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Abstract

Photic-zone euxinia (PZE) is associated with several times in Earth's history 

including Phanerozoic extinction events and long parts of the Proterozoic. One of the best 

modern analogues for extreme PZE is Mahoney Lake in British Columbia, Canada where a 

dense layer of purple sulfur bacteria separate the oxic mixolimnion from one of the most sulfidic 

monimolimnions in the world. These purple sulfur bacteria are known to produce the carotenoid 

okenone. Okenone's diagenetic product, okenane, has potential as a biomarker for photic-zone 

euxinia, so understanding its production and transport is important for interpreting the geologic 

record. In the following dissertation, I examine Mahoney Lake with a multi-proxy approach. I 

use lipid biomarkers to understand organic matter production burial in the lake and find strong 

evidence of lateral transport of organic matter from shoreline microbial mats to the lake-bottom 

sediments. I also find evidence of okenone production in these shoreline mats and a carotenoid 

previously unreported in the environment, Thiothece-484, associated with the okenone synthetic 

pathway. Finally, I develop a new bioinformatics method to examine high-throughput 

metagenomic data and use this method to start understanding how the metabolic and lipid 

synthetic pathways of microbial communities in the lake are associated with each other.
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CHAPTER 1

Photic-Zone Euxinia in the Geologic Record

Photic Zone Euxinia

Atmospheric and marine oxygen levels were lower than the present day through most of the 

Precambrian (Canfield, 2005; Holland, 2006; Hayes and Waldbauer, 2006) and marine oxygen 

levels have dropped occasionally during the Phanerozoic (Jenkyns, 1980; Isozaki, 1997). 

Tracking both long-term secular changes and short term variability in marine oxygen levels 

requires understanding anoxia and the records it leaves behind. In modern marine environments, 

there are two principal styles of persistent (> 1 year) anoxia: oxygen minimum zones (OMZs) 

where anoxia is driven by oxygen depletion through remineralization of high biological 

productivity and restricted basins where lack of circulation creates a lack of oxygen 

replenishment. It is not clear if past episodes of marine anoxia more resembled the productivity-

driven style (Pedersen and Calvert, 1990) or the circulation-driven styles (Degens and Stoffers, 

1976; Hay, 2008) or some combination thereof (Schlanger and Jenkyns, 1976). One particularly 

important factor in interpreting paleoanoxia is vertical extent; have euxinic marine waters 

expanded into the photic zone, so-called photic zone euxinia (PZE).

The best current proxies for PZE come from two groups of sulfide-oxidizing photoautotrophs: 

the Green Sulfur Bacteria (GSB) and the Purple Sulfur Bacteria (PSB). GSB produce the 

diagnostic carotenoids isorenieratene or chlorobactene and bacteriochlorophylls c, d, and e while 

PSB produce okenone and bacteriochlorophyll a (Blankenship et al., 1995). Marine populations 
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of GSB have only been reported from modern restricted basins and not OMZs. The classic locale

for modern GSB is the Black Sea. Here, GSB-derived pigments are present in the chemocline of 

the Black Sea (Repeta et al., 1989) and in the basinal sediments (Repeta, 1993; Sinninghe 

Damsté et al., 1993). Consistent with its source from photoautotrophs, isorenieratene has not 

been found in deeper, subphotic anoxic basins such as Cariaco (e.g. Wakeham et al., 2012).

Purple Sulfur Bacteria, on the other hand, are generally undetectable in both restricted basins and

OMZs, but common in some meromictic lakes. Hundred to thousand year records of okenone 

have been reported from the sediments of several such lakes (Guilizzoni et al., 1986; Züllig 

1986; Overmann et al., 1993; Itoh et al., 2003; Rogozin et al., 2011) and some isolated fjords 

(Smittenberg et al., 2004). Okenone, chlorobactene, and isorenieratene all have saturated 

diagenetic derivatives that can be geologically preserved: okenane, chlorobactane, and 

isorenieratane respectively (Summons and Powell, 1986; Schaeffer et al., 1997).

Modern OMZs still contain measurable nitrate and sometimes oxygen, so sulfate reduction is not

energetically favorable and sulfide levels are below detection. Low sulfide prevents the growth 

of large populations of PSB and GSB (although there may be “cryptic” sulfide fluxes; Canfield et

al., 2010). Instead, cyanobacteria like Prochlorococcus are known to grow at the top of the OMZ

(~100 m depth) in both the Eastern Tropical North Pacific (ETNP) and Arabian Sea (Goericke et 

al., 2000; Ma et al., 2009). Given the light and nutrient gradients, it is likely that anoxygenic 

photosynthesis would be viable if sulfide were present. Consistent with this hypothesis, 

transcripts of sulfur-metabolizing genes presumed to be from purple and green sulfur bacteria 
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have been reported from the Eastern Tropical South Pacific (ETSP) OMZ (Stewart et al., 2012) 

although no reports of okenone, isorenieratene, or chlorobactene have been reported from any 

OMZ.

Time Periods with PZE

Much as with the distributions of their precursors in the modern ocean, isorenieratane is much 

more common than okenane in the Phanerozoic record. The first use of isorenieratane as a 

geologic proxy for PZE was on rocks derived from the Devonian epeiric seas of North America 

(Summons and Powell, 1986; Hartgers et al., 1993; Behrens et al., 1998; Brown and Kenig, 

2004). Later work expanded observations to Mesozoic Ocean Anoxic Events (OAEs) where 

isorenieratene and/or other biomarkers for PZE were found in rocks at or temporally near the 

Jurassic OAEs (Van Kaam-Peters and Sinninghe Damsté, 1997; Kenig et al., 2004; Schwark and 

Frimmel 2004; Pancost et al., 2004), OAE1b (Heimhofer et al., 2008; Tzortzaki et al., 2013), 

OAE 2 (Sinninghe Damsté and Köster, 1998;  Kuypers et al., 2002; 2004; Simons et al., 2003; 

Kolonic et al., 2005; van Bentum et al., 2009; Sepúlveda et al., 2009) and OAE3 (Wagner et al., 

2004). All these Mesozoic observations were made in the Atlantic or closely related marginal 

basins; similar geographic restriction is present in Cenozoic PZE observations. During this era, 

isorenieratene has been reported in the Mediterranean from Messinian marls (Kohnen et al., 

1992; Keely et al., 1995; Kenig et al., 1995; Putschew et al., 1998) and Pliocene sapropels 

(Passier et al., 1999; Menzel et al., 2002) and in the Arctic ocean during the Paleocene/Eocene 

Thermal Maximum (Sluijs et al., 2006).
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The only time during the Phanerozoic when ocean-wide photic-zone euxinia may have occurred 

is at the Permo-Triassic transition. Here, isorenieratane and aryl isoprenoids have been reported 

from the two major oceans: the Paleotethys Ocean (Grice et al., 2005a; 2005b; Cao et al., 2009) 

and the Panthalassic Ocean (Hays et al., 2007; Hays et al., 2012), in addition to inland seas 

(Grice et al., 1996a). Malemides that are believed to be derived from GSB bacteriochlorophylls 

have also been reported from some of these sections (Grice et al., 1996b; Pancost et al., 2002). 

Despite the prevalence of anoxia during this time period, it is not clear that anoxia is necessarily 

synchronous with the extinction (Nielsen et al., 2010).

Issues with Isorenieratene as a Marker for PZE

There may be several issues with using isorenieratane as a biomarker for photic zone euxinia. 

Isorenieratane may not be a diagnostic biomarker for just Chlorobi; it has long been recognized 

that Actinomycetes produce isorenieratene and may also be a source of it in aerobic 

environments (Keely and Maxwell, 1993). Additionally, isorenieratane can be formed during in-

sediment cyclization of acyclic carotenoids like β-carotene (Koopmans et al., 1996) which are 

produced by a wide taxonomic variety of plants and microorganisms. Both of these shortcomings

can be ameliorated by isotopic measurements of isorenieratane or its derivatives because GSB 

use the reverse tricarboxylic acid (rTCA) carbon fixation pathway which fractionates carbon less

than the normal Rubisco pathway resulting in isotopically heavier isorenieratene (Sirevåg et al., 

1977).

Although they are obligate anaerobes, GSB do not require the presence of sulfide: populations 
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have also been reported from the Fe2+ rich and sulfide poor chemocline of Lake Matano (Crowe 

et al., 2008). Under ferruginous conditions, GSB-derived products would still be diagnostic for 

photic zone anoxia, but not PZE. Lastly, having a good understanding of provenance to rule out 

lateral inputs is important for all biomarkers. Isorenieratane has been found in some well-

oxygenated, open-ocean sediments as a detrital input (Rosell-Melé, et al., 1997) so as with all 

biomarker measurements, geologic context is important in their interpretation.

Okenane as a Alternate PZE Biomarker

In contrast to the rich biomarker record of isorenieratane and other derivatives of GSB, there are 

only two observations of okenane before the Quaternary. The first is from 25-65 Ma saline 

lacustrine deposits from China (Zhang et al., 2011). These deposits are likely similar to the 

present-day lakes where okenone has been reported. The second is from the marine Barney 

Creek 1.6 Ga Mesoproterozoic deposits in the McArthur basin in Australia (Brocks et al., 2005; 

2008). These rocks were initially interpreted as shallow saline lake deposits, but are now 

believed to have formed in an open marine setting (Rawlings, 1999). If this newer interpretations

hold, this is a radically different environment from where PSB are found at present.

As PSB live much shallower in the water column, the presence of okenane implies much 

shallower sulfidic conditions than the deeper conditions isorenieratane would be found in 

(Montesinos et al., 1983). If the chemocline is shallow enough for purple sulfur bacteria to grow, 

it should lie well within the mixed layer and large amounts of sulfide should escape to the 

atmosphere. Additionally, deep waters would presumably be very euxinic in such a scenario. 
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This is consistant with initial models where sulfur isotopes pointed towards the 1.8-1.0 Ga 

oceans as being superficially oxic with euxinia at depth (Canfield, 1998). However more recent 

iron speciation and other data points towards zones of ferruginous deep water and sulfidic OMZs

during the Late Paleoproterozoic (Poulton et al., 2010) and Mesoproterozoic (Planavsky et al., 

2011). Further confirming the unusualness of open-ocean Mesoproterozoic okenone, rocks from 

a 1.1 Ga Mesoproterozoic epeiric basin contained aryl isoprenoids derived from isorenieratene, 

but not okenane (Blumenberg et al., 2012).

Similar conditions where sulfide fluxes were high enough for atmospheric escape have been 

posited for the Permo-Triassic (Kump et al., 2005; Meyer et al., 2008) although okenane has not 

been reported from anywhere during this time period. Transgressive rocks from the Permo-

Triassic similar to those from the Barney Creek do not contain okenone or its derivatives, only 

aryl isoprenoids derived from isorenieratene and/or chlorobactene (Nabbefeld et al., 2010). At 

least two alternate explanations for the presence of okenane in the Mesoproterozoic are possible: 

either the depositional environment of the Barney Creek Formation more closely resembled 

modern salinity stratified systems (Lyons et al., 2009) or okenone is not a reliable marker for 

extremely shallow PZE.

Resolving this requires a better understanding of the conditions under which PSB live, produce 

okenone, and are buried. One site with an exceptionally dense layer of PSB is the chemocline of 

meromictic Mahoney Lake in British Columbia, Canada (Northcote and Hall, 1969; Overmann et

al., 1991). Here, I investigate the biological and sedimentary processes in Mahoney Lake using 
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complementary low molecular weight lipid (Chapter 2), pigment (Chapter 3) and bioinformatic 

(Chapter 4) approaches.
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CHAPTER 2

Strong influence of the littoral zone on basinal sediments of a meromictic lake

Photic zone euxinia (PZE) is an important source of primary production in stratified, sulfur-rich

environments. The potential for export and burial of this material in sediments remains relatively

understudied,  despite being of fundamental importance to interpreting the geologic record of

bulk total organic carbon (TOC) and individual lipid biomarkers. Here we report the relative

concentrations and carbon isotope contents of lipid biomarkers from meromictic Mahoney Lake.

The data indicate that all of the organic burial in the central basin sediments may derive from

shoreline  organic  matter,  and  that  the  source  of  this  material  is  from the  littoral  microbial

community and/or detrital remains of terrigenous higher plants. Our results confirm that due to

the strong density stratification and the intensive carbon and sulfur recycling pathways in the

water column, there is minimal direct export of the sulfur-oxidizing planktonic community to

depth. In contrast, material from the lake margins appears to traverse this same density gradient,

travel down-slope, and become deposited in the deep basin. This suggests an important role for

clastic and authigenic minerals in aiding the sedimentation and burial of terrigenous and mat-

derived organic matter in euxinic systems. 

Introduction

To examine processes controlling organic matter delivery to sediments in euxinic systems, we

extracted  and  analyzed  lipid  biomarkers  from  Mahoney  Lake,  British  Columbia,  Canada.

Mahoney Lake has an oligotrophic mixolimnion overlying a permanently-stratified hypolimnion

that contains extremely high concentrations of sulfate and sulfide (Northcote and Hall, 1983).

14



The chemocline of the lake is stable at 7 m depth, where it supports the densest population of

purple sulfur bacteria (PSB) (Chromatiaceae) ever measured (bacteriochlorophyll a > 20 mg l-1;

Overmann  et  al.,  1991).  The  dominant  species  in  this  layer  had  been  believed  to  be  the

photoautotroph  Lamprocystis  purpurea (formerly Amoebobacter  purpureus;  Overmann et  al.,

1991),  but  companion  analyses  to  this  work  now  show  that  the  major  organism  is  a

Chromatiaceae sp.  closely  related  at  the  whole-genome  level  to  Thiorhodovibrio or

Thiohalocapsa spp., rather than to the genera  Lamprocystis  or  Amoebobacter (Klepac-Ceraj et

al.,  2012; Hamilton et al.,  submitted).  In addition to photoautotrophy, autotrophic sulfide and

sulfur oxidation and extensive sulfate reduction complete the sulfur and carbon cycles in the

chemocline (Overmann, 1997; Hamilton et al., submitted). Measurements of exported sulfur—

which accumulates intracellularly in Chromatiaceae—show that < 0.2% of the upwelling flux of

sulfur (as H2S and SO4
2-) sinks from the chemocline (Overmann et al., 1996a). Instead it has been

proposed that this system loses its organic matter through a combination of  in situ respiration,

plus upwards-vertical and lateral rafting of organic debris (Overmann et al., 1994; Overmann et

al.,  1996b).  Lateral  rafting brings planktonic material  to  the shoreline,  where it  is  deposited

among  a  well-developed  microbial  mat  community. The  littoral  sediments  are  a  mixture  of

degraded, rafted material,  plus organic matter and weathering products from the surrounding

landscape and authigenic mineral formations (visible salt crusts; the major lake ions are  Mg2+,

Ca2+, Na+, SO4
2-, and CO3

2-; Northcote and Hall, 1983).  The shoreline mats also host their own

population  of  PSB,  including the  cultured  species  Thiorhodovibrio  winogradskyi,  which  has

higher  oxygen,  salinity,  and  phototolerance  than  typical  planktonic Chromatiaceae spp.

(Overmann et al., 1992). 
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Sedimentary evidence shows that euxinia has predominated in Mahoney Lake for at least 9 Kyr

(Lowe et  al.,  1997;  Coolen  and Overmann,  1998).  Although direct  export  of  the  7  m PSB

community to sediments is very low, it is commonly believed that much of the organic matter

buried in the deep lake sediments ultimately comes from the biomass-rich chemocline. Evidence

includes the presence in sediments of the carotenoid biomarker, okenone (Coolen and Overmann,

1998).  This  compound is  found definitively only in  planktonic species  of  PSB (Brocks and

Schaeffer, 2008), although there now is debate about its potential origins from microbial mat

sources as well (e.g., Meyer et al., 2011). It remains unclear how (or if) the planktonic PSB layer

of Mahoney Lake physically reaches the lake-bottom sediments to be preserved. PSB primary

production generally doesn't enter macrobiotic ecosystems (Fry, 1986); and in addition, Mahoney

Lake is eukaryote-poor, including being free of fish (Northcote and Halsey, 1969).

Because of these many unusual characteristics, Mahoney Lake has been proposed as a modern

analogue for  early Earth  systems that  may have  been  sulfidic  into  the  shallow photic  zone

(Canfield and Teske, 1996; Brocks et al., 2005; Lyons and Reinhard, 2009; Meyer and Kump,

2008), including environments in which sulfidic photic zones intercept sulfide-oxidizing shallow

mats  (Meyer  et  al.,  2011;  Voorhies  et  al.,  2012).  Here  we  use  concentration  profiles  and

compound-specific  δ13C  analyses  of  lipids  to  attempt  to  resolve  the  sources  and  processes

governing organic matter burial in Mahoney Lake. 

Methods

Water samples from 7 m and 8 m depth in Mahoney Lake (49°17’N, 119°35’W), a grab core of
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the  underlying  lake  sediment  (15  m depth),  and  a  sample  of  shoreline  microbial  mat  were

collected in July 2008 and stored on dry ice (-70°C). Upon return to lab, water samples were

centrifuged in 50 ml Falcon tubes to pellet biomass; all samples subsequently were stored at

-80°C until use. Glass and metalware used in sample handling was combusted (450°C, 6 hr); and

all Teflon caps, stopcocks, and syringes were rinsed with methanol (MeOH), dichloromethane

(DCM), and hexane. Water was Nanopure® grade, and solvents were Burdick & Jackson GC2 or

equivalent.

Total  lipid extracts  (TLEs)  of  each  sample were obtained using a  modified  Bligh  and Dyer

extraction (Bligh and Dyer, 1959; Nishihara and Koga, 1987).  Five g of shoreline and lake-

bottom  sediment  or  0.24  g  of  7  m  and  8  m  biomass  were  extracted  in  1:2:0.8

chloroform:MeOH:H2O, where the H2O contained 0.5% trichloroacetic acid. Each sample was

sonicated  and  vortexed  (3  x  5  min)  with  5  min  on  ice  (0°C)  between  each  round.  Phase

separation was achieved by changing the solvent ratio to 1:1:0.8. The organic layer was removed

and the aqueous layer was extracted again with chloroform. The combined extracts were washed

against 1M NaCl once and H2O twice. The resulting TLEs were dried under high-purity nitrogen

gas  and Na2SO4 was  added to remove residual  water. TLEs (in  DCM) were desulfurized in

columns  containing  2g  Na2SO4 plus  10  g  HCl-activated  copper  pellets.  Each  TLE  was

quantitatively transferred to a 2 ml vial, dried just to completeness, and weighed.

TLEs were separated into polarity fractions on columns containing 15 ml of silica gel (70-230

mesh).  Fractions were eluted with two column volumes of:  hexane (A),  5% ethyl  acetate  in

hexane (B), 15% ethyl acetate in hexane (C), 20% ethyl acetate in hexane (D), 25% ethyl acetate
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in hexane (E), 75% ethyl acetate and 25% methanol (F), and methanol (G). Fractions were stored

at -20°C until they were analyzed.

For analysis of sterols and n-alcohols, trimethylsilyl (TMS) derivatives were prepared from 5%

of fractions C, D, and E from the sediment and shoreline and 20% of fractions C, D, and E from

the 7 m and 8m using equal parts pyridine and bis(trimethylsilyl)trifluoroacetamide (BSTFA)

containing  1%  trimethylchlorosilane  (TMCS).  These  derivatives  were  analyzed  relative  to

injections  of  a  quantitative  external  standard  (stigmasterol)  on  an  Agilent  6890N  gas

chromatograph with a  30 m x 0.25 mm x 0.25 μm Agilent  DB-5MS column coupled to  an

Agilent 5973 mass spectrometer (GC-MS). The PTV inlet of the instrument was maintained at

112°C for 0.85 min, then ramped to 320°C (720°C/min), held for 2.35 min, and ramped to 450°C

(720°C/min; hold 5 min) before returning to 112°C. Simultaneously, the oven was maintained at

112°C for 2 min, ramped to 130°C (20°C/min), then to 280°C (6°C/min), then 320°C (3°C/min;

hold 25 min). Helium carrier gas flow rate was 1.2 ml/min, the MS transfer line was held at

300°C, and the mass spectrometer scanned m/z 50-750 at 70 eV.

For analysis of fatty acids derived from intact polar lipids (IPLs), 50% of fractions F and G were

transesterified with known-δ13C methanol containing 5% HCl (4 hr, 70°C) (White et al., 1979;

Pearson et al., 2001). Fatty acid methyl esters (FAMEs) were extracted using 9:1 hexane:DCM,

dried using Na2SO4, and analyzed by GC-MS. The GC-MS program was identical to the TMS-

derivative program, but with inlet and oven starting temperatures of 65°C and a carrier gas flow

rate of 1.4 ml/min. External standards of nonadecanoic acid FAME (C19:0-FAME) were used to

prepare  calibration  curves  for  quantitation;  the  response  factor  was  linear  over  the  range
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corresponding  to  reported  sample  peaks.  All  TMS  and  FAME  derivatives  were  identified,

integrated, and quantified using AMDIS (Stein, 1999). Detection limits (3 x signal/noise) for

FAMEs and sterols were 0.36 ng and 2.16 ng, respectively, as calculated from external standards.

This  translates  into FAME detection limits  of ca.  0.1 ng/mg TLE for the sediment and 7 m

samples, 0.5 ng/mg TLE for the 8 m sample, and 24 pg/mg TLE for the shoreline sample.

For analysis of δ13C values, FAMEs were run on a Thermo Trace Ultra GC (60 m x 0.32 mm x

0.25 μm Agilent DB5-MS column) with a GC Isolink combustion interface coupled to a Thermo

Delta V isotope ratio mass spectrometer (GC-C-IRMS). The injector was operated in splitless

mode at 220°C. The oven program was 60°C, then 10°C/min to 145°C, 2.7°C/min to 230°C,

5°C/min to 275°C, and 7°C/min to 310°C (5 min hold). Helium carrier gas flow rate was 1.2

ml/min and compounds were combusted at 980°C to CO2. An alkane (n-C32) of known δ13C value

(http://geology.indiana.edu/schimmelmann/)  was co-injected as an internal  standard,  and each

chromatogram  was  bracketed  by  CO2 reference  gas  pulses.  Isotope  chromatograms  were

integrated in Isodat 3.0 using default background settings, max peak width of 180 sec, and peak

resolution of 50%. Values of δ13C from the CO2 reference gas were used to correct all compound-

specific  δ13C  values  for  instrumental  drift,  assuming  a  linear  trend  with  time.  Peaks  with

amplitudes < 0.5 V or > 10 V (m/z 44) were eliminated due to non-linear  m/z 44 responses.

Remaining minor, but statistically significant, size-dependent biasing effects on δ13C values were

removed using a linear model in which dilution-series data from external FAME standards of

C16:0, C19:0 and C24:0 run on the same day were fitted using least-squares approaches (calculated

using the lm and predict functions in the R statistical package). Finally, isotope mass balance was

used to correct for the δ13C contribution of the FAME derivative methyl carbon.
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Bulk values of δ13C were obtained on acidified (10% HCl, 4 hr, 60°C) aliquots of biomass or

sediment prepared in tin capsules (Costech 5 x 9 mm). Measurements were made at the MBL

Stable Isotope Lab (http://dryas.mbl.edu/silab/) and reported relative to the VPDB standard. 

Results

Fatty Acids

Fatty acids from fractions F and G displayed similar patterns of abundance relative to each other

within  a  given  sample  (Figure  2.1a).  The  higher  concentration  yield  of  the  F  (nominally

"glycolipid", but also including sulfolipids and other less polar IPL head-groups; Schubotz et al.,

2009; Close et al., 2013) fraction relative to the G (nominally "phospholipid") fraction may be

due to partial loss of charged phospholipid compounds during extraction and/or separation on

silica gel (Huguet et al., 2010). However, sufficient yield was obtained from all G samples for

quantitative analysis and for measurement of δ13C values, with the exception of the shoreline G

sample (Figure 2.1a,b). 
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Figure 2.1: (a) Fatty acid concentrations as a percentage of total lipid extract, 
arranged by sample. Fractions F (lighter colors) and G (darker colors) are plotted 
together. (b) Carbon isotope values of individual fatty acids sorted by sample from 
fractions F (lighter colors) and G (darker colors).
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The samples qualitatively fall into two groups: water-column organic matter vs. benthic organic

matter. The 7 m PSB sample from the chemocline primarily contains C18:1, lesser amounts of C16:0

and C16:1, and minor amounts of C14:0, C18:0, and C20:1. Both the relative and absolute quantities of

other trace fatty acids in this sample are below those of the other three samples (Figure 2.1a;

Appendix 1, Table S1). The ratio of total C18 chain lengths (C18:0 + C18:1) to C16 chain lengths

(C16:0 + C16:1) is 1.35 (calculated for fraction F). There are no fatty acids of chain length > C20 that

are above detection limits. The 8 m sample represents material from the dark hypolimnion which

was sampled well below the chemocline, yet its fatty acid composition is broadly similar to the

chemocline: C18:1 is the dominant compound, but with relatively more C16:0 and C18:0. Here the

ratio of C18 chain lengths (C18:0 + C18:1 + C18:2) to C16 chain lengths (C16:0 + C16:1 + iso-C16:0) is 1.32

(fraction F). At 8 m there also are detectable fatty acids of chain length >C20, including minor

amounts of C22:0, C24:0, and C26:0 (maximum at C24:0). The ratio of C24:0 to the sum of C16 chain

lengths (C16:0 + C16:1 +  iso-C16:0), however, is only 0.04, indicating that both the 7 m and 8 m

samples primarily consist of C16 and C18 fatty acids. 

The shoreline and sediment samples quantitatively and qualitatively have a greater diversity of

fatty acids (Figure 2.1A; Figure 2.2), with both having almost twice as many AMDIS detectable

components relative to the 7 m and 8 m samples. The sediment sample contains a regular series

of longer-chain fatty acids with a strong even-over-odd predominance and a maximum at C24:0. In

the sediment, C18:1, C18:0, and C16:0 fatty acids are approximately equally abundant, and the ratio of

total C18 chain lengths to C16 chain lengths is 1.21. The longer-chain components dominate this

sample and the ratio  of C24:0 to  the sum of C16 chain lengths  is  2.16.  The shoreline sample
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resembles the basinal sediment. It contains the regular series of longer-chain fatty acids, also

with a maximum at C24:0. C16:0 is the dominant shorter-chain compound, although C18:1 and C18:0

are also major components. The ratio of total C18 chain lengths to C16 chain lengths is 0.89, and

the ratio of C24:0 to the sum of C16 chain lengths is 0.47. 

Specific  bacterial  fatty  acids  are  widespread  in  all  samples.  The  lipid  10-methyl-C16:0 is

characteristic of anoxic sulfur cycling, being a common component of sulfate reducers such as

Desulfobacter spp.  (Taylor  and Parkes,  1983).  It  was  present  in all  samples  except  the 7 m

sample, and its abundance was highest in the shoreline (Figure 2.1a; Appendix 1, Table S1). All

samples also contained detectable quantities of the bacterial lipids iso- and anteiso-C15:0 (Kaneda,

1991), and most contained  iso- and  anteiso-C17:0 as well. These components were particularly

abundant in the shoreline sample (ratio of branched C15  compounds to C16:0 of 0.67) with lesser

amounts  in  the  8m  and  sediment  samples  (branched  C15  to  C16:0 ratios  of  0.18  and  0.22,

respectively). Polyunsaturated fatty acids were not detected in any sample.
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Figure 2.2: Extracted Ion chromatograms (EICs) at m/z 74 of GC-MS runs of 
fractions F (lighter colors) and G (darker colors) from each sample. The GC 
program is described in the main text.
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Fatty Acid Isotopes

Fatty acid δ13C values (Figure 2.1b) also distinguish the shoreline and sediment samples as one

group, and the 7-m and 8-m samples as a separate group. Values for individual compounds from

the water column are relatively depleted in 13C, ranging from -31.4‰ to -36.4‰ at 7 m and from

-27.4‰ to  -37.4‰ at 8 m. These numbers are similar to other measurements of purple sulfur

bacterial populations in meromictic lakes (Hartgers et al., 2000). The low diversity of the 7 m

sample yielded only four fatty acids above the analytical threshold for GC-C-IRMS analysis. In

contrast, more compounds could be analyzed at 8 m. However, when comparing all of the 7 m

and 8 m data there appear to be no systematic patterns, either inter- or intra- sample, or among

the fatty acids. For example, the odd-chain and branched lipids plot within the range of the non-

branched components, and unsaturated lipids are neither systematically enriched nor depleted in

13C. The mass-weighted average δ13C value for all fatty acids at 7 m is -33.3‰, while at 8 m it is

-32.4‰.

In comparison, fatty acid values of δ13C from the shoreline and sediment samples are enriched in

13C, with a mass-weighted average of -26.2‰ for the shoreline and -26.8 for the sediment (range

-23.0‰  to  -30.8‰  for  shoreline,  and  -23.2‰  to  -28.8‰  for  sediment).  Among  saturated

compounds, there is minimal isotopic difference between samples. For example, C16:0 measures

-28.3‰ and -28.4‰ in the sediment and shoreline, respectively (fraction F). The heterogeneity is

larger for unsaturated and branched compounds, but again without notable patterns. 

Unusually, absence of isotopic patterns extends also to the long-chain compounds, C22:0-C28:0. We

do not see evidence for a sawtooth pattern of  13C enrichment in even-chain lengths relative to
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odd-chain lengths. We also do not see a systematic decrease in overall  13C content of the long-

chain  compounds  relative  to  the  short-chain  compounds  (Drenzek  et  al.,  2007;  Gong  and

Hollander, 1997; Naraoka & Ishiwatari, 2000), i.e., the δ13C values of shoreline and sedimentary

long chain fatty acids are within the range of the shorter chain fatty acids and do not differ from

their mean by more than a few per mil.

Sterols & Fatty Alcohols

Both the shoreline and the 7 m sample are low in total sterol content, while sterols are a higher

proportion  of  total  lipids  in  the  8  m  sample  and  the  sediments  (Figure  2.3a).  The  sterol

distribution in all samples is enriched in C29 sterols (50-90% of total) relative to C27 sterols (10-

37%), with low amounts of C28 sterols (≤ 12%).
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Concentrations of  n-alcohols are low in all samples. The primary fatty alcohol at 7 m is  n-C18

with a lesser amount of n-C16 (Figure 2.3b). Elevated levels of C18 and C16 fatty alcohols also are

commonly  observed  in  marine  systems  (Wakeham,  1982;  Mudge  and  Norris,  1997). The

shoreline contains a continuous series of  n-alcohols with strong even-over odd predominance,

peaking at  C26.  The  n-alcohol  profile  from the sediment  sample also strongly resembles  the

shoreline profile. Uniquely, and unlike for the fatty acid profiles, the n-alcohol fraction from 8 m

appears  to  resemble  a  mixture  between the  composition  at  7  m and the  composition  in  the

shoreline. 

Table 2.1: δ13C values for Mahoney Lake bulk TOC.

Sample Bulk δ13C (‰) Weight % C

Shoreline -23.6, -24.0 3.4%

7 m -27.2 n/a

8 m -27.2 n/a

Sediment -24.2, -25.0 20.5%

Bulk Carbon

Bulk organic carbon isotopes approximately track the fatty acid  δ13C values, with the samples

again falling in  two groups:  13C-enriched sediments and  13C-poor planktonic material.  In the

water column, total organic carbon (TOC) values (-27.2‰ for both samples; Table 2.1) are 6.6‰

and 4.7‰ enriched in 13C relative to average fatty acids at 7 m and 8 m, respectively. The offsets
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for the sediment and shoreline samples are smaller: sediment TOC (average  -24.6‰) is 1.7‰

enriched  in  13C compared  to  fatty  acids,  while  the  shoreline  TOC is  2.5‰ enriched  in  13C

compared to fatty acids (Table 2.1). 

Discussion

Compound distributions

The purple sulfur bacteria, Chromatiaceae, typically have fatty acid patterns with ca. 25% C16:0,

30% C16:1, 40% C18:1, and minor amounts of C14:0 and C18:0 (Imhoff and Bias-Imhoff, 1995). The

profile of the 7 m sample would be consistent with almost all of the fatty acids coming from

these phototrophs, with the exception of C20:1 and a few other trace components. Indeed, biomass

in  the  chemocline  of  Mahoney  Lake  is  reported  to  be  dominated  by  a  single  species,

Chromatiaceae sp. ML1 (Overmann et al., 1991), which is now classified as a Thiohalocapsa sp.

(Tank et al., 2009; Hamilton et al., submitted). Cell counts by dilution (Overmann et al., 1991)

and  metagenomic  coverage  data  (Hamilton  et  al.,  submitted)  indicate  that  this  species  may

account for >90% of the biomass in the phototrophic layer at 7 m. Based on the similarity of

fatty acid profiles, the material at 8 m also may contain sinking biomass of Chromatiaceae sp.

ML1, although with a larger fraction of other species that supply such compounds as 10-Me-C16:0

(i.e., sulfate reducers). The sample from 8 m also contains higher relative abundances of the

minor  fatty  acids,  again  pointing  to  an  additional  source  that  has  different  endmember

composition. 

Clues to this source are found by examining the alcohol fractions. The shoreline and sediment
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samples  are  notable for  having abundant  long-chain saturated  fatty acids  and alcohols,  with

regular distribution around C24:0. Such patterns are commonly explained by a strong contribution

from terrestrial  plants  (Cranwell,  1981;  Rao  et  al.,  2009).  Low  levels  of  C28 sterols  and  a

predominance  of  C29 over  C27 sterols  also  is  typical  of  terrestrial  plant  inputs  (Huang  and

Meinshein, 1979; Volkman, 2003). Cawker (1983) found that 60% of the pollen preserved in

recent Mahoney Lake sediment is from Pinus (Pine), with slightly < 10% each of Pseudotsuga

(Fir),  Alnus (Alder),  and  Poaceae (grasses).  The  surrounding  vegetation  also  is  believed  to

contribute to the high concentration of dissolved organic carbon (DOC) in the lake (Hall and

Northcote, 1990; Overmann, 1997). 

Looking solely at the distribution of lipid biomarkers in all four samples would suggest that

planktonic material  mainly is remineralized in the water column, while the sediments derive

primarily from terrestrial organic matter, reflecting a combination of eroded shoreline sediments

and epilimnic sinking material (possibly of aeolian source). This would be consistent with the

carbon and sulfur budget proposed by Overmann (1997). However, it fails to explain the high

concentrations of okenone and the presumed quantitative importance of PSB inputs to the basinal

sediments (Overmann et al.,  1993; Coolen and Overmann,  1998).  Similarly, it  is  difficult  to

reconcile fully with 13C distributions.

Constraints from δ13C values

Although the isotope ratios also show the presence of distinct endmembers in this system, they

do not necessarily point to a clear planktonic vs. terrigenous distinction. With average values
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around  -33‰ and  -27‰ for  individual  fatty acids  and bulk materials,  respectively, the  7 m

samples are consistent with a primary source from bacterial autotrophy. Chromatiaceae sp. ML1

and  other  related  PSB use  Rubisco  Type  1A to  fix  dissolved  CO2 (Badger  and Bek,  2008;

Hamilton et al., submitted). The chemocline of Mahoney Lake contains ca. 40 mM dissolved

inorganic carbon at pH 8.1, suggesting CO2 should not be excessively limited and that typical

fractionations for Type 1A Rubisco (ε = 20 – 24‰; Sirevåg et al., 1977; Madigan et al., 1989;

Scott et al., 2007) could generate the values observed. Similar or even more negative values have

been seen in other contemporary stratified systems (e.g.,  Hartgers et  al.,  2000; Velinsky and

Fogel 1999). Our fatty acid and bulk biomass values at 7 m also are broadly consistent with

previous reports for purified okenone and bacteriochlorophyll  a from the Mahoney Lake water

column (-27.2 ± 1.9‰; -27.8 ± 0.7‰; Overmann et al., 1996b). Slight enrichment of 13C in fatty

acids  from 8  m (average  value  ca.  -32‰ rather  than  -33‰)  would  be  consistent  with  the

presence  of  a  minor  in  situ endmember  or  with  heterotrophic  reworking  of  the  material

descending from 7 m (DeNiro and Epstein, 1978; Hayes, 1993). 

Biomarker abundance profiles from the sediments point to significant allochthonous overprinting

of the original planktonic production, with their compositional patterns of n-alcohols, long-chain

fatty acids, and sterols typical of higher plants. Unfortunately, we could not measure values of

δ13C for  n-alcohols or sterols, precluding definitive knowledge of the terrigenous endmember.

The sediment  δ13C data  for  fatty acids  (ca.  -26‰) also argue  against  sedimentation  of  PSB

biomass and for dominant admixture of 13C-enriched material from elsewhere in the lake or its

catchment.
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However, the interpretation that there is a strong C3 plant contribution to the basinal sediments is

complicated by the compound-specific δ13C data. There is no statistical difference between the

observed δ13C values for long-chain and shorter-chain fatty acids in the shoreline or sediment

samples (< C20 chain lengths vs. ≥ C20 chain lengths; two-tailed t-test), a potential argument that

all of these compounds have the same source. By contrast, in sediments of the Mackenzie Shelf,

values of δ13C for fatty acids show a stepwise decrease from ca. -26‰ (chain lengths < C20) to ca.

-31‰ (chain lengths ≥ C20) (Drenzek et al., 2007). A similar pattern also is observed for fatty

acids  of  the  Washington Margin  (Feng et  al.,  2013).  Such a  bimodal  distribution,  with  13C-

depleted values for long-chain compounds, is interpreted to reflect the influence of C3-dominated

plant detritus only at longer chain lengths. This pattern also would be expected for Mahoney

Lake sediments if the fatty acids reflected mixed sources; alternatively, if the lake sediments

contained solely terrigenous lipids, then all compounds might be expected to have values ca.

-31‰, not near -26‰. 

Values of δ13C measured for pine needles and needle litter in the area are -27.2‰ and -24.5‰,

respectively (Overmann et al.,  1996b). The latter value is a possible explanation for the  13C-

enriched bulk values observed in shoreline and sediment samples. The total system may be fed

by detrital plant matter having an endmember value somewhat atypical (13C-enriched) for C3

environments. However, fatty acids would be derived from the primary pine biomass and should

retain the biosynthetic signature, i.e., δ13C values ca. 3-5‰ lower than the non-degraded needles

(Hayes,  1993).  Again  this  would  predict  terrigenous  fatty  acid  values  ca.  -31‰,  which  is

inconsistent with the values measured for the shoreline and basinal sediment samples. 
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Bacterial sources occasionally have been proposed as an explanation for some environmental

long-chain  fatty  acid  profiles  (Volkman  et  al.,  1988;  Gong  and  Hollander  1997).  The  most

striking examples – both for their similarity to the profiles observed here, as well as for their

definitive  microbial  origin  –  are  the  profiles  of  fatty  acids  extracted  from  modern  ooids

(Summons et al., 2013). Like our samples, the ooids have long-chain fatty acids with maxima at

C24,  similar  proportions  of C14-C18 fatty acids,  and abundant  branched-chain and 10-Me-C16:0

structures.  Some  bacteria  produce  long-chain  compounds  in  other  contexts  (e.g.,  heterocyst

glycolipids of Cyanobacteria; Gambacorta et al., 1998), but only recently has it been suggested

that long-chain polyketide synthesis pathways may be widespread among environmental bacteria

(Shulse  and  Allen,  2011).  Direct  synthesis  by  the  microbial  mat  and/or  littoral  bacterial

community potentially could explain both the Mahoney and the ooid observations.  

The abundant short-chain fatty acids in the shoreline, especially those that are methylated or

have cyclopropyl moieties, also indicate a significant bacterial contribution to this environment

(Perry et al., 1979). Specifically, the combined abundance of bacterial i-C15:0 and a-C15:0 (Kaneda,

1991) relative to n-C15:0 fatty acids (ratios of 9.3 and 8.9 in the shoreline and sediment samples,

respectively) is even higher than typically reported for bacterially-dominated sediments (4 to 4.5;

Parkes and Taylor, 1983).  This suggests that despite its proximity to surrounding vegetation, the

organic matter in the Mahoney Lake shoreline actually is dominated by the rich microbial mat

community (Overmann et al.,  1992). This community may be sustained by a combination of

degraded  higher  plant  detritus  and  rafting  PSB  material,  which  is  then  recycled  and  re-

synthesized, yielding de novo fatty acids enriched in 13C.
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Figure 2.4: (a) Mixing model of the predicted offset between fatty acid δ13C values of 
sediment and a concentration-weighted mixture of the shoreline sample with either 7-meter 
(left) or 8-meter (right) samples. Values closer to zero indicate a better fit of the modeled 
mixture to the true sedimentary lipid δ13C values.

Mixing model of sources to lake-bottom sediment

We constructed an isotope mass-balance mixing model to determine how much autochthonous

organic material (from 7 m or 8 m) could be contributing to the basinal sediments while still

being concealed by the primarily allochthonous (shoreline-derived) inputs. Our mixing model is

modified  from Collister  et  al.  (1994)  and  uses  fatty  acid  concentrations  and δ13C values  to
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determine the fractional contributions of two endmembers to a total mixture. For each compound

we computed the predicted sediment value (δsed) over the full range (x = 0 to 1) of mixing the

autochthonous component (x) with shoreline-derived organic matter:

(1)  

Here i is an individual compound, δi is the δ13C value of i in a given endmember, and Mi is its

concentration.  This  yields  the  difference  (Δδi)  between  the  observed  δi value  for  a  given

compound in the sediment (δsed,i) and the value predicted for that compound if its source is a

mixture of the two endmembers, i.e., the best fit is Δδi = 0‰. The mean of these differences (Δδ

± 1σ; averaged over all Δδi) is shown as the filled region in Figure 2.4. The two mixing scenarios

are the 7 m PSB layer mixed with shoreline (left side of figure) and the 8 m sample mixed with

shoreline (right side of figure). We used the 8 m ("sulfidic zone") sample as one of the two

autochthonous endmembers on the assumption that it  integrates contributions from all  of the

lake's  autotrophic  producers,  plus  aeolian  delivery  of  terrigenous  plant  inputs.  This  was

necessary because the upper photic zone (oxic mixolimnion shallower than 7 m) is oligotrophic

and has minimal primary production from cyanobacteria and Chrysophyta (Northcote and Hall,

1983) – thus we did not have sufficient shallow-water biomass for lipid analysis, despite having

previously analyzed DNA from 5 m (Klepac-Ceraj  et  al.,  2012).  In  support  of  this  strategy,

genomic data show the 8 m sample contains numerous sequences linked to eukaryotes incapable

of living in sulfidic waters (Hamilton et al, submitted), consistent with a contribution of organic

matter from sinking algal production and/or other plants.

34



Regardless,  the  model  shows  that  the  sediment  cannot  contain  much  of  either  planktonic

endmember, although it does show the sediments are able to “conceal” some material having the

composition of the 8-m endmember. The maximum amount of 7-m material that could be added

while staying within the one sigma envelope is 1%, while the maximum amount of 8-m material

is 46% (to satisfy  Δδ13C = 0 ± 1‰). It is likely that  the 8 m endmember already contains a

shoreline contribution, however, making the latter number effectively smaller. More importantly,

while we consider it likely that some of the biomass of PSB from 7 m ultimately makes it to the

basinal  sediments,  the  model  provides  evidence  that  the  route  first  involves  rafting  to  the

shoreline where it must be heavily processed. 

Our conclusion that the majority of the sediment flux comes from the shoreline is unexpected,

but it is not necessarily incompatible with the literature. Coolen and Overmann (1998) found

okenone in the deep basin sediments, but the abundance of preserved Chromatiaceae sp. ML1

DNA was low and was not correlated with okenone concentrations. Given our data, it is possible

—although far from demonstrated—that the sediment okenone derives from a PSB community

that lives in the shoreline and is taxonomically different from the 7-m community. This would

support a possible benthic or mat-derived source for okenone (e.g., Meyer et al., 2011) and is

contrary  to  the  prevailing  hypothesis  that  okenone  is  necessarily  planktonic  (Brocks  and

Schaeffer, 2008). It is notable that the -27.2‰ value reported for okenone from basinal sediments

(Overmann et al., 1996b) is more similar to our shoreline and sediment fatty acids than to fatty

acids from the water column. The typical  13C enrichment in isoprenoid relative to acetogenic

lipids (ca. 0-3‰; Hayes, 2001) is too small to allow the -27‰ value for okenone to have the
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same source as the water column fatty acids (ca. -33‰); the okenone either has been affected by

diagenetic fractionation or it originates  de novo in the shoreline. In support of the diagenetic

explanation,  the  only  PSB taxon  characterized  to  date  from the  shoreline  does  not  contain

okenone (Overmann et al., 1992). Yet a similar diagenetic argument cannot be made to explain

the fatty acid data, because as discussed previously, the abundant long-chain n-alkyl compounds

do not derive from the water column – they must be added in the shoreline. A possible means to

reconcile all observations is to invoke rafting of PSB debris to the shoreline, where it is mixed

with terrigenous plant detritus. Intensive bacterial heterotrophy within the microbial mat system

would resynthesize all  n-alkyl lipids (Logan et al., 1995; Close et al., 2011), and this may be

concomitant with significant 13C fractionation of okenone. 

 

Processes Controlling Delivery of Organic Matter to Basinal Sediments

The failure of the PSB layer to sink to the sediments has been noted previously. Buoyant rafting

is associated with seasonal die-off, and estimates suggest >85% of the PSB are lost by this route

(Overmann et al., 1994). There also is a relatively small flux of elemental sulfur (S0) and biomass

to sediment traps below the chemocline (Overmann et al., 1996a,b). Nearly all of the remainder

of the PSB and associated community is presumed to be degraded  in situ. The strong density

gradient in the chemocline helps retain this microbial organic matter in neutrally buoyant layers

where it may be remineralized in the water column, a feature also common in marine systems

(MacIntyre et al., 1995; Sorokin, 2002). Temporal and physical redox oscillations also can occur

at these interfaces, significantly increasing the remineralization of organic matter (Aller, 1998).

These cycles occur in Mahoney Lake both diurnally and in association with a small seasonal
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migration of the chemocline (Hall and Northcote, 1990). 

In Mahoney Lake, shoreline-derived organic matter may bypass the intensive remineralization

associated with such density stratification due to its association with denser particles. In many

marine systems, lateral  and down-slope transport  is a major contributor of organic matter to

sediments (Mollenhauer and Eglinton, 2007; Inthorn et al., 2006). Turbidity currents also have

been  known  to  contribute  to  sedimentary  deposition  in  other  meromictic  lakes,  such  as

Fayetteville Green Lake (Ludlam, 1974), where they are responsible for ca. 50% of deposition.

In such cases, dense inorganic minerals and debris flows may help buoyant organic matter be

transported across salinity gradients and into sub-chemocline basins.

Downslope transport of anoxygenic photoautotrophic mats may have been a significant process

earlier in Earth's history. Mats of non-photosynthetic sulfide oxidizers such as Thioploca cover

thousands of square kilometers of the present-day ocean floor where oxygen minimum zones

intersect sediments (Otte et al., 1999). In “anoxic” oceans, these sulfide-oxidizing microbial mats

may have migrated to shallower depths, intersecting the photic zone and containing PSB. Such

sulfide-oxidizing  mats  today  exist  under  suboxic  conditions  of  Lake  Superior  sinkholes

(Voorhies et al., 2012) and on the margins of Fayetteville Green Lake (Meyer et al., 2011). In

such a  scenario,  the water  column may only be suboxic but not  euxinic,  and the traditional

biomarkers  (okenone,  chlorobactene)  for  photic  zone  euxinia  (PZE)  would  be  derived  from

benthic mats (e.g., Meyer et al., 2011).  Much as in Mahoney Lake, these biomarkers might then

be  laterally  transported  downslope  into  areas  not  overlain  by  PZE,  thereby  complicating

interpretations of planktonic vs. benthic PZE and the level of sulfide in past water columns. This
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is a significant issue of mat vs. planktonic biomarker geochemistry that remains to be resolved

by future studies.

Several  episodes  of  Earth's  history may have  such conflicting  records.  Rock records  of  the

Permo-Triassic boundary contain isorenieratene and aryl isoprenoids (Grice et al., 2005; Hays et

al., 2007), but atmospheric oxygen levels may not have been notably lower than today (Knoll et

al., 2007) and euxinia may not have necessarily been linked to either paleo-oxygen levels or to

the magnitude of the extinction event (Nielsen et al., 2010). Similarly, Neoproterozoic marine

rocks  contain  okenane,  chlorobactene,  and  other  diagenetic  products  of  anoxygenic

photoautotrophs (Brocks et al., 2005), but iron speciation data suggest the ocean may not have

been strongly euxinic (Johnston et al., 2010; Planavsky et al., 2011). Our results suggest that

biomarker  interpretations  of  photic  zone  euxinia  should  be  evaluated  in  context  of  local

stratigraphy, and lateral transport processes should be considered.

Conclusion

Fatty acid, sterol, and n-alcohol concentrations, along with fatty acid δ13C values, show that the

majority  of  organic  matter  buried  in  Mahoney  Lake  comes  from  shoreline  microbial  mat

production as opposed to water  column production.  There also is  additional,  but  difficult  to

quantify,  material  derived  from  terrigenous  inputs.  These  findings  imply  that  in  stratified

systems, particle density and lateral transport are significant agents aiding the process of organic

burial. This potentially is an important consideration for interpreting stratigraphic and biomarker

evidence for photic zone euxinia.
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CHAPTER 3

Pigments in Mahoney Lake

Introduction

Marine oxygen levels have been low during critical periods of Earth's history (Jenkyns, 1980;

Brocks et al., 2005; Grice et al., 2005; Lyons et al., 2009). Understanding the impact that anoxia

has  on  chemical  and biological  processes  is  therefore  important  in  interpreting  the  geologic

record. The study of meromictic, or permanently stratified, lakes provides one major type of

modern analogue for marine paleo-anoxia (Meyer and Kump, 2008). These are lakes where wind

or  temperature  driven mixing of  oxygenated  water  to  the  lake  bottom has  been persistently

halted,  often by density stratification,  and the depths  of  the lake have become anoxic,  most

commonly euxinic (Findenegg, 1937; Wetzel, 2001; Hall and Northcote, 2012).

The chemoclines of such meromictic lakes often intersect the photic zone, and when this occurs

they support populations of anoxygenic photosynthetic bacteria. The primary electron donor for

such photosynthesis  sometimes  is  iron  (Crowe et  al.,  2008),  but  more  commonly is  sulfide

(Jørgensen et al., 1991; Lüthy et al., 2000). Sulfide-driven photosynthesis therefore is a critical

link between the carbon and sulfur cycles (Johnston et al., 2009). The most abundant of these

organisms  are  the  purple  sulfur  bacteria  (PSB),  specifically  the  families  Chromatiaceae  and

Ectothiorhodospiraceae of the Gammaproteobacteria; and the green sulfur bacteria (GSB) of the
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family Chlorobiaceae.  Specific  members  of  each  of  these  groups  have  distinctive  pigments,

including  the  isoprenoid  carotenoid  pigments  and  bacteria-specific  types  of  chlorophyll.

Taxonomically-diverse  genera  of  PSB  make  okenone,  although  importantly,  okenone  is  not

produced by all  PSB and has been suggested to be exclusive to planktonic rather than mat-

dwelling or benthic species. (Brocks and Schaeffer, 2008; Takaichi, 2009). However, recently

this  strict  division  in  the  physiological  and  taxonomic  distribution  of  okenone  has  been

challenged (Meyer et al., 2011). Less common in lakes, but more common in marine systems and

in deeper photic zones, the GSB may produce either isorenieratene or chlorobactene (Montesinos

et  al.,  1983;  Imhoff,  1995; Ohkouchi et  al.,  2005).  The carbon backbone structures of these

carotenoids are known to be geologically well-preserved (Schaeffer et al., 1997) and have been

used as proxies for photic-zone euxinia (Summons and Powell, 1986; Brocks et al., 2005; Brocks

and Schaeffer, 2008). Additionally, sulfur bacteria do not use the chlorophyll a commonly found

in oxygenic photoautotrophs, but instead PSB primarily use bacteriochlorophyll  a while GSB

additionally use bacteriochlorophyll  c,  d, and  e (Senge and Smith, 1995; Xiong et al., 2000).

Both purple and green sulfur bacteria are found in littoral mat communities and as planktonic

species in anoxic water columns (Stal et al., 1985; Caumette et al., 1991; Overmann et al., 1992;

Villanueva  et  al.,  1994;  Meyer  et  al.,  2011).  Understanding  the  distribution  of  pigment

production  in  planktonic  and  benthic  species  is  therefore  critical  to  a  proper  taphonomic

understanding of the geologic record. Euxinic water-columns retard the degradation of organic

matter, and carotenoids and porphyrins produced by photosynthetic bacteria and eukaryotes can

be highly preserved in lacustrine and marine sediments. This makes them excellent biomarkers to

assess climatic and biological changes over long periods of time (Züllig  & Rheineck, 1985;
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Summons et al., 1986; Sanger, 1988; Repeta et al., 1993; Lowe et al., 1997).

Mahoney Lake is a meromictic lake in British Columbia which has a 10-cm thick layer of PSB in

its 7-m deep chemocline. The dominant species in this layer was isolated and identified in culture

as Lamprocystis purpurea (Overmann et al., 1991). Given new information about its taxonomic

affinity, it now is classified as Chromatiaceae strain ML1, a member of the genus Thiohalocapsa

(Tank et  al.,  2009; Hamilton  et  al.,  submitted).  The primary carotenoid  in  these  bacteria  is

believed to be okenone (Overmann et al., 1991; Overmann et al., 1993; Coolen and Overmann,

1998), but rhodovibrin is suggested to be a major pigment in the shoreline microbial PSB species

Thiorhodovibrio winogradskyi, a genus closely related to Thiohalocapsa (Tank et al., 2009). In

all cases, these early pigment assignments were assessed only by UV-visible spectrophotometry

of  lake  water  and  sediment  samples  and  extracts  of  isolated  cultures.  The  overall  pigment

composition of both the lake and its bacterial community has not to date been verified by mass

spectrometry. . Some of the highest concentrations of bacteriochlorophyll  a in the world also

have  been  observed  in  Mahoney  Lake  (Hall  and  Northcote,  1990).  Here  we  use  multiple

extraction procedures and analytical techniques to report pigment abundances from the Mahoney

Lake  water  column,  shoreline,  and  deep  basinal  sediment.  These  abundances  are  useful  in

investigating pigment production, transport, and degradation processes in euxinic settings. Given

the high concentrations of okenone in Mahoney Lake, we also reanalyze previous literature data

on okenone, its biosynthetic pathway, and its links to other carotenoid biosynthetic pathways.
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Methods

Mahoney Lake bottom sediment, shoreline mat, and the 7-m purple sulfur bacterial layer were

extracted via two different methods. The first iteration used the Bligh-Dyer method (Bligh and

Dyer, 1959; Nishihara and Koga, 1987) to give total lipid extracts (TLEs); details are given in

Chapter  1.  90%  of  each  TLE  obtained  from  this  extraction  was  separated  via  silica  gel

chromatography to yield polarity fractions. Silica gel fractions are labeled with the solvent used

to elute each fraction from the column: hexane (A), 5% ethyl acetate in hexane (B), 15% ethyl

acetate in hexane (C), 20% ethyl acetate in hexane (D), 25% ethyl acetate in hexane (E), 75%

ethyl acetate and 25% methanol (F), and methanol (G). More details of column separation also

are given in Chapter 1. All TLEs and polarity fractions were stored at -20°C until analysis.

Because the Bligh-Dyer TLEs originally were generated for fatty acid analysis (Chapter 1) and

only later analyzed  for pigments, special precautions for pigment analysis were not taken and

they  may  have  been  subject  to  excess  light,  heat,  and/or  oxidation  effects  that  can  cause

degradation of labile carotenoids and chloropigments. To determine if this was the case, we re-

extracted  unweighed  aliquots  of  the  7-m  purple  sulfur  bacterial  biomass,  the  lake  bottom

sediment, and the shoreline microbial mat by sequentially sonicating in dichloromethane (DCM)

and acetone. Each extraction mixture also was modified by the addition of dropwise 12N HCl to

remove carbonate and acidify the solutions,  thereby also stripping metals  from chlorophylls,

yielding pheophytins. The DCM and acetone extracts were combined, water removed by Na2SO4,
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and dried under N2 gas. TLEs were then re-dissolved in acetone and filtered through 0.45-µm

PTFE syringe filters before analysis. All steps were performed in darkened hoods and extracts

were stored at 4°C and analyzed within one week of extraction.

Extracts  in  acetone  were  analyzed  on  an  Agilent  model  1290  ultra-high  pressure  liquid

chromatograph with model 6410 triple quadrupole mass spectrometer (UHPLC-QQQ) running

Agilent Masshunter version C.01.05. Unless otherwise stated, all retention times, UV spectra,

and other peak information refers to observations from these chromatograms.

For high-resolution chromatography, we followed the “A” method of Airs et al. (2001). Because

our samples were not  previously methylated with diazomethane,  we used 0.5 M ammonium

acetate as the ion-pairing reagent A as recommended in that method. Solvents B, C, and D were

methanol,  acetonitrile,  and  ethyl  acetate,  respectively,  and  the  gradient  proceeded  from

5/80/15/0% to 0/20/15/65% A/B/C/D over 95 minutes (initial isocratic hold, 5 min). The mobile

phase then transitioned to 0/1/1/98% A/B/C/D over 5 minutes, was held isocratically (5 min), and

then transitioned back to the starting composition of 5/80/15/0% A/B/C/D. The flow rate was 0.5

ml min-1 and three Kinetex C18 phase (150 x 4.6 mm, 2.6 µm particles) columns were used in

series. Each run was analyzed by ultraviolet-visible diode array detector (DAD) and by tandem

mass spectrometry with atmospheric pressure chemical ionization (APCI) in positive ion mode.

Ionization  parameters  were  chosen to  reduce  in-source  fragmentation  of  okenone:  vaporizer

temperature 300°C, drying gas flow 4 L/min at 300°C, nebulizer pressure 40 psi, fragmentation

135 V, and collision chamber 20 V. The mass  spectrometer  was operated in  two modes:  by
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monitoring  specific  ion  fragmentation  transitions  for  compounds  that  may be  present  in  the

sample (Table 3.1), and by scanning all ions from 100 to 1000 amu. Each sample was analyzed

twice, once with each mode.

In addition to identifying compounds by relative retention time (according to Airs et al., 2001;

Hodgson et  al.,  2004;  Romero-Viana  et  al.,  2009),  they were  identified  by their  UV-visible

spectra and mass spectral fragmentation patterns, including molecular ion masses (M+) and MS2

transitions (Table 3.1). Pure standards were analyzed to determine the most abundant daughter

products for MS2 transitions of beta-carotene and retinoic acid. The sediment TLE was analyzed

to determine the transitions for okenone, bacteriophaeophytin a, and pyrobacteriophaeophytin a.

A TLE extracted from  Allochromatium vinosum was analyzed to determine the transition for

rhodopin,  and  a  TLE  extracted  from  Chlorobium  limicola was  analyzed  to  determine  the

transition for chlorobactene. As echinenone contains neither a hydroxy nor a methoxy group, its

transition was chosen from literature observations of its major fragmentation ions (Airs et al.,

2001).  The best  transitions  for  all  other  compounds  were  determined  by analogy to  known

transitions of compounds with the same functional groups.
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Table 3.1: Transitions monitored during high-resolution QQQ runs of acetone extracts. Stars (*) 
indicate transitions seen in analysis of previously identified compounds; Daggers (†) indicate 
transition drawn from literature; all others inferred.

Compound(s) Transition Moiety Lost

Bacteriophaeophytin a* 889.6→611.4 Phytol

Pyrobacteriophaeophytin a* 831.5→552.3 Phytol

Phaeophytin a 871.5→593.3 Phytol

Lutein / Zeaxanthin 569.4→551.4 OH

Canthaxanthin / Alloxanthin 565.4→547.4 OH

Echinenone† 551.4→459.4 C7H8

Fucoxanthin 659.4→641.4 OH

Okenone* 579.5→547.5 MeO

Thiothece-484 623.4→591.4 MeO

Spheroidenone / R.g. keto 1 / Thiothece-474 583.4→551.4 MeO

Thiothece-460 463.4→431.3 MeO

Thiothece-OH-484 601.4→583.4 OH

R.g. keto 2 613.4→581.4 MeO

R.g. keto 3 629.4→596.4 MeO

Spheroidene 569.4→537.4 MeO

Rhodopin* / Demethylspheroidene 555.5→537.4 OH

Anhydrorhodovibrin 567.5→535.4 MeO

Rhodovibrin 585.5→567.5 OH

Spirilloxanthin 597.5→565.6 MeO

Chlorobactene* 533.4→133.0 Benzyl Ion

Isorenieratene 529.4→133.0 Benzyl Ion

β-carotene* / Lycopene 537.5→445.4 C7H8
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To quantify compound abundances, some samples were analyzed using a substantially shorter

version of the Airs et al. (2001) method. For these runs, a retinoic acid internal standard was

added to the samples, and its response was compared to an external calibration curve having

concentrations of retinoic acid of 1 ng, 10 ng, 100 ng, 1 μg, and 10 μg (run in triplicate). Peak

areas (QQQ total  ion intensity)  of compounds from the sample runs were then converted to

concentrations by this external curve. The response was non-linear above concentrations of 500

ng (peak areas of 36,000 counts x min); concentrated samples were diluted so that their peak

areas  would  fall  below  this  threshold.  The  detection  limit  estimated  from the  retinoic  acid

response curve was 30 pg.

The  short  method  (20  minutes  versus  115  minutes  in  Airs  et  al.,  2001)  is  adequate  for

quantification, as compounds need not be fully separated given the specificity of QQQ-APCI-

MS2 detection (also known as MRM, or multiple reaction monitoring). The short method begins

with 3/50/15/32% A/B/C/D and ramps to 0/10/15/75% A/B/C/D over 10 minutes after a 2 minute

isocratic hold. The column (Zorbax Eclipse XDB-C18, 4.6 x 150 mm, 5  μm particles) is then

flushed  with  0/2/0/98% A/B/C/D for  8  minutes  to  elute  any strongly  nonpolar  compounds.

Ionization parameters were as above, but to promote ionization the vaporizer temperature was

raised to 450°C and collision energies for carotenoid species—excluding the unfunctionalized

carotenoids beta-carotene, isorenieratene, and chlorobactene—were lowered to 10 V to prevent

excessive  fragmentation.  Only  a  subset  of  the  transitions  used  for  the  long  method  was

monitored with this method (Table 3.2). This method was used to quantify pigment compound

abundances in the total lipid extracts from the Bligh-Dyer extractions. It was not applied directly
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to the acetone-extracted aliquots. Instead, the concentration of bacteriophaeophytin a from each

sample was assumed to be the same in both the Bligh-Dyer and the acetone extracts, and all

remaining compounds in the acetone extracts  were scaled accordingly to  obtain their  in situ

concentrations.

Table 3.2: Carotenoids and their associated fragmentations patterns scanned during quantitative
QQQ runs. Stars (*) indicate transitions seen in analysis of previously identified compounds; all 
others inferred. Dagger (†) indicates transition was misentered as 536.4→444.4.

Compound Transition Moiety Lost

Bacteriophaeophytin a* 889.6 → 611.4 Phytol

Pyrobacteriophaeophytin a* 831.5 → 552.5 Phytol

Lutein / Zeaxanthin 569.4 → 547.5 OH

Okenone* 579.4 → 547.5 MeO

Rhodopin* 555.5 → 537.4 OH

Anhydrorhodovibrin 567.5 → 535.4 MeO

Rhodovibrin 585.5 → 567.5 OH

Spirilloxanthin 597.5 → 565.6 MeO

Chlorobactene* 533.4 → 133.0 Benzyl ion

Isorenieratene 529.4 → 133.0 Benzyl ion

β-carotene* 537.4 → 445.4 † C7H8

Retinoic acid* 301.4 → 283.3 OH

Relative concentrations of pigments were also determined in several alternative ways for the

acetone extracts. Mass spectral peak areas from extracted ions representing full-spectrum scans

from 100 to 1000 amu were measured. Additionally, UV-vis spectral peak areas were converted

to concentrations using Beer's Law, as modified for use with HPLC (Torsi et al., 1990) according

to: N = (A * F)/(ε *  l) where N is the number of moles, A is the peak area,  ε is the molar
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absorptivity and l is the spectrometer cell length. Because the injections represent an unknown

fractional  quantity  of  the  initial  extracts,  each  of  these  approaches  then  reports  the  data

normalized to the most consistently abundant peak, bacteriophaeophytin. All peak areas were

determined  by  integration  in  Agilent  Masshunter.  UV-visible  chromatograms  then  were

graphically  transformed  to  red-green-blue  colors  suitable  for  display  using  analytic

approximations  of  the CIE 1931 color  space  (Wyman et  al.,  2013)  and shown as  simulated

chromatographic columns. To reveal low-intensity bands, contrast of these images was increased

using the GNU Image Manipulation Program (www.gimp.org).

Finally, several presumed biosynthetic intermediates and/or diagenetic breakdown products of

the okenone and  R.g. keto carotenoid biosynthetic series (see below) were detected in several

samples. To gain confidence in their tentative structural assignments, silica gel fractions from the

Bligh-Dyer  extractions  were run to  check compound polarity and relative retention  times  in

comparison  to  other  structural  analogues  and  prior  literature  (Andrewes  and  Liaaen-Jensen,

1972; Overmann et al., 1993; Britton et al., 2004). Fractions C, D, E, and F were injected on an

Agilent 1100 series HPLC with single quadrupole MSD following the method of Barua and

Olson (1998). The column was a Zorbax Eclipse XDB-C18 4.6 x 150 mm (flow rate 0.5 ml

min-1). After a one minute isocratic hold with 10 mM ammonium acetate in 3:1 methanol:water

(solvent A), the HPLC program followed a gradient to 4:1 methanol:dichloromethane (solvent B)

over 15 min, and then was isocratic for 30 min. Column cleaning was achieved by back-flushing

with  isopropanol  (10  min)  followed by a  re-equilibration  in  solvent  A (10 min).  UV-visible

spectra (250 nm to 800 nm; 2 nm steps, 4 nm slit width) and atmospheric pressure chemical
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ionization (APCI) mass spectra from 100 amu to 1000 amu were collected. Again optimizing for

the best response of two standards, retinoic acid and beta-carotene, positive APCI was used with

fragmentor voltage 175 V, drying gas flow 6 L/min @ 350°C, vaporizer temp 375°C, nebulizer

pressure 60 psi, capillary voltage 3000 V, and corona current 5 µA. Runs were bracketed by

injections  of  500  ng  retinoic  acid;  response  from this  external  standard  was  used  to  semi-

quantitatively estimate compound abundances in addition to UV-visible absorbances, as above.
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Figure 3.1. Relative abundances of carotenoids and chlorophyll derivatives from acetone 
extracts: (a) extracted MS ion data, (b) MRM transition data, and (c) UV-visible data. All values
are reported as ratios relative to bacteriophaeophytin a.
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Figure 3.2: Semi-quantative measurements of pigment abundance in Mahoney Lake samples. 
Quantifications are relative to retinoic acid (assumed relative response factor = 1), and are 
scaled between different extraction methods assuming each method should yield the same 
result for bacteriophaeophytin a. Such an assumption, however, yields the impossible result of 
>100% okenone for some samples (> 1 mg/mg TLE), implying that this assumption is 
inaccurate and that the approach must be only semi-quantitative.
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Figure 3.3: UV-visible spectrophotometry of the long runs of acetone extracts with the Airs et al. 
(2001) method presented as simulated columns. Compounds labelled with their [M+H]+ and 
“Phy” are believed to be porphyrin derivatives on the basis of their UV-visible spectra. Overlaid
on center column is the UV-visible trace at 440 nm to show correlations betweens colors and 
visible wavelength peaks of carotenoids.
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Results

Bacteriophaeophytin a was  common  across  all  samples  (sediment,  shoreline,  and  7-m

chemocline)  and was present  in  both the  acetone and Bligh-Dyer  extracts,  so we report  the

concentrations of all other compounds relative to it (Figure 3.1). We also transform these relative

values  to  quantitative  estimates  by  assuming  bacteriophaeophytin a has  the  same  absolute

concentration  (µg/mg  TLE)  in  both  the  Bligh-Dyer  and  acetone  extracts  (Figure  3.2).  This

compound is one of the primary peaks in both the 7-m and shoreline samples, while it appears to

have slightly lower relative abundance in the sediment (Figure 3.3). In UHPLC-QQQ analysis of

acetone extracts it eluted at 57.5 minutes, had a [M+H]+ ion of 889.6, and a UV-visible spectrum

with maxima at 358, 528, and 748 nm. The same peak was observed in fraction E of the Bligh-

Dyer extracts at 29.3 minutes using the chromatographic method of Barua and Olson (1998). An

additional low-intensity peak also was observed to have the same mass and UV-visible spectrum,

but a retention time of 60 minutes (by method of Airs et al., 2001) or 31 min (by method of

Barua and Olson, 1998). This latter peak likely corresponds to the bacteriophaeophytin a epimer

described by Airs et al. (2001).

In addition to bacteriophaeophytin, other porphyrin derivatives also were present. A peak at 66.2

minutes (by method of Airs et al., 2001) or in fraction E at 39.1 minutes (by method of Barua and

Olson, 1998) with [M+H]+ ion of 871.5 and UV-visible maxima of 408 and 666 nm, followed by

a  peak  at  68.1  minutes  with  similar  characteristics,  were  identified  as  phaeophytin  a and

phaeophytin  a epimer (Figure 3.3). They are relatively more abundant in the shoreline than in
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any other sample (Figure 3.1). Another peak at 64.0 minutes (in fraction E at 34.0 minutes; Barua

and Olson, 1998) with an [M+H]+ ion of 831.5 and UV-visible maxima of 358, 530, and 750 nm

was  identified  as  pyrobacteriophaeophytin  a.  It  also  was  relatively  more  abundant  in  the

shoreline than in the water column, but its abundance in the lake bottom sediment was similar to

the shoreline (Figure 3.1).

Okenone was the most abundant carotenoid present in both the purple layer and the sediment,

and one of the most abundant carotenoids in the shoreline. It was detected with an [M+H]+ ion of

579.4 and UV-visible spectral maxima of 488 and 514 nm in all samples at a retention time of

40.3 minutes (Figure 3.3).  It  also was observed in fraction D of the shoreline and sediment

Bligh-Dyer extracts at 26.4 minutes with the Barua and Olson method. Although we do not have

an authentic  standard  for  comparison,  these  characteristics  match  the  literature  properties  of

okenone  (e.g.,  Britton  et  al.,  2004;  Romero-Viana  et  al.,  2009).  Immediately  following  the

okenone peak at retention times of 41.9, 42.3, 42.9, and 43.2 were four other discernible peaks

also with [M+H]+ ions of 579.4 and slightly shifted UV-visible spectral maxima of 480 and 508

nm.  A shorter  maximum absorption  wavelength  is  characteristic  of  cis carotenoids  (Liaaen-

Jensen and Lutnæs, 2008). As such, these later peaks likely are  cis isomers of okenone. In the

acetone extracts, peak area ratios of trans-okenone to the sum of the cis isomers are between 0.7

and 1.7 regardless of sample or quantification technique.  This ratio is higher for Bligh-Dyer

extracts  (1.8 and 2.3 for  the  relative  MS peak areas  in  Bligh-Dyer  silica gel  fractions),  but

possible sample handling-related degradation effects and the failure to detect okenone in the 7-m

sample extracted by this method (Figure 3.2a) cautions against interpreting these ratios to have
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primary significance in any sample. All ratios are lower than previously reported for the ML1

culture (5.7; Overmann et al., 1993). Although some anoxygenic photoautotrophs produce  cis

carotenoids (Bialek-Bylka et  al.,  1998), isomerization is one of the most common laboratory

artifacts in carotenoid analysis (Liaaen-Jensen, 2004) and all of our low values likely result from

the laboratory and are not authigenic.

In the shoreline, the most abundant (by both mass spectral techniques, but not by UV-visible

spectrum; Figure 3.1) carotenoid eluted at  32.0 minutes with an [M+H]+ ion of 623.3 and a

fragment at 591.2; UV-visible maxima of 490 and 518 nm; and a small secondary isomer at 34.8

minutes with identical mass and similar spectrum. This peak was also observed using the Barua

and Olson method, eluting at 23.1 minutes in fraction D from the shoreline and fraction E from

the  sediment.  Its  presence  in  different  polarity  fractions  is  presumably  due  to  minor

inconsistencies in SiO2-gel chromatography between samples, but the tendency toward fraction E

suggests  it  is  more  polar  than  okenone.  This  interpretation  also  is  supported  by the  shorter

relative retention time in reverse-phase HPLC (Figure 3.3). A mass loss of 32-amu is similar to

the fragmentation for okenone and likely corresponds to loss of a methoxy group. Based on a

molecular  mass  of  622,  the  presence of  at  least  one methoxy group,  a  UV-visible  spectrum

similar to okenone, and a slightly greater polarity than okenone, we identify this peak as the

carotenoid Thiothece-484 (Andrewes and Liaaen-Jensen, 1972). Lesser amounts of Thiothece-

484 were observed in the sediment and very little was observed in the 7-m chemocline sample

(Figures 3.1, 3.2).
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Two other carotenoids were found in notable abundances. A peak at 28.5 minutes with an [M+H]

+ ion of 565.4 and a UV-visible maximum of 474 was abundant in the shoreline. This peak also

was seen in fraction E of the shoreline at 21.6 minutes by the method of Barua and Olson. Both

alloxanthin and canthaxanthin have mass 564, but canthaxanthin has a UV-visible maximum of

474 nm (in ethanol) while alloxanthin has its maximum at 450 nm (in ethanol) and greater fine

structure with additional maxima at 427 and 478 nm (Britton et al., 2004). On the basis of these

spectral differences, we assign this peak to canthaxanthin. Another peak at 49 minutes with an

[M+H]+ ion of 551.4 and a UV-visible maximum of 482 nm was observed in the acetone extracts

(Figure  3.1),  but  not  in  the  Bligh-Dyer  extracts  (Figure  3.2);  it  is  identified  tentatively  as

echinenone, a structural relative of canthaxanthin having only a single keto-group. Both were

relatively more abundant in the shoreline than in the basinal sediment, and they were detected at

only trace levels (echinenone) or not at all (canthaxanthin) in the 7-m chemocline sample (Figure

3.1).

Surprisingly, several compounds which might be expected to be found were not observed using

any of the approaches. Rhodopin is reported to be the primary carotenoid in  Thiorhodovibrio

winogradskyi,  a species cultured from the Mahoney Lake shoreline (Overmann et al.,  1992).

However, we found no definitive peaks of any of the spirilloxanthin series of carotenoids—

including rhodopin—in any of the samples. Several small peaks having transitions 585.5→567.5

(hypothetical transition of rhodovibrin) and 555.5→537.4 (transition of rhodopin) were detected
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in the MRM trace of the shoreline sample at ca. 30 minutes (by method of Airs et al., 2001), but

examination of the full MS2 trace shows these to be in-source degradation products of phytins.

Additionally, despite the reported presence of Chrysophyte algae in the epilimnon (Northcote

and Hall, 1983), fucoxanthin was not found in any of the samples (nor was it detected in earlier

carotenoid work on sediments; Overmann et al., 1993). 

Results  from the  Bligh-Dyer  extracts  differed  significantly from the  acetone  extracts.  These

differences may be attributed to loss on SiO2-gel, degradation during processing, and/or different

inherent extraction yields. The most abundant carotenoid observed in the 7-m layer Bligh-Dyer

extract eluted in silica gel fraction E, had a mass spectrum with an [M+H]+ ion at  m/z 463, an

abundant mass fragment at  m/z  431 and UV maxima at 480 and 506 nm. Three peaks of this

compound were resolved, presumably indicating three isomers. Due to its parent mass of 462,

the presence of a M-32 ion, and the observed spectral maxima at 474 and 500 nm, we tentatively

identify this compound as Thiothece-460 (Britton et al 2004). The other major carotenoid in the

7-m sample was found in fraction D. It had an [M+H]+ ion at m/z 609 (primary fragments at 577

and 545) with UV-Visible spectral maxima at 460 and 488 nm. Several peaks with an [M+H]+

ion of 595 also were very abundant in fractions D and E from the sediment, and were present in

those  same  fractions  in  the  shoreline  and  7-m  samples.  Some  of  these  peaks  had  MS

fragmentation patterns showing abundant M-16 and M-32 ions, and their spectral maxima were

consistently  at  446 and 468 nm.  However, upon looking for  all  of  these  compounds  in  the

acetone extracts,  only trace amounts of Thiothece-460 were observed and none of  the other

unusual carotenoids were found. This suggests the Bligh-Dyer samples may have experienced

64



significant  degradation  during  processing  and  the  above  compounds  may be  artifacts.  Such

degradation may have affected both the carotenoids and the chloropigments.

We  attempted  to  determine  the  quantitative  abundances  of  both  classes  of  pigments  (µg

compound per mg TLE) in all samples (Figure 3.2). However, this approach relies specifically on

the  quantification  of  the  Bligh-Dyer  extracts,  because  only  these  TLEs  were  weighed.  For

quantification  of  the  acetone  extracts,  we  assumed  a  constant  concentration  of

bacteriophaeophytin a across both extract types and normalized the acetone values to the Bligh-

Dyer values. This implies that due to prior degradation of the Bligh-Dyer extracts, the calculated

concentrations for all lipids in the acetone extracts are too high. In particular, at > 1mg/mg, the

calculated concentrations of okenone in the sediment acetone extract (Figure 3.2b) are physically

impossible.  However,  the  concentrations  measured  for  the  sediment  Bligh-Dyer  extract  do

generally agree with previous observations. Hall and Northcote (1990) measured 1.5 to 7 mg L-1

bacteriochlorophyll a in the purple layer. From 500 ml of centrifuged 7 m water yielding 3.48 mg

TLE,  we  measured  1.0  mg  of  bacteriopheophytin  a (the  acidified,  metal-free  form  of

bacteriochlorophyll a). Overmann et al. (1993) also measured between 0.1 and 2 mg okenone per

gram dry sediment. We extracted 5.20 g wet sediment to yield 3.76 mg TLE, and a previous

sample  of  the  same  material  had  a  dry  mass  of  328  mg  for  a  5.00  g  wet  weight.  Scaled

accordingly,  our  measured 0.5  mg  of  okenone  is  equivalent  to  1.5  mg  okenone  per  gram

sediment.
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There  are  clear  indications  that  instrumental  response  factors  differ  for  the  various

chloropigments and carotenoids analyzed in this  study. For example,  the ratio of okenone to

bacteriopheophytin  a determined by HPLC-QQQ analysis (Figure 3.1a) is greater than what is

measured from their respective UV-visible spectra (Figure 3.1c), and this in turn is greater than

what  is  measured  by HPLC-QQQ-MS2 (Figure  3.1b).  With  respect  to  the  UV method,  the

discrepancies likely are due to a combination of unpredictable degradation of fluorophores and

inherent errors in defining molar absorptivities (ε; Torsi et al, 1990). For the mass spectral data,

differences in results between methods likely are due to variations in behavior of ions in the

collision  chamber,  reflecting  the  heterogeneity  and  concentration  differences  between  the

samples. Due to these effects, we aim to be conservative and regard all results as only semi-

quantitative;  the  most  robust  comparisons  should  be  ratios  of  the  same  or  very  similar

compounds  both  between  and  within  samples,  e.g.,  okenone  vs. echinenone  or

bacteriophaeophytin a vs. phaeophytin a.

Both types of extracts did give similar results for the sediment sample. But for both the shoreline

mat and the 7-m layer, there were significant differences, the primary one being a failure to

detect  large  quantities  of  okenone in  the  Bligh-Dyer  samples  (Figure  3.2).  Also,  lutein  and

zeaxanthin abundances (Appendix 1, Table S4) were much lower than reported previously by

Overmann et al.  (1993). The Bligh-Dyer extracts showed a poorly-resolved but distinct peak

having the expected 569→547.5 transition; it was detected and quantified under the assumption

it is an unresolved mixture of lutein and zeaxanthin. There were no identifiable peaks with an

[M+H]+ ion of m/z 569.4 in the acetone extracts.
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Beta-carotene also appeared to be present in all samples, but it could not be quantified by mass

spectrometry with the approaches used here (Figure 3.3). Peaks tentatively assigned to beta-

carotene could be observed in the sediment sample by quantitative UHPLC-QQQ mass scanning

(Figure 3.1a), but the incorrect mass—M+ (536.4) instead of the [M+H]+ ion (537.4); Table 3.2—

was inadvertently monitored, so its abundance could not be quantified. When UHPLC-QQQ-

MS2 runs were performed, three large UV-Visible peaks were observed starting at 68.8 minutes,

but the corresponding mass spectral traces were very subdued and ionization is believed to have

been very poor. Due to its lack of heteroatoms, beta-carotene would be expected both to elute

very late in reverse-phase HPLC and to have poor ionization potential. These peaks had UV-

Visible maxima at 454 and 480 nm, 448 and 474 nm, and 446 and 470 nm. Three peaks with

similar retention times and UV-Visible spectra are identified as “carotene” by Airs et al. (2001),

consistent  with  our  assignment;  we  report  abundances  of  beta-carotene  only  from  spectral

absorbance (Figure 3.2).

Discussion

Abundance and distribution of pigments in Mahoney Lake samples

As  expected,  we  find  high  concentrations  of  okenone  in  all  samples  of  Mahoney  Lake

(Overmann et al.,1991; 1993). Our confirmation of okenone by relative retention time, spectral

absorbance,  and mass  fragmentation  patterns  suggests  that  very early reports  of  rhodovibrin

being a major pigment in this environment (Northcote and Hall, 1969) likely were erroneous.
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Although there may be temporal patterns in production, Mahoney Lake has been for stratified for

more  than  9000 years  (Lowe et  al.,  1997),  and okenone  is  the  major  pigment  identified  in

sediments  throughout  this  interval  (Coolen  and  Overmann,  1998).  Secondary  stratification

develops and disappears in the Mahoney Lake epilimnion on a seasonal cycle (Northcote and

Hall, 1990), and the anoxygenic phototrophic communities in other meromictic lakes can change

both on seasonal (Bosshard et al., 2000) and decadal (Tonolla et al., 2005; Storelli et al., 2013)

timescales,  but  Mahoney  Lake  appears  to  be  unusually  stable  (Overmann  et  al.,  1996a;

Overmann, 1997). Okenene is greatly enriched in basinal sediment, both in absolute and relative

terms. This appears to reflect the high preservation potential of aromatic carotenoids relative to

other pigments (Koopmans et al., 1996; Brocks and Schaeffer, 2008), because both its absolute

and  relative  abundance  increases  dramatically  between  the  zone(s)  of  production  (7-m and

shoreline)  and  the  sediments.  Porphyrin  breakdown  products  also  change  their  relative

concentrations across samples. Phaeophytin a—the metal-free breakdown product of chlorophyll

a—is  most  abundant  in  the  shoreline  and represents  a  greater  input  of  either  eukaryotic  or

cyanobacterial  primary  production  to  the  shoreline.  Greater  concentrations  of

pyrobacteriophaeophytin a in both the shoreline mat and lake bottom sediment, relative to the 7-

m sample, indicate the inception of early diagenesis. The presence of significant phaeophytin a

in the sediments may be an additional tracer for the input of shoreline-derived material (Chapter

1, this thesis). Due to these degradation and transport effects, it is difficult to make quantitative

interpretations from the pigment abundances measured here.

Similarly, previous work has exposed a lack of correlation between the abundance of okenone,
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bacteriochlorophyll  a,  and DNA sequences of PSB in Mahoney Lake sediments (Coolen and

Overmann, 1998). In this work we made semi-quantitative measurements of okenone relative to

the  abundance  of  bacteriochlorophyll a breakdown  products  (Figures  3.1,  3.2).  These

measurements were not quantitative, because we lacked authentic standards to calibrate the mass

spectral  response  factors  of  bacteriochlorophyll  derivatives  and  okenone,  specifically  with

respect to ionization and collision-chamber fragmentation. However, changes in relative ratios of

these  compounds  are  useful  both  for  understanding  how  the  occurrence/disappearance  of

pigments relates to the physiology of purple sulfur bacteria (Smith et al., 2014); as well as to

gain  insight  into  relative  degradation  rates  (e.g.,  Steenbergen  et  al.,  1994),  as  multiple

degradative pathways exist for both porphyrins (Leavitt, 1993) and carotenoids (Hebting, 2007).

Better understanding of both of the biotic and abiotic controls on relative pigment abundances

may help explain the lack of correlation with DNA abundances (Coolen & Overmann, 1998) and

further constrain organic export to the sediments (Chapter 1, this thesis). 

Outside of the dominance of okenone, there also was a wide diversity of minor pigments in the

Mahoney Lake samples,  including previously detected compounds and novel  compounds.  In

addition,  various  pigments  previously mentioned in  the  literature could not  be found in our

samples: Lutein and zeaxanthin were not detected (Appendix 1, Table S4) despite being reported

in high relative abundance in Overmann et al.  (1993). This may be due to extraction biases,

sample  degradation,  or  prior  misidentification.  Overmann  et  al.  (1993)  used  an  aggressive

extraction in 60°C methanol and KOH which may have resulted in improved recovery of these

compounds. Conversely these authors did not detect echinenone, a compound which also was not
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present in our Bligh-Dyer extract, but which was present in our (gentlest) acetone extract. This

suggests that echinenone is particularly fragile and may not survive harsh conditions. However,

unlike  situations  where  differences  in  analytical  methodology  have  caused  different

environmental interpretations (Coolen and Overmann, 2007; Sinninghe Damsté and Hopmans,

2008), we do not believe that differing identification of these particular compounds substantially

changes either the present or previous conclusions about Mahoney Lake.

Identification of unusual carotenoids in Mahoney Lake samples

Overmann et al. (1993) identified a compound they called “demethylated okenone” and verified

its  coelution with a  pigment  present  in  an extract  of  the PSB species  Thiocystis  gelatinosa.

Although  this  “demethylated  okenone”  originally  was  thought  to  be  okenone  possessing  a

terminal  alcohol  instead of  methoxy moiety (mass=564;  Pfennig et  al.,  1968),  later  analysis

showed this compound to be the structure known as Thiothece-OH-484 (mass=600; Andrewes

and Liaaen-Jensen, 1972). Thiothece-OH-484 is a carotenoid that has the same 4’-ketolated ψ

(acyclic) end as okenone, but which has a second, hydroxylated ψ end instead of the χ-ring

(Figure 3.4). This compound also is found in the R.g. keto pathway of purple non-sulfur bacteria

(Schmidt and Liaaen-Jensen, 1973). It has an absorption spectrum similar to that of okenone and

the carbomethoxylated okenone derivative Thiothece-484 (Andrewes and Liaaen-Jensen 1972),

hence its prior assignment as “demethylated okenone”.  Given their  functional and absorptive

similarities, it is possible that without mass spectral data or an authentic standard for co-elution,

Thiothece-484 and Thiothece-OH-484 could be confused. Here we positively identified okenone
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and Thiothece-484, but not Thiothece-OH-484 in our samples.

Thiothece-484 has not been reported previously in any environmental sample, although several

peaks  have  been detected  with  very similar  properties.  Villanueva  et  al.  (1994)  reported  an

unidentified carotenoid with mass of 622 and spectral maxima of 452 and 474 nm in an evaporite

mat  also  containing  spirilloxanthin  and  rhodopin,  but  without  reported  okenone.  When

reanalyzed with a different method, the same mat had a peak eluting between canthaxanthin and

okenone with a [M+H]+ of 623 and spectral maxima of 381, 460, 483, and 514 in addition to

containing  detectable  okenone  (Airs  et  al.,  2001).  If  these  peaks  were  Thiothece-484,  it  is

possible that it commonly co-occurs with okenone, as seen in the Mahoney Lake samples. Most

critically,  Thiothece-484  has  been  found  in  several  cultures  of  Chromaticeae  including

Thiocapsa marina (Caumette et al., 1985; Caumette et al., 2004) and Thiohalocapsa halophila

(Caumette et  al.,  1991).  Thiohalocapsa halophila is the nearest  sister  group to Chromaticeae

strain ML1 (Tank et al., 2009; Hamilton et al., submitted). It was isolated from a benthic mat on

the coast of France (Caumette et al., 1991). Its major carotenoid is okenone, although it does

produce  spirilloxanthin-series  carotenoids  in  addition  to  okenone-series  carotenoids  and

Thiothece-484.

It  remains  unknown  whether  Thiothece-484  is  an  intentional  biosynthetic  end-product,  a

biosynthetic intermediate, or a diagenetic marker. Both its function and more generally, other

possible  functional  distinctions  between  okenone,  Thiothece-484,  or  spirilloxanthin-series
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carotenoids in PSB are poorly understood. Okenone has light absorption properties that allow

Chromaticeae to live deep in the photic zone, near the diffusional supply of sulfide (Imhoff,

2006).  Changes  in  accessory  carotenoids  may  then  reflect  adaptations  to  different  light

intensities. Caumette et al. (1985) observed that as light flux increased from 400 to 2000 lux, the

percent Thiothece-484 of total carotenoids in  Thiocapsa marina  cultures increased from 11 to

15% while okenone decreased from 78 to 71% (Caumette et  al.,  1985);  also suggesting this

compound  is  a  deliberate  synthetic  product.  The  position  of  Thiothece-484  in  the  okenone

pathway is poorly understood, but could resolve questions of its taxonomic and environmental

provenance (Figure 3.4). Initially, it was proposed as a biological oxidation product of okenone

(Andrewes  and  Liaaen-Jensen  1972),  while  later  authors  interpreted  high  concentrations  in

culture as indicative of a biosynthetic intermediate formed during ring rearrangement (Caumette

et al., 1985).
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Figure 3.4: Biosynthetic pathways of carotenoids produced in purple sulfur bacteria, along 
with pathways to selected other carotenoids previously identified in meromictic lakes. Thick 
arrows indicate multiple steps and question marks after enzymes indicate predictions without 
experimental support. All 4' keto ψ ends are highlighted in red, 2' keto ψ ends in blue, and χ-
rings diagnostic of okenone are highlighted in green.
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A third—albeit speculative—alternative for the production of Thiothece-484 is that it is under

biological control and it, rather than okenone, is the terminal product of the okenone pathway.

Candidatus ‘Thiodictyon syntrophicum’ strain Cad16T contains  a  ketolase (CruS),  which has

been shown in vitro to both add at the 2' position using molecular oxygen and simultaneously

desaturate at the 3',4' position of 1'-hydroxyneurosporene and 1,1'-dihydroxyneurosporene (Vogl

and Bryant, 2011). As Candidatus ‘Thiodictyon syntrophicum’ strain Cad16T contains the cruS

gene and yet doesn't produce either of these neurosporene compounds, its  in vivo function is

unknown. Speculatively, it may be involved in oxidation of okenone to Thiothece-484 under high

oxygen fugacities. Consistent with this theory, the cruS gene is also present in Thiocapsa marina

(Vogl and Bryant, 2011), a known producer of Thiothece-484 (Caumette et al., 1985). Given this

hypothesis,  mass  spectral  analysis  of  carotenoids  produced  by  Candidatus ‘Thiodictyon

syntrophicum’ strain Cad16T should either confirm or deny the presence of Thiothece-484 and

here would suggest that Chromatiaceae strain ML1 also actively produces Thiothece-484.

Similar late-stage modification processes are seen in several other anoxygenic phototrophs. The

green sulfur  bacterium  Chloroflexus  aurantiacus produces  a  greater  proportion of  glucosidic

carotenoids under high light conditions (Schmidt et al., 1980). Purple non-sulfur bacteria are able

to  ketolate  spirilloxanthin  and spheroidene-series  carotenoids  in  the  2'  position  (Pinta  et  al.,

2003; Gerjets et al., 2009), and the purple non-sulfur bacterium Rubrivivax gelatinosus produces

proportionally  more  keto-spirilloxanthins  under  semi-aerobic  conditions  versus  more  non-

ketolated  spirilloxanthin  under  anaerobic  conditions  (Takaichi  and  Shimada,  1999).  These

interpretations would be consistent with the greater abundance of Thiothece-484 observed in the
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atmosphere-exposed shoreline sediment of Mahoney Lake, and the low abundance or absence of

this compound in the 7-m chemocline. 

In  contrast  to  arguments  about  the  biogenicity  of  Thiothece-484,  it  is  probable  that  the

identification of Thiothece-460 and the other minor carotenoids only observed in the Bligh-Dyer

extracts  are  oxidative degradation products of okenone produced during that extraction.  It  is

unclear  why okenone in  the sediment  and shoreline samples  was not  similarly converted  to

Thiothece-460, as one might expect it to be formed among samples that had been extracted and

handled identically. Thiothece-460 has previously been identified (Andrewes and Liaaen-Jensen,

1972)  as  a  product  from  cultures  of  Thiocystis  gelatinosa (formerly  Thiothece  gelatinosa;

Pfennig and Trüper, 1971), although it may have had a similar genesis in those experiments.

Sources and biosynthesis of okenone – challenges for future research

Brocks  and  Schaeffer  (2008)  hypothesized  that  okenone  is  produced  only  in  planktonic

environments and therefore that it is a specific tracer for sulfide at shallow depths in open marine

photic  zones.  They did,  however,  acknowledge  that  3  of  the  11  known okenone-producing

species were isolated from benthic environments. In particular, this includes the mat-dwelling

species  Thiohalocapsa halophila (Caumette et al., 1991), the closest relative to the planktonic

Chromatiaceae strain ML1. To interpret this finding, Brocks and Schaeffer (2008) suggested that

okenone production did not occur when PSB species were living in benthic mats, as okenone had

not been measured in any such non-planktonic systems at that time. Recently, however, okenone
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was found in a microbial  mat overlain by an oxic water column in Fayetteville Green Lake

(Meyer et al., 2011). The presence of okenone was thus strongly suspected to be autochthonous,

but there remained the possibility that lateral rafting of planktonic material from deeper layers in

the lake also could have transported it to those mats. Similarly, lateral transport of PSB material

is a known phenomenon in Mahoney Lake (Overmann et al., 1996b, and Chapter 1, this thesis).

It therefore remains uncertain whether synthesis of okenone actually occurs outside of planktonic

communities.  However,  given  our  understanding  of  Thiothece-484  as  a  closely  related

biosynthetic  intermediate  or  terminal  product  of  the  okenone  pathway,  its  presence  in  the

shoreline sample but not in the 7-m water column sample may indicate that okenone is produced

in situ in the shoreline. Alternatively, it could be interpreted strictly as a degradation product of

okenone deposed in the littoral and basinal sediments by rafted planktonic PSB. Resolving these

possibilities remains a challenge for future work, likely involving measurement of carbon and/or

hydrogen  isotope  ratios  of  planktonic,  shoreline,  and basinal  carotenoids,  as  well  as  further

elucidation of the complete okenone biosynthetic pathway (Vogl and Bryant, 2011; 2012).

Further  characteristics  of  okenone  potentially  complicate  its  use  as  a  paleotaxonomic  and

paleoenvironmental tracer. Two moieties distinguish okenone from other carotenoids: the ketone

in the 4’ position and the χ-ring (Figure 3.4). A 4’ ketone also is found in the acyclic R.g. series

of  carotenoids  produced  by  purple  non-sulfur  bacteria  (Schmidt  and  Liaaen-Jensen,  1973).

Similarly,  recent  work  has  shown  that  the  χ-ring  also  is  present  in  some  cyanobacterial

carotenoids, e.g., synechoxanthin and renierapurpurin (Graham and Bryant, 2008), and as such,

neither of the characteristic okenone moieties is unique to PSB. However,  the combination of
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both features  is  still  believed to  be confined taxonomically to the Chromatiaceae,  but  given

uncertainty about what function okenone serves and its biosynthetic pathway, other possibilities

should be examined. In particular, Thiothece-484 has a carbon backbone identical to okenone, so

it may be an additional major precursor of okenane during diagenesis. This information will not

substantially change geologic interpretations of okenane, since both Thiothece-484 and okenone

likely are produced in the same pathway and by the same species, but caution is warranted as our

understanding of okenone production is still incomplete.

Clearly a  more  in-depth  understanding of  the  biosynthetic  pathway of  okenone is  essential.

Initially, Schmidt and Liaaen-Jensen (1973) proposed a pathway to okenone in which complete

modification of the ψ end happened before the formation of the χ-ring; this work was based on

carotenoid  extracts  of  purple  non-sulfur  bacteria  (pathway through  red  box,  Figure  3.4).  In

contrast,  Vogl  and  Bryant  (2011,  2012)  proposed  a  scheme  where  cyclization  to  γ-carotene

occurred first, followed by modification of the ψ end, and then the final rearrangement of the β

ring to a χ ring; this work was based on the individual expression of Chromatiaceae genes in E.

coli (pathway through green box, Figure 3.4). Additionally, in both the spirilloxanthin pathway

(blue box, Figure 3.4; Takaichi 2009) and in the pathway of Schmidt and Jensen (1973), it is

proposed that ketolation takes place after methylation of the ψ end, while in the scheme of Vogl

and  Bryan  (2011),  ketolation  precedes  methylation.  These  two  schemes  are  not  necessarily

incompatible, as purple non-sulfur bacteria (e.g. in Schmidt and Jensen's scheme) and purple

sulfur bacteria (e.g. in Vogl and Bryant's scheme) may not share the same order of reactions in

productions of their carotenoids. Understanding the genes, enzymes, and order of expression will
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however be essential to further analysis of whether the 4’ keto group in okenone biosynthesis is

unique to PSB, or if it is homologous to the 4’ keto group in the R.g. keto series of purple non-

sulfur bacteria.

Conclusion

This work confirms that the major Mahoney Lake pigments are okenone and bacteriochlorophyll

a, as suggested previously, but there are also several interesting pigments present in the system,

particularly Thiothece-484. It appears that Thiothece-484 is an abundant carotenoid in a subset of

okenone-producing bacteria and that it is also found in geographically-distributed microbial mat

communities. As our understanding of okenone production and diagenesis is incomplete, further

examination of the intermediates in  the biosynthetic  pathways of the okenone and  R.g. keto

carotenoid series is warranted. Similarly, it will be important to achieve a better understanding of

the  functional  properties  of  these  two  classes  of  purple  carotenoids  and  the  reason  for  the

presence of the  χ ring only in PSB, but the 4’-keto group in both PSB and purple non-sulfur

bacteria.
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CHAPTER 4

Identifying Associated Genes in the Environment through Tetranucleotide Distances

Introduction

Justification

With the rise of high-throughput DNA sequencing, it has become possible to find and compare

the total complement of metabolic pathways present in environmental metagenomes (Dinsdale et

al.,  2008; Tringe et al.,  2005). Such approaches provide a broad picture of an environmental

community, but equally important is to understand how these functional pathways are distributed

among  and  co-located  in  individual  organisms  or  taxa.  Our  understanding  of  geological,

biogeochemical, and microbial processes would be enhanced by such a deeper understanding.

Are microbes recruited into or maintained in communities based on the biological functions they

perform  (Burke  et  al.,  2011)?  What  do  specific  biosynthetic  products  tell  us  about  the

metabolism and environment of their source organisms (Brocks and Pearson, 2005)?

The concept of linking pathways in metagenomes is a generalization of the familiar approach of

linking specific  phylogenetic  identities  to  specific  enzymatically-driven  processes  (Gray and

Head, 2001; Suenaga, 2012). For example, the question of which microbes degrade plant matter

in  cow  rumens  (Ferrer  et  al.,  2005;  Hess  et  al.,  2011)  is  equivalent  to  asking  which  16S

ribosomal  RNA  sequences  co-occur  with  known  plant-matter  degradation  pathways?  The

question can also be reversed to find metabolic functions associated with specific clades: for

example, what ecological functions do Planctomycetes perform in marine upwelling systems?
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Woebken et al. (2007) screened fosmids containing 16S ribosomal RNA genes of Planctomycetes

and found genes for metabolism of single-carbon substrates, suggesting a role at the base of the

carbon cycle.

Such concepts may be useful for linking metabolism (and hence environmental context) directly

to lipid biosynthesis, which is a major goal of organic geochemistry. For example, isorenieratene

is a terminal product of green sulfur bacteria, the Chlorobiaceae, in sulfidic marine ecosystems

(e.g., Grice et al., 2005). Chlorobiaceae are photoautotrophs that use sulfide as an electron donor,

so isorenieratene is believed to be a good proxy for photic zone euxinia. However, the aerobic

bacterium  Brevibacterium  linens also  produces  isorenieratene  (Kohl  et  al.,  1983).  It  has  a

closely-related sister species, Brevibacterium oceani, that lives in marine systems (Bhadra et al.,

2008),  but it  is  not currently known if  B. oceani has the capacity to produce isorenieratene.

Although sequencing B. oceani and performing a lipid analysis would answer both the genetic

and functional aspects of this question, the result could not be generalized to other species. A

more general method is needed to resolve problems like these, such cases in rarer, unculturable

organisms.

The  ecological  theory  of  a  “core  microbiome”  is  that  in  similar  environments,  certain  core

microbial members tend to occupy central roles (Shade and Handelsman, 2012). For example,

deep waters of the North Atlantic and hydrothermal vents are dominated by a few members of

the Proteobacteria, but thousands of other species can be identified at much lower abundances

(Sogin et al., 2006). Similar results have been reported from the Sea of Marmara where species
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of  Proteobacteria,  Planctomycetes  and  Bacteroidetes  were  most  abundant,  but  many  other

species contributed to the ecosystem diversity (Quaiser et al., 2010). Despite their rarity, these

species may perform important metabolic  roles in the community:  Desulfosporosinus sp.  are

sulfate-reducers  which  accounted  for  only  0.006%  of  the  total  microbial  community  in  a

peatland, but nonetheless were found to play a quantitative role in sulfate reduction (Pester et al.,

2010).  Similarly, the  methylotroph  Methylotenara mobilis comprised  less  than 0.4% of  total

bacteria  in  a  lake  by  16S  sequencing,  but  they  play  a  major  role  in  cycling  single-carbon

compounds (Kalyuzhnaya et al., 2008).

Are these rare community members specializing into niches and losing pathways to syntrophic

partners? Raes and Bork (2008) proposed a concept of  clusters of  orthologous  groups (COG)

richness per genome equivalent to determine how many “functions” would be predicted for each

organism in a community. Several recent studies (Tyson et al., 2004; Jones et al., 2011; Swingley

et al., 2012) have examined these concepts in specific, abundant organisms to determine how

they contribute to their overall microbial community. Understanding how pathways co-occur in

other community members remains a current goal.

Here we approach this problem by assuming that genes with similar tetranucleotide abundance

patterns  (explained  later)  either  come  from the  same  organism or  from organisms  that  are

recently evolutionarily related, either because of common descent or lateral gene transfer (Perry

and Beiko, 2010). If two genes, each of which is essential for a different metabolic pathway, have
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similar  tetranucleotide  usage  patterns,  then  it  is  likely that  they are,  or  recently have  been,

present in the same organism. 

Linking Genes

 The most common methods for finding gene associations in microbes are intensive sequencing

and  gene-orthology  associations,  in  some  cases  in  combination  with  cell  separation.

Technological  developments  now  allow  long  sequences  to  be  obtained  from  single  cells

(Raghunathan et al., 2005; Zhang et al., 1992), in some cases up to 70% of the original genome

(Ishoey et al., 2008). Similarly, deep sequencing of complex metagenomes can lead to nearly

complete assembly of minor species, if such a species has minimal strain-level or species-level

diversity  (Iverson  et  al.,  2012).  Such  long  contiguous  sequences  allow  fairly  complete

descriptions of the species’ metabolic complement. For example, single-cell amplification of an

individual from the uncultivated TM7 phylum revealed a great deal of information, although key

details of its carbon source and energy acquisition strategies remain unanswered (Podar et al.,

2007).  A limitation of all  of these strategies is that it  is  difficult  to address multiple species

simultaneously.

The  identification  of  physically-close  gene  cassettes  or  operons  is  a  common technique  for

finding  genes  that  participate  in  a  single  pathway. As  a  means  of  finding clusters  of  genes

presumed to be involved in  the same pathway, Overbeek et  al.  (1999) surveyed orthologous

genes that occurred within 300 basepairs of each other in more than one genome. Their approach

has been extended by several other authors to generate large databases of microbial gene clusters
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(Mavromatis et al., 2009), link environmental contexts to these clusters (Bohnebeck et al., 2008),

and improve binning accuracy of metagenomic sequences (Weng et al., 2010). These methods do

not, however, detect associations of genes that are located more distantly on the chromosome or

on different chromosomes, if present.

With advances  in  high-throughput  sequencing and assembly, someday it  may be possible  to

directly sequence every base from every microbe in an environment. Despite this, it is likely to

remain  a  challenge  to  identify  all  co-occurring  pathways. Some  microbes  have  multiple

chromosomes  or  several  large  plasmids  (Suwanto  and  Kaplan,  1989),  and  thus  complete

assembly  is  not  equivalent  to  cell-level  genomic  content.  Additionally,  many  organisms

promiscuously exchange genetic material, so a single genome (single cell) is only a portion of

the “pan-genome” of that species (Medini et al., 2005). Although lateral gene transfer can occur

across domains, most transformation and transduction is limited to similar species (Frost et al.,

2005).  A need remains  for  a  technique  to  evaluate  the  metabolic  potential  of  the full  “pan-

genome” of a given taxon.

Tetranucleotide Percentages

Two genes can be assumed to come from a single organism if they are sequenced and assembled

onto the same scaffold. If two given genes are not found on any of the same scaffolds, their

association in one organism can still be determined using statistical properties of sequence data.

Such approaches  include binning by % GC content,  but  this  distinguishes  sequences  in  one

dimension  and  is  only  useful  for  low-diversity  samples  (Tyson  et  al.,  2004).  Analogously,
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different species use different abundances of tetranucleotide and other so-called k-mer patterns in

their genomes (Karlin et al., 1994). These different abundances are specific to clades and can

distinguish from the level of genus to, in some cases, subspecies (Pride et al., 2003; Sharon et al.,

2012).  These  usage  patterns  have  allowed  the  separation  of  different  clades  in  complex

metagenomic data (Dick et al., 2009; Teeling et al., 2004a).

Tetranucleotide  percentages  have  found  most  of  their  practical  uses  in  classifying  unknown

sequences into taxonomic bins for further assembly and annotation. Teeling et al. (2004b) used

Pearson correlation coefficients between mean and standard deviation-adjusted tetranucleotide

percentages of 116 known genomes to classify sequences from 6 metagenomes. The requirement

for prior data, and the assumption that environmental metagenomes behave statistically similarly

to known genomes, have rendered this technique less used. Recent approaches use clustering

methods such as self-organizing maps (Abe et al., 2003; Dick et al., 2009; Uehara et al., 2011;

Weber et al., 2011; Hamilton et al., in prep.). Self-organizing map techniques are very good at

binning abundant species,  but as diversity scales up they become extremely computationally

expensive and are incapable of properly binning very poorly represented organisms. Often low-

abundance bins are filtered out (Saeed et al., 2012), and as a result, important metabolisms in

low-abundance organisms may be neglected.

Outside of their use in binning, tetranucleotide percentages still give a great deal of information

about biological diversity in microbial ecosystems. Jiang et al. (2012) found that tetranucleotide

frequencies combined with other k-mer frequencies from metagenomic samples gave insight into
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diversity changes across those samples. Differences in the tetranucleotide usage patterns of the

samples reflect the evolutionary trajectories of each microbe, including its nearest relatives and

lateral-gene transfer partners (Perry and Beiko, 2010). Because tetranucleotide patterns tell us

something  about  genetic  exchange  in  addition  to  microbial  identity,  they  can  be  useful  for

understanding the distribution not only of organisms, but also of pathways in these organisms.

Here we avoid the binning approach and instead use the tetranucleotide percentage of a given

scaffold as the “address” of the genes on that scaffold. We then interpret the distances between

these “addresses” as the strength of the linkage between the genes on those scaffolds. This is

somewhat  analogous  to  the  study  of  ecological  interactions,  wherein  the  two-dimensional

distance between species is used as a proxy for the strength of their  ecological relationships

(Andersen, 1992).
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Figure 4.1: Illustration of how tetranucleotide score distances are calculated. See text for 
details.

Approach

Hyperdimensional geometric tetranucleotide associations

The general approach is as shown in Figure 4.1. Tetranucleotide frequencies are computed for

assembled DNA contigs (Figure 4.1a), resulting in a histogram of frequency of occurrence of

each of the 137 distinct tetranucelotides (Dick et al., 2009). This defines the “address” in 137-

coordinate hyperdimensional space for all genes (open reading frames; ORFs) on that contig,

here simplified to two dimensions for illustrative purposes (Figure 4.1b). In this cartoon, gene A

represents a relatively common gene, likely to be found in many organisms in a population; gene

B represents a rare gene that is part of a metabolic pathway dependent on A, so it cannot occur

without A, although the reverse can occur. Gene C is another gene of modest frequency in the
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community, but it is unassociated with either A or B. The Euclidian nearest-neighbor distances

from one of these genes to another are thus asymmetric (Figure 4.1c): the A→B distances show

that some As are closely located in space to B's, while other As are not. Conversely, all Bs sit

closely  with  As.  The  calculated  abundance of  geometric  association  lengths  A→B  thus  has

significant magnitude both at distance zero (for As that have a B) and also at greater distances

(for the unassociated As), while B→A has the highest relative abundances only at short distances

from A. Similarly, A→C is bimodal, with some As quite close to a C, but with other As farther

away (Figure 4.1d). 

Figure 4.2: Illustration of controls for tetranucleotide association. See text for details.

Although  such  geometric  distances  are  easy  to  compute,  the  goal  is  to  determine  if  these

distances  reflect  significant  association  of  any  two  genes.  This  requires  that  each  pair  be
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referenced to a control designed for neutrality of association (Figure 4.2). Such a control can be

envisioned in two ways: (i) either the frame of reference is the distance between taxa in the

community, or (ii) the frame of reference is a randomized distribution of the two genes being

compared. 

We refer to (i) as the biological control (Figure 4.2a). The simplest such control would be the

distribution of a conserved gene, e.g., rpoA (here symbolized as gene D; Figure 4.2a). All taxa in

a community must contain D, and the distances between them (symmetric; D↔D) describe the

phylogenetic “closeness” of a community. In the cartoon, A→B associations are not always more

closely  related  than  are  nearest-neighbor  taxa  (D↔D)  (Figure  4.2b);  conversely,  all  B→A

distances are nearer than any two nearest-neighbor taxa. This indicates the B→A gene pair is

always  associated within an organism and is  never  separated among neighboring organisms.

However, the distance spectrum calculated in this control suffers from a data density bias. The

frequency of occurrence of rpoA is a function of the abundance of taxa and the microdiversity of

their  genes.  In  the  extreme  case  in  which  infinite  data  occupied  one  region  of  the  total

hyperdimensional space (e.g.,  an ultra-low-diversity community, dominated by many slightly-

divergent strains of one species), all abundance vs. distance density plots would skew to the

origin (Figure 4.2b), and all gray dashed (control) and black (gene-gene) lines would become

identical. 

An alternative approach is to apply a statistical randomization (option ii; Figure 4.2c). Our null

hypothesis is that any two genes A→B are distributed independently of each other. If this is true
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then a random permutation of all data points classified as either A or B should not change the

distance profile between them; this is equivalent to forcing A→ B and B→ A to be symmetrical.

This is also similar to declaring that A and B are always hosted by different taxa. When the true

data approach this statistical randomization, the genes can be viewed as “not associated”. The

opposite case is when A is completely dependent on B. In this case, randomly reassigning the

genes in the statistical control will increase the nearest-neighbor distance between them. The

distance  spectrum  of  truly  associated  genes  will  lie  closer  to  the  origin  than  the  distance

distribution  of  the  control  (Figure  4.2d).  To execute  this  control,  we randomly permute  the

positions of any two genes A and B among the union of both of their positions.

Gene Selection

To apply this approach to natural samples, we select genes specific to known metabolic and

biosynthetic pathways. Each gene must be essential to the metabolic pathway being investigated

and  should  not  be  a  strong  homolog  of  other  proteins  of  different  function.  For  example,

digeranylgeranylglycerol phosphate synthase (DGGGPS) and chlorophyll synthase (ChlG) are

close homologs, but respectively they perform the second alkylation of archaeal ether lipids and

the phytyl esterification of chlorophyll. Avoiding such cases of sequence homology is even more

challenging for core metabolisms than for biosynthetic pathways, since, for example, there are

only subtle differences between many/most of the respiratory chain cytochromes. When possible,

the genes encoding the target protein also should be present only once in a genome. In this work,

all protein sequences were subjected to analysis by pBLAST and String to avoid cases such as

the DGGPS vs. ChlG example above. 
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As positive controls, we include genes known to co-occur in the same pathways. They are added

as pairs  of genes that always should exist  together, either because they are part  of a known

operon or are both essential to a given pathway. The RNA polymerase genes rpoA and rpoB are

part of the same operon and should occur in every bacterial species. Functional gene examples

include  dsrA and  dsrB for sulfate reduction, and psbA and  psbB for photosynthesis: one never

should be present without the other. Finally, variants of the same gene from different species are

also included when there are substantial sequence differences across a broad range of taxa; this

helps ensure that more variants of a given gene are detected in the analysis.

Methods

Metagenomes

The approach was tested on metagenomes obtained from the 7 meter deep oxic-anoxic interface

and 8 meter deep sulfide-rich layers of Mahoney Lake (49°17’N, 119°35’W) as described in

Klepac-Ceraj et al. (2012). DNA was extracted and metagenomes were obtained as described in

Hamilton  et  al.  (in  prep.).  Briefly,  DNA was extracted  with  an  e.Z.N.A SP Plant  Maxi  Kit

(Omega Biotek);  fragmentation and library preparation were performed commercially the by

North  Carolina  State  University  Genomic  Sciences  Laboratory;  paired-end  150  bp  Illumina

(HiSeq 2500) sequencing was performed at the Harvard Center for Systems Biology. The raw

data was quality filtered with Trimmomatic (Lohse et al., 2012) to remove the first three bases,

Illumina TruSeq adapter sequences and any raw sequences of low quality. Only sequences with

at least 50 basepairs in both the forward and reverse direction were retained. Scaffolds were
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assembled  from  raw  FASTQ  genomic  data  by  IDBA-UD  using  eight  threads  with  default

parameters (Peng et al., 2012). Open reading frames (ORFs) were identified from the assembled

contigs using MetaGenemark with the supplied ORF prediction model (Zhu et al., 2010).

Gene Prediction

Using the amino acid sequence of each of the genes listed in Table 4.1, a PSIBLAST search of

the Genbank non-redundant (NR) database was conducted, returning all sequences with an E-

value ≤ 1e-10, a moderately stringent homology cutoff (Altschul et al., 1997). These sequences

were then aligned using MUSCLE (Edgar, 2004) with 2 iterations (maxiters-2) as recommended

by the  MUSCLE documentation  for  balancing speed and accuracy in  large  alignments.  The

MUSCLE alignments were converted to Stockholm format for input into HMMBuild, a program

included in HMMER 3.0 (Eddy, 2011), which used them to build hidden Markov models (HMM)

for gene prediction.

Using the HMMER 3.0 program HMMScan with default settings, these models were compared

to  the  ORF  tables  generated  by  MetaGenemark  to  identify  putative  gene  homologs  in  the

metagenomic dataset. The best match of a given metagenomic ORF was considered to be the

identity  of  that  ORF  for  further  computation.  For  example,  despite  statistically  significant

matching of shC, osc, and cas1 to a single ORF, the ORF is defined only as the one of these with

the lowest (best) E-value score. Additionally, to reduce false positives, only matches with E-

values of less than 10e-10 were retained.
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Table 4.1: List of genes used for finding gene associations. (*) This enzyme also exists in acetyl-
CoA autotrophs. (**) Also used by a wide variety of acetate oxidizers.

Pathway Gene Enzyme Name GI Species

Core metabolisms

Photosystem I, 
Cyanobacteria

psaA
Photosystem I P700 apoprotein 
A1

48058Synechocystis sp. PCC 6803

psaB
Photosystem I P700 apoprotein 
A2

48059Synechocystis sp. PCC 6803

Photosystem II, 
Cyanobacteria

psbA Photosystem II protein D1 16329178Synechocystis sp. PCC 6803

psbB Photosystem II protein CP47 1001216Synechocystis sp. PCC 6803

Photosystem I, 
Proteobacteria

pufM
Photosynthetic reaction center 
M

260161129
Allochromatium vinosum DSM 
180

pufL Photosynthetic reaction center L 260161128
Allochromatium vinosum DSM 
180

Photoheterotroph pr proteorhodopsin 149688766
Candidatus Pelagibacter ubique 
HTCC1002

Rubisco, form I rbcL
Ribulose bisphosphate 
carboxylase oxygenase

1710041Synechocystis sp. 6803

Rubisco, form II rbcL
Ribulose bisphosphate 
carboxylase oxygenase

77389277Rhodobacter sphaeroides 2.4.1

Phototrophic iron 
oxidation

pioA Fe oxidase oxidoreductase CytC 119331447
Rhodopseudomonas palustris 
TIE-1

Phototrophic iron 
oxidation

pioC Fe oxidase HiPIP 119331451
Rhodopseudomonas palustris 
TIE-1

N2 fixation nifH nitrogenase subunit H 77464110Rhodobacter sphaeroides 2.4.1

Chemoautotrophic 
iron oxidation

iro Fe oxidase HiPIP 218666489
Acidithiobacillus ferrooxidans 
ATCC 23270

Aerobic iron/sulfur 
oxidation

coxB aa3-type CytC oxidase 198284826
Acidithiobacillus ferrooxidans 
ATCC 53993

Manganese oxidationompC multicopper oxidase, Mn-type 39984643Geobacter sulfurreducens PCA

Autotrophic 
nitrification, Archaea

amoA ammonia monooxygenase 166783464Nitrosopumilus maritimus SCM1

Autotrophic 
nitrification, Bacteria

amoA ammonia monooxygenase 3282845
Nitrosococcus oceani ATCC 
19707

Aerobic methane 
oxidation

mmoZ
particulate methane 
monooxygenase

53804672
Methylococcus capsulatus str. 
Bath

Photoautotrophic 
sulfide oxidation

sqr sulfide-quinone oxidoreductase 77465561Rhodobacter sphaeroides 2.4.1
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Table 4.1 (Continued): List of genes used for finding gene associations.

Pathway Gene Enzyme Name GI Species

sqr sulfide-quinone oxidoreductase 288897230Allochromatium vinosum DSM 180

Thiosulfate 
oxidation, SOX 
cluster soxY 288897197Allochromatium vinosum DSM 180

soxZ 288897198Allochromatium vinosum DSM 180

soxA 288941882Allochromatium vinosum DSM 180

soxY 145558159R. sphaeroides ATCC 17025

soxZ 145558158R. sphaeroides ATCC 17025

soxA 145558157R. sphaeroides ATCC 17025

Nitrate reduction narG respiratory nitrate reductase 75674970Nitrobacter winogradskyi Nb-255

Nitrite reduction nirK Cu nitrite reductase 192292984Rhodopseudomonas palustris TIE-1

Heterotroph, sulfate-
reducing

dsrA dissimilatory sulfite reductase A 219869855
Desulfovibrio desulfuricans ATCC 
27774

dsrB dissimilatory sulfite reductase B 220905555
Desulfovibrio desulfuricans ATCC 
27774

Methanogen, all mcrA methyl Co-M reductase A 20093330Methanosarcina acetivorans C2A

Methanogen, CO2-
reducing

frhB F420-reducing dehydrogenase 20089855Methanosarcina acetivorans C2A

Methanogen, 
aceticlastic*

cdhD
Corrinoid:H4SPT 
methyltransferase

20089887Methanosarcina acetivorans C2A

Homoacetogenesis**fdhA
NADP-dependent formate 
dehydrogenase

148283121Moorella thermoacetica ATCC 39073

Substrate access

Lignin oxidation 
(fungal)

lpg1 Lignin peroxidase 170200Trametes versicolor

Cellulose 
degradation (fungal, 
bacterial) cel Endocellulase 392559170Trametes versicolor FP-101664 SS1

cel Endocellulase 313204241Paludibacter propionicigenes WB4

Cellulose 
degradation 
(bacterial) bglA Cellobiase (beta-glucosidase) 319952356Cellulophaga algicola DSM 14237

Anaerobic 
degradation of 
aromatics bamA benzoyl-CoA hydrolase 418065883G. metallireducens RCH3
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Table 4.1 (Continued): List of genes used for finding gene associations.

Pathway Gene Enzyme Name GI Species

Lipid synthetic pathway

MVA isoprenoids, 
bacterial and 
archaeal mvk mevalonate kinase 161527823Nitrosopumilus maritimus SCM1

MEP isoprenoids, 
bacterial

dxr
deoxyxylulose phosphate 
reductase

288941764
Allochromatium vinosum DSM 
180

Archaeal ether lipid gggps GG-glycerol phosphate synthase 160340604Nitrosopumilus maritimus SCM1

Sulfolipid sqdB
Sulfite:UDP-glucose 
sulfotransferase

1652231Synechocystis sp. PCC 6803

Phospholipid cdsA phosphate cytidylyltransferase 77463259Rhodobacter sphaeroides 2.4.1

cdsA phosphate cytidylyltransferase 288941763
Allochromatium vinosum DSM 
180

cdsA phosphate cytidylyltransferase 400756568Geobacter sulfurreducens PCA

cdsA phosphate cytidylyltransferase 16330180Synechocystis sp. PCC 6803

Glycolipid, 
cyanobacterial

mglcD
DAG-glucosyltransferase 
MglcD

16330846Synechocystis sp. PCC 6803

Glycolipid, Chlorobi mgdA
DAG-galactosyltransferase 
MgdA

21673183Chlorobium tepidum TLS

Betaine lipid btaA
DAG aminocarboxypropyl 
transferase

77464435Rhodobacter sphaeroides 2.4.1

Ornithine lipid olsB ornithine N-acyltransferase 77465008Rhodobacter sphaeroides 2.4.1

Hopanoid sqhC squalene-hopene cyclase 53804820
Methylococcus capsulatus str. 
Bath

Steroid osc
oxidosqualene-lanosterol 
cyclase

53803023
Methylococcus capsulatus str. 
Bath

cas1
oxidosqualene-cycloartenol 
cyclase

310822657Stigmatella aurantiaca DW4/3-1

Carotenoid crtI
phytoene desaturase, lycopene-
forming

343801970
Allochromatium vinosum DSM 
180

Carotenoid crtP
phytoene desaturase, zeta-
carotene-forming

16330439Thiocapsa marina 5811

crtC hydrolase 2509050511Thiocapsa marina 5811

crtF methylase 2509050504Thiocapsa marina 5811

cruO ketolase Thiocapsa marina 5811

crtA
spirilloxanthin and/or 
spheroidene monooxygenase

Rubrivivax gelatinosus IL144

cruE
carotene 
desaturase/methyltransferase

2509050500Thiocapsa marina 5811

crtU beta-carotene desaturase 170077864Synechococcus sp. PCC 7002
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Table 4.1 (Continued): List of genes used for finding gene associations.

Pathway Gene Enzyme Name GI Species

crtY lycopene cyclase 2509050499
Thiocapsa marina 5811, DSM 
5653

cruA lycopene cyclase 146428530Chlorobium phaeobacteroides

crtL lycopene beta cyclase 33865262Synechococcus sp. WH 8102

Lactone/quorum 
sensing

luxI
acyl-homoserine lactone 
synthase

30350260Aliivibrio fischeri

cerI
acyl-homoserine lactone 
synthase

77463695Rhodobacter sphaeroides 2.4.1

raiI
acyl-homoserine lactone 
synthase

254488731Roseobacter sp. GAI101

Chlorophyll 
synthesis

por
Light-dep. protochlorophyllide 
oxidoreductase

16331782Synechocystis sp. PCC 6803

Bacteriochlorophyll 
synthesis

bchF
2-vinyl bacteriochlorophyllide 
hydratase

288942344
Allochromatium vinosum DSM 
180

Control

RNA polymerase rpoA RNA polymerase subunit A 380879662Thiorhodovibrio sp. 970

RNA polymerase rpoB RNA polymerase subunit B 380879630Thiorhodovibrio sp. 970

RNA polymerase rpoC RNA polymerase subunit C 380879631Thiorhodovibrio sp. 970

For each ORF identified as gene A, we calculated the Euclidian distance (n-th root of the sum of

n squared distances)  to  the nearest  neighboring  ORF identified as  gene B in  tetranucleotide

space. As the nearest neighbor distance is asymmetric between genes, the distance from gene B

to gene A was also calculated. If only a few copies of a given gene are detected, there is a higher

probability that random correlation will generate a false positive result, so we limited all A↔B

comparisons to genes having more than 5 identified ORFs in the datasets. Finally, the controls

(explained above) were calculated. The biological control was the distance from each rpoA gene

to  its  nearest  neighboring  rpoA gene;  this  distance  frequency is  symmetrical.  The statistical

control between all pairs of A and B was calculated as a random permutation of the two genes

between their two positions. To fully randomize this statistical control, the distance frequency

spectrum was calculated from 500 bootstrap replicates for each pair.
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Tetranucleotide Distance Calculation

All  steps  were  performed  using  a  custom  Python  script  (available  online  at

https://github.com/bovee/GeneLinkageScripts)  that  used  Numpy  and  Scipy  for  mathematical

calculations,  Screed  for  speeding  up  scaffold  lookup  and  Matplotlib  for  plotting.  First,

tetranucleotide percentages were computed for the full length of the contig associated with the

ORF being analyzed. Corresponding reverse-complement tetranucleotides were combined as in

Dick  et  al.  (2009),  and  tetranucleotides  containing  scaffolding  gaps  were  binned  into  the

tetranucleotide NNNN for a total tetranucleotide dimensionality of 137.

To generate accurate histograms, tetranucleotide percentages must be calculated on sequences of

at least 1000 basepairs, and longer sequences result in better classifications (Abe et al., 2003;

McHardy and Rigoutsos, 2007). As a preliminary cutoff, we examined only scaffolds longer than

1000 basepairs. By culling smaller scaffolds, we likely remove low-coverage clades that are not

abundant  enough  to  assemble.  This  may  remove  some  minor  species  that  nonetheless  are

important biogeochemically or ecologically. Other clades that may be overlooked include those

that do not assemble well because of highly repetitive genomes, high subspecies diversity, or

many plasmids. Better assemblers may fix the first problem, but only higher sequencing depth

will help solve the others. Regardless, such concerns are not unique to this work.
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Although the distance results can be compared graphically (as in Figures 4.1, 4.2) to determine

gene-gene relationships, statistical measures are needed to quantify the strength of the coupling.

We  used  one-sided  Mann-Whitney  U  probabilities  between  each  set  of  gene-gene  and

corresponding gene-control arrays, as computed using the statistical programming language R

using the wilcox.test function (R Development Core Team, 2008). The output is the probability

that the underlying distribution of the A→B gene-gene distances is larger than the distribution of

the controls, i.e., that A→B is farther away than would be generated by a random distribution of

these genes. Therefore, a small p-value indicates that A→B distances are either random, or closer

together than random.. This is different from the two-sided Mann-Whitney U which is a non-

parametric test of whether the two distributions are larger or smaller than each other. To calculate

p, the observations for both the control distances and the A → B  distances are combined and

ordered and the sum of the ranks for the control are used to make a U statistic. The distribution

of  the  U  statistic  is  known  and  can  then  be  used  to  calculate  a  probability  that  the  two

distributions are not different. This is different from the two-sided Mann-Whitney U which is a

non-parametric test of whether the two distributions are larger or smaller than each other. As we

are not looking for the case where the sample distribution is larger than the control (e.g. if two

genes “repulsed” each other and would never be found together), we use the one-sided Mann-

Whitney, although that alternative case is still interesting and worthwhile of examination.
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Figure 4.3: Randomly generated four-dimensional data under clustering scenarios of 1x, 4x and 
16x (a-c) analyzed with the full protocol (d-f). Gene names correspond to gene names in Figures 
4.1 and 4.2. 
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4-D Example Visualizations

Example four-dimensional data sets were prepared and analyzed by the full procedure to visually

demonstrate how the method works. In all figures, the genes correspond to the genes in Figures

4.1 and 4.2).  The locations  of 256 hypothetical  ORFs containing a gene D were chosen by

generating four random coordinates from zero to one and normalizing them so their sum is one.

Because the four dimensions sum to one, the fourth dimension is extraneous and the data can be

displayed in a three-dimensional plot (Figure 4.3a-c). The process was then repeated, but half of

the  locations  were  compressed  into,  respectively,  1/64  and  1/4096  of  their  original  volume

(Figure 4.3b, 4.3c). Because some taxa will have more microdiversity than others and hence their

contigs will occupy a tighter distribution of tetranucleotide space, real data is expected to be non-

randomly distributed; this clustering example demonstrates how the method works under such

conditions.

A (red letters) and C (yellow letters) are genes which are associated with half of all Ds, but are

never found with each other. B (blue letters) occurs in half of all organisms that have a gene A (a

quarter of all D's). The 4-dimensional locations of genes A, B, and C are determined by adding

Gaussian noise with scale 0.005 to the location of their associated gene D. 

In Figure 4.3d-f, nearest-neighbor distances from each gene to each other gene were computed as

described above and their distribution plotted (black curve) as were the biological (dashed gray

curve) and statistical (solid gray curve) controls. The one-sided Mann-Whitney U probabilities
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that the gene-gene distances were greater than the distribution of the statistical control (ps) and

biological control (pb) were calculated for all comparisons. The statistical control is not reported

when the same gene is compared to itself (diagonal axes); the union of a gene and itself results in

the  same  distribution  as  the  unperturbed  union  and  is  hence  identical  to  the  original.  The

biological control need only be computed once per clustering scenario, so its curve (grey dashed)

is the same in all plots for each scenario, despite differences in y-axis scaling.

Results and Discussion

4-D Examples

Although it can only be seen in the density plots under the most clustered scenario because both

probabilities round to zero, the method yields closer association of B→A than of A→B (i.e., p of

B→A is  lower  than  p of  A→B).  By  the  standard  metric  of  p<0.05,  both  are  also  always

significant and indicative of the expected association for the hypothetical scenario, i.e., all Bs are

linked strongly to As, but not all As are linked strongly to Bs. As the clustering increases and half

of all the genes are increasingly close to each other, the associations between A and B become

weaker, although they do not disappear until all the points are unrealistically compressed to a

space of around 1/2,000,000 their original volume (not shown).

Additionally, although A-C, B-C, and C-C comparisons were performed, as expected there was

no significant association between C and the other genes. This non-association also holds true

under the scenarios of increased clustering, demonstrating that while the method may produce
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Type II statistical errors (false negatives), it is relatively immune to Type I statistical errors (false

positives).

Sensitivity Test of Model Parameters

 First we examined the Mahoney Lake 7 meter metagenomic data

under as many combinations of method parameters as possible (Table

4.2).  The  number  of  Monte  Carlo  replicates  used  to  generate  the

statistical control was fixed at 500. Testing showed that this value

was high enough to ensure the statistical control had asymptotically

approached a final distribution and that it would on average result in

no more than a 2% variance in the final probabilities (Figure 4.4).

Table 4.2: Parameters tested in sensitivity analysis.

Parameter Tested Values Description

Minimum HMMER 
E-value

10-5, 10-10, 10-15 Lower values increase stringency of gene 
identifications, but also decrease total number of 
identified ORFs to be compared

Minimum # of Genes 5, 10, 25 Lowering increases number of ORFs compared, but 
may be vulnerable to false associations.

Minimum Contig 
Length

1000, 2000, 5000 Lowering increases number of genes to compare, 
but causes higher variability (lower accuracy) of 
tetranucleotide scores.

The first parameter tested was the E-value cutoff used by HMMER to assign gene identities to

ORFs. Although 10-10 is believed to be a robust choice (Kelley et al., 2003), lowering the cutoff
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will both increase the number of “true” genes found, but will also increase the number of weakly

homologous, but functionally unrelated genes and thus the number of false positives. The second

parameter  was  the  minimum contig  length;  all  shorter  sequences  were  eliminated  from the

metagenome before proceeding. Although 2000 base pairs is believed to generate representative

tetranucleotide percentages, we also examined cutoffs of 1000 and 5000. A lower value allows

many more contigs to be retained and thus more instances of each gene to be compared, but it

decreases the accuracy of the assigned tetranucleotide profile and may case spurious results. The

third parameter was the minimum required number of ORFs identified a given gene; a number

smaller than this cutoff eliminates the gene from the comparison list. Although a lower number

once again allows more gene-gene associations to be probed, it also increases the chance of a

false positive. For example, if only one instance of a given gene were present, it would have a

high probability of randomly being found with any other gene and thus generating a spurious

linkage.

Table 4.3: Total number of identified genes from the Mahoney Lake 7M data set compared under
different sets of parameters.

E-value 10e-5 10e-5 10e-5 10e-10 10e-10 10e-10 10e-15 10e-15 10e-15

Min.  Contig
Length 1000 2000 5000 1000 2000 5000 1000 2000 5000

Total Genes 16432 13186 9337 9690 7900 5651 6244 5136 3703

>5 Copies 16420 13174 9320 9681 7888 5636 6235 5120 3692

>10 Copies 16398 13139 9299 9627 7838 5557 6192 5084 3618

>25 Copies 16204 12958 9153 9496 7695 5461 5961 4876 3436
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Figure 4.5: Associations between genes under varying parameters in the 7-m sample. Unless 
labeled otherwise, all associations are between at least 5 genes identified with e-values of 10-10 
on contigs with at least 5000 basepairs. Arrows indicate direction of association: A → B implies
if A is present, B will frequently be present also. (a) Varying e-value used for gene identification, 
(b) varying minimum contig size, and (c) varying minimum number of genes for identification. 
Gene names in black were found to have associations with other genes; names in gray have 
sufficient copy numbers for calculation under the criteria for that trial, but no associations; 
“blank” gene names did not appear frequently enough to be calculated.
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Sensitivity Test Results

Because Mahoney Lake is a low complexity ecosystem with few major species (Overmann et al.,

1991; Hamilton et al., in prep.), the default choice was to use five genes as a minimum number

for comparison. The minimum number of genes used (5, 10, 25) to calculate a linkage has little

significant  impact  on  the  number  or  strength  of  linkages  found.  Increasing  the  number  of

required occurrences of each gene does not change existing linkages (Figure 4.5c), but it does

remove several genes, such as sulfur oxidation (sox) and bacteriochlorophyll synthesis (bchF)

genes that are likely important in lake processes. Based on this result, we retain 5 as the default

choice for this parameter. 

Table 4.4: Number of contigs greater than a specific length and number of ORFs found on those 
contigs

Contigs ORFs

>1000 bp 125731 541611

>2000 bp 59201 401649

>5000 bp 19914 256724

Decreasing the E-value threshold to 10-5 revealed some interesting links, such as from archeael

lipid synthesis (gggps) to sulfolipid synthesis (sqdB), an association which also has recently been

reported in the literature (Meyer et al.,  2011; Villanueva et al.,  2013). However, at E = 10 -5,

apparent  false  positives  (homologs  possibly  of  different  function)  also  were  detected.  For

example,  fungal  lignin  peroxidase  (lpg1;  not  believed  to  be  a  central  or  widely-distributed
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process in this anoxic lake) gained widespread linkage from other genes, possibly because a

homologous,  but functionally different gene was identified as  lpg1.  As the number of genes

identified was roughly similar between the 10-10 and 10-15 tests but markedly different from the

10-5 test (Table 4.3), for further runs we decided to use an E-value of 10-10. Results from tests on

different E-values are presented in an abbreviated format in Figure 4.5a.

There are less than one sixth the number of >5000 bp contigs as there are >1000 bp contigs

(Table  4.4),  but  only  slightly  less  than  one  half  the  number  of  ORFs  were  retrieved  when

examining these longer contigs (Table 4.3). In addition, a larger number of significant linkages

was found when using this smaller number of longer contigs (≥5000 basepairs; Figure 4.5b).

This  effect  likely  arises  because  longer  contigs  will  yield  tetranucleotide  scores  that  more

accurately represent the underlying organisms, thus improving the ability of the algorithm to

detect linkages. For all further work, we examined >5000 bp contigs to ensure most accurate

tetranucleotide scores for comparison.

112



Figure 4.6: Heatmap showing associations between genes at 7-m with at least 5 
copies, identified at E-value of 10-10, in contigs of length 5000 bp or greater. 
Linkages are directional from Gene A → Gene B.
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Figure 4.7: Heatmap showing associations between genes at 8-m with at least 5 
copies, identified at e-value of 10-10, in contigs of length 5000 bp or greater. Linkages
are directional from Gene A → Gene B.
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Figure 4.8: Heatmap showing associations between genes in lake bottom sediment 
with at least 5 copies, identified at e-value of 10-10, in contigs of length 5000 bp or 
greater. Linkages are directional from Gene A → Gene B.
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Results for Mahoney Lake Metagenomes

Using the best parameters as determined above, results were calculated for the full gene list

(Table 4.1) for the three Mahoney Lake metagenomes (Figures 4.6–4.8). Encouragingly, several

expected  gene-gene  linkages  were  detected,  while  known false  associations  did  not  appear.

Ribosomal  protein  genes  (rpoA,  rpoB,  and rpoC)  were  linked to  each other  in  all  datasets,

although rpoA was more weakly linked to rpoB and rpoC than they were to each other. In many

microbes,  rpoB and  rpoC form an operon, while  rpoA is located distally on the chromosome;

e.g., in Escherichia coli str. K-12 substr. MG1655 this operon is located 0.74 Mbp from the rpoA

gene, increasing the possibility that it lies in a region with a slightly different tetranucleotide

score. In a metagenomic dataset, the odds of having a 5000 bp contig containing both rpoB and

rpoC are much greater than having a 0.74 Mbp contig with all three genes. Thus the expected

probability of linkage from rpoA to the rpoBC operon is lower, although it still should (and does)

detect a significant linkage due to the inherent similarity in tetranucleotide scores.
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Figure 4.9: Relationship between tetranucleotide scores of rpo genes and whole genomes for five
genomes. The Y-axis is the Euclidean distance between (1) the tetranucleotide score of a section 
of DNA centered on either the middle of a rpoA (dashed) or rpoB (dotted) gene or on another 
random place in the genome (solid line with error bars representing standard deviation of 50 
samples) and (2) the tetranucleotide score of the whole genome. The X-axis is the number of 
nucleotides in that given section. 

Additionally, all  functional genes should link significantly to  rpoA,  rpoB,  and  rpoC;  yet  the

results show that many functional genes do not have low probability scores (significant positive

linkages) when compared to these genes, especially for rpoBC (Figures 4.6-4.8). There are two

simple,  possible explanations for these lower than expected linkage strengths. (1) Ribosomal

proteins are essential for cellular processes and are thus highly conserved; this conservation may

manifest itself as a tetranucleotide signature distinct from the rest of the genome. One way to test

this  hypothesis  is  to  examine  if  the  Euclidean  distance  from the  tetranucleotide  score  of  a

hypothetical contig containing an rpo gene to the tetranucleotide score of the whole genome is
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greater than the distance from any other sequence of the same length to the whole genome. Tests

on five model genomes reveal that indeed rpo genes are more distant in tetranucleotide space,

although not by more than two or three standard deviations of normal genomic heterogeneity

(Figure  4.9).  (2)  Alternatively,  as  our  metagenomes  lack  full  sequence  coverage,  it  is  also

possible that many of the functional genes either lack a corresponding ribosomal protein in the

overall dataset, and/or the ribosomal proteins did not assemble well and were filtered out by the

contig length cutoff discussed above. In the 7-m dataset there were 126  rpoA genes and  169

rpoB genes identified at the 10-10 threshold in contigs longer than 2000 basepairs, and just 94 and

114, respectively, in contigs > 5000 bp. These numbers are much lower than a previous estimate

of  222-934  OTUs  derived  from  previous  work  (Klepac-Ceraj  et  al.,  2012)  indicating  an

incomplete sampling of the microbial diversity of this system.

Some genes were not found in enough copies (≥5) to make comparisons in any sample, including

iron (iro) and manganese (ompC) oxidation. Iron and manganese levels in the lake should be low

due to the high concentrations of sulfide, so this is also to be expected. Similarly, not enough

instances of bacterial or archaeal nitrification pathways (amoA) were found.

Sulfate reduction genes (dsrA and dsrB) are only found in the 7-m layer and are bidirectionally

linked, as expected. Similarly, sulfur oxidation genes (soxA, soxY, and soxZ) are also only found

as a group in the 7-m dataset, and they also form a completely bidirectionally linked group.

Unfortunately, other sets of known gene pairs were not found at ≥ 5 copies (pufM and pufL, psaA

and  psaB,  psbA and  psbB),  likely  because  of  the  relatively  low diversity  of  photosynthetic
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species in this system (Hamilton et al., 2013). The lack of association between the few oxygenic

photosystem I  and II  genes  which  were  found (psaA and  psbA)  is  likely due to  incomplete

metagenome coverage, especially as DNA from oxygenic photoautotrophs would be expected to

come  from “fossil”  sinking  organic  particles. An indication  of  the  general  absence  of  false

positives comes from genes that are functionally redundant (e.g.,  puf versus  psa photosystem

genes, or  dxr versus  mvk isoprenoid biosynthetic pathways): these pairs were not found to be

linked in any sample.

There are, however, a few associations that may reflect false positives, and this may be due to the

incorrect  assignment  of  gene  identity  to  a  homologous  sequence  encoding  for  a  different

function. For example, in the 7-m data, anaerobic degradation of aromatic compounds (bamA) is

linked to a light-dependent chlorophyll synthesis gene specific to oxygenic phototrophs (por).

This  chlorophyll  synthesis  gene  is,  in  turn,  linked  to  many  genes  including  both  soxA

(Allochromatium  and  Rhodopseudomonas  homologues)  and  phototrophic  sulfide  oxidation

(sqR).  Oxygenic  photoautotrophs  containing  chlorophyll  are  unlikely  to  be  anaerobically

degrading  aromatic  compounds  in  these  samples.  Also,  although  chlorophyll-containing

cyanobacteria can oxidixe sulfide (Cohen et al., 1986; Johnston et al., 2009), both of these results

are  more  likely to  have  been caused by false  inclusion  of  short-chain  dehydrogenase  genes

homologous to por that are found in bacteria such as Mycobacterium and Streptomycetes spp..

A  few  genes  had  associations  with  many  other  genes.  These  were  primarily  phospholipid

synthesis  (cdsA),  “cyanobacterial”  glycolipid  synthesis  (mglcD),  and  the  non-mevalonate  or
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deoxyxylulose 5-phosphate isoprenoid synthesis pathway (dxr). All are expected to be important

for  lipid  biosynthesis  and  are  widespread  in  bacteria.  This  fits  with  the  predominance  of

Chromatiaceae  throughout  the  lake  (Overmann  et  al.,  1991;  Overmann  et  al.,  1992)  and

Gammaproteobacteria in general making up the majority of genus-level diversity at 7 m (Klepac-

Ceraj et al., 2012). Chromatiaceae use the non-mevalonate pathway (Eisenreich et al., 2004) and

produce both phospholipids and glycolipids (Imhoff and Bias-Imhoff, 1995). By comparison, the

glycolipid synthesis gene from Chlorobi (mgdA) was generally not associated with other genes.

The genes dxr and cdsA themselves were bidirectionally closely associated, consistent with their

common occurrence in a single transcriptional unit (Grolle et al., 2000; Takahashi et al., 1998). In

a study of the intact polar lipids of a marine water column, Van Mooy and Fredricks (2010)

found that phospholipids were dominantly associated with heterotrophic bacteria but were also

present in small quantities in photosynthetic organisms containing thylkaloid membranes, both of

which are likely to produce isoprenoids via the  dxr pathway (Boucher and Doolittle, 2000). In

addition to the dxr isoprenoid pathway, the gene for the mevalonate kinase pathway (mvk) was

also found in all of the samples. Its strongest association was to the chlorophyll synthesis gene

(por) at 7 m, possibly reflecting use of the mevalonate kinase pathway in plants (Rohmer, 1999).

The  overwhelming  dominance  of  the  non-mevalonate  pathway  in  Mahoney  Lake  does  not

necessarily  reflect  all  microbial  ecosystems,  and  other  environments  should  be  studied  to

examine how the distribution of isoprenoid pathways changes between environments.
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The  glycolipid  synthesis  gene  from  cyanobacteria  (mglcD)  was  bidirectionally  linked  to

sulfolipid synthesis (sqdB). Sequenced purple sulfur bacterial genomes are not known to contain

sulfolipid synthesis genes (Villanueva et al., 2013) and no definitive identifications of sulfolipids

have been made in the Chromatiaceae (Imhoff and Bias-Imhoff, 1995), so these associations are

believed  to  be  from  Cyanobacteria  or  other  oxygenic  photoautotrophs  sinking  from  the

mixolimnion  (Klepac-Ceraj  et  al.,  2012).  As  most  cyanobacterial  sulfolipids  contain  both

sulfonyl and glucose moieties (Riekhof et al, 2003, Van Mooy et al., 2006),  sqdB may require

mglcD, but not necessarily the reverse. In agreement, the relative strength of association from

sqdB to mglcD is much stronger than the reverse in our results.

Consistent  with  the  hypothesis  that  sulfolipid  genes  are  predominantly  from  oxygenic

photoautotrophs, there is a link from a photosystem I gene (psaA) to  sqdb, and  psaA is also

linked to mglcD. Associations to cdsA were also strongest in the 7 m layer, while associations to

mglcD were strongest in the 8 m layer, potentially indicating that a greater proportion of DNA in

this  layer  derives from sinking remains of oxygenic photoautotrophs which more commonly

produce glycolipids (Hölzl & Dörmann, 2007). Steroid synthesis genes (osc; cas1), expected to

be  primarily  from eukaryotes,  had  no  associations  at  7  m,  but  in  the  sediment  were  found

associated with the carotenoid synthesis genes required for beta-carotene (crtI, crtP, crtY) and to

sqdb. Hopanoid synthesis genes (shc) were present in all samples, but no associations were found

between  them  and  any  other  genes  (except  rpo).  This  is  consistant  with  suggestions  that

hopanoid  synthesis  is  neither  phylogenetically  nor  metabolically  associated  to  any  specific

bacteria (Pearson et al., 2007).
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The  one  gene  associated  with  bacteriochlorophyll  synthesis  (bchF)  is  the  proteobacterial

photosystem gene (pufM); this is consistent with the production of bacteriochlorophyll in this

purple sulfur bacteria-dominated ecosystem.  pufM also has an association to nitrogen fixation,

which suggests that the Chromatiaceae in Mahoney Lake are able to fix nitrogen (Asao et al.,

2007). However, the reverse association is not observed to be true; nifH is linked to the common

lipid biosynthesis genes (cdsA, dxr) and soxA-allo, potentially indicating that nitrogen fixation in

this environment is more generally performed by organisms involved in sulfur oxidation.

Bacterial cellulase (cel, labelled “cell-bact”) is linked to a number of genes at 8 m, as is the gene

for nitrite reduction (nirK). These linkages may be representative of a single species or closely

related taxa with a stable set of genes performing these processes in the anoxic monimolimnion.

No associations between carotenoid genes were found at 8 m, but interesting associations existed

at  both  7  m and in  the  sediment.  At  7 m,  a  methylase  (crtF)  was bidirectionally  linked to

lycopene cyclase (crtY) which in turn was bidirectionally linked to a carotenoid ketolase (cruO).

A carotenoid hydroxylase (crtC) was in turn directionally linked to all of these genes, but none

were linked to it. All four of these genes are in the okenone-producing pathway of purple-sulfur

bacteria  (Vogl  and  Bryant,  2011;  2012)  and  may  be  expected  to  co-occur  in  the  lake.  A

carotenoid  monooxygenase  (crtA)  was  also  directionally  linked  to  cruO.  crtA is  known  to

ketolate spheroidene and spheroidenone, but no close homologues have previously been found in

okenone-producing bacteria (Vogl and Bryant, 2011). Another ketolase (cruS) is present in the
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species investigated by Vogl and Bryant (2011); it is possible that crtA is replacing its function in

this environment.

The bidirectional linkage between cruO and crtY was also present in the sediment. Many more

genes were associated to crtI in the sediment, indicative of its central role in initiating almost all

carotenoid synthesis pathways. There was also a link from beta-carotene desaturase (cruE) to

phytoene  desaturase  (crtP)  at  both  7  m  and  in  the  sediment.  Both  genes  are  found  in

cyanobacteria (crtP is  sometimes annotated as  crtQ;  Graham, 2008) and are involved in the

formation of renierapurpurin (Graham and Bryant, 2008), although this carotenoid was below

detection in all samples of the lake (Chapter 2, this thesis).

Final comments

There are still some limitations with this method. It will not resolve situations where there are

links  between  pathways  in  syntrophic  organisms,  nor  will  it  resolve  instances  where  the

metabolisms  of  two  organisms  with  different  tetranucleotide  frequencies  are  coupled.  For

example, the anaerobic oxidation of methane by sulfate seems to be mediated by a consortium of

a bacterium and an archaeon. Despite their close proximity, these two microbes probably do not

share the same tetranucleotide frequency, and thus associations between methane oxidation and

sulfate reduction would not be found using these approaches.

Another  limitation  is  this  method  only  analyzes  the  genetic  capacity  of  an  environmental

community. The presence of a gene does not necessarily imply its expression (Frias-Lopez et al.,

2008). However, because tetranucleotide frequencies could be calculated on RNA in addition to
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DNA, our method could be extended to the analysis of longer transcriptional fragments from

metatranscriptomes. Although amino acid usage patterns in proteins are in part influenced by

biases in nucleotide usage (Singer and Hickey, 2000), extending the method to peptide sequences

is probably not feasible.

Conclusion

We constructed a method to find associations between genes (e.g., their simultaneous presence in

an  organism  or  in  strains  bearing  closely  related  patterns  of  tetranucleotide  usage)  using

Euclidian  distances  between  tetranucleotide  frequencies.  When  applying  this  method  to

metagenomic samples from a meromictic lake, we revealed both previously known associations

(e.g., dxr ↔ cdsA) and some novel associations (e.g., crtA → cruO). There is future potential to

use this method on metatranscriptomes and on next-generation metagenomes from other sample

sites. Using expanded, curated gene libraries for calculating the gene associations promises to

refine and expand our knowledge of gene interactions and patterns in the environment.
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APPENDIX 1
Compound Concentrations for Chapters 2 & 3

Supplemental  Table S1a.  Concentrations of all measured FAMEs presented in Chapter 2, Figure 1a.
Concentrations are in µg compound per mg total lipid extract;  n.d., not determined or below detection
limits. 

µg/mg TLE 7 m Fxn F 7 m Fxn G 8 m Fxn F 8 m Fxn G Sed Fxn F Sed Fxn G Sho Fxn F Sho Fxn G 
C12:0 n.d. n.d. n.d. n.d. 0.0712 0.0092 0.0046 n.d.
C13:0 n.d. n.d. n.d. 0.0025 n.d. 0.0044 0.0054 n.d.
C14:1 n.d. 0.0050 n.d. 0.0206 n.d. 0.0005 n.d. n.d.
C14:0 1.49 0.120 0.859 0.753 0.286 0.0767 0.0728 0.0002
i-C15:0 0.0871 0.0238 0.269 0.634 0.136 0.0674 0.144 0.0020
a-C15:0 0.0471 0.0261 0.536 1.04 0.164 0.128 0.238 0.0056
C15:0 0.249 0.0188 0.0090 0.0883 0.0370 0.0137 0.0411 0.0001
i-C16:0 n.d. n.d. 0.123 0.331 0.102 0.0746 0.123 0.0027
C16:1 10.2 0.908 1.12 0.845 0.0265 0.106 0.161 0.0014
C16:0 12.1 0.842 4.59 4.66 1.36 0.439 0.567 0.0223

10Me-C16:0 n.d. n.d. 0.0530 0.322 n.d. 0.0389 0.0679 0.0023
i-C17:0 n.d. n.d. n.d. 0.0750 0.0385 0.0144 0.0620 0.0002
a-C17:0 n.d. n.d. 0.130 0.376 0.0730 0.0525 0.133 0.0055
cyc-C17:0 n.d. 0.0894 n.d. 0.215 n.d. n.d. 0.0137 n.d.

C17:0 0.396 0.0292 0.0499 0.123 0.0435 0.0234 0.0460 0.0002
i-C18:0 n.d. n.d. n.d. 0.0223 0.0041 0.0055 0.0075 n.d.
C18:2 0.129 0.0181 n.d. 0.357 0.0481 0.0042 0.0492 n.d.
C18:1 29.4 2.77 6.09 2.80 0.868 0.456 0.437 n.d.
C18:0 0.588 0.0541 1.60 1.53 0.882 0.203 0.264 0.0151
i-C19:0 n.d. n.d. n.d. n.d. n.d. 0.0086 0.0103 n.d.
a-C19:0 n.d. n.d. n.d. n.d. 0.0036 0.0035 0.0060 n.d.
cyc-C19:0 n.d. n.d. n.d. 0.0951 0.0065 0.0326 0.0635 0.0004

C19:1 n.d. n.d. n.d. n.d. 0.0136 n.d. n.d. n.d.
C19:0 n.d. n.d. n.d. 0.186 0.0032 0.0042 0.0173 0.0014
C20:1 0.645 0.0476 n.d. 0.0113 n.d. 0.0249 0.0287 n.d.
C20:0 n.d. n.d. 0.101 0.111 0.269 0.0318 0.138 0.0032
C21:0 n.d. n.d. n.d. n.d. 0.0251 n.d. 0.0278 n.d.
C22:0 n.d. n.d. 0.0976 n.d. 1.24 0.0814 0.259 0.0015
C22:1 n.d. n.d. n.d. n.d. n.d. n.d. 0.188 n.d.
C23:0 n.d. n.d. n.d. n.d. 0.223 0.0207 0.0277 n.d.
C24:0 n.d. n.d. 0.210 0.0520 3.23 0.0969 0.401 0.0026
C25:0 n.d. n.d. n.d. n.d. 0.199 0.0077 0.0223 n.d.
C26:0 n.d. n.d. 0.0714 0.0037 1.37 0.0253 0.132 n.d.
C27:0 n.d. n.d. n.d. n.d. 0.0795 n.d. n.d. n.d.
C28:0 n.d. n.d. n.d. n.d. 0.688 0.0078 0.0514 n.d.
C29:0 n.d. n.d. n.d. n.d. 0.0440 n.d. n.d. n.d.
C30:0 n.d. n.d. n.d. n.d. 0.316 0.0012 0.0348 n.d.
C32:0 n.d. n.d. n.d. n.d. 0.0712 n.d. 0.0100 n.d.
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Supplemental Table S1b. Carbon isotope values of all measured FAMEs presented in Chapter 2, Figure
1b. Isotope values are in per mil; n.d., not determined or below detection limits. 

δ13C (‰) 7 m Fxn F 7 m Fxn G 8 m Fxn F 8 m Fxn G Sed Fxn F Sed Fxn G Sho Fxn F 
C14:0 -34.7 ± 0.3 n.d. -30.3 ± 0.3 n.d. -25.8 ± 0.3 -27.1 ± 0.5 -25.3 ± 0.2
i-C15:0 n.d. n.d. -32.4 ± 0.3 n.d. -23.2 ± 0.3 -24.5 ± 0.5 -25.4 ± 0.2
a-C15:0 n.d. n.d. -32.8 ± 0.3 n.d. -26.1 ± 0.3 -26.2 ± 0.2 -25.4 ± 0.2
C15:0 n.d. n.d. n.d. n.d. n.d. n.d. -23.9 ± 0.5
i-C16:0 n.d. n.d. -31.5 ± 0.5 n.d. -26.7 ± 0.5 -28.8 ± 0.5 -26.4 ± 0.2
C16:1 -34.9 ± 0.3 -33.2 ± 0.3 -28.8 ± 0.3 -31.6 ± 0.5 n.d. -24.9 ± 0.3 -23.8 ± 0.2
C16:0 -36.4 ± 0.3 -34.0 ± 0.3 -33.8 ± 0.3 -37.4 ± 0.3 -28.3 ± 0.2 -28.2 ± 0.2 -28.4 ± 0.2

10Me-C16:0 n.d. n.d. n.d. n.d. n.d. -25.9 ± 0.5 -25.8 ± 0.2
a-C17:0 n.d. n.d. n.d. n.d. -27.9 ± 0.5 -27.1 ± 0.5 -26.6 ± 0.2
C18:2+

Phytanic n.d. n.d. n.d. n.d. -25.6 ± 0.3 -23.3 ± 0.5 -30.5 ± 0.2
C18:1 -31.4 ± 0.4 -31.8 ± 0.3 -33.5 ± 0.3 -31.6 ± 0.5 -27.2 ± 0.3 -24.7 ± 0.2 -25.2 ± 0.3
C18:0 n.d. n.d. -27.4 ± 0.3 n.d. -27.7 ± 0.2 -26.5 ± 0.2 -26.7 ± 0.2
C20:0 n.d. n.d. n.d. n.d. -27.5 ± 0.3 n.d. -30.8 ± 0.3
C22:0 n.d. n.d. n.d. n.d. -27.2 ± 0.2 n.d. -26.5 ± 0.3
C22:1 n.d. n.d. n.d. n.d. n.d. n.d. -27.8 ± 0.2
C23:0 n.d. n.d. n.d. n.d. -26.0 ± 0.3 n.d. n.d.
C24:0 n.d. n.d. n.d. n.d. -26.5 ± 0.2 n.d. -23.0 ± 0.3
C28:0 n.d. n.d. n.d. n.d. -25.0 ± 0.3 n.d. n.d.
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Supplemental Table S2. Concentrations of sterols presented in Chapter 2, Figure 3a. Concentrations are
in µg compound per mg total lipid extract; n.d., not determined or below detection limits.

µg/mg TLE 7m 8m Sed Sho
C27Δ5,22 n.d. 2.556 6.018 n.d.
C27Δ22 n.d. 2.527 2.532 0.179
C27Δ5 0.117 19.64 43.36 0.301
C27 0.002 10.91 10.47 0.931

C28Δ5,22 n.d. 2.751 7.712 n.d.
C28Δ22 n.d. 6.039 2.298 n.d.
C28Δ5 n.d. 3.758 9.034 0.180
C28 n.d. 1.815 0.930 n.d.

C29Δ5,22 0.734 42.78 45.68 1.342
C29Δ22 n.d. n.d. n.d. 0.419
C29Δ5,25 n.d. 0.598 0.774 0.196
C29Δ5 0.375 37.17 31.11 1.540
C29 n.d. 6.927 4.255 1.118

C29Δ5,24 n.d. 0.413 1.279 n.d.
C29Δ7 n.d. 0.809 2.158 0.007

Supplemental  Table  S3.  Concentrations  of  fatty  alcohols  presented  in  Chapter  2,  Figure  2b.
Concentrations are in µg compound per mg total lipid extract;  n.d., not determined or below detection
limits.

µg/mg TLE 7 m 8 m Sed Sho
n-C16 0.020 0.137 0.026 0.008
n-C17 n.d. 0.005 n.d. 0.017
n-C18 0.078 0.443 0.112 0.028
n-C20 0.000 0.126 0.006 0.014
n-C22 n.d. 0.333 1.130 0.253
n-C24 0.004 0.338 1.840 0.509
n-C26 0.007 0.702 3.468 1.399
n-C28 n.d. 0.109 1.127 0.598
n-C30 n.d. n.d. 0.204 0.183
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Supplemental Table S4. Carotenoid Abundances in different Mahoney Lake samples. Values are
in µg compound per mg total lipid extract.

(a) 7-m

Acetone
QQQ-
MSMS

Acetone
QQQ-MS Acetone UV

Bligh-Dyer 
QQQ-
MSMS

Bligh-Dyer
Fxn MS

Bligh-Dyer
Fxn UV

Bacteriophaeophytin a 288.57 288.57 288.57 288.57 16.60 10.48
Pyrobacteriophaeophytin a 0.23 0.38 0.69 0.03 0.01
Phaeophytin a 3.08 33.22 9.25
Thiothece-484 0.03 3.82
Echinenone 1.01
Okenone 10.79 669.10 96.76 0.06 0.001 0.001
Canthaxanthin 0.02
Beta-carotene 0.53
Lutein & Zeaxanthin 0.03

(b) Sediment

Acetone 
QQQ-
MSMS

Acetone 
QQQ-MS Acetone UV

Bligh-Dyer 
QQQ-
MSMS

Bligh-Dyer 
Fxn MS

Bligh-Dyer 
Fxn UV

Bacteriophaeophytin a 425.65 425.65 425.65 425.65 31.64 19.56
Pyrobacteriophaeophytin a 62.81 98.19 4.63 65.92 19.73 3.11
Phaeophytin a 8.30 72.89 38.74 0.78
Thiothece-484 0.90 72.23 3.93 0.20
Echinenone 0.11 50.00 14.92
Okenone 61.17 3629.44 1212.88 139.57 14.13 1.43
Canthaxanthin 0.06 17.01 1.19 2.20
Beta-carotene 0.00 59.22
Lutein & Zeaxanthin 2.63

(c) Shoreline

Acetone 
QQQ-
MSMS

Acetone 
QQQ-MS Acetone UV

Bligh-Dyer 
QQQ-
MSMS

Bligh-Dyer 
Fxn MS

Bligh-Dyer 
Fxn UV

Bacteriophaeophytin a 15.91 15.91 15.91 15.91 1.07 0.36
Pyrobacteriophaeophytin a 2.80 4.25 0.13 9.25 0.92 0.18
Phaeophytin a 1.76 11.17 6.49
Thiothece-484 0.27 17.91 5.05 0.34 0.02
Echinenone 0.01 5.29 1.56
Okenone 0.22 13.77 5.68 0.67 0.35 0.03
Canthaxanthin 0.01 2.70 0.27 0.47 0.02
Beta-carotene 1.81
Lutein & Zeaxanthin 0.10
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