the Hardcore Theorem (Theorem 3.2 and 3.6). Theorem 4.15 can

be viewed as a generalization of Impagliazzo’s Hardcore Theorem [Imp] for functions that

are not necessarily binary. Indeed, versions of the Hardcore Theorem [KS, Hol1] that
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achieve optimal “hardcore size” are equivalent to Theorem 4.15 with ℓ = 1. (For formal

statement and discussions of the Hardcore Theorem, we refer to Chapter 3.) We consider

the nonuniform setting for simplicity.

The proof that the Hardcore Theorem implies Theorem 4.15 with ℓ = 1, X = Un, and

B = f(X), follows an argument of [STV]. Suppose B is δ-hard to predict given X. By the

Hardcore Theorem there is a 2δ-dense hardcore distribution on {0, 1}n, hence a hardcore set

H ⊆ {0, 1}n of size roughly 2δ ·2n, which can be formed by taking random samples from the

hardcore distribution. Let (X,C) be the joint distribution such that given X = x, either C

is a uniform random bit if x ∈ H, or C = f(x) if x /∈ H. Then C has average min-entropy

at least log(1/(1− δ)) given X, and (X,C) is indistinguishable from (X,B) both inside H

(since C is a uniform random bit and B is extremely hard [Yao1]) and outside H (since C

equals B). Thus B has pseudo-avg-min-entropy at least log(1/(1− δ)).

To see that Theorem 4.15 implies the Hardcore Theorem, take X = Un and B = f(X)

where f is the δ-hard function (or, for the slightly generalized version of Chapter 3 Theorem

3.2, take (X,B) to be (X,B)). By Theorem 4.15 there is some joint distribution (X,C)

indistinguishable from (X,B) such that C has average min-entropy at least log(1/(1− δ))

given X. Moreover, we can w.l.o.g. assume that (x, a) 7→ C(a|x) is computable by a poly-

sized circuit, by the Regularity Theorem for circuit complexity — average case (Chapter 2

Theorem 2.12) setting V to be the set of all joint distributions (X,C ′) on {0, 1}n × {0, 1}

where C ′ has average min-entropy at least log(1/(1−δ)) given X (such V is KL-projectable;

see Section 4.2.4.1).

Define a probabilistic function

T (x, a) =


1, w.p. min{C(0|x),C(1|x)}

C(a|x)

0, otherwise
.
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Note that T is defined such that given T (X,C) = 1, C is a uniform random bit, and

E[T (X,C)] = E
x∼X

 ∑
a∈{0,1}

C(a|x)min{C(0|x), C(1|x)}
C(a|x)


= 2 · E

x∼X
[min{C(0|x), C(1|x)}]

≥ 2δ. (by average min-entropy of C)

We claim that (X,B)|T (X,B)=1 is a 2δ-dense hardcore distribution. Note that (X,B)|T (X,B)=1

is 2δ-dense in (X,B) because E[T (X,B)] ≈ E[T (X,C)] ≥ 2δ, by efficiency of T and indis-

tinguishability. For hardcore-ness, consider any poly-sized circuit P . Define W such that

W (x, a) outputs 1 iff P (x) = a and T (x, a) = 1. Thus

E [W (X,B)] = Pr[P (X) = B ∧ T (X,B) = 1]

= Pr [T (X,B) = 1] · Pr[P (X) = B|T (X,B) = 1]

≈ Pr [T (X,C) = 1] · Pr[P (X) = B|T (X,B) = 1]

and

E [W (X,C)] = Pr[P (X) = C ∧ T (X,C) = 1]

= Pr [T (X,C) = 1] · Pr[P (X) = C|T (X,C) = 1]

= Pr [T (X,C) = 1] · 1
2

where the last equality is because given T (X,C) = 1, C is a uniform random bit. By

efficiency of W and indistinguishability, E[W (X,B)]− E[W (X,C)] < ϵ, which implies

Pr[P (X) = B|T (X,B) = 1] <
1

2
+

ϵ

E [T (X,C)]
<

1 + ϵ/δ

2
.

Thus (X,B)|T (X,B)=1 is a 2δ-dense hardcore distribution.
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4.2.3 Hardness of Prediction Implies Pseudo-Avg-Min-Entropy, Nonuni-

form Setting

We begin with an outline of the proof for the nonuniform setting. Suppose for con-

tradiction that B does not have high pseudo-avg-min-entropy given X. In other words,

for every (X,C) where C has high average min-entropy given X, there is a small circuit

W distinguishing (X,B) from (X,C). By the Nonuniform Min-Max Theorem (Chapter 2,

Theorem 2.3), there exists a universal distinguisher W ∗ of small circuit size, i.e. W ∗ dis-

tinguishes (X,B) from all (X,C) where C has high average min-entropy given X. It turns

out that, from such W ∗ we can construct a predictor P where Pr[P (X) = B] ≥ 2−r − ϵ,

contradicting the hardness of predicting B from X.

This last step is stated as Lemma 4.16 below. Note that Lemma 4.16 even provides an

efficient algorithm N for converting W ∗ to the predictor P ; such uniformity is an overkill

in the nonuniform setting, but will be needed for the uniform setting (Section 4.2.4).

The following notations are used throughout this and the next section.

Notation. For a function W : {0, 1}n × {0, 1}ℓ → [0, 1], we let W (x,#i) denote the ith

largest element of the multiset {W (x, a) : a ∈ {0, 1}ℓ}, i.e. W (x,#1) ≥ · · · ≥ W (x,#2ℓ),

breaking ties arbitrarily. For κ = 1, . . . , 2ℓ let ∆W (x, κ) =
∑κ

i=1 (W (x,#i)−W (x,#κ)),

thus 0 = ∆(x, 1) ≤ · · · ≤ ∆(x, 2ℓ). We denote by C(#i|x) the probability of the ith heaviest

element of C|X=x, breaking ties arbitrarily, so that C(#1|x) ≥ C(#2|x) ≥ . . . .

Lemma 4.16. There exists a randomized oracle algorithm N such that the following holds.

Let ϵ = ϵ(n) > 0, γ = γ(n) > 0, ℓ = ℓ(n), and 0 < r = r(n) ≤ ℓ. Let (X,B) = (X,B)(n)

be a joint distribution on {0, 1}n × {0, 1}ℓ such that Pr[X = x] ≤ ϵ for all x. Let W :

{0, 1}n × {0, 1}ℓ → [0, 1] be a function whose output has bit length τ = τ(n), and such that

∆W (x, κ) is distinct for each pair of x ∈ {0, 1}n and κ ∈ [2ℓ]. Then w.p. at least 1 − γ,
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NOX ,W (2−r, ϵ, γ) outputs a randomized oracle circuit P satisfying

Pr[PW (X) = B] ≥ 2−r − ϵ+
E[W (X,B)]− E[W (X,C)]

λ

where λ ∈ (0, 2ℓ] and (X,C) is a joint distribution with H̃∞(C|X) ≥ r. Moreover, N runs

in time poly(n, 2ℓ, τ, 1/ϵ, log(1/γ)), and P is of size 2ℓ · n · log(1/ϵ) · poly(τ, ℓ) making 2ℓ

oracle queries.

Proof. Define κx(λ) = max{κ : ∆W (x, κ) ≤ λ} ∈ [2ℓ], thus

∆W (x, κx(λ)) ≤ λ < ∆W (x, κx(λ) + 1) (4.1)

where for the second inequality we assume κx(λ) + 1 ≤ 2ℓ. Note that κx(λ) is increasing in

λ.

Note that W (x,#1), …, W (x,#2ℓ) are distinct, by distinctness of ∆W (x, ·). We define

the following function Pλ parameterized by λ ∈ (0, 2ℓ]:

Pr[Pλ(x) = i] =


1

κx(λ)
+ 1

λ

(
W (x,#i)−

∑κx(λ)
j=1 W (x,#j)

κx(λ)

)
, 1 ≤ i ≤ κx(λ)

0, i ≥ κx(λ) + 1

.

We let P̂λ be the predictor that computes i ← Pλ(x), and outputs the string a ∈ {0, 1}ℓ

such that W (x, a) = W (x,#i).

We check that Pλ is well-defined, i.e. satisfies (i)
∑2ℓ

i=1 Pr[Pλ(x) = i] = 1; (ii) Pr[Pλ(x) =

i] ≥ 0. We verify (i) by inspection. For (ii), note that for all 1 ≤ i ≤ κx(λ),

Pr[Pλ(x) = i]

≥ 1

κx(λ)
+

1

λ

(
W (x,#κx(λ))−

∑κx(λ)
j=1 W (x,#j)

κx(λ)

)
(since W (x,#κx(λ)) ≤W (x,#i))

=
1

κx(λ)
+

1

λ
· −∆W (x, κx(λ))

κx(λ)

≥ 1

κx(λ)
+

1

λ
· −λ
κx(λ)

= 0 (by 4.1)
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We next show that P̂λ’s prediction probability P̂λ(X) = B can be expressed in terms

of W ’s distinguishing advantage E[W (X,B)]− E[W (X,C)], for some C with high average

min-entropy (that depends on λ).

Claim 4.17. For every λ ∈ (0, 2ℓ] there exists a joint distribution (X,C) satisfying H̃∞(C|X) ≥

log (1/Ex∼X [1/κx(λ)]) and

Pr[P̂λ(X) = B] ≥ E
x∼X

[1/κx(λ)] +
E[W (X,B)]− E[W (X,C)]

λ
.

Proof of Claim. Consider any x. For all i ≥ κx(λ) + 1, we have

Pr[Pλ(x) = i] = 0

=
1

κx(λ)
+

−λ
λ · κx(λ)

≥ 1

κx(λ)
+
−∆W (x, κx(λ) + 1)

λ · κx(λ)
(by 4.1)

=
1

κx(λ)
+

∑κx(λ)+1
j=1 (W (x,#κx(λ) + 1)−W (x,#j))

λ · κx(λ)

≥ 1

κx(λ)
+

1

λ
·
∑κx(λ)

j=1 (W (x,#i)−W (x,#j))

κx(λ)
(as W (x,#i) ≤W (x,#κx(λ) + 1))

=
1

κx(λ)
+

1

λ

(
W (x,#i)−

∑κx(λ)
j=1 W (x,#j)

κx(λ)

)
.

Thus for all i,

Pr[Pλ(x) = i] ≥ 1

κx(λ)
+

1

λ

(
W (x,#i)−

∑κx(λ)
j=1 W (x,#j)

κx(λ)

)
(4.2)
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(in the case of 1 ≤ i ≤ κx(λ), it follows from the definition of Pλ). Therefore,

Pr[P̂λ(X) = B]

= E
x∼X

[∑
i

B(#i|x)Pr[Pλ(x) = i]

]

≥ E
x∼X

[
1

κx(λ)
+

1

λ

(∑
i

B(#i|x)W (x,#i)−
∑κx(λ)

j=1 W (x,#j)

κx(λ)

)]
(by 4.2)

= E
x∼X

[
1

κx(λ)

]
+

E[W (X,B)]− Ex∼X

[∑κx(λ)
j=1 W (x,#j)

κx(λ)

]
λ

.

To complete the proof, note that Ex∼X

[∑κx(λ)
j=1 W (x,#j)

κx(λ)

]
= E[W (X,C)] for the following

distribution C:

C(a|x) =


1

κx(λ)
, 1 ≤ j ≤ κx(λ)

0, j ≥ κx(λ) + 1

where j is the number such that W (x, a) = W (x,#j).

The algorithm. Given Claim 4.17, our algorithm works as follows:

1. Take a multiset T of m = O(
(
1/ϵ2

)
(log(τ + ℓ) + log(1/γ))) random samples of x ∼ X.

2. Search for the least λ ∈ (0, 2ℓ] such that Eλ ≤ 2−r − .1ϵ and λ is a multiple of 2−τ ,

where Eλ = Ex∈RT [1/κx(λ)] is an estimate of Ex∼X [1/κx(λ)]. This can be done by a

(ℓ+ τ)-round binary search, since Ex∼X [1/κx(λ)] is decreasing in λ.

3. Let λ∗ be the λ found in Step 2. Output an oracle circuit PW computing P̂λ∗ .

(Specifically, PW first computes Pr[P̂λ∗(x) = a] for each a, then samples P̂λ∗(x)

w.p. at least 1− .1ϵ.)

The running time is poly(n, 2ℓ, τ, 1/ϵ, log(1/γ)), and the circuit P is of size 2ℓ · n · log(1/ϵ) ·

poly(τ, ℓ) with at most 2ℓ queries.
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Correctness. We assume that for all the (τ + ℓ) values of λ examined during Step 2’s

binary search, ∣∣∣∣Eλ − E
x∼X

[
1

κx(λ)

]∣∣∣∣ ≤ .1ϵ.

This holds with all but at most (τ + ℓ) · 2−Ω(mϵ2) ≤ γ/2 probability, by a Chernoff bound

and union bound. According to Step 2 of the algorithm, this implies

E
x∼X

[
1

κx(λ∗)

]
≤ Eλ∗ + .1ϵ ≤ 2−r,

as well as

E
x∼X

[
1

κx(λ∗ − 2−τ )

]
≥ Eλ∗−2−τ − .1ϵ ≥ 2−r − .2ϵ.

Furthermore, since ∆W (·, ·) are all distinct multiples of 2−τ , κx(λ∗) and κx(λ
∗ − 2−τ )

must be identical for all x except for at most one value x = z where κz(λ∗)−1 = κz(λ
∗−2−τ ).

That is,

E
x∼X

[
1

κx(λ∗)

]
≥ E

x∼X

[
1

κx(λ∗ − 2−τ )

]
− Pr[X = z] ·

(
1

κz(λ∗)− 1
− 1

κz(λ∗)

)
≥ 2−r − .2ϵ− Pr[X = z] · 1

2

≥ 2−r − .7ϵ

where we use the assumption that Pr[X = x] ≤ ϵ for all x.

Applying Claim 4.17 with λ = λ∗ yields

Pr[P̂λ∗(X) = B] ≥ E
x∼X

[
1

κx(λ∗)

]
+

E[W (X,B)]− E[W (X,C)]

λ∗

≥ 2−r − .7ϵ+
E[W (X,B)]− E[W (X,C)]

λ∗

for some joint distribution (X,C) satisfying H̃∞(C|X) ≥ log (1/Ex∼X [1/κx(λ
∗)]) ≥ r.

Therefore

Pr[PW (X) = B] ≥ Pr[P̂λ∗(X) = B]− .1ϵ ≥ 2−r − ϵ+
E[W (X,B)]− E[W (X,C)]

λ∗

where the .1ϵ additional loss is due to the sampling by P .
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Theorem 4.18 (Hardness of prediction =⇒ pseudo-avg-min-entropy, nonuniform setting).

Let ϵ > 0, and (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ such that B is nonuniformly

(t, 1−2−r)-hard to predict given X. Then B has nonuniform (t′, ϵ) pseudo-avg-min-entropy

at least r given X, for t′ = t/
(
2ℓ · poly(n, ℓ, 1/ϵ)

)
.

Proof. Suppose for contradiction that B does not have nonuniform (t′, ϵ) pseudo-avg-min-

entropy at least r given X. That is, for every joint distribution (X,C) with H̃∞(C|X) ≥ r

there is a size t′ deterministic circuit W with E [W (X,B)] − E [W (X,C)] ≥ ϵ. We will

construct a size t randomized circuit P such that Pr[P (X) = B] ≥ 2−r.

Consider the following two player zero-sum game. Player 1 picks a distribution (X,C)

with H̃∞(C|X) ≥ r. Player 2 picks a size t′ deterministic circuit W : {0, 1}n × {0, 1}ℓ →

{0, 1}, and receives expected payoff E [W (X,B)]−E [W (X,C)]. Thus, our assumption says

that for every mixed strategy for Player 1, there is a strategy for Player 2 that achieves

payoff at least ϵ. So, by the Nonuniform Min-Max Theorem (Chapter 2, Theorem 2.3),

Player 2 has a mixed strategy, uniformly distributed over S = O(n/ϵ2) size t′ circuits, that

achieves expected at least than 3ϵ/4 regardless of Player 1’s move. Rephrasing, there is a

size O(St′) deterministic circuit W ∗ : {0, 1}n ×{0, 1} → [0, 1] (which computes an average)

such that E [W ∗(X,B)] − E [W ∗(X,C)] ≥ ϵ/2 for all (X,C) that satisfies H̃∞(C|X) ≥ r.

This implies E [W ∗(X,B)] − E [W ∗(X,C)] ≥ ϵ/4 for all (X,C) such that H̃∞(C|X) ≥ r′

where 2−r
′
= 2−r + ϵ/4.

In order to apply Lemma 4.16 we make the following assumptions:

1. Pr[X = x] ≤ ϵ/4 for all x. This is w.l.o.g. because we can pad X with log(1/ϵ) + 2

random bits, i.e. replace (X,B) by the new joint distribution ((X,Ulog(1/ϵ)+2), B).

2. We “perturb” W ∗ into W̃ ∗ so that

(a) ∆
W̃ ∗

(x, κ) is distinct for each pair of x ∈ {0, 1}n and κ ∈ [2ℓ];
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(b) E
[
W̃ ∗(X,B)

]
− E

[
W̃ ∗(X,C)

]
≥ E [W ∗(X,B)] − E [W ∗(X,C)] − ϵ/4 for all

(X,C).

The can be done by adding a negligible min{S−1, .1ϵ} ·
(
x · i/2n+ℓ

)
to W ∗(x, i), where

we interpret x as a natural number. The resulting W̃ ∗(·, ·) has bit length at most

τ = n + O(logn) + ℓ + O(1/ϵ), and is of size t′′ = O(St′) + O(τ + log(1/S)) =

t′ · poly(n, ℓ, 1/ϵ).

By Lemma 4.16, there is a randomized circuit P of size 2ℓ · (n · log(1/ϵ) · poly(τ, ℓ) + t′′) =

t′ · 2ℓ · poly(n, ℓ, 1/ϵ) ≤ t such that

Pr[P (X) = B] ≥ 2−r
′ − ϵ

4
+

E[W̃ ∗(X,B)]− E[W̃ ∗(X,C)]

λ

≥ 2−r
′ − ϵ

4
+

E[W ∗(X,B)]− E[W ∗(X,C)]− ϵ/4

λ

where λ ∈ (0, 2ℓ] and (X,C) is a joint distribution with H̃∞(C|X) ≥ r′. Since E[W ∗(X,B)]−

E[W ∗(X,C)] ≥ ϵ/4, we get

Pr[P (X) = B] ≥ 2−r
′ − ϵ

4
≥ 2−r

contradicting the hardness of predicting B given X.

4.2.4 Hardness of Prediction Implies Pseudo-Avg-Min-Entropy, Uniform

setting

Our proof in the uniform setting only differs in the use of the Uniform Min-Max Theo-

rem (Chapter 2, Theorem 2.5). Since Player 1’s strategies are the set of all joint distributions

(X,C) where C has high pseudo-avg-min-entropy, we must be able to compute (approxi-

mate) KL projections on the set, to instantiate the underlying algorithm of the Uniform

Min-Max Theorem.
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4.2.4.1 Approximating KL Projection on High Average Min-Entropy Distribu-

tions

Notation. We denote by Ṽr(X) the set of all joint distributions (X,C) on {0, 1}n×{0, 1}ℓ

(where C may vary and X is fixed) such that H̃∞(C|X) ≥ r.

We begin by characterizing the (exact) KL projection of an joint distribution (X,C) /∈

Ṽr(X) on the set Ṽr(X) (Lemma 4.19). Using this characterization, we then show in The-

orem 4.20 how to efficiently compute an approximate KL projection (X,C ′), where (X,C)

is represented by a circuit computing the probability vectors of C|X=x, likewise for (X,C ′).

Lemma 4.19 (KL projection on high average min-entropy distributions). Let (X,C) be a

joint distribution on {0, 1}n × {0, 1}ℓ such that Pr[C = b|X = x] > 0 for all x ∈ supp(X)

and b ∈ {0, 1}ℓ. Let (X,C∗{δx}) be the distribution parameterized by the constant δx ∈

[2−ℓ, C(#1|x)] for each x, defined as follows: For all x ∈ supp(X) and a ∈ {0, 1}ℓ,

C∗{δx}(a|x) = min {δx, ρx · C(a|x)}

where ρx ≥ 1 is a scaling factor such that
∑

aC
∗
{δx}(a|x) = 1. Note that given any δx, there

is a unique ρx = ρx(δx) that ensures
∑

aC
∗
{δx}(a|x) = 1. Then for every r ≤ ℓ, the KL

projection of (X,C) on Ṽr(X) is the distribution (X,C∗{δx}(a|x)) where the values {δx} are

determined as follows.

Let κx(β) ∈ {1, . . . , 2ℓ} denote the largest number i such that ρx(δ)·C(#i|x) ≥ δ, i.e. the

number of elements that would be capped if we set δx = δ. Let gx : (2−ℓ, C(#1|x)]→ (−∞, 0]

be the function

gx(δ) =

κx(δ)∑
i=1

log
(

δ

ρx(δ) · C(#i|x)

)
.

Then for all x ∈ supp(X),
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1. gx is strictly increasing with range

Range(gx) =

 2ℓ∑
i=1

log C(#2ℓ|x)
C(#i|x)

, 0

 .

2.

δx = δx(λ) =


g−1x (λ), λ ∈ Range(gx)

2−ℓ, otherwise

where λ ∈ (−∞, 0] is a constant chosen such that Ex∼X [δx(λ)] = 2−r.

Proof. Assume w.l.o.g. that supp(X) = {0, 1}n. Note that for every x,

gx(β) =

κx(δ)∑
i=1

log
(

δ

ρx(δ) · C(#i|x)

)

=
1

δ
·

κx(δ)∑
i=1

δ · log
(

δ

ρx(δ) · C(#i|x)

)
+

2ℓ∑
i=κx(δ)+1

C∗{δ}(#i|x) · log
(
ρx(δ) · C(#i|x)
ρx(δ) · C(#i|x)

)
=

1

δ
·

2ℓ∑
i=1

C∗{δ}(#i|x) · log
(

C∗{δ}(#i|x)
ρx(δ) · C(#i|x)

)

=
1

δ
·
(
KL(C∗{δ}|X=x ∥ C|X=x)− log ρx(δ)

)
.

Thus gx is continuous, by the continuity of KL(· ∥ C|X=x), ρx, and the function δ →

C∗{δ}(a|x) for every a.

Next we show that gx is strictly increasing. We can expand gx to be

gx(δ) =

κx(δ)∑
i=1

log
(

δ

ρx(δ) · C(#i|x)

)
=

κx(δ)∑
i=1

log

(
1−

∑κ(δ)
i=1 C(#i|x)

)
· δ

(1− κ(δ) · δ) · C(#i|x)
. (*)

We partition (2−ℓ, C(#1|x)] into intervals I2ℓx , . . . , I1x according to the value of κx(·), i.e. δ ∈

Iκx ⇒ κx(δ) = κ (note that we listed Iκx in reverse order of κ, as κx(·) is monotone decreas-

ing). Since gx is continuous it suffices to show that gx is strictly increasing within each

interval Iκx . Indeed, for δ, δ′ ∈ Iκx , δ < δ′, using expression (∗) we have

gx(δ
′)− gx(δ) =

κ∑
i=1

log δ′ · (1− κ · δ)
δ · (1− κ · δ′)

> 0.
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Given monotonicity, the range of gx is specified by its values at (or towards) endpoints

of (2−ℓ, C(#1|x)]. Using (∗) we calculate

lim
δ→2−ℓ+

gx(δ) = lim
δ→2−ℓ+

κx(δ)∑
i=1

log


(
1−

∑κ(δ)
i=1 C(#i|x)

)
· δ

(1− κ(δ) · δ) · C(#i|x)


=

2ℓ∑
i=1

log C(#2ℓ|x)
C(#i|x)

where we use κx(δ) = 2ℓ − 1 (for δ → 2−ℓ+); as well as

gx(C(#1|x)) = log C(#1|x) · (1− C(#1|x))
1− C(#1|x)

+ log 1

C(#1|x)
= 0

where we use κx(C(#1|x)) = 1. Thus

Range(gx) =

 2ℓ∑
i=1

log C(#2ℓ|x)
C(#i|x)

, 0

 .

We can now prove that (X,C∗{δx}) is the KL projection. We assume r < ℓ; otherwise

the result holds trivially. First note that for any fixed x and any δ ∈ [2−ℓ, C(#1|x)], subject

to the constraint ∀a,C∗(a|x) ≤ δ, KL(C∗|X=x ∥ C|X=x) is minimized by setting C∗|X=x to

equal C∗{δ}|X=x. See Lemma 2.3 of Barak et al. [BHK]. We view KL(X,C∗{δx} ∥ X,C) as

a function f defined on the 2n variables {δx : x ∈ {0, 1}n}. Thus, to minimize KL(X,C∗ ∥

X,C) subject to H̃∞(C|X) ≥ r, it is equivalent to minimize f subject to the constraints

Ex∼X [δx] ≤ 2−r and 2−ℓ ≤ δx ≤ C(#1|x). In fact, we have Ex∼X [δx] = 2−r as the KL

projection must be on the boundary (Lemma A.4). We now use the KKT condition to find

such minimum.

It can be verified that, in the interior of every nonempty interval Iκx , f has a partial

derivative w.r.t. δx of

∂

∂δx
KL(X,C∗{δx} ∥ X,C) = Pr[X = x] · ∂

∂δx
KL(C∗{δx}|X=x ∥ C|X=x)

= Pr[X = x] · gx(δx)
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As gx is continuous, this is a continuous partial derivative of f within all of (2−ℓ, C(#1|x)].

Also, the constraint Ex∼X [δx] = 2−r is linear in δx with coefficient Pr[X = x]. The KKT

condition says that for the optimal {δx}, there must exist a constant λ ∈ (−∞, 0] such that

for all x, either

1. δx = 2−ℓ; or

2. δx = C(#1|x); or

3. δx ∈ (2−ℓ, C(#1|x)) and δx = g−1x (λ).

(Note that the KKT condition can be applied since all our constraints are linear. See

e.g. [BV] Chapter 5 for details on the KKT condition.)

To complete the proof, it remains to show that Item 1 holds only if λ /∈ Range(gx)

(the argument that Item 2 holds only if λ = 0 is similar). Suppose for contradiction that

for some x′, Item 1 holds namely δx′ = 2−ℓ, but λ ∈ Range(gx′). Let δx′ ∈ (2−ℓ, C(#1|x′)]

be such that δx′ = g−1x′ (λ). Since Ex∼X [δx] = 2−r > 2−ℓ, by averaging there must exist

x′′ ̸= x′ such that δx′′ > 2−ℓ. Imagine that we modify C∗{δx} by increasing δx′ from 2−ℓ

by ϵ/Pr[X = x′] for some miniscule ϵ > 0, and simultaneously decreasing δx′′ > 2−ℓ by

ϵ/Pr[X = x′′]. Since δx′′ > δx′ and the gradient Pr[X = x] ·gx(·) is strictly increasing for all

x, the modified distribution will have a smaller KL divergence (with average min-entropy

unchanged), contradicting the optimality of (X,C∗{δx}).

Theorem 4.20 (Approximating KL projection on high average min-entropy distributions).

Let n be a security parameter, X = X(n) be a distribution on {0, 1}n. There exists a

poly(n, 2ℓ, τ, 1/σ, log(1/γ)) time randomized algorithm Π such that the following holds. Let

W be a deterministic circuit of size s such that W (x) outputs the probability vector of C|X=x,

for some distribution C on {0, 1}ℓ=ℓ(n) jointly distributed with X where C(·|·) has bit length

85



Chapter 4: Characterizations of Computational Entropies

at most τ = τ(n). Then for all σ > 0 and 0 ≤ r ≤ ℓ, ΠOX (W, r, σ) outputs w.p. 1− γ some

deterministic circuit M such that

1. M(x) outputs the probability vector of C ′|X=x for some distribution C ′ on {0, 1}ℓ

jointly distributed with X, where (X,C ′) is a σ-approximate KL projection of (X,C)

on Ṽr;

2. M is of size s+ 2ℓ · poly(n, ℓ, τ, log(1/σ));

3. For all x, a, C ′(a|x) has bit length τ +O(ℓ+ log(1/σ)).

Proof. On the high level, the algorithm Π performs a binary search to approximate the

λ ∈ (−∞, 0] in Lemma 4.19 that achieves Ex∼X [δx(λ)] = 2−r, and then approximates δx(λ)

to obtain an approximate KL projection. Binary search is possible because given that gx is

strictly increasing, Ex∼X [δx(·)] is also strictly increasing.

We will assume all the notations of Lemma 4.19, which says that the (exact) KL

projection equals (X,C∗) = (X,C∗{δx(λ)}). Given that gx has range (
∑2ℓ

i=1 log
C(#2ℓ|x)
C(#i|x) , 0]

(by Lemma 4.19), we can w.l.o.g. assume that

λ ≥
2ℓ∑
i=1

log C(#2ℓ|x)
C(#i|x)

≥ −2ℓ · τ

where the last inequality holds because τ is an upper bound on the bit length of C(#2ℓ|x).

The Algorithm Π. We now describe the algorithm Π. Let ϵ = σ/
(
c · 2ℓ

)
for a sufficiently

large constant c. W.l.o.g. we assume τ , 1/σ, and 1/ϵ are all powers of 2. The algorithm Π

proceeds in t = ℓ·(log τ+log(1/ϵ)) iterations. Initially the range of λ is [low1,high1] = [−2ℓ ·

τ, 0]. In the ith iteration, we reduce the range of λ from [lowi,highi] to either [lowi,midi]

or [midi,highi] where midi = (lowi + highi) /2, as follows:

1. (Deterministically) compute an approximation δ̃x(midi) of δx(midi), such that δx(midi)−

δ̃x(midi) ∈ [0, ϵ] and δ̃x(midi) is a multiple of ϵ/2;
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2. Compute an estimate Ei of Ex∼X

[
δ̃x(midi)

]
, by taking m = O((1/ϵ2) log(t/γ)) inde-

pendent samples of x ∼ X;

3. If Ei ≤ 2−r, we reduce the range to [midi,highi], otherwise we reduce the range to

[lowi,midi].

After all t iterations, we let λ̃ = lowt+1 − 2ϵ be the approximation for λ, and let(
X,C∗

{δ̃x(λ̃)}

)
be the desired σ-approximate KL projection.

Since we require a bounded bit length, we round down C∗
{δ̃x(λ̃)}

(#i|x) after max{τ +

log(1/σ) + 1, ℓ+ log(1/ϵ) + 1} bits for all i < 2ℓ, and increase C∗
{δ̃x(λ̃)}

(#2ℓ|x) accordingly.

(We keep at least τ + log(1/σ) + 1 bits to ensure that the approximation is within a factor

of 1 + σ/2 from C∗
{δ̃x(λ̃)}

(#i|x). We keep at least ℓ + log(1/ϵ) + 1 bits to ensure that

C∗
{δ̃x(λ̃)}

(#2ℓ|x) will never exceed δ̃x(λ̃) which is log(1/ϵ) + 1 bit long). Let C̃∗
{δ̃x(λ̃)}

be the

resulting distribution; Π outputs a deterministic circuit M such that M(x) outputs the

probability vector of C̃∗
{δ̃x(λ̃)}

|X=x.

Implementation for Step 1. We now describe how to implement Step 1 efficiently.

Since gx is strictly increasing, we do an O(log(1/ϵ))-round binary search for the largest

δ ∈ (2−ℓ, C(#1|x)] such that gx(δ) ≤ midi and δ is a multiple of ϵ/2. In fact, since gx(δ)

cannot be computed exactly, we will use an approximation g̃x(δ) ∈ [gx(δ)− ϵ/2, gx(δ)] that

can be computed efficiently. We let δ̃x(midi) = δ∗ where δ∗ is the outcome of the binary

search.

Note that replacing gx(δ) by g̃x(δ) is equivalent to replacing midi by some m̃idi ∈

[midi − ϵ/2,midi]. The ϵ/2 granularity in binary search ensures that δx(m̃idi) − δ∗ ∈

[0, ϵ/2.] Moreover, the ϵ/2 deviation from midi causes at most ϵ/2 deviation from δx(midi),
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i.e. δx(midi)− δx(m̃idi) ∈ [0, ϵ/2], as shown in Claim 4.21 below. Therefore, we achieve

δx(midi)− δ̃x(midi) =
(
δx(midi)− δx(m̃idi)

)
+
(
δx(m̃idi)− δ∗

)
∈
[
0,

ϵ

2
+

ϵ

2

]
.

Finally we describe how to approximate gx(δ) to τ ′ = 1 + log(1/ϵ) decimal places, for

any δ ∈ (2−ℓ, C(#1|x)] that is a multiple of ϵ/2, using the formula

gx(δ) =

κx(δ)∑
i=1

log
(

δ

ρx(δ) · C(#i|x)

)
=

κx(δ)∑
i=1

log

(
1−

∑κ(δ)
i=1 C(#i|x)

)
· δ

(1− κ(δ) · δ) · C(#i|x)
.

Evaluating κx(δ) involves O(2ℓ) comparisons of s-bit numbers in [0, 1]. Approximating gx(δ)

involves: (i) computing O(2ℓ) logarithms of max{τ, τ ′}-bit numbers in [0, 1], to τ ′+ℓ+O(1)

decimal places; (ii) O(2ℓ) additions on max{τ, τ ′}-bit numbers in [0, 1]; (iii) O(2ℓ) additions

on O (τ + τ ′ + ℓ)-bit numbers that each have τ ′ + ℓ+O(1) decimal places.

Efficiency and Circuit Size. Approximating gx(δ) requires 2ℓ·(s+ poly(n, ℓ, τ, log(1/ϵ)))

time. Thus the overall time of computing δ̃x(·) is 2ℓ·(s+ poly(n, ℓ, τ, log(1/ϵ))), and the over-

all running time of Π ism·
(
s+ t · 2ℓ · poly(n, ℓ, τ, log(1/ϵ))

)
= s·poly(n, 2ℓ, τ, 1/σ, log(1/γ)).

Moreover, Π constructs a circuit computing C̃∗
{δ̃x(λ̃)}

(a|x) of size 2ℓ·(s+ poly(n, ℓ, τ, log(1/σ))).

Correctness of Π. Recall that to prove (X, C̃∗
{δ̃x(λ̃)}

) is a σ-approximate KL projection,

by Pythagorean Theorem (Theorem 1.13), it suffices to show that (X, C̃∗
{δ̃x(λ̃)}

) ∈ Ṽr(X) and

KL(X,B ∥ X, C̃∗
{δ̃x(λ̃)}

) − KL(X,B ∥ X,C∗{δx(λx)}) ≤ σ for all joint distributions (X,B) ∈

Ṽr(X). Suppose δx(λ)− δ̃x(λ̃) ∈ [0, 2−ℓ−1σ] for all x; then we are done, because that implies:

• (X, C̃∗
{δ̃x(λ̃)}

) ∈ Ṽr(X), since

H̃∞(X, C̃∗
{δ̃x(λ̃)}

) ≥ log 1

Ex∼X

[
δ̃x(λ̃)

] ≥ log 1

Ex∼X [δx(λ)]
= r;

• C∗{δx(λ)}(a|x) ≤ (1+σ/2)·C∗
{δ̃x(λ̃)}

(a|x) for all pairs of (x, a). Recall that C̃∗
{δ̃x(λ̃)}

(a|x) ≤
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(1 + σ/2) · C∗
{δ̃x(λ̃)}

(a|x), thus for all joint distributions (X,B),

KL(X,B ∥ X, C̃∗
{δ̃x(λ̃)}

)−KL(X,B ∥ X,C∗{δx(λx)})

= E
x∼X

∑
a

B(a|x) log
C∗{δx(λ)}(a|x)

C̃∗
{δ̃x(λ̃)}

(a|x)


= E

x∼X

∑
a

B(a|x) log

C∗{δx(λ)}(a|x)
C∗
{δ̃x(λ̃)}

(a|x)
·
C∗
{δ̃x(λ̃)}

(a|x)

C̃∗
{δ̃x(λ̃)}

(a|x)


≤ E

x∼X

[∑
a

B(a|x) log
(
(1 +

σ

2
) · (1 + σ

2
)
)]

≤ E
x∼X

[∑
a

B(a|x) · σ

]
= σ.

Hence for the rest of the proof we will show δx(λ)− δ̃x(λ̃) ∈ [0, 2−ℓ−1σ], assuming that Step

2 of all iterations achieves an accurate estimation, i.e.
∣∣∣Ei − Ex∼X

[
δ̃x(midi)

]∣∣∣ ≤ ϵ. The

latter assumption holds with all but t · 2−Ω(mϵ2) ≤ γ probability, by a Chernoff bound and

a union bound.

By triangle inequality,∣∣∣∣Ei − E
x∼X

[δx(midi)]
∣∣∣∣ ≤ ∣∣∣∣Ei − E

x∼X

[
δ̃x(midi)

]∣∣∣∣+ ∣∣∣∣ E
x∼X

[
δ̃x(midi)

]
− E

x∼X
[δx(midi)]

∣∣∣∣ ≤ 2ϵ.

Thus Step 3 ensures λ ∈ [lowi − 2ϵ, highi + 2ϵ] for all i. In particular, since hight+1 −

lowt+1 = τ · 2ℓ/2t ≤ ϵ and λ̃ = lowt+1 − 2ϵ, we have λ − λ̃ ∈ [0, 5ϵ]. By Claim 4.21 below,

δx(λ)− δx(λ̃) ∈ [0, 5ϵ], thus

δx(λ)− δ̃x(λ̃) =
(
δx(λ)− δx(λ̃)

)
+
(
δx(λ̃)− δ̃x(λ̃)

)
∈ [0, 6ϵ] = [0, 2−ℓ−1σ]

completing the proof.

Claim 4.21. Let λ1 < λ2 ≤ 0. Then δx(λ2)− δx(λ1) ∈ [0, λ2 − λ1).

Proof. Note that, where differentiable, gx has a gradient of

g′x(δ) =
log e
δ

κx(δ)
− δ2

>
log e
4
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where we use the fact that 2ℓ < δ < C(1|x) and 1 ≤ κx(δ) ≤ 2ℓ − 1 to obtain the bound.

The claim follows because δx(·) is continuous, and where differentiable, δx(·) has a gradient

of either 1/g′x < 1, or zero (when δx(·) = 2ℓ). δx(·) is continuous because it equals the

inverse of the strictly increasing continuous function gx, except when outside the range of

gx, δx(·) equals 2ℓ, the left endpoint of the interval on which gx is defined.

4.2.4.2 Putting it Together

Theorem 4.22 (Hardness of prediction =⇒ pseudo-avg-min-entropy, uniform setting). Let

n be a security parameter, ℓ = ℓ(n), t = t(n), ϵ = ϵ(n), r = r(n) ≤ ℓ(n), where t,

ϵ, and 2−r are computable in poly(n) time. Let (X,B) = (X,B)(n) be a poly(n) time

samplable joint distribution on {0, 1}n × {0, 1}ℓ such that B is uniformly (t, 1 − 2−r)-hard

to predict given X. Then B has uniform (t′, ϵ) pseudo-avg-min-entropy at least r given X,

for t′ =
(
t · 2−ℓ

)Ω(1)
/poly(n, ℓ, 1/ϵ).

Proof. Suppose for contradiction that B does not have uniform (t′, ϵ) pseudo-avg-min-

entropy at least r given X. By definition, there is a time t′ randomized oracle algorithm

A such that for infinitely many n and every joint distribution (X,C) with H̃∞(C|X) ≥ r,

AOX,B,C is an ϵ-distinguisher between (X,B) and (X,C). Using A we shall construct a time

t oracle algorithm P such that for infinitely many n, Pr[POX,B (X) = B] ≥ 2−r.

Consider the two-player zero-sum game where Player 1 chooses some joint distribution

(X,C) ∈ Ṽr(X), Player 2 chooses a circuitW and receives expected payoff E[f((X,C),W )] =

E[W (X,B)]− E[W (X,C)]. We will apply the Uniform Min-Max Theorem – Average Case

(Chapter 2, Theorem 2.5) to this game, i.e. with

• V = Ṽr;
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• W = {(deterministic) circuits};

• f((x, a),W ) = E[W (X,B)]−W (x, a).

We run an instantiation of Algorithm 2.2 (Finding Universal Strategy – Average Case) for

the game with KL projection on the set Ṽr(X), which we describe below. Using the oracle

algorithm A(·), we will show that in each iteration we obtain some W (i) that distinguishes

(X,B) and (X,C). Thus, by the Uniform Min-Max Theorem – Average Case, we obtain a

universal distinguisher W ∗. From this W ∗, we then obtain an efficient predictor for B by

applying Lemma 4.16, exactly like in the nonuniform setting.

Our instantiation of Algorithm 2.1 starts with an initial distribution (X,C(1)) where

C(1) is uniform on {0, 1}ℓ and independent of X. Let ϵ′ = ϵ/c for a sufficiently large constant

c. The number of iterations is S = O(ℓ/ϵ′2), and we let γ′ = ϵ/8S. In each iteration we

represent C(i) by a deterministic circuit M (i) such that M (i)(x) outputs the probability

vector of C(i)|X=x. So we can take M (1)(x) to be the vector (1/2ℓ, . . . , 1/2ℓ) for every x.

We show how to implement each of the S iterations of Algorithm 2.2 efficiently:

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti-size

deterministic circuit M (i), and C(i)(·|·) has bit length τi. There are two steps:

(a) Generate a deterministic circuit W̃ (i) such that

E[W̃ (i)(X,B)]−E[W̃ (i)(X,C(i))] ≥ E[AO
X,B,C(i) (X,B)]−E[AO

X,B,C(i) (X,C(i))]−ϵ′.

To do so, we first generate m = O(log(1/γ′)/ϵ′2) random samples of (X,B,C(i))t
′

and Ut′ . This can be done in time mt′2ℓ · poly(n, ti), where we sample C(i)|X=x

from its probability vector M (i)(x). Now let W̃ (i)(x, a) runs A(·)(x, a) for m

times and returns the average of the m outputs; each time A(·)(x, a) is run using

one copy of (X,B,C(i))t
′ to answer oracle queries of A, and one copy of Ut′ as
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coin tosses of A. The m random samples are hardwired in W̃ (i), thus W̃ (i) is of

size t′′ = O(t′ ·m · (n+ ℓ)), which does not depend on the size of M (i) (but the

size of M (i+1) will additively depend on t′′). By a Chernoff bound, the above

inequality holds w.p. at least 1− γ′.

(b) Our choice of W (i) is the following approximation to W̃ (i), so that exp(−ϵ′ · (1−

W (i)(x, a))) can be computed precisely and efficiently. First, we use Newton’s

method to compute a polylog(1/ϵ)-bit approximation E(x, a) ∈ (0, 1] of exp(−ϵ′ ·

(1−W̃ (i)(x, a))) within ±ϵ′2 error, in time O(tm)+polylog(1/ϵ). We define W (i)

to be such that exp(−ϵ′·(1−W (i)(x, a))) = E(x, a). Thus
∣∣∣W (i)(x, a)− W̃ (i)(x, a)

∣∣∣ ≤
ϵ′, and

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[W̃ (i)(X,B)]− E[W̃ (i)(X,C(i))]− 2ϵ′.

2. Weight Update: We represent the resulting distribution C(i)′ after weight update

by the circuit M (i)′ where M (i)′(x) outputs the probability vector of C(i)′ |X=x. Since

E(x, a) = exp
(
−ϵ′ · (1−W (i)(x, a))

)
has bit length polylog(1/ϵ) and C(a|x) has bit

length τi, multiplication takes time polylog(1/ϵ′) · τi for each pair of x, a. Thus, M (i)′

has circuit size t′i = ti + 2ℓ · (t′′ + polylog(1/ϵ′) · τi) and can be constructed in similar

time; C(i)′(·|·) has bit length τ ′i = τi + polylog(1/ϵ′).

3. KL Projection: We use Theorem 4.20 to efficiently obtain a circuit M (i+1) such

that M (i+1)(x) outputs the probability vector of C(i+1)|X=x, where (X,C(i+1)) is

an ϵ′2-approximate KL projection of (X,C(i)′) on Ṽr. This can be done in time

poly(t′i, n, 2ℓ, τ ′i , 1/ϵ′, log(1/γ′)) and w.p. at least 1 − γ′. Moreover, M (i+1) is of size

ti+1 = t′i + 2ℓ · poly(n, ℓ, τ ′i , log(1/ϵ′)), and C(i+1)(·|·) has bit length τi+1 = τ ′i +O(ℓ+

log(1/ϵ′)).

We now prove efficiency of the algorithm. First, note that τ1 = O(ℓ), and τi = i ·
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(polylog(1/ϵ′) +O(ℓ)) by induction. Also, t1 = O(ℓ) and ti+1 = ti+2ℓ·poly(t′, n, ℓ, τi, 1/ϵ′) =

ti +2ℓ · poly(t′, n, ℓ, 1/ϵ′). Thus the above algorithm runs in total time 2ℓ · poly(t′, n, ℓ, 1/ϵ).

Suppose that Step 1 (a) and Step 3 complete successfully in all iterations. By a union

bound, this holds w.p. at least 1 − 2γ′S = 1 − ϵ/4 . For all i, since (X,C(i)) ∈ Ṽr ,the

pseudo-avg-min-entropy of B implies

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[W̃ (i)(X,B)]− E[W̃ (i)(X,C(i))]− 2ϵ′

≥ E[AO
X,B,C(i) (X,B)]− E[AO

X,B,C(i) (X,C(i))]− ϵ′ − 2ϵ′

≥ ϵ− 2ϵ′.

Let W ∗ be the size O(St′′) deterministic circuit computing the average of W̃ (1), . . . , W̃ (S).

Note thatW ∗ is at most 2ϵ′ apart from the average ofW (1), . . . ,W (S). Hence by the Uniform

Min-Max Theorem – Average Case (Theorem 2.5), for all Player 1 strategies (X,C) ∈ Ṽr,

E[W ∗(X,B)]− E[W ∗(X,C)] ≥ ϵ− 2ϵ′ −O(ϵ′)− 2ϵ′ ≥ 3ϵ/4.

This implies E [W ∗(X,B)] − E [W ∗(X,C)] ≥ 3ϵ/4 − ϵ/2 = ϵ/4 for all (X,C) such that

H̃∞(C|X) ≥ r′ where 2−r′ = 2−r+ϵ/2. In other words, the algorithm constructs a universal

ϵ/4-distinguisher W ∗ between (X,B) and Ṽr′(X) w.p. at least 1− ϵ/4.

Given a universal distinguisher W ∗, the remainder of the proof is similar to the nonuni-

form setting. In order to apply Lemma 4.16 we make the following assumptions:

1. Pr[X = x] ≤ ϵ/4 for all x. This is w.l.o.g. because we can pad X with log(1/ϵ) + 2

random bits, i.e. replace (X,B) by the new joint distribution ((X,Ulog(1/ϵ)+2), B).

2. We “perturb” W ∗ into W̃ ∗ so that

(a) ∆
W̃ ∗

(x, κ) is distinct for each pair of x ∈ {0, 1}n and κ ∈ [2ℓ];

(b) E
[
W̃ ∗(X,B)

]
− E

[
W̃ ∗(X,C)

]
≥ E [W ∗(X,B)] − E [W ∗(X,C)] − ϵ/4 for all

(X,C).
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The can be done by adding a negligible min{S−1, .1ϵ} ·
(
x · i/2n+ℓ

)
to W ∗(x, i), where

we interpret x as a natural number. The resulting W̃ ∗(·, ·) has bit length at most

τ = n + O(logn) + ℓ + O(1/ϵ), and is of size t′′ = O(St′) + O(τ + log(1/S)) =

t′ · poly(n, ℓ, 1/ϵ).

We run the algorithm N in Lemma 4.16 to convert W̃ ∗ into a predictor. By Lemma 4.16,

this yields a time 2ℓ · poly(t′, n, ℓ, 1/ϵ) ≤ t randomized oracle algorithm P such that

Pr[POX,B (X) = B] ≥ 2−r
′ − ϵ

4
+

E[W̃ ∗(X,B)]− E[W̃ ∗(X,C)]

λ

≥ 2−r
′ − ϵ

4
+

E[W ∗(X,B)]− E[W ∗(X,C)]− ϵ/4

λ

where λ ∈ (0, 2ℓ] and (X,C) ∈ Ṽr′(X). Recall that w.p. at least 1 − ϵ/4, we have

E[W ∗(X,B)]− E[W ∗(X,C)] ≥ ϵ/4. Therefore,

Pr[POX,B (X) = B] ≥ 2−r
′ − ϵ

4
− ϵ

4
≥ 2−r

contradicting the hardness of predicting B given X.

4.2.5 Pseudo-Avg-Min-Entropy Implies Hardness of Prediction

This direction of the characterization is straightforward to show. In fact, we show that

even a weak form of pseudo-avg-min-entropy suffices:

Definition 4.23 (Weak pseudo-avg-min-entropy, nonuniform setting). Let (X,B) be a

joint distribution. We say B has (T, ϵ) weak nonuniform pseudo-avg-min-entropy at least k

given X if there exists a joint distribution (Y,C) such that the following holds:

• H̃∞(C|Y ) ≥ k;

• (X,B) and (Y,C) are ϵ-indistinguishable by all size T circuits.
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If (X,B) = (X,B)(n) for a security parameter n, we say B has weak pseudo-avg-min-entropy

at least k = k(n) given X if for every constant c, B has (nc, 1/nc) weak pseudo-avg-min-

entropy at least k given X for all sufficiently large n.

In the uniform setting, it suffices to assume an even weaker form of pseudo-avg-min-

entropy, where we only require indistinguishability against distinguishers given oracle access

to OX,B but not OX,B,C :

Definition 4.24 (Weak pseudo-avg-min-entropy, uniform setting). Let n be a security

parameter, T = T (n), ϵ = ϵ(n), k = k(n), ℓ = ℓ(n). Let (X,B) = (X,B)(n) be a joint

distribution on {0, 1}n×{0, 1}ℓ. We say B has (T, ϵ) weak uniform pseudo-avg-min-entropy

at least k given X if for every randomized oracle algorithm A computable in time T , there

is a joint distribution (Y,C) such that the following holds for all sufficiently large n:

• H̃∞(C|Y ) ≥ k;

• (X,B) and (Y,C) are indistinguishable by AOX,B :

|Pr[AOX,B (X,B) = 1]− Pr[AOX,B (Y,C) = 1]| < ϵ.

We say B has weak uniform pseudo-avg-min-entropy at least k = k(n) given X if for every

constant c, B has (nc, 1/nc) weak uniform pseudo-avg-min-entropy at least k given X. Note

that in this “polynomial” version, OX,B is redundant if (X,B) is polynomial-time samplable.

Theorem 4.25 (Weak pseudo-avg-min-entropy =⇒ hardness of prediction, uniform and

nonuniform settings). Let n be a security parameter, ℓ = ℓ(n), t = t(n), ϵ = ϵ(n), r =

r(n) ≤ ℓ(n). Let (X,B) = (X,B)(n) be a joint distribution on {0, 1}n × {0, 1}ℓ such that

B has weak (non)uniform (t, ϵ) pseudo-avg-min-entropy at least r given X. Then B is

(non)uniformly (t−O(1), 1− 2−r − ϵ)-hard to predict given X.
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Proof. We give a proof for the uniform setting; the proof for the nonuniform setting is essen-

tially the same. Suppose for contradiction that there is a time t−O(1) randomized oracle

algorithm P such that Pr[POX,B (X) = B] ≥ 2−r + ϵ. Define a distinguisher WOX,B (x, a)

that outputs 1 if POX,B (x) = a, and 0 otherwise. Note that for all joint distributions (Y,C)

we have an information-theoretic bound Pr[POX,B (Y ) = C] ≤ Ex∼Y [maxaC(a|x)]. Thus

all joint distributions (Y,C) on {0, 1}n × {0, 1}ℓ with Ex∼Y [maxaC(a|x)] ≤ 2−r, we have

E[WOX,B (X,B)]− E[WOX,B (Y,C)] = Pr[POX,B (X) = B]− Pr[POX,B (Y ) = C]

≥ 2−r + ϵ− 2−r = ϵ,

contradicting the fact that B has weak uniform (t, ϵ) pseudo-avg-min-entropy at least r.

Since Theorem 4.25 only requires weak pseudo-avg-min-entropy, we now have the fol-

lowing equivalence:

Corollary 4.26. Let n be a security parameter, and let δ = δ(n) > 0, and ℓ = ℓ(n) =

O(logn) be computable in time poly(n). Let (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ.

Then the following are equivalent:

1. B is (non)uniformly (1− 2−k)-hard to predict given X;

2. B has (non)uniform pseudo-avg-min-entropy at least k given X;

3. B has weak (non)uniform pseudo-avg-min-entropy at least k given X.

Proof. 1 =⇒ 2 by Theorem 4.18 and 4.22. 2 =⇒ 3 by definition. 3 =⇒ 1 by Theorem

4.25.
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4.3 Characterizing Pseudoentropy

4.3.1 Definitions

The computational analogue of Shannon entropy, pseudoentropy, was first introduced

by Håstad et al. [HILL]. We begin with the nonuniform definition because it is simpler:

Definition 4.27 (Pseudoentropy, nonuniform setting). We say that a distribution X has

(T, ϵ) nonuniform pseudoentropy at least k if there exists a distribution Y with Hsh(Y ) ≥ k

such that X and Y are ϵ-indistinguishable by all size T circuits.

If X = X(n) for a security parameter n, we say X has nonuniform pseudoentropy at

least k = k(n) if for every constant c, X(n) has (nc, 1/nc) nonuniform pseudoentropy at

least k(n)− 1/nc for all sufficiently large n.

A natural generalization of pseudoentropy is the notion of conditional pseudoentropy:

Definition 4.28 (Conditional pseudoentropy, nonuniform setting). Let (X,B) be a joint

distribution. We say B has (T, ϵ) nonuniform (conditional) pseudoentropy at least k given

X if there exists a distribution C jointly distributed with X such that the following holds:

• Hsh(C|X) ≥ k;

• (X,B) and (X,C) are ϵ-indistinguishable by all size T circuits.

k −Hsh(B|X) is known as the pseudoentropy gap.

If (X,B) = (X,B)(n) for a security parameter n, we say B has nonuniform (condi-

tional) pseudoentropy at least k = k(n) given X if for every constant c, B has (nc, 1/nc)

nonuniform (conditional) pseudoentropy at least k(n) − 1/nc given X for all sufficiently

large n.

Like pseudo-avg-min-entropy, both pseudoentropy and conditional pseudoentropy can

be defined with respect to uniform observers:
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Definition 4.29 (Pseudoentropy, uniform setting). Let n be a security parameter, T =

T (n), ϵ = ϵ(n), k = k(n), ℓ = ℓ(n). Let X = X(n) be a distribution on {0, 1}ℓ. We say X

has (T, ϵ) uniform pseudoentropy at least k if for all time T randomized oracle algorithm A,

there exists a distribution Y = Y (n) such that the following holds for all sufficiently large

n:

• Hsh(Y ) ≥ k;

• X, Y are ϵ-indistinguishable by AOX,Y :

∣∣Pr[AOX,Y (X) = 1]− Pr[AOX,Y (Y ) = 1]
∣∣ < ϵ.

We say X has uniform pseudoentropy at least k = k(n) if for every constant c, X(n) has

(nc, 1/nc) uniform pseudoentropy at least k(n)− 1/nc.

Definition 4.30 (Conditional pseudoentropy, uniform setting). Let n be a security pa-

rameter, T = T (n), ϵ = ϵ(n), k = k(n), ℓ = ℓ(n). Let (X,B) = (X,B)(n) be a joint

distribution on {0, 1}n × {0, 1}ℓ. We say B has (T, ϵ) uniform (conditional) pseudoentropy

at least k given X if for every randomized oracle algorithm A computable in time T , there is

a distribution C jointly distributed with X such that the following holds for all sufficiently

large n:

• Hsh(C|X) ≥ k;

• (X,B) and (X,C) are indistinguishable by AOX,B,C :

|Pr[AOX,B,C (X,B) = 1]− Pr[AOX,B,C (X,C) = 1]| < ϵ.

We say B has uniform (conditional) pseudoentropy at least k = k(n) given X if for every

constant c, B has (nc, 1/nc) uniform (conditional) pseudoentropy at least k(n)−1/nc given

X.
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As in the definition of uniform pseudo-avg-min-entropy, we give the distinguishers

oracle access to OX,Y (for pseudoentropy) and OX,B,C (for conditional pseudoentropy).

For conditional pseudoentropy, however, a consequence of our results is that the definition

with oracle OX,B,C is equivalent to the definition with oracle OX,B provided B comes from

a polynomial-sized alphabet. In particular, if (X,B) is also polynomial-time samplable

(which will be the case in our applications), the definition is equivalent to one without

oracle OX,B,C . (See Corollary 4.58.)

In the definition of conditional pseudoentropy, a question asked by Leo Reyzin is

whether allowing changing both X and B (rather than changing (X,B) to (X,C), with

X fixed) makes any difference. Another consequence of our results is that this is equivalent

to the above definition. (See Corollary 4.58.)

To capture exactly the computational hardness in B given X, we consider the closest

“distance” from (X,B) to any joint distribution (X,C) where the distribution C can be

efficiently “represented” given X. We will use KL divergence as the “distance,” and consider

two ways to algorithmically represent C: (i) By a randomized algorithm or circuit S that

samples C from X, i.e. C = S(X); (ii) By an algorithm or circuit P that computes the

(conditional) probability mass function (pmf) of C, i.e. P (x, a) = Pr[C = a|X = x]. In

general, having an efficient algorithm for one representation does not imply having an

efficient algorithm for the other (under certain complexity assumptions) [KMR+, Nao2].

But when C is short (ℓ = O(logn)), approximating the pmf of C given X (say to within

±ϵ) is equivalent to approximately sampling C given X (say to within statistical distance

ϵ), up to a factor of poly(2ℓ, 1/ϵ) in running time. (See Lemma 4.36 and 4.37 below.) The

sampler-based definition may appear more natural, as a closer parallel to Definition 4.13:

Definition 4.31 (KL-hard for sampling, nonuniform setting). Let (X,B) be a joint distri-

bution on {0, 1}n×{0, 1}ℓ. We say B is nonuniformly (t, δ) KL-hard for sampling given X if
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for all size t randomized circuits S : {0, 1}n → {0, 1}ℓ it holds that KL(X,B||X,S(X)) ≥ δ.

Analogously to pseudoentropy, the nonuniform and uniform definitions differ in whether

we need to give a sampling oracle to the adversary.

Definition 4.32 (KL-hard for sampling, uniform setting). Let n be a security parameter,

δ = δ(n) > 0, t = t(n) ∈ N, ℓ = ℓ(n). Let (X,B) be a distribution on {0, 1}n × {0, 1}ℓ. We

say B is uniformly (t, δ) KL-hard for sampling given X if for all time t randomized oracle

algorithms S, for all sufficiently large n, it holds that KL(X,B||X,SOX,B (X)) ≥ δ.

In our characterization of pseudoentropy (Section 4.3), however, we adopt the pmf-

based representation (rather than the sampling-based). This is because our techniques

require finer manipulations of the distribution.

We will in fact use “measures” rather than pmfs, because it can be infeasible to maintain

the normalization
∑

a P (x, a) = 1 while manipulating P if the alphabet size 2ℓ is large.

Recall that a function P : {0, 1}n × {0, 1}ℓ → [0, 1] is called a conditional measure for C|X

if:

C(a|x) = P (x, a)∑
b P (x, b)

,

and we denote (X,C) by (X,ΦP ). We generalize the pmf representation so that P only has

to compute some conditional measure for C|X.

Definition 4.33 (KL predictors). Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ.

We say that a conditional measure P : {0, 1}n × {0, 1}ℓ → [0, 1] is a δ-KL predictor of B

given X if

KL(X,B||X,ΦP ) < δ.

If P is randomized, we say that P is a δ-KL predictor of B given X if

E
p∼P

[KL(X,B||X,Φp)] < δ
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where we view P as a distribution over functions p : {0, 1}n × {0, 1}ℓ → [0, 1].

Definition 4.34 (KL-hard, nonuniform setting). Let (X,B) be a joint distribution on

{0, 1}n × {0, 1}ℓ. We say B is nonuniformly (t, δ) KL-hard given X if there is no circuit P

of size t that is a δ-KL predictor of B given X.

We say B is nonuniformly δ KL-hard given X if for every constant c, B is nonuniformly

(nc, δ − 1/nc) KL-hard given X for all sufficiently large n.

Definition 4.35 (KL-hard, uniform setting). Let n be a security parameter, δ = δ(n) > 0,

t = t(n) ∈ N, ℓ = ℓ(n). Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ. We

say B is uniformly (t, δ) KL-hard given X if for all time t randomized oracle algorithms

P : {0, 1}n×{0, 1}ℓ → [0, 1] and all sufficiently large n, POX,B is not a δ-KL predictor of B

given X (where the randomness of POX,B consists both of its internal coin tosses and the

samples it gets from the oracle OX,B).

We say B is uniformly δ KL-hard given X if for every constant c, B is uniformly

(nc, δ − 1/nc) KL-hard given X.

Note that by letting P (x, a) = 1, we already get C = Uℓ i.e. KL(X,B||X,C) = ℓ −

Hsh(B|X) ≤ ℓ. Thus it only makes sense to talk about KL-hardness for δ ≤ ℓ.

Finally, we show that the two notions, KL-hard and KL-hard for sampling, are equiv-

alent up to a polynomial factor in t, provided that ℓ is logarithmic in n:

Lemma 4.36. Let (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ. If B is nonuniformly

(t, δ) KL-hard for sampling given X, then B is nonuniformly (Ω(t/2ℓ), δ) KL-hard given X.

Conversely, if B is nonuniformly (t, δ) KL-hard given X, then B is nonuniformly (t′, δ− ϵ)

KL-hard for sampling given X for t′ = t/poly(n, 2ℓ, 1/ϵ), for every ϵ > 0.

Proof. Suppose B is not nonuniformly (t′, δ) KL-hard given X. That is, there exists a size

t′ circuit P : {0, 1}n×{0, 1}ℓ → [0, 1] such that KL(X,B||X,ΦP ) ≤ δ. Then we can sample
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S(x) = a w.p. Pr[ΦP = a|X = x] so that KL(X,B||X,S(X)) ≤ δ. S has circuit size

O(2ℓ · t′). This contradicts the fact that B is nonuniformly (t, δ) KL-hard for sampling, for

t′ = Ω(t/q).

Conversely, suppose KL(X,B||X,S(X)) ≤ δ − ϵ for some size t′ circuit S. We will

construct a size t randomized δ-KL predictor P (so that it will be useful for the uniform

setting, Lemma 4.37, as well) as follows. We compute E(x, a) such that w.p. at least 1− γ,

|Pr[S(x) = a]− E(x, a)| ≤ ϵ2/c22ℓ for all x, a, where c is a large enough constant. This is

done by taking m = O (n+ ℓ+ log(1/γ)) · 22ℓ/ϵ4 samples of the randomness of S. We then

output P (x, a) = max{E(x, a), ϵ/c2ℓ} ∈ (ϵ/c2ℓ, 1].

We view P as a distribution over functions p : {0, 1}n × {0, 1}ℓ → (ϵ/c2ℓ, 1]. Consider

any p ∈ supp(P ) such that|Pr[S(x) = a]− E(x, a)| ≤ ϵ2/c22ℓ for all x, a. Notice that∑
b p(x, b) ≤ 1 + 2ℓ ·

(
ϵ/c2ℓ

)
= 1 + ϵ/c. If Pr[S(x) = a] > ϵ/c2ℓ, then

log Pr[S(x) = a]

Pr[Φp = a|X = x]
≤ log

p(x, a) + ϵ2

c2

p(x, a)
+ log

∑
b

p(x, b) ≤ log(1 + ϵ

c
) + log(1 + ϵ

c
) ≤ ϵ

2
.

If Pr[S(x) = a] ≤ ϵ/c2ℓ, then

log Pr[S(x) = a]

Pr[Φp = a|X = x]
= log Pr[S(x) = a]

p(x, a)
+ log

∑
b

p(x, b) ≤ log(1 + ϵ/c) ≤ ϵ

2
.

Thus we get

KL(X,B||X,Φp)

= KL(X,B||X,S(X)) + E
x∼X

[∑
a

Pr[B = a|X = x] log Pr[S(x) = a]

Pr[Φp = a|X = x]

]

≤ δ − ϵ+
ϵ

2
.

On the other hand, for every p : {0, 1}n × {0, 1}ℓ → (ϵ/c2ℓ, 1] it holds that

KL(X,B||X,Φp) = E

[∑
a

Pr[B = a|X = x] log (Pr[B = a|X = x]/Pr[Φp = a|X = x])

]

≤ max
x,a

log (1/Pr[Φp = a|X = x]) = O

(
ℓ+ log 1

ϵ

)
.
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Thus,

E
p∼P

[KL(X,B||X,Φp)] ≤ (1− γ) · (δ − ϵ

2
) + γ ·O

(
ℓ+ log 1

ϵ

)
≤ δ,

for an appropriate choice of γ = O(ϵ/(ℓ + log(1/ϵ))). Furthermore, P has circuit size

O (t′m) = t. Thus B is not nonuniformly (t, δ) KL-hard given X.

Lemma 4.37. Let n be a security parameter, δ = δ(n) > 0, t = t(n) ∈ N, p = p(n),

ϵ = ϵ(n) > 0, ℓ = ℓ(n) all computable in time poly(n). Let (X,B) be a joint distribution on

{0, 1}n×{0, 1}ℓ. If B is uniformly (t, δ) KL-hard for sampling given X, then B is uniformly

(Ω(t/(2ℓ + n)), δ) KL-hard given X. Conversely, if B is uniformly (t, δ) KL-hard given X,

then B is uniformly (t′, δ − ϵ) KL-hard for sampling given X, for t′ = t/poly(n, 2ℓ, 1/ϵ).

Proof. The proof for the second part is identical to Lemma 4.36. For the first part, suppose

B is not uniformly (t′, δ) KL-hard given X. That is, there is a time t′ oracle algorithm P

such that when POX,B is viewed as a distribution over functions p : {0, 1}n×{0, 1}ℓ → [0, 1],

for infinitely many n,

E
p∼POX,B [KL(X,B||X,Φp)] ≤ δ.

Then we can sample S(x) = a w.p. Ep∼POX,B [Pr[Φp = a|X = x]], where we first pick p ∼

POX,B by fixing the internal coin tosses of P and samples from oracle OX,B. By convexity

of KL(X,B||X, ·),

KL(X,B||X,S(X)) = KL
(
X,B||X,Φ

P
OX,B

)
≤ E

p∼POX,B [KL (X,B||X,Φp)] ≤ δ.

This contradicts the fact that B is uniformly (t, δ) KL-hard for sampling, for t′ = Ω(t/(2ℓ+

n)).

4.3.2 Main Results

We show that a distribution B having pseudoentropy given X, is equivalent to B being

KL-hard given X (a notion which, as discussed above, captures the computational hardness
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of sampling B given X in terms of KL divergence). We prove the equivalence in both

nonuniform and uniform models of computation.

Theorem 4.38 (Characterizing pseudoentropy, nonuniform setting). Let (X,B) be a joint

distribution on {0, 1}n × {0, 1}ℓ, δ > 0, ϵ > 0.

1. If B is nonuniformly (t, δ) KL-hard given X, then for every ϵ > 0, B has nonuniform

(t′, ϵ) pseudoentropy at least Hsh(B|X) + δ − ϵ given X, for t′ = tΩ(1)/poly(n, ℓ, 1/ϵ).

2. Conversely, if B has nonuniform (t, ϵ) pseudoentropy at least Hsh(B|X) + δ given

X, then for every σ > 0, B is nonuniformly (t′, δ′) KL-hard given X, for t′ =

min{tΩ(1)/polylog (1/σ) ,Ω(σ/ϵ)} and δ′ = δ − σ.

Corollary 4.39. Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ. Then B has

nonuniform pseudoentropy at least Hsh(B|X) + δ given X if and only if B is nonuniformly

δ KL-hard given X.

By dropping X, the polynomial dependence on ℓ gives us a characterization of nonuni-

form pseudoentropy for an ℓ-bit distribution: (Note that without conditioning on X, the

definition of KL-hard still makes sense, expressing the hardness of computing a measure

that approximates the distribution B.)

Corollary 4.40. A distribution B on {0, 1}ℓ has nonuniform pseudoentropy at least Hsh(B)+

δ if and only if B is nonuniformly δ KL-hard.

We now state the uniform versions of our results, which are analogous to the nonuniform

versions but have an exponential dependence on ℓ (we do not know whether it can be made

polynomial like in Theorem 4.38, so we don’t have a uniform analogue of Corollary 4.40.)
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Theorem 4.41 (Characterizing pseudoentropy, uniform setting). Let n be a security pa-

rameter, δ = δ(n) > 0, t = t(n) ∈ N, ϵ = ϵ(n) > 0, ℓ = ℓ(n), σ = σ(n) all computable in

time poly(n). Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ.

1. If B is uniformly (t, δ) KL-hard given X, then B has uniform (t′, ϵ) pseudoentropy at

least Hsh(B|X) + δ − ϵ given X, for t′ = tΩ(1)/poly(n, 2ℓ, 1/ϵ).

2. Conversely, if B has uniform (t, ϵ) pseudoentropy at least Hsh(B|X)+δ given X, then

B is uniformly (t′, δ′) KL-hard given X, for t′ = min{tΩ(1)/poly(n, log(1/σ),Ω(σ/ϵ)}

and δ′ = δ − σ.

Corollary 4.42. Let n be a security parameter, δ = δ(n) > 0, ℓ = polylog(n) computable

in time poly(n). Let (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ. Then B has uniform

pseudoentropy at least Hsh(B|X)+ δ given X if and only if B is uniformly δ KL-hard given

X.

Note that we do not make any samplability assumption on X (in both nonuniform and

uniform settings).

4.3.3 A Generic Framework

In this section, we provide a generic framework for proving statements such as the

characterization of (conditional) pseudoentropy, yielding our meta characterization theorem

(Theorem 4.8).

Throught the section, we consider an arbitrary strictly concave function

H : {distributions on Σ} → R≥0

that is differentiable in the interior of the simplex in |Σ|-space (e.g. the Shannon entropy of

a distribution on Σ). We also extend H to the conditional setting in the natural way: For
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a joint distribution (X,C), define H(C|X) to equal Ex←X [H (C|X=x)] (e.g. the conditional

Shannon entropy of C given X).

A key to our framework is interpreting the Bregman divergence associated with H,

DH(X ∥ Y ) (see Definition 1.7), in terms of the distinguishing advantage of a special

distinguisher W :

Lemma 4.43. Let X and Y be distributions on a finite set Σ. Let W : Σ → R≥0 be the

function

W (x) = − ∂H(Y )

∂ Pr[Y = x]

where the LHS denotes the derivative of H at Y w.r.t. Pr[Y = x]. Then

DH(X ∥ Y ) = H(Y )−H(X)− (E[W (X)]− E[W (Y )]) .

Moreover, Y ′ = Y maximizes E[W (Y ′)] over all distributions Y ′ on Σ where H(Y ′) ≥ H(Y ).

For some intuition, suppose W is a constant function and H is Shannon entropy. Then

C∗ = Uℓ and Lemma 4.44 becomes the familiar identity

KL(X ∥ Uℓ) = ℓ−Hsh(X).

Proof of Lemma 4.43. By definition of Bregman divergence,

DH(X ∥ Y ) = H(Y )−H(X)− ⟨∇H(Y ), Y −X⟩

= H(Y )−H(X) +
∑
x

W (x) · Pr[Y = x]−
∑
x

W (x) · Pr[X = x]

= H(Y )−H(X)− (E[W (X)]− E[W (Y )]) .

Nonnegativity of Bregman divergence (Proposition 1.8) and the above equality together

imply if E[W (Y ′)] > E[W (Y )] thenH(Y ′) < H(Y ), i.e. Y ′ = Y maximizes E[W (Y ′)] subject

to H(Y ′) ≥ H(Y ).
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In our applications it is often more convenient to consider an average-case version,

which follows as an immediate corollary of Lemma 4.43:

Corollary 4.44. Let (X,B) and (X,C) be joint distributions on {0, 1}n × {0, 1}ℓ. Let

W : {0, 1}n × {0, 1}ℓ → R≥0 be the function

W (x, a) = − ∂H(C|X)

∂ Pr[C = a|X = x]

where the LHS denotes the derivative of H(C|X) w.r.t. Pr[C = a|X = x]. Then

DH(X,B ∥ X,C) = H(C|X)−H(B|X)− (E[W (X,B)]− E[W (X,C)]) .

Moreover, (X,C ′) = (X,C) maximizes E[W (X,C ′)] subject to H(C ′|X) ≥ H(C|X)

(over all C ′ jointly distributed with X).

Now we show why the lemma is useful: If W achieves good distinguishing advantage

E[W (X,B)] − E[W (X,C)] for all C where H(C|X) is not too much larger than H(B|X),

then we can use C∗ to approximate B within small Bregman divergence:

Lemma 4.45. Let (X,B) be any joint distribution on {0, 1}n × {0, 1}ℓ, ϵ > 0, and δ > 0.

Let W ∗ : {0, 1}n × {0, 1}ℓ → [0, 1] be a function such that E[W ∗(X,B)]− E[W ∗(X,C)] ≥ ϵ

for all ℓ-bit random variables C jointly distributed with X with H(C|X) ≥ H(B|X) + δ.

Suppose that there exists a joint distribution (X,C∗) such that H(C∗|X) = H(B|X) + δ

and for some constant µ ≥ 0,

∀x, a, ∂H(C∗|X=x)

∂ Pr[C∗ = a|X = x]
= −µ ·W ∗(x, a).

Then

DH(X,B ∥ X,C∗) ≤ δ.
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Proof. By Corollary 4.44,

DH(X,B ∥ X,C∗) = H(C∗|X)−H(B|X)− µ · (E[W ∗(X,B)]− E[W ∗(X,C∗)])

≤ δ − µ · ϵ ≤ δ.

Lemma 4.43 can also be used to show a “converse” to Lemma 4.45.

Lemma 4.46. Let (X,B) and (Y,C∗) be joint distributions on {0, 1}n × {0, 1}ℓ, ϵ > 0,

δ > 0. Suppose DH(X,B ∥ Y,C∗) ≤ δ. Then for the function W ∗ defined as

W ∗(x, a) = − ∂H(C∗|X)

∂ Pr[C∗ = a|X = x]
,

and for all joint distributions (Y,C) on {0, 1}n × {0, 1}ℓ with H(Y,C) ≥ H(X,B) + δ + ϵ,

we have E[W ∗(X,B)]− E[W ∗(Y,C)] ≥ ϵ.

Proof. Consider any joint distribution (Y,C) with H(Y,C) ≥ H(X,B) + δ + ϵ. Applying

Lemma 4.43, we obtain

H(Y,C∗)−H(X,B)− (E[W ∗(X,B)]− E[W ∗(Y,C∗)]) = DH(X,B||Y,C∗) ≤ δ,

as well as

H(Y,C∗)−H(Y,C)− (E[W ∗(Y,C)]− E[W ∗(Y,C∗)]) = DH(Y,C||Y,C∗) ≥ 0.

Together they yield

E[W ∗(X,B)−W ∗(Y,C)]

= E[W ∗(X,B)−W ∗(Y,C∗)]− E[W ∗(Y,C)−W ∗(Y,C∗)]

= H(Y,C∗)−H(X,B)−DH(X,B ∥ Y,C∗)− (H(Y,C∗)−H(Y,C)−DH(Y,C ∥ Y,C∗))

≥ H(Y,C)−H(X,B)− δ

≥ ϵ.
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A consequence of Lemma 4.45 and 4.46 is the following meta characterization:

Informal Theorem 4.47 (Meta characterization theorem). Let n be a security parameter,

δ = δ(n), ℓ = ℓ(n), and (X,B) = (X,B)(n) be a joint distribution on {0, 1}n×{0, 1}ℓ. For

all “sufficiently nice” H, the following are equivalent:

1. There exists a joint distribution (X,C) where (X,C) and (X,B) are indistinguishable

by poly-sized circuits, and H(C|X) ≥ H(B|X) + δ − 1/nω(1);

2. For all poly-sized circuits that “represent” a joint distribution (X,C∗), we have

DH(X,B ∥ X,C∗) > δ − 1/nω(1).

We now outline how we would obtain an actual proof for such a theorem for a given

H. We instantiate this approach for H being Shannon entropy in Section 4.3.4 below.

• Suppose that Item 1 of the meta theorem is false, i.e. for some constant c > 0, for

every C where H(C|X) ≥ H(B|X)+δ−1/nc there is a poly-sized (1/nc)-distinguisher

between (X,B) and (X,C). By the Nonuniform Min-Max Theorem (Chapter 2 The-

orem 2.3), there is a poly-sized circuit W ∗ that (1/nc)-distinguishes (X,B) from all

(X,C) where H(C|X) ≥ H(B|X) + δ − 1/nc. We assume H is “sufficiently nice” so

that for some constant µ ≥ 0, there exists a joint distribution (X,C∗) satisfying

∀x, a, ∂H(C∗|X=x)

∂ Pr[C∗ = a|X = x]
= −µ ·W ∗(x, a)

and H(C∗|X) ≥ H(B|X)+ δ− 1/nc, and can be “represented” by a poly-sized circuit

(which is often true, since W ∗ is a poly-sized circuit). Now Lemma 4.45 implies that

DH(X,B ∥ X,C∗) ≤ δ − 1/nc, and we conclude that Item 2 of the meta theorem is

false.
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• Suppose that Item 2 of the meta theorem is false, i.e. for some constant c > 0 and

some (X,C∗) that can be “represented” by a poly-sized circuit, DH(X,B ∥ X,C∗) ≤

δ− 1/nc. Assuming H is “sufficiently nice” so that (i) the W ∗ defined in Lemma 4.46

can be (approximately) computed by poly-sized circuit, and (ii) |W ∗(x, a)| ≤ poly(n),

then W ∗ gives rise to a universal distinguisher between (X,B) and (X,C) for all

(X,C) where H(C|X) ≥ H(B|X) + δ − 1/nc, by Lemma 4.46. This concludes that

Item 1 is false.

4.3.4 KL-hardness Implies Pseudoentropy, Nonuniform Setting

In this section, we prove one (the more interesting) direction of the characterization of

nonuniform pseudoentropy (Theorem 4.38).

Consider the distribution (X,C∗) in Lemma 4.44 with H = Hsh. Given a function

W : {0, 1}n × {0, 1}ℓ → R≥0, it is easy to verify that the hypothesis of Lemma 4.44 is

satisfied by (X,C∗) defined as

C∗(a|x) = eW (x,a)∑
b e

W (x,b)
.

We denote such (X,C∗) by (X, eW ).

Proposition 4.48. Let W : {0, 1}n × {0, 1}ℓ → R≥0. Then

∀x, a, ∂H(eW |X=x)

∂ Pr[eW = a|X = x]
= −W (x, a).

Remark. (X, eW ) is a conditional version of the Boltzmann distribution (or Gibbs distri-

bution; canonical ensemble) in statistical physics [LL], which is the unique distribution that

achieves maximum entropy under a linear constraint on the pmf. We consider the con-

ditional Boltzmann distribution in our context for a similar reason: for any distinguisher
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W , (X,C) = (X, ekW ) (k ≥ 0) minimizes E[W (X,B)] − E[W (X,C)] among all C with

Hsh(C|X) ≥ r = Hsh(ekW |X). (The unconditional version is well known in statistical

physics [LL].)

We apply Lemma 4.45 to show the following result about (X, eW ), which captures the

essence of why KL-hardness implies pseudoentropy:

Lemma 4.49. Let (X,B) be any joint distribution on {0, 1}n × {0, 1}ℓ, ϵ > 0, and 0 <

δ ≤ ℓ−Hsh(B|X). Let W : {0, 1}n × {0, 1}ℓ → [0, 1] be a function such that E[W (X,B)]−

E[W (X,C)] ≥ ϵ for all ℓ-bit random strings C jointly distributed with X with Hsh(C|X) ≥

Hsh(B|X) + δ. Then there exists k ∈ [0, ℓ/ϵ] such that KL(X,B ∥ X, ekW ) ≤ δ.

Proof. Let k0 = ℓ/ϵ. First we show that there exists k ∈ [0, k0] such that Hsh(ekW |X) =

Hsh(B|X) + δ. By Lemma 4.44 and Proposition 4.48,

E[W (X,B)]− E[W (X, ek0W )] =
Hsh(ek0W |X)−Hsh(B|X)−KL(X,B ∥ X, ek0W )

k0

<
ℓ

k0
= ϵ,

where we use nonnegativity of Hsh and Bregman divergence. Thus, by assumption we must

have Hsh(ek0W |X) < Hsh(B|X) + δ. Now note that (i) Hsh(e0·W |X) ≥ Hsh(B|X) + δ since

e0·W is simply the uniform distribution; (ii) Hsh(ek0W |X) < Hsh(B|X)+δ; (iii) Hsh(ekW |X)

is continuous as a function of k ∈ [0,+∞). By the Intermediate Value Theorem, there exists

k ∈ [0, k0] such that Hsh(ekW |X) = Hsh(B|X) + δ.

The result now follows from Lemma 4.45 and Proposition 4.48.

Theorem 4.50 (KL-hardness =⇒ pseudoentropy, nonuniform setting). Let (X,B) be a

joint distribution on {0, 1}n × {0, 1}ℓ, δ > 0. If B is nonuniformly (t, δ) KL-hard given X,

then for every ϵ > 0, B has nonuniform (t′, ϵ) pseudoentropy at least Hsh(B|X)+δ− ϵ given

X for t′ = tΩ(1)/poly (n, 1/ϵ, ℓ).

111



Chapter 4: Characterizations of Computational Entropies

Proof. Suppose for contradiction that B does not have nonuniform (t′, ϵ) conditional pseu-

doentropy at least Hsh(B|X) + δ − ϵ. By definition, for any ℓ-bit random string C jointly

distributed with X where Hsh(C|X) ≥ Hsh(B|X) + δ − ϵ, there is a size t′ deterministic

circuit W such that E[W (X,B)]− E[W (X,C))] ≥ ϵ.

Consider the two-player zero-sum game where Player 1 selects some joint distribution

(X,C) on {0, 1}n × {0, 1}ℓ where Hsh(C|X) ≥ Hsh(B|X) + δ − ϵ, Player 2 selects some

deterministic circuit W : {0, 1}n × {0, 1}ℓ → {0, 1} of size t′, and receives expected payoff

E[W (X,B)] − E[W (X,C)]. Note that by concavity of Hsh, any mixed strategy for Player

1 is still some joint distribution (X,C) with Hsh(C|X) ≥ Hsh(B|X) + δ − ϵ. Since for all

Player 1 mixed strategies (X,C) there exists a Player 2 strategy W with expected payoff

at least ϵ, by the Nonuniform Min-Max Theorem (Theorem 2.3) there is some size O(S · t′)

randomized circuit W ∗, for S = O(ℓ/ϵ2), such that

E[W ∗(X,B)]− E[W ∗(X,C)] ≥ .9ϵ

for all (X,C) with Hsh(C|X) ≥ Hsh(B|X)+δ−ϵ. By Lemma 4.49, there exists k ∈ [0, O(ℓ/ϵ)]

such that KL(X,B||X, ekW ∗) ≤ δ−ϵ. In other words, P (x, a) = exp(k ·W ∗(x, a)) is a (δ−ϵ)-

KL-predictor. Thus it remains to show that P (x, a) = exp(k ·W ∗(x, a)) can be computed

efficiently (within small error).

Efficiency. We approximate k by some rational k̃ to Θ(ϵ/c) precision for a sufficiently

large constant c, so that ∀x, a,
∣∣∣k̃ ·W ∗(x, a)− k ·W ∗(x, a)

∣∣∣ ≤ ϵ/c. Since k̃ · W ∗(x, a)

is rational valued, we can use Newton’s method to construct a circuit P approximating

exp(k̃ ·W ∗(x, a)). This can be done in such a way that

KL (X,B||X,ΦP ) ≤ KL(X,B||X, ekW ∗) + ϵ ≤ δ
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and P has circuit size t = poly (t′, n, 1/ϵ, ℓ). See Lemma A.6 for details. This contradicts

the hypothesis that B is nonuniformly (t, δ) KL-hard given X.

4.3.5 KL-hardness Implies Pseudoentropy, Uniform Setting

To prove the uniform complexity version of Theorem 4.50, we replace the use of the

Nonuniform Min-Max Theorem in the proof of Theorem 4.50 with the Uniform Min-Max

Theorem – Average Case (Chapter 2, Theorem 2.5).

Notation. We denote by Vr(X) the set of all joint distributions (X,C) on {0, 1}n×{0, 1}ℓ

(where C may vary and X is fixed) such that Hsh(C|X) ≥ r.

To implement Chapter 2, Algorithm 2.2 (Finding Universal Strategy – Average Case),

we need to compute σ-approximate KL projections on the conditional entropy ball Vr(X).

4.3.5.1 Approximating KL Projection on High Conditional Entropy Distribu-

tions

In this section we describe how to efficiently find (X,C) as a σ-approximate KL pro-

jection of (X,C ′) on Vr(X). We first describe in Lemma 4.51 the exact KL projection

of the joint distribution (X,C) on a conditional entropy ball Vr(X), then show how to

approximate it.

By definition of KL projection we need to find some (X,C ′) ∈ Vr(X) minimizing

KL(X,C ′ ∥ X,C). Recall that for a function W : {0, 1}n×{0, 1}ℓ → R≥0, k ∈ R, we denote

by ekW the distribution jointly distributed with X such that:

ekW (a|x) = ekW (x,a)∑
b e

kW (x,b)
.

Now, if we write (X,C) as (X, eW ) for a function W : {0, 1}n × {0, 1}ℓ → R≥0, then by

Lemma 4.44 and Proposition 4.48 we can minimize KL(X,C ′ ∥ X, eW ) by maximizing
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E[W (X,C ′)]−E[W (X, eW )], assuming that the entropy difference is fixed. This is the idea

of Lemma 4.51 below.

Lemma 4.51 (KL projection on a conditional entropy ball Vr(X)). Let (X,C) be a joint

distribution on {0, 1}n × {0, 1}ℓ such that Pr[C = b|X = x] > 0 for all x, b. Define

W (x, a) = log Pr[C = a|X = x]

minb {Pr[C = b|X = x]}

so that (X,C) = (X, eW ). Then for every r ≤ ℓ, the KL projection of (X,C) on Vr(X)

equals (X, eαW ) for some α ∈ (0, 1] such that Hsh(eαW |X) ≥ r. (In fact Hsh(eαW |X) = r

as long as (X,C) /∈ Vr(X)).

Proof. First, if (X,C) ∈ Vr(X) then the KL projection is (X,C) = (X, eW ) itself, i.e. α = 1.

To find the KL projection for (X,C) /∈ Vr(X), we first note there exists α ∈ (0, 1)

such that Hsh(eαW |X) = r (by the Intermediate Value Theorem, because Hsh(eW |X) < r,

Hsh(e0·W |X) = ℓ ≥ r and Hsh(ekW |X) is continuous as a function of k ∈ (0, 1)). By

definition of KL projection, we want to minimize KL(X,C ′||X, eW ) over all C ′ where

Hsh(C
′|X) = r (as KL projection is always on the boundary of Vr(X); see Lemma A.4).

Now by Lemma 4.44 and Proposition 4.48,

KL(X,C ′||X, eW ) = Hsh(eW |X)−Hsh(C
′|X)−

(
E[W (X,C ′)]− EW (X, eW )]

)
.

So minimizing KL(X,C ′||X, eW ) is equivalent to maximizing E[W (X,C ′)]− EW (X, eW )],

and the result follows from 4.44.

Lemma 4.52 (Approximating KL projection on a conditional entropy ball Vr(X)). There

exists a poly(κ, n, 2ℓ, 1/σ, log(1/γ)) time randomized algorithm Π such that given oracle

access to a function W : {0, 1}n×{0, 1}ℓ → [0, κ] and OX , for all σ > 0 and 0 ≤ r ≤ ℓ− σ,

ΠW,OX (r, σ) outputs w.p. 1− γ some β ∈ (0, 1] such that (X, eβW ) is a σ-approximate KL

projection of (X, eW ) on Vr(X), and β has bit length log(κ/σ) + log ℓ+O(1).
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Proof. Our algorithm Π works as follows. Π computes an estimate Eβ ∈ [Hsh(eβW |X)±σ/6]

for every discrete β ranging from 0 to 1 in steps of σ/(cκℓ) for some sufficiently large constant

c. This can be done in time poly(κ, n, 2ℓ, 1/σ, log(1/γ)), and w.p. 1−γ after a union bound

over all cκℓ/σ values of β; see Lemma A.6 for details. Π then outputs any discrete β (as a

multiple of σ/(cκℓ)) satisfying Eβ ∈ [r+σ/6, r+5σ/6], and outputs 1 if no such β is found.

We now argue the correctness in two cases.

Case 1: No discrete β satisfies Eβ ∈ [r+ σ/6, r+5σ/6]. We show that this happens only

when
(
X, eW

)
∈ Vr(X) i.e. the KL projection is itself, thus Π is correct in outputting 1.

Indeed, suppose that
(
X, eW

)
/∈ Vr(X). One can check that any σ/(cκℓ) variation in β

causes at most σ/3 variation in Hsh(eβW |X) (Lemma A.7). Since Hsh(e0W |X) = ℓ ≥ r + σ

and Hsh(e1W |X) < r, a discrete Intermediate Value Theorem says there exists a discrete

β ∈ [0, 1] with Hsh(eβW |X) ∈ [r + σ/3, r + 2σ/3]. In other words there exists β satisfying

Eβ ∈ [r + σ/6, r + 5σ/6].

Case 2: There exists some β satisfying Eβ ∈ [r + σ/6, r + 5σ/6]. Consider any such β.

Closeness of Eβ to both r and Hsh(eβW |X) guarantees that

r ≤ Hsh(eβW |X) ≤ r + σ.

Thus (X, eβW ) ∈ Vr(X). Recall from Lemma 4.51 that the exact KL projection of (X, eW )

on Vr(X) equals (X, eαW ) where α = 1 if (X, eW ) ∈ Vr(X), or 0 < α < 1 and Hsh(eαW ) = r

if (X, eW ) /∈ Vr(X). We need to show that (X, eβW ) is a σ-approximate KL projection. By

Pythagorean Theorem (Theorem 1.13) it suffices to show that for all (X,C) ∈ Vr(X),

KL(X,C||X, eβW )−KL(X,C||X, eαW ) ≤ σ.
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By Lemma 4.44,

KL(X,C||X, eβW )−KL(X,C||X, eαW )

= Hsh(eβW |X)−Hsh(eαW |X)

− β
(
E[W (X,C)]− E[W (X, eβW )]

)
+ α

(
E[W (X,C)]− E[W (X, eαW )]

)
≤ (r + σ)− r − β

(
E[W (X,C)]− E[W (X, eβW )]

)
+ α

(
E[W (X,C)]− E[W (X, eαW )]

)
= σ + (α− β)E [W (X,C)] + β · E[W (X, eβW )]− α · E

[
W (X, eαW )

]
.

Note that α ≥ β, because either α = 1 ≥ β (when (X, eW ) ∈ Vr(X)), or Hsh(eαW |X) = r ≤

Hsh(eβW |X) (when (X, eW ) /∈ Vr(X)) and it follows from monotonicity of Hsh(ekW |X) as a

function of k in [0,+∞) (Lemma A.5). Thus by Item 2 of Lemma 4.44, (α− β)E [W (X,C)] ≤

(α− β)E
[
W (X, eαW )

]
, and the above inequality becomes

KL(X,C||X, eβW )−KL(X,C||X, eαW ) ≤ σ + β
(
E
[
W (X, eβW )

]
− E

[
W (X, eαW )

])
.

Now applying Lemma 4.44 again yields

α
(
E[W (X, eβW )]− E[W (X, eαW )]

)
= Hsh(eαW |X)−Hsh(eβW |X)−KL(X, eβW ||X, eαW )

≤ Hsh(eαW |X)−Hsh(eβW |X) ≤ 0,

where we used nonnegativity of KL divergence. Therefore

KL(X,C||X, eβW )−KL(X,C||X, eαW ) ≤ σ.

4.3.5.2 Putting it Together

We now have all the tools ready to prove Theorem 4.41 (KL hardness implies pseu-

doentropy, uniform setting). We just will replace the use of the Min-Max Theorem in the

116



Chapter 4: Characterizations of Computational Entropies

proof of Theorem 4.50 with the Uniform Min-Max Theorem for distinguishers (Chapter 2,

Theorem 2.5), using Lemma 4.52 to implement the approximate KL projection. However,

notice that Hsh(B|X) hence the “radius” of the conditional entropy ball Vr(X) is unknown.

We will simply try all radii (with quantization) and pick the distinguisher that results in

the best KL predictor, which can be tested by sampling (X,B).

Theorem 4.53 (KL-hardness =⇒ pseudoentropy, uniform setting). Let n be a security

parameter, δ = δ(n) > 0, t = t(n) ∈ N, ϵ = ϵ(n) > 0, ℓ = ℓ(n) all computable in time

poly(n). Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ. If B is uniformly (t, δ)

KL-hard given X, then B has uniform (t′, ϵ) pseudoentropy at least Hsh(B|X) + δ− ϵ given

X, for t′ = tΩ(1)/poly(n, 2ℓ, 1/ϵ).

Proof. Suppose for contradiction that B does not have uniform (t′, ϵ) conditional pseudoen-

tropy at least Hsh(B|X)+δ−ϵ. By definition, there is a time t′ randomized oracle algorithm

A such that for infinitely many n and every C with Hsh(C|X) ≥ Hsh(B|X)+ δ− ϵ, AOX,B,C

is an ϵ-distinguisher between (X,B) and (X,C).

Recall that in the nonuniform setting (Theorem 4.50), we begin by obtaining a univer-

sal distinguisher W ∗ using the Nonuniform Min-Max Theorem. Similarly, in the uniform

setting, we first obtain a universal distinguisher uniformly using the Uniform Min-Max

Theorem – Average Case (Chapter 2, Theorem 2.5), as captured in the following claim:

Claim 4.54. There is a randomized oracle algorithm Υ that, for any r ≥ Hsh(B|X) + δ −

ϵ/2, ΥOX,B (r, n, ℓ, t′, ϵ, γ) w.p. at least 1 − γ outputs some deterministic circuit W ∗r of size

poly(t′, n, ℓ, 1/ϵ, log(1/γ)) such that for all (X,C) ∈ Vr(X),

E[W ∗r (X,B)]− E[W ∗r (X,C)] ≥ .9ϵ.

Moreover, Υ runs in time poly(t′, n, 2ℓ, 1/ϵ, log(1/γ)).
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Note that given Claim 4.54, the theorem almost follows by the same argument in the

nonuniform setting (Theorem 4.50), by running ΥOX,B (r, n, ℓ, t′, ϵ, γ) to obtain the desired

universal distinguisher W ∗, with r = Hsh(B|X) + δ − ϵ/2 and appropriate settings of γ.

However, in general Hsh(B|X) + δ − ϵ is unknown (as Hsh(B|X) may not be uniformly

efficiently computable). To overcome this, we need to search for an appropriate value of r,

which we settle after proving the claim.

Proof of Claim 4.54. Consider the two-player zero-sum game where Player 1 chooses some

joint distribution (X,C) ∈ Vr(X), and Player 2 chooses a poly(t′, n, ℓ, 1/ϵ, log(1/γ)) sized

circuit W , with expected payoff E[f((X,C),W )] = E[W (X,B)] − E[W (X,C)] for Player

2. We will apply Theorem 2.5 (Uniform Min-Max Theorem – Average Case) to this game,

i.e. with

• V = Vr(X);

• W = {(deterministic) circuits of size poly(t′, n, ℓ, 1/ϵ, log(1/γ))};

• f((x, a),W ) = E[W (X,B)]−W (x, a).

We let the algorithm Υ be an instantiation of Chapter 2, Algorithm 2.2 (Finding Universal

Strategy – Average Case) that we describe below for the game, with KL projection on the

set V = Vr(X). Then Υ outputs the deterministic circuit W ∗r that computes the average

of W (1), . . . ,W (S). Using the oracle algorithm A(·), we will show that in our instantiation

of Algorithm 2.2, in each iteration we can obtain some W (i) that distinguishes (X,B) and

(X,C). Thus, by the Uniform Min-Max Theorem – Average Case, W ∗r is indeed a universal

distinguisher as desired.

Our instantiation of Algorithm 2.1 starts with an initial distribution (X,C(1)) where

C(1) is uniform on {0, 1}ℓ and independent of X. Let ϵ′ = ϵ/c for a sufficiently large constant
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c. The number of iterations is S = O(ℓ/ϵ′2), and we let γ′ = γ/2S. In each iteration we

represent the joint distribution (X,C(i)) by a circuit Wi : {0, 1}n×{0, 1}ℓ → R≥0 such that

(X,C(i)) = (X, eWi). So we can take W1(x, a) = 0 for all x, a. We show how to implement

each of the S iterations of Algorithm 2.2 efficiently:

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti-size

deterministic circuit Wi : {0, 1}n × {0, 1}ℓ → [0, κi]. There are three steps:

(a) Obtain a deterministic boolean circuit M (i) such that (X,ΦM(i)) approximates

(X,C(i)) = (X, eWi) in the following sense: (i) H(ΦM(i) |X) ≥ Hsh(C
(i)|X) − ϵ′;

(ii) For every function W ′ : {0, 1}n × {0, 1}ℓ → [0, 1],

E[W ′(X,B)]− E[W ′(X,C(i))]

≥ E[W ′(X,B)]− E[W ′(X,ΦM(i))]− ϵ′.

This can be done in time poly(t′, ti, n, ℓ, κi, log(1/ϵ′)) using Newton’s method;

see Lemma A.6 for details.

(b) Generate m = O(log(1/γ′)/ϵ′2) random samples of (X,B,ΦM(i))t
′ and Ut′ (note

that ΦM(i) is samplable using the circuit M (i)). This can be done in time

poly(t′, ti, n, 2ℓ, 1/ϵ′, log(1/γ′)).

(c) Finally, let W (i) be the deterministic circuit that on input (x, a), runs A(·)(x, a)

for m times and returns the average of the m outputs. Each time, A(·)(x, a) is

run using one copy of (X,B,ΦM(i))t
′ to answer oracle queries of A, and one copy

of Ut′ as coin tosses of A. The m random samples are hardwired in W (i), thus

W (i) is of size t′′ = O(t′ ·m · (n + ℓ)), which does not depend on the size of Wi

(but the size of Wi+1 will additively depend on t′′). By a Chernoff bound, w.p. at

119



Chapter 4: Characterizations of Computational Entropies

least 1− γ′,

E[W (i)(X,B)]− E[W (i)(X,ΦM(i))]

≥ E[A
OX,B,Φ

M(i) (X,B)]− E[A
OX,B,Φ

M(i) (X,ΦM(i))]− ϵ′.

2. Weight Update: Note that (X,C(i)′) = (X, eWi+ϵ′·W (i)
), which is simply the con-

sequence of multiplicative weight update. We represent C(i)′ by the function W ′i =

Wi + ϵ′ ·W (i).

3. KL Projection: We use Lemma 4.52 to efficiently obtain an ϵ′2-approximate KL

projection (X,C(i+1)) = (X, eWi+1) of (X,C(i)′) = (X, eW ′i ) on Vr(X), where Wi+1 =

βi+1 ·W ′i for some βi+1 ∈ (0, 1] of bit length O(log(ℓκi/ϵ′)). This can be done in time

poly(κi, t′i, n, 2ℓ, 1/ϵ′, log(1/γ′)) and w.p. at least 1 − γ′, where t′i is the size of W ′i .

Note that Wi+1 is a [0, κi+1]-valued function with κi+1 = κi + ϵ′.

At last, Υ outputs the deterministic circuitW ∗r that computes the average ofW (1), . . . ,W (S).

We argue that Υ runs in time poly(t′, n, 2ℓ, 1/ϵ, log(1/γ)) and outputs a circuit W ∗r of

size poly(t′, n, ℓ, 1/ϵ, log(1/γ)). Note that the way Weight Update and KL Projection are

done guarantees that W ′i and Wi+1 are always linear combinations of W (1), . . . ,W (i), with

coefficients β1 . . . βjϵ′ for some 0 ≤ j ≤ i. Moreover, W (1), . . . ,W (i) have logm output bits

(as the average of m boolean values), and each βi (i ≤ S) is of bit length O(log(ℓκi/ϵ′)) ≤

O(log(ℓi)) (as κi = (i− 1)ϵ′). Thus, one can easily verify that Wi+1 has circuit size ti+1 ≤

poly(S log(ℓS), logm)+S ·t′′ = poly(t′, n, ℓ, 1/ϵ′, log(1/γ′)), and the same bound holds for t′i.

The total running time follows by plugging in ti+1 and t′i in the running time of each step.

Since W ∗r computes the average of W (1), . . . ,W (S) it has size poly(t′, n, ℓ, 1/ϵ, log(1/γ)).

Now, suppose all S iterations complete successfully, which happens w.p. at least 1 −

2γ′S = 1− γ, by a union bound. Since

H(ΦM(i) |X) ≥ Hsh(C
(i)|X)− ϵ′ ≥ (Hsh(B|X) + δ − ϵ/2)− ϵ′ ≥ Hsh(B|X) + δ − ϵ,
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the property of the distinguisher A guarantees that

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[W (i)(X,B)]− E[W (i)(X,ΦM(i))]− ϵ′

≥ E[A
OX,B,Φ

M(i) (X,B)]− E[A
OX,B,Φ

M(i) (X,ΦM(i))]− 2ϵ′

≥ ϵ− 2ϵ′.

Hence by the Uniform Min-Max Theorem – Average Case (Theorem 2.5), for all Player 1

strategies (X,C) ∈ Vr(X),

E[W ∗r (X,B)]− E[W ∗r (X,C)] ≥ ϵ− 2ϵ′ −O(ϵ′) ≥ .9ϵ.

Given the algorithm Υ in Claim 4.54, we claim that the following time t randomized

oracle algorithm P violates the hypothesis that B is uniformly (t, δ) KL-hard given X. We

let γ > 0 be an error parameter to be fixed later, and c be a sufficiently large constant.

INPUT: (x, a) ∈ {0, 1}n × {0, 1}ℓ

ORACLE: OX,B

for r ← 0 to ℓ in steps of ϵ/c do
W ∗r ← ΥOX,B (r, n, ℓ, t′, ϵ, γ)

for k ← 0 to ℓ/ϵ in steps of ϵ/c do
Er,k ← an estimate of KL(X,B||X, ek·W ∗r ) +Hsh(B|X) within ϵ/c error

(estimated using oracle OX,B)

end

end

Let r∗, k∗ minimize Er,k

Let p(x, a) ∈ [0, 1] be an approximation of exp(k∗ ·W ∗r∗(x, a))/(2ℓ · exp(k∗))

return p(x, a)
Algorithm 4.1: The oracle algorithm P
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To prove correctness, first we claim that w.p. at least 1 − γ, in some iteration the

variables r and k must satisfy

KL(X,B||X, ekW ∗r ) ≤ δ − ϵ/3 + ϵ/c. (⋆)

Indeed, consider an iteration where r ∈ [Hsh(B|X) + δ− ϵ/2,Hsh(B|X) + δ− ϵ/3]. Suppose

that E[W ∗r (X,B)]− E[W ∗r (X,C)] ≥ .9ϵ for all C satisfying

Hsh(C|X) ≥ Hsh(B|X) + δ − ϵ/3 ≥ r.

This happens w.p. at least 1− γ by Claim 4.54 above. Recall that Lemma 4.49 says there

exists k′ ∈ [0, ℓ/ϵ] such that KL(X,B||X, ek′W ∗r ) ≤ δ−ϵ/3. Now consider any inner iteration

where k ∈ [k′− ϵ/c, k′]. Note that an ϵ/c difference between k and k′ can introduce at most

ϵ/c difference in KL(X,B||X, e·W ∗r ) (see Lemma A.7 for details), thus we conclude

KL(X,B||X, ekW ∗r ) ≤ KL(X,B||X, ek′W ∗r ) + ϵ/c ≤ δ − ϵ/3 + ϵ/c.

It turns out that by sampling, for every pair of r and k, we can compute an estimate

Er,k of KL(X,B||X, ek·W ∗r ) + Hsh(B|X) within ϵ/c error w.p. at least 1 − γ/2, in time

poly
(
t′, n, 1/ϵ, 2ℓ, log(1/γ)

)
; see Lemma A.6 for details. Thus, it follows from (⋆) that w.p.

at least 1− 2γ, the pair r∗ and k∗ that minimize Er,k must satisfy

KL(X,B||X, ek∗W ∗
r∗ ) ≤ δ − ϵ/3 + ϵ/c+ 2ϵ/c. (⋆⋆)

Finally, once k∗ and W ∗r∗ are determined, the algorithm computes a (deterministic)

approximation p(x, a) ∈ [1, exp(k∗)] of exp(k∗ · W ∗r∗(x, a)). To make P [0, 1]-valued (as

required in the definition of KL-predictor), we normalize p(x, a) to [0, 1] in the final step.

Using Newton’s method (see Lemma A.6 for details), such p(x, a) can be computed in time

t = poly
(
t′, n, 1/ϵ, 2ℓ

)
such that for the function p : {0, 1}n × {0, 1}ℓ → [0, 1],

KL (X,B||X,Φp) ≤ KL(X,B||X, ek∗W ∗r∗ ) + ϵ/c. (⋆ ⋆ ⋆)
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We view POX,B as a distribution on KL predictors p : {0, 1}n × {0, 1}ℓ → [0, 1], where

the randomness comes from k∗ and W ∗r∗ (which in turn are generated from coins of P and

OX,B). By definition of KL-hardness, we need to show

E
p∼POX,B

[KL(X,B||X,Φp)] ≤ δ.

We know from (⋆⋆) and (⋆ ⋆ ⋆) that w.p. at least 1− 2γ over p ∼ POX,B ,

KL (X,B||X,Φp) ≤ KL(X,B||X, ek∗W ∗
r∗ ) + ϵ/c ≤ δ − ϵ/3 + 4ϵ/c ≤ δ − ϵ/4.

Meanwhile for every p : {0, 1}n × {0, 1}ℓ → [0, 1],

KL(X,B||X,Φp) = E

[∑
a

B(a|X) log (B(a|X)/Φp(a|X))

]

≤ max
x,a

log (1/Φp(a|x)) = O(ℓ+ 1/ϵ).

Thus

E
p∼POX,B

[KL(X,B||X,Φp)] ≤ (1− 2γ) · (δ − ϵ/4) + (2γ) ·O(ℓ+ 1/ϵ) ≤ δ

for an appropriate choice of γ = Ω(ϵ/(ℓ+ 1/ϵ)), completing the proof.

4.3.6 Pseudoentropy Implies KL-hardness

We apply Theorem 4.46 to show that pseudoentropy implies KL-hardness. In fact, we

show that even a weak form of pseudoentropy suffices:

Definition 4.55 (Weak conditional pseudoentropy, nonuniform setting). Let (X,B) be a

joint distribution. We say B has (T, ϵ) weak nonuniform (conditional) pseudoentropy at

least k given X if there exists a joint distribution (Y,C) such that the following holds:

• Hsh(C|Y ) +Hsh(Y )−Hsh(X) ≥ k. In particular, Hsh(C|Y ) ≥ k if Hsh(Y ) = Hsh(X);

• (X,B) and (Y,C) are ϵ-indistinguishable by all size T circuits.
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If (X,B) = (X,B)(n) for a security parameter n, we say B has weak nonuniform (condi-

tional) pseudoentropy at least k = k(n) given X if for every constant c, B has (nc, 1/nc)

weak nonuniform (conditional) pseudoentropy at least k(n)−1/nc givenX for all sufficiently

large n.

In the uniform setting, it suffices to assume an even weaker form of pseudoentropy,

where we only require indistinguishability against distinguishers given oracle access to OX,B

but not OX,B,C :

Definition 4.56 (Weak conditional pseudoentropy, uniform setting). Let n be a security

parameter, T = T (n), ϵ = ϵ(n), k = k(n), ℓ = ℓ(n). Let (X,B) = (X,B)(n) be a

joint distribution on {0, 1}n × {0, 1}ℓ. We say B has (T, ϵ) weak uniform (conditional)

pseudoentropy at least k given X if for every randomized oracle algorithm A computable

in time T , there is joint distribution (Y,C) such that the following holds for all sufficiently

large n:

• Hsh(C|Y ) +Hsh(Y )−Hsh(X) ≥ k. In particular, Hsh(C|Y ) ≥ k if Hsh(Y ) = Hsh(X);

• (X,B) and (Y,C) are ϵ-indistinguishable by AOX,B :

|Pr[AOX,B (X,B) = 1]− Pr[AOX,B (Y,C) = 1]| < ϵ.

We say B has weak uniform (conditional) pseudoentropy at least k = k(n) given X if

for every constant c, B has (nc, 1/nc) weak uniform (conditional) pseudoentropy at least

k(n)− 1/nc given X. Note that in this “polynomial” version, OX,B is redundant if (X,B)

is polynomial-time samplable.

Theorem 4.57 (Weak pseudoentropy =⇒ KL-hardness, nonuniform and uniform settings).

Let n be a security parameter, δ = δ(n) > 0, t = t(n) ∈ N, ϵ = ϵ(n) > 0, ℓ = ℓ(n), σ = σ(n)
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all computable in time poly(n). Let (X,B) be a joint distribution on {0, 1}n × {0, 1}ℓ. If

B has weak (non)uniform (t, ϵ) pseudoentropy at least Hsh(B|X) + δ given X, then B is

(non)uniformly (t′, δ′) KL-hard given X, for t′ = min{tΩ(1)/poly(n, log(1/σ)),Ω(σ/ϵ)} and

δ′ = δ − σ.

Proof. We first give a proof for the nonuniform setting. The proof for the uniform setting

will follow naturally.

Suppose for contradiction that B is not nonuniformly (t′, δ − σ) KL-hard. Then there

is size t′ circuit P : {0, 1}n × {0, 1}ℓ → [0, 1] such that KL(X,B ∥ X,ΦP ) ≤ δ − σ. We

assume w.l.o.g. that P (x, a) ̸= 0 (otherwise, the bounded KL divergence implies (x, a) /∈

supp(X,B), i.e. we can set P (x, a) to nonzero without affecting anything).

We first show that the function

W (x, a) =
logP (x, a)

t′
+ 1

satisfies E[W (X,B)]− E[W (Y,C)] ≥ ϵ for every joint distribution (Y,C) with Hsh(C|Y ) +

Hsh(Y )−Hsh(X) ≥ Hsh(B|X) + δ i.e. Hsh(Y,C) ≥ Hsh(X,B) + δ. Note that W is indeed a

[0, 1]-valued function, because 2−t
′ ≤ P (x, a) ≤ 1.

Consider the function W ∗ defined as

W ∗(x, a) = − ∂Hsh(ΦP |X=x)

∂ Pr[ΦP = a|X = x]

= log P (x, a)∑
b P (x, b)

+ log e

= t′ ·W (x, a)− t′ + log e− log
∑
b

P (x, b).

Since KL(X,B ∥ X,ΦP ) ≤ δ − σ, Lemma 4.46 (whose hypothesis is satisfied by W ∗)

implies that for every joint distribution (Y,C) with Hsh(Y,C) ≥ Hsh(X,B) + δ, we have

E[W ∗(X,B)]− E[W ∗(Y,C)] ≥ σ. Thus

E[W (X,B)]− E[W (Y,C)] =
E[W ∗(X,B)]− E[W ∗(Y,C)]

t′
≥ σ

t′
.
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Thus it remains to show that we can approximate W by a size t circuit. Let W̃ be

an approximation to W where logP (x, a) is computed to precision σ. Since P (x, a) is

represented as a rational p1/p2 where p1, p2 ≤ 2t
′ , the logarithm can be approximated to

that precision in time poly(t′, log(1/σ)). Thus W̃ has circuit size poly(t′, log(1/σ)) ≤ t.

Moreover, for all (Y,C) with Hsh(Y,C) ≥ Hsh(X,B) + δ, we have

E[W̃ (X,B)]− E[W̃ (Y,C)] ≥ E[W (X,B)]− E[W (Y,C)]− 1

2t′
· σ ≥ σ

2t′
≥ ϵ,

contradicting the weak pseudoentropy of B given X.

Proof for the uniform setting follows quite naturally. Suppose for contradiction that

we are given a t′-time randomized oracle algorithm P such that

E
p∼POX,B

[KL(X,B||X,Φp)] ≤ δ − σ

where POX,B is viewed as a distribution over functions p : {0, 1}n×{0, 1}ℓ → [0, 1]. Implicit

in the nonuniform argument is an algorithm converting a λ-KL predictor to a universal

(δ−λ− σ/2)/t′-distinguisher, for all λ. Thus, we let A be the time poly(n, t′, log(1/σ)) ≤ t

randomized oracle algorithm performing the above conversion from a λ-KL predictor to a

universal (δ−λ−σ/2)/t′-distinguisher, replacing the circuit output P (x, a) with the output

of simulating POX,B on (x, a) (using random coin tosses and OX,B). Thus for every (Y,C)

with Hsh(Y,C) ≥ Hsh(X,B) + δ,

E
[
AOX,B (X,B)

]
− E

[
AOX,B (Y,C)

]
≥ E

p∼POX,B

[
δ −KL(X,B||X,Φp)− σ/2

t′

]
≥ σ

2t′
≥ ϵ,

contradicting the weak pseudoentropy of B given X.

Since Theorem 4.57 only requires weak conditional pseudoentropy, we obtain the fol-

lowing equivalence:
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Corollary 4.58. Let n be a security parameter, let δ = δ(n) > 0, and ℓ = ℓ(n) = O(logn)

be computable in time poly(n). Let (X,B) be a joint distribution on {0, 1}n×{0, 1}ℓ. Then

the following are equivalent:

1. B is (non)uniformly δ KL-hard given X;

2. B has (non)uniform pseudoentropy at least Hsh(B|X) + δ given X;

3. B has weak (non)uniform pseudoentropy at least Hsh(B|X) + δ given X.

Proof. 1 =⇒ 2 by Theorem 4.50 and 4.53. 2 =⇒ 3 by definition. 3 =⇒ 1 by Theorem

4.57.

127



Chapter 5

Constructing Pseudorandom

Generators from One-Way

Functions

A centerpiece of the foundations of cryptography and pseudorandomness theory is the

Håstad, Impagliazzo, Levin, and Luby [HILL] result that that pseudorandom generators

can be constructed from arbitrary one-way functions. In this chapter, we simplify and

improve the construction of pseudorandom generators from one-way functions, building on

the previous state-of-the-art construction of Haitner, Reingold, and Vadhan [HRV].

The simplified construction uses our characterization of conditional pseudoentropy from

Chapter 4 to obtain next-bit pseudoentropy from arbitrary one-way functions, proving a

conjecture of [HRV]. In particular, the construction only performs hashing once, and only

needs the hash functions that are randomness extractors (e.g. universal hash functions)

rather than needing them to support “local list-decoding” (as in the Goldreich-Levin hard-

core predicate [GL]). With an additional idea, we also show how to improve the efficiency
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of the Haitner, Reingold, and Vadhan construction, reducing the seed length of the pseudo-

random generator to Õ(n3) from Õ(n4) (which was already a significant improvement over

Håstad et al.).

5.1 Introduction

5.1.1 Pseudorandom Generators and One-Way Functions

We begin with the definition of pseudorandom generators. A pseudorandom generator

is an efficient deterministic algorithm G that stretches a short random string to a longer

string that looks random:

Definition 5.1 (Pseudorandom generator (PRG) [BM, Yao2], informal). A polynomial-

time computable function G : {0, 1}d → {0, 1}ℓ, d < ℓ, is a pseudorandom generator if

G(Ud) is computationally indistinguishable from Uℓ.

This is a very strong definition of pseudorandom generators as it guarantees security

(indistinguishability) against all efficient adversaries (distinguishers), even those that run in

time greater than the time needed to compute the pseudorandom generator G itself (which is

a fixed polynomial). Such kinds of pseudorandom generators are sometimes known as cryp-

tographic pseudorandom generators (to distinguish from other kinds of pseudodorandom

generators, used for derandomization), as they allow numerous other cryptographic prim-

itives to be constructed, such as private-key cryptography [GGM, LR], bit-commitment

schemes [Nao1], zero-knowledge proofs for NP [GMW], and identication schemes [FFS].

They are also the key assumptions for many complexity theoretic results, for example,

hardness results in learning [Val] and the natural proofs barrier for circuit lower bounds

[RR].

All of these applications beg the question whether pseudorandom generators exist at
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all. However, it can be easily seen that pseudorandom generators imply P ̸= NP; thus

we do not expect to unconditionally establish their existence but rather hope to do so

based on computational assumptions. Unfortunately, it seems out of reach to base their

existence on complexity-theoretic statements such as P ̸= NP. Nonetheless, it turns out

that pseudorandom generators can be based on the very plausible assumptions of functions

that are easy to compute but hard to invert:

Definition 5.2 (One-way function, informal). A polynomial-time computable function

f : {0, 1}∗ → {0, 1}∗ is one-way if no probabilistic polynomial-time algorithm A satisfies

Pry∼f(Un)[f(A(y)) = y] ≥ n−O(1).

One-way functions are essential for complexity-based cryptography to exist and often

considered the minimal cryptographic primitive, as all the cryptographic primitives we

mentioned (and others) imply the existence of one-way functions, often via simple reductions

[IL, IR]. In contrast to pseudorandomness, one-wayness is a much more “unstructured”

property where hardness can be distributed arbitrarily across the n input bits. Nonetheless,

Håstad, Impagliazzo, Levin, and Luby [HILL] showed that pseudorandom generators can

be constructed from arbitrary one-way functions:

Theorem 5.3 (Håstad et al. [HILL]). The following are equivalent:

1. One-way functions exist;

2. Pseudorandom generators G : {0, 1}d → {0, 1}ℓ exist with ℓ = d+ 1;

3. For every constant c there exist pseudorandom generators with ℓ = dc.

The Håstad et al. paper is one of the centerpieces of the foundations of cryptography

and the theory of pseudorandomness. Not only does it tell us that all the cryptographic

primitives we mentioned are in fact equivalent, it also introduced concepts and techniques
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that now permeate the theory of pseudorandomness, such as pseudoentropy (see Chapter

4) and the Leftover Hash Lemma.

A drawback of the Håstad et al. construction, however, is that it is quite complicated.

While it utilizes elegant notions and ideas, the actual construction has to integrate them in

a rather ad hoc and indirect way (due to various technical issues). Moreover, the reduction

showing the correctness of the construction is much more complex in the uniform setting.

Aesthetic and pedagogical perspectives aside, the complexity of the construction also makes

it highly inefficient. Specifically, the pseudorandom generator constructed from a one-way

function f : {0, 1}n → {0, 1}n requires an input (known as the seed) length of d = O(n10),

unpractical even for very modest settings of parameters. (Håstad et al. also outlined a

construction of seed length O(n8), which was later formalized and proved in [Hol2]).

Progress has been made to simplify the construction and improve its efficiency. By

proving a Uniform Hardcore Theorem (cf. Chapter 3), Holenstein [Hol1, Hol2] substantially

simplified and modularized the proof in the uniform setting. Haitner, Harnik, and Reingold

[HHR2] reduced the seed length to O(n7). Holenstein [Hol2] generalized the Håstad et

al. result to base on one-way functions of any “hardness.” In particular, given a one-way

function that is secure again exponential time (2Ω(n)) adversaries, the seed length was

reduced to O(n4 · ω(logn)) (or O(n5) to obtain a PRG with exponential security), and

subsequently improved by Haitner, Harnik, and Reingold [HHR1] to O(n · ω(logn)) (or

O(n2) to obtain a PRG with exponential security). All these constructions, however, still

retain the overall structure of the Håstad et al. construction based on pseudoentropy, and

thus retain some of the complex and ad hoc elements.

Recently, Haitner, Reingold, and Vadhan [HRV] provided a simpler and much more

efficient construction, based on the more relaxed notion of conditional pseudoentropy (see

Chapter 4) as embedded in their notion of next-bit pseudoentropy. The new construction
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requires a much shorter seed length of Õ(n4). (If the one-way function is secure again

exponential time adversaries, then the seed length matches the [HHR1] result.)

5.1.2 From One-Way Functions to Next-Bit Pseudoentropy

The Haitner, Reingold, and Vadhan construction proceeds in two stages: first, from

a one-way function construct a next-bit pseudoentropy generator, then convert next-bit

pseudoentropy to pseudorandomness. Next-bit pseudoentropy simply captures the total

conditional pseudoentropy (see Chapter 4) across all the bits:

Definition 5.4 (Next-block pseudoentropy [HRV], informal). A joint distribution (X1, . . . , Xm)

has next-block pseudoentropy at least k iff there exist a sequence of distributions Y1, . . . , Ym,

jointly distributed with (X1, . . . , Xm) such that:

1. (X1, . . . , Xi−1, Xi) is computationally indistinguishable from (X1, . . . , Xi−1, Yi), and

2.
∑

iHsh(Yi|X1, . . . , Xi−1) ≥ k.

Equivalently, XI has pseudoentropy at least k/m given X1, . . . , XI−1, where I is uni-

formly distributed in [m].

We say that a distribution X taking values in {0, 1}m has next-bit pseudoentropy at

least k iff when we break X into 1-bit blocks, then X = (X1, . . . , Xm) has next-block

pseudoentropy at least k.

Intuitively, next-bit pseudoentropy captures the pseudoentropy from the perspective of

an adversary who gets the bits one at a time (from left to right), instead of all at once. Thus,

the next-bit pseudoentropy of a distribution can be much larger than its pseudoentropy. For

example, if G : {0, 1}n → {0, 1}m is a pseudorandom generator, then (G(Un), Un) has next-

bit pseudoentropy at least m > n, but does not have pseudoentropy larger than n.
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Haitner, Reingold, and Vadhan [HRV] showed that if f : {0, 1}n → {0, 1}m is a one-

way function, X ∈R {0, 1}n, and H : {0, 1}n → {0, 1}n is a random hash function from an

appropriate family, then (f(X),H,H(X)) has next-bit pseudoentropy n+ r + logn, where

r is the number of random bits used to describe the hash function H. The intuition for

this is as follows: Condition on f(X) = y for some y ∈ {0, 1}n. Given that f(X) = y, X is

uniformly distributed in a set of size |f−1(y)|. Thus, by the Leftover Hash Lemma [HILL],

the first ≈ log |f−1(y)| bits of H(X) are statistically close to uniform given the prefix

preceding them. In addition, it is still difficult to invert f and predict X given these bits

(since a uniform random string can’t help in inverting). Thus, by the Goldreich–Levin

Theorem [GL], the next ≈ logn bits of H(X) are computationally indistinguishable from

uniform given the preceding bits. Therefore the next-bit pseudoentropy of (f(X),H,H(X))

is at least

Hsh(f(X)) + r + E
y←f(X)

[log |f−1(y)|] + logn

= Hsh(f(X)) + r +Hsh(X|f(X)) + logn

= n+ r + logn.

Haitner, Reingold, and Vadhan [HRV] conjectured that the hashing in the above con-

struction is not necessary, and the hardness of inverting a one-way function directly provides

(next-bit) pseudoentropy. We prove their conjecture, using our characterization of uniform

conditional pseudoentropy from Chapter 4, Theorem 4.41:

Theorem 5.5 (One-way function =⇒ next-bit pseudoentropy). If f : {0, 1}n → {0, 1}m is

a one-way function and X ∈R {0, 1}n, then (f(X), X) has next-bit pseudoentropy at least

n+ logn.

We will prove the theorem in the uniform security setting (where the adversaries for

one-way function and next-bit pseudoentropy are uniform algorithms), but the theorem
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holds also in the nonuniform setting (since it is proved via a uniform reduction converting

any adversary violating next-bit pseudoentropy to one violating the one-wayness of f).

The proof of this theorem starts by showing that the one-wayness of f implies that

for every probabilistic polynomial-time algorithm A, the KL divergence from (f(X), X) to

(f(X), A(f(X))) is at least logn; otherwise A would invert f with nonnegligible probabil-

ity. Then we show that the same holds also in a “next-bit” sense: if we break X into bits

X = X1 · · ·Xn and choose I ∈R [n], then for every probabilistic polynomial-time S, the

KL divergence from (f(X), X1, . . . , XI) to (f(X), X1, . . . , XI−1, S(f(X), X1, . . . , XI−1)) is

at least (logn)/n. (Otherwise by iteratively applying S n times, we can obtain a proba-

bilistic polynomial-time A such that (f(X), A(f(X))) has KL divergence at most logn from

(f(X), X).) By Chapter 4, Theorem 4.41, we deduce that XI has pseudoentropy at least

Hsh(XI |f(X), X1, . . . , XI−1)+(logn)/n given f(X), X1, . . . , XI−1. That is, on average, the

individual bits of X have (logn)/n extra bits of pseudoentropy (in addition to Shannon

entropy) given f(X) and the previous bits of X. Summing over all n bits of X, the next-bit

pseudoentropy is at least logn bits larger than the Shannon entropy of (f(X), X), which is

n.

5.1.3 From Next-Bit Pseudoentropy to Pseudorandomness

Given the next-bit pseudoentropy generator (f(X), X) ∈ {0, 1}m+n of Theorem 5.5,

we can apply the construction of Haitner et al. [HRV] to obtain a pseudorandom generator

through the following three steps:

• Entropy Equalization: To spread the pseudoentropy out evenly among the bits, we

concatenate u = Θ̃(n) independent random evaluations of (f(X), X), then drop the

first I bits and the last m+n−I bits of the u ·(n+m)-bit long result, for I ∈R [m+n].
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• Converting Shannon Entropy to Min-Entropy and Amplifying the Gap:

Next, we take t = Θ̃(n2) copies of the above next-bit pseudoentropy generator (after

entropy equalization), but concatenate them “vertically” to obtain blocks, each of

which consists of t bits. It can be shown that each of the blocks is indistinguishable

from having high min-entropy conditioned on the previous ones.

• Randomness Extraction: Finally, we use a single random universal hash function

to extract the pseudo-min-entropy from each of the blocks, and concatenate the results

to produce our output.

Thus, to obtain a pseudorandom generator from a one-way function f , we simply need to

evaluate f on u · t = Õ(n3) random inputs, arrange the input and output bits into a matrix

consisting of (u− 1) · (m+ n) columns and t rows, and apply a universal hash function to

each column. (The seed of the pseudorandom generator consists of the u · t inputs to f ,

the t random shifts used for entropy equalization, and the description of the universal hash

function.) The construction is illustrated in Figure 5.1. Note that we only need to hash

once in the construction, and the only property we need of our hash function is randomness

extraction (e.g. via the Leftover Hash Lemma). In contrast, all previous constructions of

pseudorandom generators from one-way functions (even from one-way permutations) re-

quired hash functions with “local list-decoding” properties (e.g. the Goldreich–Levin hard-

core predicate) in addition to randomness extraction. As pointed out to us by Yuval Ishai,

an advantage of using only universal hash functions is that they can be implemented by

linear-size boolean circuits [IKOS], and thus we can obtain PRGs computable by circuits

of size linear in their stretch (from one-way functions that are computable by linear-size

circuits but exponentially hard to invert). Such PRGs have applications to “cryptography

with constant computational overhead” [IKOS].
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Figure 5.1: Simplified construction of PRG from one-way function f : {0, 1}n → {0, 1}m.
Each row contains iid copies of (f(Un), Un), shifted by a random offset I ∈ [n + m]. To
extract pseudorandom bits, an arbitrary universal hash function H (with a proper output
length) is applied to all bits in the same column.

While simpler, the aforementioned construction achieves essentially the same parame-

ters as [HRV]. Using an additional idea, we show how to save a factor of roughly u = Θ̃(n)

in the seed length. The idea is that to extract the randomness from a column of the afore-

mentioned matrix, we do not need to construct the entire matrix. We can use just enough

seed to fill a single column, and then we can use randomness extracted from that column

to help generate more columns, and iterate. (This idea is independent of our simplifica-

tions above, and can also be applied to the construction based on the [HRV] pseudoentropy

generator.) Thus we show:

Theorem 5.6 (One-way function =⇒ pseudorandom generator, informal). Given a one-

way function f : {0, 1}n → {0, 1}n, we can construct a pseudorandom generator G with seed

length Õ(n3).

This theorem improves the seed length of O(u · t · n) = Õ(n4) from Haitner, Reingold,

and Vadhan. This theorem generalizes to one-way functions of “any hardness,” and both the
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construction itself and the underlying security reduction are uniform (thus the construction

also works for nonuniform security settings). We note that Haitner, Reingold, and Vad-

han give a nonuniform construction of seed length Õ(n3), which requires poly(n) bits of

nonuniform advice to compute the pseudorandom generator. (They do so by avoid Entropy

Equalization, by nonuniformly hardwiring the amount of entropy contributed by each bit.)

Also, our construction still requires evaluating the one-way function at least u · t = Θ̃(n3)

times; we just no longer need these evaluations to be independent. Finally, like Haitner,

Reingold, and Vadhan, the construction obtains Θ(logn) bits of additive stretch per invo-

cation of the one-way function, which is optimal [GGKT].

With Theorem 5.6, now the only blow-up in seed length in constructing pseudorandom

generators from one-way functions is due to converting Shannon entropy to min-entropy.

On the flip side, Holenstein and Sinha [HS] recently showed that any black-box construction

of pseudorandom generator from arbitrary one-way functions requires Ω(n/ logn) calls to

the underlying one-way function. It is an intriguing open problem whether our seed length

blow-up of Õ(n2) and our complexity blow-up of Õ(n3) can be avoided, or shown to be

necessary by strengthening the Holenstein and Sinha lower bound.

5.2 Definitions

Definition 5.7 (One-way functions). A polynomial-time computable function f : {0, 1}∗ →

{0, 1}∗ is (T, γ) one-way T = T (n), γ = γ(n) if for every time T randomized algorithm A,

for all sufficiently large n, it holds that Pry∼f(Un)[f(A(y)) = y] < γ. We say f is one-way if

f is (nc, 1/nc) one-way for every constant c.

Definition 5.8 (Pseudorandom). Let n be a security parameter, ℓ = ℓ(n). A distribution

X on {0, 1}ℓ is (T, ϵ) pseudorandom for T = T (n), ϵ = ϵ(n) if for all time T randomized
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algorithms A, Pr[A(X) = 1]− Pr[A(Uℓ) = 1] ≤ ϵ. A polynomial-time computable function

G : {0, 1}d=d(n) → {0, 1}ℓ=ℓ(n) is a (T, ϵ) pseudorandom generator (PRG) if G(Ud) is (T, ϵ)

pseudorandom.

We say G is a pseudorandom generator if G is a (nc, 1/nc) pseudorandom generator for

every constant c. The input to a pseudorandom generator is called the seed. The number

of extra bits, ℓ− d, is called the stretch.

Note that nonuniform pseudorandomness and pseudorandom generators can be defined

by replacing time T algorithms by size T boolean circuits.

It is useful to talk about the total conditional pseudoentropy of a sequence of jointly

distributed strings, called the next-block pseudoentropy:

Definition 5.9 (Next-block pseudoentropy). Let n be a security parameter, k = k(n),

and B(i) be a distribution for each i = 1, . . . ,m = m(n). We say
(
B(1), B(2), . . .

)
has

(non)uniform next-block (or next-bit, if each B(i) is a bit) pseudoentropy at least k if B(I)

has (non)uniform pseudoentropy at least k/m given B(1) . . . B(I−1), for I ∈R [m].

Note that next-bit pseudoentropy is a more relaxed notion than pseudoentropy, and

to increase the next-block pseudoentropy, we would like “blocks” to be small i.e. as bits.

Note that the next-bit pseudoentropy is sensitive to the order of the bits; for example,

for any one-way function f , (Un, f(Un)) does not have next-bit pseudoentropy n + 1, but

(f(Un), Un) has next-bit pseudoentropy at least n+Ω(logn) as we show in the next section.

5.3 From One-Way Functions to Next-Bit Pseudoentropy

In this section, we show how to obtain a next-bit pseudoentropy generator from an

arbitrary one-way function f .
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This section is structured as follows. Given a one-way function f , we first show that

Un is KL-hard for sampling given f(Un). By a chain rule for KL-hardness, we then argue

it is KL-hard to sample the next bit of Un given f(Un) and all previous bits of Un. Finally,

we use the equivalences between KL-hardness for sampling, KL-hardness, and conditional

pseudoentropy (Chapter 4, Lemma 4.37 and Theorem 4.53) to derive that (f(Un), Un) has

a lot of total next-bit pseudoentropy.

Lemma 5.10 (One-way function =⇒ KL-hard for sampling). Let n be a security parameter,

and f : {0, 1}n → {0, 1}n be (t, γ) one-way, for t = t(n), γ = γ(n). Then Un is uniformly

(t′, log(1/γ)) KL-hard for sampling given f(Un), for t′ = t/poly(n).

Proof. Suppose for contradiction that Un is not uniformly (t′, log(1/γ)) KL-hard for sam-

pling given f(Un), i.e. there exists a time t′ randomized oracle algorithm S such that

KL
(
f(Un), Un||f(Un), S

Of(Un),Un (f(Un))
)
≤ log 1

γ
.

Let g(y, x) be the indicator function that f(x) = y. Since applying a (deterministic) function

does not increase KL divergence (Lemma 1.11),

KL
(
g (f(Un), Un) ||g

(
f(Un), S

Of(Un),Un (f(Un))
))
≤ log 1

γ

where g(f(Un), Un) ≡ 1, and g
(
(f(Un), S

Of(Un),Un (f(Un))
)
equals 1 with probability p =

Pr[SOf(Un),Un (f(Un)) = Un]. Since the KL divergence from Bernoulli(1) to Bernoulli(p) is

log(1/p), we must have p ≥ γ. That is,

Pr[SOf(Un),Un (f(Un)) = Un] ≥ γ.

Since Of(Un),Un
can be simulated in time poly(n), this violates the fact that f is (t, γ)

one-way for t = t′ · poly(n).
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Lemma 5.11 (Chain rule for KL-hardness). Let Y be a distribution over {0, 1}n, jointly

distributed with Z. If Y is uniformly (t, δ) KL-hard for sampling given Z, then YI is

uniformly (t′, δ/n) KL-hard for sampling given (Z, Y1, . . . , YI−1), for I ∈R [n], t′ = t/O(n).

Proof. Suppose YI is not uniformly (t′, δ/n) KL-hard for sampling given (Z, Y1, . . . , YI−1),

that is there exists a time t′ randomized oracle algorithm S such that

KL
(
Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, SOZ,Y1,...,YI (Z, Y1, . . . , YI−1)

)
≤ δ

n
.

Consider the time O(nt′) = t algorithm that samples W1, . . . ,Wn from Z using oracle

OZ,Y , where Wi is inductively defined to be SOZ,Y1,...,YI (Z,W1, . . . ,Wi−1). By the chain rule

for KL divergence (Proposition 1.10),

KL(Z, Y1, . . . , Yj ||Z,W1, . . . ,Wj)−KL(Z, Y1, . . . , Yj−1||Z,W1, . . . ,Wj−1)

= KL((Yj |Z, Y1, . . . , Yj−1)||(Wj |Z,W1, . . . ,Wj−1))

= KL(Z, Y1, . . . , Yj ||Z, Y1, . . . , Yj−1, S
OZ,Y1,...,YI (Z, Y1, . . . , Yj−1)),

where the last equality follows from definition of conditional KL divergence. Telescoping

over j = 1, . . . , n,

KL(Z, Y ||Z,W1, . . . ,Wn)

=

n∑
i=1

KL(Z, Y1, . . . , Yi||Z, Y1, . . . , Yi−1, SOZ,Y1,...,YI (Z, Y1, . . . , Yi−1))

= n ·KL(Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, SOZ,Y1,...,YI (Z, Y1, . . . , YI−1))

≤ n · δ
n
= δ.

This violates Y being uniformly (t, δ) KL-hard for sampling given Z.

Now the remainder of showing next-bit pseudoentropy of (f(Un), Un) follows from (i)
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KL-hard for sampling implies KL-hard (Chapter 4, Lemma 4.37); (ii) KL-hard implies

conditional pseudoentropy (Chapter 4, Theorem 4.53). Formally,

Theorem 5.12 (One-way function =⇒ next-bit pseudoentropy). Let n be a security pa-

rameter, t = t(n), γ = γ(n), ϵ = ϵ(n) all computable in polynomial time. Let f : {0, 1}n →

{0, 1}n be (t, γ) one-way. Then (f(Un), Un) has (t′, ϵ) uniform next-bit pseudoentropy at

least n+ log(1/γ)− ϵ, for t′ = tΩ(1)/poly(n, 1/ϵ).

Proof. Let Z = f(Un), Y = Un and I ∈R [n]. By Lemma 5.10 and 5.11, YI is uni-

formly (t/poly(n), log(1/γ)/n) KL-hard for sampling given (Z, Y1, . . . , YI−1). By Chapter

4, Lemma 4.37, YI is uniformly (t/poly(n), log(1/γ)/n) KL-hard given (Z, Y1, . . . , YI−1). By

Chapter 4, Theorem 4.53, YI has (t′, ϵ) uniform conditional pseudoentropy at least

Hsh(YI |Z, Y1, . . . , YI−1) + log(1/γ)/n− ϵ/n,

for t′ = tΩ(1)/poly(n, 1/ϵ). Equivalently, (Z, Y ) has (t′, ϵ) uniform next-bit pseudoentropy

at least Hsh(Y, Z) + log(1/γ)− ϵ = n+ log(1/γ)− ϵ.

Remark 5.13. The argument in this section says that (f(Un), Un) has a lot of next-bit

pseudoentropy as long as Un is KL-hard to sample from f(Un). The KL-hardness of sampling

Un from f(Un) is similar to the notion of a distributional one-way function [IL] which

amounts to replacing KL divergence with statistical distance.

For Un to be KL-hard to sample from f(Un), it is not necessary that f is one-way. For

example, given any one-way function h : {0, 1}n → {0, 1}n/2, define

f(x) =


x1,...,n/2 (xn/2+1,...,n = 0n/2)

h(x) (otherwise)
.

Clearly f is not one-way, but Un is still KL-hard to sample from f(Un). Thus, our construc-

tion of next-bit pseudoentropy generators (and later on, pseudorandom generators) can be
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based on a larger class of functions.

5.4 From Next-Bit Pseudoentropy to Pseudorandomness

In this section, for brevity, we always assume the uniform setting whenever referring to

one-way functions and computational notions of (conditional) entropy. Nonetheless, these

results hold in the nonuniform setting too, with little or no change in the argument.

5.4.1 The Construction

Haitner et al. show a construction of a pseudorandom generator from any next-bit

pseudoentropy generator Gnb. Their result can be stated as follows:

Theorem 5.14 (Pseudorandomness from next-bit pseudoentropy [HRV]). Let n be a se-

curity parameter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2] be

polynomial time computable. For every polynomial time computable Gnb : {0, 1}n →

{0, 1}m such that Gnb(Un) has (T, ϵ) next-bit pseudoentropy at least n + ∆, there exists

a (T −nO(1), nO(1) · (ϵ+2−κ)) pseudorandom generator G : {0, 1}d → {0, 1}d·(1+Ω(∆/n)) with

seed length

d = O

(
m2n2κ log2 n

∆3

)
.

Moreover, G is computable in NC1 with O(d/n) (uniformly random) oracle calls to Gnb.

By Theorem 5.12, we can simply use Un → (f(Un), Un) as the next-bit pseudoen-

tropy generator, and obtain the following construction of PRG G from one-way functions

f (illustrated in Figure 5.1), by applying the construction in Theorem 5.14:
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Figure 5.2: Simplified construction of PRG from one-way function f : {0, 1}n → {0, 1}m.
Each row contains u = Θ(n/ logn) iid copies of (f(Un), Un), shifted by a random offset
I ∈ [n +m]. To extract pseudorandom bits, an arbitrary universal hash function H (with
a proper output length) is applied to all t = Θ(d/(u · (n+m))) bits in the same column.

Construction 1. Given input Ud, the pseudorandom generator output

h, h(G1
1G

2
1 . . . G

t
1), h(G

1
2G

2
2 . . . G

t
2), . . .

where h is a universal hash function, and for each 1 ≤ i ≤ t, Gi consists of u = Θ(n/∆)

iid copies of (f(Un), Un), with the first I bits of the first copy and the last m + n − I bits

of the last copy discarded, for I ∈R [n + m] (using a new copy of I for each Gi). We let

t = Θ(d/(u · n)).

If f : {0, 1}n → {0, 1}n is one-way, then setting parameters m = n, ∆ = logn and

κ = ω(logn), G is a PRG with seed length any d = ω(n4) and stretch d · Ω((logn)/n).

The following corollary was pointed out to us by Yuval Ishai: If f is a one-way function

with exponential security and linear circuit size, by using universal hash functions that have

linear circuit size as constructed in [IKOS], we can obtain a PRG whose circuit complexity

is linear in its stretch. Such pseudorandom generators (with circuit complexity linear in

their stretch) are useful for cryptography with constant computational overhead [IKOS].
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Corollary 5.15 (Pseudorandom generators with constant overhead). Suppose that there is

a function f : {0, 1}n → {0, 1}n computable by uniform circuits of size O(n) and such that

for some constant α > 0 and every constant c, f is (nc, 2−αn) one-way. Then there exists

a pseudorandom generator G : {0, 1}d → {0, 1}2d computable by uniform boolean circuits of

size O(d), for d = O(n · polylog(n)).

Proof. By Theorem 5.12, Gnb(Un) has uniform next-bit pseudoentropy at least (1 + α)n.

By Theorem 5.14, there exists a pseudorandom generator G : {0, 1}d → {0, 1}d·(1+α) with

seed length d = O(n log3 n). We see from the construction (Construction 1) that G (i)

performs O(d/n) evaluations of f , for a total circuit size of O(d) since f has O(n) circuit

size; (ii) applies hashing on all Θ(n/α) columns and a total of O(d) bits, for a total circuit

size of O(d) using universal hash functions computable by uniform circuits of linear size

[IKOS]. Thus G has circuit size O(d). We then do iterative composition [Gol] ⌈1/α⌉ times

to increase the output length to 2d; this increases the circuit size by a constant factor.

This result does not follow from the [HRV] construction alone, since their next-bit

pseudoentropy generator requires hash functions that support “local list-decoding” and are

not known to be implementable in linear size.

5.4.2 Saving Seed Length

In this section, we show how to save the seed length of [HRV]’s construction of pseu-

dorandom generators from next-bit pseudoentropy generators, by a factor of Θ(n).

There are three steps in the construction:

1. Entropy equalization — discarding the first I bits of the first copy and the last m− I

bits of the last copy of Gnb. Since Gnb is highly unstructured, nothing can be said

about the conditional pseudoentropy in any fixed bit, yet by discarding a random
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prefix, each position is now a random bit in Gnb. By taking many copies of Gnb, the

amortized loss of next-bit pseudoentropy is small.

Lemma 5.16. [HRV] Let n be a security parameter, m = m(n) = poly(n) and

ℓ = ℓ(n) = poly(n) be poly(n) time computable integer functions, where ℓ(n) > 1.

Let X be a distribution on {0, 1}m with (T, ϵ)-next-bit pseudoentropy at least k, for

T = T (n), ϵ = ϵ(n) and k = k(n). Let J be uniformly distributed over [m] and let

X̃ = X
(1)
J , . . . , X

(1)
m , . . . , X

(ℓ)
1 , . . . , X

(ℓ)
J−1, where X(i)’s are iid copies of X. Then every

bit of X̃ has (T − O(ℓ · m), ℓ · ϵ) conditional pseudoentropy at least (ℓ − 1)k/(ℓm),

conditioned on previous bits of X̃ and J . 1

2. Converting conditional Shannon entropy to conditional min-entropy— taking multiple

(parallel) copies. This generalizes the standard procedure of converting Shannon

entropy to min-entropy by taking sufficiently many copies. Conditional pseudo-min-

entropy is defined analogously to conditional pseudoentropy; see [HRV].

Lemma 5.17. [HRV] Let n be a security parameter, m = m(n) = poly(n) and t =

t(n) = poly(n) be poly(n) time computable integer functions. Let X be a distribution

on {0, 1}m where every bit of X has (T, ϵ) conditional pseudoentropy at least α, for

T = T (n), ϵ = ϵ(n), α = α(n). Then for every κ = κ(n) > 0 it holds that every block

of
(
X

(1)
1 , X

(2)
1 , . . . , X

(t)
1

)
, …,

(
X

(1)
m , X

(2)
m , . . . , X

(t)
m

)
, conditioned on previous blocks,

has (T ′, ϵ′) conditional pseudo-min-entropy α′, where X(i)’s are iid copies of X, and

• T ′ = T ′(n) = T −O(m · t),

• ϵ′ = ϵ′(n) = t2 · (ϵ+ 2−κ + 2−ct) for a universal constant c > 0, and

• α′ = α′(n) = t · α− Γ(t, κ), for Γ(t, k) ∈ O(
√
t · κ · log t).

1This is slightly stronger than the version in [HRV], which does not condition on J . However, it is easy
to see from their proof that one can additionally condition on J .
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3. Randomness extraction. This step is essentially a computational version of block

source extraction. At the previous step, the amount of next-bit pseudo-min-entropy

in each block is known. So we may choose hash functions of fixed output length to

make the output pseudorandom.

Lemma 5.18. [HRV] Let n be a security parameter, m = m(n) = poly(n), t =

t(n) = poly(n), α = α(n) ∈ [t(n)] and κ = κ(n) ∈ [α(n)] be poly(n) time computable

integer functions. Let {hs : {0, 1}t → {0, 1}α−κ} be some family of universal hash

functions. Let X1, . . . , Xm be distributions on {0, 1}t such that every Xi conditioned on

X1, . . . , Xi−1 has (T, ϵ) conditional pseudo-min-entropy α, for T = T (n) and ϵ = ϵ(n).

Then (h, h(X1), . . . , h(Xm)) is (T −m · tO(1),m · (ϵ+ 2−κ/2)) pseudorandom, where h

is a random hash function from the family.

We refer to [HRV] for the proofs and detailed explanation of intuition behind these steps.

The seed length blow up in [HRV] comes from Step 1 (Entropy Equalization) and Step

2 (Converting to conditional min-entropy), as each involves repeating the current generator

on many independent seeds. We show how to save the blow up due to Entropy Equalization,

by showing how randomness from a “few” copies of Gnb can be used to generate more copies

of Gnb, and iteratively.

Specifically, we show that the [HRV] construction above, but taking only ℓ = 2 copies

in Entropy Equalization, gives rise to a “Z-seeded” PRG, one that given input distribution

Z outputs some (Z̃, Ũσ) indistinguishable from (Z,Uσ). (If Z were uniformly distributed

in {0, 1}d, this would be a standard PRG.) Then we apply iterative composition (just like

iterative composition for standard PRGs [Gol]) to increase the number of pseudorandom

bits (without changing the seed distribution Z).

We begin by describing the iterative composition of Z-seeded PRGs, illustrated in
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GZ

Ũσ

GZ̃

˜̃Uσ

SamplerUd

Figure 5.3: Iterative composition for Z-seeded PRG G

Figure 5.3.

Lemma 5.19 (Iterative composition of Z-seeded PRGs). Let n be a security parameter.

Let σ = σ(n), ℓ = ℓ(n) = poly(n) be poly(n) time computable functions. Let Z = Z(n) be

a distribution samplable in poly(n) time using d = d(n) bits of randomness. Let G be a

generator computable in poly(n) time such that G(Z) = (Z̃, Ũσ) is (T, ϵ)-indistinguishable

from (Z,Uσ), for T = T (n), ϵ = ϵ(n). Then there is a (T − poly(n), ℓϵ) pseudorandom

generator G′ : {0, 1}d → {0, 1}ℓσ computable in poly(n) time.

Proof. Consider the following algorithm Gℓ(z): If ℓ = 0 then output ϵ (the empty string).

If ℓ ≥ 0 then let (z̃, ũ) = G(z) and output Gℓ−1(z̃) ◦ ũ.

We claim that Gℓ(Z) is pseudorandom, so we obtain the desired PRG G′ by composing

Gℓ with algorithm that samples Z given d random bits. Clearly G′ runs in poly(n) time.

We show the pseudorandomness of Gℓ(Z) by a hybrid argument.

Suppose for contradiction that Gℓ(Z) is not (T ′, ℓϵ)-pseudorandom, i.e. there exists a

T ′ time ℓϵ-distinguisher D between Gℓ(Z) and Uℓσ. For each 0 ≤ i ≤ ℓ define a hybrid

distribution Hi = (Gi(Z), U(ℓ−i)σ). Thus H0 = Uℓσ and Hℓ = Gℓ(Z). Let I ∈R [ℓ]. Then

E [D(HI)−D(HI−1)] =
1

ℓ

ℓ∑
k=1

E [D(Hk)−D(Hk−1)] =
1

ℓ
E[D(Gℓ(Z))−D(Uℓσ)] > ϵ.

We use this to break the pseudorandomness property of G. Denote G(Z) = (Z̃, Ũσ). We

claim that D′(z, u) = D(GI−1(z) ◦ u ◦ U(ℓ−I)σ), where I ∈R [ℓ] and |u| = σ, ϵ′-distinguishes

(Z,Uσ) from (Z̃, Ũσ). Notice that given (z̃, ũ) = G(z), we have (GI−1(z̃), ũ) = GI(z) by
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definition of Gℓ. Thus, D′(Z̃, Ũσ) = D(GI(Z) ◦ U(ℓ−I)σ) = D(HI) whereas D′(Z,Uσ) =

D(GI−1(Z) ◦ Uσ ◦ U(ℓ−I)σ) = D(HI−1). It follows that

E[D′(Z,Uσ)−D′(Z̃, Ũσ)] = E[D(HI)−D(HI−1)] > ϵ.

Moreover, D′ is computable in T ′ + poly(n) time. For an appropriate T ′ = T − poly(n),

this contradicts that (Z,Uσ) and (Z̃, Ũσ) are (T, ϵ) indistinguishable. Therefore, Gℓ(Z) is

(T − poly(n), ℓϵ)-pseudorandom.

We now show how to construct a Z-seeded PRG G from any next-bit pseudoentropy

generator Gnb, as demonstrated in Figure 5.4. By applying iterative composition, this gives

rise to a seed-efficient construction of PRG from a pseudoentropy generator Gnb which

should be compared to the original construction illustrated in Figure 5.1.

Theorem 5.20 (Next-bit pseudoentropy =⇒ Z-seeded PRG). Let n be a security param-

eter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2] be polynomial-time

computable functions. For every polynomial-time computable Gnb : {0, 1}n → {0, 1}m such

that Gnb(Un) has (T, ϵ) next-bit pseudoentropy at least n+∆ (for T = T (n) and ϵ = ϵ(n)),

there exists distribution Z = Z(n) and generator G such that:

1. Z is samplable in polynomial time using

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)

bits of randomness;

2. G is computable in polynomial time and G(Z) is (T − nO(1), nO(1) · (ϵ + 2−κ)) indis-

tinguishable from (Z,U), U being uniformly random string of length Ω(d ·∆/n).

Moreover, G is computable with O(d/n) (uniform and independent) oracle calls to Gnb.
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Gnb(Un)

H
(·)

H
(·)

H
(·)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Ũ

Gnb(Ũ
(1))

Gnb(Ũ
(2))

Gnb(Ũ
(t))

Ũ (1)

Ũ (t)
. . .

. . .

(tn bits)

Figure 5.4: Construction of Z-seeded PRG G from any next-bit pseudoentropy generator
Gnb. The shaded area represents input Z. The bold boxes are the output G(Z) = (Z̃, Ũ).
The ith row is shifted by a random offset J (i) ∈ [n + m]. An arbitrary universal hash
function H (with a proper output length) is then applied to all bits in the same column,
producing pseudorandom bits (Ũ (1), . . . , Ũ (t), Ũ) where each Ũ (i) is of length n. We then
apply Gnb to each Ũ (i). Together with unused bits of Z they form Z̃.
We ignore H, J (1), …, J (t) in the figure since they are the same in the input and output of
G.

Proof. Let t be a parameter to be fixed later. Let J (1), . . . , J (t) be t iid copies of J ∈R [m],

and H ∈R {0, 1}t. Consider

Z =
(
H ◦ J (1) . . . J (t) ◦Gnb(U

(1))1,...,J(1)−1 . . . Gnb(U
(t))1,...,J(t)−1 ◦Gnb(U

(t+1)) . . . Gnb(U
(2t))

)
where U (i)’s are iid copies of Un. Z is clearly samplable in polynomial time using d =

t+ t · (logm+ 2n) = O(tn) bits of randomness.

We now define G. Interpret G’s input as

h ◦ j(1) . . . j(t) ◦Gnb(u
(1))1,...,j(1)−1 . . . Gnb(u

(t))1,...,j(t)−1 ◦Gnb(u
(t+1)) . . . Gnb(u

(2t))

where h, j(i), u(i) are strings of length t, logm and n respectively. G is defined as follows:

1. Entropy Equalization: For each i ∈ [t] (that is, for each “row”), we set y(i) =(
Gnb(u

(t+i))j(i),...,m ◦Gnb(u
(i))1,...,j(i)−1

)
;
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2. Apply a universal hash function h : {0, 1}t → {0, 1}t′ where t′ will be chosen later so

that t′m > tn, on y
(1)
j ◦ · · · ◦ y

(t)
j , for each j ∈ [m] (that is, for each “column”). Thus

m calls to h produce t′m bits in total:

ũ(1) . . . ũ(t) ◦ ũ = h(y
(1)
1 , . . . , y

(t)
1 ) ◦ h(y(1)2 , . . . , y

(t)
2 ) . . . h(y(1)m , . . . , y(t)m )

where ũ(1), . . . , ũ(t) are n-bit strings, and ũ is the remaining t′m− tn bits.

3. Output

h ◦ j(1) . . . j(t) ◦Gnb(u
(t+1))1,...,j(1)−1 . . . Gnb(u

(2t))1,...,j(t)−1 ◦Gnb(ũ
(1)) . . . Gnb(ũ

(t)) ◦ ũ.

We now prove that G(Z) is computationally indistinguishable from (Z ◦ U) where U =

Ut′m−tn (i.e. a t′m− tn bit random string). Suppose we run G(Z) to obtain

G(Z) =
(
H ◦W ◦Gnb(Ũ

(1)) . . . Gnb(Ũ
(t)) ◦ Ũ

)
where Ũ is of length t′m− tn, and

W =
(
J (1) . . . J (t) ◦Gnb(U

(t+1))1,...,J(1)−1 . . . Gnb(U
(2t))1,...,J(t)−1

)
.

In the following, we will show that G(Z) =
(
H ◦W ◦Gnb(Ũ

(1)) . . . Gnb(Ũ
(t)) ◦ Ũ

)
is com-

putationally indistinguishable from (Z ◦ U) =
(
H ◦W ◦G(1)

nb . . . G
(t)
nb ◦ U

)
, where G

(i)
nb ’s are

iid copies of Gnb(Un). The proof is essentially the same 3-step analysis as in Haitner et. al,

with the tweak that the conditional pseudoentropy and conditional pseudo-min-entropy are

now additionally conditioned on W , and the final indistinguishablility holds for W taking

any value.

In Step 1, we set Y (i) = Gnb(U
(t+i))J(i),...,m ◦ Gnb(U

(i))1,...,J(i)−1. Recall that Gnb(Un)

has (T, ϵ) next-bit pseudoentropy at least n + ∆. Applying Lemma 5.16 (Entropy Equal-

ization) with ℓ = 2, X(1) = Gnb(U
(t+i)) and X(2) = Gnb(U

(i)), we obtain that every bit of
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Y (i) conditioned on previous bits of Y (i), Gnb(U
(t+i))1,...,J(i)−1 and J (i), has (T −O(m), 2ϵ)

conditional pseudoentropy at least (∆ + n)/m.

Recall that Y (1), . . . , Y (t) are t independent rows. By Lemma 5.17 (t-fold parallel

repetition), Y (1)
j , . . . , Y

(t)
j has (T − O(mt), t2 · (2ϵ + 2−κ + 2−ct)) conditional pseudo-min-

entropy at least α = t(∆ + n)/m − O(
√
tκ log t), conditioned on W and all Y (1)

k , . . . , Y
(t)
k

where k < j.

In Step 2, we apply hashing to each “column”. By Lemma 5.18, if we set t′ = α− 2κ,

then (H ◦ Ũ (1) . . . Ũ (t) ◦ Ũ) and (H ◦ Utn ◦ U) are (T − O(mt) −mtO(1),mt2 · (2ϵ + 2−κ +

2−Ω(t)) + m · 2−κ) indistinguishable, for W taking any value. Thus the same can be said

about (H ◦Gnb(Ũ
(1)) . . . Gnb(Ũ

(t)) ◦ Ũ) and (H ◦G(1)
nb . . . G

(t)
nb ◦ U). Thus we conclude that

G(Z) =
(
H ◦W ◦Gnb(Ũ

(1)) . . . Gnb(Ũ
(t)) ◦ Ũ

)
is (T −O(mt)−mtO(1),mt2 · (2ϵ+ 2−κ + 2−Ω(t)) +m · 2−κ) indistinguishable from

(
H ◦W ◦G(1)

nb . . . G
(t)
nb ◦ U

)
= (Z ◦ U) .

We are left to set the parameters. We need to guarantee

Ω

(
∆

n
d

)
≤ t′m− tn =

(
t(∆ + n)

m
−O(

√
tκ log t)− 2κ

)
m− tn

where d = O(tn). Assuming κ ≤ O(t), this can be simplified to
√
t

log t ≥ O

(
m
√
κ

∆

)
which is guaranteed for an appropriate choice of

t = O

(
m2κ log2

(
mκ
∆

)
∆2

)
,

and consequently

d = O(tn) = O

(
m2nκ log2

(
mκ
∆

)
∆2

)
= O

(
m2nκ log2

(
nκ
∆

)
∆2

)
.
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So (Z,U) and G(Z) are (T − O(ts) − mtO(1),mt2 · (2ϵ + 2−κ + 2−Ω(t)) + m2−κ) = (T −

nO(1), nO(1) · (ϵ + 2−κ)) indistinguishable. Moreover, G makes O(d/n) uniformly random

oracle calls to Gnb.

Combining Lemma 5.19 and Theorem 5.20, we obtain a seed length efficient construc-

tion of pseudorandom generators:

Corollary 5.21 (Next-bit pseudoentropy =⇒ pseudorandomness). Let n be a security pa-

rameter. Let ∆ = ∆(n) ∈ [1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2], ℓ = ℓ(n) = poly(n)

be computable in time poly(n). For every polynomial time computable Gnb : {0, 1}n →

{0, 1}m such that Gnb(Un) has (T, ϵ) next-bit pseudoentropy at least n + ∆ (for T = T (n)

and ϵ = ϵ(n)), there exists a polynomial-time computable (T − nO(1), nO(1) · (ϵ + 2−κ))

pseudorandom generator G : {0, 1}d → {0, 1}d·(ℓ∆/n) with seed length

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)
.

Moreover, G is computable with O(ℓd/n) (uniformly random) oracle calls to Gnb.

Proof. By Theorem 5.20, there is a Z-seeded PRG G′ where Z is samplable in polynomial

time from Ud, and G′(Z) is (T − nO(1), nO(1) · (ϵ+ 2−κ)) indistinguishable from (Z,U). By

Lemma 5.19 there exists a pseudorandom generator G with the above parameters.

In particular, from a one-way function f : {0, 1}n → {0, 1}n and setting m = n,

∆ = logn, κ = ω(logn), ℓ = 2n/∆ we can construct a pseudorandom generator of seed

length any d = ω(n3 logn). Like [HRV], the construction obtains Θ(logn) bits of additive

stretch per invocation of the one-way function, which is optimal by [GGKT].
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Chapter 6

Impossibility of Black-Box

Construction of Succinct

Non-Interactive Argument from

Uniform Assumptions

A result of Gentry and Wichs [GW] shows that there is no black-box construction of

succinct non-interactive arguments (SNARGs) from any natural cryptographic assumption

(formally, they consider falsifiable cryptographic assumptions: ones that are defined by a

polynomial-time security game). Their result relies on the (mild) assumption that there exist

hard subset membership problems, which is equivalent to the existence of subexponentially

hard one-way functions. One limitation is that they need to work in the non-uniform setting,

in part due to their use of the Min-Max Theorem in Lemma 3.1 of [GW].

In this chapter, we show how to obtain the analogous result in the uniform setting, as an

application of the Uniform Min-Max Theorem from Chapter 2. More precisely, we apply a
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low time complexity version of Lemma 3.1 of [GW] (Chapter 2, Theorem 2.18) proved using

the Uniform Min-Max Theorem. We show that, assuming that there exist subexponentially

hard one-way functions that are secure against uniform algorithms, there is no black-box

construction of SNARGs based on cryptographic assumptions where security is measured

against uniform algorithms (unless the assumption is already false).

A succinct non-interactive argument (SNARG) is a non-interactive argument system

where the proof size is bounded by a fixed polynomial, for all instances and witnesses whose

size can be an arbitrarily large polynomial. Formally,

Definition 6.1 (SNARG). Let L be an NP language associated with relation R. We

say that a tuple (G,P, V ) of probabilistic polynomial-time (PPT) algorithms is a succinct

non-interactive argument for R if the following properties hold:

• Completeness: For all (x,w) ∈ R, if we choose (CRS,PRIV)← G(1n),Π← P (CRS, x, w),

then

Pr [V (PRIV, x,Π) = 0] = negl(n).

• Soundness: For every PPT algorithm (efficient adversary)A, if we choose (CRS,PRIV)←

G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] = negl(n).

• Succinctness: For all (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS), the length of the

proof π = P (crs, x, w) is |π| = poly(n)(|x| + |w|)o(1). We also consider a weaker

variant called slightly succinct, where we require the length of a proof to be |π| =

poly(n)(|x|+ |w|)α + o(|x|+ |w|) for some constant α < 1.1

1Earlier versions of [GW] contained a minor bug in the definition of slight succinctness. We use the
corrected definition from the current version of their paper.
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Our notion of a falsifiable cryptographic assumption is analogous to [GW], except that

the adversary A is a uniform algorithm instead of circuit:

Definition 6.2 (Falsifiable assumption). Given an interactive PPT algorithm Chal (the

challenger), the uniform falsifiable (cryptographic) assumption (associated with) Chal states

that for all (uniform) PPT algorithms H, the probability that Chal(1n) outputs a special

symbol win after interacting with H(1n) is at most negl(n) for all sufficiently large n.

For any randomized (possibly inefficient) function H, we let BreakH(n) denote the

above probability and say that H breaks the assumption if BreakH(n) ≥ 1/poly(n) for

infinitely many n.

Remark. An alternative definition of falsifiable assumption allows specifying a constant β,

and says that the probability Chal(1n) outputs win is at most β + negl(n). However, it

turns out that setting β = 0, i.e. our definition above, is without loss of generality [HH].

We adopt the simpler definition because it is convenient for our proof.

Next we define black-box reductions:

Definition 6.3 (Adversary and reduction). For a randomized function A and a constant

c ∈ N, we say (A, c) is a (G,P, V )-adversary if |A(1n, crs)| ≤ nc and A violates the soundness

condition infinitely often, i.e. if we choose (CRS,PRIV)← G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] ≥ n−c

for infinitely many n. We say (A, c) is an a.e. (G,P, V )-adversary if A violates soundness

for all sufficiently large n.

A uniform black-box reduction showing the soundness of (G,P, V ) based on a falsifiable

assumption Chal is a family of (uniform) probabilistic oracle algorithms {Redc} (one for

each c ∈ N) such that for every (G,P, V )-adversary (A, c), RedAc (1n) breaks the assumption

and runs in time polyc(n) (i.e. a polynomial that depends on c).
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For a probabilistic oracle algorithm Red, we say a query (1m, crs) of Red(1n) has length

m. In general, Red(1n) may make queries of various lengths. We say Red is length-mapping

if for all n, all queries of Red(1n) are of the same length m = m(n) and m is computable in

time poly(n); denote this m by queryRed(n). Most reductions in cryptography set m = n

i.e. preserve length; that is, the security parameter of (G,P, V ) is equal to that of the

assumption.

Following [GW], our results assume the existence of hard subset membership problem.

Definition 6.4 (Uniformly hard subset membership problem). Let n be a security param-

eter, L be an NP language associated with relation R. We say ((X,W ), U) is a subset

membership problem for R if (X,W ) = (X,W )(n) is a poly(n)-time samplable joint distri-

bution whose support lies in R, and U = U(n) a poly(n)-time samplable distribution with

Pr[U /∈ L] ≥ n−O(1).

A subset membership problem ((X,W ), U) is a subexponentially hard if X and U are

(2Ω(nδ), 2−Ω(nδ))-indistinguishable for a constant δ > 0. We say it is exponentially hard if

the above occurs and |x|+ |w| = O(nδ) for every (x,w) ∈ supp(X,W ).

This is a relatively mild assumption; the existence of subexponentially hard subset

membership problems is equivalent to the existence of subexponentially hard one-way func-

tions.

Remark. Our definition of a hard subset membership problem is a variant of [GW] that is

needed in the uniform setting, but also can be used in the nonuniform setting of [GW]. In

[GW], they require that X is indistinguishable from a (not necessarily samplable) distribu-

tion U whose support is disjoint from L, whereas we require that U is samplable and allow

it to hit L with probability up to 1− nO(1).

We now state the uniform analogue of the main result of [GW]. Compared to [GW],
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our Theorem 6.5 makes the weaker assumption of subexponentially hard subset membership

problem with respect to uniform algorithms, with the conclusion that a uniform falsifiable

assumption cannot be broken also being weaker (unless the assumption is false).

Theorem 6.5 (Main theorem). Let L be an NP language associated with relation R that

has a subexponentially hard subset membership problem, and (G,P, V ) be an non-interactive

proof system for R that satisfies the completeness and succinctness properties. Then for

every uniform falsifiable assumption Chal, one of the following must hold:

• The assumption Chal is false, or

• There is no uniform black-box reduction showing the soundness of (G,P, V ) based on

Chal.

The same conclusion also holds if we assume an exponentially hard subset membership

problem, and (G,P, V ) is only slightly succinct.

The same conclusion also holds if we require the uniform black-box reduction to work

only for all (G,P, V )-adversary (A, c) where c is sufficiently large.

To prove it in the nonuniform setting, the main idea of [GW] is showing that any

SNARG (G,P, V ) has an inefficient adversary A that can be (efficiently) “simulated”

i.e. there exists an efficient algorithm Sim (the simulator) such that RedA(1n) ≈ RedSim(1n)

for all PPT oracle algorithms Red (cf. [GW] Lemma 4.1). Thus, if there were a black-box

reduction Red showing the soundness of (G,P, V ) based on a falsifiable assumption, then

RedA would break the falsifiable assumption (since A is an adversary) and so would RedSim

(since RedA(1n) ≈ RedSim(1n)). In other words, the assumption would be false.

To prove it in the uniform setting, we use a similar approach with several necessary

tweaks. We show that there is an adversary simulator Sim, which is a PPT algorithm that
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with noticeable probability outputs a randomized circuit Bn that simulates some An, where

An is an (inefficient) adversary on security parameter n:

Lemma 6.6 (Existence of adversary simulator). Let L be an NP language associated

with relation R that has a subexponentially hard subset membership problem ((X,W ), U),

and (G,P, V ) be a non-interactive proof system for R that satisfies the completeness and

succinctness properties. Let n be a security parameter, ((X,W ), U) = ((X,W ), U)(n),

(PRIV,CRS) = G(1n), and Π = P (CRS, X,W ). Let ℓ = ℓ(n) ≥ n be a polynomial bound

on the running time of G(1n) as well as the proof size |Π|, and c be a constant such that

|X|+ |Π| ≤ nc.

Let Red be any length-mapping PPT oracle algorithm where queryRed(k) = ω(1). Then

there is a PPT algorithm Sim such that for all polynomials q(·), for all sufficiently large k,

and for n = queryRed(k), w.p. at least 1/poly(k), Sim(1k) outputs a randomized circuit Bn

such that there is a randomized function An satisfying:

• (An, c) is a (G,P, V )-adversary on the security parameter n;

• BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (w.l.o.g. Bn only takes inputs (1n, ·).)

The same conclusion also holds if we assume an exponentially hard subset membership

problem, and that (G,P, V ) is only slightly succinct.

Note that Lemma 6.6 is only stated for length-mapping reductions (unlike [GW]). We

remove this restriction by a general technique when we prove the main theorem in Section

6.2.

6.1 Proof of Existence of Adversary Simulator

The proof is set up as follows. Given a subexponentially hard subset membership

problem ((X,W ), U), we can w.l.o.g. assume that X and U are (2dℓ, 2−dℓ)-indistinguishable
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for a sufficiently large constant d, where ℓ = ℓ(n) is a bound on the length of the proof

output by P (crs, x, w) for (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS). (If X and U are

only (2n
δ
, 2−n

δ
)-indistinguishable for some δ > 0, we simply re-index, replacing X(n) with

X((dℓ)1/δ)).) If ((X,W ), U) is exponentially hard, we can also ensure that X and U are

(2dℓ, 2−dℓ)-indistinguishable by re-indexing so that ℓ ≤ poly(n) · (|x|+ |w|)α+ o(|x|+ |w|) =

O(|x|+ |w|)/d for all (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS).

Overview of the Proof. Consider the joint distribution (CRS, X,Π) where CRS =

CRS(n) is the distribution of the common reference string, and Π = Π(n) is the ℓ-bit

proof produced by P for the instance/witness pair (X,W ). Using the fact that Π is short

(by succinctness), and X and U are ϵ-indistinguishable for ϵ = 2−O(ℓ), we can apply Chap-

ter 2, Theorem 2.18 to conclude that, for every 2O(ℓ)-time oracle algorithm D, there is a

poly(2ℓ, 1/ϵ)-time randomized algorithm R that outputs a randomized circuit Fn such that

with probability at least Ω(ϵ2/ℓ) over Fn,

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < 2ϵ (⋆)

where Q can be any poly-time samplable distribution.

An adversary An can be defined to be An(1
n, crs) = (U,Fn(crs, U)) for any Fn where

(⋆) holds, for an appropriate choice of D. (Note that Fn depends on our choice of D.) If we

take D to be the verifier V , then we can show that such An breaks soundness on security

parameter n. Indeed, V accepts (X,Π) with high probability, so by (⋆) it must also accept

(U,Fn(CRS, U)) = An(1
n,CRS) with high probability. (Some extra work is needed to deal

with the fact that V can access its private coins PRIV in addition to CRS.)

Thus we only need to argue that, for an appropriate choice of D, such An is simulated

by some randomized circuit Bn generated by a PPT algorithm Sim; then combining the two

choices of D will yield the desired adversary An. Our choice of Bn is the randomized circuit
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such that Bn(1
n,CRS) = (X,Π). If we appropriately construct D from the reduction Red

and challenger Chal, then using (⋆) we can show that

BreakRedAn (k)− BreakRedBn (k) ≤ poly(k) · 2−O(ℓ),

where ℓ = ℓ(n) for n = queryRed(k). (If BreakRedAn (k)− BreakRedBn (k) > poly(k) · 2−O(ℓ),

then we could use Red and Chal to construct a 2−O(ℓ)-distinguisher between (CRS, Bn(1
n,CRS)) =

(CRS, X,Π) and (CRS, An(1
n,CRS)) = (CRS, U, Fn(CRS, U)), violating (⋆).)

This completes the proof provided that 2−O(ℓ) ≤ 1/poly(k), which follows if Red does

not make queries that are too short. If instead 2−O(ℓ) > 1/poly(k), then we construct a

simulator Bn differently — simply by letting Bn be such that Bn(1
n, crs) = (U,Fn(crs, U)))

where Fn is the random output of R. Then with probability at least Ω(ϵ2/ℓ) ≥ 1/poly(k)

over Fn, (⋆) holds for Fn, hence we can define the adversary An from Fn (defined to be

An(1
n, crs) = (U,Fn(crs, U)), as explained above) to obtain a perfect simulator Bn = An.

(Gentry and Wichs [GW] handle short queries using nonuniformity — by hardcoding the

answers to all short queries.)

Lemma 6.7 (Existence of adversary simulator). Let L be an NP language associated with

relation R that has a subset membership problem ((X,W ), U), and (G,P, V ) is a non-

interactive proof system for R that satisfies the completeness property. Let n be a security

parameter, ((X,W ), U) = ((X,W ), U)(n), (PRIV,CRS) = G(1n), Π = P (CRS, X,W ). Let

ℓ = ℓ(n) ≥ n be a polynomial bound on the running time of G(1n) as well as the proof size

|Π|, and c be a constant such that |X|+ |Π| ≤ nc.

Suppose X and U are ϵ-indistinguishable for all t-time randomized algorithms, for

appropriate ϵ = 2−O(ℓ) and t = 2O(ℓ). Let Red be any length-mapping PPT oracle algorithm

where queryRed(k) = ω(1). Then there is a PPT algorithm Sim such that for all polynomials

q(·), for all sufficiently large k, and for n = queryRed(k), w.p. at least 1/poly(k), Sim(1k)
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outputs a randomized circuit Bn such that there is a randomized function An satisfying:

• (An, c) is a (G,P, V )-adversary on the security parameter n;

• BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (w.l.o.g. Bn only takes inputs (1n, ·).)

Proof. Let S be the PPT algorithm that on input (1n, crs) samples (x,w) ← (X,W ) and

outputs (x, P (crs, x, w)), so that S(1n,CRS) = (X,Π). For technical convenience we assume

|CRS| = ℓ/2. To construct Sim, we shall apply Theorem Chapter 2, 2.18 to the following

oracle algorithm D:

Claim 6.8. Let Q = (Uℓ/2, U) (where Uℓ/2 is uniform on {0, 1}ℓ/2 and independent from U).

There is a t′ = 2O(ℓ) · poly(1/ϵ)-time oracle algorithm D such that the following holds for

all polynomials q(·), all sufficiently large n, and all randomized functions Fn : supp(Q) →

{0, 1}ℓ satisfying

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < ϵ′ = 2ϵ.

Define

An(1
n, crs) =


(U,Fn(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)
.

Then

• An break soundness of (G,P, V ) on security parameter n; and

• For all k ≤ 2ℓ such that queryRed(k) = n,

BreakRedAn (k)− BreakRedS (k) < 1/q(k).

Proof of Claim. We will prove the contrapositive. Suppose that either

161



Chapter 6: Impossibility of Black-Box Construction of Succinct Non-Interactive Argument
from Uniform Assumptions

Case 1. An does not break soundness of (G,P, V ) on security parameter n, or

Case 2. For some k ≤ 2ℓ such that queryRed(k) = n,

BreakRedAn (k)− BreakRedS (k) ≥ 1/q(k).

We show how to construct a t′-time oracle algorithm D with

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] ≥ ϵ′.

To do so, we will show how to constructD with distinguishing advantage at least 3ϵ′, both in

Case 1 and in Case 2 where we assume k is known. This suffices, because then we can test the

distinguisher in Case 1 as well as the distinguisher in Case 2 for all choices of k = 1, . . . , 2ℓ,

and output the best performing one. (More specifically, we run these 1 + 2ℓ distinguish-

ers on O((1/ϵ′2) log(1/ϵ′)) independent samples of (CRS, X,Π) and (CRS, U, Fn(CRS, U))

as well as their coin tosses and oracle answers, and output the one with the highest av-

erage distinguishing advantage, and it follows from a Chernoff bound that this yields an

ϵ′-distinguisher.)

Case 1. An does not break soundness on security parameter n. Recall that soundness

says Pr [V (PRIV, U,Π′) = 1 ∧ U /∈ L] ≤ n−c if we choose (CRS,PRIV) ← G(1n), (U,Π′) ←

An(1
n,CRS) (thus Π′ = Fn(CRS, U)). By union bound,

Pr
[
V
(
PRIV, U,Π′

)
= 1
]
≤
[
V
(
PRIV, U,Π′

)
= 1 ∧ U /∈ L

]
+ Pr[U ∈ L] = 1− n−O(1).

On the other hand, the completeness property says

Pr [V (PRIV, X,Π) = 1] = 1− negl(n).

Thus V is an n−O(1)-distinguisher between (PRIV, X,Π) and (PRIV, U,Π′). Note that con-

ditioned on CRS = crs for any crs, PRIV is independent of (X,Π), and that PRIV|CRS=crs can
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be sampled in 2O(ℓ) time given crs (by running G(1n; z) on all sequences z ∈ {0, 1}ℓ of coin

tosses). Thus from V we also get a 2O(ℓ) time n−O(1)-distinguisher D for (CRS, X,Π) and

(CRS, U,Π′). Specifically,D(crs, x, π) samples priv← PRIV|CRS=crs and outputs V (priv, x, π),

so

E[D(CRS, X,Π)]− E[D(CRS, U, Fn(CRS, U))]

= E[D(CRS, X,Π)]− E[D(CRS, U,Π′)]

= Pr [V (PRIV, X,Π) = 1]− Pr
[
V
(
PRIV, U,Π′

)
= 1
]

= n−O(1) ≥ 3ϵ′.

Case 2. For some k ≤ 2ℓ such that queryRed(k) = n, we have

BreakRedAn (k)− BreakRedS (k) ≥ 1/q(k).

Assuming k is given, we use the hybrid argument to construct a distinguisher D be-

tween (CRS, X,Π) = (CRS, S(1n,CRS)) and (CRS, U, Fn(CRS, U)) = (CRS, An(1
n,CRS)).

Suppose Red(1k) runs in time p(k) for some polynomial p. Let Hi be the stateful oracle

that behaves like An for the first i queries and S for all rest of the queries, so that Hq = An

and H0 = S. By the hybrid argument, E
[
RedHI+1(1k)

]
− E

[
RedHI (1k)

]
≥ 1/p(k)q(k) for

a randomly chosen I ∈R {1, . . . , p(k)}. This immediately gives us a distinguisher D′ for

(Z,CRS′, S(1n,CRS′)) and (Z,CRS′, An(1
n,CRS′)) where Z is the internal state of the in-

teraction (RedHI (1k),Chal(1k)) after I ∈R {1, . . . , p(k)} queries, and CRS′ is the I-th query

(which is determined by Z). Specifically: D′(z, crs, x, π) sets the internal state of Red(1k)

and Chal(1k) to z, runs the interaction (RedS(1k),Chal(1k)) starting from state z using

(x, π) as the answer to the I-th query (1n, crs), and finally outputs 0 or 1 depending on
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whether Chal outputs win. Thus

E
[
D′(Z,CRS′, S(1n,CRS′))

]
− E

[
D′(Z,CRS′, An(1

n,CRS′))
]

≥ E
[
RedHI−1(1k)

]
− E

[
RedHI (1k)

]
≥ 1

p(k)q(k)
= 2−O(ℓ).

To obtain a desired distinguisher D′′ for (CRS, An(1
n,CRS)) and (CRS, S(1n,CRS)), we

simply let D′′ sample (z, crs′)← (Z,CRS′) and output

D′′(crs, x, π) =


D′(z,crs,x,π)

2ℓ·Pr[CRS=crs] , (crs = crs′)

0, (crs ̸= crs′)
.

Note that D′′ is [0, 1]-bounded since CRS is sampled by G using ℓ coin tosses (so Pr[CRS =

crs] ≥ 2−ℓ for all crs ∈ supp(CRS)). We are dividing by Pr[CRS = crs] in order to “uni-

formize” CRS, so that

E[D′′(CRS, A(1n,CRS))]

=
∑

crs∈supp(CRS)
Pr[CRS = crs] · E

[
D′(Z,CRS′, An(1

n,CRS′))
2ℓ · Pr[CRS = crs] · I

(
CRS′ = crs

)]

= E
[
D′(Z,CRS′, An(1

n,CRS′)) · I
(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

(where I(·) is the indicator function), and similarly for S. Thus D′′ has distinguishing

advantage

E[D′′(CRS, S(1n,CRS))]− E[D′′(CRS, An(1
n,CRS))]

= E
[
D′(Z,CRS′, S(1n,CRS′)) · I

(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

− E
[
D′(Z,CRS′, An(1

n,CRS′)) · I
(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

=
(
E[D′(Z,CRS′, S(1n,CRS′))]− E[D′(Z,CRS′, An(1

n,CRS′))]
)
· 2−ℓ

≥ 2−O(ℓ) · 2−ℓ = 4ϵ′,
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where the second equality holds because S(1n,CRS′) and An(1
n,CRS′) are identical when-

ever CRS′ /∈ supp(CRS).

To conclude Case 2, it remains to show that D′′ can be implemented in time 2O(ℓ) ·

poly(1/ϵ). First, Pr[CRS = crs] can be computed in time 2O(ℓ) by enumerating coin tosses

of G(1n). A query (1n, crs) to S can be answered in poly(n) time. A query (1n, crs) to An

with crs ∈ CRS can be answered by sampling (Q,Fn(Q)) = (Uℓ/2, U, Fn(Uℓ/2, U)) for up

to O(2ℓ · log(1/(ϵ · p(k)))) times until Uℓ/2 = crs (recall that we assume |crs| = ℓ/2 in the

setup of Lemma 6.6). Thus we can sample (z, crs) ← (Z,CRS′) and run D′(z, crs, x, π) in

p(k) ·max
(
poly(p(k)), 2O(ℓ)

)
= 2O(ℓ) time. It follows from a union bound that

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] ≥ 3ϵ′.

Given Claim 6.8, we now apply Chapter 2, Theorem 2.18 to the oracle algorithm D we

constructed in Claim 6.8. Since X and U are ϵ-indistinguishable, Theorem 2.18 yields a

t′′ = poly(2ℓ, t′, 1/ϵ)-time randomized algorithm R(1n) that w.p. at least Ω(ϵ2/ℓ) outputs a

randomized circuit Fn satisfying

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < 2ϵ. (6.1)

We define the simulator Sim(1k) to be the following algorithm:

1. Let n = queryRed(k);

2. If ℓ(n) ≥ log k, then output a circuit Bn where Bn(1
n, crs) runs S(1n, crs);

3. Else, ℓ(n) < log k. We run R(1n) to obtain a randomized circuit F ′n, and output the
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randomized circuit Bn where

Bn(1
n, crs) =


(U,F ′n(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)
.

Note that Sim is a PPT algorithm since it runs in time 2O(ℓ(n)) = poly(k) if ℓ(n) < log k,

and in time poly(k) if ℓ(n) ≥ log k. To prove that Sim is indeed an adversary simulator, we

define the adversary An (which depends on the coins of Sim) to be

An(1
n, crs) =


(U,F ∗n(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)

where F ∗n is defined as follows:

• If ℓ(n) ≥ log k, we let F ∗n be any randomized circuit such that Eq. 6.1 holds for

Fn = F ∗n ;

• If ℓ(n) < log k, we let F ∗n be F ′n generated by R in Step 3 of Sim, so that Eq. 6.1 holds

for Fn = F ∗n w.p. at least Ω(ϵ(n)2/ℓ(n)) = 2−O(ℓ(n)) ≥ 1/poly(k) over the coins of R

(hence coins of Sim).

We now apply Claim 6.8 to Fn = F ∗n . Note that Claim 6.8 holds “for all sufficiently

large n”, but since queryRed(k) = ω(1) it must also hold for all sufficiently large k and

n = queryRed(k). Thus Claim 6.8 implies that for all polynomials q(·), for all sufficiently

large k and n = queryRed(k), w.p. at least 1/poly(k) over Bn, An satisfies

1. (An, c) is a (G,P, V )-adversary on the security parameter n; and

2. If ℓ(n) ≥ log k, then BreakRedAn (k)− BreakRedS (k) < 1/q(k).

To conclude the proof it remains to show that

BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (6.2)
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Indeed, if ℓ(n) ≥ log k, then Bn runs S, so Eq. 6.2 follows from Item 2 above. If ℓ(n) < log k,

then Eq. 6.2 holds because An = Bn (since F ∗n = F ′n) thus BreakRedAn (k) = BreakRedBn (k).

6.2 Proof of Main Theorem

The next two lemmas show that we can “convert” a generic black-box reduction into

a length-mapping reduction, which in addition does not make very short queries. To do

so, we first convert a generic black-box reduction into one that does not make very short

queries (Lemma 6.9), by guessing “optimal” oracle answers for these very short queries. We

then convert it to a length-mapping reduction (Lemma 6.10) by a “sparsification” trick, due

to Chung, Mahmoody, and Pass [CMP]. As a consequence of “sparsification” the resulting

length-mapping reduction no longer works with an arbitrary SNARG adversary. However,

it still suffices for proving the main theorem using Lemma 6.6.

Lemma 6.9. Let c ∈ N be a constant. Suppose there is a PPT oracle algorithm Red with

the property that for every randomized function A where (A, c) is a (G,P, V )-adversary,

RedA breaks the falsifiable assumption. Then there is another PPT oracle algorithm R̂ed

satisfying the same property, and in addition every query of R̂ed is of length at least

s = s(n) = (log logn)Ω(1).

Proof. Suppose G(1m) outputs a crs of length md and let s = s(n) = (log logn)1/(d+1). We

define R̂ed(1n) as follows:

1. For each m < s, select a random function Bm : {0, 1}md → {0, 1}mc ;

2. Run Red, using Bm(crs) to answer every query (1m, crs) where m < s.

To see that R̂ed satisfies the same property as Red, consider any (G,P, V )-adversary (A, c).

By averaging the coins of A, for each m < s we can fix some (deterministic) function
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Am : {0, 1}md → {0, 1}mc and define

Â(1m, crs) =


Am(crs), m < s

A(1m, crs) m ≥ s

,

such that RedÂ breaks the falsifiable assumption. Note that {Bm : m < s} can be encoded

as an s · (sc)s
d

= O(logn) bit string. Thus w.p. at least 1/poly(n), R̂ed
A
(1n) sets Bm = Am

for all m < s and behaves identically to RedÂ. Therefore R̂ed
A
also breaks the falsifiable

assumption.

Lemma 6.10 (Chung, Mahmoody, and Pass [CMP]). Let c ∈ N be a constant. Suppose

there is a PPT oracle algorithm Red with the property that for every randomized function

A where (A, c) is a (G,P, V )-adversary, RedA breaks the falsifiable assumption, and every

query of Red is of length at least s(n) = (log logn)Ω(1). Then there is a length-mapping

PPT oracle algorithm R̂ed where queryR̂ed(n) ≥ s(n), such that for infinitely many n

and m = queryR̂ed(n), for every randomized function Am where (Am, c) is a (G,P, V )-

adversary on security parameter m (of SNARG), R̂ed
Am

(1n) breaks the assumption on

security parameter n (of the assumption).

Proof. We construct R̂ed from Red as follows. Fix a sparse sequence h1, h2, . . . where h1 = 1

and hm+1 = 22
2hm for m ≥ 1. Note that the interval [s(n),poly(n)] contains at most one

element of the sequence h1, h2, . . . , for some nc and all n ≥ nc. Let R̂ed
A
(1n) run RedA(1n),

where a query (1m, crs) is answered as follows:

1. If n < nc or m /∈ {h1, h2, . . . }, then answer the query with a special symbol ⊥;

2. Otherwise, answer the query using oracle A.

R̂ed is length-mapping, because every query of RedA(1n) has length in the interval

[s(n),poly(n)] (since Red runs in time poly(n)), and for all n ≥ nc, at most one of h1, h2, . . .
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lies in that interval.

Suppose for contradiction that the R̂ed we construct does not satisfy the desired proper-

ties. That is, for all sufficiently large n and m = queryR̂ed(n), there exists some randomized

function Am where (Am, c) is a (G,P, V )-adversary on security parameterm, but R̂ed
Am

(1n)

does not break the assumption on security parameter n.

Let A be any randomized function such that A(1m, crs) = Am(1m, crs) where m =

queryR̂ed(n) and for all sufficiently large n. Thus (A, c) is an a.e. (G,P, V )-adversary. Let

Â be a “sparsification” of A: Â(1m, crs) := A(1m, crs) whenever m ∈ {h1, h2, . . . } and

Â(1m, crs) := ⊥ for all other m. Thus (Â, c) is a (G,P, V )-adversary.

Since (Â, c) is a (G,P, V )-adversary RedÂ breaks the falsifiable assumption. On the

other hand, R̂ed
A
(1n) behaves like R̂ed

Am for all sufficiently large n, hence does not break

the assumption. This yields a contradiction, because by construction R̂ed
A
(1n) = RedÂ(1n)

for all n ≥ nc.

Finally, we use Lemma 6.6 to deduce Theorem 6.5. Note that the length-mapping

reduction we obtain from Lemma 6.10 is slightly weaker, as it requires that the adversary

break soundness on a fixed infinite sequence of security parameters (rather than any in-

finite sequence of security parameters). However, it suffices because Lemma 6.6 provides

adversaries that break soundness on almost all security parameters.

Proof of Theorem 6.5 (Main Theorem). Suppose there is a generic uniform black-box re-

duction showing the soundness of (G,P, V ) based on a uniform falsifiable assumption. We

will show that the falsifiable assumption is already false, by constructing a PPT algorithm

that breaks it.

Fix c to be the constant given by Lemma 6.6. By Lemma 6.9 and Lemma 6.10, there is

a length-mapping PPT oracle algorithm Red where queryRed(k) = ω(1), and for infinitely
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many k, for n = queryRed(k), and for every randomized function An where (An, c) is a

(G,P, V )-adversary on security parameter n, RedAn(1k) breaks the assumption on security

parameter k.

We now apply Lemma 6.6 to Red to obtain a PPT algorithm Sim such that for all

polynomials q(·), all sufficiently large k and n = queryRed(k), w.p. at least 1/poly(k),

Sim(1k) outputs a randomized circuit Bn such that there is a randomized function An

satisfying:

1. (An, c) is a (G,P, V )-adversary on the security parameter n;

2. BreakRedAn (k)− BreakRedBn (k) < 1/q(k).

By the previous discussion, for infinitely many k, Item 1 implies that RedAn(1k) breaks

the assumption on security parameter k. Thus by Item 2, for infinitely many k, RedBn(1k)

also breaks the assumption on security parameter k. Hence we obtain a PPT algorithm

breaking the assumption for infinitely many k: first generate the circuit Bn by running

Sim(1k), then run RedBn(1k).
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Chapter 7

Pseudoentropy and Algorithmic

Prediction Markets

In economics, prediction markets are speculative markets designed to elicit people’s

beliefs. Prediction markets based on market scoring rules, introduced by Hanson [Han],

have several important advantages. In particular, the automated market maker is able to

elicit true beliefs from experts, by paying a worst-case cost proportional to the distribution’s

entropy.

In this chapter, we describe an application of the characterization of pseudoentropy

(Chapter 4) in the context of such prediction markets generalized to a more algorithmic

setting.

7.1 Introduction

Consider an unknown distribution B on some outcome space Ω; for example, the dis-

tribution of the winner of a horse race. An effective way to elicit experts’ beliefs about

B is asking them to wager. A prediction market is a mechanism where for every possible
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outcome ω ∈ Ω, traders (the experts) can buy and sell shares of security (i.e. bet) on ω. At

last, when the true outcome ω∗ is drawn from B and revealed, each trader is rewarded $i

for holding i shares of security on ω∗.

The de facto standard prediction markets with automated market makers are ones

based on market scoring rules (MSR), introduced by Hanson [Han]. In Hanson’s MSR-based

prediction markets, there is an automated market maker who will accept any transaction,

and all transactions happen between market maker and the trader(s). In the transaction,

the price of buying or selling one share of security on ω ∈ Ω is determined by the market

scoring rule, and depends on the current number of outstanding shares of each security.

These MSR-based prediction markets have several desirable properties, including infinite

liquidity (traders can always trade), truth revelation (any risk-neutral trader’s transaction

reveals his belief about B), and bounded worst-case loss (market maker does not pay too

much to elicit such truthful information even when B is adversarially chosen), assuming

a good scoring rule. In practice, MSR-based prediction markets are used by a number of

companies including Microsoft.

In reality, B is often jointly distributed with a set of random variables in a Bayes net,

which we collectively encode as an n-bit binary string X. The standard prediction markets

can only be used to elicit beliefs about (i) the marginal distribution of B (i.e. without

involving X), or (ii) the conditional distribution B|X=x for the specific x that has been

observed, by revealing x to traders in advance.

In light of this, we consider an extension called algorithmic prediction markets that

are capable of eliciting experts’ beliefs about the distribution B|X=x for every x ∈ {0, 1}n

(but without explicitly running a separate prediction market on B|X=x for each x). More

concretely, we require a trader to present his transaction as a polynomial-sized Boolean

circuit that on input x outputs a transaction as if he is trading in the prediction market for
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B|X=x. We show that such algorithmic prediction markets can be executely efficiently, and

are “best effort” truth revealing when proper market scoring rules are used.

It is necessary to assume a polynomial-sized outcome space Ω in order to efficiently

execute a prediction market. This is because the market maker needs Ω(|Ω|) time and space

simply to maintain how much has been wagered on each security.1 With a polynomial-sized

Ω, a trader in standard prediction market can always trade efficiently according to his

beliefs, which can be an arbitrary distribution on Ω. However, this is no longer true for

algorithmic prediction markets, because the mapping from x to the trader’s belief about

B|X=x can be computationally hard.

Assuming logarithmic scoring rules, Hanson shows that the market maker’s worst-case

loss is characterized by Hsh(B). For algorithmic prediction markets, we show that the

worst-case loss is characterized by the pseudoentropy of B given X. This is proved using

our characterization of conditional pseudoentropy from Chapter 4.

7.2 Algorithmic Prediction Markets

Notations. We use boldface lower-case letters to denote vectors in Rq. If p is a probability

vector, we (abusing notation) let p also denote the corresponding probability distribution

on {1, . . . , q}.

7.2.1 Strictly Proper Scoring Rule

Consider outcome space Ω = {1, . . . , q}. LetH : {distributions on Ω} → R be a strictly

concave, differentiable function. Let p be a probability vector of a distribution on Ω. The

1One workaround is to restrict the possible securities available to the traders to a small set of predicates;
such prediction markets are known as combinatorial prediction markets, and their complexity has been
studied by Chen et al. [CGP, CFL+].
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strictly proper scoring rule associated with H is the following function SH :

SH(p, ω) = −H(p) + ⟨∇H(p),p⟩ − ∂

∂pω
H(p)

where ∇H(p) denotes the gradient vector, and pω denotes the element of p indexed by

ω ∈ Ω. If H is set to bHsh where Hsh is the Shannon entropy function and b > 0, then SH

is called a logarithmic scoring rule.

The key property of a strictly proper scoring rule is that, as a utility function, SH can be

used to elicit true beliefs. Consider the setting where an expert is asked to report his belief

about the distribution B, and is then rewarded SH(p, ω∗) dollars, where p is the distribution

reported by the expert and ω∗ is the outcome drawn from B. Thus, an expert who reports

p while believing the actual distribution to be r is expecting a utility of Eω∼r [SH(p, ω)]. A

strictly proper scoring rule SH guarantees that this quantity is maximized by setting p = r

(thus an expert will always report his true belief r):

Proposition 7.1. Eω∼r [SH(r, ω)]−Eω∼r [SH(p, ω)] = DH(r||p) ≥ 0, where equality holds

iff p = r.

Proof. By definition,

E
ω∼r

[SH(p, ω)] = −H(p) + ⟨∇H(p),p⟩ −
∑
ω∈Ω

rω ·
∂

∂pω
H(p) = −H(p) + ⟨∇H(p),p− r⟩ .

Thus

E
ω∼r

[SH(r, ω)]− E
ω∼r

[SH(p, ω)] = H(p)−H(r)− ⟨∇H(p),p− r⟩ = DH(r||p) ≥ 0

where we use nonnegativity of Bregman divergence (Proposition 1.8).

7.2.2 Prediction Markets Based on Market Scoring Rules

Given an unknown target distribution B on Ω = {1, . . . , q}, the prediction market

based on market scoring rule SH works as follows. A security is offered for each ω ∈ Ω, and
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every share of security ω pays off $1 if ω happens, $0 otherwise. The market starts with a

vector m of initial total outstanding shares (that is, mω is the total share of security ω held

by all traders initially). There is a centralized market maker who, at any time, accepts to

buy or sell any security with any trader, at a price determined below. The trader can query

the market maker about the cost of a hypothetical transaction, as well as the instantaneous

price of any ω ∈ Ω (see below). Finally, an outcome ω∗ is drawn from X and the market

maker pays $1 to each trader holding one share of security ω∗.

Consider a transaction that changes the vector of total outstanding shares from p to

q. The cost of the transaction to a trader is defined to be

C(q)− C(p)

for some nonnegative cost function C, whose gradient ∇C(q) is called the vector of instan-

taneous prices at q. The function C is chosen so that (i) the gradient ∇C(q) is a probability

vector; (ii) the trader’s net profit C(p)− C(q) + pω∗ − qω∗ equals

SH(∇C(q), ω∗)− SH(∇C(p), ω∗).

Such cost function C can be defined for all proper scoring rules H [Han]. For example, with

the logarithmic scoring rule H = bHsh, the cost function C is defined to be

C(p) = b · ln
∑
ω∈Ω

exp(pω/b),

and given current outstanding shares p, the instantaneous price of ω equals

(∇C(p))ω =
exp(pω/b)∑

ω′∈Ω exp(pω′/b)
.

Loss and Utility. From a transaction that changes total outstanding shares from p to

q, the trader who believes the target distribution is r expects a net utility of

E
ω∼r

[C(p)− C(q) + pω − qω] = E
ω∼r

[SH(∇C(q), ω)]− E
ω∼r

[SH(∇C(p), ω)] .
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By Proposition 7.1, a risk-neutral trader always wants to make a transaction such that

∇C(q) = r. Therefore, such prediction markets can elicit true beliefs from risk-neutral

traders. Note that traders do not necessarily know the actual distribution B (that is, hold

belief r = B), and their beliefs may converge over time by observing the beliefs of other

traders. However, traders’s final transactions will still reflect their true beliefs. It is up to

the market maker how to combine their beliefs to extract knowledge.

Let s denote the vector of outstanding shares after all transactions. Assuming a loga-

rithmic scoring rule H = bHsh, Proposition 7.1 says that the market maker’s loss equals

E
ω∼B

[SH(∇C(s), ω)]− E
ω∼B

[SH(∇C(m), ω)] = b · (KL(B||∇C(m))−KL(B||∇C(s))) .

By setting ∇C(m) to be the uniform distribution (e.g. with zero initial outstanding shares),

the market maker’s loss at any time is at most b ·KL(B||UΩ) = b · (log |Ω| −Hsh(B)).

7.2.3 Algorithmic Prediction Markets

Let (X,B) be a joint distribution on {0, 1}n×Ω, � = {1, . . . , q} for q = poly(n). We are

interested in learning from experts an “efficient rule” describing how B is distributed given

X. For example, the formula that determines the distribution of an athlete’s performance

from a number of n binary factors.

A algorithmic prediction market works by running 2n MSR-based prediction markets

simultaneously; for each x ∈ {0, 1}n, we run a market for the unknown target distribution

B|X=x, which we shall call the xth market. These 2n markets are run in parallel, and use the

same set of traders (experts) and proper scoring rule SH . At the end, an outcome (x∗, ω∗)

is drawn from (X,B), and the market maker pays $1 to each trader holding one share of

security ω∗ in the x∗th market.

As a trader simultaneously trades in all markets, it is infeasible to explicitly submit all

2n transactions to the market maker. Instead, the market maker specifies two polynomials
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p(n) and t(n) which are announced to the traders in advance. A trader’s transaction is a

(deterministic) p(n)-sized Boolean circuit A such that A(x) outputs his transaction in the

xth market, represented as a vector t indexed by Ω. The initial outstanding shares in the

xth market is zero (for simplicity), and no more than t(n) total transactions are allowed.

Similar to the standard setting, the trader can query the market maker about the cost of a

hypothetical transaction in the xth market, as well as instantaneous price of any ω ∈ Ω in

the xth market.

Note that we do not actually commit all 2n transactions {A(x) : x ∈ {0, 1}n} (e.g. phys-

ical exchange of cash and shares); the market maker merely keeps tracks of all transaction

history as a list of circuits A1, A2, . . . , As, s ≤ t(n). It is only after x∗ is finally drawn from

X that the market maker physically commits the polynomially many transactions A1(x
∗),

A2(x
∗), …, As(x

∗).

Efficiency. Such algorithmic prediction markets can be efficiently implemented as long

as for each x, the xth market can be efficiently implemented, e.g. when logarithmic scoring

rules are used. Specifically, for every x ∈ {0, 1}n, the instantaneous price ∇C(·) and the

cost function C(·) in the xth market can be computed from the vector of total outstanding

shares in the xth market, which in turn can be computed by combining the (polynomially

long) transaction history A1(x), A2(x), … so far.

Definition 7.2 (Worst-Case Loss for Algorithmic Prediction Markets). In an algorithmic

prediction market, the market maker has a worst-case loss of at most k if all polynomials

p(n) and for all sequences of p(n)-sized circuits A1, . . . , Ap(n), the transactions A1, . . . , Ap(n)

incur a total loss of at most k − 1/p(n) to the market maker.
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7.3 Characterizing Worst-Case Loss and Expected Utility

Consider an algorithmic prediction market with logarithmic scoring rule (i.e. H =

−bHsh). We give a characterization of the market maker’s worst-case loss in terms of

the pseudoentropy of B given X. Recall that in a standard prediction markets using the

logarithmic scoring rule, the market maker’s worst-case loss is characterized in terms of the

entropy of B. Thus our result can be viewed as a computational generalization.

Theorem 7.3. Let n be a security parameter, Ω = Ω(n) with |Ω| = poly(n), and (X,B) =

(X,B)(n) be a polynomial-time samplable joint distribution on {0, 1}n × Ω. Consider the

algorithmic prediction market on (X,B) with logarithmic scoring rule SH where H = −bHsh.

Then the market maker’s has a worst-case loss of at most b · (log |Ω| − k) if and only if B

has pseudoentropy at least k given X.

Proof. Let 0 (the all zero vector) and qx be the vectors of initial and final total outstanding

shares in the xth market after transactions A1, . . . , As. It follows from Proposition 7.1 that

the expected loss at this point equals

E
(x,ω)∼(X,B)

[SH(∇C(qx), ω)]− E
(x,ω)∼(X,B)

[SH(∇C(0), ω)]

= b · E
x∼X

[KL(B|X=x ∥ ∇C(0))−KL(B|X=x||∇C(qx))]

= b ·
(
KL(X,B||X,UΩ)−KL(X,B||X,∇C(qX))

)
= b ·

(
log |Ω| −Hsh(B|X)−KL(X,B||X,∇C(qX))

)
.

By Chapter 4, Theorem 4.38, it suffices to show the following are equivalent:

1. There exists a polynomial p(n) and a sequence of transactions A1, …, Ap(n) as p(n)-

sized circuits such that KL(X,B||X,∇C(qX)) ≤ k −Hsh(B|X)− 1/p(n);

2. There exists a polynomial-sized circuit P such that KL(X,B||X,ΦP ) ≤ k−Hsh(B|X)−

1/nO(1).
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First suppose that Item 1 holds. Recall that the final outstanding shares qx equals A1(x)+

· · · + Ap(n)(x). Thus Item 2 holds for the polynomial-sized circuit P that computes qx by

running A1(x), . . . , Ap(n)(x), and outputs the pmf of ∇C(qx). Since

(∇C(p))ω =
exp(pω/b)∑

ω′∈Ω exp(pω′/b)
,

∇C(qx) can be efficiently approximated using standard numerical techniques (e.g. Newton’s

method) such that

KL(X,B||X,ΦP ) ≤ k −Hsh(B|X)− 1/nO(1)

(see Lemma A.6 for details; the same approximation is done in the proof of Chapter 4,

Theorem 4.50).

Now suppose Item 2 holds. To show Item 1, we simply let there be a single transaction

A1, which is a polynomial-sized circuit that outputs the vector (∇C)−1(ΦP |X=x) where

(∇C)−1 denotes the inverse of the gradient of C. It can be checked that (∇C)−1 can

be approximated efficiently, so that KL(X,B||X,∇C(qX)) ≤ KL(X,B||X,ΦP ) + nω(1) ≤

k −Hsh(B|X)− 1/p(n).

“Best effort” truth-revealing. In an algorithmic prediction market, if the trader’s

belief (X,B′) is such that (x, ω) → Pr[X = x|B′ = ω] can be computed by a polynomial-

sized circuit, then he can and will be truth-revealing by making a transaction such that

(X,∇C(pX)) = (X,B′). On the other hand, if the trader’s belief B′ has pseudoentropy no-

ticeably more than Hsh(B
′|X) givenX, then he is incentivized to minimize KL(X,B′||X,∇C(pX))

(subject to being computationally bounded). We call the later behavior “best-effort” truth-

revealing.
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Chapter 8

Conclusion

In this work we developed several tools, such as the Uniform Min-Max Theorem and

the Regularity Theorems, and provided a wide range of applications in cryptography and

complexity theory. In addition, we developed techniques relating Bregman divergence to

indistinguishability in pseudorandomness theory; using this (and other) techniques we show

how to characterize different notions of computational entropies, which in turn have many

applications in cryptography and complexity theory such as simplifying and improving

the construction of pseudorandom generators. We hope that our tools and techniques

would offer readers more insights into the applications we demonstrated, help further our

understanding of fundamental problems in the areas of cryptography and complexity, and

will be extended to more applications in broader contexts.
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Appendix A

Missing Lemmas and Proofs

Lemma A.1 (Multiplicative weight update decreases KL). Let A,B be distributions on

[N ], f : [N ]→ [0, 1] be a function, and 0 ≤ ϵ ≤ 1. Then the distribution A′ defined to be

Pr[A′ = x] ∝ eϵ·f(x) Pr[A = x]

satisfies KL(B ∥ A′) ≤ KL(B ∥ A)− (log e)ϵ (E[f(B)]− E[f(A)]− ϵ).

Proof. By definition,

KL(B ∥ A)−KL(B ∥ A′) =
∑
x

Pr[B = x]

(
log Pr[B = x]

Pr[A = x]
− log Pr[B = x]

Pr[A′ = x]

)
=
∑
x

Pr[B = x] log Pr[A′ = x]

Pr[A = x]

=
∑
x

Pr[B = x]

(
log eϵf(x)∑

y e
ϵf(y) Pr[A = y]

)

= (log e)
(
ϵE[f(B)]− ln

(∑
y

eϵf(y) Pr[A = y]

))

Applying the inequalities 1+ z ≤ ez, ez ≤ 1+ z+ z2 for 0 ≤ z ≤ 1, and using 0 ≤ f(x) ≤ 1,
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we have

KL(B ∥ A)−KL(B ∥ A′) ≥ (log e)
(
ϵE[f(B)]− ln

(∑
y

(
1 + ϵf(y) + ϵ2

)
Pr[A = y]

))

= (log e)
(
ϵE[f(B)]− ln

(
1 + ϵE[f(A)] + ϵ2

))
≥ (log e)

(
ϵE[f(B)]−

(
ϵE[f(A)] + ϵ2

))
= (log e)ϵ (E[f(B)]− E[f(A)]− ϵ)

For the following lemma, recall from Chapter 3 that a measure M : X → [0, 1] is δ-

dense if its density µ(M) =
∑

x∈X M(x)/ |X | is at least δ. We denote byMm,δ the set of

all δ-dense measures defined on {0, 1}m.

Lemma A.2 (Sampling from a high density measure). Let n be a security parameter,

δ = δ(n), σ = σ(n). Then for k = O((1/δ) log(1/σ)), there is a randomized algorithm that,

given k and oracle access to a measure M ∈ Mn,δ, w.p. at least 1 − σ outputs a random

sample of ΦM . The algorithm runs in O(k(s+ n)) time and makes k oracle queries, where

s is a bound on the bit length of M(x).

Proof. Use rejection sampling. Select a random z ∈R {0, 1}n and output z w.p. M(z).

Repeat up to k = O((1/δ) log(1/σ)) times until some z is outputted. Thus with all but

(1− Ez [M(z)])k = (1− δ)k ≤ σ probability we output some z ← ΦM .

Lemma A.3 (Approximating KL projection on high min-entropy distributions). Let C be

the set of distributions over {0, 1}n with min-entropy at least n − log(1/δ). Then there is

a probabilistic algorithm which, given any n, δ > 0, ϵ > 0, η > 0, achieves the following in

poly(n, 1/δ, 1/ϵ, log(1/η)) time. Given oracle access to a measure N with ΦN ∈ Cϵ (where

Cϵ denotes the ϵ-neighborhood of C; see Definition 2.11), the algorithm w.p. at least 1 − η

computes a measure M where ΦM is an ϵ2-approximate KL projection of ΦN on C.
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Specifically, M(x) = min(1, c ·N(x)) for some constant c ∈ [1, 1 + eϵ] as a multiple of

Ω(ϵ2).

This follows immediately from Lemma 2.3 of Barak et al. [BHK], where they show how

to approximate the KL projection on the set of high density measures (rather than high min-

entropy distributions), which is equivalent to KL projection on high density distributions.

Proof. For measures M and N , we define the KL divergence from M to N to be

KL (M∥N) =
∑
x

(
M(x) log M(x)

N(x)
−M(x) +N(x)

)
.

Note that

KL (ΦM∥ΦN ) =
KL (M∥N)

|M |
+ 1− |N |

|M |
+ log |N |

|M |
.

Barak et al. [BHK] show how to compute M̃∗, a σ · (δ2n)-approximate KL projection

of N on the set of high density measuresMδ. Let M∗ be the KL projection of N onMδ,

with |M∗| = δ2m (w.l.o.g. the KL projection is always on the boundary; see Lemma A.4).

Thus by the above equality, ΦM∗ is the (exact) KL projection of N on Cδ. Furthermore, for

every M ∈Mδ,

KL
(
ΦM∥ΦM̃∗

)
−KL (ΦM∥ΦM∗)

=
KL
(
M∥M̃∗

)
−KL (M∥M∗)

|M |
−


∣∣∣M̃∗∣∣∣
|M |

− |M
∗|

|M |

+

log

∣∣∣M̃∗∣∣∣
|M |

− log |M
∗|

|M |


≤

KL
(
M∥M̃∗

)
−KL (M∥M∗)

|M |

where the inequality holds because
∣∣∣M̃∗∣∣∣ ≥ |M∗|. Thus Φ

M̃∗
is a σ-approximate KL pro-

jection of ΦN on Cδ. The parameters follow from Lemma 2.3 of [BHK].

Lemma A.4. The KL projection of any measure N on any convex set M ̸∋ N must be on

the boundary of M.
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Proof. Follows since the KL projection minimizes the convex function KL(· ∥ N).

For the following lemmas, refer to Chapter 4, Section 4.3 for the definition of eW .

Lemma A.5. For every function W : {0, 1}n × {0, 1}ℓ → R≥0, Hsh(ekW |X) is monotone

decreasing in k for k ∈ [0,+∞).

Proof. Consider any k2 ≥ k1 ≥ 0. Applying Lemma 4.43 Item 1 twice:

Hsh(ek2W |X)−Hsh(ek1W |X)− k2 · E
[
W (X, ek1W )−W (X, ek2W )

]
= KL(X, ek1W ||X, ek2W ) ≥ 0,

Hsh(ek1W |X)−Hsh(ek2W |X)− k1 · E
[
W (X, ek2W )−W (X, ek1W )

]
= KL(X, ek2W ||X, ek1W ) ≥ 0,

where we use nonnegativity of KL divergence. Scaling the inequalities by k1 and k2 resp.

and taking the sum yields

(k2 − k1)
(
Hsh(ek1W |X)−Hsh(ek2W |X)

)
≥ 0,

i.e. Hsh(ek1W |X) ≥ Hsh(ek2W |X).

Lemma A.6 (Approximations).

1. There is a time poly(t, n, ℓ, κ, log(1/σ)) deterministic algorithm that, given a size t

deterministic circuit W̃ : {0, 1}n × {0, 1}ℓ → [0, κ], σ > 0, and κ > 0, outputs

a deterministic circuit P : {0, 1}n × {0, 1}ℓ → [1, eκ] satisfying the following. For

all functions W where ∀x, a,
∣∣∣W (x, a)− W̃ (x, a)

∣∣∣ ≤ σ and for all functions W ′ :

{0, 1}n × {0, 1}ℓ → [0, κ′]:

∣∣E [W ′(X,ΦP )
]
− E

[
W ′(X, eW )

]∣∣ = κ′ ·O(σ),
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∣∣KL(X,B||X,ΦP )−KL(X,B||X, eW )
∣∣ = O(σ),

∣∣Hsh(ΦP |X)−Hsh(eW |X)
∣∣ = (Hsh(eW |X) + 1

)
·O(σ).

2. There is a poly(t, n, 2ℓ, κ, 1/ϵ, log(1/γ)) time randomized algorithm that given a size

t deterministic circuit W : {0, 1}n × {0, 1}ℓ → [0, κ], ϵ > 0, κ > 0, and γ > 0, with

probability at least 1 − γ (over its coins) estimates Hsh(eW |X) within O(ϵ) additive

error.

3. There is a poly(t, n, 2ℓ, κ, 1/ϵ, log(1/γ)) time randomized oracle algorithm such that

the following holds for all joint distributions (X,B) on {0, 1}n×{0, 1}ℓ. Given oracle

access to OX,B, a size t deterministic circuit W : {0, 1}n × {0, 1}ℓ → [0, κ], ϵ > 0,

κ > 0, and γ > 0, the algorithm w.p. at least 1 − γ (over its coins) estimates both

E[W (X,B)] − E[W (X, eW )] and KL(X,B||X, eW ) + Hsh(B|X) within O(ϵ) additive

error.

Proof. For Item 1, we construct a circuit P such that for all x, a,
∣∣∣eW̃ (x,a) − P (x, a)

∣∣∣ ≤ σ.

To do so, we approximate eW̃ (x,a) ∈ [1, exp(κ)] to precision ±σ using Newton’s method in

time poly(n, ℓ, t, κ, log(1/σ)).

We now prove the required bounds. First we claim P (x, a)/2W (x,a) ∈
[
e−O(σ), eO(σ)

]
,

because

|logP (x, a)−D(x, a)|

≤
∣∣∣W̃ (x, a)−W (x, a)

∣∣∣+ ∣∣∣logP (x, a)− W̃ (x, a)
∣∣∣

≤ σ +

∣∣∣∣∣log
(
1− eW̃ (x,a) − P (x, a)

eW̃ (x,a)

)∣∣∣∣∣
≤ σ +

∣∣∣∣log(1± σ

eW̃ (x,a)

)∣∣∣∣
≤ σ + |log (1± σ)| = O(σ),
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where we use eW̃ (x,a) ≥ 1 in the last inequality. With this, we can bound the following

quantities:

∣∣ΦP (a|x)− eW (a|x)
∣∣ = ∣∣∣∣∣ P (x, a)∑

b P (x, b)
− eW (x,a)∑

b e
W (x,b)

∣∣∣∣∣
≤

∣∣∣∣∣ eW (x,a) · e±O(σ)∑
b e

W (x,b) · e±O(σ)
− eW (x,a)∑

b e
W (x,b)

∣∣∣∣∣ (A.1)

≤ eW (x,a)∑
b e

W (x,b)

(
eO(σ) − 1

)
= eW (a|x) ·O(σ)

and ∣∣∣∣log 1

ΦP (a|x)
− log 1

eW (a|x)

∣∣∣∣ (A.2)

≤ |logP (x, a)−W (x, a)|+

∣∣∣∣∣log
(∑

b

P (x, b)

)
− log

(∑
b

eW (x,b)

)∣∣∣∣∣
≤ O(σ) +

∣∣∣∣∣log
∑

b e
W (x,b) · e±O(σ)∑

b e
W (x,b)

∣∣∣∣∣ = O(σ).

Using (A.1) and (A.2), we show the required bounds in turn:

∣∣E [W ′(X,ΦP )
]
− E

[
W ′(X, eW )

]∣∣ ≤ E
x∼X

[
κ′
∑
a

∣∣ΦP (a|x)− eW (a|x)
∣∣]

≤ E
x∼X

[
κ′

(∑
a

eW (a|x)

)
O(σ)

]
= κ′ ·O(σ),

where the last inequality follows from (A.1).

∣∣KL(X,B||X,ΦP )−KL(X,B||X, eW )
∣∣

=

∣∣∣∣∣ E
x∼X

[∑
a

B(a|x) log B(a|x)
ΦP (a|x)

]
− E

x∼X

[∑
a

B(a|x) log B(a|x)
eW (a|x)

]∣∣∣∣∣
≤ E

x∼X

[∑
a

B(a|x)
∣∣∣∣log 1

ΦP (a|x)
− log 1

eW (a|x)

∣∣∣∣
]
,

≤ O(σ)

192



Appendix A: Missing Lemmas and Proofs

where the last inequality follows from (A.2).

∣∣Hsh(ΦP |X)−Hsh(eW |X)
∣∣

=

∣∣∣∣∣ E
x∼X

[∑
a

ΦP (a|x) log
1

ΦP (a|x)

]
− E

x∼X

[∑
a

eW (a|x) log 1

eW (a|x)

]∣∣∣∣∣
≤ E

x∼X

[∑
a

∣∣∣∣ΦP (a|x) log
1

ΦP (a|x)
− eW (a|x) log 1

eW (a|x)

∣∣∣∣
]

= E
x∼X

[∑
a

∣∣∣∣ΦP (a|x)
(
log 1

ΦP (a|x)
− log 1

eW (a|x)

)
+ log 1

eW (a|x)
(
ΦP (a|x)− eW (a|x)

)∣∣∣∣
]

≤ E
x∼X

[∑
a

(
ΦP (a|x) ·O(σ) + log 1

eW (a|x)
· eW (a|x) ·O(σ)

)]
≤
(
Hsh(eW |X) + 1

)
·O(σ),

where the second last inequality follows from (A.1) and (A.2).

For Item 2 and Item 3, first note that we only need to estimate Hsh(eW |X) and

E[W (X,B)]− E[W (X, eW )] within O(ϵ) error, since by Lemma 4.43 Item 1,

KL(X,B||X, eW ) +Hsh(B|X) = Hsh(eW |X)−
(
E[W (X,B)]− E[W (X, eW )]

)
.

By Item 1 (where we set σ = O(ϵ/κℓ)), it suffices to estimate Hsh(ΦP |X) and E[W (X,B)]−

E[W (X,ΦP )] withinO(ϵ) error. Recall ΦP (a|x) can be computed in time poly(t, n, 2ℓ, κ, log(1/ϵ)).

Consider Hsh(ΦP |X) = Ex∼X [Hsh(ΦP |X=x)]. For each x we can compute the value

Hsh(ΦP |X=x) = −
∑

aΦP (a|x) logΦP (a|x) within ϵ error in time poly(t, n, 2ℓ, κ, log(1/ϵ)),

by approximating logΦP (a|x) to precision ϵ using Taylor series. We can then estimate

Ex∼X [Hsh(ΦP |X=x)], where Hsh(ΦP |X=x) ∈ [0, ℓ], from O(log(1/γ)(ℓ/ϵ)2) random samples

of x. By a Chernoff bound, w.p. at least 1− γ the estimate is within O(ϵ) error.

Similarly, we can estimate E [W (X,B)] − E [W (X,ΦP )], where W (x, a) ∈ [0, κ], from

O
(
log(1/γ)(κ/ϵ)2

)
random samples of (X,B,ΦP ). Note that (X,B) can be sampled using

OX,B, and ΦP can be sampled given X in time poly(t, n, 2ℓ, κ, log(1/ϵ)). By a Chernoff

bound, w.p. at least 1− γ the estimate is within O(ϵ) error.
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Lemma A.7. For any functions W1,W2 : {0, 1}n×{0, 1}ℓ → R≥0 and any joint distribution

(X,B) on {0, 1}n × {0, 1}ℓ, we have

∣∣Hsh(eW1 |X)−Hsh(eW2 |X)
∣∣ = (Hsh(eW2 |X) + 1

)
·O
(
max
x,a
|W1(x, a)−W2(x, a)|

)
,

∣∣KL(X,B||X, eW1)−KL(X,B||X, eW2)
∣∣ = O

(
max
x,a
|W1(x, a)−W2(x, a)|

)
.

Proof. Setting W̃ = W1, W = W2 and σ = maxx,a |W1(x, a)−W2(x, a)| in Lemma A.6, we

obtain

∣∣Hsh(eW1 |X)−Hsh(eW2 |X)
∣∣

≤
∣∣Hsh(ΦP |X)−Hsh(eW1 |X)

∣∣+ ∣∣Hsh(ΦP |X)−Hsh(eW2 |X)
∣∣

=
(
Hsh(eW2 |X) + 1

)
·O
(
max
x,a
|W1(x, a)−W2(x, a)|

)
.

Setting W̃ = W1, W = W2 and σ = maxx,a |W1(x, a)−W2(x, a)| in Lemma A.6, we obtain

∣∣KL(X,B||X, eW1)−KL(X,B||X, eW2)
∣∣

≤
∣∣KL(X,B||X,ΦP )−KL(X,B||X, eW1)

∣∣+ ∣∣KL(X,B||X,ΦP )−KL(X,B||X, eW2)
∣∣

= O (σ) = O

(
max
x,a
|W1(x, a)−W2(x, a)|

)
.
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