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Abstract 
 

Native vascular tissue functions are highly dependent on structural organization 

at the super-cellular, cellular, and sub-cellular spatial scales. We hypothesized that the 

structure-function relationship of vascular tissues in vivo can be leveraged to engineer 

vascular tissues in vitro by prescribing the shape of constituent cells and their assembly 

into organized three-dimensional structures. To this end, we first asked if vascular 

smooth muscle cell shape influences cellular contractility. We engineered human 

vascular smooth muscle cells to assume similar shapes to those in elastic and muscular 

arteries and then measured their contraction while stimulating with endothelin-1. We 

found that vascular smooth muscle cells with elongated shapes exhibited lower 

contractile strength but a greater percentage increase in contraction after endothelin-1 

stimulation, suggesting that elongated vascular smooth muscle cell shape endows the 

muscular artery with greater dynamic contractile range. Next, we sought to assemble cells 

into tissues by employing a three-dimensional cellular patterning strategy based on the 

folding of porous, thin polymer films. We assembled different three-dimensional 

endothelial and vascular smooth muscle organizations by patterning two-dimensional 

poly(lactic-co-glycolic) acid and collagen thin films with cell suspensions at prescribed 

locations. The films were subsequently folded following Miura-ori geometry guidelines 

and the matrices were embedded subcutaneously in immunodeficient mice in order to 

assess the vascularization of the implanted constructs. We found that spatial organization 
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that allowed endothelial and vascular smooth muscle cells to interact adjacent to each 

other laterally in the same folding plane created the densest vascularized network, 

suggesting that three-dimensional structural organization of vascular cells can influence 

the formation of vascularized networks. Taken together, our result shows that functional 

vascular tissues in vitro can be engineered by encoding structure cues in their design and 

assembly.       
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1 Introduction 

Engineering functional vascular smooth muscles in vitro remains challenging 

because of the complexity of recapitulating structural organization across multiple spatial 

scales. Early efforts primarily focused on controlling vascular smooth muscle functions 

by biochemical signaling; however, accumulating evidence suggests that 

mechanotransduction, the process by which cells convert mechanical stimuli in the 

cellular microenvironment into biochemical cues, holds promise as a novel approach to 

engineering this tissue. Here, we discuss an engineering strategy that recapitulates 

mechanotransduction to build functional vascular smooth muscles in vitro. By harnessing 

mechanical cues in the cellular microenvironment, functional vascular smooth muscles 

can be engineered with cytoskeletal architecture. A number of vascular smooth muscle 

functions that depend on the cytoskeletal architecture could then be evaluated through 

performance metrics to assess if desired functional outcome is achieved. Engineering 

functional vascular smooth muscle in vitro may yield new insight on the development of 

vascular grafts and accelerate drug discovery research for treating cardiovascular diseases. 

 

1.1 Mechanotransduction as a Strategy for Engineering Functional Vascular 

Smooth Muscle 

Engineering functional vascular tissue in vitro is not a trivial pursuit due to the 

dependency of vascular functions on the three-dimensional structural hierarchy that spans 

several orders of spatial magnitude ranging from centimeter length scale of the arteries to 

the nanometer length scale of cytoskeletal proteins (Figure 1-1). For example in a healthy 

arterial tissue, endothelial cells (ECs) line the inner most layer of the blood vessel to 
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protect the vascular smooth muscles (VSM) from blood shearing force. In turn, the VSM 

provides structural support to the ECs by wrapping around the ECs in helices to 

Engineering functional vascular smooth muscles (VSMs) in vitro remains challenging 

because VSM structure and function interact over several orders of spatial magnitude, 

ranging from the centimeter-length scale of arteries to the nanometer-length scale of 

cytoskeletal proteins (Figure 1). VSM structure and function are maintained in vivo in 

several ways, one of which is the regulation of mechanical forces at the tissue, cellular, 

and sub-cellular spatial scales through a process called mechanotransduction, in which 

cells translate mechanical stimuli into biochemical reactions. In the native environment, 

cyclic cardiac cycles expose VSM to mechanical stimuli from a number of sources, such 

as transmural pressure, vascular strain induced by pulsatile pressure, and circumferential 

and axial wall tension [1]. VSM, in turn, responds by inducing changes in cytoskeletal 

organization [2-4], membrane ionic conductance [5-7], and signaling activation [8-11], 

that lead to functional changes in VSM contraction, secretion, growth, and migration. A 

well-studied example of this process is the myogenic response, where small arteries 

contract to counteract increased intraluminal pressure, protecting the blood vessel from 

potential hypertensive injury [12]. Thus, mechanotransduction enables VSM to respond 

to mechanical stimuli encoded in the local microenvironment and remodel its function to 

serve the needs of the blood vessel.  
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Figure 1-1: Hierarchical organization of vascular tissue spans multiple spatial scales 

from nanometers to meters. Vascular smooth muscle cells assemble into muscle tissue 

that forms the media layer of the elastic and muscular arteries. The spindle shaped cells 

contains nanometer scaled protein complexes that allow it to respond to mechanical cues 

in the cellular microenvironment. Adapter in part from Servier Medical Art.  
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Differentiated, healthy VSM typically operate in sustained constriction, or tone, 

to regulate peripheral resistance, thereby maintaining systemic blood pressure and 

controlling organ blood flow. Disruption of tone can produce vascular disorders such as 

hypertension [13] and vasospasm [14], where VSM contraction deviates from its 

homeostatic equilibrium. Such conditions are commonly treated by pharmacological 

manipulation of VSM contractile signaling to modulate its tone. Traditional drugs that 

target the VSM contractile pathway include alpha- and beta-adrenergic receptor 

antagonists, calcium channel blockers, angiotensin converting enzyme (ACE) inhibitors, 

and angiotensin II receptor antagonists [15]. Drug development efforts now seek to 

identify compounds that either activate or inhibit VSM cell (VSMC) large conductance 

Ca2+ activated K+ (BKCa) channels to regulate the membrane potential of VSM and, in 

turn, control the vascular tone [16]. The efficacy of these drugs on VSM tone can only be 

validated in vitro if a VSM model functionally recapitulates its in vivo counterpart. 

In this review, we discuss how an engineering algorithm based on recapitulating 

the native mechanotransduction processes can be applied to design, build, and test a 

functional VSM in vitro model. We first demonstrate that cytoskeletal proteins in the 

extracellular, intercellular, and intracellular domains are mechanotransductive 

components responsible for regulating VSMC architecture and functions. We then 

describe the mechanical cues that can be used to design the assembly of these 

cytoskeletal proteins into VSM with engineered cellular architecture. Finally, we present 

a performance evaluation metric comprising functions that could be influenced by the 

engineered cellular architecture.   
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1.2 Cytoskeleton Components in Vascular Smooth Muscle Cell 

Mechanotransduction 

VSMCs sense a wide array of mechanical stimuli through a network of 

cytoskeletal proteins embedded in the extracellular, intercellular, and intracellular 

domains. These dynamic proteins continuously sense changes in the cellular 

microenvironment and remodel their organization to drive the force balance towards 

equilibrium (Figure 1-2). For example, integrin proteins are directly connected to actin 

filaments, allowing forces to be transmitted from outside to inside the cells [17]. 

Cadherin junctions directly couple adjacent VSMCs together and propagate mechanical 

signals from one cell to the next [18]. Actin, intermediate filaments, and microtubules 

propagate mechanical signals through common hubs at dense plaques throughout the 

VSMC cytoplasm [19]. Thus, the cytoskeletal proteins provide design parameters that we 

can engineer to recapitulate the mechanotransduction processes in VSMC.  
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Figure 1-2: Mechanotransductive cytoskeletal proteins in vascular smooth muscle 

cells. Integrin links the ECM protein such as collagen to actin fibers, allowing 

extracellular mechanical signals to be directly transmitted into the cell. Actin responds to 

mechanical input to the cells by rapid by changing the F- to G-actin ratios and acts as an 

intracellular sensor. Cadherin junctions provide mechanical links between adjacent cells, 

allowing forces to be transmitted between cells. 
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1.2.1 Mechanical Signaling through Integrin-ECM Interface 

Integrin proteins are transmembrane, heterodimeric receptors comprising α- and 

β-subunits. They connect the extracellular matrix (ECM) to the internal cytoskeletons at 

the site of focal adhesion complex via the short cytoplasmic tail of the β-subunit (Figure 

1-3). Furthermore, integrins transduce both “outside-in” and “inside-out” mechanical 

signals in many different cell types. Twenty-four integrins have been described and 

among them, α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α7β1, α8β1, α9β1, αvβ1, αvβ3, αvβ5, and α6βv 

are found in VSMCs [20, 21]. 
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Figure 1-3: Mechanotransductive proteins in the focal adhesion complex. 

Transmembrane protein integrin physically links extracellular matrix protein such as 

collagen in the extracellular domain to intracellular structure protein such as F-actin. This 

allows mechanical inputs to be transmitted in both ways, allowing “outside-in” and 

“inside-out” signaling. Cellular components are not to scale.     

In vitro studies using isolated arterioles and VSMCs have provided strong 

evidence that some integrins are crucial mechanotransductive elements for VSMCs. 

Wilson and colleagues demonstrated that soluble fibronectin, integrin binding peptide 

GRGDTP, and antibodies to β3 or αvβ5 all independently block the mitogenic response of 

newborn rat VSMCs to mechanical strain [22]. Other studies subsequently showed that 
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an integrin-recognizing synthetic RGD peptide can cause sustained vasodilation [23] and 

decreased intracellular Ca2+ level in rat VSMCs [24]. These early studies demonstrated 

that integrins play an important role in transducing mechanical cues to intracellular 

signals that produce functional adaptive responses. More recently, studies on isolated rat 

arteriole tissue and VSMCs showed that antibody blocking of α5β1 and αvβ3 integrins 

significantly inhibits myogenic constriction [25, 26]. However, pulling on fibronectin and 

β1-integrin antibody-coated magnetic beads on isolated renal VSMCs elicits an increased 

cell force and sustained traction, autologous to pressure-induced myogenic response [27]. 

The integrin mechanotransduction mechanism has also been linked to BKCa ion channel 

activities and Src-dependent pathways [28, 29]. Collectively, these studies demonstrated 

that integrins are critical to mechanotransduction and adaptive remodeling in VSM tissue 

and cells.  

 

1.2.2 Mechanical Signaling through Intercellular Junctions 

In addition to cell-ECM connections, VSMCs in the vascular wall contain a 

variety of cell-cell adherent junctions, including cadherin and gap junctions [30]. The 

cadherin family of calcium-dependent transmembrane receptors is mechanically 

important: they bind together adjacent VSMCs and link them intracellularly to actin 

filaments via catenins, allowing direct force transmission between neighboring cells [31-

33].  

VSMCs express multiple cadherins, including N-cadherin, T-cadherin, R-

cadherin, cadherin-6b, and E-cadherin (in the case of atherosclerotic lesions) [21]. The 

predominant cadherin, N-cadherin, is expressed at a higher level in human venous 
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smooth muscle cells (SMCs) than in arterial SMCs [34]. While N-cadherin has been 

investigated in the context of VSMC migration [35], proliferation [36], and survival [37], 

Jackson et al. showed that selective blockage of N-cadherin or a cadherin inhibitory 

peptide in rat cremaster arterioles inhibits myogenic response to pressure changes 

independent of [Ca2+]i [38], implicating N-cadherin in mechanical load sensing and 

arteriolar contraction regulation. T-cadherin was originally identified in a membrane 

fraction of aortic SMCs [39]. Unlike classical cadherin family members, T-cadherin does 

not have transmembrane and cytosolic domains but instead is anchored to membranes by 

means of glycosylphosphatidylinositol (GPI). An analysis of Triton-X fractionized 

human and rat VSMCs revealed that T-cadherin co-localizes with mechanotransducing 

signaling molecules such as Gαs protein and Src-family kinases in caveolin-rich 

membrane domains [18], suggesting that T-cadherin may function as a local signal-

transducing protein as well as an adhesion molecule. Additional studies on the exact 

mechanism of cadherin-based mechanosensing are needed to understand its role in the 

regulation of VSMC cytoskeletal structure and contractile responses.  

 

1.2.3 Intracellular Signaling Mechanics 

Actin is the most abundant cytoskeletal protein in contractile VSMCs, 

contributing ~20% of total protein content [40]. Four of the six vertebrate isoforms of 

actin are found in VSMCs: α-smooth muscle actin (SMA), β-non-muscle actin, γ-SMA, 

and γ-cytoplasmic actin. Large arteries typically contain about 60% α-SMA, 20% β-non-

muscle actin, and about 20% combined γ smooth muscle and γ non-muscle actin [41]. 

Both α- and γ-SMA are commonly referred to as contractile actin because of their 
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association with myosin filaments in generating tension and cell shortening. The two 

remaining actin isoforms are referred to as cytoplasmic actin and are localized to the cell 

cortex [42].  

Although the precise role of cytoplasmic actin in arteriolar myogenic behavior 

remains uncertain, growing evidence supports the hypothesis that this subpopulation of 

actin contributes to VSMC mechanotransduction [2]. Earlier studies using 

pharmacological agents demonstrated that a short exposure period to actin 

depolymerizing agent profoundly suppresses VSM tension development [43-46], while 

exposure to actin stabilizer enhances myogenic tone [47], highlighting the critical role of 

actin polymerization in VSMC contraction and tension development. Independent studies 

using different techniques have demonstrated that actin polymerization is attributed to a 

small portion of G- to F-actin transition [47-50] that is associated with a redistribution of 

actin from the cell periphery (cortical region) to the cell interior [49]. More recently, Kim 

and colleagues, using labeled G-actin monomers, directly observed actin incorporation 

into cortical filaments upon agonist treatment [51] and that the non-muscle cytoplasmic 

actin is primarily responsible for the agonist-induced actin polymerization [40]. Given the 

known link between F-actin and putative mechanotransductive components such as 

integrins [52], cadherins [53], and ion channels [54], these results suggest that the cortical 

non-muscle actin isoforms compose a dynamic subpopulation of actin that allows it to 

function as an intracellular sensor that actively remodels its polymerization state in 

response to the level of mechanical force applied to the cells.  

Intermediate filaments form bundles and associate with dense bodies to provide 

three-dimensional integrity to VSMCs [55]. Two intermediate proteins are found in 
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VSMCs, vimentin and desmin [55]. Vimentin production is high in VSMCs of large 

arteries. In human arteries, vimentin localization decreases gradually from proximal to 

distal, while desmin localization gradually increases [56-58]. Vimentin- [59] and desmin-

deficient mice [60] with normal myogenic responses display alterations in vasomotor 

properties such as agonist sensitivity and impaired flow-dependent dilation, suggesting 

that vimentin and desmin may be required for sensing mechanical cues in the local 

microenvironment. A similar dependence on vimentin occurs in airway SMCs. Wang and 

colleagues reported that down-regulation of vimentin in canine airway smooth muscle 

attenuates force generation [61], while Tang et al. showed that airway smooth muscle 

stimulated with contractile agent 5-HT undergoes spatial rearrangement [62, 63]. 

Collectively, these results suggest that intermediate filaments of vascular and airway 

SMCs are important for adaptive remodeling to mechanical cues.  

Microtubules provide resistive forces in many cell types and are considered the 

compression bearing elements [64]. Since the ability to adequately stain and detect 

polymerized microtubules in dense contractile tissue depends on the tissue type and 

staining method [65], contradicting findings on the role of microtubules in 

mechanotransduction have been reported for VSMCs. For example, one study showed 

that depolymerization of microtubules causes an elevated level of myogenic constriction 

in rat skeletal muscle arterioles when pressurized intravascularly. Furthermore, this 

response involves Rho-A dependent Ca2+ sensitization without an overt increase in [Ca2+
i] 

[66], suggesting that regulation of microtubule dynamics may be directly linked with 

VSMC contraction and reactivity. However, a higher level of isometric force is 

associated with an increased level of intracellular calcium in porcine coronary VSMCs 
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when treated with microtubule depolymerizing agent [67], suggesting that microtubules 

may not directly contribute to VSMC mechanical characteristics but rely on modulation 

of Ca2+ signal transduction. While the difference may be caused by the origin and species 

of the VSMCs, further studies are needed to determine the role of microtubules in VSMC 

mechanotransduction.  

 

1.2.4 Zyxin and Nucleus as Mechanosensors 

 Focal adhesion associated protein and the nucleus also participate in VSMC 

mechanotransduction. For example, zyxin, a zinc-finger protein predominated located in 

the focal adhesions and stress fibers, dissociates from focal adhesions, translocates into 

the nucleus, and mediates expression of mechanosensitive genes within minutes of cyclic 

stretching in rat aortic SMCs [10]. Although the mechanistic interactions between zyxin 

and mechanosensitive genes remain to be elucidated, these results suggest that zyxin 

functions as a mechanosensor. The nucleus was recently found to interact directly with 

the cytoskeleton via nuclear membrane proteins such as the SUN/KASH domain proteins 

[68-70] (Figure 1-4). This physical linkage allows mechanical forces exerted on the 

surface adhesion receptors to be transmitted along the cytoskeletons to the protein 

complexes in the cytoplasm and nucleus [71]. By studying the contractile filament 

organization in airway SMCs using electron microscopy, Kuo et al. revealed that 

contractile filaments for airway SMCs are arranged parallel to the longitudinal axis and 

centrally attached to the nuclear envelope, effectively making the nucleus a force-

transmitting structure [72]. Similar findings were observed by Nagayama and colleagues 

in aortic SMCs: stress fiber stabilizes the position of intranuclear chromatin through 
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mechanical connection with the nucleus [73], which modulates gene and protein 

expression in VSMCs and alters functional behavior. Taken together, these studies 

provide strong evidence that zyxin and the nucleus also play a role in VSMC 

mechanotransduction.   

 

Figure 1-4: Force transmissions via cytoskeleton to the nucleus. F-actin stress fibers 

and intermediate filaments are connected to the SUN protein dimers via the Nesprin-1/2 

and Nesprin-3 protein complexes. The SUN proteins bind to nuclear lamina and other 

nuclear envelope proteins, which are connected to DNA and chromatin inside the nucleus. 

These proteins together couple the cytoskeleton mechanically to the nucleus, allowing 

mechanical signal to directly influence chromatin remodeling.   
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In summary, the extracellular, intercellular, and intracellular components of the 

VSMC cytoskeleton are embedded with proteins and filaments that are able to detect 

mechanical stimuli from the ECM, adjacent cells, or within the cytoplasm. Sensing these 

stimuli allows the cell to activate signaling pathways that promote structural remodeling 

of its cytoskeleton to offset or adapt to mechanical loading. These mechanotransductive 

cytoskeletal components serve as the design components that enabled us to build VSMC 

with engineered cytoskeletal architecture with desired functions.   

  

 

1.3 Engineering Vascular Smooth Muscle Form with Mechanical Cues 

VSMCs in their native environment experience a variety of mechanical stimuli 

such as cyclic stretching, cell shape deformations, ECM interactions, substrate stiffness, 

and surface topography at micro- and nanoscale. Due to the mechanotransductive nature 

of the cytoskeletal proteins, mechanical stimuli can regulate both cytoskeletal 

architecture and cellular function and cytoskeletal proteins are tightly regulated 

spatiotemporally to ensure proper VSMC structure and function in normal physiological 

settings. When stimuli deviate from the normal range, maladaptive remodeling occurs in 

the cytoskeletal architecture and leads to diseased function in VSMCs. For example, in 

the case of vascular aging, wear and tear from cardiac cycling causes fatigue and fracture 

in the elastic fibers, promoting degeneration of the media layer and vessel stiffening [74]. 

These changes in the ECM composition and substrate stiffness increase VSMC stiffness 

by increasing their adhesion molecule expression [75, 76] and drive the system away 

from healthy conditions and toward cardiovascular diseases.   
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Although maladaptive remodeling in the VSM native environment can cause 

undesirable outcomes in vivo, we can harness the contribution of mechanotransduction on 

VSMC form and function in vitro to our advantage by regulating the assembly of these 

cytoskeletal proteins to build VSM with engineered cellular architecture. In the following 

sections, we will review the influence of different mechanical cues on the VSMC 

cytoskeletal architecture.  

 

1.3.1 Tensile Stress 

The pulsatile nature of the vasculature exposes VSMCs to cyclic stretching in 

their native environment. Using ultrasonography and other methods, direct viewing of the 

vasculature in vivo demonstrated that each cardiac cycle can deform human arteries, 

arterioles, and veins between 6 and 22%, with more distention experienced by larger, 

proximal arteries [77-80]. These observations generated interest in the effect of stretching 

on VSMC behavior in vitro. Cyclic stretching on rat VSMCs in vitro produces rapid 

reorganization of stress fibers perpendicular to the stretching direction [4]. Longitudinal 

stretching of the vascular wall induces actin polymerization [81]. In addition, cyclic 

stretching in rat VSMCs leads to increased expression level of insoluble focal adhesion 

contact components [3], paxillin, and vinculin [82], suggesting that cyclic stretching may 

strengthen the number and size of focal adhesion complexes. These findings indicate that 

mechanical stimulation in the form of cyclic stretching can remodel the state and 

organization of actin stress fibers and focal adhesions, which may subsequently feed back 

to VSMC functional changes.  
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1.3.2 Cellular Boundary Condition 

Recent advances in cellular engineering have enabled reproducible and precise 

studies on the role of cell shape in mechanotransduction [83-85]. Our group has utilized 

microcontact printing (µCP) to micropattern ECM proteins on substrate to create user-

defined cell-adhesive patterns that produce cells with various shapes [86-89]. More 

recently, our group engineered VSM tissues of varying widths by constraining the line 

width of micropatterned fibronectin and lamina proteins [90]. We found that, while the 

alignment of F-actin stress fibers is similar, the nuclear eccentricities of constituent 

VSMCs significantly correlates with cell shape with length-to-width aspect ratios (ARs) 

between 20:1 and 50:1 [90]. To investigate the shape-contractility function more 

rigorously, we recently engineered single VSMCs on fibronectin islands with ARs from 

5:1 to 20:1 and quantified their F-actin alignment by measuring the orientational order 

parameter (OOP) and nuclear eccentricity (Figure 5). In contrast to VSM tissues, we 

found that isolated VSMCs with higher ARs have increased OOP and nuclear eccentricity, 

suggesting elongated cell shape leads to more aligned stress fibers and elongated nuclei 

[91]. 
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The effect of two- and three-dimensional (3D) VSMC shape on cytoskeletal 

remodeling has also been described by several other groups. Thakar et al. showed that 

bovine VSMCs cultured on micropatterned collagen strips with elongated cell shape have 

decreased expression of actin stress fibers and α-actin on narrower strips [92]. They also 

reported that elongated cell shape lowers the nuclear shape index of isolated VSMCs 

while reduced spreading area significantly reduces nuclear volume [93]. When isolated 

rat VSMCs were cultured on user-defined cell adhesive patterns fabricated by plasma 

lithography, Goessl and colleagues observed cell shape-dependent actin formation and 

nuclear shape change [94]. When rat VSMC volume was changed in three dimensions 

(3D) through hyperosmotic shrinkage or hyposmotic swelling, a dramatic elevation of F- 

to G-actin ratio was observed [95], suggesting that actin polymerization occurs in 

response to cell shape changes in 3D. Thus, these reports demonstrated that cellular shape 

and cytoskeletal architecture direct the location and organization of mechanosensitive 

components including stress fibers and nucleus, suggesting one potential mechanistic 

pathway in which cell shape changes in two and three dimensions are translated to 

functional differences in VSMCs. 

 

1.3.3 Extracellular Matrix Interactions 

ECM components influence VSMC phenotype and functions like migration, 

proliferation, and contraction in vitro. Concomitantly, significant changes in cytoskeletal 

organization and expression have also been reported. One early study reported that 

isolated rat VSMCs cultured on laminin develop significantly fewer focal adhesions than 

cells cultured on fibronectin [96]. Another found different amounts of myofilament 
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expression in rabbit VSMCs cultured on interstitial matrix (collagen I and fibronectin), 

basal lamina protein (collagen IV and laminin), and the serum adhesion protein 

vitronectin [97]. In addition, immunofluorescent staining of stress fibers with antibodies 

against α-actin, myosin heavy chain isoform SM2, and vimentin, revealed that stress fiber 

expression of VSMC cultured on fibronectin coated substrate over a 5-day culture period 

gradually reduced with time [98], suggesting that ECM can mediate active remodeling of 

cytoskeleton. More recently, distinct morphologies of actin organization and focal 

adhesion formation were found on VSMCs cultured on different ECM components [99]. 

Specifically, for VSMCs cultured on fibronectin and collagen IV, cytoskeletal stress 

fibers organize along the long axis of the cell and tight bundles occur along the periphery; 

whereas this stress fiber organization is less typical for cells cultured on collagen I and 

laminin. In addition, rounded focal adhesions are induced by fibronectin, while elongated 

morphology is more common for collagens. Furthermore, a significant decrease in both 

F-actin and vinculin area occurs only for cells on fibronectin matrix. These studies 

demonstrated that ECM regulates the assembly and organization of cytoskeleton in 

VSMCs.   

 

1.3.4 Substrate Stiffness 

In a large number of cardiovascular diseases involving VSMCs, such as 

hypertension, hypertrophy, and atherosclerosis, the stiffness of the diseased blood vessels 

is dramatically altered [100]. Changes in substrate stiffness in two- and three-dimensional 

culture systems lead to VSMC cytoskeletal remodeling. Peyton and colleagues have 

shown that human VSMCs cultured on two-dimensional polyacrylamide gels with a 
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range of stiffness from 1.0 to 308 kPa display more visible F-actin bundles and punctate 

focal adhesion sites on a rigid substrate compared to cells cultured on soft substrates 

[101]. In the same study, they also demonstrated that an intermediate stiffness produces 

an intermediate amount of fibers and focal adhesions. Extending those findings using a 

poly(ethylene glycol)-conjugated fibrinogen based three-dimensional culture system with 

compressive modulus between 448 and 5804 Pa, the group observed a higher level of F-

actin bundling on VSMCs on stiff matrices after 14 days in culture [102]. These results 

suggest that VSMCs actively adapt to stiffness in the microenvironment by remodeling 

stress fiber and focal adhesion organization.  

 

1.3.5 Topography 

A wide range of cell types respond to topographical cues such as grooves, ridge, 

stops, pores, wells, and nodes in micro- and nano-scale [103-107]. VSMCs in their native 

environment also interact with micro- and nano-scaled features such as pores, fibers, and 

ridges on the basement membrane [108]. Studies that mimick these micro- and nano-

scale topographies in vitro have reported active remodeling of cellular cytoskeleton. 

VSMCs seeded on nanopatterned gratings of poly(methyl methacrylate) (PMMA) and 

poly(dimethylsiloxane) (PDMS) assume elongated cell and nuclei shapes [109]. VSMCs 

cultured in micro-channels with channel widths of 20, 30, 40, 50, and 60 µm display 

highly aligned actin filaments and elongated nuclei on narrower micro-channels [110]. 

More recently, Taneja and colleagues evaluated the effect of 13 µm 316L stainless steel 

micro-grooved surface on VSMC phenotypic changes to understand how topography of 

endovascular stent contributes to restenosis [111]. They found that micro-grooved 



22 

 

surfaces induce significant cell elongation in addition to significantly higher levels of α-

actin expression [111]. These studies suggest that micro- and nano-scaled topographical 

features can significantly alter the shape of both cell and nucleus and lead to cytoskeletal 

remodeling.  

Altogether, these studies reveal that mechanical properties of the cellular 

microenvironment can be used as design tools to build VSM with engineered cytoskeletal 

architecture in vitro. The cytoskeleton interacts with multiple signaling pathways by 

regulating the activation/deactivation state of associated protein complexes [112]. As a 

consequence of the tight structure-function coupling in VSMC, we would expect that the 

engineered architecture would influence the VSM functional outcome; thus, there exists a 

need for a performance metric that will allow researchers to systematically evaluate and 

optimize the functions of the fabricated VSM tissue.   

 

1.4 Functional Evaluation of Engineered Vascular Smooth Muscle 

Although our ability to control the mechanical properties of the cellular 

microenvironment has become increasingly precise and refined, the ultimate goal for 

tissue engineers is to harness these mechanical cues to build a functional VSM in vitro. 

This aim will require systematic evaluation and optimization of the VSM tissue design 

with a standardized performance benchmark or functional metrics. Conventional standard 

practice evaluates engineered VSM using proteomic assays and cellular morphology; in 

contrast, we will use evidence from in vitro studies to show in the following sections that 

VSM functions, including proliferation, migration, contraction, and gene expression, are 
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influenced by cellular architecture and therefore should be included as part of functional 

evaluation for assessing engineered VSM tissue.  

 

1.4.1 Proliferation 

A growing number of studies demonstrate that the proliferation of engineered 

VSMCs can be influenced by the cytoskeletal architecture in vitro. With micropatterned 

collagen strips of 20, 30, and 50 µm width as well as 30 µm wide micro-grooves on poly-

(D,L-lactide-co-glycolide) (PLGA), Thakar and colleagues showed that significantly 

elongated cell shape and reduced formation of actin stress fiber and α-actin are displayed 

by VSMCs cultured on 20 and 30 µm-wide collagen strips and micro-grooved PLGA 

surfaces [92]. Quantification of proliferation with 5-bromo-2’-deoxyuridine (BrdU) 

showed that these elongated VSMCs have a significantly reduced growth rate. In addition, 

a study of engineered isolated human VSMCs cultured with micropatterned matrix 

islands revealed that cells with elongated shape and nuclei have a lower proliferation rate 

[93]. Aligned and elongated bovine VSMCs engineered on PMMA and PDMS 

nanopatterned gratings have a reduced proliferation rate [109]. Even in the absence of 

direct cellular shape manipulation by ECM pattern or topography, isolated porcine 

VSMCs with a spindle shape also have a significantly lower proliferation rate than 

rhomboid-shaped cells [113]. These studies provide mounting evidence that cytoskeletal 

architecture can regulate VSMC proliferation.  

Since cells can actively respond to extracellular boundary conditions by 

remodeling their cytoskeletal organization [85, 114], changes in cell shape could lead to 

spatially different placement and distribution of mechanosensitive protein complexes, 
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eventually producing changes in signaling pathway and functions. For example, focal 

adhesions tend to localize toward the corners of cells [89, 115]. These intramembrane 

protein complexes transmit mechanical tension from outside of the cell to the 

cytoskeleton inside the cell [116] and modify activation states of associated signaling 

proteins [117]. F-actin stress fibers also anchor on the focal adhesions and nuclear lamina, 

providing a direct physical link for tension to be transmitted to the nucleus [118, 119]. 

These mechanical connections to the nucleus stabilize intranuclear DNA [73], and cell 

shape-induced nuclear deformation can lead to chromatin remodeling and DNS synthesis 

[120]. Collectively, these studies indicate that VSMC proliferation depends on cellular 

shape and cytoskeletal architecture.  

 

1.4.2 Migration 

VSMCs migrate toward the site of vessel injury in response to growth factor 

gradients. Understanding and regulating VSMC migration has been a focus in treating 

vascular diseases for preventing post-surgical complications such as thrombogenesis and 

restenosis. Several studies have demonstrated that VSMC migration depends on VSMC 

shape and cytoskeletal organization. In one study, maximum migration speed was 

observed for isolated human VSMCs with the highest ARs [121]. However, a later report 

showed that cloned human VSMCs under serum-withdrawn conditions and with 

elongated morphology have a significantly lower migration speed [122]. These 

contradictory findings may be attributable to differences in cell types, serum conditions, 

and ECM proteins. A novel isolation method used by Hao et al. to obtain porcine VSMCs 

with distinct spindle and rhomboid morphologies showed that rhomboid-shaped VSMCs 
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migrate significantly faster than spindle-shaped cells [113]. When cytoskeleton 

reorganization is inhibited by cytochalasin D, interlukin-6-induced migration of VSMCs 

is inhibited [123], suggesting that VSMC migration can be regulated by cytoskeleton 

architecture. More recently, Jiang and colleagues showed that phosphomimetic 

caldesmon mutant-transfected rat VSMCs with the most robust expression of actin 

cytoskeleton structure have a significantly lower migration activity compared to VSMCs 

with normal expression of actin cytoskeleton [124]. Taken together, these studies suggest 

VSMC migration may be influenced by cellular architecture.  

 

1.4.3 Contraction 

The main function of quiescent, fully differentiated VSMCs is to contract or 

relax the vessel wall in response to pressure and flow changes. In addition to regulating 

proliferation and migration, which are associated with the synthetic phenotypes of 

VSMCs, cell shape and cytoskeletal architecture mediate the contractile strength of 

VSMCs. In desmin-deficient mice, VSMCs isolated from microarteries exhibit lower 

active and passive tension [125], while isolated VSMCs have higher active force and 

increased passive compliance [126], indicating the contribution of intermediate filament 

on VSMC contractility may be cell type-dependent. Pharmacological studies inhibiting 

actin polymerization with cytochalasin D [43, 45], cytochalasin B [44], and latrunculin B 

[127] found a complete inhibition of contraction in VSMCs. On the other hand, 

enhancing actin polymerization with an actin stabilizer, jasplakinolide, increases 

myogenic tone in rat cerebral VSMCs under intraluminal pressure [47], suggesting that 

actin organization plays a critical role in VSMC contraction generation. More recently, 
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Koltsova and colleagues reported that elevation in F- to G-actin ratios in rat VSMCs with 

hyperosmotic shrinkage and hyposmotic swelling also causes increased contraction [95], 

suggesting that a contractile response is mediated by actin polymerization. In addition to 

actin stress fibers, Min and colleagues found regulation of focal adhesion by Src 

modulates differentiated VSMC contractility [29]. By forcing VSMCs into elongated 

shapes on micropatterned strips of fibronectin and laminin, our group showed an increase 

in VSMC nuclear eccentricity and a higher degree of cell contraction [90], suggesting 

that cell shape may modulate VSMC contractility. Taken together, these studies suggest 

that VSMC contractility is a function of cellular cytoskeletal architecture and cell shape.  

 

1.4.4 Gene Expression 

The expression of genes and proteins has been used traditionally to assess the 

phenotypic state of VSMCs. The activation and deactivation of specific pathways that 

controls the expression of genes can be mediated by cytoskeletal architecture. For 

example, rabbit VSMCs in contractile and synthetic states with different organizations of 

vimentin, actin, and focal adhesion have significantly different expression and 

distribution of smooth muscle-specific proteins [128]. Inhibiting or enhancing actin 

polymerization pharmacologically significantly decreases or increases SMC-specific 

promoter activities, respectively, in rat VSMCs [129], suggesting that actin 

polymerization regulates SMC-specific gene expression. When a single stretch is applied 

to rat VSMCs, significant upregulation of smooth muscle-specific contractile proteins is 

accompanied by an increase in F- to G-actin ratio [81]. However, when the stress fiber 

network is disrupted pharmacologically, stretch-dependent activation of rat VSMC 

differentiation markers is abolished [130], indicating that an intact cytoskeleton is 
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required for activation of SMC-specific genes. In addition, Cattaruzza and colleagues 

reported that zyxin can translocate and accumulate in the nucleus and modulate VSMC-

specific gene expression [10], suggesting that cytoskeletal proteins could be directly 

involved in modulating gene expression. Since the cytoskeleton is mechanosensitive, 

differences in cytoskeletal architecture can lead to differential activation of genes and 

proteins, which ultimately provide VSMCs with functional adaptability.   

 

1.5 Conclusions 

Vascular smooth muscle functions are highly dependent on the structural 

organization in multiple spatial scales as a result of the cellular mechanotransduction 

processes. An engineering algorithm for building functional vascular smooth muscles in 

vitro based on recapitulating the mechanotransduction processes allows us to control for 

both cellular architecture and function. Importantly, cytoskeleton proteins such as 

integrin, cadherin, actin, intermediate filaments, and microtubules embedded in the 

extracellular, intracellular, and intercellular domains are mechanotransductive 

components that contribute to VSMC form and function. By harnessing the mechanical 

cues in the cellular microenvironment, such as cyclic tensile stress, cellular shape 

deformation, ECM interactions, and substrate stiffness and topography, we can build 

functional VSMCs with engineered cytoskeletal architecture. The performance of these 

engineered VSMCs should then be evaluated and optimized with functional metrics 

including proliferation, migration, contraction, and gene expression because of their 

dependency on cytoskeletal architecture. The development of functional VSM in vitro 

models is particularly relevant for engineering small-diameter vascular grafts, where 

functional VSM tissue may improve graft patency and long term survival, and replacing 
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expensive animal models in traditional drug discovery research with a cheaper, functional 

in vitro alternative.  

With this dissertation, we applied this strategy in the design and assembly of 

engineered vascular tissues. In chapter 2, we investigated the effect of engineered VSMC 

shape on its cytoskeletal architecture and contractile strength. In chapter 3, we developed 

a novel three-dimensional tissue patterning strategy based on folding polymer thin sheet 

and tested this strategy for building vascularized networks.   
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2 The Contractile Strength of Vascular Smooth Muscle 

Myocytes is Shape Dependent 

Adapted from Ref. 91 with permission from The Royal Society of Chemistry.  

Vascular smooth muscle cells in muscular arteries are more elongated than those 

in elastic arteries. Previously, we reported changes in the contractility of engineered 

vascular smooth muscle tissue that appeared to be correlated with the shape of the 

constituent cells, supporting the commonly held belief that elongated muscle geometry 

may allow for the better contractile tone modulation required in response to changes in 

blood flow and pressure. To test this hypothesis more rigorously, we developed an in 

vitro by engineering human vascular smooth muscle cells to take on the same shapes as 

those seen in elastic and muscular arteries and measured their contraction during 

stimulation with endothelin-1. We found that in the engineered cells, actin alignment and 

nuclear eccentricity increased as the shape of the cell elongated. Smooth muscle cells 

with elongated shapes exhibited lower contractile strength but greater percentage increase 

in contraction after endothelin-1 stimulation. We analysed the relationship between 

smooth muscle contractility and subcellular architecture and found that changes in 

contractility were correlated with actin alignment and nuclear shape. These results 

suggest that elongated smooth muscle cells facilitate muscular artery tone modulation by 

increasing its dynamic contractile range. 

 

2.1 Introduction 

The contractile function and structure of vascular smooth muscle cells (VSMCs) 

vary as a function of location in the cardiovascular system [131]. In large diameter elastic 
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arteries, such as the aorta, VSMCs contract to maintain vessel pressure during cardiac 

cycle [132]. This is in contrast to mid-sized muscular arteries, such as the external carotid 

artery of the neck and femoral artery of the thighs, where VSM contracts concentrically 

to constrict or relax the arterial wall in a process called vascular tone modulation [133]. 

These functional differences are reflected structurally, where VSMCs exhibit markedly 

different geometries in these arteries. Although differentiated VSMCs in elastic and 

muscular arteries have a characteristically spindle shape, the elongated shape of VSMCs 

in muscular arteries with nearly 15:1 in cell AR, is more pronounced than those found in 

elastic arteries, which have cell AR about 9:1 [131]. It has been speculated that the 

VSMC shape may facilitate vascular tone modulation in muscular arteries by providing 

better dynamic response to blood flow [134, 135] and pressure changes [136]. However, 

definitive evidence to support this relationship between VSMC shape and contractile 

function has been limited. 

VSMCs undergo significant changes in geometry in physiological and 

pathological developments. Domenga and colleagues demonstrated rapid VSMC 

structural changes in postnatal wild-type mice, where VSMCs developed more elongated 

shape, increased thickness and become circumferentially oriented around the lumen by 

day 28 compared to immature VSMCs at birth [137]. Genetic deletion of Notch3, which 

is uniquely expressed in arteries but not of veins, led to thin, irregular, rounded shape 

VSMCs that are poorly orientated around the lumen [137]. In human, Notch3 mutation 

leads to a hereditary vascular dementia called cerebral autosomal dominant arteriopathy 

with subcortical infarcts and leukoencephalopahy (CADASIL), characterized by a 

cerebral non-atherosclerotic, non-amyloid angiopathy that mainly affects the small 
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arteries penetrating the white matter. Patients diagnosed with this disease were usually 

found with more rounded and irregular VSMC shape in small- and middle-sized arteries 

[138]. During normal vascular repair following injury, VSMCs switch their contractile 

phenotype to synthetic phenotype and in the process, changing their shape from the 

elongated spindle morphology to an epithelioid or rhomboid morphology [139]. The 

epithelioid shaped VSMCs proliferate and produce extracellular matrix to help with the 

wound healing process [139]. However, the deregulation of this phenotype switching 

process underlies a number of vascular disorders such as hypertension [140], restenosis 

[141], and vasospasm [14]. This is supported by pathological studies that observed 

morphologically distinct VSMC populations between spindle and epithelioid shapes at 

the site of atherosclerotic intima in the aorta [142-144], carotid artery [145] and coronary 

artery [146]. Understanding the role of VSMC shape change may elucidate mechanistic 

insight in the context of cellular physiology and vascular pathology. 

In addition to VSMCs, shape change also plays an important role in regulating 

the physiological and pathological development of other smooth muscle cells and 

cardiomyocytes. In an early ultrastructural study focusing on the prenatal development of 

smooth muscle in the human fetal uteri between 12-40 weeks of gestation, Konishi et al. 

showed immature uterine SMCs changed from a round morphology at week 12-16 to an 

elongated shape with identifiable dense bodies at week 18 [147]. A clinical and 

pathological analysis of 26 cases of atypical smooth muscle tumours of the uterus 

demonstrated that SMC in leiomyoma changed from the typical elongated shape to a 

rounded, polygonal shape [148]. In cardiac development, cardiac looping is one of the 

first steps of forming a four chambered-heart that requires bending and twisting of heart 



32 

 

tube asymmetrically. It was found that myocardium on the concave side of the heart tube 

myocardium remains thick and columnar while the convex side flattened and increased in 

surface area, effectively reducing the AR of the myocardium epithelial tissue [149] and 

resulting in different contractility on the concave and convex surfaces [150]. In mature 

adult heart under pathological chronic pressure overload, the heart undergoes concentric 

hypertrophy, resulting myocytes increase cell width without significant changes in cell 

length. This, in turn, decreases the normal AR from 7:1 [151-153], as seen for normal 

ventricular myocytes, to 5:1 [154, 155]. As heart continues to fail, eccentric hypertrophy 

develops in response to volume overload, which adds sarcomere in series without 

changing myocytes, cross-section area. This eventually increased the myocytes aspect 

ratio to 11:1 [152, 153]. Investigating the shape and contractility relationship in myocytes, 

our group recently reported that myocytes contractility is optimized at AR observed in 

normal hearts and decreased in cardiomyocytes that resemble AR of failing hearts [88]. 

In addition, we observed that boundary condition encoded in the extracellular space can 

regulate myocyte tissue cytoskeletal alignment and function [85, 156, 157]. These studies 

clearly demonstrated that shape adaptations in smooth and striated muscles can 

profoundly influence the cellular function.  

Recent advances in technologies designed to engineer and probe cell geometries 

and mechanics has enabled studies demonstrating the relationships between cell shape 

and architecture and cellular functions such as apoptosis [158], proliferation [120], 

cytoskeletal and focal adhesion organization [85, 159, 160], and contraction [88, 89, 157]. 

Utilizing micro-fabrication techniques, our group as well as others have demonstrated at 

a tissue level that VSM seeded in microgrooves and micropatterned fibronectin (FN) 
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assumed an elongated morphology [87] as well as oriented remodelling of the underlying 

matrix [161] and significantly lower cell proliferation rate [93]. Recently, focusing on 

VSM tissue structure and contractility, we showed that contractile stress of VSMC tissue 

increased as cell shape elongated within the tissue [90], suggesting that VSM contractility 

is potentially cell shape dependent. Elsewhere, Wang and colleagues sparsely seeded 

VSMCs on polyacrylamide (PAA) gel with an isotropic type-I collagen coating and 

measured an increase in contractile force as cell spreading increased [162]. In another 

study where VSMC spreading was controlled [93], elongated VSMCs showed reduced 

proliferation, a cell function commonly associated with cell shape and cytoskeletal 

tension. While these reports suggest that VSM tissue and cellular structure could 

influence its function, the role of cell shape in vasomotor tone and contractility was not 

elucidated. This is important, because controlling cell shape in tissue engineered vascular 

grafts may be an important strategy for endowing the tissue with a specific drug 

sensitivity and high fidelity control of the lumen diameter. 

We hypothesized that forcing VSMCs to assume increasingly elongated shapes 

would mimic the VSMC morphology in muscular arteries in vivo and induce changes in 

the intracellular architecture that consequently increase the dynamic contractile range of 

VSMC in response to contractile stimuli. To test this hypothesis, we engineered VSMCs 

on micropatterned islands of fibronectin (FN) with ARs of  5:1, 10:1 or 20:1 to mimic 

VSMC shapes found in elastic and muscular arteries in vivo, quantified cytoskeletal and 

nuclear organization, and directly measured contraction via traction force microscopy 

(TFM) upon stimulation with a vasoconstrictor endothelin-1 (ET-1). We found cell shape 

significantly influenced cytoskeletal and nuclear organization and isolated VSMCs of AR 
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near 20:1 achieved lower basal and stimulated contractile forces but greater percent 

change in contractile force after stimulation. These results suggest that the elongated 

shape equips VSMC with a greater dynamic contractile range, facilitating modulation of 

vascular tone over a broad range by muscular arteries in vivo. 

 

2.2 Results 

2.2.1 Design of Vascular Smooth Muscle Cell Shape 

We engineered the isolated VSMCs by designing three cellular structure 

parameters: geometry, size and AR. The geometry refers to the number of vertex that the 

isolated VSMC has. For example, circular or ellipsoidal shaped VSMCs have zero 

vertices and they belong to the same geometry class. Extending this concept, a spindle-, 

triangular- and rectangular-shaped VSMC has two, three and four vertices respectively, 

and they represent three different geometrical classes.  

Although healthy, fully differentiated VSMCs usually assume a spindle-like 

shape in vivo, we designed our isolated VSMCs with a rectangular geometry for two 

reasons. First, isolated VSMC with tapered, spindle-like geometry may be a poor in vitro 

model. Kuo and colleagues demonstrated that airway smooth muscle cells work as a 

mechanical syncytium by transmitting intercellular force along the principle axis of the 

cells through mechanically coupled nucleus and aligned F-actin filaments, despite the 

individual spindle cell shape [72]. They argued when mechanical coupling between 

neighboring cells are absent, force generation in cells may be distorted, unless the 

isolated smooth muscle cells are long and the tapered ends are not included in the 

mechanical measurements. Therefore, by designing our isolated VSMCs in rectangular 
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geometry, we ascertain the isolated VSMCs are long and without the tapered ends and 

this allowed us to measure the mechanical output of the entire cell body. The second 

reason for using a rectangular geometry is a technical one: the longitudinal end-to-end 

distance is shorter for rectangular geometry than for spindle geometry of the same surface 

area. This allows us to fit the entire isolated VSMC in one field of view on our 

microscope when using the 40× objective with a 0.5× optical zoom, up to 20:1 length to 

width AR. Although grid imaging software can address this issue, it is not preferred in 

this experimental setup as grid imaging and stitching can introduce error in fluorescent 

bead location for traction force microscopy and require additional laser exposure cycles, 

which can be phototoxic to cells for extended live cell imaging. Based on the above two 

reasons, we designed and engineered our isolated VSMCs to be rectangular in geometry 

for all studies. 

We asked what projected surface area we should use for designing our isolated 

VSMCs. It is important to have a constant projected surface area for all ARs as smooth 

muscle cell spreading has been shown to influence cellular function [92]. Since substrate 

stiffness can lead to changes in cell spreading area [101, 163, 164], we investigated the 

spreading behavior of VSMCs on both soft (13 kPa) polyacrylamide (PAA) gel [165] and 

much stiffer glass (73 GPa) substrates. To present identical extracellular matrix (ECM) to 

the cells, we patterned both substrates with biotinylated-fibronectin isotropically. We 

induced the contractile phenotype and inhibited cell division by serum starving the 

VSMCs for 48 hours following an initial 24 hour seeding period with media containing 

10% fetal bovine serum (See Materials and Methods). We stained the cell membrane with 

DiO and the nucleus with DAPI in order to measure the spreading area of single VSMCs.  
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We observed a spectrum of morphology in isolated VSMCs on both PAA gel 

(Figure 2-1 A-C) and glass (Figure 2-1 D-F) substrates. We categorized the morphology 

into rhomboid (Figure 2-1 A, D), elongated (Figure 2-1 B, E) and spindle (Figure 2-1 C, 

F). For some of the spindle-shaped isolated VSMCs, cell length can extend over 300 µm 

(Figure 2-1 C). 

 

Figure 2-1: Morphology of immunostained isolated vascular smooth muscle cells on 

soft (13 kPa) polyacrylamide (PAA) gel (A-C) and stiffer (73 GPa) glass (D-F) substrates 

isotropically patterned with biotinylated-fibronectin. (White: DiO, blue: DAPI). On both 

substrates, a diverse morphology including rhomboid (A, D), elongated (B, E) and 

spindle (C, F) were observed. Scale bars = 50 µm. 

We measured the projected surface area of single VSMCs by manually tracing 

the cell borders in ImageJ. We found the projected surface area of single VSMCs on PAA 
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gel (Figure 2-2 A) and glass (Figure 2-2 B) to be normally distributed with a mean at 

4000 µm2 and 3500 µm2 respectively. This is consistent with a previous study that found 

the spreading area of human aortic SMCs was normally distributed [166].  To provide a 

physiologically relevant substrate stiffness, we microfabricated all isolated VSMCs in 

subsequent studies with a projected surface area of 4000 µm2 on PAA gel to minimize the 

effect of cell spreading area on cellular function. 

 

Figure 2-2: Projected surface area of isolated vascular smooth muscle cells is 

normally distributed on PAA gel (A) and glass (B) substrate. The mean projected surface 

area of VSMCs on PAA gel is higher than those on glass. (Solid line: normal distribution, 

red dotted line: mean). 

Finally, in order to determine physiologically relevant ARs for designing our 

experiment, we surveyed the literature for measurement of AR observed in previous in 

vivo [131] and in vitro [90, 92, 93, 161, 167, 168] studies. A wide spectrum of ARs for 

VSMCs was observed ranging from 2 to 50 in studies in the past 3 decades (Figure 2-3). 

We selected the 20:1 AR as the upper limit for our study as (1) all studies except one 
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showed that VSMC ARs did not exceed 20:1 in Figure 2-3 and (2) 20:1 is the upper limit 

for a single field of view of the entire cellular body, which reduced cellular phototoxicity 

and improved signal to noise ratios during traction force microscopy. We selected 5:1 AR 

as the lower limit for our study as (1) it is just below the 8:1 AR observed in vivo (Figure 

2-3, pink bar) and (2) it permits sufficient cell shape polarization to remain rectangular. 

We also selected one intermediate AR of 10:1 to study the transition between the upper 

and lower bounds. Taken together, from the selected geometry, size and ARs above, our 

finalized design for microfabricated isolated VSMCs were rectangular islands with a 

fixed projected surface area of 4000 µm2 and ARs of 5:1 (141 × 28 µm), 10:1 (200 × 20 

µm) and 20:1 (282 × 14 µm). 

 

Figure 2-3: Observed aspect ratios of vascular smooth muscle cell from literature.  

In vitro (pink) VSMC ARs range between from 10:1 to 15:1 while in vitro (blue) VSMC 

ARs range between from 2:1 to 50:1.   

 

2.2.2 Microfabricated Isolated Vascular Smooth Muscle Cells 

To fabricate isolated VSMCs according to our design parameters, we adopted 

methods previously established in our group [88, 89] by culturing VSMCs in defined 
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media on elastic, 13 kPa PAA gels whose surfaces had been micropatterned with 

rectangular FN islands (Figure 2-4). For details, please see Methods and Materials section.  

 

Figure 2-4: Schematic representation of µCP method on polyacrylamide gel to 

construct isolated vascular smooth muscle cells with different aspect ratios. For 

details, please see Method and Materials section.   

To examine the quality of the micropatterned FN islands, we immunostained the 

islands with anti-human FN and found them to be uniform and consistent with high 

fidelity (Figure 2-5 A). After 1 day of culture in 10% FBS serum followed by 2 days of 

culture in serum-free media on PAA gel with FN islands, seeded VSMCs assumed the 

rectangular shape of the patterned FN islands with aspect ratio of 5:1, 10:1 and 20:1 

(Figure 2-5 B). By optimizing the initial seeding density, we were able to obtain mostly 

island with a single cell present. However, islands occupied with more than one cell were 

also occasionally observed (Figure 2-5 B, arrowhead). 
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Figure 2-5: Immunostained micropatterned FN islands and microfabricated isolated 

vascular smooth muscle cells. (A) Anti-human FN staining of patterned biotin-FN on 

PAA gel. (B) Phase contract images of micropatterned isolated VSMCs with aspect ratio 

of 5:1, 10:1 and 20:1 and surface area of 4,000 µm2. Islands occupied by more than one 

cell had a sinusoidal cell-cell junction (arrow head). (A-B) Scale bars = 100 µm. 

We measured the projected surface area, AR and thickness of isolated VSMCs 

to ascertain the quality and fidelity of the microfabrication process. We immunostained 

isolated VSMCs of AR 5:1 (Figure 2-6 A), 10:1 (Figure 2-6 B) and 20:1 (Figure 2-6 C) 

with phalloidin to visualize the cell shape and DAPI to ensure that only single cells were 

measured. We found that the projected surface areas were similar for all three ARs with 

mean at 2225 ± 48 µm2 (Figure 2-6 D). Since VSMCs exert a basal tone at normal resting 

condition, the reduction in projected surface area is expected as a result of elastic 

deformation of the soft PAA substrate under cell generated force. The contraction of 

isolated VSMCs also lead to shape deformation as we found that mean and SEM of ARs 

of 5:1, 10:1 and 20:1 were 6.8 ± 0.1, 15.3 ± 0.5, 31.3 ± 1.4 respectively. The findings that 

all three cellular ARs were more elongated than the original design may suggest that 
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contraction in cell’s short axis changed by a greater proportion than the contraction in the 

long axis. 

 

 

Figure 2-6: Characterization of microfabricated immunostained isolated vascular 

smooth muscle cells. (A-C) Phalloidin and DAPI stained patterned isolated VSMCs with 

AR of 5:1 (A), 10:1 (B) and 20:1 (C). (White: F-actin, blue: nuclei). Scale bar = 50 µm. 

(D) Measured projected surface area and AR of isolated VSMCs. Mean ± SEM. n = 17-

26 cells from 2-3 coverslips per condition. 

To get a sense quantitatively in terms of the magnitude of the contractions in 

cell’s short and long axes, we calculated the shortenings in both directions by assuming 

the rectangular isolated VSMCs contracted concentrically (Figure 2-7 A). This 

assumption is based on the observed rectangular shape of contracted isolated VSMCs in 

Figure 2-5. Since we know the original length (L) and width (W) of the micropatterned 

FN islands, we can use the following two equations based on the measured projected 

surface area and cell AR (Fig. 6D) to solve for shortenings in the cell’s long (2a) and 

short axes (2b): 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑆𝐴 = (𝐿 − 2𝑏) × (𝑊 − 2𝑎)                             (1) 
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𝐶𝑒𝑙𝑙 𝐴𝑅 =  (𝐿 − 2𝑏) (𝑊 − 2𝑎)⁄                                           (2) 

The magnitude (Figure 2-7 B) of shortenings calculated using this simplistic 

model showed that cell elongation leads to statistically greater shortening in cell’s long 

axis at 20:1 ARs but significantly less shortening in cell’s short axis at 10:1 and 20:1 ARs, 

suggesting that  cell shape can influence the magnitude and distribution of contraction. 

Normalizing the magnitude of shortenings by the original dimensions of the 

micropatterned FN islands, we found that a significantly lower relative shortening in 

cell’s long axis was achieved by isolated VSMCs with 20:1 ARs while similar relative 

shortenings in cell’s short axis were achieved by all three ARs (Figure 2-7 C). This result 

suggests that as VSMC becomes elongated, contraction in the cell’s long axis becomes 

weaker. In addition, the relative shortening in the short axis is much higher than the 

shortening in the long axis, which supports our earlier suggestion that a greater 

proportion of contraction is achieved in the cell’s short axis than the long axis. 
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Figure 2-7: Shortening of rectangular isolated vascular smooth muscle cells. (A) 

Schematic illustration of concentric shortenings in cell’s long (2a) and short (2b) axis. L 

and W are the length and width of the micropatterned FN island respectively. (B) 

Magnitude of shortening in cell’s long (black) and short (red) axes. (C) Percent 

shortening compared to original micropatterned FN island dimensions in cell’s long 

(black) and short (red) axes. (B-C) * = statistically different from 5:1 AR, † = statically 

different from 10:1 AR, ‡ = statistically different from 20:1 AR. p < 0.05. Mean ± SEM. 

n = 17-26 cells from 2-3 coverslips per condition. 
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We measured cell thickness using deconvolved three-dimensional confocal 

image stack of phalloidin labeled F-actin fibers of isolated VSMCs (Figure 2-8 A).  No 

statistically significant difference in cell thickness was observed between the three ARs 

(Figure 2-8 B). Since the measured projected surface areas were similar (Figure 2-6), this 

result suggested the cell volume was conserved for all three ARs. Taken together this 

approach enabled us to control the shape of isolated VSMCs with high precision while 

maintaining cell spreading area, substrate stiffness, growth factor and ECM composition. 
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Figure 2-8: Vascular smooth muscle cell thickness and volume are similar for all 

aspect ratios. (A) Three dimensional rendering of a 5:1 AR VSMC patterned on PAA 

gel. (Red: F-actin, blue: nucleus). Scale bar = 20 µm. Isolated VSMC thickness (B) and 

volume (C) as a function of VSMC AR. (B-C) mean ± SEM. n = 7-12 cells per AR.  

 

2.2.3 F-actin Alignment and Organization as a Function of Cell Shape 

Previously, we reported variations in cell shape, cytoskeletal alignment, and 

nuclear shape in engineered vascular tissues assembled on matrix templates with varying 

geometries [90]. We endeavored to study this cellular remodeling under more controlled 

conditions. In our engineered cells, we measured the alignment of F-actin (Figure 2-6 A-
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C, 5:1, 10:1 and 20:1 respectively) using immunohistochemical staining. The orientation 

of the F-actin fibers was calculated using a method based on structure tensor method [169] 

and quantified by calculating the orientational order parameter (OOP), a method 

borrowed from crystallography and previously reported by our group [170]. We found 

that F-actin OOP increased significantly as cell AR increased (Figure 2-9), suggesting 

that as the cell’s long axis was extended, the transverse boundary conditions on the cell 

potentiated the alignment of polymerizing actin with the cell’s long axis. 

 

 

Figure 2-9: Orientational order parameter (OOP) of F-actin fibers of isolated 

vascular smooth muscle cells. VSMCs with higher ARs had a greater F-actin OOP value, 

suggesting more aligned F-actin fibers. * = statistically different from 5:1 AR, † = 

statically different from 10:1 AR, ‡ = statistically different from 20:1 AR. p < 0.05. All 

bars: mean ± SEM. n = 7-12 cells per AR. 
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2.2.4 Nuclear Deformation as a Function of Cell Shape 

The cell nucleus interacts with cytoskeleton [118] and deforms when 

extracellular stresses were applied [171]. Changes in nuclear shape have been proposed 

to cause conformational changes in chromatin structure and subsequently influence 

transcriptional level and cell function [172]. We characterized nuclear shape changes by 

measuring the changes in nuclear angle offset, projected area and eccentricity (Figure 2-

10 A-C, 5:1, 10:1, and 20:1, respectively) by manually outlining the stained nuclei in the 

plane of the culture surface (Figure 2-10 D). Nuclear angle offset, which measures the 

difference in orientation between the major axes of the ellipse that best fits the cell body 

and nucleus (Figure 2-10 A), was significantly lower for cells with 20:1 ARs (Figure 2-

10 E). The projected area of the nucleus in these cells was found to decrease significantly 

for cells with 10:1 and 20:1 ARs (Figure 2-10 F). Consistent with previous findings [90], 

nuclear eccentricity significantly increased as cell AR increased (Figure 2-10 G). 
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Figure 2-10: Morphological changes in nuclear shape as isolated vascular smooth 

muscle cell elongates. (A-C) Manual traces of cell border with nuclei of isolated VSMCs. 

(Magenta: cell border, blue: nuclei). Nuclear orientation offset, θ, is shown between the 

two dotted white lines in (A), representing the major axes of the ellipses that best fit the 

cell body and nucleus respectively. Scale bar = 50 µm. (D) Superimposed nuclear 

outlines from cells in A-C show clearly the difference in nuclear eccentricity, orientation 

offset and projected area as cell AR increases. (H) F-actin orientational order parameter 

(black) and nuclear orientation offset (red) as a function of VSMC ARs. (I) Nuclear 

eccentricity (black) and projected area (red) as a function of VSMC ARs. * = statistically 
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Figure 2-10 (Continued) different from 5:1 AR, † = statically different from 10:1 AR, ‡ = 

statistically different from 20:1 AR. p < 0.05. (E-G) mean ± SEM. n = 7-12 cells per AR. 

 

We wanted to test whether changes in nuclear morphology could be explained 

by a decrease in nuclear volume resulting from cell lengthening [120]. Based on three-

dimensional rendering of nucleus (Figure 2-11 A), we assumed an ellipsoid morphology 

for the nucleus (Figure 2-11 B) and quantitatively evaluated the length, width and height 

of the ellipsoid (Figure 2-11 C). However, we found that nuclear volume and nuclear 

surface area were conserved at 475 ± 32 µm3 and 464 ± 21 µm2, respectively, 

independent of alterations in AR (Figure 2-11 D). These data suggested that the elongated 

cell shape leads to higher degree of nuclear deformation, without any change in nuclear 

volume. 

 



50 

 

 

Figure 2-11: Nuclear volume and surface area of isolated vascular smooth muscle 

cells. (A) A Three-dimensional rendering of 5:1 AR VSMC nucleus. Scale bar = 20 µm. 

(B) Schematic representation shows the half-length (a, red), the half-width (b, blue) and 

half-height (c, black) of a nucleus with assumed ellipsoid shape. (C) Measured nuclear 

dimensions from three-dimensional confocal image stacks as a function of cell AR. * = 

statistically different from 5:1 AR. (D) Nuclear volume and surface area do not differ 

significantly between different cell ARs. (C-D) mean ± SEM. n = 7-12 cells per AR. 

 

2.2.5 Development of Stimulation Protocol for Studying Cell Contraction 

The primary contractile function of elongated VSMCs in muscular arteries is 

local tone modulation in response to systemic and local signals to contract or relax the 
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vessel wall [173]. We hypothesized that in our in vitro system, the elongated VSMC 

shape would improve its dynamic contractile range in response to an external stimulus. 

To test this hypothesis, we used traction force microscopy to measure the force generated 

by cells on the PAA gel substrate when stimulated with a vasoconstrictor, endothelin-1 

(ET-1), to induce cell contraction or rho-associated kinase (ROCK) inhibitor, HA-1077, 

to induce cell relaxation. Since VSMCs respond to stimulations on the order of minutes 

to hours [90], we first assessed the amount of time needed for VSMC traction to 

equilibrate after we dose the drugs. We imaged the cells every 4 minutes and found that 

isolated VSMCs produced a constant traction force prior to ET-1 dosing, which is known 

as basal tone (Figure 2-12). After ET-1 was added, we observed a small but noticeable 

gradual increase in cell traction until it peaked 16 minutes later. In the next 30 minutes, 

the traction gradually decreased until it returned to baseline level. We subsequently dosed 

HA-1077 to the imaging media and noticed an immediate and dramatic decrease in 

traction until 16 minutes later, where it equilibrated near zero. These results suggested 

that isolated VSMCs could equilibrate their traction output within 16 minutes after drug 

dosing. 
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Figure 2-12: A representative traction profile for an isolated vascular smooth 

muscle cell in response to endothelin-1 and HA-1077 treatment. A constant basal tone 

was maintained for the first 24 minutes. After ET-1 at 100 nM was added, traction 

peaked in about 16 minutes but returned gradually to basal level in about 28 minutes. A 

saturating dose of rho-associated kinase (ROCK) inhibitor HA-1077 at 100 µM caused an 

immediate and dramatic decrease in traction and eventually diminished close to 0 after 16 

minutes. 

In order to allow sufficient time for VSMC to equilibrium after drug dosing and 

to minimize the amount of potential phototoxicity caused by excessive laser exposure, we 

developed a TFM protocol to measure contractile strength of isolated VSMC with 

varying ARs exerted on the substrate pre- and post-stimulation with ET-1 (Figure 2-13 

A). Prior to stimulation, we imaged the basal tone of isolated VSMCs. At 8 minutes, we 

stimulated contraction of the isolated VSMCs with a 100 nM dosage of ET-1. At 31 

minutes, we treated cells with a 100 µM dosage of HA-1077, to induce relaxation of the 
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cells. Finally at 60 minutes, we terminated the experiment by trypsinizing the cells from 

the substrate such that there was no traction on the substrate in order to establish a 

reference for calculation of bead displacements. For each condition, three consecutive 

images separated by 4-minute intervals were taken to ensure consistency in VSMC 

contractile output and to minimize potential phototoxic effect of laser imaging. This 

protocol allowed us to assess the contractile strength of isolated VSMCs in response to 

external stimuli while minimizing potential phototoxicity during live imaging. 

 

2.2.6 Quantification of Vascular Smooth Muscle Cell Contractile Strength by 

Traction Force Microscopy 

Prior to stimulation, we ascertained that isolated VSMCs fully occupied the 

rectangular FN islands by differential interference contrast (DIC) imaging. High fidelity 

rectangular isolated VSMCs with AR of 5:1 (Figure 2-13 B), 10:1 (Figure 2-13 C) and 

20:1 (Figure 2-13 D) were selected for TFM experiment. We defined the AR of an 

isolated VSMC at its basal state prior to stimulation as the cellular AR. As a convention, 

we further defined the longitudinal and transverse directions of isolated VSMCs as the x- 

and y- axes, respectively (Figure 2-13 B). Prior to ET-1 stimulation, basal traction 

stresses were observed for isolated VSMCs with AR of 5:1 (Figure 2-13 E), 10:1 (Figure 

2-13 F) and 20:1 (Figure 2-13 G). Following ET-1 stimulation, traction stress intensity 

and area both increased for AR 5:1 (Figure 2-13 H), 10:1 (Figure 2-13 I) and 20:1 (Figure 

2-13 J) isolated VSMCs. After HA-1077 treatment, traction stress was significantly 

reduced for isolated VSMC with AR of 5:1 (Figure 2-13 K) and completely absent for 

AR of 10:1 (Figure 2-13 L) and 20:1 (Figure 2-13 M). After cells were detached by 
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trypsin, traction stress was completely absent for all ARs (Figure 2-13 N-P, respectively). 

For all three ARs, we observed that the basal (Figure 2-13 E-G) and ET-1 stimulated 

(Figure 2-13 H-J) traction stresses were localized at the two ends of the cells and pointed 

towards the geometric centre of the cell where the nucleus is generally located. This 

phenomenon became more pronounced for isolated VSMCs with AR 10:1 (Figure 2-13 F, 

I) and AR 20:1 (Figure 2-13 G and J). This result suggests that focal adhesion complexes 

formed by isolated VSMCs were localized towards the two ends of the cells.  
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We first quantified the contractile strength of isolated VSMCs by computing the 

strain energy (U) [174] from beads displacements at basal, stimulated, and relaxed 

conditions with respect to cell-free reference condition. Strain energy is a scalar 

measurement that integrates tractions exerted in all directions (Figure 2-14 A), which 

enabled us to measure the overall changes in cell contraction. In response to ET-1 

stimulation, the isolated VSMCs further contracted, increasing the measured strain 

energy from the initial basal tone (Ub) to a higher level, here denoted as Uc (Figure 2-14 

B). Both Ub and Uc were relatively constant over the period measured, indicating that 

equilibrium contractions have been reached. To assess the dynamic contractile range of 

isolated VSMCs in response to ET-1, we computed the relative contractile increase in 

strain energy (Ku) by normalizing the increase from basal tone to the ET-1 stimulated 

tone with the basal tone. These measurements allowed us to quantitatively assess both the 

absolute magnitude and relative changes in contractile strength of isolated VSMCs in 

response to external stimuli.  

 

2.2.7 Isolated Vascular Smooth Muscle Cell Contractile Strength Correlated with 

Cellular Aspect Ratio 

To characterize how cell shape affects the contractile strength of isolated 

VSMCs, we plotted the AR of each isolated VSMC against its measured Ub, Uc and KU. 

We found that Ub (Figure 2-14 C) and Uc (Figure 2-14 D) both negatively correlated with 

cell AR. This suggested that the absolute contractile strength of isolated VSMC weakens 

as they elongate. However, relative contractile increase (Figure 2-14 E, KU) significantly 

increased as cell AR increased, which indicates that elongated VSMCs exhibited a 
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greater percent change in contractile strength in relation to its basal tone after stimulation 

with ET-1. Taken together, these results suggest that elongation of the cell AR causes a 

decrease in contractile strength but an increase in overall dynamic contractile range of the 

cell. 

 

Figure 2-14: Vascular smooth muscle cell aspect ratios correlated with strain energy 

output. (A) Schematics illustrating calculations for strain energy from beads 

displacement and traction force of an isolated VSMC at basal (Ub) and after stimulation 

with ET-1 (Uc). (B) Representative temporal strain energy profiles of isolated VSMCs 

with AR 5:1 (lower bound) and 20:1 (upper bound) prior and post stimulation. Relative 
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Figure 2-14 (Continued) contractile increase in strain energy (KU) is defined as the per 

cent change in strain energy from basal to ET-1 stimulated. Ub (C), Uc (D) and KU (E) 

plotted as a function of isolated VSMC ARs. (C-E) The correlation efficient, r, is 

determined by linear regression analysis. Reported p values for Pearson correlations are 

two-tailed, demonstrated that the correlation is significantly different from zero. 

To gain further insight into the component breakdown of the contractile strength, 

we computed the contractile traction force of isolated VSMCs [174] similar to strain 

energy from beads displacement at basal, stimulated and relaxed conditions in reference 

to cell-free condition. Since traction force is a vector measurement, we could probe for 

changes in contractile strength either in the cell’s long axis (longitudinal, Figure 2-15 A) 

or short axis (transverse, Figure 2-16 A). Similar to strain energy, we observed a relative 

constant contraction force in both longitudinal (Tbx, Figure 2-15 B) and transverse (Tby, 

Figure 2-16 B) directions prior to ET-1 stimulation, indicative of the cell basal tone. In 

response to ET-1 stimulation, the isolated VSMCs contracted, increasing the measured 

longitudinal traction force from the initial basal tone (Tbx) to a higher level, here denoted 

as Tcx (Figure 2-15 B). Similar increases were also observed in transverse traction force 

(Tcy, Figure 2-16 B) suggesting isolated VSMC contracts in all directions. We again 

computed the relative contractile increase in the longitudinal (KTx) and transverse (KTy) 

directions by normalizing the increase in traction force with the basal tone force. We 

found in the longitudinal direction that while Tbx and Tcx are negatively correlated with 

the cell ARs (Figure 2-15 C-D), KTx showed a significant positive correlation (Figure 2-

15 E), suggesting that as VSMC elongates, its contractile range increased at the expense 

of lower absolute contractile strength.  
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Figure 2-15: Vascular smooth muscle cell aspect ratios correlated with longitudinal 

traction force. (A) Schematics illustrating calculations for longitudinal traction force of 

an isolated VSMC at basal (Tbx) and after stimulation with ET-1 (Tcx). (B) Representative 

temporal longitudinal traction force profiles of isolated VSMCs with AR 5:1 (lower 

bound) and 20:1 (upper bound) prior and post stimulation. Relative contractile increase in 

longitudinal traction force (KTx) is defined as the per cent change in longitudinal traction 

force from basal to ET-1 stimulated. Tbx (C), Tcx (D) and KTx (E) plotted as a function of 

isolated VSMC ARs. (C-E) The correlation efficient, r, is determined by linear regression 
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Figure 2-15 (Continued) analysis. Reported p values for Pearson correlations are two-

tailed, demonstrated that the correlation is significantly different from zero. 

However, in the transverse direction, no correlation was found between cell AR 

and Tby, Tcy and KTy (Figure 2-16 C-E), suggesting that longitudinal contraction is the 

main driving factor for observed difference in contractile output as cell elongates. Taken 

together, our results suggest that cell shape elongation increase the contractile range and 

decrease the contractile magnitude only in the direction of elongation. 
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Figure 2-16: Transverse traction force is similar for all cellular aspect ratios. (A) 

Schematics illustrating calculations for transverse traction force of an isolated VSMC at 

basal (Tby) and after stimulation with ET-1 (Tcy). (B) Representative temporal transverse 

traction force profiles of isolated VSMCs with AR 5:1 (lower bound) and 20:1 (upper 

bound) prior and post stimulation. Relative contractile increase in transverse traction 

force (KTy) is defined as the per cent change in transverse traction force from basal to ET-

1 stimulated. Tby (C), Tcy (D) and KTy (E) plotted as a function of isolated VSMC ARs. 

(C-E) The correlation efficient, r, is determined by linear regression analysis. Reported p 
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Figure 2-16 (Continued) values for Pearson correlations are two-tailed, demonstrated that 

the correlation is significantly different from zero. 

We asked if the increase in relative contractile increase in longitudinal direction 

(KTx) is solely caused by the decrease in basal tone force (Tbx). To address this question, 

we computed the ET-1 stimulated contractile force increase for each individual cell and 

plotted it against its ARs (Figure 2-17). We found that there is a wide distribution in 

traction force increase induced by ET-1 at all ARs and no statistically significant 

correlation was found. This suggests that ET-1 induced the same level of contraction in 

cell’s long axis regardless of the cell AR and the decrease in basal tone force (Tbx) is play 

an important role in the decrease of relative contractile increase (KTx ). 

 

Figure 2-17: Endothelin-1 induced increase in longitudinal traction force is similar 

for all cell aspect ratios. A wide distribution in the absolute increase of longitudinal 

traction force was found for all cellular aspect ratios 

In cellular tensegrity model, tensile stress, known as prestress, bore by the F-

actin filaments are responsible for stabilizing the cytoskeletal network that gives the cell 
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shape [175]. Assuming that the force transmitted along the F-actin fibers are balanced by 

the traction force generated at the cell-substrate interface (Figure 2-18 A), cumulative 

prestress in the F-actin fibers can be obtained by dividing the longitudinal traction force 

(Tx) over the cross-sectional area (A’) of the cell that is perpendicular to the cell’s long 

axis. Since isolated VSMC thickness (Figure 2-8 B) remains constant while cell width 

(Figure 2-7 B) decreased as cell shape elongates, the cross-sectional area (A’), the 

product of cell width and cell thickness, must decrease proportionally as cell width is 

reduced. By dividing the measured longitudinal traction forces Tbx (Figure 2-15 C) and 

Tcx (Figure 2-15 D) by the cross-sectional area, we calculated the cumulative prestress at 

basal state (Pbx) and after ET-1 stimulation (Pcx) (Figure 2-18 B).  We found that Pbx 

(Figure 2-18 C) and Pcx (Figure 2-18 D) increased as cell AR increased respectively, 

suggesting that a higher tensile stress is experienced for F-actin fibers of elongated cells. 

Similar to strain energy and traction forces, we calculated the relative contractile increase 

in cumulative prestress (KPx, Figure 2-18 E) by normalizing the increase in prestress (Pcx 

– Pbx) to basal prestress (Pbx). We found that KPx increased significantly with respect to 

cell AR, suggesting that the changes in actin fiber prestress increased more in cells with 

higher cell ARs than those with shorter ARs.  
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Figure 2-18: Vascular smooth muscle cell aspect ratio correlated with longitudinal 

cumulative cellular prestress. (A) Schematics showing a free-body diagram of a section 

of cell. Traction forces at the cell-gel interface (tA’) must be balanced by the internal 

stress in the cell body (PxA”), mainly by the tension bearing actin fibers. In the force 

balance, PxA” = tA’ = Tx, where Px is the cumulative prestress, t is the traction stress, A’ 

is the cell-gel interfacial area, A” is the cross-sectional area of the cell section, and Tx is 

the measured longitudinal traction force. (B) Representative temporal longitudinal 

cumulative prestress profiles of isolated VSMCs with AR 5:1 (lower bound) and 20:1 

(upper bound) prior and post stimulation. Relative contractile increase in longitudinal 

cumulative prestress (KPx) is defined as the per cent change in longitudinal cumulative 

prestress from basal to ET-1 stimulated. Pbx (C), Pcx (D) and KPx (E) plotted as a function 

of isolated VSMC ARs. (C-E) The correlation efficient, r, is determined by linear     
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Figure 2-18 (Continued) regression analysis. Reported p values for Pearson correlations 

are two-tailed, demonstrated that the correlation is significantly different from zero. 

 

2.2.8 Cell Shortening as a Function of Cell Shape 

A previous study demonstrated that more polarized cells have reduced Rho-

dependent actomyosin contractile activity [176]. We asked if the reduction in overall 

force generation is a result of fewer actomyosin cross-bridge cycling activities in VSMCs 

with more aligned F-actin fibres. Since cross-bridge cycling directly leads to cell 

shortening [177], we quantified longitudinal cell shortening (ΔL) from the changes in cell 

length during contraction with respect to basal and relaxed states (Figure 2-19 A). We 

found that ΔL increased for VSMC with higher ARs (Figure 2-19 B) and this increase is 

positively correlated with OOP values (Figure 2-19 C). These results suggested that 

cross-bridge cycling is unlikely to be the cause for the reduction in overall force 

generation.  
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Figure 2-19: Longitudinal cell shortening correlated with cellular aspect ratio and 

orientational order parameter. (A) DIC images showing longitudinal cell shortening 

(ΔL) of a 20:1 AR VSMC calculated from cell length difference on both ends of cell 

body between basal and relaxed conditions. Scale bar = 20 µm. ΔL as a function of cell 

AR (B) and OOP (C). The correlation coefficient, r, is determined by linear regression 

analysis. (B-C) Reported p value is two-tailed, demonstrating that the correlations are not 

significantly different from zero. (B): n = 14-17 cells from 4-6 experiment per AR. (C): n 

= 13-18 cells per condition. All error bars are mean ± SEM. 
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2.2.9 Contractility Correlated with Subcellular Organization 

We asked whether differences observed in F-actin cytoskeletal organization 

would reflect the differences in contractility of the cells. To answer this question, we 

grouped isolated VSMCs into 5:1, 10:1 and 20:1 ARs and compared their actin 

alignments with initial basal tone (Tbx) and relative contractile increase (KTx). We found 

that as OOP increased, Tbx decreased while KTx increased (Figure 2-20 A), suggesting 

that more aligned F-actin fibres enables greater relative increase in force generation along 

the fibre direction at the expense of weakened overall force output.  

Nuclear shape and surface area is influenced by cell morphology [178] and 

subsequently affects other cellular functions [120]. Our recent work showed that nuclear 

eccentricity is positively correlated with VSM tissue contractility [90]. We asked if 

nuclear shape and projected area are also suggestive of the observed differences in 

isolated VSMC contractility. We grouped isolated VSMCs into 5:1, 10:1 and 20:1 ARs 

and compared nuclear eccentricity and projected area with Tbx and KTx. Here, we found 

that as projected nuclear area increased, Tbx increased while KTx decreased significantly 

(Figure 2-20 B). However, as nuclear eccentricity increased, Tbx decreased while KTx 

decreased significantly (Figure 2-20 C). These data suggested the morphological changes 

in VSMC nucleus may be an important metric for assessing the absolute and relative 

contractile strength of VSMCs in response to external stimuli.  
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Figure 2-20: Contractile output correlated with cytoskeletal organization and 

nuclear morphology. Basal longitudinal traction force (Tbx, black) and relative 

contractile increase (KTx, red) in longitudinal traction force after ET-1 stimulation (KTx, 

red) as a function of OOP (A), projected nuclear area (B) and nuclear eccentricity (C). 

The correlation coefficient, r, is determined by linear regression analysis. Reported p 

values for Pearson correlations are two-tailed, demonstrated that the correlation is 

significantly different from zero. All plots: mean ± SEM. n = 13-18 cells per condition.  

 

2.3 Discussion 

In this study, we showed that VSMC shape can regulate its contractile function. 

We found that whereas wider width cells generate a greater force when stimulated with 

ET-1, but that longer, thinner VSMCS have a greater range of contraction relative to their 

basal tone. This suggests that where the vasculature requires a higher fidelity in its 

modulation of blood flow, longer, thinner cells are functionally advantageous.  This is 

particularly relevant to vascular tissue engineering where there is a requirement that 

vascular grafts are compatible both anatomically and functionally at the graft site [179-

181]. In the past two decades, several strategies have been explored to recapitulate the 3D 

architectural organization in native vessels [182]. Customarily these strategies rely on 
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seeded cells to migrate and self-assemble into tissues with minimal guidance. While 

arterial replacements can be engineered in vitro, when engrafted, the compliance 

mismatch between the graft and native vessel results in thrombosis and intimal 

hyperplasia at the anastomotic site, resulting in low patency rate [183, 184]. Our findings 

suggest that, in addition to closely matching the biomechanical aspects of healthy artery, 

engineering vascular grafts with VSMC shapes that mimic cellular architecture of the 

native, healthy vasculatures could improve functionality and long-term patency.   

Morphology has been an important parameter in the definition of smooth muscle 

cell phenotypes, especially when protein marker data is not available [139]. Our result 

shows that individual VSMCs cultured on soft PAA gel and stiff glass substrates with 

isotropically patterned FN both exhibited a wide distribution of morphologies from 

rhomboid to spindle-like, suggesting that we may have VSMCs with both synthetic and 

contractile phenotypes present despite the effort to differentiate VSMC into contractile 

phenotype by serum starvation. A previous study demonstrated that VSMCs cultured on 

stiffer substrate composed of dehydrated collagen fibrils led to a more proliferative, 

synthetic phenotype compared to the softer hydrated collagen fibrils [185]. However, 

even on the much stiffer glass substrate, we still observed spindle-like morphology, 

highlighting the need of a combinatorial, multi-pronged approach for regulating VSMC 

phenotype that may include biochemical, mechanical, and extracellular matrix factors 

present in the cellular microenvironment. 

In addition to the variance in morphology, we also observed that individual 

VSMC spreading area is normally distributed on both PAA gel and glass substrates. This 

is consistent with results reported by Tolic-Norrelykke and colleagues [166] where they 
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found the projected surface area of human aortic smooth muscle cells is normally 

distributed. This may be a result of the intrinsic diversity of VSMC in the vessel wall 

where immunohistochemical staining pattern of contractile VSMC phenotype markers 

revealed highly heterogeneous staining patterns and intensity between adjacent SMCs. 

[186, 187] This spectrum of phenotypes expressed in VSMCs has been suggested to be a 

combinatorial effect of both genetic programing and local environmental factors. [139] 

Taken together, these studies and our result suggests isotropic ECM signal would lead to 

a wide distribution of VSMC phenotype in vitro, additional structural, biochemical or 

mechanical cues are needed to homogenize the population phenotype.  

We previously reported that engineered VSM with forced elongated spindle 

shapes exerted greater contractile tensile stress when chemically stimulated [188]. The 

results reported herein are consistent with the findings by Tolic-Norrelykke and Wang, 

where they found that cells with wider width contracted with greater force than slimmer 

cells with a similar projected area [166]. The differences in observed shape-contractility 

relationship between the current findings and our previous study by Alford and 

colleagues may be attributed to differences in measured quantities, experimental 

techniques and cellular micro-environmental conditions. Our previous study utilized the 

muscular thin film technology [189-191], which measured the contractile strength of the 

VSM tissue with the component of Cauchy stress along the cell orientation. This 

measured quantity represented contractile force per tissue cross-sectional area, whereas 

the current study quantified the contractility of VSMCs via TFM, which measured the 

contractile force and strain energy exerted by the cell on the substrate. In addition, the 

engineered VSM tissue tested in Alford et al. was cultured with a higher level of cell-cell 
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contact, the possibility of off axis alignment of cells, and stiffer abiotic substrates as 

compared to this single cell study. These differences in micro-environmental conditions 

will influence VSMC phenotype [102] and functions [36, 37, 192-195]. As a result, 

measured contractile strength may be reduced as it reflects an average of all cells in the 

tissue, including weakly or non-contractile cells and cells oriented in off-axis compared 

to the global orientation of the tissue.  

Tension development and generation requires F-actin network to activate 

myosin ATPase activity and cross-bridge cycling in all forms of muscles, including 

smooth muscle cells.[2] In isolated smooth muscle cells where intercellular mechanical 

couplings are absent, actin filaments anchored at focal adhesion complexes must balance 

intracellular tension by transmitting the force to the substrate. Our findings that reduced 

F-actin fiber alignment correlated with VSMCs with higher contractile strength suggest 

that higher contractile forces were bore by the less organized F-actin fibers than the 

aligned fibers. This is reasonable as an increased cell width permits more sites at the two 

ends of the cells for the formation of focal adhesion complex, which has been shown to 

play an important role in the stabilization of tension bearing F-actin fibres [196]. The 

wider cell also has more degree of freedom laterally for the F-actin fibre orientations, 

which explains the lower overall alignment. This cell shape mediated cytoskeletal 

remodelling also corroborated with our findings that decreased F-actin fibre alignment 

correlated with lower relative contractile increase and less cell shortening: a phenomenon 

that can explained by the model proposed by Seow, Ford and co-workers [197, 198] as 

actin filaments rearrange connections from a parallel fashion in shorter cells to a serial 
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fashion in elongated cells. Taken together, our results suggest that cell shape dependent 

contractility changes in smooth muscle cells may be mediated by cytoskeletal modelling.  

Three possible mechanisms have been put forward to explain the F-actin fiber 

remodeling process. Gunst et al. have proposed a model that suggest cell shape 

adaptation is a result of a shift in the connection of actin filaments terminations among 

the adhesion plaques to which it may attach by modifications in length and number of 

actin filaments [199].  Seow et al. suggested a second mechanism that attributed the 

remodeling process as a parallel-to-series transition and cell elongation could lead to 

rearrangement of crossbridges or addition of thick filament in series [198, 200]. The third 

mechanism proposed by Solway et al. is a variation of second mechanism that suggested 

that systematic modulation in actin filament length is responsible for cell shape changes, 

which means cells with shorter actin filaments may undergo parallel-to-series transition 

while longer actin filament do not as cell elongates [201]. Although we did not directly 

measure for change in actin filament length, we found that relative shortening in cell’s 

long axis reduced significantly while it remained comparable in cell’s short axis as cell 

elongated, suggesting that different mechanisms may be governing the shortening process 

depending on the length of the cell’s axis. This is in support of the third mechanism 

proposed by Solway et al. as shorter actin filaments undergo parallel-to-series remodeling 

as cell shape elongates [201]. While the increase in F-actin alignment during the cell 

elongation process could be attributed to the decrease in lateral freedom in the 

orientations of actin filaments as a result of reduced cell width, a parallel-to-series 

remodeling in actin filaments may also increase the overall alignment, in support of this 
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mechanism. However, to definitively test this hypothesis, measurement of individual 

polymerized F-actin fibers is needed. 

Mechanical forces exerted on the exterior of a cell are propagated into the cell 

via the cell cytoskeleton to the nuclear lamina [118, 119], directly affecting nuclear shape 

and gene transcription. While cell shape induced nucleus elongation has been well 

documented, the relative contribution between longitudinal tension and lateral 

compression imposed by the stress fibres on the nucleus is unknown [72]. Our finding 

that nuclear eccentricity negatively correlated with longitudinal traction force suggests 

that lateral compression forces exerted by stress fibres physically deforms the nucleus. 

This observation agrees with a recent report detailing how lateral compressive forces 

exerted on the nucleus are responsible for shape deformation, chromatin remodelling and 

reduced cell proliferation [120]. Others have proposed that compressive physical forces 

exerted by aligned actin fibres are required to expose transcription binding sites or DNA 

regulatory motifs, potentiating differences in DNA-associated protein binding and gene 

transcription [202]. Since nuclear shape deformation is correlated with physiological [90, 

120, 203-205] and pathological [206-209] changes in cellular functions, nuclear 

deformation may be indicative of, and further distinguish, the function and phenotype of 

vascular smooth muscle.  

In this study, we demonstrated that isolated VSMCs with elongated shape 

exhibited less contractile strength but greater relative contractile increase upon 

stimulation. This shape-dependent contractile behaviour suggests that the elongated shape 

of VSMC in muscular arteries may lead to improved dynamic contractile range, a key 

feature required for effective vascular tone modulation in vivo. In addition to providing 
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mechanical insight into the physiological structure-function relationship of VSMCs, our 

finding is particularly important for obtaining the desired VSMC contractile function 

from a clinical perspective in the design of a functionally active tissue engineered 

graft.[210] Our data suggest that providing organizational guidance cues to guide the 

development and assembly of VSMC into elongated shape may be beneficial in a 

successful implantation of a small artery graft. 

 

2.4 Experimental Challenges 

Completing this section posed many experimental challenges, especially in 

regards to microfabrication of rectangular isolated VSMCs. Despite the fact that 

microcontact printing has been widely used in many groups including ours, the 

micropatterning technique used in this section uses a modified protocol in order to 

accommodate the soft PAA gel substrate, which requires drying of the PAA gel prior to 

transferring of the biotinyated FN from the PDMS micro-features. However, if the PAA 

gel is too dried, the gel will crack and even upon hydration, the substrate is no longer 

usable for subsequent micropatterning. Therefore, this step requires a careful balancing 

act that leaves only a narrow window of a few minutes drying time. To complicate this 

matter further, factors such as humidity, the amount of residue fluid on the PAA gel prior 

to drying and the thickness of the gel could all influence the optimal drying time, 

resulting a relative low rate of success in FN micropatterning and a steep learning curve 

initially. However, with more experience in experimental technique to minimize batch-to-

batch variations and careful monitoring during the drying process over time, we were 
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eventually able to master the micropatterning technique and achieve a relatively high 

success rate. 

Another challenge we encountered is to ensure the isolated VSMC stay adhered 

on the micropatterned islands for immunohistochemical staining. In the early phase of the 

study, we adopted without modification the cell culturing protocol from a previously 

published study from our group on VSM tissue of the same cell type [90]. This protocol 

specifies a 2-day culture post seeding in 10% FBS containing media followed by a 1-day 

serum free starvation period to induce the contractile phenotype of the VSMC. However, 

we discovered that this protocol did not work well for our study because: (1) the initial 2-

day culture in 10% FBS media led to a significant proliferation of seeded VSMCs which 

caused most of the islands to be occupied by more than 1 single cell as visible during the 

DAPI immunohistochemical staining (data not shown) and (2) the 1-day serum starvation 

period was not long enough to fully induce the contractile phenotype uniformly among 

the microfabricated isolated VSMCs as initial assessment of micropatterned VSMC 

projected surface area showed a wide distribution, suggesting that not all cells have 

reached their equilibrium contracted state. One plausible explanation for this discrepancy 

maybe that when cell-cell contact is present in the case of VSM tissues in previous study, 

contractile phenotype is more quickly established [211]. However, in the case of isolated 

VSMCs, contractile phenotype establishes more slowly as only biochemical cue is 

present in the cellular microenvironment. We addressed these issues simultaneously by 

decreasing the post-seeding 10% FBS serum culturing period from 2 days to 1 day and 

lengthening the subsequent serum starvation from 1 day to 2 days. Following the 

implementation of this protocol, we obtained a higher percentage of single celled islands 
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by day 3 with uniform projected surface area for all ARs, suggesting a more uniform 

phenotype expression. 

One major challenge involved with live cell imaging is the possibility of 

phototoxicity induced by the reactive oxygen species (ROS) generated from ambient and 

laser light exposures [212]. In order to monitor how isolated VSMC contractility 

responds to different vasoactive agents, we needed to image the cells for over 1 hour 

under the confocal microscope for TFM studies. This is much longer than conventional 

TFM studies for cardiomyocytes commonly done in our group, where a typical imaging 

cycle lasted only a few seconds. As a result, the repeated laser and ambient light 

exposures over the course of TFM led to VSMC phototoxicity in the form of cell 

blebbing, necrosis, and eventual delamination from the substrate. To address this issue, 

we increased the imaging interval from 1 minute to 4 minutes and also reduced the laser 

and ambient light power to the minimal level that could still be used for TFM analysis. 

While we lost temporal resolution for VSMC contractile kinetics, we were still able to 

measure the equilibrium contractile state achieved when stimulated with different 

vasoactive agents. With reduced imaging interval and light power greatly, most of the 

VSMCs imaged no longer present any signs of phototoxicity and the small percentages of 

VSMCs that did were excluded from subsequent analysis.  

 

2.5 Methods and Materials 

2.5.1 Sample Preparation 

2.5.1.1 Photolithography 
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Photolithographic chromium mask for microcontact printing were designed in 

AutoCAD (Autodesk Inc.) and fabricated at the Center for Nanoscale Systems facility 

with Heidelberg DWL-66 mask writer. The design for traction force microscopy (TFM) 

studies, consisted of rectangles of approximately 4,000 µm2 surface area and variable 

length to width ratios (5:1, 141 µm x 28 µm; 10:1, 200 µm x 20 µm; 20:1, 280 µm x 14 

µm). Silicon wafers (Wafer World) spin-coated with SU-8 2002 negative photoresist 

(MicroChem Corp.) were exposed to ultra-violet (UV) light to cross-link the designed 

pattern. Uncross-linked regions were dissolved by submerging the wafers in propylene 

glycol methyl ether acetate. 

 

2.5.1.2 Microcontact Printing of Polyacrylamide Gels 

ECM protein FN after biotinylation modification was microcontact printed onto 

the polyacrylamide (PAA) substrate, as previous published.4 Briefly, FN was cross-linked 

with biotin using Sulfo-NHS-LC-Biotin (Pierce). 13 kPa PAA gel substrate was 

fabricated with 5/0.1% acrylamide/bis concentration. Immediately prior to gel 

polymerization, streptavidin-acrylamide and 200 nm fluorescent beads were added to the 

gel solution for a final concentration of 1:5 and 1:100, respectively, by volume. 15 µL of 

gel-bead solution was cured on activated 25 mm coverslips. 200 µg/mL biotinylated 

fibronectin (biotin-FN) was incubated on a PDMS (Sylgard 184, Dow Corning, Midland, 

MI) stamp with microscaled raised features for 1 h at room temperature and blown dry 

gently. The biotin-FN coated PDMS stamp was placed in contact with cured PAA gel, 

transferring the biotin-FN pattern to the substrate. The patterned PAA gel was stored in 
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phosphate buffered saline (PBS) until cell seeding. When seeded, cells were constrained 

to the ECM patterned portion of the substrate after serum starvation.  

 

2.5.2 Human Umbilical Arterial Smooth Muscle Cell Culture 

Human umbilical artery smooth muscle cells (Lonza, Walkersville, MD) 

purchased at passage 3 was cultured in growth medium consisted of M199 culture 

medium (GIBCO, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum 

(FBS, Invitrogen), 10 mM HEPES (GIBCO, Invitrogen, Carlsbad, CA), 3.5 g L-1 glucose, 

2 mg L-1 vitamin B-12, 50 U mL-1 penicillin and 50 U mL-1 streptomycin (GIBCO). All 

experiments were performed at passage 6-7.  

VSMCs were seeded in growth media at 5,000 cells cm-2 and allowed to attach 

to the isotropically patterned FN on PAA gel or patterned biotin-FN islands on PAA gel 

for 24 hours before replaced with a growth factor free medium consisted of M199, 10 

mM HEPES, 3.5 g L-1 glucose, 2 mg L-1 vitamin B-12, 50 U mL-1 penicillin and 50 U 

mL-1 streptomycin to induce a contractile phenotype for 48 hours prior to cell staining or 

TFM experiments. 

 

2.5.3 Fluorescent and Immunohistochemical Staining 

VSMCs seeded on PAA gel after 3 d of culture were fixed with 4% 

formaldehyde solution (Thermo Scientific Pierce) for 10 minutes prior to staining. 

VSMCs seeded on isotropically patterned FN were stained for cell membrane (DiO, 

Invitrogen) and nucleus (DAPI) while VSMCs seeded on patterned biotin-FN islands 

were stained for F-actin (phalloidin, Molecular Probes) and nucleus (DAPI). Patterned 



79 

 

FN islands were stained with rabbit anti-human fibronectin antibody (1:100 dilution, 

Sigma-Aldrich, St. Louis, MO) followed by Alexa Fluor 647 conjugated anti-rabbit 

secondary antibody (1:100 dilution, Abcam). The stained samples were then mounted 

with ProLong Gold antifade agent (Molecular Probes) and stored in -20°C freezer until 

imaging. 

 

2.5.4 Cell, F-actin, and Nucleus Image Analysis 

The spreading area of single cells on isotropically patterned FN was manually 

traced in ImageJ (rsbweb.nih.gov/ij/) and quantified. Cell AR was calculated by manually 

tracing the phalloidin stain in ImageJ. F-actin OOP was calculated from phalloidin stain 

with a coherence threshold of 0.3 using a structure tensor method.[170] Cell thickness 

was calculated from deconvolved Z-stack images of F-actin from Imaris. Nuclear angle 

offset (θ) was calculated by manually tracing the outlines of nucleus and cell body in 

ImageJ and comparing orientation difference between the principle axes. Nuclear 

eccentricity was evaluated by fitting an ellipse to individually traced nucleus in ImageJ 

and calculating its eccentricity, defined as: 

    e =  √1 − (
minor axis length

major axis length
)
2

      (1) 

Projected nuclear area was quantified by tracing the outline of the nucleus in 

ImageJ. Nuclear surface area and volume were evaluated by fitting an ellipsoid with half-

length (a), half-width (b) and half-height (c) to each individual nucleus from deconvolved 

z-stack images in Imaris (Figure 2-11 A) with the following formulas: 

    𝑉 =  𝜋
4

3
𝑎𝑏𝑐          (2) 
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    𝑆𝐴 ≈ 4𝜋 (
𝑎𝑝𝑏𝑝+𝑎𝑝𝑐𝑝+𝑏𝑝𝑐𝑝

3
)
1 𝑝⁄

       (3) 

where p = 1.6075. Cell shortening was calculated by summing the differences in cell 

length from DIC images of cell at basal and relaxed conditions (Figure 2-19 A). OOP, 

nuclear angle offset, eccentricity, projected area, surface area, and volume were 

quantified from between 7-12 images of isolated VSMCs for each AR. All results were 

compared using ANOVA on ranks test, with pairwise comparisons performed using the 

Tukey’s test. All correlations analysis was evaluated using Pearson product moment 

analysis. 

 

2.5.5 Cell, Patterned Fibronectin Island, F-actin and Nucleus Fluorescent 

Microscopy 

Fixed and stained cells seeded on isotropically patterned FN were imaged on a 

line-scanning Zeiss LSM 5 LIVE confocal microscope (Carl Zeiss, Oberkochen, GER) 

with a 20x Plan-Apochromat objective at 1x zoom and laser excitations at 405 nm and 

488 nm wavelengths to image the DAPI and DiO staining respectively. With the same 

microscope, stained micropatterned FN islands on PAA gel were imaged with a 20x Plan-

Apochromat objective at 0.5x zoom and laser excitation at 633 nm wavelength. 2D and 

Z-stack images of phalloidin stained F-actin and DAPI stained nucleus were acquired 

with the Zeiss LSM 5 LIVE confocal microscopy with a 40x EC-Plan Neofluar lens oil 

objective with 1x zoom and laser excitations at 561 nm and 405 nm wavelength 

respectively. Z-stack images were subsequently deconvolved in Imaris (Bitplane 

Scientific Software).  
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2.5.6 Traction Force Microscopy Experiment 

After 3 d of culture, micropatterned VSMCs on PAA gels were moved to an 

incubation chamber on a Zeiss LSM 5 LIVE confocal microscope maintained at 37ºC and 

immersed in Tyrode’s solution (1.8 mM CaCl2, 5 mM HEPES, 1 mM MgCl2, 5.4 mM 

KCl, 135 mM NaCl, 0.33 mM NaH2PO4, adjusted to pH 7.4). After allowing the cells to 

equilibrate for 10 minutes in the incubation chamber, isolated VSMCs were imaged with 

a 40x EC Plan-Neofluar oil objective at 0.5x zoom on a Zeiss LSM 5 LIVE confocal 

microscope (Carl Zeiss, Oberkochen, GER) 3 times every 4 minutes with both bright 

field and 488 nm wavelength laser excitation to obtain images of VSMCs baseline 

contracting and displacing fluorescent beads in the gel substrate. Subsequently, the 

VSMCs were imaged 3 times every 4 minutes after stimulation with 100 nM ET-1 for 15 

minutes, followed by 100 µM HA-1077 (Sigma-Aldrich, St. Louis, MO) for 15 minutes. 

During the stimulation, no images were taken to minimize the amount of photo-damage 

to cells. Immediately prior to cell detachment, cell nuclei were stained with DAPI and 

imaged to ensure that only single cells were analysed. At last, trypsin was added to 

detach the cells from the substrate. The experiment was terminated when the cell in the 

field of vide dissociated from the gel, thus leaving the gel with no surface traction. 

 

2.5.7 Traction Force Microscopy Data Analysis 

Displacement and traction stress vectors were calculated from the bead 

displacement as previously published [174]. Briefly, displacement of gel was determined 

by comparing the beads images at baseline, stimulated and relaxed states to the bead 

image when cells were detached from the substrate. The traction stress field was then 
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calculated from the displacement map using Fourier transform traction cytometry method. 

Traction stress vectors were discretized to a 10 x 10 µm2 grid.  

To calculate the total strain energy U transferred from the cell to the elastic 

distortion of the substrate, we applied the following equation as previously published [89]:  

   𝑈 =
1

2
∑ 𝐴𝑛(𝑢𝑥,𝑛𝑇𝑥,𝑛 + 𝑢𝑦,𝑛𝑇𝑦,𝑛)𝑛                        (4) 

where 𝑢𝑖 and 𝑇𝑖 represent displacement and traction force vectors in the i-direction; A is 

the discretized unit surface area of the cell body.  

To calculate the total traction force cell 𝑇𝑖 applied to the substrate in the i-

direction, we summing the magnitudes of all traction force vectors �⃑� 𝑖,𝑛 cell exerted on 

both sides and multiply by one half as previously published [89]:  

    𝑇𝑖 = 
1

2
∑ 𝐴𝑛|�⃑� 𝑖,𝑛|𝑛                  (5) 

assuming that cells exerted about equal magnitude of traction force at each sides.  

 To calculate the longitudinal cumulative cellular prestress Px, we divided the total 

traction force in the longitudinal direction Tx by the averaged cross-sectional area of the 

cells.  

Isolated VSMC AR was calculated in ImageJ by tracing the cell outline from a 

DIC image taken at baseline. VSMCs that responded to ET-1 stimulation with 

significantly elevated strain energy were selected for correlation analysis. All correlations 

analysis was evaluated using Pearson product moment analysis.   

 

 

  



83 

 

3 Engineering Vascularized Network in Folded, Porous 

Polymer Matrices by Tissue Origami 

Organ function relies on hierarchical organization within tissues from single 

cells (~10 µm) to functional subunit (100 µm – 1 mm). Traditional tissue engineering 

scaffolds typically use a porous structure made of synthetic or natural polymer, which 

provide little control in organizing cells into three-dimensional structures. The lack of 

cellular architecture contributes to suboptimal tissue function. We present a simple and 

versatile scaffold folding strategy, Tissue Origami, which allows organization of multiple 

cell populations within three-dimensional, porous, synthetic and natural polymer matrices. 

We demonstrated that individual layer of porous, sub-millimeter thickness poly(lactic-co-

glycolic) acid and collagen films patterned with multiple cell populations can be folded in 

Miura-ori geometry to produce different three-dimensional cellular organization within 

the engineered construct. We found patterned cells were healthy and viable in the folded 

construct and were metabolically active 3 days after seeding. In a proof-of-concept study, 

we patterned endothelial and smooth muscle cells with different three-dimensional 

configurations in the folded constructs to build vascularized network and compare them 

to the traditional bulk, porous polymer matrices. We quantified the number of blood 

vessels formed within each construct systematically and found that the folded constructs 

seeded with endothelial cells and vascular smooth muscle cells adjacent to each other 

laterally in the same folding plane created the densest vascularized network. This 

technique may enable development of organized vascular tissues that closer mimic native 

tissues and improve the function of engineered tissues.  
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3.1 Introduction 

Tissue engineered construct is typically assembled through the combination of 

cells and biomaterials in hope that it would replace damaged or diseased organs. 

Traditional porous polymer scaffold are designed to support the attachment and 

proliferation of cells, in order for them to recapitulate lost tissue functions [213]. These 

cells are influenced not only by autonomous programs but also by their cellular micro-

environment, which include interaction with neighboring cells, biochemical factors and 

physical forces. The collective effect of these factors depends on the hierarchical 

organization among the tissue construct. However, due to lack of control over cell 

seeding process in three-dimensional  polymer matrices, the resultant tissue engineered 

construct has little organization to its tissue architecture. In contrast, tissues in native 

environment consist of highly organized smaller repeating unit on the scale of hundreds 

of microns (e.g. muscle tissue, islet, nephron) that interacts with neighboring cells and 

performance specific functions [214]. This difference in microarchitecture leads to 

suboptimal functions for tissue engineered construct and hindered the advancement of 

this field in achieving clinically relevant organ replacement products.  

Over the last decade, a number of promising techniques have emerged to 

address the lack of control in cellular organization for tissue engineered constructs. 

Several of these techniques has demonstrated the ability to produce tissue constructs with 

cellular organizations including 3D inkjet bioprinting [215, 216], layer-by-layer cell sheet 

stacking [217, 218], spheroid self-assembly [215] and laser guided direct writing [219]. 

These techniques largely rely on recent advancement in rapid prototyping technology to 

assemble miniaturized modular units with different cell types to achieve structure 
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organization within tissues. Although these techniques successfully patterned cells in 3D 

to a varying extent, there is some critical drawback associated with them that prohibited 

wide adoption of these techniques in clinically settings. For example, the 3D inkjet 

printing technique is restricted to using only hydrogel as cell carrier, tissue spheroid 

technique requires specialized equipment, and cell sheet stacking and laser guided direct 

writing have low throughput due to lengthy operations.  

We developed a strategy to engineer vascularized networks in three-dimensional, 

porous, polymer matrices by folding synthetic and natural polymer films with patterned 

vascular cells. We fabricated poly(lactic-co-glycolic) acid (PLGA) and collagen thin 

films and folded them into Miura-ori geometry along laser-etched perforated lines. We 

patterned human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on 

thin films by loading them onto acrylic posts of a stamping system and subsequently 

inverting the posts to transfer the cell suspensions at pre-defined locations on the films. 

The patterned cells were viable in the folded polymer matrices 3 days after seeding. We 

built vascularized networks by patterning ECs and VSMCs in different three-dimensional 

organizations in the folded polymer matrices and found that organization with patterned 

ECs and VSMCs on the same folding plane had a significantly higher vessel density 

compared to the folded configuration that homogenously mixed the two cell types. These 

findings suggest that three-dimensional organized structure of vascular cells may lead 

improved vascularization potential in porous polymer matrices.   

 

3.2 Results 

3.2.1 Fabrication and Visualization of Thin, Porous PLGA film 
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We hypothesized that thin and porous films can facilitate the manual folding 

process and increase nutrient transport for cell survival within the construct. We adapted 

published solvent casting and porogen leaching methods to fabricate the PLGA film 

(Figure 3-1 A). Briefly, a glass plate enclosed by 4 glass slides near the edges formed a 

well for the solvent cast. Since PLGA film adhered strongly to glass (data not shown), we 

pre-coated our glass plate with 2% w/v alginate solution as a sacrificial layer that 

facilitates the removal of PLGA film at a later time. Sugar particles that were sieved 

between 90 to 106 µm served as porogen for creating a porous architecture. The amount 

of sugar particles was calculated to produce a 90% porous structure after leaching. 

Immediately after adding the sugar particles to the 5% w/v PLGA in chloroform solution, 

the mixture was casted into the well coated with alginate to uniformly spread the sugar 

particle. When the chloroform solution evaporated from the casted mixture, the entire 

construct was placed in a desiccator overnight to completely remove any residue solvent. 

The PLGA thin film was obtained by placing the construct in DiH2O for 4 hours to 

dissolve the embedded sugar particles and the alginate thin film, allowing the PLGA film 

to float to the surface.  

The dried PLGA film was flexible and uniform, with no structural defect (Figure 

3-1 B). Due to the highly porous nature of the film, it appeared to be translucent. The 

thickness of the PLGA film was 280 ± 20 µm (mean±SD), suggesting that the film 

contains, 2-3 layers of sugar particles prior to water leaching on average. Scanning 

electron microscopy (SEM) images showed a highly porous and interconnected micro-

structure, with some large pores passing through the entire film (Figure 3-1 C). Higher 

magnification images demonstrated that in addition to large pores around the size of 
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sugar porogen, pores between 100 nm and 3 µm are also scattered throughout the film 

structure (Figure 3-1 D-E). Taken together, we created a highly porous, reproducible, 

flexible PLGA thin film with sub-millimeter thickness. 

 

Figure 3-1: PLGA film fabrication and visualization. (A) PLGA (75:25) porous and 

thin film was fabricated by using solvent casting and porogen leaching method. (B) 

Flexible, translucent PLGA porous thin film obtained with an average film thickness of 

280 ± 20 µm (mean ± SD). SEM image of porous PLGA thin film viewed under low (C), 

med (D) and high (E) magnifications. The scale bars in (C-E) are 500, 50 and 5 µm 

respectively. Some pores penetrated all the way through the scaffold as evident in (C, 

white arrowheads).   

  

3.2.2 Fabrication and Visualization of Thin, Porous Collagen Film 

Since collagen is not dissolvable in organic solvent, we modified the protocol 

from a published patent and fabricated the collagen thin film through a freeze-drying 

method (Figure 3-2 A) [220]. Briefly, we dissolved the collagen powder in 0.05 M glacial 

acetic acid and blended the mixture with a commercial blender to obtain a uniform 
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mixture of slurry. After deforming the mixture by centrifugation, the collagen slurry was 

sandwiched between two glass plates enclosed with four Teflon tape spacers and froze in 

-20°C freezer. After transferring the construct to the -80°C freezer for an additional 24 

hours, the construct was lyophilized for 48 hours, leaving only the porous thin film 

behind. The finished collagen film is flexible and thin, with a white appearance (Figure 3-

2 B). We measured the thickness of the film to be 286 ± 14 µm (mean ± SD), suggesting 

that the inter-batch thickness variation is minimal. We examined the microstructure of the 

film via SEM and found a highly porous architecture with similarly sized pores (Figure 3-

2 C). High magnification images showed no nano-sized pores as seen in the PLGA thin 

film (Figure 3-2 D-E).  

 

Figure 3-2: Collagen film fabrication and visualization. (A) Porous, thin collagen film 

was made by freeze-drying blended collagen slurry. (B) Collagen thin film obtained with 

an average film thickness of 286 ± 14 µm (mean ± SD). SEM image of porous PLGA 

thin film viewed under low (C), med (D) and high (E) magnifications. The scale bars in 

(C-E) are 200, 100 and 50 µm respectively.    
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Since collagen can be degraded by enzymes such as collagenase and pepsin in 

vivo, we characterized the degradation behavior of the fabricated collagen thin film by 

calculating the weight remained (wr) in phosphate-buffered saline (PBS) with and without 

collagenase as a fraction of initial weight (w0) after specific time periods. We found that 

in PBS without the collagenase, the weight fraction (wr/w0) dropped significantly after 24 

hours but remained similar thereafter until the end of the experiment 7 days later (Figure 

3-3). However, degradation of collagen thin sheet was significantly faster in PBS 

containing collagenase at 100 µg/mL. At the end of the experiment 2 hours later, only 40% 

of the initial weight remained and the weight-time function was approximately linear 

(Figure 3-3). Taken together, the degradation profile of collagen thin film suggests that 

long term culture of cells that are capable of degrading collagen may compromise the 

structural integrity of the thin film and cross-linking of the collagen may be required prior 

to long term cell culture.  
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Figure 3-3: Degradation profiles of collagen thin film in PBS and collagenase. The 

weight fractions were calculated as the ratio between the weight remained (wr) after 

immersing in PBS with ( ) or without ( ) collagenase at 100 µg/mL at 37°C to the 

initial weight of the thin films (w0). The degradation behavior in collagenase can be 

approximated linearly with the equation: 𝑤𝑟 𝑤0 = −8.33 × 10−5𝑡 + 0.949⁄  with R2 = 

0.976. Data ± SEM. n = 3 for each condition. 

 

3.2.3 Folding Thin Film into Miura-geometry with Laser-etched Perforated 

Lines 

We selected the Miura-geometry invented by Japanese astrophysicists Koryo 

Miura to fold our thin film construct because this particular geometry allows for packing 

of the thin sheet into a very compact area with its thickness restricted only by the 

thickness of the thin sheet itself. To improve the fidelity and reproducibility of manual 

folding, we designed the folding lines of the Miura-geometry in a computer-aided design 



91 

 

(CAD) program and laser-etched periodical perforations along the design on porous 

PLGA (Figure 3-4 A) and collagen (Figure 3-4 B) thin sheet prior to folding. The outer 

boundary of the Miura-geometry was produced by using higher laser power to completely 

sever the thin film. The etched lines allow for folding of PLGA (Figure 3-4 C) and 

collagen (Figure 3-4 D) thin films easily and subsequent retaining of folded geometries 

without external constrains. This approach allowed us to fold PLGA and collagen thin 

sheet into Miura-geometry manually easily and precisely.  

 

Figure 3-4: Folding of laser-etched PLGA and collagen thin film into the Miura-ori 

geometry. PLGA (A) and collagen (B) thin films with an 8-facet Miura-geometry. The 

perforated folding lines were laser-etched from a user-designed CAD drawing. 3D 16-

facet PLGA (C) and 8-facet collagen (D) folded constructs were obtained by manually 

folding along the perforated lines. (A-B) scale bars = 1 cm.  
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3.2.4 Patterning of Thin Films with Post-stamping System 

We developed a two parts post-stamping system to pattern the thin films at user-

defined locations with liquid droplets (Figure 3-5 A). Prior to patterning the film, liquid 

droplets were loaded onto each individual acrylic posts on the stamping system. The 

posts with liquid droplets were then inverted upside down and pressed gently to allow the 

liquid droplets to transfer into the thin film.  

The top part is made of acrylic plate with small acrylic posts of equal height 

fixed at various locations (Figure 3-5 B). The acrylic posts were fabricated by cutting out 

circular holes on a 1/8” thickness acrylic plate with laser at high power. The locations of 

the acrylic posts were designed in a CAD drawing such that the pattern these posts 

created on a two-dimensional thin sheet aligns along the z-axis when the film folds into 

the three-dimensional Miura-ori geometry. Low power laser was used to lightly mark the 

locations on the acrylic top plate and premade acrylic posts were subsequently glued at 

these locations.  

The bottom part is made of two 1/8” thickness acrylic plates glued together 

where one plate had the center region shaped of the outer boundary of 2D Miura-

geometry completely removed by laser (Figure 3-5 C). This hollowed center region 

served as the loading location for the thin film that needs to be patterned. Four 1” screws 

were machined into the four corners of the bottom part with the corresponding screw 

holes on the top part to fix the xy-plane position during the patterning process. When the 

top and bottom parts are assembled, four nuts were used to equalize and stabilize the 

downward pressure exerted on the enclosed thin film by the acrylic posts (Figure 3-5 D).  
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We stamped green and red liquid food coloring droplets on PLGA thin films to 

produce the alternating coloring pattern (Figure 3-5 E). We found that the patterned shape 

of the liquid droplet was not circular of the post and there was liquid bleeding underneath 

the film (Figure 3-5 F).  

 

Figure 3-5: Patterning PLGA thin films with post-stamping system. (A) Schematics 

illustrating the stamping process. (B) The top part is composed of acrylic posts bonded to 

a base acrylic plate at specific locations in the faces of the Miura-geometry such that the 

patterned locations aligns vertically in the z-axis of the folded thin film. Scale bar = 1 cm. 

(C) The base part is created by bonding two acrylic plates together with the center region 

of one of the plates pre-cut in the shape of the Miura-geometry. The translucent regions 

were the dried adhesive. Four screws are machined into the bottom part at the four 

corners. Scale bar = 3 cm. (D) Assembled top and bottom parts with four nuts to secure 

the stamping system. Scale bar = 3 cm. (E) Two different colored liquid droplets were 

loaded on the posts to produce the alternating pattern in PLGA thin film. Scale bar = 1 

cm. (F) Patterned droplet had a non-circular shape and liquid bleeding underneath the 

film were visible. Scale bar = 1cm.     

A 

B C D E 

F 
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To address this issue, we controlled the liquid spreading pattern in the thin film 

by creating circular laser-etched boundaries in the thin film at the stamping locations of 

liquid droplet (Figure 3-6 A). The boundaries served as a physical barrier preventing the 

liquid from spreading beyond the etched region into the main body of the thin film. 

However, when an excessive laser power was used, the etched center region detached 

from the thin film, leaving a hole behind (Figure 3-6 A, black arrowheads). With 

different food coloring diluted in DiH2O, we created circular liquid dots of different sizes 

simultaneously in the PLGA thin films (Figure 3-6 B). By designing different post and 

color loading configurations, we created two patterns in the film: alternating colors of 

same-sized dots along the z-axis (Figure 3-6 C) and different-sized dots on the same xy-

plane (Figure 3-6 D). As a result of the physical boundary, the resolution of circular dots 

increased to about 1 mm in diameter. Immediately after liquid droplet stamping, the film 

was folded along the laser-etched perforated lines into the 3D Miura-geometry construct.  

We evaluated the efficiency of the post-stamping system in patterning collagen 

thin films. 3µL of food coloring droplets containing 1% w/v gelatin/DiH2O were 

individually dispensed on the posts before brought into contact with the collagen thin 

film (Figure 3-7 A: top view, Figure 3-7 B: side view). Although most of the liquid dots 

were constricted within the physical boundaries, in some cases, the droplet was able to 

wet into the main body of the thin film, leaving a blot extending beyond the physical 

boundary (Figure 3-7 C). We suspected that this may be due to increased hydrophilicity 

of collagen.The patterned collagen thin film folded easily into the final 3D Miura-

geometry construct (Figure 3-7 D). Taken together, the post-stamping system combined 
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with the laser-etched boundary allow for simultaneous patterning of different sized liquid 

dots on PLGA and collagen thin films at user-defined locations.  

 

Figure 3-6: Laser-etched circular boundaries improved patterning fidelity and 

consistency in PLGA thin films. (A) Laser-etched circular boundaries in a PLGA thin 

film. Excessive laser power could sever the patterned region, leaving only holes on the 

thin film (black arrowhead). Scale bar = 1 cm. (B) Red and green coloring dots in DiH2O 

enclosed with different sizes of laser-etched boundaries. The large dot was created with 3 

µL of stamping volume while the smaller dots was created with 1.5 µL. Scale bar = 1 mm. 

(C) Alternating colors of same sized dots along the z-axis of a 8-facet semi-folded Miura-

geometry PLGA construct. (D) Different sized dots could be simultaneously stamped on 

the same xy-plane of a 8-facet semi-folded PLGA construct.    
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Figure 3-7: Laser-etched boundaries were ineffective for patterning in collagen thin 

film. Top view (A) and side view (B) of an inverted post-stamping system loaded with 

blue food coloring droplets in 1% w/v gelatin/DiH2O. (C) Collagen thin film after post-

stamping. There was liquid bleeding outside of the laser-etched boundaries, possibly due 

to hydrophilic wicking effect of collagen. (D) Semi-folded collagen thin film with the 

patterned area aligning along the z-axis. (A-D) Scale bars = 1 cm.  

 

3.2.5 Three-dimensional Cell Patterning in Folded, Porous Polymer Matrices 

In order to pattern cells in the thin films, we suspended cell in a mixture of 

media and Matrigel as previously described [221]. Since Matrigel retains its fluidity at 

4°C but polymerize into a gel at 37°C, we prepared the cell mixture with cold media and 
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Matrigel at 4°C and incubated the patterned cell suspension at 37°C to allow Matrigel to 

encapsulate the stamped cells at patterned locations. To inspect the fidelity of cell pattern, 

we stained two cell populations with membrane dyes DiI and DiO that excite at 549 nm 

and 484 nm respectively. We tested different patterns for PLGA and collagen thin films. 

For PLGA thin film, we loaded the cell suspensions on 4 posts configured in an 

equilateral triangle such that the three vertices are stamped with the DiI-stained cells 

while the centroid of the triangle is stamped with the DiO-stained cells (Figure 3-8 A). 

For collagen thin film, we loaded cells stained with the same membrane dye on the 

opposing corners of a square.  

We found patterned cell populations retained its circular shape and relative 

positions to each other 2 hours after the stamping in a 2-facet folded PLGA construct 

(Figure 3-8 B). Stamping was completed with high fidelity as there was little defect in the 

shape and DAPI-stained nuclei were presented throughout the stamping area and within 

the laser-etched boundaries. However, in 2-facet folded collagen construct, the patterned 

cell populations were not as uniform as the PLGA thin film within the boundaries and 

there were signs of wicking in between the boundaries (Figure 3-8 C). Taken together, 

these data demonstrated that patterning of multiple cell populations simultaneously on 

PLGA and collagen thin films can be achieved using post-stamping system with Matrigel 

as a cell suspension carrier. However, further improvement need to be made to collagen 

thin films to achieve higher fidelity.  
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Figure 3-8: Patterning cells in PLGA and collagen thin films using post-stamping 

system. (A) Human endothelial cells stained with DiI and DiO were suspended in 1:1 v/v 

media/Matrigel and loaded onto posts before brought into the contact with the thin films. 

Matrigel was allowed to gel at 37°C to encapsulate the patterned the cells before media 

was supplied to the folded constructs. (B) Immunofluorescent confocal images of DiI and 

DiO stained cells with DAPI counterstain near the center of a folded, two-facet folded, 

porous PLGA matrices 2 hours after stamping. The stamping pattern is an equilateral 

triangle with its three vertices stamped with cells stained with DiI and its centroid 

stamped with cells stained with DiO. (C) Immunofluorescent confocal images of DiI and 

DiO stained cells with DAPI counterstain in a folded, two-facet folded, porous collagen 

matrices 2 hours after stamping. The stamping pattern is a square with the opposing 
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Figure 3-8 (Continued) vertices stamped with cells stained with the same membrane dye. 

(B-C): Dashed lines indicate laser-etched boundaries for stamping. Scale bars = 500 µm. 

 

3.2.6 Patterned Cell Viability in Folded, Porous PLGA Matrices 

We asked if the patterned cells are viable in the folded PLGA construct. We 

qualitatively evaluated the viability of human endothelial cells (EC) 2 hours after 

patterning with live/dead cell viability assay. We found that most of the cells in the 

patterned region were live (Figure 3-9 A) with minimal number of dead cells (Figure 3-9 

B). There were no cells found in yellow, indicating an absence of active cellular 

apoptosis (Figure 3-9 C). For longer culture period, we quantitatively evaluated the 

viability of human ECs and VSMCs in bulk porous PLGA matrices (Bp) and 4-facet 

folded 3D PLGA constructs (Figure 3-9 D) using alamarBlue assay. The three-

dimensional cellular organization of folded construct were divided into three categories: 

(Fs) folded PLGA matrices patterned with only ECs, VSMCs or a homogenously mixed 

population of ECs and VSMCs, (Fz) folded PLGA matrices patterned with alternating EC 

and VSMC populations along the z-axis and (Fxy) folded PLGA matrices patterned with 

both EC and VSMC populations on each facet in the same xy-folding plane arranged as 

shown (Figure 3-9 D). Each facet of the fold was stamped with 3×105 cells for a total of 

1.2 million cells per construct. After 3 days of culture, we found that the metabolic 

activities indicated by the fluorescent readings for all conditions were similar for different 

three-dimensional cellular organizations (Figure 3-9 E), suggesting a comparable level of 

live cells for all organizations. Taken together, these results suggest that the cells 
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patterned in the folded PLGA matrices were able to survive after 3 days of culture in 

vitro.   

 

Figure 3-9: Cell viability evaluation in folded and bulk porous PLGA polymer 

matrices. Fluorescent images of live (A) and dead (B) human endothelial cells stained 

with calcium AM and ethidium homodimer-1, respectively, in a 4-facet folded PLGA 

tissue construct. (C) Composite image of live and dead cells in (A) and (B). (A-C) Scale 

bars = 300 µm. Live: green. Dead: red. (D) Three-dimensional cross-sectional schematic 

representations of cellular organizations with ECs, VSMCs, or homogeneously mixed 

population of ECs and VSMCs in bulk, porous PLGA matrices (Bp) and 4-facet folded 
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Figure 3-9 (Continued) 3D PLGA matrices (Fs, Fz and Fxy) for metabolic assay. L1-L4 are 

folded facet of the polymer matrices. (E) Fluorescent readings as a result of the metabolic 

activities of seeded and patterned cells in bulk and folded PLGA constructs with 

background reading subtracted. Data ± SEM. n = 3 for each condition.  

 

3.2.7 Organized Three-dimensional Organization Promotes Vascularized 

Network Formation  

Angiogenesis in native environment requires EC and VSMC work in concert 

spatiotemporally [222-224]. We asked if organized three-dimensional structures of EC 

and VSMC populations patterned in folded PLGA constructs improve vascularized 

network formation in vivo. To that ends, we subcutaneously implanted EC and SMC 

organized in porous PLGA matrices with Bp, Fs, Fz and Fxy configurations on the dorsal 

regions of SCID/bg male mice (Figure 3-10 A). After 2 weeks, the constructs were 

explanted (Figure 3-10 B), imbedded in paraffin, sectioned and immunostained for blood 

vessels.  

We followed a systematic approach in quantifying the vessel density by imaging 

36 fields of views for each stained section (Figure 3-10 C). Immunostained blood vessels 

of various sizes were found in the bulk porous scaffold and folded constructs (Figure 3-

10 D) with perfused red blood cells visible in some vessels (Figure 3-10 E). We manually 

counted the number of human-caldemons positive blood vessels from the images and 

normalized by the field of view surface area. We found a significantly higher blood 

vessel density in the folded construct with Fxy configuration compared to folded 

constructs with Fs configuration (Figure 3-10 F), suggesting that organized three-
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dimensional structures of ECs and VSMCs in PLGA matrices can improve the formation 

of mature blood vessels.  

 

Figure 3-10: Evaluating vascularization network formation in folded and bulk 

porous PLGA matrices. (A) PLGA bulk porous scaffold (Bp), 4-facet folded construct 

in Miura geometry with homogenously mixed human EC and SMC populations (Fs), with 

alternating EC and VSMC populations in the z-axis of the construct (Fz), and with both 

EC and VSMC populations on the same xy-plane of each facet of the construct arranged 

as shown (Fxy) were cultured for 3 days in vitro prior to subcutaneous dorsal implantation 

in SCID/bg male mice. (B) An example of explanted folded scaffold after 14 days of in 

vivo implantation.  Scale bar = 5 mm. (C) Each sectioned paraffin slide was 

systematically divided into a grid of 6 x 6 field of views (black squares, not to scale) and 

imaged. (D) Representative immunohistochemical staining of blood vessels on a 

sectioned slide. (E) Representative staining of perfused blood vessels with red blood cells. 

(D-E): (Green: anti-human CD31, Red: anti-human Caldesmon, Blue: DAPI). Scale bars 
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Figure 3-10 (Continued) = 50 µm. (F) Human Caldesmon positive vessel density found 

for different three-dimensional organizations. Mean ± SEM. n = 3 explants.  

 

 

3.3 Discussion 

In this study, we developed a novel 3D cell patterning method, Tissue Origami, 

to organize multiple cell populations in 3D synthetic and natural polymer scaffolds by 

folding cell-laden 2D polymer thin films with Miura-geometry. We found cell 

populations could be patterned simultaneously with sub-millimeter resolution and 

maintained metabolically within the constructs. This is particularly relevant to the field of 

tissue engineering where cell organization in 3D scaffold could lead to improved function 

of the engineered tissue [225]. Although a number of strategies to address this issue have 

been reported in the past two decades, a large number of these studies rely on hydrogel as 

cell carrier and scaffolding material, which exclude a wide range of cell-compatible 

scaffolding materials such as PLGA and collagen. For strategies that do not use hydrogel, 

throughput and cost are prohibitive for clinically-relevant applications [226]. Our strategy 

does not suffer from the shortcomings of the previous techniques and can be adopted for 

a wide range of tissue engineering applications where specific material properties are 

required as scaffolds.   

Our strategy offers several advantages compared to traditionally stacking or 

layering strategy to build 3D tissue engineering constructs. For example, Derda and 

colleagues built a 3D tissue engineered construct by assembling multiple layers of 

chromatography paper spotted with cell suspension [227]. While the authors 
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demonstrated the biocompatibility of the paper as a scaffolding material that supported 

cell survival and growth, the paper itself cannot be degraded as an implantable material 

and is not FDA approved. While its wide commercial availability is certainly 

advantageous, it is disadvantageous from a material-processing perspective because it is 

pre-made, which makes it difficult to modify its material properties such as porosity and 

mechanical strength. In another study, Shimizu and colleagues stacked multiple layers of 

cardiomyocytes cultured separately to achieve a 3D tissue engineered construct [218]. 

Although this strategy also enabled investigators to create user-defined cell patterns in 3D, 

it significantly adds handling time and operator-variability compared to Tissue Origami 

strategy where the locations of patterns are mathematically defined in all three axes as a 

result of pre-determined folding lines specified in Miura-geometry.   

Angiogenesis is a complex process involving multiple cell types including ECs 

and VSMCs. Much of what we known currently about it came from the field of cancer 

biology where inhibition of this process may slow tumor growth and reduce the chance 

for metastasis [228]. In contrast, in tissue engineering, the challenge is to promote this 

process so that seeded cells in engineered scaffold have sufficient nutrients to survive. 

While it is commonly known that the EC and VSMC interacts with one another through 

cytokine signaling and physical contact [224], controlling angiogenesis is not a trivial 

pursuit for tissue engineering application due to the spatiotemporal requirements to 

regulate the complex process. A number of studies demonstrated a multi-cell type 

strategies can lead to improved formation of blood vessels in engineered scaffold [229-

231]. However, most of these studies did not provide any organizational cues in the 

scaffold and relied on seeded cells to self-assemble into blood vessels. Our findings that 
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folded 3D constructs with homogeneously mixed populations of ECs and VSMCs 

showed significantly lower blood vessel formation than patterned EC and VSMC 

populations stamped on each facet suggest that spatially organizing populations of ECs 

and VSMCs may lead to higher blood vessel formation in the scaffold.     

In summary, we designed a new 3D cell patterning strategy based on folding 

thin, porous polymer films with Miura-geometry, built PLGA and collagen thin films 

with perforated folding lines that allows two distinct populations of cells to be 

simultaneously patterned in 3D and tested this strategy in building vascularized networks 

with ECs and VSMCs. We found that initial configuration that placed EC and VSMC 

populations on the same plane of each facet led to the greatest yield in terms of the blood 

vessel formation. This technique is particularly relevant to the field of tissue engineering 

where spatial organization of multiple cell populations can lead to improved tissue 

functions. The wide range of material compatibility, low cost and high-throughput 

enabled by method can facilitate its adoption in manufacturing of clinically-relevant sized 

tissue engineered construct.  

 

3.4 Experimental Challenges 

There were a number of challenges pertaining to the development of this method. 

The first challenge was to develop a foldable scaffold that is biocompatible and 

biodegradable. With solvent-casting method, we were able to obtain nonporous, thin 

PLGA films that permitted folding. However, we found that due to the elasticity of the 

film, the folded construct tended to unfold its 3D shape and revert back to an open film 

over time. In addition, we were concerned about the nutrient diffusion through the 
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nonporous film to support cell survival and growth. To overcome these issues, we 

introduced an additional porogen-leaching step in the fabrication process and the 

resulting film became over 90% porous. The reduced density in the film greatly relieved 

the amount of mechanical stress experienced at the folding lines and the folded construct 

were able to remain in its folded shape indefinitely. The inter-connected porous structure 

also facilitates nutrient diffusion into the folded constructs. The folding process was later 

further improved with the incorporation of laser-etched perforated folding lines, which 

enhanced the accuracy and reproducibility of the manual folding.  

The second major challenge was to develop a method to pattern multiple cell 

populations on the thin film simultaneously in a high-throughput and low-cost manner. 

Since PLGA is relatively hydrophobic, our initial attempt to deposit cell suspensions 

proven to be difficult as the small volume of cell suspension droplet tended to adhere to 

the hydrophilic surface that is used to transfer the droplet (e.g. pipette tips) rather than the 

PLGA thin film. To overcome this challenge, we increased the viscosity of the cell 

suspension droplet by adding Matrigel to the media and constructed the post-stamping 

stamping system to facilitate the transfer of the droplet to the PLGA thin film. The 

droplets were pre-loaded onto the acrylic posts of the post-stamping systems, which are 

also hydrophobic. The droplets adhere to the post initially due to surface tension. 

However, when inverted and in contact with the PLGA surface, the droplets prefer the 

PLGA film than the posts and allowed the cell suspension to be stamped on the thin films. 

Since virtually any post- and cell-loading configurations can be designed in a CAD 

drawing, it enables any cell patterns to be created simultaneously in the thin films in a 

high-throughput and low cost manner. The patterning process was further improved with 
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the assistance of laser-etched boundary to control the spreading of the deposited cell 

suspension in the thin film laterally.  

 

3.5 Materials and Methods 

3.5.1 Preparation and Fabrication of Thin Films and Bulk Scaffold 

3.5.1.1 PLGA Thin Film Fabrication 

Soda-lime glass plate (3” x 4” x 1/16”, Moliterno, Inc., Pepperell, MA) was 

rinsed in the order of acetone, propanol, ethanol, and methanol and blow-dried with 

nitrogen to clean the surface. Cleaned glass plate was immediately placed in a plasma 

generator (PlasmaPrep2, Gala Instrumente, Germany) and treated with ionized oxygen for 

30 seconds to render the surface hydrophilic. About 2 ml of 2% w/v alginate solution 

(Sigma-Aldrich, St. Louis, MO) was poured onto the center of the treated glass plate and 

spin-coated to achieve a uniform alginate thin coating. After drying the coating in an 

oven at 60°C for 30 minutes, glass slides (1” x 3”) were placed on the four edges of the 

alginate-coated glass plate to enclose an open square. The glass slides were clamped 

tightly onto the glass plate via 4 pairs of neodymium magnets (SuperMagnetMan, 

Birmingham, AL) to secure their formation. 20 µL of 1% w/v gelatin solution (Sigma-

Aldrich, St. Louis, MO) was pipetted uniformly along each of the four edges of the open 

square to seal any open gap between the glass slides and the glass plate. The construct 

was placed in a fridge at 4°C to solidify the gelatin solution until ready to use.  

Sugar (Domino Foods) particles were sieved between 90 to 106 µm. 1.2 g of 

sieved sugar particles was added to 1 mL of 10% w/v poly(lactic-co-glycolic) acid 

(PLGA, 75:25, Lakeshore Biomaterials, Birmingham, AL) in chloroform solution (Sigma, 
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St. Louis, MO) to achieve a 9:1 (sugar:PLGA) weight ratio. Prior to casting the mixture, 

the alginate-coated glass construct was taken out of the fridge and allowed to warm up to 

room temperature for 15 minutes. After briefly swirling the mixture by hand, it was 

poured onto the center of the open square area of the glass construct. The mixture was 

allowed to dry for 30 minutes in the fume hood followed by an overnight desiccation step 

to fully evaporate any chloroform residue in the sugar/PLGA film. Finally, the entire 

construct was immersed in 4 L of DiH2O for 2 hours to leach out the sugar and to detach 

the film. The wet film was carefully placed on a Teflon net and allowed to dry for 4 hours 

in a 60°C oven.  

 

3.5.1.2 Collagen Thin Film Fabrication 

Glass plate (2” x 3” x 1/16”, VWR, Atlanta, GA) was rinsed in the order of 

acetone, propanol, ethanol, and methanol and blow-dried with nitrogen to clean the 

surface. 4 layers of Parafilm (VWR, Atlanta, GA) were wrapped near the edge of each 

side along the length of the plate to form a rectangular area with two open sides on the 

glass plate.  The glass/Parafilm constructs was stored until ready to use. 

2 g of collagen type I powder from bovine Achilles tendon (Sigma, St. Louis, 

MO) was added to 200 mL of 0.05 M glacial acetic acid (Sigma-Aldrich, St. Louis, MO) 

solution for 30 minutes. The mixture was blended in Oster blender at high setting for 8 

minutes to achieve an uniformly mixed collagen slurry. The slurry was de-foamed by 

centrifugation at 2000 RPM for 10 minutes at 4°C. Immediately after de-foaming, 3 g of 

collagen slurry was spread within the rectangular open area of the glass plate/Parafilm M 

(VWR, Atlanta, GA) construct and sandwiched with another clean glass plate of the same 
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dimensions on top. The entire construct was clamped with 2 pairs of neodymium magnets 

(SuperMagnetMan, Birmingham, AL) to fasten the location of the glass slides and 

immediately placed horizontally in the freezer at -20°C for 24 hours to freeze the 

collagen slurry. The frozen collagen slurry construct was then transferred to a -80°C 

freezer for another 24 hours before finally lyophilized in a freeze-dryer (FTS System, 

Stone Ridge, NY) for 48 hours to obtain the collagen thin film.  

 

3.5.1.3 Bulk Scaffold Fabrication 

Similarly to the PLGA thin film, we fabricated the bulk PLGA scaffolds with a 

solvent casting and porogen leaching method. The casting volume was eight times higher 

than the thin film in order to keep the thickness of the bulk scaffold same as a 4-facet 

folded construct. We sieved sugar (Domino Foods) particles between 90 to 106 µm. 4.8 g 

of sieved sugar particles were added to 4 mL of 10% w/v PLGA (75:25, Lakeshore 

Biomaterials, Birmingham, AL) in chloroform (Sigma, St. Louis, MO) solution to 

achieve a 9:1 weight ratio. The mixture was swirled swiftly to homogenize the sugar 

particles and immediately casted into an alginate-coated well made from aluminum plate. 

After allowing the chloroform to evaporate and desiccate the construct overnight, the 

sugar was leached away in 4 L of DiH2O for 4 hours. The wet film was placed on a 

Teflon net and allowed to became fully dry at room temperature.  

To cut circular discs from the bulk scaffold sheet, we used the VersaLaser 

(VersaLaser VLS3.50, Scottsdale, AZ) set to 20% power and 80% speed with HPDFO 

lens. The diameter of the circular disc was 1 cm and we drew the shape in CorelDraw X5 
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(Corel, Menlo Park, CA) and imported into the VersaLaser graphic user interface (GUI) 

software.  

 

3.5.2 Thin Film Characterization 

3.5.2.1 Film Thickness 

We measured the thickness of PLGA and collagen thin films via a digital caliper. 

To measure the average film thickness across the entire film, we folded the thin film two 

times to achieve a four layered construct and sandwiched the construct in-between two 

glass slides (1” x 3”, VWR, Atlanta, GA) before measurement. The glass slides served as 

spacers to evenly distribute the compressive force exerted by the digital caliper during the 

measurement. The average single film thickness was obtained by subtracting the 

thickness of the two glass slide spacers and then dividing by four.  

 

3.5.2.2 Collagen Thin Film Degradation  

12 circular pieces of collagen thin film with an approximate diameter of 9 mm 

were cut using a stopper hole borer (VWR, Atlanta, GA). The mass of each film was 

measured on a digital atomic scale and placed in a 12-well plate (BD Biosciences). 3 mL 

of collagenase solution at 0.1 mg/mL in PBS was added to each well and a small metal 

mesh weight was added on top to fully submerge the samples. At 0.5, 1, 1.5 and 2-hour 

time points, the enzymatic degradation was stopped by adding 2 mL of 10 mM 

phosphate-buffered EDTA solution (Invitrogen) to three of the 12 wells followed by DI 

water rinsing three times. The samples were then desiccated overnight at room 
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temperature. The final mass of the dried samples were measured on the digital atomic 

scale to calculate the changes in mass due to degradation.  

  

3.5.3 Laser-etching and Folding of Thin Film 

Perforated lines in the shape of Miura-geometry were designed with CorelDraw 

X5 (Corel, Menlo Park, CA) and imported into VersaLaser GUI software. Laser 

(VersaLaser VLS3.50, Scottsdale, AZ) set to 10% power with 100% speed and HPDFO 

lens was sufficient to etch both PLGA and collagen thin sheet.  Prior to laser etching, the 

thin PLGA or collagen sheet was taped at the four corners in the center of a letter-sized 

plain paper to prevent any accidental movement during the etching process. After the thin 

PLGA or collagen sheet was etched with the designed Miura-geometry pattern, it was 

stored in large deep Petri dishes until ready to use.  

 

3.5.4 Post-stamping System Fabrication and Stamping 

The post-stamping system is composed of three parts: cylindrical acrylic posts, 

an acrylic base plate and an acrylic top plate. The dimensions of the acrylic posts were 

designed in CorelDraw X5 (Corel, Menlo Park, CA) and cut out with VersaLaser 

(VersaLaser VLS3.50, Scottsdale, AZ) with 90% power, 9% speed and HPDFO lens 

from an 12” × 12” × 1/8” acrylic plate (McMaster-Carr, Robbinsville, NJ). The diameter 

of the posts is 2 mm. After laser cutting, the posts remained loosely connected to the 

acrylic plate and could be easily removed by push gently with a pointed object such as a 

pair of tweezers. The top acrylic plate served as the base for posts attachment. The 

attachment locations were marked by gentle laser etching (50% power, 90% speed, 
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HPDFO lens) with VersaLaser (VersaLaser VLS3.50, Scottsdale, AZ) such that the 

corresponding stamping locations align along the z-axis of a folded thin film with Miura-

geometry. The posts were individually glued to the marked locations with Epoxy 

(Permatex, Hartford, CT) and allowed to fully cure at room temperature for 4 hours. The 

bottom acrylic plate was consisted of two identical thin plates with dimensions 12” × 12” 

× 1/8” (McMaster-Carr, Robbinsville, NJ) glued together. The outer shape of the unfolded 

2D Miura-geometry was cut out in the center of one of the plates and served as a 

receiving base for the thin sheet. Finally, four screws were bored through at the four 

corners of the bottom plate with matching holes at the top plate to eliminate any 

movement laterally in the stamping process.  

Initial tests of post-stamping system with PLGA and collagen thin films were 

carried out with food colorings liquid droplets. For testing with PLGA thin films, we 

prepared diluted food coloring solutions by adding 5 drops of the concentrate 

(McCormick, Sparks, MD) to 10 mL of DiH2O. For collagen thin films, the food coloring 

solution was added to 1% w/v gelatin/DiH2O to increase the viscosity of the solution. The 

liquid droplets were pipetted onto each post on the top part of the post-stamping system 

and gently inverted and lowered onto the thin film that sit at the well at bottom part of the 

post-stamping system. The four nuts were threaded on the screw to prevent any vertical 

movement. The top part was lifted slowly after 1 minute of contact and inspected for any 

residue droplet.  
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3.5.5 Cell Culture 

Human umbilical vein endothelial cells (HUVECs) (Lonza, Walkersville, MD) 

at passage 3 were cultured in EGM-2 media (Lonza, Walkersville, MD) in a water-

jacketed 5% CO2 incubator at 37°C. Following initial seeding, the cells were fed every 

other day until reaching 80-90% confluence, at which point, the cells were passaged and 

re-seeded at a density of 5000 cells/cm2. All experiments were performed at passage 5-6. 

Human aortic smooth muscle cells (HASMCs) (Lonza, Walkersville, MD) at 

passage 3 were cultured in SmGM-2 media (Lonza, Walkersville, MD) in a water-

jacketed 5% CO2 incubator at 37°C. Following initial seeding, the cells were fed every 

other day until reaching 60-70% confluence, at which point, the cells were passaged and 

re-seeded at a density of 10000 cells/cm2. All experiments were performed at passage 5-6. 

Whenever a mix population of both HUVECs and HASMCs were co-cultured in 

the folded or bulk construct, a mixed media consisted of 3 parts SmGM-2 and 1 part 

EBM-2 were used [232]. The media was changed every day until ready for in vivo 

implantation or in vitro assay.  

 

3.5.6 Cell Patterning of Thin Film with Post-stamping System 

Top and bottom parts of the post-stamping system were sterilized by spraying 

thoroughly with 70% v/v ethanol/DiH2O followed by ultraviolet (UV) sterilization for 30 

minutes in the biosafety cabinet. The perforated PLGA and collagen thin films were 

sterilized by UV sterilization for 1 hour on each side in the biosafety cabinet. Light 

neodymium magnetic rings (Model: R1013D, SuperMagnetMan, Birmingham, AL) were 

wrapped with Teflon tape and sterilized with sonication in 70% v/v ethanol/DiH2O 
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solution for 15 minutes in a water-bath sonicator. The magnetic rings were air dried for 

30 minutes within the biosafety cabinet and stored in a sterile Petri dish prior to cell 

patterning. All tweezers used for handling the thin film and the scaffold were sterilized in 

an autoclave.  

Matrigel (BD Biosciences) was thawed in 4°C fridge overnight prior to the day 

of cell patterning. On the day of patterning, HUVECs or HASMCs in tissue culture flask 

were detached with 2 mL of 0.25% trypsin for 4 minutes at 37°C. The trypsinization 

reaction was stopped by adding 5 mL of the corresponding culture media and 

subsequently centrifuged at 2200 RPM for 5 minutes at 4°C. The supernatant was 

discarded and the cell pellet was suspended in a cold 50% v/v media/Matrigel solution at 

a density of 1 x 108 cells/mL. The cell suspension was pipetted rapidly to uniformly 

disperse the cell pellet and kept ice until use. A mixed population of HUVECs and 

HASMCs was prepared by pipetting equal volumes of cell suspension from each 

individual cell suspension and mixed thoroughly with a pipette.  

Sterilized PLGA or collagen thin film was placed within the receiving base of 

the bottom part of the post-stamping system. 3 µL cell suspension of interest were 

deposited onto the posts by pipetting manually to achieve the desired cellular 

arrangement. Cell suspension was mixed by pipetting every 5 transfers to ensure an even 

amount of cells deposited on each post. When all posts were loaded with cell suspensions, 

the posts were inverted and put in contact with the thin film. Four nuts were threaded on 

the screws to prevent any vertical movement. The top part was lifted slowly after 1 

minute of contact and inspected for cell suspension residues. The thin film was removed 

carefully from the well with sterile tweezers and folded following the creased lines into 
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the 3D Miura-geometry. The folded construct was clamped with a pair of Teflon tape 

wrapped magnetic rings to prevent the construct from unfolding and placed in a 12 well 

plate at 4°C. After completing all folded constructs, the 12-well plate was incubated in a 

water-jacketed 5% CO2 incubator at 37°C for 10 minutes without media to polymerize 

the Matrigel and encapsulate the patterned cells at their stamping locations. Subsequently, 

3 mL of 37°C media corresponding to the patterned cell populations was added to each 

well to fully immerse the construct. Due to the weight of the magnetic rings, the cell-

bearing construct stayed immersed within the media. The constructs were cultured until 

ready for in vivo implantation or in vitro assay.  

 

3.5.7 Immunohistochemistry 

3.5.7.1 Cell Membrane Labeling 

To label cell of interest with DiI or DiO membrane dye prior to stamping, cells 

were suspended at 1 x 106 cells/mL in serum-free culture media (EBM-2 for EC or 

SmBM basal medium for VSMC, Lonza, Walkersville, MD). 5 µL of cell-labeling 

solution (Vybrant Multicolor Cell-Labeling Kit, Invitrogen) per mL of cell suspension 

was added to the cell suspension and mixed by gently pipetting. The cell suspensions was 

then incubated in the water-jacketed 5% CO2 incubator at 37°C for 20 minutes followed 

by centrifuge at 1500 RPM for 5 minutes at room temperature. The supernatant was 

carefully removed and the cells were then re-suspended at 1 x 106 cells/mL in their 

corresponding media at 37°C. The cells were washed three times by centrifuging at 1500 

RPM for 5 minutes followed by removing the supernatant. The cell suspension was then 

stored on ice bath until ready to use.  
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3.5.7.2 Immunohistochemistry Paraffin Staining on Sectioned Slides 

Paraffin-embedded sectioned slice of explanted scaffold were stained for ECs 

and VSMCs. The 5 µL sectioned slices were deparaffinized by sequentially immersed in 

xylene (Sigma, St. Louis, MO, xylene, ethanol, ethanol, 95% ethanol, 95% ethanol, 70% 

ethanol, 50% ethanol, DiH2O, DiH2O, and Tris-buffered saline (TBS, Cellgro, Radnor, 

PA) for 2 minutes each. Prior to antibody staining, antigen retrieval is performed by 

immersing the deparaffinized slides in Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, 

0.05% Tween 20 adjusted to pH 9.0) at 95°C for 30 minutes. After allowing the slides to 

cool down to room temperature, the slides were blocked with 5% goat serum in TBS for 

1 hour at room temperature followed by incubation with a rabbit anti-human caldesmon 

primary antibody (ab45691, 1:100 dilution, Abcam, Cambridge, MA) in 5% goat serum 

overnight at 4°C. On the following day, the slides were washed for three times in TBS for 

5 minutes each and stained with a goat anti-rabbit Texas Red secondary antibody (ab6719, 

1:100 dilutions, Abcam, Cambridge, MA) in 5% goat serum for 40 minutes at room 

temperature. After washing the slides for three times in TBS for 5 minutes each, the 

slides were blocked with 5% donkey serum in TBS for 1 hour and subsequently 

incubated overnight with a sheep anti-human CD31 primary antibody (af806, 1:30 

dilutions, R&D Systems, Minneapolis, MN) at 4°C in 5% donkey serum. The slides were 

washed for three times in TBS for 5 minutes each at room temperature on the following 

day and stained with a donkey anti-sheep FITC secondary antibody (ab97124, 1:100 

dilutions, Abcam, Cambridge, MA) in 5% donkey serum for 40 minutes at room 

temperature. Finally, the slides were rinsed for three times in TBS for 5 minutes each and 
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mounted on glass slides using Prolong Gold antifade reagent with DAPI (Invitrogen) and 

stored in -20°C freezer until confocal imaging. All incubations steps were carried out in a 

humidified chamber to prevent slide from drying out.  

 

3.5.8 Scanning Electron Microscopy 

Field emission scanning electron microscopy (FESEM, Zeiss Ultra 55, 

Thornwood, NY) images of the PLGA and collagen thin films were taken to visualize the 

porous structure within the film. Prior to SEM, PLGA or collagen samples near the center 

of the film was cut out and coated with Pt/Pd for 90 seconds at 40 mA with a sputter 

coater (208HR, Cressington Scientific Instruments, UK). Samples were imaged using 

SEM at a beam voltage of 5 kV.  

 

3.5.9 Confocal Microscopy 

3.5.9.1 Z-stack Imaging of Whole-mount Folded Construct 

Patterned cells labeled with DiI and DiO in folded Miura-geometry construct 

were fixed in 4% paraformaldehyde for 15 minutes and stained in situ with DAPI nucleus 

stain for 5 minutes at room temperature. The construct was washed in PBS for three times 

at 5 minutes each and placed in a glass bottom Petri dish (MatTek Corporation, Ashland, 

MA) with PBS. Prior to Z-stack confocal imaging, the construct was weighed down with 

a 22 mm coverslip on top of the construct to prevent any accidental movement and to 

ensure a good contact with the bottom glass. 20 z-stack slices spanning 140 µm were 

scanned sequentially (Carl Zeiss LSM 510 inverted confocal microscope, Thornwood, 

NY) with a C-Apochromat 40x/1.2 W lens at 1x zoom and laser wavelengths at 405, 484 
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and 549 nm for DAPI, DiO and DiI staining, respectively. 3D renderings of cell 

distribution were reconstructed using the Zen 2011 software.  

 

3.5.9.2 Grid Imaging of Sectioned Slide from in vivo Explants 

36 fields of view consisted of 6 rows labeled 1 to 6 and 6 columns labeled A to 

F were imaged systemically for each deparaffinized stained slide using the grid-imaging 

tool in Zen 2011 image acquisition software (Carl Zeiss LSM 510 inverted confocal 

microscope, Thornwood, NY). For each sectioned construct, the four corners representing 

the maximum and minimum coordinates in the x- and y-axis were set as the four corner 

images for the grid (1A, 1F, 6A and 6F). DAPI, FITC and Texas Red stains were 

sequentially excited with 405 nm, 488 nm and 633 nm lasers respectively and imaged for 

each grid (Carl Zeiss LSM 510 inverted confocal microscope, Thornwood, NY).  

 

3.5.10 Cell Viability and Metabolic Assays 

The viability of cells encapsulated in polymerized Matrigel (BD Biosciences) in 

folded PLGA construct was examined by a Live/Dead (viability/cytotoxicity) assay for 

mammalian cells (Molecular Probes, Eugene, OR).  Two hours after initial seeding, 

folded construct was washed gently with Dulbecco's phosphate-buffered saline (D-PBS, 

Invitrogen) and incubated with 2 µM calcein-AM and 4 µM ethidium homodimer-1 

(Molecular Probes, Eugene, OR) for 45 minutes at room temperature before imaged with 

a Zeiss Axiovert 200 M fluorescence microscope (Carl Zeiss Micro-Imaging, 

Thornwood, NY) with GFP and Texas Red channels.  
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To quantitatively assess the metabolic activities of seeded cells in folded or bulk 

PLGA construct after an extended period of culture, alamarBlue cell viability assay 

(Invitrogen) was used. After 3 days of culture in a 12-well plate with media change every 

day, folded or bulk construct was washed gently with D-PBS and then replenished with 2 

mL of fresh culture media. Prior to adding alamarBlue solution, the constructs were cut 

into small pieces with sterile surgical scissors within the well to increase the surface area 

to volume ratio. After 200 µL of alamarBlue solution was added to each well, the plate 

was gently swirled until the alamarBlue solution became uniformly mixed with the media. 

The plate was then incubated for 1 hour in a water-jacketed 5% CO2 incubator. After 

gently pipetting each well up and down a few times to mix the solution, three 100 µL 

solution of each condition were added to a 96-well plate and its fluorescence was read 

using a fluorescence excitation wavelength of 570 nm and emission wavelength of 585 

nm (Gemini XPS fluorescence microplate reader, Molecular Devices, Sunnyvale, CA). 

We used an acellular PLGA scaffold as negative control and subtracted its fluorescent 

readings as background from other conditions.  

 

3.5.11 in vivo Mouse Implantation of Scaffold and Harvest 

All animal experiment was approved by the Standing Committee on the Use of 

Animal in Research and Teaching at the Faculty of Arts and Sciences at Harvard 

University. Male C.B.-17 SCID/beige mice between 5-8 weeks (Taconic Farms, 

Germantown, NY) were anesthetized by 2% isofluorane in 98% O2 via inhalation using a 

nose cone on a water-heated surgical platform. After shaving the dorsal trunk and 

preparing the skin for surgery, one 1 cm incision pocket was made on each side of the 



120 

 

dorsum and a subcutaneous pocket was created for scaffold implantation. Each mouse 

received a combination of a bulk and a Miura-folded scaffold or two pairs of Miura-

folded scaffold of different seeding configurations. Incisions was sutured (3-4 sutures per 

incision) with polypropylene monofilament suture (PROLENE, Ethicon, Somerville, NJ). 

Subcutaneous injections of buprenorphine (American Regent Inc., Shirley, NY) were 

given to all mice every 12 hours for 72 hours as analgesia. Up to 4 mice was placed in an 

individual cage until harvest two weeks later from the initial surgery date.  

On day 14 since initial surgery, the mice were euthanized and incisions were 

made with surgical scissors around the subcutaneous pockets to harvest the implanted 

construct. Roughly a 1 cm2 skin section was removed and fixed in 4% paraformaldehyde 

overnight. On the following day, the fixed tissues were transferred to 70% ethanol 

solution and shipped to Mass Histology Service (Worcester, MA) for paraffin embedding 

and sectioning.  

 

3.5.12 Vessel Density Calculation 

Blood vessels in confocal images were identified by anti-human CD31 and anti-

human Caldesmon immunofluorescent staining. For each sectioned slice of the explanted 

construct, the number of human Caldesmon positive blood vessels was manually counted 

from the 36 field of views designated from 1A to 6F. The total blood vessel number were 

averaged with the two other constructs and divided by the total area of the field of view 

to obtain the vessel density. All results were compared using ANOVA on rank tests, with 

pairwise comparison performed using the Tukey’s test.  
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4 Conclusion 

Vascular tissue functions are fundamentally linked to its structural organization 

across multiple spatial scales. At the tissue level, endothelial cells line the inner most 

layer of the blood vessel to protect the VSM from blood shearing force while VSM wraps 

around the ECs in helices in order to withstand the expansion force both longitudinally 

and laterally. At the cellular level, VSMCs assume an elongated spindle-shape and 

connect with either other cells or the ECM in order to efficiently propagate mechanical 

forces along the blood vessel wall. At the subcellular level, cytoskeletal architecture can 

influence a wide array of VSM functions including proliferation, migration and 

contraction. When this elegant structure-function relationship in vascular tissue is 

disrupted in pathological conditions, maladaptive remodeling in the tissue structure can 

lead to diseased functional outcomes in vitro. While it is difficult to pinpoint the exact 

cause that initiated the structure remodeling in vitro due to the complex native signal and 

tissue interactions, a highly controllable artificial cellular microenvironment can be 

engineered in vitro to regulate the tissue structure and in turn, tissue functions. With the 

integration of increasingly precise microfabrication technologies in tissue engineering, an 

engineering algorithm based on designing and building vascular architecture to achieve 

desired functional outcomes has emerged. For example, our group has previously applied 

this algorithm in a proof-of-concept study and successfully reverse engineered a Aurelia 

aurita jellyfish in a biohybrid life form consisted of synthetic polymer thin film and 

spatially engineered rat cardiac tissue [233]. With this dissertation, we developed in vitro 

models to understand how cellular shape of VSMC as a structural input can affect its 

contractile strength and cytoskeletal arrangement and how engineered spatial 
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organizations of ECs and SMCs in a three-dimensional polymer matrices can affect 

vascularization.  

 

4.1 The Effect of Vascular Smooth Muscle Cell Shape on Cytoskeletal 

Architecture and Contractile Strength 

Although structure and function are closely coupled in the vascular tissues as 

described above, their relationship can vary depending on the location in which they were 

found. For example, it has been observed that VSMC shape and function are uniquely 

defined by the locations in the cardiovascular system. In large diameter elastic arteries, 

exemplified by the aorta, VSMC has a length to width aspect ratio of about 10:1. 

However, in mid-sized muscular arteries, such as the external carotid artery of the neck 

and femoral artery of the thighs, the VSMC AR increased to 15:1. Functionally, VSMC 

in elastic arteries contract to maintain vessel pressure during the cardiac cycle whereas 

VSMC in muscular arteries regulate blood flow and pressure by constricting or relaxing 

the vessel wall. While it has been speculated that the elongated cellular shape for VSMC 

in elastic arteries may provide better dynamic response to blood pressure and pressure 

changes, its primary function, there is no definitive evidence to support this structure-

function relationship.  

In chapter 2, we investigated the how the contractile strength and cytoskeletal 

architecture of VSMC changes as a function of its cellular shape. We developed an in 

vitro model by engineering human VSMCs to take on the same shapes as those seen in 

elastic and muscular arteries and measured their contraction during stimulation with 

endothelin-1. We measured the actin alignment and nuclear eccentricity of engineered 
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VSMCs and found that they increased as the shape of the cell elongated. Using traction 

force microscopy, we measured the contractile strength of individual VSMCs and found 

VSMCs with elongated shapes exhibited lower contractile strength but greater percentage 

increase in contraction after endothelin-1 stimulation. We analysed the relationship 

between smooth muscle contractility and subcellular architecture and found that changes 

in contractility were correlated with actin alignment and nuclear shape. These results 

suggest that elongated VSMC shape facilitate muscular artery tone modulation by 

increasing its dynamic contractile range, suggesting that where the vasculature requires a 

higher fidelity in its modulation of blood flow, longer, thinner cells are functionally 

advantageous.  

This study highlighted the advantage of the design, build and test engineering 

algorithm for in vitro systems where we can precisely design the cellular 

microenvironment, build the cell or tissue of interest and test exactly how an independent 

input, the cell shape, can affect a dependent output, the contractile strength. In addition, 

this result here is particularly relevant for the tissue engineering of small-diameter vessel 

graft where functional mismatch between host and graft has been a major challenge in the 

past two decades. Our findings suggest that in addition to mimicking the biomechanical 

aspect of the healthy artery, providing guidance cues to engineer the VSMCs into the 

desired shape may improve the functionality and long-term patency of vascular graft.  

 

4.2 Engineering Vascularized Network in Folded, Porous Polymer Matrices by 

Tissue Origami 
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At the tissue level, design considerations for engineering vascular tissues 

broaden to include the spatial interaction and assembly between multiple cell types. 

However, these factors are often neglected in conventional tissue design dogma where 

multiple cell types are simply mixed and directly placed on the supporting polymer 

matrices, without controlling for their three-dimensional structural organization. As a 

result, the engineered tissue construct often has little organization to its architecture. In 

contrast, tissues in vitro consist of hierarchical smaller repeating unit on the scale of 

hundreds of microns that interacts with neighboring cells and performance specific 

functions. This difference in microarchitecture leads to suboptimal functions for tissue 

engineered construct and hindered the advancement of this field in achieving clinically 

relevant organ replacement products.  

In chapter 3, we developed a novel 3-dimensional cell patterning method based 

on folding of polymer thin film to spatially organize cellular interactions. We fabricated 

porous, foldable thin films from synthetic (PLGA) and natural (collagen) polymers and 

laser-etched perforated lines in them to facilitate the folding process. We built a simple 

acrylic stamping system that utilizes small posts to deposit liquid cell suspensions at user-

defined locations on the 2-dimensional thin film. The 3-dimensional tissue construct with 

spatially defined cellular interactions was obtained by folding the cell-patterned thin film 

into a Miura-ori geometry and cultured. We evaluated the viability of cells in folded 

construct and found they remain alive after 72 hours. We applied this method in a proof-

of-concept study to build a vascularized tissue with different EC and VSMC spatial 

configurations in a subcutaneous immunodeficient mouse in vitro model. We found that 

folded scaffold with EC and SMC patterned laterally on the same plane produced a 
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significantly higher number of vessels compared to folded configuration where EC and 

SMC were seeded in a homogeneous mixture.  

Prior to the development of this method, organization of spatial cellular 

interactions in 3-dimensionl synthetic and natural polymer scaffold remains a challenge. 

The fact that this method is compatible with both synthetic and natural polymers makes it 

widely applicable to many fields of tissue engineering in which these types of polymers 

were frequently used as scaffolding materials for cells. In addition, with the field of tissue 

engineering moving towards co-culture of multiple cell types, the ability to spatially 

organize their interactions in 3-dimensional scaffold can be a valuable tool. With our 

proof-of-concept study in building vascularized tissue with patterned ECs and SMCs, our 

findings suggested that increasing spatially organized interactions between ECs and 

SMCs may lead to a more efficient vascularization in a porous synthetic scaffold than 

simply mixing the two cell types homogeneously. This is particularly relevant for 

engineering thicker or more metabolically demanding tissue replacement where more 

efficient vascularization may improve overall tissue survival and function.   

 

4.3 Limitations and Future Directions 

With this dissertation, we elucidated how structure cues such as cell shape and 

spatial interactions between multiple cell types can affect the functions of cells and 

tissues. One of the drawbacks for our study in chapter 2 is the use of isolated VSMCs, 

which lacks physiological relevance compared to confluent VSMC tissue in vitro. In a 

previous study where we investigated the contractility of patterned VSM tissue, the 

cellular shapes assume a range of length to width ratios in VSM tissues. Therefore, there 



126 

 

is a tradeoff between in vitro relevancy and the precision in control over the 

microenvironment. A possible solution to this challenge may be to grow VSMCs on 

close-packed micropatterned ECM protein islands such that individual VSMC shapes can 

be controlled while allowing neighboring VSMCs to communicate with each other. This 

may lead to more physiologically relevant in vitro VSM tissue model and bring us closer 

to achieving an engineered functional VSM tissue.  

One limitation of our 3D cell patterning strategy in chapter 3 is the need for 

Matrigel for seeding the cells on the polymer thin films. The Matrigel encapsulates the 

patterned cells on the thin film when polymerized, allowing us to control the spatial cell 

distribution in 3D. Since Matrigel is a protein mixture secreted by the Engelbreth-Holm-

Swarm mouse sarcoma cells, it may contain growth factors or cytokines that signals non-

physiological behavior on human cells. This poses significant concern for using this 

strategy in a clinical setting. Therefore, future studies should test for replacement 

hydrogel material that allows cell encapsulation, yet do not contain the mixture of 

cytokines.   

 

4.4 Dissertation Summary 

Collectively, the work in this dissertation provided new insights into the effect 

of cell shape and tissue spatial organizations on the functions of engineered vascular 

tissues. In chapter 1, we first presented an engineering algorithm that is broadly 

applicable for building biological tissues. We used vascular smooth muscle tissue as an 

example and elucidated how we can engineer a functional VSM in vitro by designing the 

cellular architecture with mechanotransductive cytoskeletal proteins, building it with 
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engineered mechanical cues in the cellular microenvironment, and finally testing the 

performance of the engineered cells with a functional metrics. We applied this 

engineering algorithm in chapter 2 by designing and building human vascular smooth 

muscle cells to take on the same shapes as those seen in elastic and muscular arteries in 

vitro and subsequently measuring their contraction during stimulation with endothelin-1 

with traction force microscopy as a function of cellular shape. We found the actin 

alignment and nuclear eccentricity of engineered VSMCs increased as the shape of the 

cell elongated. We found VSMCs with elongated shapes exhibited lower contractile 

strength but greater percentage increase in contraction after endothelin-1 stimulation, 

suggesting elongated VSMC shape enables muscular artery to have greater dynamic 

contractile range. In chapter 3, we developed a 3-dimensional cellular patterning strategy 

based on folding of polymer thin films and measured the effect of spatial interactions 

between ECs and SMCs in forming a vascularized network in folded, porous polymer 

matrices. We folded PLGA and collagen thin films along laser-etched perforated lines 

and patterned the thin films by stamping cell suspensions on them with a post-stamping 

system. We evaluated the cell survival in folded construct and found cells were viable 

after 72 hours post stamping. We used an subcutaneous implantation mouse model to 

evaluate vascularization efficiency and found that three-dimensional organization that 

patterned human ECs and SMCs within the same folding facet had significantly higher 

density of human caldesmon positive blood vessels than folded construct patterned with a 

homogenously mixed populations of ECs and SMCs, suggesting that increasing spatially 

organized interactions between EC and SMC may lead to more densely vascularized 

tissues.  



128 

 

In summary, this dissertation enhanced our understanding for the design and 

assembly of engineered vascular tissues. We learned that structure and functions are 

closely coupled in vascular systems across multiple spatial scales and as bioengineers, we 

can harness this structure-function relationship by engineering cellular and tissue 

microenvironment to build specific cellular and tissue architecture that give rises to 

desired functions in vitro.      
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6.2 Appendix B: MATLAB code for analyzing cellular forces in traction force 

microscopy studies 

function DBG_force_calculation(pathname) 

cd(pathname); 

  

imgfile = ('Full_stack_aligned.tif'); 

tif_info = imfinfo(imgfile); 

tif_size = size(tif_info,1); 

file_name = ['Full_stack_aligned_ROI_1_1_512_512_1_' num2str(tif_size) 

'_Mat.mat']; 

load (file_name); 

load ('ROI_1_1_512_512_Cell_boundary.mat'); 

frame_count = length(TFM_results); 

  

I = imread('Cell.tif'); 

c = xrub; 

r = yrub; 

BW = roipoly(I,c,r); 

scaled_mask=imresize(BW,1/16,'nearest'); 

sum_force = zeros(10,2); 

for frame_number = 1:frame_count 

     

%for the first frame, get the principle and normal axis of the cell 



150 

 

if frame_number == 1 

figure, imshow('Cell.tif'); 

h = imline; 

position = wait(h); 

principle_axis = [position(2,1)-position(1,1), position(2,2)-position(1,2)]; 

% get unit vector 

principle_axis = principle_axis / norm(principle_axis); 

normal_axis = [-(position(2,2)-position(1,2)), position(2,1)-position(1,1)]; 

normal_axis = normal_axis / norm(normal_axis);  

close all 

end 

  

  

%getting the principle axis traction force 

tract_parallel = zeros(length(TFM_results(1,1).traction(:,:)),1); 

for i = 1:length(TFM_results(1,frame_number).traction(:,:)) 

    tract_parallel(i) = 

abs(dot(principle_axis,TFM_results(1,frame_number).traction(i,:))); 

end 

  

%convert to a 32 x 32 grid 

tract_parallel_array = zeros(32); 

count = 1; 
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for i = 1:32 

    for k = 1:32 

        tract_parallel_array(k,i) = tract_parallel(count); 

        count=count+1; 

    end 

end 

  

tract_parallel_array_mask = tract_parallel_array.*scaled_mask; 

sum_force_principle = sum(sum(tract_parallel_array_mask)); 

  

%getting the perpendicular axis traction force 

tract_perpendicular = zeros(length(TFM_results(1,1).traction(:,:)),1); 

for i = 1:length(TFM_results(1,frame_number).traction(:,:)) 

    tract_perpendicular(i) = 

abs(dot(normal_axis,TFM_results(1,frame_number).traction(i,:))); 

end 

  

%convert to a 32 x 32 grid 

tract_perpendicular_array = zeros(32); 

count = 1; 

for i = 1:32 

    for k = 1:32 

        tract_perpendicular_array(k,i) = tract_perpendicular(count); 



152 

 

        count=count+1; 

    end 

end 

  

tract_perpendicular_array_mask = tract_perpendicular_array.*scaled_mask; 

sum_force_perpendicular = sum(sum(tract_perpendicular_array_mask)); 

  

%convert from Pa to uN by multiplying 100um^2 lattice area and then divide 

%by 2 since two ends 

sum_force(frame_number,:) = [sum_force_principle 

sum_force_perpendicular]/10000/2; 

end 

%save the file 

[nrows,ncols]= size(sum_force); 

filename = 'sum_force.txt'; 

fid = fopen(filename, 'w'); 

for row=1:nrows 

    fprintf(fid, '%6.4f %6.4f\r\n', sum_force(row,:)); 

end 

fclose(fid); 

load sum_force.txt; 

xlswrite('sum_force.xls', sum_force); 
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function [initial, ET_1, HA, ref] = DBG_calculate_average_X(pathname) 

cd(pathname); 

  

imgfile = ('Full_stack_aligned.tif'); 

tif_info = imfinfo(imgfile); 

tif_size = size(tif_info,1); 

  

num = xlsread('sum_force.xls'); 

  

if (tif_size < 11) 

    initial = 0; 

    ET_1 = 0; 

    HA = 0; 

    ref = 0; 

else 

    initial = mean(num(1:3,1)); 

    ET_1 = mean(num(4:6,1)); 

    HA = mean(num(7:9,1)); 

    ref = num(10,1); 

end 

end 

 

function [initial, ET_1, HA, ref] = DBG_calculate_average_Y(pathname) 
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cd(pathname); 

  

imgfile = ('Full_stack_aligned.tif'); 

tif_info = imfinfo(imgfile); 

tif_size = size(tif_info,1); 

  

num = xlsread('sum_force.xls'); 

  

if (tif_size < 11) 

    initial = 0; 

    ET_1 = 0; 

    HA = 0; 

    ref = 0; 

else 

    initial = mean(num(1:3,2)); 

    ET_1 = mean(num(4:6,2)); 

    HA = mean(num(7:9,2)); 

    ref = num(10,2); 

  

end 

end 
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