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Abstract

The first part of this dissertation focuses on methods to adjust for measurement error

in risk prediction models. In chapter one, we propose a nonparametric adjustment for

measurement error in time to event data. Measurement error in time to event data used

as a predictor will lead to inaccurate predictions. This arises in the context of self-reported

family history, a time to event covariate often measured with error, used in Mendelian risk

prediction models. Using validation data, we propose a method to adjust for measure-

ment error in this setting. We estimate the measurement error process using a nonpara-

metric smoothed Kaplan-Meier estimator, and use Monte Carlo integration to implement

the adjustment. We apply our method to simulated data in the context of Mendelian risk

prediction models and multivariate survival prediction models, and illustrate our method

using a data application for Mendelian risk prediction models. Results show our adjusted

method corrects for measurement error mainly in two aspects; by improving calibration

and total accuracy. In some scenarios discrimination is also improved. In chapter two, we

use the methods proposed in chapter one to extend Mendelian risk prediction models to

handle misreported family history.

The second part of this dissertation focuses on methods to adjust for measurement

error in observational studies. In chapter three, we propose various methods to adjust for

a mismeasured exposure using validation data and propensity scores. Propensity score

methods assume that the treatment assignment is error-free, but in reality these variables

can be subject to measurement error. This arises in the context of comparative effective-

ness research, in which accurate procedural codes are not always available. When using

propensity score based methods, this error affects the treatment assignment variable di-
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rectly, as well as the propensity score. We propose a two step maximum likelihood ap-

proach using validation data to adjust for measurement error. In addition, we show the

bias introduced when using error-prone treatment in the inverse probability weighting

estimator and propose an approach to eliminate this bias. Simulations show our pro-

posed approaches reduce bias and mean squared error of the treatment effect estimator

compared to using the error-prone treatment assignment.
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1.1 Introduction

Measurement error in binary and continuous covariates has been studied extensively in

the literature (Carroll, 2006a, among others). The focus of this chapter is on measurement

error in time to event data which are used as covariates in a model. Time to event data are

coded by two variables; T indicating either time to event or censoring whichever occurs

first, and δ indicating whether the event occurred. We focus on scenarios in which both

T and δ are measured with error. Because of the relationship between T and δ, standard

techniques adjusting for measurement error in binary or continuous covariates cannot be

applied directly.

Previous work in this setting has focused on measurement error in survival outcomes

(Meier et al., 2003). Meier et al. consider a discrete setting in which subjects are tested at

predetermined time points until the time of first observed failure. Using the sensitivity

and specificity rates of failing, they develop a model for the measurement error process

based on a validation data set, and incorporate this into an adjusted proportional hazards

model. Their method cannot be extended to our setting for two reasons. The first, that

our time to event data is not obtained by repeated testing, instead we look at scenarios for

which the time to event data is measured with error at one time point. The second, that

our interest is in time to event data used as covariates in the model and not as outcomes.

We are not aware of any literature directly applicable to our setting.

We focus on scenarios for which a prediction model based on error-free time to event

data has been developed, however, implementation of these prediction models uses error-

prone time to event data. We came across this problem in Mendelian risk prediction mod-

els, which use Mendelian laws of inheritance to calculate the probability that an individ-

ual carries a cancer causing inherited mutation based on family history, known mutation

prevalence, and penetrance (the probability of having a disease at a certain age given the

mutation status) (Murphy and Mutalik, 1969). These models assume family history is

error-free, however, in practice they often rely on self-reported family history, which is

not always accurate. The accuracy of self-reported family history has been evaluated in

several studies which show that sensitivity and specificity estimates for reported disease
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status vary by degree of relative and type of cancer. For example, for breast cancer in first-

degree relatives sensitivity estimates vary from 65% to 95% while specificity estimates are

usually around 98%− 99% (Mai et al., 2011; Ziogas and Anton-Culver, 2003). The effects

of misreported family history on Mendelian risk prediction models have been examined

by Katki (2006). Both errors in underreporting of disease status and rounding of age were

considered, and it was shown that misreporting of family history, especially in disease

status, leads to distortions in predictions. A model based on these inaccurate predictions

will not be well calibrated.

Although our work is motivated by the setting of Mendelian risk prediction models, it

is applicable to other scenarios, particularly in the context of multivariate survival pre-

diction models. For example, suppose one has developed a model predicting overall

survival (OS) based on error-free progression free survival (PFS). In reality however, PFS

is often error-prone due to two main reasons; assessment of tumor size based on radio-

logical scans varies by the observer and scans are taken at regularly scheduled intervals

(Korn et al., 2010). Gray et al. (2009) evaluated measurement error in the PFS endpoint

by comparing PFS assessment by an independent review facility (IRF) (which would be

considered the error-free PFS) to an investigator-based assessment (which would be con-

sidered the error-prone PFS). They conducted an independent review of trial E2100, an

open-label multi-center, randomized, phase III trial conducted by the Eastern Coopera-

tive Oncology Group (ECOG). They saw that for 6% of the patients a PFS event was only

identified by IRF, and for 18.1% of the patients a PFS event was only identified by local

review. 43.5% of patients had PFS events identified by both IRF and local review, and for

those the date of PFS was the same for 54.5% of the patients and within 6 weeks for 70.4%

of the patients.

In this context, suppose one has developed a model to predict OS based on IRF deter-

mined PFS. In practice, one might want to use the prediction model to predict OS using

PFS determined by local review as a covariate and not by IRF, since local review might

be the only feasible option. Another example could arise in the context of using short

term survival as a predictor for long term survival (Parast et al., 2012). If one has devel-

oped a model based on error-free short term survival outcomes, but in practice these are
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measured with error, our proposed method is again applicable.

In section 1.2 we formulate our proposed method. No assumptions are being used for the

measurement error model, thus we consider our proposed method as non-parametric.

We apply our proposed approach to Mendelian risk prediction models in section 1.3, and

to other multivariate survival prediction models in section 1.4. Simulation results are

presented in section 1.5. Finally, we illustrate our method using a data application in

the context of Mendelian risk prediction models, in section 1.6, and summarize the main

results in section 1.7.

1.2 Model

1.2.1 Notations

We consider a setting in which we have an outcome Y and time to event data which are

used as covariates in the model. More specifically, let T o be the true failure time, let C be

the true right-censoring time, T = min(T o, C) and δ = 1(T o ≤ C). We denote the error-

free predictor as H = (T, δ). We assume a model P (Y |H) has been developed elsewhere

based on this true time to event data.

Now, suppose when implementing this model the time to event data used as covariates

has error. We denote this error-prone predictor as H∗ = (T ∗, δ∗). We also assume we

have a validation study which includes both the error-free time to event data, H , and the

error-prone time to event data, H∗. We do not assume the validation data includes Y .

1.2.2 Proposed Method

Our goal is to predict the outcome Y based on the observed data H∗, namely to estimate

P (Y |H∗). We propose to rewrite P (Y |H∗) by applying the total law of probability and

Bayes rule, as follows:

P (Y |H∗) =

∫
H

P (Y,H|H∗) dH =

∫
H

P (Y |H,H∗)P (H|H∗) dH =

∫
H

P (Y |H)P (H|H∗) dH

(1.1)
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The measurement error process, P (H|H∗), is modeled in the validation study. Depending

on the data, integrating over all possible values of H might be computationally challeng-

ing. In these cases, we propose using Monte Carlo integration, using P (H|H∗) to select

samples.

We propose to treatH∗ = (T ∗, δ∗) as covariates, and model the measurement error process

using a survival distribution assuming conditional independence of event and censoring

times given T ∗, δ∗:

P (T, δ|T ∗, δ∗) = λ(T |T ∗, δ∗)δS(T |T ∗, δ∗)h(T |T ∗, δ∗)1−δG(T |T ∗, δ∗). (1.2)

λ and S are the hazard and survival functions of the event time, and h and G are the

hazard and survival functions of the censoring time. Based on the validation data, one

could estimate the survival distribution P (T, δ|T ∗, δ∗) parametrically (for example using a

Weibull distribution or accelerated failure time model), semi-parametrically (for example

using a Cox model), or non-parametrically (for example using Kaplan-Meier estimators).

In general, we recommend using smoothed Kaplan-Meier estimators (Beran, 1981), re-

quiring no parametric assumptions on the data. Specifically, we stratify by δ∗, and esti-

mate each conditional survival function while borrowing information from the neighbor-

ing observations based on the values of T ∗.

1.2.3 Model Assumptions

The last equality in Equation (1.1) follows from the surrogacy assumption. We assumeH∗

is a surrogate for H ; in other words H∗ contains no information on predicting Y in addi-

tion to the information already contained in H . This is plausible in our setting since the

probability of the outcome conditional on both the error-free and error-prone predictor

should only be influenced by the error-free predictor.

Our proposed approach assumes that the measurement error model P (H|H∗) is trans-

portable; that the measurement error model observed in the validation study can be ap-

plied to the population of interest. For this to be true, the validation and the target pop-

ulation should be as similar as possible. One should give thought to the choice of an

appropriate validation study when applying our proposed method.
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1.3 Mendelian Risk Prediction Models

Mendelian risk prediction models have been previously developed, and details of these

models can be found elsewhere (Berry et al., 1997; Parmigiani et al., 1998). Briefly,

these models calculate an individual’s carrier probability P (γ0|H), where Hi = (Ti, δi),

H = (H0, H1, ..., HR) for a family of size R, and the consultand is denoted as 0. γi =

(γi1, ...., γiM), where γim = 1 indicates carrying the genetic variants that confer disease

risk for each individual i at a gene m = 1, ..,M , and γim = 0 otherwise. Furthermore, let

Ti = min(T oi , Ci) where T oi is the age of disease diagnosis for individual i, Ci is the current

age or age of death for individual i, and δi = 1(T oi ≤ Ci) for individual i.

Using Bayes rule and assuming conditional independence of family members’ phenotype

given their genotypes, we can write the consultand’s carrier probability as follows;

P (γ0|H0, H1, .., HR) =
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, .., γR|γ0)∑

γ0
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, .., γR|γ0)

. (1.3)

These models are typically developed using validated family history, H . That is, pene-

trance estimates for these models are based on a meta-analysis. We expect the majority

of the studies in the meta-analysis use validated family history. Software for performing

these calculations is available as part of the BayesMendel R package (Chen et al., 2004),

which includes BRCAPRO, a model identifying individuals at high risk of breast and

ovarian cancer, MMRPro a model identifying individuals at high risk of Lynch Syndrome,

and PancPRO a model identifying individuals at high risk of pancreatic cancer.

In practice, instead of having the true history, H , a consultand has a reported history H∗.

Our goal is to estimate P (γ0|H∗). Using Equation (1.1), this probability can be rewritten

as follows:

P (γ0|H∗) =

∫
H

P (γ0|H)P (H|H∗) dH. (1.4)

P (γ0|H) is then calculated using Equation (1.3). The measurement error process,

P (H|H∗), is estimated by using smoothed Kaplan-Meier estimators based on a valida-

tion study, and the integration is implemented using a Monte Carlo integration.

In Mendelian risk prediction models, our interest is not only in estimating carrier prob-
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abilities, but also in estimating the probability of the consultand surviving until time t,

P (T o > t|H∗). A Mendelian model for P (T o > t|H) has been previously developed, and

is also available as part of the BayesMendel R package. Similarly, using Equation (1.1),

our proposed method can be implemented in this context: P (T o > t|H∗) =
∫
H
P (T o >

t|H)P (H|H∗) dH.

1.4 Multivariate Survival Prediction Models

The problem of measurement error in time to event data can also be applicable to the

context of other multivariate survival prediction models. We continue our discussion of

a hypothetical example in the context of predicting OS. Assuming a prediction model for

OS using error-free PFS has been developed, one might be interested in implementing

these models using error-prone PFS (since error-prone PFS might be the only information

available). In this scenario, we let T o1 denote OS time, H = (T2, δ2) be error-free PFS, and

H∗ = (T ∗2 , δ
∗
2) be error-prone PFS. Suppose one has developed a prediction model, P (T o1 >

t|H), based on a study using error-free PFS, our interest however is in predicting P (T o1 >

t|H∗). Using Equation (1.1) we can rewrite this probability as: P (T o1 > t|H∗) =
∫
H
P (T o1 >

t|H)P (H|H∗) dH . P (H|H∗) would be estimated using validation data containing both

error-free PFS and error-prone PFS. Studies such as the one conducted by Gray et al.

(2009), would be a good source of validation data, since they compared PFS assessment

conducted by IRF review (error-free PFS) to PFS assessment conducted by local review

(error-prone PFS). Similarly, this notation can also be applicable if we were interested

in predicting long term survival time (T o1 using our notation), based on an error-prone

short term survival (H∗ using our notation), assuming a model for P (T o1 > t|H) has been

developed elsewhere.

7



1.5 Simulations

1.5.1 Mendelian Risk Prediction Models

In the context of Mendelian risk prediction models, for each simulation scenario two data

sets were simulated; the first is used to model the measurement error process (the val-

idation study), and the second to which we apply our method and estimate the carrier

probability of each consultand given their family history. For the validation data set,

100, 000 families with 5 members (mother, father, and three daughters) were simulated.

These simulations focus on one gene, BRCA1, and only on breast cancer. Carrier proba-

bilities, P (γ = 1), were assumed to be 0.006098, which is the allele frequency for BRCA1

in the Ashkenazi Jewish population. Error-free breast cancer failure times were simulated

for each member based on known penetrance. We used the same penetrance estimates

used by BRCAPRO, which are based on a meta-analysis. Error-free censoring times were

simulated from a normal distribution with mean 55 and standard deviation 10. A large

validation data is used because the allele frequency for BRCA1 is low. Since breast cancer

failure times were generated using the penetrance, a large data set is needed in order to

have a decent number of breast cancer events in the data.

Two settings for the measurement error in disease status were considered. The first using

sensitivity=0.954 and specificity=0.974, taken from Ziogas and Anton-Culver (2003), the

second using sensitivity=0.649 and specificity=0.990, taken from Mai et al. (2011). Four

settings for the measurement error in age were considered. For the first three settings, we

assume an additive classical model; T ∗ = T + ε where ε ∼ N(0, σ2), and σ = 5, σ = 3,

and σ = 1. For the fourth setting, we assume a multiplicative measurement error model,

T ∗ = TU , where U ∼ exp(1). P (H|H∗) was estimated using smoothed Kaplan-Meier with

the nearest neighborhoods kernel using the prodlim R package (Gerds, 2011). The optimal

bandwidths were calculated using the direct plug in approach proposed by Sheather and

Jones (1991).

We applied our method to 50, 000 consultands for which their family history was gener-

ated in a similar manner. Specifically, for each of the 50, 000 families, carrier probability

for the consultand based on family history was calculated using BRCAPRO for three dif-
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ferent approaches; based on the simulated error-free history P (γ0|H), based on the simu-

lated error-prone history by naively replacing H by H∗, denoted by P̃ (γ0|H∗), and using

our adjusted model P (γ0|H∗) =
∫
H
P (γ0|H)P (H|H∗) dH (Table 1.1). For our adjusted

model approach, Monte Carlo integration was applied by sampling 100 configurations of

H based on P (H|H∗).

These approaches were evaluated using three different measures; ratio of observed to

expected events (O/E), mean squared error of prediction (MSEP), and area under the

response operating characteristics curve (ROC-AUC). Model calibration is evaluated us-

ing the ratio of observed to expected events, which can be written as:
∑n
i=1 1(γi=1)∑n

i=1 P̂i
, where

P̂i = ̂Pi(γ0|H) for the O/E based on the error-free family history, P̂i = ̂P̃i(γ0|H∗) for the

O/E based on the error prone family history, and P̂i = ̂Pi(γ0|H∗) for the O/E based on

the adjustment approach. Overall accuracy is evaluated using MSEP, which is the mean

of the squared differences between the P̂i and the error-free predictions. Therefore, MSEP

based on the error-free data is always 0. For the error-prone predictions MSEP is calcu-

lated by 1
n

∑n
i=1(

̂P̃i(γ0|H∗) − ̂Pi(γ0|H))2, and for the adjustment approach it is calculated

by 1
n

∑n
i=1(

̂Pi(γ0|H∗) − ̂Pi(γ0|H))2 . Model discrimination is evaluated using ROC-AUC.

We used the verification R package (Gilleland, 2009) which calculates ROC-AUC follow-

ing the process outlined by Mason and Graham (2002). ROC-AUC was calculated using

the three different predictions (error-free, error-prone, and based on the adjustment ap-

proach).

The ratio of observed to expected events (O/E) based on the error-free family history is

close to 1 in all simulation settings. The O/E based on the error-prone family history is

lower than one, when using sensitivity=0.954 and specificity=0.974, and higher than one

when using sensitivity=0.649 and specificity=0.990 (with the exception of the scenarios

involving multiplicative error in age, for which the O/E is always less than one). When

the sensitivity is lower, we have more underreporting of disease, which drives the O/E

to be greater than one since the expected probabilities are lower. In all simulations, ad-

justing the error-prone improves the O/E substantially, and shifts it so it is closer to 1.

For example, in the first simulation scenario, the O/E based on error-free family history
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is 0.9773, based on error-prone family history it is 0.8190, and based on the adjustment it

is 0.9712. Thus, we are able to eliminate almost all the bias.

MSEP based on adjusting the error-prone data is lower than MSEP based on the error-

prone data alone for all simulations, by an amount that varies but can be substantial

(Table 1.1). For example, in the first simulation scenario the square root of the MSEP

multiplied by 1000, based on the error-prone family history is 19.1351, and based on the

adjustment is 16.7405. ROC-AUC in all simulations are higher based on the error-free

data compared to the error-prone data. In simulations involving additive error in age,

ROC-AUC values are about the same using our adjustment compared to the error-prone

data alone. For example, in the first simulation scenario ROC-AUC was 0.8160 based on

error-free family history, 0.8090 based on error-prone family history, and 0.8086 based on

the adjustment. In simulations involving a multiplicative error in age, where the error in

age is stronger, ROC-AUC is higher using our adjustment compared to the error-prone

data alone. For example, in the fourth simulation scenario, ROC-AUC was 0.8145 based

on error-free family history, 0.7185 based on error-prone family history, and 0.8020 based

on the adjustment.

Plots of predictions based on error-free, error-prone, and the adjustment are shown for

two scenarios. The first, shown in red, in the top panel of Figure 1.1, corresponds to the

first row in Table 1.1, representing a simulation setting with sensitivity 0.954 and speci-

ficity 0.974. The second, shown in blue, in the bottom panel of Figure 1.1, corresponds

to the fifth row in Table 1.1, representing a simulation setting with sensitivity 0.649 and

specificity 0.990. The first column on the left, shows predictions based on error-free family

history compared to error-prone family history. There is more underreporting of cancer

(in the plot these are individuals who are below the 45o line) in the second scenario, due to

the lower sensitivity, and more over-reporting (in the plot these are individuals who are

above the 45o line) in the first scenario, due to the lower specificity. In both scenarios, we

have many individuals close to the 45o line, corresponding to simulated families for which

disease status was equivalent using error-prone and error-free family history. The second

column in the middle, shows predictions based on error-free family history compared to

our adjustment. In both scenarios, we see more individuals below the 45o line, implying

10
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our adjustment method slightly over adjusts by shifting probabilities down. The third

column on the right, shows predictions based on error-prone family history compared to

our adjustment. We can see that especially in the first scenario (which has more over-

reporting of cancer than the second scenario), our adjustment shifts individuals’ carrier

probabilities down.

Overall, the adjustment method improves MSEP and calibration in all scenarios, while in

some scenarios ROC-AUC remains the same (in the scenarios of additive error in age),

in other scenarios the adjustment method improves ROC-AUC (in the scenarios of multi-

plicative error in age scenarios).
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Figure 1.1: P(BRCA1) for simulated families based on error-free family history, error-
prone family history, and proposed adjustment. In red, a simulation setting with sensi-
tivity 0.954 and specificity 0.974. In purple, a simulation setting with sensitivity 0.649 and
specificity 0.990.
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1.5.2 Multivariate Survival Prediction Models

Simulations were also preformed in the context of predicting OS based on PFS. For these

simulations, we consider a hypothetical scenario in which one has developed a prediction

model for OS using error-free PFS as a predictor. In reality, however, PFS is measured with

error, as shown in the E2100 review conducted by Gray et al. (2009). Based on the results

of this review, Korn et al. (2010), performed simulations to assess the potential bias of

measurement error in PFS on the conclusions of a proportional hazards analysis of a ran-

domized trials. We follow a similar approach in generating the data for our simulations.

Three data sets were generated for each simulation scenario. The first data set was gen-

erated to obtain a prediction model for OS based on error-free PFS. We assume a scenario

in which patients were followed for progression free survival for a period of 25 months.

Some of these patients will have a progression event during this time interval, whereas

others will be censored. We assume that censoring represents the patient’s last visit to the

clinician’s office. The goal is to predict the overall survival of a patient, t months from the

time they either have a progression event or are censored.

For this first data set, we generate OS as well as error-free PFS for 1, 000 patients. For

these simulations 1, 000 patients provide a large enough validation data, since the event

rate is high (around 45%). We begin by simulating progression free survival times based

on a Weibull distribution with shape parameter=1.456 and scale parameter=11.063 (based

on E2100) . We assume a censoring distribution between 0 and 25 months with density

f(t) = 2(25 − t)/625, resulting in approximately 55% censoring. To generate the over-

all survival times, for those who had a progression event, we assume the probability of

death in this subpopulation is 50%. We generate a time for this death event based on an

additive model; death time=progression time+|(N(12, 52))|. For those who did not have a

progression event, we assume the probability of death in this subpopulation is 10%. We

generate a time for this death event based on an additive model; death time=last clinician

visit+|(N(60, 52))|. For those who did not have a death event, for simplicity we assume no

censoring occurs, and assign them a survival time equal to their progression free survival

time plus t months (where t is fixed and equal for everyone). We fit a prediction model

14



P (T o1 > t+T2|T2, δ2) using smoothed Kaplan-Meier estimators for δ2 = 0 and 1 separately.

The second data set was generated to model the measurement error process (the valida-

tion study). For this data set, we generate error-free PFS as well as error-prone PFS for

1, 000 individuals. We simulate error-free PFS as we did in the first data set. We then

generate error-prone PFS from the error-free PFS. We introduce error in PFS events using

various sensitivities and specificities (E2100 had 88% sensitivity and 64% specificity). We

introduce error in PFS time as follows. If both error-free PFS and error-prone PFS are

events: 55% of the time we assume agreement in the time of the event (based on E2100).

For those who don’t have complete agreement in the time of the event, 35% were within 6

weeks of each other. Therefore, we use multiplicative measurement error with log-normal

distribution with standard deviation parameter log(1.5) (Korn et al., 2010). If both error-

free PFS and error-prone PFS are non-events, we assume no error in PFS time. If error-free

PFS is an event but error-prone PFS is not an event, we assign the error-prone PFS time

to be the censoring time. If error-free PFS is not an event but error-prone PFS is an event,

we assign the error-prone PFS time to be the minimum of the simulated progression fail-

ure time and end of study (25 months). We obtain error-free and error-prone PFS, and

determine the measurement error model, P (T2, δ2|T ∗2 , δ∗2) using smoothed Kaplan-Meier

estimators based on this simulated data set.

The third data set was generated to apply the proposed adjustment method to. For

the third data set, we generate error-prone and error-free PFS as well as OS, for 1, 000

individuals as we did for the first two data sets. We preform prediction calculations

on this data set. We are able to compare three different prediction calculations; the

first using the error-free PFS as a covariate and calculating P (T o1 > t|T2, δ2), the sec-

ond by naively replacing the error-free PFS by the error-prone PFS as a covariate and

calculating P̃ (T o1 > t|T ∗2 , δ∗2), and the third using our measurement error adjustment:

P (T o1 > t|T ∗2 , δ∗2) =
∫
H
P (T o1 > t|T ∗2 , δ∗2)P (T2, δ2|T ∗2 , δ∗2) dH . All three prediction calcula-

tions were done for a fixed t = 60.

In addition, we compare our proposed method to an alternative approach of modeling

the measurement error process. This approach, assumes the measurement error is not

dependent on time, in other words P (T2, δ2|T ∗2 , δ∗2) = P (δ2|δ∗2). We estimate P (δ2|δ∗2) (NPV

15



and PPV) in the validation study, and use it to adjust for measurement error as follows;

P (T o1 > t|T ∗2 , δ∗2) =
∫
H
P (T o1 > t|T2, δ2)P (δ2|δ∗2) dH . We will refer to this as the time inde-

pendent adjustment.

Simulations for various values of sensitivity (varying in increments of 0.1 from 0.1 to 1)

and specificity (varying in increments of 0.1 from 0.1 to 1) were conducted. The O/E ratios

based on error-free covariates is close to one, and becomes even closer to one as sensitiv-

ity increases (Figure 1.2). The O/E ratios based on the error-prone covariates, decrease as

sensitivity increases, and increase as specificity increases. A low sensitivity corresponds

to underreporting of events, corresponding to higher O/E ratios, whereas a low speci-

ficity corresponds to over-reporting of events, corresponding to lower O/E ratios. Thus,

as sensitivity increases O/E decreases, and as specificity increases O/E decreases. The

right combination of sensitivity/specificity can lead to ad O/E close to 1. Based on the

full adjustment method, O/E ratios are very close to one and do not vary much across sen-

sitivity and specificity (Figure 1.2). O/E ratios based on the time independent adjustment

increase slightly as sensitivity increases, and decrease slightly as specificity increases.

The full adjustment preformed best in terms of MSEP compared to both no adjustment

and the time independent adjustment (Figure 1.3) (with the exception of two scenarios).

MSEP based on error-prone covariates decreases as sensitivity and specificity increase,

that is, as we introduce less error MSE improves. For both adjustment methods, MSEP in-

creases and then decreases as sensitivity increases, for lower specificities, while for higher

specificities MSE decreases as sensitivity increases.

In general, ROC-AUC was highest using the full adjustment method compared to both

no adjustment and the time independent adjustment. However, ROC-AUC was slightly

higher based on the error-free covariates (Figure 1.4). ROC-AUC based on the error-free

covariates remained relatively constant as sensitivity and specificity varied. ROC-AUC

based on error-prone covariates increases as sensitivity and specificity increase, that is, as

we introduce less error ROC-AUC improves. For both adjustment methods, ROC-AUC

decrease and then increase as sensitivity increases, for lower specificities, while for higher

specificities ROC-AUC increases as sensitivity increases.

Overall, the full adjustment method preforms best in terms of calibration, overall model
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Figure 1.2: O/E ratios for PFS/OS simulations varying sensitivity and specificity.
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Figure 1.4: ROC-AUC for PFS/OS simulations varying sensitivity and specificity.
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1.6 Data Application

We illustrate our proposed method using a data application in the context of Mendelian

risk prediction models focusing only on misreporting of breast cancer. For the consul-

tands, we use data from the Cancer Genetics Network (CGN). CGN consists of fami-

lies with personal or family history of cancer. The data set includes 2,038 families with

34,310 relatives. 9.2% of relatives have breast-cancer. For this study, only error-prone,

self-reported family history is available. In addition to family history, this data set also

contains BRCA1/2 testing results for each consultand.

For our validation study, we use data from University of California at Irvine (UCI) (Ziogas

and Anton-Culver (2003)). This study included cancer affected consultands with either

breast, ovarian, or colon cancer. The data set includes 719 families with 1,521 female

relatives. 19.3% of relatives have breast-cancer. Both error-free and error-prone family

history are available in this data set.

We estimate the measurement error process using smoothed Kaplan-Meier estimators us-

ing the UCI validation study. We then apply our method to the CGN consultands. For

each consultand, using BRCAPRO, we estimate her probability of being a carrier for a

mutation given her error-prone family history, as well as given our proposed adjustment.

Using the true BRCA1/2 carrier status, O/E ratios, Brier-scores, and ROC-AUC were cal-

culated based on the error-prone family history as well as based on our proposed adjust-

ment. The bandwidths for the smoothed Kaplan-Meir were selected so that calibration

for being a BRCA, BRCA1, and BRCA2 carrier were closest to 1.

The respective O/E ratios of being a BRCA, BRCA1, and BRCA2 carrier are 1.007, 1.073,

and 0.916 based on error-prone family history; and 0.976, 1.037, and 0.892 based on the

adjustment. The respective Brier scores for being a BRCA, BRCA1, and BRCA2 carrier are

0.141, 0.102, 0.058 based on error-prone family history; and 0.139, 0.102, and 0.057 based

on the adjustment. The respective ROC-AUC for BRCA, BRCA1, and BRCA2 carriers are

0.777, 0.791, and 0.725 based on the error-prone family history; and 0.776, 0.787, and 0.722

based on the adjustment.

Overall, we see a slight improvement in Brier score based on the adjustment. Before the
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adjustment the model was well calibrated for BRCA, but not as well calibrated for BRCA1

and BRCA2 separately. The adjustment improves BRCA1 calibration, while the calibra-

tion of BRCA2 is slightly worse. ROC-AUC are slightly worse using the adjustment.

Results of O/E ratios of being a BRCA carrier stratified by risk are shown in Figure 1.5.

Individuals are ordered by their probabilities of being a BRCA carrier based on the error-

prone family history, and stratified into 10 strata. O/E ratios as well as 95% confidence

intervals are calculated for each strata. Using error-prone family history, the model is

not well calibrated in the low risk deciles. We see that the O/E ratio is greater than one

in these deciles, implying that the model underestimates the risk for these individuals.

Insurance companies, will often approve genetic testing only for individuals whose esti-

mated carrier probability is above a certain cutoff, thus calibration is especially important

in the low risk deciles, since clinical decisions will be made based on estimated carrier

probabilities. Our proposed adjustment improves calibration in the low risk deciles by a

significant amount, which will lead to better clinical decisions.
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Figure 1.5: Log of observed over expected ratios and 95% confidence intervals for being a
BRCA carrier for families in CGN data set stratified by risk deciles.
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1.7 Discussion

In this chapter we explore a method to adjust for measurement error in time to event data.

Previous literature has focused on adjusting for measurement error in survival outcomes,

but not for time to event data measured with error. Our method adjusts for measurement

error in time to event data used as covariates, and is applicable to both the setting of

Mendelian risk prediction models and multivariate survival prediction models.

Simulations studies in both of these settings show that models based on error-prone time

to event data are not well calibrated. The adjustment method improves model calibration

substantially. The adjustment method also improves total accuracy by improving MSEP.

ROC-AUC in Mendelian risk prediction models either remains the same or is improved

using the adjustment method depending on the simulation scenario, while ROC-AUC in

multivariate survival prediction models improves using the adjustment method. We also

show that the adjustment method preforms better than an alternative time independent

adjustment approach in the context of multivariate survival prediction models.

Our method assumes that the measurement error process is transportable from the vali-

dation data to the main study. This assumption should be given careful thought, as there

may be scenarios for which this assumption will not hold for P (H|H∗), but will hold for

P (H∗|H). In addition, the methods presented in this chapter for Mendelian risk predic-

tion models assume only one disease, whereas Mendelian risk predication models include

multiple diseases. An extension of this work to multiple diseases is presented in chapter

2.

The work presented in this chapter can be applicable to various scenarios, and was mo-

tivated by the context of Mendelian risk prediction models. Self-reported family history

is often reported with error. Inaccurate reporting of family history could lead to inappro-

priate care Murff et al. (2004). Underreporting (false negatives) of cancer in the family,

gives rise to an underestimation of cancer risk, which can result in inadequate screening

and substandard treatment Murff et al. (2004). On the other hand, over-reporting (false

positives) of cancer, gives rise to an overestimation of cancer risk, which can cause stress

Douglas et al. (1999), unnecessary procedures and genetic testing Kerr et al. (1998); Sweet
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et al. (2002); Fry et al. (1999). For these reasons, methods to adjust predictions based on

self-reported family history are of clinical significance.

The method proposed in this chapter can be incorporated into the BayesMendel R pack-

age, and will be of great clinical use. Given a good validation study, Mendelian risk pre-

diction models can automatically incorporate this adjustment, so that clinicians will be

able to obtain more accurate risk predictions. In addition, we hope that this method will

be incorporated by statisticians developing multivariate survival risk prediction models

based on error-free time to event data, but implementing them using error-prone time to

event data.
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2.1 Introduction

Cancer is caused by genetic alterations which can either be inherited or can occur during

one’s lifetime. There is a lot of interest in identifying individuals who are at high risk of

cancer due to inherited mutations. Many risk prediction models have been developed

to address this problem. These models can be divided into three main types; empiri-

cal models, expert-based models, and Mendelian models. Empirical models estimate the

probability of a proband (consultand) being a mutation carrier, by summarizing family

history and using it as predictors in the models. Expert-based models use algorithms

based on clinical judgment to calculate scores summarizing the risk. Mendelian models

use Mendelian laws of inheritance of deleterious genetic variants to calculate the proba-

bility that the proband is a mutation carrier based on family history and known mutation

prevalence and penetrance (the probability of having a disease at a certain age given the

mutation status) (Katki et al., 2007; Parmigiani et al., 2007).

Mendelian risk prediction models for various cancers have previously been developed

and are available as part of the BayesMendel R pacakge (Chen et al., 2004). These models

include BRCAPRO for identifying individuals at high risk for breast or ovarian cancer

by calculating the probabilities of germline deleterious mutations in BRCA1 and BRCA2.

MMRPro for identifying individuals at high risk of Lynch Syndrome by calculating the

probabilities of germline deleterious mutation of the MMR genes: MLH1, MSH2, MSH6.

PancPRO for identifying individuals at high risk for pancreatic cancer by calculating the

probabilities of germline mutations in CDKN2A, PRSS1, BRCA2, and STK11. The in-

puts required for these models are the prevalence of deleterious mutations in the general

population and their penetrance, which are researched and continually updated. These

models have all been validated in the literature (Berry et al., 2002; Chen et al., 2006; Wang

et al., 2007).

This chapter focuses on BRCAPRO, but the methods developed could be extended to

other Mendelian models. Women who carry a mutation in either BRCA1 or BRCA2

have an increased risk of developing breast and ovarian cancer. Mutations in BRCA1

and BRCA2 are rare in the general population (less than 0.2% of women have mutations
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(Easton et al., 1995)), but are more common in families with high rates of breast or ovarian

cancers (Ford et al., 1998; Newman et al., 1997; Weber, 1996). Women with family history

of breast or ovarian cancer will seek genetic counseling in order to determine their prob-

abilities of being a BRCA1/BRCA2 carrier (Croyle and Lerman, 1999).

Risk prediction models, and in particular Mendelian risk prediction models, are based

on family history which is used to determine which patients are at high risk of cancer.

Screening and even treatment strategies have been developed for these high risk individ-

uals (Murff et al., 2004). These models rely on self-reported family history, but inaccu-

rate reporting could lead to inappropriate care. Risk predictions based on underreported

(false negatives) family history, can lead to inadequate screening and substandard treat-

ment. On the other hand, risk predictions based on over-reported (false positives) family

history, can cause stress, unnecessary procedures and genetic testing (Douglas et al., 1999;

Fry et al., 1999; Kerr et al., 1998; Murff et al., 2004; Sweet et al., 2002).

Various studies have evaluated the accuracy of self-reported family history. Murff

et al. (2004) provide a review of these studies. Anton-Culver et al. (1996), conducted a

population-based study with 359 probands with breast cancer. The probands were inter-

viewed over the phone, and family history was verified using a cancer registry. Kerber

and Slattery (1997) conducted a case-control study of colon cancer, with 125 colon cancer

cases and 206 controls. They conducted personal interviews, and family history was veri-

fied using a cancer registry. Ziogas and Anton-Culver (2003) conducted a study including

1111 families, with both population-based probands and clinic-based probands (with the

clinic-based accounting for 6.3% of the families). These probands had either breast, ovar-

ian, or colon cancer. They conducted personal phone interviews followed by self com-

pleted reports, and verified using medical records and death certificates. Verkooijen et al.

(2004) conducted a population-based study with 219 probands with breast cancer, out of

which 110 had at least one relative with breast cancer, 9 had at least one relative with

ovarian cancer, and 100 had no relatives with breast or ovarian cancers. Family history

was collected using a self-reported survey and was verified using a cancer registry. More

recently, Mai et al. (2011) collected data as part of the population-based 2001 Connecti-

cut Family Health Study. Family history for 1,019 individuals was collected on breast,
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colorectal, prostate, and lung cancers through two phone interviews. The 1,019 partici-

pants reported family history for 20,578 first and second degree-relatives, of which a sam-

ple of 2,605 were validated. They were validated using state cancer registries, Medicare

databases, the National Death Index, death certificates, and health-care facility records.

Sensitivity rates for the accuracy of cancer status reporting of first-degree relatives vary

in these studies (Table 2.1), but are higher in breast cancer compared to ovarian cancer in

all studies. For the first four studies sensitivity rates are higher than 80%, and specificity

rates are above 90%. Lower sensitivity rates were reported in Mai et al. (2011), probably

due to the fact that this was a population based study.

Risk prediction based on reported family history that is inaccurate will also be inaccurate.

Suppose you have a family illustrated in Figure 2.1. The proband in this family underre-

ports cancer in three of the relatives (the mother, a grandmother, and cousin), and misre-

ports the age of diagnosis for an aunt and the grandmother. Based on the reported family

history (shown on the left), the probability of being a BRCA carrier is 0.0779, the proba-

bility of being a BRCA1 carrier is 0.03407, and the probability of being a BRCA2 carrier

0.04384. Whereas, based on the true family history (shown on the right), the probability of

being a BRCA carrier is 0.80314, the probability of being a BRCA1 carrier is 0.59420, and

the probability of being a BRCA2 carrier 0.20830. This is an extreme case of misreporting,

but in general risk prediction calculations based on the reported family history may be

very different than based on the true family history, and can lead to inadequate care.
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Figure 2.1: Sample Pedigree. A hypothetical example of a family with reported family
history (on the left) and true family history (on the right). The proband is indicated by an
arrow.

Katki (2006) studies the effect of misreported family history on Mendelian risk predic-

tion models in more detail. Family history is composed of two components; diagnosis
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(yes/no) and age-at-diagnosis (if diagnosis is yes) or current age or age of death (if di-

agnosis is no). Katki classifies the types of errors in the reporting of a relative’s family

history into three categories: (1) Diagnosis is incorrect but age-at-diagnosis is correct,

(2) Diagnosis is correct but age-at-diagnosis is incorrect, (3) Both diagnosis and age-at-

diagnosis are incorrect. He focuses on the first type of error, but shows the distortion

caused by all three types of errors in BRCAPRO.

Katki (2006) considers underreporting of cancer disease status in three types of families:

(a) proband alone (b) proband and first-degree relative (c) proband, first-degree relative,

and second-degree relative. Katki derives the distortions that different scenarios of under-

reporting of cancer in these families would cause. Applying this to BRCAPRO, he shows

that the worst error would be caused by underreporting of ovarian cancer in probands.

This is seen because ovarian cancer yields higher penetrance density ratios than breast

cancer. The weakest errors are underreporting of breast cancer in second-degree. In addi-

tion, Katki studies the misreporting of age of an affected relative by +/- 5 years and +/-

15 years. Considering both errors in underreporting of disease status and rounding of

age, he shows that the errors in underreporting of disease status dominate.

There is extensive literature on measurement error in binary and continuous covariates

(Carroll, 2006a, among others). Family history, however, is time to event data (since it in-

cludes both the disease status and age), which is used as covariates in the Mendelian risk

prediction models. We are not aware of any literature directly applicable to this setting in

which both the disease status and age of disease can be reported with error. A proposed

method to handle this type of error is described in chapter 1. Here, we apply this adjust-

ment method to Mendelian risk prediction models, more specifically to BRCAPRO. We

begin by introducing general notation, follow by describing the adjustment method, and

illustrate the proposed model extension using real data.
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2.2 Methods

2.2.1 Mendelian Risk Prediction Models

Mendelian models calculate the probability of being a mutation carrier given family his-

tory. Family history has two components; disease status and age. For those who develop

disease, their age will be their age of diagnosis, for those who did not develop disease

their age will be their current age or age of death. Let Ti = (Ti1, ...., TiJ), Tij = min(T oij, Cij)

where T oij is the age of disease diagnosis j for individual i, Cij is the current age or age

of death for individual i for disease j ,and δi = (δi1, ...., δiJ) is the disease status, where

δij = 1(T oij ≤ Cij) for individual i for disease j. Let Hi = (Ti, δi) and H = (H0, H1, ..., HR)

for a family of size R. Let γi = (γi1, ...., γiM), where γim = 1 indicates carrying the genetic

variants that confer disease risk for each individual i at a gene m, and γim = 0 otherwise.

For example in BRCAPRO, M = 2 (BRCA1 and BRCA2).

Our goal is to calculate the proband’s carrier probability P (γ0|H0, H1, .., HR). Using Bayes

rule, this can be calculated as follows (Blackford and Parmigiani, 2010):

P (γ0|H0, H1, .., HR) =
P (γ0)P (H0, H1, ..., HR|γ0)∑
γ0
P (γ0)P (H0, H1, ..., HR|γ0)

. (2.1)

P (γ0) is the prevalence of mutation carriers in the general population. P (H0, H1, ..., HR|γ0)

is the probability of the phenotypes for the entire family given the genotype for the

proband. Using Bayes rule, this probability can be rewritten as:

P (H0, H1, ..., HR|γ0) =
∑

γ1,...,γR
P (H0, ..., HR|γ0, ..., γR)P (γ1, ...γR|γ0).

P (γ1, ...γR|γ0) are known for all genotype combinations based on Mendelian laws of in-

heritance. Assuming conditional independence of phenotypes given genotypes implies:

P (H0, ..., HR|γ0, ..., γR) =
∏R

i=1 P (Hi|γi), where P (Hi|γi), the probability of phenotype

given genotype, is referred to as the penetrance. Under these assumptions we can rewrite

the proband’s carrier probability as:

P (γ0|H0, H1, .., HR) =
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, ...γR|γ0)∑

γ0
P (γ0)

∑
γ1,...,γR

∏R
i=1 P (Hi|γi)P (γ1, ...γR|γ0)

. (2.2)
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2.2.2 Adjustment Method

Let H∗ indicate the misreported family history; where H∗i = (T ∗i , δ
∗
i ) and H∗ =

(H0, H
∗
1 , ..., H

∗
R) for a family of size R. We assume the proband does not misreport his/her

own history, therefore H∗0 = H0. Our goal is to estimate P (γ0|H∗). The Mendelian risk

prediction models previously developed assume true family history, since penetrance es-

timates for these models are based on a meta-analysis for which we expect most studies

to be based on true family history. Therefore, these models calculate P (γ0|H). Using the

total law of probability and Bayes rule, the probability of interest can be rewritten as:

P (γ0|H∗) =
∑
H

P (γ0, H|H∗) =
∑
H

P (γ0|H∗, H)P (H|H∗) =
∑
H

P (γ0|H)P (H|H∗). (2.3)

A sum is preformed in Equation (2.3) rather than an integral, since age in these models is

treated as discrete with the following range; 1,...,120. The last equality in Equation (2.3)

follows from the surrogacy assumption, that the carrier probability conditional on both

the reported, H∗, and true, H , history is the same as the carrier probability conditional

only the true history H. This assumption is plausible since this carrier probability should

only be influenced by the true history. P (γ0|H) is then calculated using Equation (2.2),

which is available as part of the BayesMendel R package. The measurement error process,

P (H|H∗), is estimated in a validation data set using smoothed Kaplan-Meier estimators.

Since summing over all possible H is computationally intensive, we use Monte Carlo

integration using P (H|H∗) to select random H’s.

This proposed approach assumes that the measurement error model P (H|H∗) is trans-

portable. Ideally, we would like to have a validation as similar as possible to the target

population for this assumption to hold. There are scenarios for which P (H|H∗) might not

be transportable, but P (H∗|H) is, in which case we could consider a different modeling

approach, weighing the penetrance by P (H∗|H). This approach is not the focus of this

chapter, but is described in detail in the appendix A.
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2.2.3 Measurement Error Model

We model the measurement error process P (H|H∗) using validation data. Treating

H∗ = (T ∗, δ∗) as covariates, we can model the measurement error process using a sur-

vival distribution assuming conditional independence of event and censoring times given

T ∗, δ∗:

P (T, δ|T ∗, δ∗) = λ(T |δ∗, δ∗)δS(T |T ∗, δ∗)h(T |T ∗, δ∗)1−δG(T |T ∗, δ∗). (2.4)

λ and S are the hazard and survival functions of the event time, and h and G are the

hazard and survival functions of the censoring time. Depending on the data structure,

one could estimate the survival distribution P (T, δ|T ∗, δ∗) parametrically (for example

using a Weibull distribution or accelerated failure time model), semi-parametrically (for

example using a Cox model), or non-parametrically (for example using Kaplan-Meier

estimators).

We decide to use smoothed Kaplan-Meier estimators, requiring no parametric assump-

tions on the data. The model is stratified based on δ∗, and information is borrowed from

neighborhoods based on the values of our continuous covariate T ∗.

2.2.4 Measurement Error Model Involving Multiple Cancers

Family history, H , contains multiple time to event data, corresponding to the multiple

diseases in the model. The measurement error process for an individual i can be written

as: P (Hi|H∗i ) = P (Ti, δi|T ∗i .δ∗i ) = P (Ti1, ..., TiJ , δi1, ..., δiJ |T ∗i1, ..., T ∗iJ , δ∗i1, ..., δ∗iJ). We propose

different approaches to model this distribution.

The first is a competing risk approach which involves taking the first event for each

individual. Define the first event as T oi = min(T oi1, ...., T
o
iJ), and Ti = min(T oi , Ci),

δi = 1(T oi ≤ Ci), where 1(J = j) indicates a failure of type j occurred. Similarly ,we can

define the error-prone failure times as the first event or censoring that is reported; T ∗i , δ∗i ,

and 1(J∗ = j∗) indicating a failure of type j∗ was reported. We propose treating (T ∗, δ∗, j∗)

as covariates and modeling the measurement error process using a survival distribution
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assuming conditional independence of event and censoring times given T ∗, δ∗, j∗:

P (Ti, δi|T ∗i , δ∗i ) =

λj(Ti|T ∗i , δ∗i , j∗)δiS(Ti|T ∗i , δ∗i , j∗)h(Ti|T ∗i , δ∗i , j∗)1−δiG(Ti|T ∗i , δ∗i , j∗). (2.5)

λj is the cause-specific hazard and S is the overall survival function of the event time, and

h and G are the hazard and survival functions of the censoring time. We propose using

smoothed Kaplan-Meier estimators. The main limitation of this proposed approach is

that it only uses the first event type.

Alternatively, one could model P (H|H∗), as a multivariate distribution. This could be

done either by assuming independence of the measurement error across diseases:

P (Ti1, ...., TiJ , δi1, ...., δiJ |T ∗i1, ...., T ∗iJ , δ∗i1, ...., δ∗iJ) =
∏J

j=1 P (Tij, δij|T ∗ij, δ∗ij).

Or if the independence assumption does not hold, one could model

P (Ti1, ...., TiJ , δi1, ...., δiJ |T ∗i1, ...., T ∗iJ , δ∗i1, ...., δ∗iJ) using a multivariate survival distribution

(for example using frailty models). Our recommendation is to select an approach based

on the context of the problem.

2.3 Results

2.3.1 Measurement Error Validation Data Source

We were able to obtain validation data from a family registry of probands with breast,

ovarian, and colorectal cancers at the University of California at Irvine (UCI). Detailed

information of the cohort characteristics can be found elsewhere (Ziogas et al., 2000). Zio-

gas and Anton-Culver (2003) provide details on the measurement error in this cohort.

Briefly, this validation study had 1111 families which had at least one relative verified, of

which 670 families had a proband affected with breast cancer, 123 families had a proband

affected with ovarian cancer, and 318 families had a proband affected with colorectal can-

cer. Family history was collected from the proband by an initial phone interview. A

verification report and pedigree was produced based on this phone interview. It was

then mailed to the proband to complete items that were unknown and verify informa-

tion. Family history of the relatives was verified by the following methods: (1) obtaining

35



pathology reports, tumor tissue samples, or clinical records (2) obtaining self-reports from

the relatives themselves (3) obtaining death certificates on deceased relatives.

Relatives were classified into first-degree: parents, siblings, and children of the proband;

second-degree: grandparents, aunts, uncles, half-siblings, nieces, and nephews of the

proband; and third-degree: first cousins and grandchildren of the proband. Sensitivity,

specificity, positive predictive value (PPV), and negative predictive value (NPV), for can-

cer disease status were calculated for various types of cancer by the degree of the relative

(only rates for first and second-degree relatives were reported) (Table 2.2). In general

sensitivity and PPV were lower for second-degree relatives compared to first-degree rel-

atives, and even lower for third-degree relatives (with the exception of brain, pancreas,

female breast, and leukemia). NPV and specificity were high (greater than 0.95) for all

cancer types and degree of relatives. For first-degree relatives PPV and sensitivity was

lowest for cancers of the female pelvic organs (pelvic and endometrium) and bladder.

Table 2.2: Misreporting of Cancer Status in UCI Study, Ziogas and Anton-Culver (2003)
Type of Cancer and Relative Sensitivity Specificity PPV NPV

Breast, 1st Degree 95.4% 97.4% 89.1% 98.9%
Breast, 2nd Degree 82.4% 97.6% 89.6% 95.8%

Ovarian, 1st Degree 83.3% 98.9% 76.1% 99.3%
Ovarian, 2nd Degree 44.1% 98.5% 62.7% 96.8%

The focus of our analysis is on breast and ovarian cancers, and the data set we obtained

for this analysis included 719 families with 1,521 female relatives which were validated.

The average family had 2.1 female relatives that were verified. 294 relatives (19.3%) had

breast cancer, and 70 relatives (4.6%) had ovarian cancer. Ziogas and Anton-Culver (2003)

focus on misclassification of disease status. However, since family history consists of age

and disease status, we will consider misreporting of age as well. Figure 2.2 shows the

reported age versus validated age for breast and ovarian cancer. For breast cancer we

have 59 relatives (3.9%) for which the reported and validated age are not equal. For

ovarian cancer we have 89 relatives (5.9%) for which the reported and validated age are

not equal. Both error-free and error-prone family history are available in this data set.

We fit the measurement error model on this data set separately for breast and ovarian
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Figure 2.2: Reported versus validated ages of breast and ovarian cancers in female rela-
tives in UCI data.

2.3.2 CGN Model Validation Study

The Cancer Genetics Network (CGN) is a national network funded by the National Can-

cer Institute. The data obtained for this analysis consists of families with personal or

family history of cancer, and includes 2,038 families with 34,310 relatives. The average

family in this data set has 16.8 relatives. 3,143 relatives (9.2%) had breast cancer, and

610 relatives (1.8%) had ovarian cancer. Only error-prone, self-reported family history is

available in this data set. This data set also contains BRCA1/2 testing results for each

proband, in addition to family history. We apply the measurement error adjustment to

this data set.

2.3.3 Applying the Proposed Adjustment Method to the CGN Model
Validation Study

We use the UCI data to fit the measurement error model using smoothed Kaplan-Meier

estimators (Beran, 1981) using the prodlim R package (Gerds, 2011). We develop a mea-
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surement error model for breast and ovarian cancers separately, based on Equation (2.4).

For each cancer type, we stratify the model based on δ∗, and estimate survival and haz-

ards for the failure time as well as censoring time distribution. Thus, four Kaplan-Meier

estimators were obtained for each cancer type. For each of these estimators, a bandwidth

is required. We select the optimal bandwidth by examining a grid of bandwidths. We ex-

amined a four-dimensional grid varying each bandwidth from 0.1 to 0.9 by increments of

0.2, and estimating the measurement error distribution given each quadruplets of band-

widths.

In order to select the optimal bandwidths, 50% of the CGN data was sampled and used

to select the optimal bandwidths in terms of overall calibration of being a BRCA, BRCA1,

and BRCA2 carrier. This sampling process was repeated ten times. For this data ap-

plication, three different sets of four-dimensional bandwidths were selected in these ten

iterations. In five out of the ten iterations the same four-dimensional set of bandwidths

were selected. In the remaining five iterations, one set of four-dimensional bandwidths

was selected three times, and one set of four-dimensional bandwidths was selected twice.

The final set of four-dimensional bandwidths was the most frequently selected set, which

was selected in half of these iterations.

BRCA testing results were available for all probands in this data set. The performance

of the measurement error adjustment was evaluated using three different measures. The

first, evaluating model calibration by looking at the observed over expected ratios (O/E).

The second, evaluating the overall fit by looking at Brier scores. The third, evaluating

model discrimination by looking at the area under the receiver operating characteristic

curve (ROC-AUC). We also compare our proposed approach to an alternative approach

correcting for measurement error assuming measurement error is independent of age. In

other words, P (T, δ|T ∗, δ∗) = P (δ|δ∗). We estimate P (δ|δ∗) (NPV and PPV) in the UCI

validation study, and use it to adjust for measurement error as follows;

P (γ0|T ∗, δ∗) =
∑
T

∑
δ

P (γ0|T, δ)P (δ|δ∗). (2.6)

We will refer to this as the age independent approach.
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Results of these measures based on error-prone family history compared to the full ad-

justment method and age independent adjustment method are shown in Table 2.3. The

full adjustment method improves the O/E ratio for BRCA1 (1.0113 vs. 1.0734) and BRCA2

(0.9318 vs. 0.9157) although the O/E ratio for BRCA is worse (0.9728 vs. 1.0070). Brier

scores are improved for BRCA (0.1393 vs. 0.1409) and BRCA2 (0.0570 vs. 0.0583), but not

for BRCA1 (0.1021 vs. 0.1019). ROC-AUC is lower for BRCA, BRCA1, and BRCA2, using

the full adjustment compared to based on error-prone family history. For the age inde-

pendent approach, the O/E ratio is worse for BRCA (1.042 vs. 1.0070), BRCA1 (1.2857 vs.

1.0734), and BRCA2 (0.9136 vs. 0.9157) (Table 2.3). Brier scores are slightly higher using

this approach for BRCA, BRCA1, and BRCA2, and ROC-AUC using this approach are

lower for BRCA, BRCA1, and BRCA2.

Table 2.3: Summary of results for CGN families applying proposed methods to adjust for
measurement error

O/E ROC-AUC Brier Score

BRCA Error-Prone 1.0070 0.7769 0.1409
Proposed Adjustment 0.9728 0.7424 0.1393
Proposed Age Independent Adjustment 1.0421 0.7377 0.1401

BRCA1 Error-Prone 1.0734 0.7906 0.1019
Proposed Adjustment 1.0113 0.7544 0.1021
Proposed Age Independent Adjustment 1.2857 0.7544 0.1026

BRCA2 Error-Prone 0.9157 0.7244 0.0583
Proposed Adjustment 0.9318 0.6907 0.0570
Proposed Age Independent Adjustment 0.9136 0.6817 0.0574

Overall, the full adjustment preforms better than the age independent adjustment in

terms of calibration and Brier score. It is important to note that model calibration for

BRCA based on error-prone family history was 1.0070 to begin with. This implies that

this data might not have strong rates of misreporting.

Figure 2.3 shows the log(O/E) stratified by risk deciles for BRCA, BRCA1, and BRCA2.

Individuals were stratified into ten strata based on their probabilities of being a carrier

given their error-prone family histories. The log of the O/E ratio was calculated within

each strata along with 95% confidence intervals. BRCAPRO based on error-prone family

history preforms poorly in the low deciles (corresponding to large O/E ratios). Both the
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full adjustment approach and age independent approach improve calibration especially

in these low decile groups, by lowering the O/E ratios. This is of great clinical signifi-

cance, since individuals in these deciles often face the clinical decision of whether or not

to get tested for genetic mutations. Insurance companies often use cutoffs based on risk

calculations to determine which individuals would be covered for genetic testing. Indi-

viduals in high risk deciles would qualify for testing, however individuals in low risk

deciles might not qualify depending on their risk. Thus, it is especially important to have

a well calibrated model for these individuals. The fact that O/E ratios in the low risk

deciles are greater than one implies that BRCAPRO underestimates the risk for these in-

dividuals. This is of great clinical concern, as some individuals who might be carriers are

not tested due to this underestimation. Both adjustments improve model calibration, but

the full adjustment preforms better than the age independent adjustment for BRCA1 in

the high risk quantiles.
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Figure 2.3: Log(O/E) and 95% confidence intervals for CGN families stratified by risk.

2.3.4 Simulated Families

Extensive simulations have been conducted in chapter 1. Since data sources containing

both error-free and error-prone family histories are limited, we decide to illustrate our
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method on simulated families. These families were generated to have similar charac-

teristics to the families in the CGN data set. We introduce error in disease status using

sensitivity=0.649 and specificity=0.990 for breast cancer taken from Mai et al. (2011), and

sensitivity=0.833 and specificity=0.989 for ovarian cancer taken from Ziogas and Anton-

Culver (2003). We introduce error in age assuming an additive classical model; T ∗ = T +ε

where ε ∼ N(0, σ2), and σ = 3. We use the UCI data to fit the measurement error model

for these simulations. The bandwidth was selected to minimize mean squared error in

predictions.

Figure 2.4 compares predictions based on error-free, error-prone, and the full adjustment

method in this simulation setting. Mean squared error in prediction was 0.02726 based

on error-prone family history and 0.02620 based on the full adjustment. Results for being

a BRCA carrier are shown in the top panel in red, BRCA1 carrier in the middle panel in

purple, and BRCA2 carrier in the bottom panel in green. The left column shows predic-

tions based on error-free family history compared to error-prone family history. In general

there is more underreporting of cancer (individuals whose carrier probabilities are below

the 45o line) due to the low sensitivity in this data. The middle column shows predictions

based on error-free family history compared to the full adjustment method. For BRCA1

we have more individuals whose predictions based on the adjustment method are higher

than based on the error-free compared to BRCA2. The right column shows predictions

based on error-prone family history compared to the full adjustment method. For BRCA

and BRCA1 we see that the full adjustment increases the carrier probabilities for low

risk individuals and decreases carrier probabilities for high risk individuals, whereas for

BRCA2 the adjustment is not as strong. This is likely due to the fact that ovarian cancer,

which has high rates of misreporting in the UCI data, affects the BRCA1 carrier status

more than the BRCA2 carrier status.
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Figure 2.4: Carrier probabilities based on simulations comparing probabilities based on
error-free, error-prone, and the proposed adjustment method. BRCA carrier probabili-
ties (in red), BRCA1 carrier probabilities (in purple), and BRCA2 carrier probabilities (in
green).

In addition, we compare the full adjustment to an age independent adjustment using PPV

and NPV estimates based on the UCI data. Mean squared error in prediction was 0.02726
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based on error-prone family history and 0.04803 based on the age independent adjust-

ment. The age independent method does not preform well in this simulation setting.

Overall, the full adjustment method improves predictions by increasing predictions for

low risk individuals and decreasing predictions for high risk individuals.

2.4 Discussion

In this chapter we propose a method to adjust for misreporting of family history in

Mendelian risk prediction models. Previous literature has focused on evaluating miss-

classification of disease status for various cancers by comparing proband reported family

history to various gold standards. Katki (2006) studies the effects of misreporting of fam-

ily history on Mendelian risk prediction models. In this chapter, for the first time, we

implement a measurement error adjustment in Mendelian risk prediction models.

We compare two methods to adjust for measurement error in the reporting of two cancers

(breast and ovarian). The first using non-parametric smoothed Kaplan-Meier estimators,

and the second using an age independent approach (using PPV and NPV estimates). Both

in the context of the data application and in simulations, the full adjustment outpreforms

the age independent adjustment. Using the full adjustment, we see improved calibration

in BRCA1 and BRCA2, especially in low risk individuals.

It should be noted that one limitation of the UCI data is that it included only affected

probands, meaning that the rates of misreporting might not be generalizable. Also, only a

subset of the relatives for a given family were verified. For example, the average number

of first-degree relatives for a proband with breast cancer was 6.8 out of which only 1.8

were verified, similarly the average number of second-degree relatives was 18.9 out of

which only 2.3 were verified (these numbers are similar for families with probands having

ovarian or colorectal cancer). Another limitation is that the data obtained represents only

a subset of the families. More specifically these are families for which verification was

done before July 2000. This might be a limitation since families who participated in the

study earlier might be more likely to have a family history of cancer (Ziogas and Anton-

Culver, 2003).
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The CGN data on which we illustrate our method also has some limitations. The risk

prediction model is well calibrated for being a BRCA carrier based on error-prone family

history, implying that there might not be a lot of error in this data set. This data set

consists of families with personal or family history of cancer. These families might be

more aware of their family history, and therefore have lower rates of misreporting.

Self-reported family history is often reported with error. Inaccurate reporting of family

history can lead to inappropriate care. For these reasons, methods to adjust predictions

based on self-reported family history are of clinical significance. Insurance companies

use fixed cutoffs to determine which patients can receive genetic testing. Without the

measurement error adjustment, BRCAPRO is not well calibrated for low risk individuals.

Our proposed adjustment improves calibration in this subpopulation. This will lead to

better, more accurate clinical decisions for these individuals.

Given a good validation study for measurement error, Mendelian risk prediction models,

such as BRCAPRO, can be extended to incorporate the proposed measurement error ad-

justment. This will allow clinicians and patients to obtain more accurate risk prediction

estimates.
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3.1 Introduction

There is a lot of interest in estimating causal treatment effects. Ideally, randomized con-

trol studies would be used to study treatment effects, but these are not always available

due to ethical reasons, feasibility reasons such as cost, time constraints, and compliance

(among other reasons). Observational studies are often more widely available, however,

involve some limitations. Since subjects are not randomized by treatment, their charac-

teristics might not be balanced by treatment group. In order to overcome this limitation,

propensity score based methods have been proposed (Rosenbaum and Rubin, 1983).

The propensity score is defined as the probability that an individual has been assigned

to treatment given their covariates. Various propensity score methods have been intro-

duced. Rosenbaum and Rubin (1984) introduce a method that stratifies individuals based

on their propensity score, and takes the average treatment effects across strata. Propensity

scores can also be used to weigh individual observations (Rosenbaum, 1987). Matching

individuals by their propensity scores attempts to create treated and control groups that

have similar covariate values. Propensity scores have also been used as covariates in the

outcome model.

We focus on the setting in which covariates are not balanced by treatment assignment,

and propensity score methods are used to overcome this limitation. Although one could

run a regression analysis, including all confounders in the outcome model to overcome

this limitation, propensity scores are advantageous in two main settings. The first, if there

are many confounders, and fewer than eight events are observed per confounder (Cepeda

et al., 2003). Propensity scores allow for a way to reduce the dimensionality, and preform

better than standard regression. The second, in the case of model misspecification, stan-

dard regression will lead to bias. It has been shown that treatment effect estimates are

more sensitive to outcome model misspecification compared to an incorrect propensity

score model (Drake, 1993).

Propensity score methods assume that treatment assignment is measured without error,

but in reality treatment assignment in observational studies could be measured with er-

ror. We came across this in comparative effectiveness research, where accurate procedural

47



codes are not always available. More specifically, our work is motivated by a compara-

tive effectiveness research study assessing the use of surgery to remove a brain tumor

in an elderly population diagnosed with glioblastoma. We are able to obtain Medicare

Part A data, which is a large data set (41,971 individuals) containing information on our

outcome of interest (mortality), the treatment assignment (surgery), as well as many con-

founders. However, treatment assignment in this data set, is based on ICD9 billing codes

which are not always an accurate measure of the treatment. For a subset of individuals

(5,463 individuals), we are able to obtain data from SEER-Medicare. For these individu-

als, we have more accurate treatment assignment information. The SEER-Medicare is our

internal validation study.

Treatment assignment in this context, can be thought of as the exposure variable. Mea-

surement error in exposures has been extensively studied in the measurement error lit-

erature. Various techniques to adjust for measurement error in this setting have been

developed including likelihood based approaches, regression calibration, Bayesian ap-

proaches, among others (Carroll, 2006b). A literature review conducted by Jurek et al.

(2006), shows that measurement error in exposures is often ignored in studies. Causal in-

ferences about the effect of an exposure may be biased by errors in the exposure (Hernán

and Cole, 2009). Thus, there is a clear need to adjust for measurement error in this setting.

Standard techniques adjusting for measurement error in exposures cannot be applied di-

rectly to this setting. Misclassification of treatment assignment will lead to both error

in the exposure variable directly, as well as error in the propensity score estimates. Pre-

vious literature using propensity score methods has focused on measurement error in

confounders and missing confounders but not on measurement error in exposures. Var-

ious approaches have been proposed in this setting. Stürmer et al. (2005), propose a re-

gression calibration approach using validation data to estimate an adjusted propensity

score in the case of unmeasured confounders. McCandless et al. (2012) propose a flexi-

ble Bayesian procedure to adjust for missing confounders using external validation data.

McCaffrey et al. (2013) provide a consistent inverse probability weighting estimator in

the case where confounders are measured with error. We are not aware of any literature

addressing measurement error in treatment assignment in this context.
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We propose a two step likelihood approach. First adjusting for measurement error in the

propensity score using validation data. Next, we use the adjusted propensity score and

adjust for the measurement error in the treatment effect using external validation data.

We compare our proposed approach using four different propensity score based methods;

stratification, inverse probability weighing of the likelihood, matching, and covariate ad-

justment. In addition, we propose a way to eliminate bias caused by the misclassification

of treatment to the inverse probability weighting (IPW) estimator directly.

In Section 3.2, we introduce general notation and formulate our model. Afterwards, in

Section 3.3 we describe our proposed likelihood adjustment using various propensity

score techniques. In section 3.4, we propose a way to eliminate the bias in the IPW estima-

tor. We perform simulations in Section 3.5, and summarize the main results in Section 3.6.

3.2 General Notation and Model Formulation

3.2.1 Notations

Let Y denote the true outcome (ex: binary disease status, or a continuous measure, etc), let

X denote a true binary exposure (ex: claims data medication use), letX∗ denote the error-

prone exposure (ex: self-reported medication use), let C denote a vector of confounders

measured without error (ex: age, etc).

Let i = 1, ..., Nm index individuals in the main study. For these individuals Y,X∗,C is

available. In addition, suppose we have a validation study with j = 1, ..., Nv individuals.

For these individuals X,X∗,C is available. The validation study could be either an exter-

nal validation study, for which Y might or might not be known, or an internal validation

study, in which case Y would be known.

3.2.2 Model Formulation

Outcome Model

In general, we assume the outcome model is a generalized linear model. The true,

error-free, outcome model can be written as E(Y |X,C) = g−1(β0x + β1xX + β2xC),

where g is known. The error-prone outcome model can be written as E(Y |X∗, C) =
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g−1(β0x∗ + β1x∗X
∗ + β2x∗C). In the logit case, which is the outcome model chosen

for simulations in this paper, the true outcome model can be written as: P (Y =

1|X,C) = 1
1+e−(β0x+β1xX+β2xC) and the error-prone outcome model can be written as:

P (Y = 1|X∗,C) = 1

1+e−(β0x∗+β1x∗X
∗+β2x∗C) .

Propensity Score Model

The true propensity score model can be written as: PStrue = logit(P (X = 1|C̃)) = γxC̃,

, where C̃ = (1,C). The error-prone propensity score model can be written as: PSep =

logit(P (X∗ = 1|C̃)) = γx∗C̃.

Measurement Error Model

The measurement error model can be written asE(X∗|X,C) = h−1(η0+η1X+η2C), where

h is known.

3.3 Likelihood Adjustment Approach

Our interest is in estimating the true treatment effect. Confounders in the data might

not be balanced by treatment group. We focus on scenarios for which propensity score

methods outpreform standard regression models. These scenarios include having many

confounders in the model (fewer than eight events per confounder), and model misspec-

ification of the outcome model.

We consider using different propensity score methods; stratification, weighted likelihood,

matching and covariate adjustment. For each method, we propose a two step likelihood

correction approach to correct for measurement error. First, use a likelihood approach

to correct for measurement error in the propensity score model and estimate an adjusted

propensity score. Next, use a likelihood approach on the outcome model to adjust for

measurement error in the misclassified exposure variable directly using the adjusted

propensity score.
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3.3.1 Correcting for Measurement Error in Propensity Score

The likelihood of the propensity score model can be written as the product of the like-

lihood in the main study and in the validation study. In the main study, only X∗ is ob-

served. The likelihood in the main study can be rewritten using the law of total prob-

ability by summing over all possible values of the true X and multiplying by the mea-

surement error P (X∗|X,C). The overall likelihood (Equation (3.1)) is then maximized to

obtain maximum likelihood estimates for γ.

L(γ) =
Nm∏
i

P (x∗i |ci, γ)
Nv∏
j

P (xj|cj, γ) =
Nm∏
i

∑
x

P (x∗i |x, ci, γ)P (x|ci, γ)
Nv∏
j

P (xj|cj, γ)

=
Nm∏
i

∑
x

P (x∗i |x, ci)P (x|ci, γ)
Nv∏
j

P (xj|cj, γ) (3.1)

The second equality follows from the assumption that P (x∗i |x, ci, γ) = P (x∗i , ci|x), this

is reasonable since we condition on both x and c. P (X∗|X,C) is estimated using the

validation data with Nv individuals. Equation (3.1) is maximized to obtain maximum

likelihood estimates γ̂. Using γ̂ we can obtain an adjusted propensity score, P̂Sadj = γ̂C.

Assuming the propensity score follows a logit model we get:

L(γ) =
Nm∏
i

[P (x∗i = 1|xi = 1, ci)
1

1 + exp(−(γci))

+ P (x∗i = 1|xi = 0, ci)(1−
1

1 + exp(−(γci))
)]x
∗
i

∗[P (x∗i = 0|xi = 1, ci)
1

1 + exp(−(γci))

+ P (x∗i = 0|xi = 0, ci)(1−
1

1 + exp(−(γci))
)](1−x

∗
i )

∗
Nv∏
j

[
1

1 + exp(−(γcj))
]xj [1− 1

1 + exp(−(γcj))
](1−xj) (3.2)
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3.3.2 Correcting for Measurement Error in Outcome Model

The propensity score model has now been corrected, but the outcome model still contains

the misclassified treatment assignment. We use a likelihood approach on the outcome

model to correct for this misclassification directly. The likelihood is different for each of

the propensity score methods, therefore we illustrate this for each method individually.

For each method, we illustrate the approach for both the case of an internal validation

data set (as in our motivating data application), and in the case of an external validation

data set (for which Y may or may not be known).

Stratification

In this propensity score method, individuals are stratified by their propensity scores into

K groups withNK individuals in each group. Treatment effect estimates are estimated for

each of the K groups and averaged to obtain the overall treatment effect estimate. Ignor-

ing the measurement error, we would stratify individuals by PSep and estimate treatment

effects in each of the K strata using X∗ in the outcome model. The proposed adjustment

includes two steps; first stratifying individuals into K groups by PSadj instead of PSep.

Next, we rewrite the likelihood for the outcome model in each of the K strata using the

law of total probability by summing over all possible values of the true X and weighing

by the measurement error P (X|X∗,C) which is estimated in the validation study (Equa-

tion (3.3) in the case of a validation study with known Y , and Equation (3.4) in the case of

a validation study with unknown Y ). We maximize βk in each strata, to obtain treatment

effect estimates for each strata. The overall treatment effect is the average of treatment

effects across the strata.

In the case of an internal validation study, or an external validation study for which Y is
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known, the likelihood can be written as follows.

L∗(βk) =
∏
i∈Nk

P (yi|x∗i , ci, βk)
∏
j∈Nvk

P (yj|xj, cj, βk)

L(βk) =
∏
i∈Nk

∑
x

P (yi|x, x∗i , ci, βk)P (x|x∗i , ci, βk)
∏
j∈Nvk

P (yj|xj, cj, βk)

=
∏
i∈Nk

∑
x

P (yi|x, ci, βk)P (x|x∗i , ci)
∏
j∈Nvk

P (yj|xj, cj, βk) (3.3)

In the case of an external validation study, for which Y is unknown, the likelihood can be

written as follows.

L∗(βk) =
∏
i∈Nk

P (yi|x∗i , ci, βk)

L(βk) =
∏
i∈Nk

∑
x

P (yi|x, x∗i , ci, βk)P (x|x∗i , ci, βk)

=
∏
i∈Nk

∑
x

P (yi|x, ci, βk)P (x|x∗i , ci) (3.4)

The last equality follows from two assumptions, the first that P (xi|x∗i , ci, βk) =

P (xi|x∗i , ci), which is reasonable since we condition on both X and C. The second, that X

is a surrogate for X∗, in other words that P (yi|x, x∗i , ci, βk) = P (yi|x, ci, βk). This is a very

common assumption in the measurement error field.

L(βk) is maximized to obtain maximum likelihood estimates β̂k. We estimate the treat-

ment effects within each strata, and report an average treatment effect estimate.

The likelihood in the case of a logit outcome model is shown in the Appendix, Equa-

tion (B.1).

Weighted Likelihood

A weighted likelihood approach involves weighing each treated individual by the inverse

of their propensity score and each untreated individual by the inverse of one minus their

propensity score. β estimates are then obtained by maximizing the weighted likelihood.

Ignoring the measurement error, each individual would be weighted according to their

error-prone treatment X∗ using PSep. In other words, the decision of whether to use in-

verse PSep or inverse 1−PSep as weights would be based on the error-prone treatmentX∗.
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The proposed adjustment in this setting includes two steps; first using PSadj as weights

in the likelihood. Next, the likelihood is rewritten with the adjusted weights using the

law of total probability by summing over all possible values of the true X and weighing

by the measurement error P (X|X∗,C) (Equation (3.5) in the case of a validation study

with known Y , and Equation (3.6) in the case of a validation study with unknown Y ).

We maximize L(β) to obtain maximum likelihood estimates β̂ and estimate the treatment

effects. We note as a possible limitation, that the proposed adjustment does not classify

the use of inverse PSadj or inverse 1 − PSadj based on the true value X , but rather based

on the error-prone treatment X∗.

In the case of an internal validation study, or an external validation study for which Y is

known, the likelihood can be written as follows.

L∗(β) =
Nm∏
i

[P (yi|x∗i , ci, β)]
1

P (x∗
i
|ci,γx∗ )

Nv∏
j

[P (yj|xj, cj, β)]
1

P (xj |cj ,γx)

L(β) =
Nm∏
i

[
∑
x

P (yi|x, x∗i , ci, β)P (x|x∗i , ci, β)]
1

P (x∗
i
|ci,γadj)

Nv∏
j

[P (yj|xj, cj, β)]
1

P (xj |cj ,γx)

=
Nm∏
i

[
∑
x

P (yi|x, ci, β)P (x|x∗i , ci)]
1

P (x∗
i
|ci,γadj)

Nv∏
j

[P (yj|xj, cj, β)]
1

P (xj |cj ,γx) (3.5)

In the case of an external validation study, for which Y is unknown, the likelihood can be

written as follows.

L∗(β) =
Nm∏
i

[P (yi|x∗i , ci, β)]
1

P (x∗
i
|ci,γx∗ )

L(β) =
Nm∏
i

[
∑
x

P (yi|x, x∗i , ci, β)P (x|x∗i , ci, β)]
1

P (x∗
i
|ci,γadj)

=
Nm∏
i

[
∑
x

P (yi|x, ci, β)P (x|x∗i , ci)]
1

P (x∗
i
|ci,γadj) (3.6)

The likelihood in the case of a logit outcome model is shown in the Appendix, Equa-

tion (B.2).
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Matching

Various approaches for matching are used in the literature (Harder et al., 2010; Stuart,

2010).These methods include, one-to-one matching which matches each treated individ-

ual to an untreated individual based on their propensity score (un-matched individuals

are not analyzed). Nearest neighbor matching which matches each treated individual to

r untreated individuals. Variable ratio matching which matches different treated indi-

viduals to varying numbers of untreated individuals. Matching with replacement which

matches untreated individuals to treated individuals more than once, thus each untreated

individual can be matched multiple times. Exact matching which matches a treated in-

dividual to all possible un-treated individuals who have exactly the same values on all

covariates. Full matching which forms matched sets, where each set has at least one

treated and untreated individual in it.

After matching, regular outcome analysis on the data should be preformed (Stuart, 2010;

Ho et al., 2007). There is some debate in the literature about whether or not the analysis

needs to account for the matched pairs. Stuart and Green (2008); Schafer and Kang (2008)

mention two reasons why this is not necessary. The first, that it is enough to condition

on the variables used for the matching. The second, that one should pool all matched

treated and untreated individuals and run analysis on the entire group, since matching

based on propensity score, does not necessarily mean that each individual pair will be

similar across all covariates.

In the case of matching with replacement or variable ratio matching, weights need to

be incorporated into the outcome analysis (Dehejia and Wahba, 1999; Hill et al., 2004;

Stuart, 2010). In the case of matching with replacement, once the matched sets are formed,

each treated individual receives a weight of one, and each untreated individual receives a

weight proportional to the number of times they were matched (Stuart, 2010). In the case

of variable ratio matching, once the matched sets are formed, each treated individual

receives a weight of one, and each untreated individual receives a weight proportional to

the number of untreated individuals in the matched set (Stuart, 2010).

We propose a method to adjust for measurement error in these types of matching (match-
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ing with replacement or variable ratio matching). Ignoring measurement error, each indi-

vidual would be matched according to their treatmentX∗ based on their propensity score

PSep. We will refer to these weights obtained from this error-prone matching as ŵep, and

weights obtained from matching based on the true treatment X using the true propensity

score PStrue as ŵtrue.

The proposed adjustment in this setting includes two steps; first using PSadj to match

individuals based on their treatment X∗. We will refer to these weights obtained from

this error-prone matching as ŵadj . Next, the likelihood is rewritten with the adjusted

weights using the law of total probability by summing over all possible values of the true

X and weighing by the measurement error P (X|X∗,C) (Equation (3.7) in the case of a

validation study with known Y , and Equation (3.8) in the case of a validation study with

unknown Y ). We maximize L(β) to obtain maximum likelihood estimates β̂ and estimate

the treatment effects. We note as a possible limitation that the proposed adjustment does

not match individuals based on their true X but rather matches them based on X∗.

In the case of an internal validation study, or an external validation study for which Y is

known, the likelihood can be written as follows.

L∗(β) =
Nm∏
i

P (yi|x∗i , ci, β)ŵepi
Nv∏
j

P (yj|xj, cj, β)ŵtruei

L(β) =
Nm∏
i

∑
x

[P (yi|xi, x∗i , ci, β)P (x|x∗i , ci, β)]ŵadji
Nv∏
j

P (yj|xj, cj, β)ŵtruei

=
Nm∏
i

∑
x

[P (yi|x, ci, β)P (x|x∗i , ci)]ŵadji
Nv∏
j

P (yj|xj, cj, β)ŵtruei (3.7)

In the case of an external validation study, for which Y is unknown, the likelihood can be

written as follows.

L∗(β) =
Nm∏
i

P (yi|x∗i , ci, β)ŵepi

L(β) =
Nm∏
i

∑
x

[P (yi|xi, x∗i , ci, β)P (x|x∗i , ci, β)]ŵadji

=
Nm∏
i

∑
x

[P (yi|x, ci, β)P (x|x∗i , ci)]ŵadji (3.8)
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The likelihood in the case of a logit outcome model is shown in the Appendix, Equa-

tion (B.3).

Propensity Score Covariate Adjustment

Covariate adjustment involves including the propensity score as a covariate in the out-

come model. Ignoring the measurement error, PSep and X∗ would be used as covariates

in the outcome model. The proposed adjustment includes two steps, first using PSadj as

a covariate in the outcome model. Next, the likelihood is rewritten using the law of total

probability by summing over all possible values of the true X and weighing by the mea-

surement error P (X|X∗,C) (Equation (3.9) in the case of a validation study with known

Y , and Equation (3.10) in the case of a validation study with unknown Y ). We maximize

L(β) to obtain maximum likelihood estimates β̂.

In the case of an internal validation study, or an external validation study for which Y is

known, the likelihood can be written as follows.

L∗(β) =
Nm∏
i

P (yi|x∗i , ci, PSep, β)
Nv∏
j

P (yj|xj, cj, PStrue, β)

L(β) =
Nm∏
i

∑
x

P (yi|x, ci, P̂ Sadj, x∗i , β)P (x|x∗i , P̂ Sadj, ci, β)
Nv∏
j

P (yj|xj, cj, PStrue, β)

=
Nm∏
i

∑
x

P (yi|x, ci, P̂ Sadj, β)P (x|x∗i , ci)
Nv∏
j

P (yj|xj, cj, PStrue, β) (3.9)

In the case of an external validation study, for which Y is unknown, the likelihood can be

written as follows.

L∗(β) =
Nm∏
i

P (yi|x∗i , ci, PSep, β)

L(β) =
Nm∏
i

∑
x

P (yi|x, ci, P̂ Sadj, x∗i , β)P (x|x∗i , P̂ Sadj, ci, β)

=
Nm∏
i

∑
x

P (yi|x, ci, P̂ Sadj, β)P (x|x∗i , ci) (3.10)

The likelihood in the case of a logit outcome model is shown in the Appendix, Equa-

tion (B.4).
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3.4 IPW Estimator Adjustment

In addition to the likelihood approaches discussed in the previous section, we consider

adjusting the IPW estimator directly. The IPW estimator gives an estimate of the treatment

effect, by weighing treated individuals by their inverse propensity score and untreated in-

dividuals by the inverse of one minus their propensity score (Rosenbaum, 2005). Ignoring

the measurement error the IPW estimator is shown in Equation (3.11).

∆̂IPWep = N−1m

Nm∑
i=1

X∗i Yi

P̂Sepi
−N−1m

Nm∑
i=1

(1−X∗i )Yi

1− P̂Sepi
(3.11)

We first show that this estimator is biased, and then propose a way to adjust for this bias.

We begin by writing Y as Y = XY1 + (1 − X)Y0, X∗Y = X∗XY1 + X∗(1 − X)Y0 and

(1 − X∗)Y = (1 − X∗)XY1 + (1 − X∗)(1 − X)Y0, where Y0 is the outcome an individual

would have had if he/she were untreated, and Y1 is the outcome an individual would

have had if he/she were treated. We look at each of the two components of the IPW

estimator separately. The first component can be written as:

E(
X∗Y

PSep
) = EE(

X∗Y

PSep
|Y1, Y0, C) = EE(

X∗XY1 +X∗(1−X)Y0
PSep

|Y1, Y0, C)

= EE(
X∗XY1
PSep

|Y1, C) + EE(
X∗(1−X)Y0

PSep
|Y0, C)

= E(
Y1
PSep

P (X∗ = 1, X = 1|Y1, C)) + E(
Y0
PSep

P (X∗ = 1, X = 0|Y0, C))

= E(
Y1
PSep

P (X = 1|X∗ = 1, C)P (X∗ = 1|C))

+ E(
Y0
PSep

P (X = 0|X∗ = 1, C)P (X∗ = 1|C))

= E(Y1P (X = 1|X∗ = 1, C)) + E(Y0P (X = 0|X∗ = 1, C)) (3.12)

Similarly, the second component of the sum can be rewritten as:
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E(
(1−X∗)Y
PSep

) = EE(
(1−X∗)Y
1− PSep

|Y1, Y0, C)

= EE(
(1−X∗)XY1 + (1−X∗)(1−X)Y0

1− PSep
|Y1, Y0, C)

= EE(
(1−X∗)XY1

1− PSep
|Y1, C) + EE(

(1−X∗)(1−X)Y0
1− PSep

|Y0, C)

= E(
Y1

1− PSep
P (X∗ = 0, X = 1|Y1, C))

+ E(
Y0

1− PSep
P (X∗ = 0, X = 0|Y0, C))

= E(
Y1

1− PSep
P (X = 1|X∗ = 0, C)P (X∗ = 0|C))

+ E(
Y0

1− PSep
P (X = 0|X∗ = 0, C)P (X∗ = 0|C))

= E(Y1P (X = 1|X∗ = 0, C)) + E(Y0P (X = 0|X∗ = 0, C)) (3.13)

Thus, overall, the expectation of the IPW estimator based on error-prone treatment as-

signment is:

E(Y1P (X = 1|X∗ = 1, C)) + E(Y0P (X = 0|X∗ = 1, C))

−E(Y1P (X = 1|X∗ = 0, C))− E(Y0P (X = 0|X∗ = 0, C)) (3.14)

This expected value is not equal to E(Y1)−E(Y0), therefore this estimator is biased. Simi-

larly, it can also be shown that simply replacing P̂Sep by an estimate of the true propensity

score, P̂Sadj does not eliminate the bias, and the expected value of such estimator would

be:

E(Y1P (X∗ = 1|X = 1, C)) + E(Y0P (X∗ = 1|X = 0, C)
1− PSadj
PSadj

)

−E(Y0P (X∗ = 0|X = 0, C))− E(Y1P (X∗ = 0|X = 1, C)
PSadj

1− PSadj
) (3.15)

One proposed approach to eliminate the bias caused by using the error-prone treatment,

X∗, and error-prone propensity score PSep, shown in Equation (3.14), is to first divide

the first component of the estimator in Equation (3.11) by P (X = 1|X∗ = 1, C) and the

second component of the estimator by P (X = 0|X∗ = 0, C). The expected value of this
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new estimator would be:

E(
Y1P (X = 1|X∗ = 1, C)

P (X = 1|X∗ = 1, C)
) + E(

Y0P (X = 0|X∗ = 1, C)

P (X = 1|X∗ = 1, C)
)

−E(
Y1P (X = 1|X∗ = 0, C)

P (X = 0|X∗ = 0, C)
)− E(

Y0P (X = 0|X∗ = 0, C)

P (X = 0|X∗ = 0, C)
)

= E(Y1) + E(
Y0P (X = 0|X∗ = 1, C)

P (X = 1|X∗ = 1, C)
)− E(

Y1P (X = 1|X∗ = 0, C)

P (X = 0|X∗ = 0, C)
)− E(Y0)(3.16)

The expected value above is biased. Two components E(Y0P (X=0|X∗=1,C)
P (X=1|X∗=1,C)

) and

E(Y1P (X=1|X∗=0,C)
P (X=0|X∗=0,C)

) contribute to this bias in the expectation. In the case of an internal

validation study, or an external validation study for which Y is known, we propose es-

timating these bias components in the validation data, and subtracting them from the

overall estimator. Thus, our proposed adjusted estimator would be:

∆̂IPWadj
= N−1m

Nm∑
i=1

X∗i Yi

P̂SepiP̂ (X = 1|X∗ = 1, Ci)
−N−1m

Nm∑
i=1

(1−X∗i )Yi

(1− P̂Sepi)P̂ (X = 0|X∗ = 0, Ci)

− N−1v

Nv∑
j=1

(1−Xj)Yj

(1− P̂Struej)
P̂ (X = 0|X∗ = 1, Ci)

P̂ (X = 1|X∗ = 1, Ci)

+ N−1v

Nv∑
j=1

XjYj

P̂Struej

P̂ (X = 1|X∗ = 0, Ci)

P̂ (X = 0|X∗ = 0, Ci)
(3.17)

This would give an estimator for E(Y1) − E(Y0). For the first two sums in the estimator

in Equation (3.17), we propose estimating the measurement error model based on the

validation study, and calculating the sum in the main study. The bias terms are estimated

entirely in the validation study.

3.5 Simulations

In our simulations, we study the effects of measurement error in treatment assignment

on the treatment effect estimator using various propensity score methods. We focus on

the four likelihood based methods introduced in this paper; stratification, weighted like-

lihood, matching, and propensity score covariate. For each of these methods, we eval-

uate the performance of our proposed likelihood adjustment by comparing treatment

effect estimates based on true treatment assignment, error-prone treatment assignment,
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and the likelihood adjustment for the error-prone treatment assignment. For each of

these categories, we compare the propensity score methods using the true propensity

score, error-prone propensity score, and the proposed adjusted propensity score (based

on Equation (3.1)).

3.5.1 Simulation Characteristics

For each simulation scenario we simulated two data sets in a similar manner, one to be

used as the main study and one to be used as validation data. We simulated the main

study with Nm = 3, 000 individuals and the validation study with Nv = 1, 500 individu-

als. We consider confounders C = (1, C1, ...C6) that include both continuous (C1, C2, C3)

and binary covariates (C4, C5, C6). X was generated as Bernoulli according to the true

propensity score logit(P (X = 1|C) = γC. X∗ was generated as Bernoulli according to the

measurement error model logit(P (X∗ = 1|X,Cs) = η0 + η1X + ηsCs, where Cs represents

a subset of the confounders that were used for the measurement error model. We con-

sidered a logit outcome model, Y was generated as Bernoulli according to the outcome

model logit(P (Y = 1|X,C) = β0 + β1X + β2C1 + β3C2 + β4C3 + β5C4 + β6C5 + β7C6.

β = (β0, β1, β2, β3, β4, β5, β6, β7)
T = (0,−2,−1, 1, 1,−1, 1, 1)T , so that β1 = −2. We consider

two settings for γ = (γ0, γ1, γ2, γ3, γ4, γ5, γ6)
T = (0, 0.3,−0.3,−0.3, 0.3,−0.3, 0.3)T repre-

senting a moderate association of X and C, and (0, 0.6,−0.6,−0.6, 0.6,−0.6, 0.6)T repre-

senting a strong association for X and C. For the measurement error model, we consider

two settings. The first, η = (η0, η1, ηs)
T = (1,−2,0) representing a moderate association

between X∗ and X without any dependence on C. The second, Cs containing two covari-

ates C1 and C4, for which we consider η = (η0, η1, η2, η3)
T = (0.5,−0.4,−0.4,−0.4). 100

repetitions were preformed for each simulation.

3.5.2 Simulation Results

For each simulation setting we evaluate the different likelihood approaches by evaluat-

ing the bias and mean squared error (MSE) in the treatment effect estimator. Results for

three simulation settings are shown in Figures 3.1, 3.2, 3.3. Figure 3.1 corresponds to a

simulation setting with a moderate association between X and C and with measurement
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error independent of C. Figure 3.2 corresponds to a simulation setting with a strong as-

sociation between X and C and with measurement error independent of C. Figure 3.3

corresponds to a simulation setting with a moderate association between X and C and

with measurement error dependent on C.

In each figure, the top panel shows results when C’s are included as covariates in the out-

come model, whereas the bottom panel shows results when C’s are not included in the

outcome model. Results are grouped by propensity score methods, we also compare re-

sults to multivariate regression without using any propensity score methods. From left to

right, we plot results based on using no propensity score method, stratifying by propen-

sity score, weighted likelihood using inverse propensity scores, using propensity score as

a covariate, and matching based on propensity score. For the stratification method, indi-

viduals were ordered by propensity score, and stratified into four strata. For the weighted

likelihood method using inverse propensity scores, the inverse propensity scores and one

minus the inverse propensity scores weights were stabilized as suggested by Robins et al.

(2000). These weights were stabilized by multiplying the weights for the treated indi-

viduals by the expected value of being treated, and the untreated individuals by the ex-

pected value of being untreated (Robins et al., 2000). For the matching method, we obtain

weights for each individual by implementing matching using the MatchIt R-package (Ho,

2009).

For each of these methods, the squares represent outcome models which included the

true treatment, X , as a covariate. The circles represent outcome models which included

the error-prone treatment, X∗, as a covariate. The triangles represent outcome models

which included the error-prone treatment, X∗, as a covariate, but for which a likelihood

adjustment was conducted. Blue represents using the true propensity score, red repre-

sents using the error-prone propensity score, and green represents using the proposed

adjusted propensity score (based on Equation (3.1)).

When including C’s in the outcome model (top panel), we see that across all methods

and independent of the propensity score, outcome models which included the true treat-

ment, X (squares in the plot), as a covariate, are unbiased and have a MSE close to 0.

For example, for the stratification propensity score method in the first simulation setting,
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Figure 3.1, the bias and MSE are 0.00057 and 0.01324 using the true propensity scores.

This is seen in all three figures. Across all methods and independent of propensity score,

outcome models which included the error-prone treatment, X∗ (circles in the plots) have

a substantial amount of bias and MSE. For example, for the stratification propensity score

method in the first simulation setting, Figure 3.1, the bias and MSE are 0.26676 and 0.26702

using the error-prone propensity scores. When we apply our likelihood adjustment to

these outcome models which included the error-prone treatment, X∗, as a covariate, (tri-

angles in the plots), the bias and MSE reduces substantially. For example, for the strat-

ification propensity score method in the first simulation setting, Figure 3.1, the bias and

MSE are 0.01146 and 0.01873 using the adjusted propensity scores. We note that in this set-

ting where C’s are included in the outcome model, there is no benefit of using propensity

score methods (in blue, red, and green) compared to not using propensity score meth-

ods (in purple). For example, bias and MSE without using propensity score methods, in

the first simulation setting, Figure 3.1, are 0.00080 and 0.01317 based on X , 0.26666 and

0.26691 based on X∗, and 0.01079 and 0.01680 based on the likelihood adjustment. There

is no model misspecification here, and we consider a model with a relatively small num-

ber of confounders, thus we expect standard multivariate regression to preform just as

well as the propensity score methods.

In the bottom panel, we do not include C’s as covariates in the outcome model. Propen-

sity score methods are used as a way to reduce the dimensionality. Although in this

specific simulation scenario there is no need to reduce the dimensionality, we evaluate

the performance of our methods in this setting since propensity score methods are used

for this purpose. In addition, propensity score methods are used in the case of model

misspecification. Not including C’s in the model is an extreme case of model misspecifi-

cation. In this setting, the outcome model using X as a covariate without any propensity

score methods has a substantial amount of bias and MSE (purple squares in the plots).

Using X∗ as a covariate without any propensity score methods shifts the bias in the op-

posite direction, in all three figures (purple circles), while the MSE increases in Figure 3.1,

increases slightly in Figure 3.2, and decreases in Figure 3.3. Preforming the likelihood ad-

justment in this setting reduces the bias and MSE slightly in Figures 3.1,3.2 while increas-
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ing the bias and MSE slightly in Figure 3.3. For example, in the first simulation setting,

Figure 3.1, the bias and MSE are -0.32158 and 0.32195 based on X , 0.42043 and 0.42081

based on X∗, and -0.27235 and 0.27317 based on the likelihood adjustment. Thus, in this

setting, without using any propensity score methods, preforming a likelihood adjustment

does not eliminate the bias in the treatment effect estimators.

When stratifying by propensity scores, using X as a covariate preforms well in terms

of bias and MSE. This is consistent across the three propensity scores, with better per-

formance based on the true and adjusted propensity scores compared to the error-free

propensity score seen in Figure 3.3. Using error-prone X∗ increases the bias and MSE

with all three propensity scores. While applying the likelihood adjustment reduces this

bias and MSE, but only when using the true and adjusted propensity scores. For exam-

ple, in the first simulation setting, Figure 3.1, the bias and MSE are -0.02437 and 0.02855

based on X using the true propensity score, 0.27680 and 0.27710 based on X∗ using the

error-prone propensity score, -0.24436 and 0.24503 based on the likelihood adjustment

using the error-prone propensity score, and -0.00849 and 0.01676 based on the likelihood

adjustment using the adjusted propensity score.

For this method, we assess balance in our covariates by evaluating the standardized bias,

which is defined as the difference in means in the covariate between the treatment and

comparison group divided by the standard deviation. Ho et al. (2007) consider a covari-

ate balance if the standardized bias is less than 0.25. We look at balance in covariates

without using any propensity score methods, using the true propensity scores, using

error-prone propensity scores, and using our adjusted propensity score (Table 3.1). We

see that balance is improved using the adjusted propensity score compared to the error-

prone propensity score, especially in the case where the error is dependent on C. Thus,

for stratification in these simulations we see that there is a benefit in a two step approach,

first using an adjusted propensity score, and second preforming a likelihood adjustment

on the outcome model.

The weighted likelihood approach is sensitive to propensity score selection. Using the

true X as a covariate in the model, the weighted likelihood approach preforms best using

the true propensity score, and worse with the error-prone propensity score, this is seen
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in all three figures. In all three figures, using the adjusted propensity score improves

bias and MSE compared to the error-prone, and a substantial improvement is seen in

Figure 3.3. For example, in the first simulation setting, Figure 3.1, the bias and MSE are

0.00044 and 0.01374 using the true propensity score, -0.42452 and 0.42487 using the error-

prone propensity score, and -0.11787 and 0.12119 using the adjusted propensity score.

Using the error-prone X∗ as a covariate in the model, the weighted likelihood approach

preforms best using the error-prone propensity scores, and worse with the true propensity

scores, this is seen across all three figures. For example, in the first simulation setting,

Figure 3.1, the bias and MSE are 0.81261 and 0.81292 using the true propensity score,

0.27284 and 0.27314 using the error-prone propensity score, and 0.68230 and 0.68275 using

the adjusted propensity score.

The likelihood adjustment substantially improves the bias and MSE when using the error-

prone propensity score. For example, in the first simulation setting, Figure 3.1, the bias

and MSE are -0.34292 and 0.34366 using the true propensity score, -0.00286 and 0.01700

using the error-prone propensity score, and -0.23758 and 0.23836 using the adjusted

propensity score. This is due to the fact that the classification of using the inverse propen-

sity score or the inverse of one minus the propensity score is based on X∗, therefore it is

not surprising that the method preforms best using propensity score based on X∗. Thus,

for the weighted likelihood approach in these simulations, we see that there is a benefit in

a one step approach, using the error-prone propensity score, and preforming a likelihood

adjustment on the outcome model.

Using the propensity score as a covariate in the model, including X as a covariate in the

true model, bias and MSE are very low using all three propensity scores when the error

is independent of the covariates (Figures 3.1, 3.2). Bias and MSE are better using the

error-free and adjusted propensity scores when the error is dependent of the covariates

(Figure 3.3). Including X∗ as a covariate, increases the bias and MSE (with the exception

of when the error is dependent on the covariates using the error-prone propensity score),

and using the likelihood adjustment actually increases the bias and MSE (in all three

figures). For example, in the first simulation setting, Figure 3.1, the bias and MSE are

-0.00063 and 0.01378 based on X using the true propensity score, 0.26792 and 0.26818
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based on X∗ using the error-prone propensity score, -0.24436 and 0.24503 based on the

likelihood adjustment using the error-prone propensity score, and -0.25158 and 0.25210

based on the likelihood adjustment using the adjusted propensity score. Thus, for this

approach, in these simulations, no likelihood adjustment using the error-prone treatment

X∗ as a covariate in the model and using either of the propensity scores, preforms better

than a likelihood adjustment on the outcome model.

For the matching, when including X as a covariate in the model, bias and MSE are very

low. When the error is dependent on C (Figure 3.3), using the true propensity scores and

adjusted propensity score preform much better than using the error-prone propensity

scores. For the other scenarios, we see similar performance across the three propensity

scores (Figures 3.1, 3.2). Including X∗ increases the bias and MSE substantially (with the

exception of when the error is dependent on the covariates using the error-prone propen-

sity score), and using the likelihood adjustment reduces the bias and MSE substantially

across all three settings. For example, in the first simulation setting, Figure 3.1, the bias

and MSE are 0.00980 and 0.01917 based on X using the true propensity score, 0.26951

and 0.26982 based on X∗ using the error-prone propensity score, 0.00053 and 0.02011

based on the likelihood adjustment using the error-prone propensity score, and -0.00114

and 0.01993 based on the likelihood adjustment using the adjusted propensity score. For

matching the likelihood adjustment preforms just as well independent of the propensity

score method used. Thus, for matching in these simulations, we see that there is a benefit

in a one step approach, preforming a likelihood adjustment on the outcome model. It

does not seem to make a difference if one uses error-prone or adjusted propensity scores

for this analysis.

Overall, we see that in these simulations, depending on the propensity score method,

different approaches to handle the measurement error provide the least bias and MSE in

the treatment effect estimator.

In addition, we show results for three simulation settings for the proposed IPW adjust-

ment estimator in Table (3.2). These results show the proposed IPW adjustment improves

bias and MSE compared to using the error-prone treatment X∗ across all settings.
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Figure 3.1: Simulation Setting 1: a moderate association between X and C and measure-
ment error independent of C.
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Figure 3.2: Simulation Setting 2: a strong association between X and C and measurement
error independent of C.
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Figure 3.3: Simulation Setting 3: a moderate association between X and C and measure-
ment error dependent on C.
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Table 3.1: Standardized bias; the difference in means in the covariate between the treat-
ment and comparison group divided by the standard deviation, is shown for each co-
variate. Calculations are shown when stratifying by propensity scores, using various
propensity scores, as well as without the stratification. Simulations settings correspond
to Figures 3.1,3.2,3.3.

C1 C2 C3 C4 C5 C6

Simulation Setting 1

No PS 0.23433 0.48912 0.75196 0.11354 0.12614 0.11939
P̂Strue 0.03804 0.03990 0.04484 0.03626 0.03582 0.03803
P̂Sep 0.04682 0.04885 0.05275 0.04781 0.04625 0.04808
P̂Sadj 0.04503 0.04996 0.04858 0.04517 0.04594 0.04944

Simulation Setting 2

No PS 0.33864 0.70049 1.13997 0.16356 0.17991 0.16622
P̂Strue 0.05961 0.06415 0.07092 0.05835 0.05852 0.06003
P̂Sep 0.07591 0.07399 0.08303 0.06826 0.06945 0.07246
P̂Sadj 0.07111 0.06894 0.07610 0.06637 0.06832 0.06703

Simulation Setting 3

No PS 0.23433 0.48912 0.75196 0.11354 0.12614 0.11939
P̂Strue 0.03804 0.03990 0.04484 0.03626 0.03582 0.03803
P̂Sep 0.04582 0.19450 0.29517 0.04194 0.06043 0.05596
P̂Sadj 0.04427 0.04773 0.04777 0.04630 0.04397 0.04714

Table 3.2: Bias/MSE for IPW Adjustment, the true treatment effect is ∆true = −0.186.
Sim 1 Sim 2 Sim 3

Bias
√
MSE Bias

√
MSE Bias

√
MSE

Error-Free 0.00016 0.01627 0.00996 0.08468 -0.00016 0.01627
Error-Prone 0.27324 0.27355 0.27242 0.27272 0.20403 0.20447
Proposed Adjustment -0.00581 0.08653 -0.04751 0.17897 -0.01581 0.04708

Simulation Setting 1: a moderate association between X and C and measurement error independent of C.
Simulation Setting 2: a strong association between X and C and measurement error independent of C.
Simulation Setting 3: a moderate association between X and C and measurement error dependent on C.

3.6 Discussion

In this paper we present various approaches to adjust for measurement error in treat-

ment assignment in observational studies. Previous literature on measurement error in

the setting of propensity scores has focused on error in the confounders and not on error

in exposures. Our simulations studies show that using error-prone treatment introduces

substantial bias in the treatment effect estimators. This bias is eliminated when preform-

ing the likelihood adjustment on the outcome model; rewriting the likelihood using the

law of total probability by summing over all possible values of the true treatment and
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weighing by the measurement error which is estimated in the validation study. We also

propose a way to reduce this bias and MSE for the IPW treatment effect estimator.

The benefit of using propensity score methods is apparent when confounders are not

included in the outcome model. We realize that in these specific simulation scenarios,

there is no reason not to include confounders in the outcome model. However, propensity

score methods are often use when one is unable to include the confounders in the outcome

model, thus it is relevant to examine this case. In addition, this case provides an example

in which model misspecification has occurred. Conclusions, based on simulations, in

this setting where confounders are not included in the model vary by propensity score

method.

Overall, all four propensity score methods considered provide a benefit in terms of bias

and MSE compared to not using any propensity score methods. For stratification, we see

a clear benefit of using an adjusted propensity score and preforming a likelihood adjust-

ment on the outcome model. For the weighted likelihood approach, we see a clear benefit

of using an error-prone propensity score and preforming a likelihood adjustment on the

outcome model. When using the propensity score as a covariate, we see that not preform-

ing a likelihood adjustment preforms better than preforming a likelihood adjustment. For

matching, we see a clear benefit in preforming a likelihood adjustment on the outcome

model, but not on the choice of the propensity score. For the IPW estimator, the proposed

adjusted IPW estimator improves bias and MSE across all scenarios.

It is important to note that in the proposed weighted likelihood approach, weights are

assigned based on the error-prone treatment assignment. For this reason, the weighted

likelihood approach using error-prone propensity score preforms better than using the

true propensity score. In the proposed matching approach, individuals are matched by

their error-prone treatment assignment. Although this is the case, we see that this method

preforms extremely well.

Propensity score methods are widely used in the literature, and there is an increased use

of them in recent years. Measurement error in exposure is often ignored. We provide

various methods to address this issue. We cover a wide range of methods allowing the

reader to choose which propensity score method to use based on their own preference.
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Appendix A

Alternative Method to Adjust for
Measurement Error in Mendelian Risk
Prediction Models

We propose an alternative method to adjust for measurement error in Mendelian risk

prediction models. Rather than weighing the predictions by P (H|H∗) as described in

section 2.2 , one could consider weighing the penetrances by P (H∗|H). We can write our

desired model:

P (γ0|H∗) =
P (γ0)P (H∗|γ0)∑

allγ′0s
P (γ0)P (H∗|γ0)

=
P (γ0)

∑
H P (H∗, H|γ0)∑

allγ′0s
P (γ0)

∑
H P (H∗, H|γ0)

(A.1)

=
P (γ0)

∑
H P (H∗|H, γ0)P (H|γ0)∑

allγ′0s
P (γ0)

∑
H P (H∗|H, γ0)P (H|γ0)

=
P (γ0)

∑
H P (H∗|H)P (H|γ0)∑

allγ′0s
P (γ0)

∑
H P (H∗|H)P (H|γ0)

We assume non-differential measurement error, meaning that the measurement error is

independent of γ0. This is plausible since we expect misreporting to be influenced by the

true history but not by the carrier status.

Both this approach, and the one in section 2.2 are derived from basic principles. Fur-

thermore, we show that the surrogacy assumption is equivalent to the non-differential
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misclassification assumption:

P (H∗|H, γ0) = P (H∗|H)

=
P (H∗, H, γ0)

P (H, γ0)
=
P (H∗, H)

P (H)

=
P (H∗, H, γ0)

P (H∗, H)
=
P (H, γ0)

P (H)

= P (γ0|H∗, H) = P (γ0|H) (A.2)

The advantages of this approach is that it is less computationally demanding, and that

the assumption of transportability might hold better for P (H∗|H). However, using this

approach P (H∗|H) cannot be modeled using a survival distribution, therefore for the

purpose of our work we use the approach proposed in section 2.2.
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Appendix B

Likelihood Adjustment Approach for
Logit Outcome Models

The likelihoods for logit outcome models for the various propensity scores methods in-

troduced in section 3.3.2 are shown in the following sections.

B.1 Stratification

The likelihood for a logit outcome model can be written as follows:

L(β) =
∏
i∈Nk

[P (xi = 1|x∗i = 1, ci)
1

1 + exp(−(β0k + β1k + β2kci))

+P (xi = 0|x∗i = 1, ci)
1

1 + exp(−(β0k + β2kci))
]x
∗
i yi

∗[P (xi = 1|x∗i = 0, ci)
1

1 + exp(−(β0k + β1k + β2kci))

+P (xi = 0|x∗i = 0, ci)
1

1 + exp(−(β0k + β2kci))
](1−x

∗
i )yi

∗[P (xi = 1|x∗i = 1, ci)(1−
1

1 + exp(−(β0k + β1k + β2kci))
)

+P (xi = 0|x∗i = 1, ci)(1−
1

1 + exp(−(β0k + β2kci))
)]x
∗
i (1−yi)

∗[P (xi = 1|x∗i = 0, ci)(1−
1

1 + exp(−(β0k + β1k + β2kci))
)

+P (xi = 0|x∗i = 0, ci)(1−
1

1 + exp(−(β0k + β2kci))
)](1−x

∗
i )(1−yi) (B.1)

∗
∏
j∈Nvk

[
1

1 + exp(−(β0k + β1kxj + β2kcj))
]yj [1− 1

1 + exp(−(β0k + β1kxj + β2kcj))
]1−yj
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B.2 Weighted Likelihood

The likelihood for a logit outcome model can be written as follows:

L(β) =
Nm∏
i

[P (xi = 1|x∗i = 1, ci)
1

1 + exp(−(β0 + β1 + β2ci))

+P (xi = 0|x∗i = 1, ci)
1

1 + exp(−(β0 + β2ci))
]
x∗i yi

1
P (x∗

i
|ci,γadj)

+[P (xi = 1|x∗i = 0, ci)
1

1 + exp(−(β0 + β1 + β2ci))

+P (xi = 0|x∗i = 0, ci)
1

1 + exp(−(β0+β2ci))
]
(1−x∗i )yi

1
1−P (x∗

i
|ci,γadj)

+[P (xi = 1|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci))
)

+P (xi = 0|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β2ci))
)]
x∗i (1−yi)

1
P (x∗

i
|ci,γadj)

+[P (xi = 1|x∗i = 0, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci))
)

+P (xi = 0|x∗i = 0, ci)(1−
1

1 + exp(−(β0 + β2ci))
)]
(1−x∗i )(1−yi)

1
1−P (x∗

i
|ci,γadj)

∗
Nv∏
j

[
1

1 + exp(−(β0 + β1xj + β2cj))
]
yjxj

1
P (xj |cj ,γx)

∗[1− 1

1 + exp(−(β0 + β1xj + β2cj))
]
(1−yj)xj 1

P (xj |cj ,γx)

∗[ 1

1 + exp(−(β0 + β2cj))
]
yj(1−xj) 1

1−P (xj |cj ,γx)

∗[1− 1

1 + exp(−(β0 + β2cj))
]
(1−yj)(1−xj) 1

1−P (xj |cj ,γx) (B.2)
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B.3 Matching

The likelihood for a logit outcome model can be written as follows:

L(β) =
Nm∏
i

{[P (xi = 1|x∗i = 1, ci)
1

1 + exp(−(β0 + β1 + β2ci))

+P (xi = 0|x∗i = 1, ci)
1

1 + exp(−(β0 + β2ci))
]x
∗
i yi

+[P (xi = 1|x∗i = 0, ci)
1

1 + exp(−(β0 + β1 + β2ci))

+P (xi = 0|x∗i = 0, ci)
1

1 + exp(−(β0+β2ci))
](1−x

∗
i )yi

+[P (xi = 1|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci))
)

+P (xi = 0|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β2ci))
)]x
∗
i (1−yi)

+[P (xi = 1|x∗i = 0, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci))
)

+P (xi = 0|x∗i = 0)(1− 1

1 + exp(−(β0 + β2ci))
)](1−x

∗
i )(1−yi)}ŵadji (B.3)

∗
Nv∏
j

{[ 1

1 + exp(−(β0 + β1xj + β2cj))
]yj [1− 1

1 + exp(−(β0 + β1xj + β2cj))
]1−yj}ŵtruei
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B.4 Propensity Score Covariate Adjustment

The likelihood for a logit outcome model can be written as follows:

L(β) =
Nm∏
i

[P (xi = 1|x∗i = 1, ci)
1

1 + exp(−(β0 + β1 + β2ci + β3P̂Sadj))

+P (xi = 0|x∗i = 1, ci)
1

1 + exp(−(β0 + β2ci + β3P̂Sadj))
]x
∗
i yi

[P (xi = 1|x∗i = 0, ci)
1

1 + exp(−(β0 + β1 + β2ci + β3P̂Sadj))

+P (xi = 0|x∗i = 0, ci)
1

1 + exp(−(β0 + β2ci + β3P̂Sadj))
](1−x

∗
i )yi

+[P (xi = 1|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci + β3P̂Sadj))
)

+P (xi = 0|x∗i = 1, ci)(1−
1

1 + exp(−(β0 + β2ci + β3P̂Sadj))
)]x
∗
i (1−yi)

+[P (xi = 1|x∗i = 0, ci)(1−
1

1 + exp(−(β0 + β1 + β2ci + β3P̂Sadj))
)

+P (xi = 0|x∗i = 0, ci)(1−
1

1 + exp(−(β0 + β2ci + β3P̂Sadj))
)](1−x

∗
i )(1−yi)

∗
Nv∏
j

[
1

1 + exp(−(β0 + β1xj + β2cj + β3P̂Strue))
]yj

∗[1− 1

1 + exp(−(β0 + β1xj + β2cj + β3P̂Strue))
]1−yj (B.4)
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