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Linking bacterial symbiont physiology to the ecology of hydrothermal vent 

symbioses 
 
 

 Symbioses between prokaryotes and eukaryotes are ubiquitous in our biosphere, 

nevertheless, the effects of such associations on the partners’ ecology and evolution are poorly 

understood. At hydrothermal vents, dominant invertebrate species typically host bacterial 

symbionts, which use chemical energy to fix carbon to nourish their hosts and themselves. In this 

dissertation, I present evidence that symbiont metabolism plays a substantive, if not major, role in 

habitat use by vent symbioses. A study of nearly 300 individuals of the symbiotic snail Alviniconcha 

sp. showed specificity between three host species and three specific symbiont phylotypes, as well 

as a novel lineage of Oceanospirillales. Additionally, this study revealed a structured distribution 

of each Alviniconcha-symbiont combination across ~300 km of hydrothermal vents that exhibited 

a gradient in geochemical composition, which is consistent with the physiological tendencies of 

the specific symbiont phylotypes. I also present a comparison of the in situ gene expression of the 

symbionts of Alviniconcha across that same geochemical gradient, which further implicates 

symbiont energy and nitrogen metabolism in governing the habitat partitioning of Alviniconcha. 

Finally, I present data that allies productivity and sulfur metabolism in three coexisting vent 

symbioses, demonstrating specific interaction with the environment. Three symbioses, namely 

the snails Alviniconcha and Ifremeria, and the mussel Bathymodiolus, are found around vents with 

differing concentrations of sulfide, thiosulfate and polysulfide. Using high-pressure, flow-through 

incubations and stable isotopic tracers, I quantified symbiont productivity via sulfide and 

thiosulfate oxidation, and provided the first demonstration of thiosulfate-dependent autotrophy 

in intact hydrothermal vent symbioses. I further demonstrated that vent symbioses can excrete 
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thiosulfate and/or polysulfides, implicating them in substantively influencing the sulfur chemistry 

of their habitats. In summary, this dissertation demonstrates the importance of symbiont 

physiology to the ecology of prokaryote-eukaryote symbioses by revealing that symbiont activity 

may be critically important to the distribution of symbioses among specific niches, as well as can 

alter the geochemical environment through uptake and excretion of chemicals. 
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 There is a growing appreciation for the ubiquity of microbial symbioses on Earth, yet for 

most of these we only have a basic understanding of symbiont physiology and the impact of these 

partnerships on ecosystem ecology and biogeochemistry. Eukaryotes in many ecosystems have 

evolved specific associations with prokaryotes that allow them to capitalize on the relative 

diversity of prokaryotic metabolisms. Via the metabolic activities of their symbionts, host 

eukaryotes stand to gain a number of benefits including: access to novel nutritional or energy 

resources, detoxification of their surroundings, and/or metabolic processes that facilitate or 

complement their own metabolism. Thus, symbionts have the potential to mediate an organism’s 

interaction with its biotic and abiotic environment. For example, symbiont physiology has the 

potential to influence the association’s use of a specific habitat (Tsuchida et al. 2004), to affect 

interactions with predators (Lopanik et al. 2004), or, through metabolic activity, to alter local 

biogeochemical cycles (van der Heide et al. 2012).  

 Despite the potential significance of their activities on ecosystems, we have characterized 

the interaction between symbiont physiology and habitat in relatively few symbiotic taxa. This is 

particularly startling when we consider the prevalence of prokaryote-eukaryote symbioses in 

many environments, particularly in some marine ecosystems. To this end, the thesis presented 

here advances our understanding of the functioning of bacterial-animal symbioses at deep-sea, 

hydrothermal vent ecosystems through surveys characterizing the abundance and distribution of 

both symbiont and host in differing habitats (Ch.2 & 4), interrogation of symbiont physiological 

poise via transcriptomic analysis (Ch.3), and direct experimental measurement of symbiont 

metabolism (Ch.5). 

 Mutualistic associations between prokaryotes and eukaryotes predominate at 

hydrothermal vent habitats (Fisher et al. 2007). At these deep-sea hotsprings, invertebrates from 

many phyla have evolved partnerships with bacteria that enable them to thrive in the typically 



! 3 

resource-limited deep ocean (Dubilier et al. 2008; Cavanaugh et al. 2006). Symbiosis with 

bacteria allows animals to access chemical energy in venting fluid, which is otherwise unavailable 

to them as eukaryotes. Hydrothermal fluid is enriched in reduced substrates such as sulfide, 

methane and hydrogen that can be oxidized by chemoautotrophic bacteria providing energy for 

carbon fixation (Tsuchida et al. 2004; Tivey 2007). Through partnerships with chemoautotrophs, 

many vent invertebrates indirectly access this process, which ultimately provides the bulk of their 

nutrition (Lopanik et al. 2004; Cavanaugh et al. 1981; Fisher et al. 1989; Felbeck 1981; Belkin et 

al. 1986; Nelson et al. 1995; Polz et al. 1998; Ponsard et al. 2012; Watsuji et al. 2012). At almost 

all hydrothermal vents explored to date, dense assemblages of host animals are found clustered 

around vent orifices in order to provide their symbionts access to chemicals in venting fluid (van 

der Heide et al. 2012; Stewart et al. 2005).  

 Despite this common need for contact with vent fluid, their structured distribution within 

and among vent fields suggests habitat specialization by the holobionts (i.e., host and symbiont 

together). Vents are well-known for their variability in physico-chemical characteristics at both of 

these scales (Fisher et al. 2007; Le Bris et al. 2000; Mottl et al. 2011; Butterfield et al. 1994), 

providing a wealth of habitats that would enable regional or local environmental sorting. Indeed, 

differences in symbiotic communities are often observed among vent fields within the same 

region that have differing chemistry or geology (Dubilier et al. 2008; Desbruyeres et al. 2000; 

Cavanaugh et al. 2006; Galkin 1997; Desbruyeres et al. 1994). Additionally, within a vent field, 

vent holobionts are often found in discrete, mono-specific or –generic zones or patches that are 

associated with particular physico-chemical features (Marsh et al. 2012; Podowski et al. 2010; 

Luther et al. 2001; Waite et al. 2008; Cuvelier et al. 2011; Sarrazin et al. 1997; Tokeshi 2011; 

Sarrazin et al. 2002; Sarrazin & Juniper 1999). Typically, these patterns have been attributed to 

interactions between the environment and host physiology or traits – for example, differences in 
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tolerance to temperature or sulfide – that would lead to niche specialization (Podowski et al. 

2010; Luther et al. 2001; Waite et al. 2008; Cuvelier et al. 2011; Sarrazin et al. 1997). However, 

it is equally likely that symbiont traits influence habitat specialization in these organisms, with the 

potential to drive the observed environmental sorting. Because most host taxa specifically 

associate with only one or two lineages of symbiont (Dubilier et al. 2008; Cavanaugh et al. 2006), 

the attributes of their particular partners may determine the niche of the holobiont. 

 In addition to affecting host ecology, the activities of chemoautotrophic vent symbionts 

may have a significant impact on their abiotic environment. Given the density of symbionts in 

host tissue, symbiont population sizes may rival or exceed those of similar free-living prokaryotes 

in their environment (Yamamoto et al. 2002; Pranal et al. 2009; Belkin et al. 1986; Powell & 

Somero 1986); therefore, symbiont metabolism has the potential to drastically influence local 

geochemistry. In situ manipulations that have measured the water chemistry before and after 

removal of vent symbioses have shown that they significantly deplete the reductants in venting 

fluid (Podowski et al. 2010; Waite et al. 2008; Le Bris et al. 2006). This has been reinforced with 

experimental measurements of the rates of sulfur, methane and hydrogen oxidation by a few 

intact symbioses and physically isolated symbionts (Girguis & Childress 2006; Henry et al. 2008; 

Childress et al. 1991; Petersen et al. 2011; Fisher et al. 1987; Wilmot & Vetter 1990; Goffredi et 

al. 1997). Input of metabolic end-products by vent symbioses into the environment is less well-

characterized than their utilization of vent fluid reductants. Hydrogen sulfide oxidation by the 

symbionts of vent tubeworms has been shown to lower the pH of the surrounding water through 

the excretion of hydrogen ions (Girguis et al. 2002). In addition, in vitro experiments on 

symbionts show that some might only partially oxidize sulfide, excreting the resulting partially 

oxidized sulfur (Wilmot & Vetter 1990). Since insight into the ecology of vent symbioses and their 

effect on the environment is bound to our understanding of symbiont activity, more work is 
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needed to characterize the range of symbiont metabolism. 

 Among the symbionts of vent animals, high phylogenetic diversity, as well as widespread 

horizontal gene transfer, likely corresponds to ecologically significant physiological diversity 

(Kleiner et al. 2012). Vent symbionts are derived from many lineages of Proteobacteria, mainly 

γ-proteobacteria, that have independently evolved from various free-living lineages (Cavanaugh 

et al. 2006; Dubilier et al. 2008; Petersen et al. 2012). Though they converge in basic 

chemoautotrophic function, they can diverge in biochemical pathways or entire metabolisms that 

may have ecological implications for the host with which they associate. A comparison of the 

genomic content among some of the γ-proteobacterial symbionts of vent animals has shown that 

they can differ in genes for energy metabolism, carbon fixation and nitrogen acquisition (Kleiner 

et al. 2012). Moreover, experiments comparing the metabolism of vent symbioses have shown 

that they can differ in their use of substrates like sulfur compounds (Belkin et al. 1986; Wilmot & 

Vetter 1990). Whether and how these differences translate into niche preference by the 

holobionts is still unknown, but these characteristics potentially affect their distribution. In 

addition, differences among symbiont metabolism have the potential to differentially affect local 

geochemistry. 

 The work comprising this thesis focuses on the diverse chemoautotrophic symbionts of 

three mollusc genera found in dense communities at vents along the Eastern Lau Spreading 

Center (ELSC), which is part of the Lau back-arc basin. The ELSC comprises a series of vent 

fields that are found fairly linearly along a north-south spreading center, separated by 10s to 100s 

of kilometers. Vents along the ELSC span geological and geochemical gradients that result from 

the increasing influence of the subducting Pacific plate on crustal composition in the southward 

direction (Tivey et al. 2012). Vents in the northern part of the Lau Basin are mainly basaltic, 

while those in the south primarily andesitic. This geological shift has been linked to a north-south 
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gradient in vent fluid geochemistry, as well as concurrent changes in vent biological communities 

(Podowski et al. 2010; Kim & Hammerstrom 2012).  

 Because the ELSC vent fields are located in relative proximity to one another, span a 

gradient in physico-chemical conditions, and have no known barriers to biological dispersal 

(Speer & Thurnherr 2012), this region presented an ideal opportunity to investigate interactions 

between habitat and the ecology of vent symbioses. At ELSC vents, as well as others in the 

southwestern Pacific, two symbiotic provannid snail genera (Ifremeria and Alviniconcha), as well as 

the symbiotic mussel Bathymodiolus brevior, predominate (Podowski et al. 2009; Podowski et al. 

2010; Desbruyeres et al. 1994). The genus Ifremeria is monotypic, containing only the species I. 

nautilei, while Alviniconcha comprises at least six cryptic lineages that were recently described as 

species (S. Johnson & B. Vrijenhoek, pers. comm.). In this dissertation, I discovered that three of 

the Alviniconcha host types (now thought to be species) co-occur at the ELSC vents (Ch.1). In 

Chapter 2, I surveyed the distribution of Alviniconcha host and symbiont types at vents along the 

ELSC, linking observed changes in geochemistry to a structured distribution of host-symbiont 

associations. Subsequent investigation of symbiont physiological poise through transcriptomic 

sequencing allowed me to assess the in situ gene expression of Alviniconcha symbionts from across 

the geochemical gradient (Ch. 3). In addition, my survey of the diversity of ELSC Alviniconcha 

symbionts and quantitative assessment of their association with the three host species, revealed an 

additional bacterial inhabitant of some Alviniconcha types which could be ecologically important 

via metabolic interactions with the symbioses or as a parasite (Ch.4). 

 On a much smaller spatial scale, observed patterns in intra-field habitat differentiation by 

the symbiotic molluscs of the ELSC suggest specific interactions and chemical exchanges with the 

abiotic environment. Surveys of the animal assemblages at ELSC vents have shown that these 

genera predictably occur in zones around hydrothermal vent flows with Alviniconcha nearest to the 



! 7 

vent orifice, Ifremeria comprising the next zone, and B. brevior being found at the very edges (Waite 

et al. 2008; Podowski et al. 2009; Podowski et al. 2010). For these holobionts, energy resources 

are directly tied to the physical space they occupy. As vent fluid emerges from the crust, it can be 

quickly diluted by the surrounding seawater and/or oxidized, either abiotically by reacting with 

metals or through the activities of free-living microorganisms (Santos Afonso & Stumm 1992; 

Pyzik & Sommer 1981; Luther et al. 2011; Gartman et al. 2011). Accordingly, proximity to the 

fluid flow is essential for productivity in these symbioses, since chemical reductants may quickly 

disappear. However, their need for fluid exposure is balanced by their tolerances to heat and/or 

toxic chemicals found in venting fluid, as well as by competitive interactions among the 

holobionts. At the ELSC, both these abiotic and biological processes are thought to shape the 

zonation of the three symbiotic mollusc genera (Sen et al. 2013; Podowski et al. 2010). 

 However, at the ELSC vents, another factor may enable the observed community 

structure. In this region, vent symbionts are hypothesized to supplement chemoautotrophy based 

on the highly-reduced chemicals from the venting fluid with the use of partially oxidized sulfur, 

which is reasonably abundant in the seawater around the symbiotic animals (Waite et al. 2008; 

Mullaugh et al. 2008; Gartman et al. 2011). For example, though undetectable amounts of 

sulfide are often found around B. brevior, concentrations of the partially oxidized compound 

thiosulfate are often high (Mullaugh et al. 2008; Waite et al. 2008). If low tolerance to high 

temperatures or sulfide concentrations or competitive exclusion by the other symbioses prevents 

B. brevior from inhabiting areas of high fluid flow, thiosulfate has the potential to serve as an 

important energy source. To address whether this is the case, in Chapter 5, I used high-pressure, 

flow-through respirometry to directly test the ability of all three ELSC molluscs to fuel 

autotrophy with the oxidation of thiosulfate. In addition, because the source of partially oxidized 

sulfur in situ is unknown, I measured the excretion of sulfur compounds by the three symbioses 
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when provided different sulfur substrates. The results of these experiments yield important 

insights into the chemoautotrophic metabolism of hydrothermal vent organisms and their 

potential to influence the pool of reductants in their habitats through excretion. 

 This dissertation demonstrates the importance of symbiont physiology to the ecology of 

prokaryote-eukaryote symbioses. Though the effects of symbiont activity on organismal ecology 

may be readily apparent at symbioses-dominated ecosystems like hydrothermal vents, given the 

prevalence of prokaryote-eukaryote symbioses on earth, they are likely to be significant in other 

biological systems as well. Here, I underscore that the activities of microbial symbionts may be 

imperative to a) the distribution of symbioses into specific niches and b) exchange with the 

geochemical environment through uptake and excretion of chemicals. In sum, my efforts 

advance our understanding of the fundamental influence of symbiont activity on hydrothermal 

vent ecosystem processes, providing valuable insight into the physiology of chemoautotrophic 

symbionts and their effects on host ecology and local geochemistry.  
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Deep-sea hydrothermal vents are populated by dense communities
of animals that form symbiotic associations with chemolithoauto-
trophic bacteria. To date, our understanding of which factors govern
the distribution of host/symbiont associations (or holobionts) in
nature is limited, although host physiology often is invoked. In
general, the role that symbionts play in habitat utilization by vent
holobionts has not been thoroughly addressed. Here we present
evidence for symbiont-influenced, regional-scale niche partitioning
among symbiotic gastropods (genus Alviniconcha) in the Lau Basin.
We extensively surveyed Alviniconcha holobionts from four vent
fields using quantitative molecular approaches, coupled to charac-
terization of high-temperature and diffuse vent-fluid composition
using gastight samplers and in situ electrochemical analyses, re-
spectively. Phylogenetic analyses exposed cryptic host and sym-
biont diversity, revealing three distinct host types and three
different symbiont phylotypes (one ε-proteobacteria and two
γ-proteobacteria) that formed specific associations with one an-
other. Strikingly, we observed that holobionts with ε-proteobacte-
rial symbionts were dominant at the northern fields, whereas
holobionts with γ-proteobacterial symbionts were dominant in
the southern fields. This pattern of distribution corresponds to
differences in the vent geochemistry that result from deep sub-
surface geological and geothermal processes. We posit that the
symbionts, likely through differences in chemolithoautotrophic me-
tabolism, influence niche utilization among these holobionts. The
data presented here represent evidence linking symbiont type to
habitat partitioning among the chemosynthetic symbioses at hydro-
thermal vents and illustrate the coupling between subsurface geo-
thermal processes and niche availability.

chemoautotrophy | symbiosis | endosymbiosis

Niche partitioning, the process wherein coexisting organisms
occupy distinct niches, is thought to be essential in structuring

many biological communities (1–3). Classic studies of ecological
niche partitioning have focused on how the intrinsic traits of
organisms allow them to occupy or use distinct habitats or
resources (4, 5). However, species also can access novel niche
space via symbiotic associations with other organisms. In these
cases, the niche of the host is expanded through the addition of
the symbiont’s physiological capabilities. With increasing aware-
ness of the prevalence of microbe–animal associations, the effect
of the symbiont(s) on niche utilization may prove to be key to
understanding the coexistence of organisms in many biological
communities. This effect is likely to be especially important in
ecosystems structured by coexisting symbiotic associations, such as
hydrothermal vents. Therefore, we looked for habitat-utilization
patterns reflective of symbiont-influenced niche partitioning
among a group of closely related snail–bacterial symbioses in the
Eastern Lau Spreading Center (ELSC) hydrothermal vent system.

Hydrothermal vents are extremely productive environments
wherein primary production occurs via chemolithoautotrophy,
the generation of energy for carbon fixation from the oxidation
of vent-derived reduced inorganic chemicals (6). The dense
communities of macrofauna that populate these habitats typically
are dominated by invertebrates that form symbiotic associations
with chemolithoautotrophic bacteria (7). In these chemosyn-
thetic associations, the endosymbionts oxidize reduced vent-de-
rived compounds—usually hydrogen sulfide (H2S)—and fix
inorganic carbon, which is shared with their host for biosynthesis
and growth (8–12). Symbiotic associations between chemo-
lithoautotrophic bacteria and invertebrates have been described
for multiple invertebrate taxa from three phyla (13), and these
associations often coexist within given vent fields, systems of vent
fields (regions), and biogeographic provinces (14).
It is well established that hydrothermal fluid can exhibit

marked spatial and temporal differences in temperature, pH, and
chemical composition, the result of numerous subsurface geo-
logical, chemical, physical, and biological factors (15–18). This
heterogeneity across both space and time provides myriad phys-
icochemical niches and ample ecological opportunity to support
a diversity of chemosynthetic symbioses via niche specialization.
Previous studies have examined successional changes within a
community of chemosynthetic symbioses in relation to temporal
changes in vent-fluid chemistry (19, 20), the distribution of the
symbioses in relation to physicochemical conditions within a vent
field (21–27), and the distribution of chemosynthetic symbioses
among different vent fields (28, 29). Host tolerance, growth rates,
and physiological capacities often are invoked when explaining
the observed distribution. Given the reliance of chemosynthetic
symbioses on vent-derived chemicals for symbiont function (30),
variations in symbiont physiological activity have the potential
to result in distinct habitat-utilization patterns by holobionts.
However, no study has yet comprehensively interrogated both
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host and symbiont to ascertain whether there is evidence for
symbiont-influenced niche partitioning at vents.
Despite a convergence of general function among chemosyn-

thetic symbioses in which the endosymbionts provide primary nu-
trition for the host, chemolithoautotrophic symbiont lineages have
evolved multiple times from distinct lineages of free-living Pro-
teobacteria (13, 31), and the genetic distance within and among
symbiont lineages is sufficient to posit that physiological differences
exist among them. Indeed, ongoing studies of chemosynthetic
symbioses continue to reveal diverse modes of energy metabolism,
such as hydrogen and carbon monoxide oxidation (32, 33). Given
the obligate nature of these associations, the ecological implica-
tions of differences in symbiont physiological capacity are quite
significant, because they may enable niche partitioning that results
in previously inexplicable or unrecognized distribution patterns. If
there are physiological differences among the symbionts of given
groups (genera or species) of hosts, symbiont physiological activity
would have the potential to constrain host habitat utilization via
differences in chemolithotrophic metabolism.
Provannid gastropods of the genus Alviniconcha provide a

unique opportunity to study symbiont-driven host niche parti-
tioning. Alviniconcha are widely distributed at vents in the
western Pacific (Manus Basin, Marianas Trough, North Fiji
Basin, and the Lau Basin) as well as in the Indian Ocean at
vents along the Central Indian Ridge. In addition to the de-
scribed species of Alviniconcha, previous studies have found
additional host “types” which are sufficiently divergent that
they may represent undescribed species (34–36). These species
and host types have been observed to host either intracellular γ-
or ε-proteobacterial symbionts in the gill (36–40). Studies of the
distribution of these species and types among vent fields ex-
amined a modest number of specimens per site (e.g., two
individuals from each sampling site), with little or no contextual
habitat information. As such, it is impractical to infer from
these data the relationship between host type, symbiont type,
and habitat utilization.

To look for patterns indicative of symbiont-influenced habitat
partitioning, we collected 288 Alviniconcha individuals from the
walls of hydrothermal chimneys and diffuse-flow habitats (where
hydrothermal fluid is emitted from cracks in the seafloor) (Fig. 1
and Table S1). Alviniconcha were sampled from four vent fields
spanning a regional geological gradient, where the two northern-
most fields (Tow Cam and Kilo Moana) are dominated by basaltic
lava, and the two southernmost vents (ABE and Tu’i Malila) are
dominated by andesitic lava (41–45). Coregistered measurements
of the physicochemical habitat within the animal collections, as well
as characterization of vent end-member fluids from within each
field, provide contextual geochemical information for these sam-
ples. Both host and symbionts were subject to phylogenetic analy-
ses, and the composition of the symbiont population of all
individuals was determined via quantitative PCR (qPCR). Select
samples were also analyzed for stable-carbon isotopic content.
Collectively, these data reveal striking patterns of both host and
symbiont (holobiont) distribution along an ∼300-km length of the
ELSC. The observed patterns in holobiont distribution correlate
with differences in vent-fluid composition along the ELSC, impli-
cating Alviniconcha symbionts in governing the distribution of their
hosts among vent fields. These data provide evidence that symbiont
complement might influence niche partitioning within a closely
related group of animals andmight in this case, as a consequence of
differences in geochemical composition along the entire spreading
center, yield regional-scale patterns of holobiont distribution.

Results
Phylogenetic Analysis of the Host Mitochondrial Cytochrome C
Oxidase Subunit 1 Gene. We successfully amplified partial mito-
chondrial cytochrome C oxidase subunit 1 (CO1) from 274 host
individuals and recovered a total of 56 haplotypes (Table S2).
These haplotypes were distributed among three major clades
with high (>0.95) posterior support, corresponding to three
host types from the southwestern Pacific, and are called type 1
(HT-I), type 2 (HT-II), and type Lau (which we renamed here
HT-III) (Fig. 2). Only HT-III has been previously described
from the Lau Basin (38). Our results corroborate the Alvini-
concha phylogeny as published in ref. 38, in which one major
clade includes HT-I, HT-III, and Alviniconcha hessleri (from
the Mariana trench), and the second major clade includes HT-
II and A. aff. hessleri (from the Indian Ocean). For HT-I and
HT-II, reference sequences AB235211 and AB235212 were
each identical to the most common experimental haplotype in
their respective clade; AB235215, representing HT-III, was
identical to a relatively rare haplotype in our dataset but had
only one nucleotide difference from the most common HT-III
haplotype. The three host types found on the ELSC were di-
vergent from those observed in the northwestern Pacific
(Mariana Trench) and the Indian Ocean.
Some structure was apparent within the major host types in our

sample. Within HT-III, a clade including 11 of the 22 HT-III
haplotypes was supported with a posterior probability approaching
1.0. Although structure also was apparent in other host types,
none was resolved with a posterior probability exceeding 0.9.

Phylogenetic Analyses of Symbiont 16S rRNA Genes. Based on 16S
rRNA gene sequences, three symbiont phylotypes were found to
be associated with ELSC Alviniconcha, only one of which had
been previously observed in this region. Longer sequences were
generated from clones of each phylotype for phylogenetic analysis
(Fig. 3) and revealed that the three phylotypes are closely related
to the previously published sequences for the γ- and ε-proteo-
bacterial endosymbionts from Alviniconcha in this and other hy-
drothermal systems in the southwestern Pacific (Manus and North
Fiji basins) (36–38). One of the γ-proteobacterial symbiont phy-
lotypes, γ-Lau, was most closely related to the previously pub-
lished symbiont sequence from Alviniconcha in the Lau Basin

Fig. 1. (A) Map of ELSC depicting the four vent fields sampled herein. (In-
set) Location of ELSC in the South Pacific. (B) A typical assemblage of Alvi-
niconcha (Al) and other vent animals in the Lau Basin (Image courtesy of
James Childress, University of California, Santa Barbara). (C) An individual
Alviniconcha snail.

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1202690109 Beinart et al.
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(98% sequence identity) (38). The second γ-proteobacterial
symbiont, phylotype γ-1, and an ε-proteobacterial symbiont phy-
lotype were most closely related (96–97% and 97% sequence
identity, respectively) to Alviniconcha symbionts previously ob-
served in the North Fiji and Manus basins (38).

Proportion of Symbiont Phylotypes Within Alviniconcha. Quantifi-
cation via qPCR revealed that all Alviniconcha individuals ana-
lyzed were dominated (>67% of total detected 16S rRNA genes)
by either γ- or ε-proteobacterial endosymbionts. The dominant
phylotype on average represented 99.5 ± 2.2% of the total sym-
biont gene counts within all individuals (Fig. 4). We never ob-
served individual snails with approximately equal representation
of γ- and ε-proteobacteria, although we did observe individuals
with roughly equal representation of the two γ-proteobacterial
phylotypes. Accordingly, we refer to Alviniconcha individuals as
primarily hosting either γ- or ε-proteobacterial endosymbionts.

Relationships Among Symbiont Phylotypes and Host Types. Our
qPCR analysis also revealed specificity among the three host
types and three symbiont phylotypes. One-way analysis of simi-
larity (ANOSIM) comparing the symbiont composition among
the different host types demonstrated that each host type asso-
ciated with significantly different symbiont populations (global

R = 0.789, P < 0.001) (Fig. 4). HT-II were exclusively dominated
by ε-proteobacteria, with ε-proteobacteria always representing
>99% of the detected symbiont genes. Accordingly, we found no
significant differences in the symbiont population among HT-II
from three different vent fields (one-way ANOSIM; global R =
0.312, P = 0.07). HT-III, conversely, were exclusively dominated
by γ-proteobacteria, either γ-1 or γ-Lau. A small number of HT-
III individuals (n = 7, hereafter called “γ-Both”) had relatively
equal proportions of both γ-proteobacterial phylotypes. HT-III
was found at the two southernmost vent fields (ABE and Tu’i
Malila); however, because of the presence of only one HT-III
individual at ABE, we were unable to statistically test the effect
of geography on symbiont population composition in this host
type. Finally, HT-I was dominated by either γ-1 or ε-proteobac-
teria but moret commonly dominated by γ-1, not the ε-proteo-
bacteria (n = 93 vs. 6 individuals respectively). In this host type,
the associated symbiont population displayed different patterns
of symbiont fidelity according to geography. HT-I was found at all
four vent fields; however, the dominant symbiont phylotype
changed from north to south. Five of 12 HT-I individuals in the
northern vent fields were dominated by ε-proteobacteria, com-
pared with only 1 of 87 HT-I individuals in the southern vent
fields. This finding was confirmed via one-way ANOSIM com-
paring the symbiont population of HT-I by location, which

Fig. 2. Bayesian inference phylogeny of the Alviniconcha host mitochondrial CO1 haplotypes from this and previous studies and sequences from the sister
genus Ifremeria. Boxes show the three Alviniconcha host types reported here. The haplotype ID number is shown at the tip of each branch, and the gray bars
represent the total number of individuals recovered for each haplotype. Accession numbers for haplotypes found in this study are given in Table S2. Posterior
probabilities are indicated above the nodes if >0.7.
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demonstrated that there were significant differences among HT-I
individuals from the different vent fields (global R = 0.385,
P < 0.001).

Geographic Patterns in the Abundance of Alviniconcha Host Types.
The distribution and abundance of each host type varied geo-
graphically from north to south (Fig. 5). HT-I was found at all

four vent fields, HT-II was found at three vent fields but not Tu’i
Malila, and HT-III was found at the two southernmost vent
fields, ABE and Tu’i Malila. With respect to their relative
abundance, Alviniconcha populations at the northern vent fields
were mainly HT-II, whereas populations at the southern vent
fields were mainly HT-I and HT-III. The relative abundances of
host types in the two northern vent fields (Kilo Moana and Tow

A

B

Fig. 3. Bayesian inference phylogenies of 16S rRNA sequences showing the three Alviniconcha symbiont phylotypes found at the ELSC. All Alviniconcha
symbionts, from this study and others, are shown in bold. Gray highlighting indicates the representative sequences from this study. Boxes show the Alvi-
niconcha symbiont phylotypes defined here and in other studies. Posterior probabilities are indicated above the nodes if >0.7. (A) γ-proteobacterial phy-
logeny, with β-proteobacteria as the outgroup. (B) ε-proteobacterial phylogeny, with δ-proteobacteria as the outgroup.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1202690109 Beinart et al.
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Cam) versus two southern vent fields (ABE and Tu’i Malila)
were significantly different (global R = 0.34, P = 0.03).

Geographic Abundance of Symbiont Phylotypes. The abundance of
symbiont phylotypes associated with Alviniconcha changed along
the spreading center (Fig. 5). Individuals dominated by symbiont
γ-1 were present at all four vent fields. Individuals dominated by
ε-proteobacteria were present three vent fields but not Tu’i
Malila. Individuals dominated by γ-Lau were observed only at
Tu’i Malila. The dominant symbiont phylotypes in Alviniconcha
from the two northern vent fields (Kilo Moana and Tow Cam)
were significantly different from those of the southern two vent
fields (ABE and Tu’i Malila) (one-way ANOSIM, global R =
0.409, P = 0.024). Specifically, the majority of Alviniconcha at
the northern vent fields (Kilo Moana and Tow Cam) were
dominated by ε-proteobacteria, whereas the majority of Alvini-
concha at the southern vent fields (ABE and Tu’i Malila) were
dominated by one of the two γ-proteobacterial phylotypes.

Chemistry and Temperature at Alviniconcha Habitats. Chemical and
thermal measurements were taken upon the cleared substratum
after Alviniconcha collections were completed (Table S1 and
Fig. 6). Free sulfide concentrations in the vent fluids of the
northernmost Alviniconcha habitats were significantly greater
than those of the southernmost habitats (Mann–Whitney U, P =
0.038). Although we happened to sample more chimney wall
habitats in the north, this difference in sampling does not explain
the significant difference in sulfide concentrations between

northern and southern fields. Indeed, when grouped by habitat
type regardless of region, diffuse flows and chimney wall habitats
measured here did not have significantly different sulfide con-
centrations (Mann–Whitney U, P= 0.126) (Table S1 and Fig. 6),
nor did diffuse flows and chimneys within the same region
(Mann–Whitney U, P = 0.182 and P = 0.102, north and south
respectively). We also did not detect any significant differences
in the oxygen concentrations or temperature of the vent fluids
among the sample collection sites in the northern and southern
vent fields (P = 0.180 and P = 0.118 respectively).

End-Member Vent-Fluid Chemistry. End-member aqueous concen-
trations of H2S and hydrogen (H2) reveal along-axis geochemical
variations from north to south (Fig. 7). End-member aqueous H2
concentrations varied from 220–498 μM in the northernmost
vents (at Kilo Moana) and decreased to concentrations that
varied from 35–135 μM in the southernmost (at Tu’i Malila)
vents, nearly an order-of-magnitude difference in concentration.
End-member dissolved H2S concentrations exhibit a similar
trend from north to south, although the ∼twofold change in
concentration of 4.9–2.8 mM from north to south is substantially

Fig. 4. Ternary plots of the symbiont composition of each Alviniconcha host
type, with each point showing the symbiont composition of a single in-
dividual. The vertices of the triangle represent 100% of each symbiont
phylotype, and the tick marks on the axes represent decreasing intervals of
10%. The symbiont phylotypes are indicated by γ-1 (γ-proteobacteria type 1),
γ-Lau (γ-proteobacteria type Lau), and ε (ε-proteobacteria). Vent fields are
indicated by ● (Kilo Moana), □ (Tow Cam), X (ABE), and ▽ (Tu’i Malila).

Fig. 5. The distribution of Alviniconcha host types and dominant symbiont
type across the ELSC, with each individual colored according to dominant
symbiont phylotype (>67% of the total detected 16S rRNA genes) and sha-
ped according to host type. The four vent fields are separated by solid lines,
and distinct collections from within each vent field are divided by dashed
lines, with the collection ID indicated (Table S1). Symbiont phylotypes are
indicated as follows: green, γ-proteobacteria type 1 (γ-1); yellow, γ-proteo-
bacteria type Lau (γ-Lau); blue, ε-proteobacteria (ε).The individuals that had
relatively equal proportions of two of the symbiont phylotypes are shown as
two colors. Host types are indicated by shapes: ●, host type 1 (HT-I); ■, host
type II (HT-II); ▲, host type III (HT-III); ◆, host type undetermined.
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less than that observed for aqueous H2. In contrast to H2 and
H2S, end-member methane (CH4) concentrations in 2009 occu-
pied a very narrow range of 33–44 μM and showed no along-axis
trends (Fig. 7). End-member aqueous dissolved inorganic carbon
(DIC) concentrations were highest in the Tu’i Malila vent fluid,
reaching a value of 15 mM, and lowest in ABE vent fluids where
concentrations varied from 5.4–7.0 mM, with fluids from the
other vent fields containing intermediate concentrations of DIC
(Fig. 7). End-member CH4 and DIC concentrations did not
change markedly from 2005 to 2009.

Stable Carbon Isotopic Composition According to Dominant Symbiont
Phylotype.Across the ELSC, the average δ13C value for gill tissue
from Alviniconcha dominated by ε-proteobacteria (−11.6 ±
0.4‰) was much less depleted than the average value of Alvi-
niconcha dominated by γ-proteobacteria (−27.6 ± 2.3‰) (Table
S3). A one-way ANOVA of Tu’i Malila γ-proteobacteria hosting

individuals grouped by dominant symbiont phylotype (γ-1, n =
23; γ-Lau, n = 21; γ-Both, n = 8), irrespective of host type,
showed that there were significant differences among the groups
(P < 0.001). Tukey’s multiple pairwise comparisons showed that
the δ13C value in individuals dominated by γ-Lau was not sig-
nificantly different from that in γ-Both individuals (P = 0.834),
whereas individuals dominated by either γ-Lau or γ-Both were
significantly less depleted than individuals dominated by γ-1 (P=
0.001 and P = 0.004, respectively). We were unable to compare
the possible effects of host type on the stable-carbon isotopic
composition in this subset of individuals, because we did not
have enough individuals of different host types with the same
dominant symbiont phylotype for statistical analysis.

Discussion
These analyses, which were based on an extensive sampling ef-
fort in four different vent fields along the length of the ELSC,
uncover previously cryptic, regional-scale patterns in the distri-
bution of Alviniconcha holobionts. Our results suggest that re-
gional-scale gradients in geochemistry, which are the surficial
expression of subsurface tectonic processes and water–rock
interactions, respectively, influence niche availability—and thus
partitioning—among hydrothermal vent symbioses. Specifically,
we observed striking patterns in the distribution of Alviniconcha
host types, wherein Alviniconcha associated with ε-proteobac-
teria were substantially more abundant at the northernmost,
basaltic vent fields (Kilo Moana and Tow Cam). Conversely,
Alviniconcha associated with γ-proteobacteria were more abun-
dant at the andesitic southern vent fields (ABE and Tu’i Malila)
(42, 43). We observed further basin-wide geographic trends in
Alviniconcha individuals hosting different γ-proteobacterial
symbionts, including the absence of individuals dominated by the
γ-Lau phylotype from all except the Tu’i Malila vent fields. To-
gether, with geochemical data from high-temperature and dif-
fuse vent fluids from these vent fields, our results indicate that
niche partitioning within a genus of chemosynthetic symbioses at
deep sea hydrothermal vents is linked to subsurface geological/
geochemical processes. These data suggest that interactions be-
tween symbionts and the physicochemical habitat, rather than
host physiology alone, can govern the distribution of hydro-
thermal vent symbioses across a biogeographical province.

Symbiont and Host Diversity and Association. The cryptic diversity
revealed here reshapes our understanding of the biogeography of
this genus. Before this study, only HT-III (previously called “host
type Lau”) and one symbiont phylotype (γ-Lau) had been docu-
mented in the Lau Basin (38). Our phylogenetic surveys uncovered
two additional host types (HT-I and HT-II) and two additional
symbiont phylotypes (γ-1 and ε-proteobacterial) within the ELSC.
Collectively, these data establish the ELSC as the geographic area
with the highest documented diversity for this genus, with a greater
number of host types and symbiont phylotypes than in any other
region. [It is possible that Alviniconcha hosts and symbionts are
comparably diverse at other western Pacific and Indian Ocean vent
systems, although this remains to be determined (36–38, 40).]
Regardless, the data herein show unforeseen holobiont diversity
within the genus Alviniconcha and emphasize the value of in-
terrogating both host and symbiont identity at an appropriate
sampling scale to capture cryptic phylogenetic diversity.
The observed patterns of association among the host and

symbiont phylotypes were most surprising. 16S rRNA gene
qPCR of all sampled individuals revealed that Alviniconcha host
types exhibited varying degrees of specificity for their symbionts.
Alviniconcha HT-II associated solely with ε-proteobacteria.
HT-III hosted mixed populations of the two γ-proteobacterial
phylotypes (γ-Lau and γ-1). Notably, HT-I associated with both
γ- or ε-proteobacterial endosymbionts, sometimes within the
same individual (although one endosymbiont always dominated).

A B C

Fig. 6. Cyclic voltammetry measurements made on the cleared substratum
after Alviniconcha collections, showing (A) temperature, (B) free sulfide
concentration (sulfide), and (C) oxygen concentration at northern collections
versus the southern collections. North (N) includes the vent fields Kilo Moana
(KM) and Tow Cam (TC); South (S) includes ABE and Tu’i Malila (TM). Symbols
with horizontal lines represent samples from diffuse vent flows; symbols
without lines represent chimney wall habitats. Median values for each re-
gion are indicated by a dashed horizontal line.

A C

B D

Fig. 7. The end-member fluid concentrations of (A) H2, (B) H2S, (C) CH4, and
(D) DIC at the four vent fields along the ELSC from which Alviniconcha were
collected. Symbols indicate year of sampling: X, 2005; ●, 2009. DIC and H2S
data from 2005 were published previously by Mottl et al. (44).
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Although some species of Bathymodiolus hydrothermal vent
mussels are known to associate with two endosymbiotic γ-pro-
teobacterial phylotypes (46–48), the ability of an Alviniconcha
individual to host endosymbionts from two distinct bacterial
classes is unprecedented among chemosynthetic symbioses.
These symbionts are thought to be environmentally acquired
(49), and the observed patterns of symbiont distribution among
host types suggest interplay between host specificity and envi-
ronmental determinants. This interplay may have a profound
role in structuring the distribution of Alviniconcha host types
across available niche space.

Holobiont Distribution and Basin-Wide Geochemical Gradients. Fur-
ther investigation revealed that the holobionts exhibited a struc-
tured pattern of distribution across the four vent fields. Although
Alviniconcha HT-I and the symbiont γ-1 were represented at all
four vent fields, individuals dominated by the symbiont γ-Lau
were observed at only one vent field (Tu’i Malila), and only one
HT-III individual was found outside of Tu’i Malila. Structured
distributions of marine fauna often result from geographical
isolation or other barriers to dispersal (50, 51). However, the
representation of host HT-I and symbiont phylotype γ-1 among
all of the vents studied here, combined with our recovery of host
haplotypes identical to previously collected individuals from
thousands of kilometers away, suggests that the existence of such
barriers is unlikely. Alviniconcha are thought to produce far-
dispersing planktotrophic larvae (52), and studies of deepwater
circulation in the ELSC have revealed continuity among the sites
(53). Thus, the potential for geographic isolation caused by
limitations on larval dispersal or deepwater circulation along the
ELSC seems low.
Geological and geochemical gradients along the spreading

center better explain the observed holobiont distributions. The
ELSC comprises a series of vent fields in the Lau back-arc basin
created by the subduction of the Pacific plate under the Indo-
Australian plate. As the ELSC proceeds from north to south, it
approaches the volcanic arc, resulting in an increased influence of
the subducting Pacific plate on the crustal rocks (54–56). Conse-
quently, there is a change in crustal rock type, with vent fields in
the north being dominated by basalt and vent fields in the south
being dominated by basaltic-andesite and andesitic lavas (42, 43).
The increasing influence of the subducting slab is reflected in the
changing geochemical composition of vent fluids north to south
along the spreading center, including sizeable differences in dis-
solved volatile concentrations (28, 44, 45). Our analyses of high-
temperature vent effluents from among the sampling sites
revealed variations in gross geochemical composition along the
ELSC that appear to be stable over time (44, 45). Both H2 and
H2S concentrations decrease from north to south, with H2 showing
about an order-of-magnitude difference in concentration in end-
member fluids from Kilo Moana in the north (∼500 μM) to Tu’i
Malila in the south (∼43 μM). Because there often is a corre-
spondence between the geochemical composition of a diffuse flow
and nearby high-temperature flow (57–59), the elevated H2 and
H2S concentrations in the high-temperature fluids at the northern
vent sites likely correspond to higher concentrations of these
chemical species in the cooler vent fluids bathing the Alviniconcha
at these fields. Indeed, in situ voltammetry of vent fluids from
among the collections corroborated the above geochemical trend
and established that sulfide concentrations were higher among the
Alviniconcha aggregations in the northern vent fields, although
temperature and oxygen concentrations were not significantly
different among the collection sites.

Niche Partitioning. If there are functional differences among Alvi-
niconcha symbionts, then each host type’s specificity for a particular
symbiont would influence its capacity to exploit different physico-
chemical niches. Given the aforementioned distribution of phylo-

types and the seeming lack of barriers to dispersal, we posit that the
observed patterns of distribution of Alviniconcha across the ELSC
relates to the gradients in vent-fluid geochemistry (Fig. 7). Hol-
obionts with ε-proteobacterial symbionts dominated in fields with
higher H2 and H2S concentrations, and conversely holobionts with
γ-proteobacterial symbionts were in greater abundance at fields
with lower H2 and H2S. This observation is consistent with studies
of free-living ε- and γ-proteobacteria in sulfidic environments,
which found that ε-proteobacteria dominate over γ-proteobacteria
in habitats with higher sulfide (60–62). Both H2 and sulfur oxida-
tion are known to be common metabolisms among the close rel-
atives (i.e., Sulfurimonas spp.) of the ε-proteobacterial symbionts
(60, 63–65), and we hypothesize that one or both of these mech-
anisms supports autotrophy in this phylotype. Previous studies of
Alviniconcha symbiont metabolism have focused on sulfide oxida-
tion in vivo and in vitro (39, 66) but did not identify the symbionts,
so it is unclear which phylotypes are engaged in this metabolism.
We observed that holobionts with ε-proteobacteria did not have
visible sulfur granules (a known intermediate in some sulfur oxi-
dation pathways) in their gills. In contrast, holobionts with γ-pro-
teobacteria had elemental sulfur in their gills, suggesting different
modes of sulfur metabolism. This finding, too, is consistent with
studies of sulfur oxidation by ε- and γ-proteobacteria, which are
known to use different pathways (reviewed in ref. 60). We recog-
nize that other factors, yet to be determined, could influence the
north-to-south partitioning of ε- and γ-proteobacterial symbionts as
well as the distribution of holobionts with γ-Lau and γ-1, along the
ELSC. Further work identifying the specific reductants and path-
ways used by the three symbiont phylotypes is needed to better
understand the connection between symbiont physiology and the
observed habitat partitioning.
We also observed evidence for niche partitioning at a local

(vent-field) scale. Most collections were dominated by holobionts
associating with one particular symbiont type (e.g., HT-I and II
both hosting ε-proteobacterial symbionts in collection TC-2)
(Fig. 5). This patchiness does not correspond strictly to habitat
type (chimney wall vs. diffuse flows), because collections from
both habitat types were dominated by ε-proteobacterial sym-
bionts in the north and, conversely, by γ-proteobacterial sym-
bionts in the south. There are anomalous collections from Kilo
Moana and ABE that deviate from the overarching patterns of
distribution in this study and that reflect local patchiness in
geochemistry. Indeed, if these patterns are driven by habitat
conditions, we would expect local variation in chemistry to result
in patchy holobiont distribution even within a vent field. Un-
fortunately, we did not collect environmental data at these spe-
cific sites, so we cannot determine whether these collections were
associated with different geochemistry. Although higher-resolu-
tion sampling of Alviniconcha with associated fine-scale chemical
measurements is necessary to understand the extent of intrafield
habitat partitioning by these symbioses, the existing data suggest
interactions between the symbionts and the environment.
Previous studies have hypothesized that differences in the

oxygen tolerance of the carbon fixation pathways used by the γ-
and ε-proteobacterial symbionts could influence habitat utiliza-
tion by the different Alviniconcha symbioses (38, 61). Indeed, our
measurements of carbon-stable isotopic composition are consis-
tent with the use of different carbon-fixation pathways by the γ-
and ε-proteobacterial symbionts (Table S3). However, the oxygen
concentrations were not significantly different in the habitats
occupied by individuals with the γ- and ε-proteobacterial sym-
bionts. Moreover, it is unlikely that environmental oxygen con-
centrations are experienced by the symbionts, because host
oxygen-binding proteins, such as the gill hemoglobin of Alvini-
concha (67), have a high affinity for oxygen and will govern its
partial pressure within the host’s tissues. With respect to whether
differences in host physiology influence the observed distribution
patterns, little is known about differences in thermal tolerance or
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chemotolerance among Alviniconcha host types (66). Sulfide
tolerance has been suggested to affect animal distribution at vents
(23, 27, 68) and is significantly different among collections
dominated by the different Alviniconcha holobionts at the ELSC.
However, the highest sulfide levels detected among the snails in
our collections are well below the tolerance limits reported from
shipboard experiments on Alviniconcha, and thus host tolerance
for sulfide is unlikely to be responsible for the patterns we report
(66). Additionally, temperature and oxygen concentrations—two
key factors often invoked in governing the distribution of animals
at vents (23)—were not significantly different among our collec-
tion sites. Although both host and symbiont physiology un-
doubtedly influence the overall niche of these holobionts, we
suggest that host physiology is unlikely to play a major role in the
habitat partitioning observed here.

Conclusions
For vent holobionts, access to vent-derived chemical resources
(reduced compounds for chemolithoautotrophy) requires physi-
cal proximity to the emitted vent fluid, as evidenced by the strong
association of chemosynthetic symbioses with vent-fluid emis-
sions (e.g., ref. 28). Competition among these holobionts for
chemical resources takes the form of competition for the limited
space near vent flows. Within a chemically heterogeneous vent
system such as the ELSC, with spatial variability in the compo-
sition of vent fluid, resource partitioning among symbioses
appears to occur via the differential distribution of the symbioses
across the range of geochemical milieus. Here, we observed this
process occurring both within a genus and at a regional scale,
with differential distribution of holobionts among distinct vent
fields that are tens of kilometers apart.
In many ecosystems, niche partitioning has been shown to fa-

cilitate the coexistence of ecologically similar taxa (reviewed in ref.
3) but generally has been considered in the context of the intrinsic
differences in organisms, not in differences in their symbionts.
Despite growing knowledge of the ubiquity of symbioses in the
natural world, evidence for their effects on niche partitioning
among similar hosts is surprisingly rare. In a few animal–microbial
symbioses, namely coral–algal and aphid–bacterial associations,
studies have correlated microbial symbiont genetic and physio-
logical diversity with niche partitioning by the symbioses. In these
cases, specificity in partnering among physiologically distinct en-
dosymbiont phylotypes and genetically distinct hosts has been
found to correspond to the distribution of corals in different light
and temperature regimes on reefs (69–74) and to the distribution
of aphids on different plant types (75–77). Previous research on
the relationship between symbiont identity and environmental
geochemistry at hydrothermal vents examined how differences in
symbiont phylotype and abundance varied within a single species
of mussel as a function of habitat (47, 78–80). It now is apparent
that the process of symbiont-influenced niche partitioning among
genetically distinct hosts is likely to play a role in structuring vent
ecosystems and is driven by subsurface geological and geochemical
interactions. The influence of symbiont metabolism on host niche
utilization is fundamental to our understanding of hydrothermal
vent symbioses and vent ecosystems. With increasing awareness of
the prevalence of microbe–animal interactions in our biosphere,
the process of symbiont-driven niche partitioning is likely to be
elemental in other biological systems as well.

Methods
Alviniconcha Specimens. A total of 288 Alviniconcha specimens were collected
from four vent fields in the ELSC using the remotely operated vehicle (ROV)
Jason II during expedition TM-235 in 2009 on board the R/V Thomas
G. Thompson (Fig. 1 and Table S1). Sites were chosen randomly, and live
specimens were collected using modified “mussel pots” (81, 82) or large scoop
nets and were returned to the ship in insulated containers. On board ship, live
specimens were kept in chilled (4 °C) seawater until dissection. Symbiont-

containing gill tissues were dissected on shipboard and were frozen immedi-
ately at −80 °C. The frozen tissue remained at −80 °C until it was subsampled
for DNA extraction and carbon isotope analysis.

Free Sulfide, Oxygen, and Temperature Determination via in Situ Voltammetry.
In situ voltammetry and a temperature probe were used to determine free
sulfide and oxygen concentrations as well as fluid temperatures associated
with a subset of the Alviniconcha collections (Table S1) (83, 84). Measure-
ments were made in the same manner for both diffuse flows and chimney
walls. Briefly, animals were collected, and then 1–12 scan sets were per-
formed with the tip of the probe directly on the cleared substrate. Each scan
set was comprised of 7–12 discrete measurements (scans), which then were
averaged. At the diffuse-flow sites, measurements were made on the
cleared substratum after animals were collected. At the chimney wall sites,
after animals were collected, the probe was positioned directly along the
side of the perpendicular to chimney wall structure, so that the tip touched
or was within 1 cm of touching the chimney wall (based on the laser scale
from the ROV Jason). In all cases, shimmering water often was visible, and
temperatures never were higher than 60 °C. The instrument’s quantitative
limits of detection for free sulfide and oxygen are 0.2 μM and 15 μM, re-
spectively. For statistical analyses, values below the quantitative limits of
detection were treated as in ref. 28.

End-Member Vent-Fluid Sampling and Analyses. Hydrothermal fluids were
recovered from high-temperature orifices (temperatures ranged from 268–
320 °C) using the ROV Jason II and isobaric gas-tight fluid samplers (85)
during expedition TM-236 in June–July 2009 on the R/V Thomas G. Thomp-
son. Samples were analyzed for dissolved CH4, H2S, and DIC. Dissolved CH4,
DIC, and H2 also were measured at the vent fields sampled during this study
during expedition TUIM05MV on the R/V Melville (April–May 2005) (see ref.
44 for 2005 sample information). All fluid samples were processed via gas
chromatography or gravimetry as in ref. 44. See SI Methods for details of
end-member calculations.

DNA Extraction. Approximately 25 mg of gill tissue was subsampled while
frozen for DNA extraction. Each subsample was placed into one well of a 96-
well plate containing a proprietary lysis buffer from the AutoGenprep 965/
960 Tissue DNA Extraction kit (AutoGen, Inc.), and DNA was extracted with
the AutoGenprep 965 automatic extraction system. Before downstream
analysis, all DNA extracts were diluted 1:100 in molecular-grade sterile water
to minimize the effect of any coextracted inhibitors on downstream
molecular analysis.

Phylogenetic Analysis of the Host Mitochondrial CO1 Gene. DNA extracts from
all Alviniconcha individuals were used as template to partially amplify the CO1
mitochondrial gene, and the resulting sequences were cleaned, trimmed, and
aligned and then were used to produce a Bayesian inference phylogeny using
the SRD06 model of nucleotide evolution (86), which partitions the protein
coding sequence into first plus second and third codon positions, estimating
parameters for each. Details of these analyses can be found in SI Methods.
Host CO1 gene sequences were deposited in GenBank, and accession numbers
are given in Table S2.

Phylogenetic Analysis of Symbiont 16S rRNA Genes. Universal bacterial primers
were used to amplify symbiont 16S rRNA genes from the DNA extracts of 30
individuals from ABE and Tu’i Malila. A clone library was constructed from
the pooled amplicons of individuals from each vent field, and sequence di-
versity was assessed via partial sequencing of clones (see SI Methods for
GenBank accession numbers). The clones were found to represent three
phylotypes with >96% identity to previously sequenced Alviniconcha sym-
bionts. Bidirectional sequencing of clones representative for each symbiont
phylotype yielded longer sequences (accession numbers JN377487,
JN377488, JN377489), which were cleaned, trimmed, and aligned with other
16S rRNA gene sequences from both free-living and symbiotic Proteobac-
teria and then were used to produce a Bayesian inference phylogeny with
BEAST (87) implementing the GTR+I+G model of substitution. Details of
these analyses can be found in SI Methods.

Symbiont qPCR Assay Development. SYBR Green qPCR primers (Table S4) were
designed for the three symbiont phylotypes using the aforementioned 16S
rRNA gene alignment. Each phylotype assay was designed to target Alvini-
concha symbiont 16S rRNA gene sequences from this study and others to
capture intraphylotype sequence diversity. Details of qPCR assay design and
optimization are given in SI Methods.
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Assessing Symbiont Composition via qPCR. To confirm that our subsamples
yielded symbiont populations typical of the entire gill, we took three sub-
samples (from either end and the middle of each gill) from the whole gills of
six individuals, extracted DNA as described above, and found that the pro-
portion of symbiont phylotypes varied by <1% among subsamples (Table S5).
We accordingly estimated the proportion of each symbiont phylotype in the
original Alviniconcha gill DNA extracts by applying all three qPCR assays to
2 μL of each sample (in duplicate), which were compared against duplicate
standard curves and no-template controls and then were averaged to de-
termine copy number. Reactions in which the cycle threshold (Ct) was
greater than the Ct for the lowest standard (10 copies) were documented as
zero copies. Additionally, all quantities were adjusted for amplification in-
hibition (SI Methods). Symbiont populations within an individual were
assessed by assuming each 16S rRNA gene to represent a single symbiont
genome (see SI Methods for discussion of this assumption).

Analysis of Carbon Isotopic Composition. Approximately 300 mg gill tissue was
subsampled while frozen for carbon isotopic analysis. Samples were lyoph-
ilized for 24 h and then were acidified with 0.1 N HCl to remove any inorganic
carbon contamination. The samples subsequently were dried for 24–48 h at
50–60 °C, homogenized to a fine powder, and sealed within tin capsules. The
carbon isotopic composition was determined by combustion in an elemental
analyzer (Eurovector, Inc.) and separating the evolved CO2 by gas chroma-
tography before introduction to a Micromass Isoprime isotope ratio mass
spectrometer for determination of 13C/12C ratios. Measurements are repor-
ted in δ-notation relative to the Peedee belemnite in parts per thousand
deviations (‰). Typical precision of analyses was ±0.2‰ for δ13C. Egg albu-
min was used as a daily reference standard.

Statistical Analyses. Comparisons of the symbiont composition of Alvini-
concha individuals at different vent fields and among the four host types
was assessed via ANOSIM using Bray–Curtis dissimilarity (88) (see SI Methods
for details of ANOSIM). In these analyses, the symbiont composition for each
individual represented an independent community profile. Additionally, the
collections were compared by classifying each individual based on its dom-
inant symbiont phylotype (γ-1, γ-Lau, ε, or γ-Both for the few individuals that
hosted relatively equal proportions of the two γ-proteobacterial symbionts).
In these analyses, Bray–Curtis dissimilarity from standardized collection
profiles was used.

One-way ANOVAs with post hoc pairwise comparisons (Tukey’s) were
performed (SPSS Statistics v19) to compare the average carbon-stable iso-
tope values among individuals from the same vent field (Tu’i Malila) with
different dominant γ-proteobacterial symbiont phylotypes.

To compare the temperature and environmental sulfide and oxygen con-
centrations among the collections at all sites as measured via cyclic voltam-
metry, a nonparametric test (Mann–Whitney U; SPSS Statistics v19) was used.
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Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of
the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic
analyses are useful for linking physiological poise to environmental conditions, but recovering
samples from the deep sea is challenging, as the long recovery times can change expression
profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation
device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha,
a genus of vent snail, in which specific host–symbiont combinations are predictably distributed
across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key
differences in energy and nitrogen metabolism relating to both environmental chemistry (that is,
the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed).
Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that
different symbiont types may also have distinct life histories. These data further our understanding
of these symbionts’ metabolic capabilities and their expression in situ, and suggest an important
role for symbionts in mediating their hosts’ interaction with regional-scale differences in
geochemistry.
The ISME Journal (2013) 7, 1556–1567; doi:10.1038/ismej.2013.45; published online 25 April 2013
Subject Category: Microbe-microbe and microbe-host interactions
Keywords: symbiosis; hydrothermal vents; metatranscriptomics; chemoautotrophy; Alviniconcha

Introduction

Endosymbioses among marine invertebrates and
chemoautotrophic bacteria have a key role in the
ecology and biogeochemistry of deep-sea hydrother-
mal vents and similar environments. Symbionts
derive energy by oxidizing reduced compounds
(for example, sulfide, methane, hydrogen) and
fix inorganic carbon, providing nutrition to their
hosts (Felbeck, 1981; Fisher and Childress, 1984;
Childress et al., 1986, 1991; Girguis and Childress,
2006; Petersen et al., 2011). Much is known about
host biochemical and morphological adaptations to
both their symbionts and the environment (reviewed
in Stewart et al., 2005; Childress and Girguis, 2011).

Surprisingly less, however, is known about
the relationship between symbiont physiology and
the environment, in particular how variations in

environmental geochemistry influence symbiont
metabolic activity and, in turn, how this affects the
ecology of the animal–microbe association. The
symbioses between the deep-sea snail Alviniconcha
and its chemoautotrophic symbionts afford a unique
opportunity to examine these relationships. Alvini-
concha are provannid gastropods that are indigen-
ous to vents in the Western Pacific and Indian Ocean
and harbor chemoautotrophic symbionts within
host cells located in the gill (Suzuki et al., 2006).
At the Eastern Lau Spreading Center in the south-
western Pacific (ELSC, Supplementary Figure S1),
genetically distinct Alviniconcha ‘types’ (likely
cryptic species) form associations with three
lineages of chemoautotrophic Proteobacteria: two
g-proteobacteria (termed g-1 and g-Lau) and an
e-proteobacterium (Beinart et al., 2012). A recent
study of these host-symbiont associations (hereafter
referred to as holobionts), found striking patterns of
distribution along the B300 km length of the ELSC,
wherein snails hosting e-proteobacteria dominated
the northern vent fields and those hosting
g-proteobacteria dominated the southern fields
(Beinart et al., 2012). Vent fluids also showed
marked changes in geochemistry along this range,
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with substantially elevated hydrogen and hydrogen
sulfide concentrations in the northernmost fields
(Mottl et al., 2011; Beinart et al., 2012). This
unprecedented pattern of holobiont distribution
across this 300 km spreading center suggests a link
between symbiont physiology and the environment;
namely that differences in the availability of
reduced compounds may influence the realized
niche of the holobionts as a function of their
symbionts’ metabolic capacity.

Our understanding of these observed patterns
would be facilitated by analyses that reveal the
symbionts’ physiological poise in situ. Transcrip-
tomic studies have been used to relate changes
in gene expression to environmental conditions
(Gracey, 2007; Gracey et al., 2008). Previous studies
have also used transcriptomics to study gene expres-
sion in both host and chemoautotrophic symbionts
(Harada et al., 2009; Stewart et al., 2011; Wendeberg
et al., 2012). However, using transcriptomics to study
patterns of gene expression in the deep sea (that is,
in situ) is especially challenging. Organisms are
typically held in ambient seawater during sampling
and recovery, so their transcriptional profiles likely
change in the hours between collection and pre-
servation (Wendeberg et al., 2012).

To better examine the relationship between
Alviniconcha symbiont physiology and the observed
regional-scale differences in geochemistry, we
developed a novel in situ sampling and preservation
system that allowed us to quickly homogenize and
preserve holobionts at the seafloor, simultaneously
stopping transcription and stabilizing nucleic acids
for downstream analysis. Using this device, we
collected individual Alviniconcha from four vent
fields spanning the previously observed geochem-
ical gradient along the ELSC. Gene expression
analyses revealed key differences among symbiont
types in the expression of genes relating to hydrogen
and sulfur oxidation. In contrast, similarities in
patterns of gene expression relating to nitrogen
metabolism—which deviate from canonical models
of nitrate reduction—suggest a potentially unique
strategy of nitrogen utilization that is shared among
these symbionts. We also observed differences in
gene expression that may be relevant to the main-
tenance and transmission of these associations. Our
results clearly illustrate differences in physiological
poise among these symbiont types, underscore the
likely role of symbiont physiology in structuring
holobiont distribution, and provide insights into
how these phylogenetically distinct symbionts have
evolved to exploit resources and niches in these
highly dynamic environments.

Materials and methods

Instrument design
To preserve holobiont RNA in situ, we designed
a sample container/homogenizer termed the In Situ

Mussel And Snail Homogenizer (ISMASH; Figures
1a and b). The ISMASH consists of a 1 l stainless
steel blending cylinder, the bottom of which
contains a rotating blade assembly and preservative
inlet. The top is open to permit sample insertion but
is sealed post-collection via a magnetically-latched
lid equipped with a one-way check valve. The
ISMASH can be operated at any depth attainable
by the submersible. During operations, the ISMASH
is deployed open and empty on the submersible’s
working platform. When individual specimens are
deposited in the cylinder, the operator places the
magnetic lid on the cylinder, and RNALater
(Ambion Inc., Grand Island, NY, USA) is pumped
in from the bottom, displacing the less-dense sea-
water through the lid’s check valve. After pumping
sufficient RNALater to ensure thorough flushing, a
hydraulic motor actuates the blade assembly and
the sample is homogenized. For a complete instru-
ment description and operational procedures, see
Supplementary Information.

Sample collection
Alviniconcha holobionts (Figure 1c) were collected
along the ELSC using the ROV Jason II aboard
the R/V Thomas G Thompson during expedition
TM-235 in 2009. One snail was collected randomly
from among large aggregations at each of the
four vent fields (Kilo Moana and Tow Cam in the
north, ABE and Tu’i Malila in the south; Table 1,
Supplementary Figure S1), then homogenized
in situ. Time limitations prohibited additional
sampling. Homogenization was completed within
4–10min of collection. Upon recovery, the B1 l
homogenates were carefully transferred to sterile
glass jars, incubated overnight at 4 1C, and then
frozen and maintained at ! 201 for B5 months
before extraction.

Nucleic acid extraction, library preparation, and
sequencing
Before extraction, homogenates were thawed and
rehomogenized in a clean, sterile blender (Waring
Inc., Torrington, CT, USA) to maximize uniformity.
One 2-ml aliquot was taken from each sample and
centrifuged at 14 000" g for 10min in a refrigerated
centrifuge. RNAwas extracted from the pellet using
TRIzol (Invitrogen Inc., Grand Island, NY, USA) per
the manufacturer’s protocol. After each extraction,
RNAwas assessed with an Agilent 2100 Bioanalyzer
(Santa Clara, CA, USA) to determine concentration
and integrity.

To maximize mRNA representation in our meta-
transcriptomic libraries, we preferentially removed
eukaryotic and bacterial ribosomal RNA (rRNA)
using sample-specific rRNA probes as in Stewart
et al. (2010). Each of the four libraries was
sequenced in a separate, gasketed quadrant using
Titanium chemistry, yielding a full plate on a
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Roche Genome Sequencer FLX (Roche Inc., Basel,
Switzerland).

DNAwas extracted from an additional 2ml aliquot
per sample using a DNeasy Blood & Tissue kit (Qiagen
Inc., Venlo, Netherlands) per the manufacturer’s
protocol. DNA samples were used to assess host and
symbiont identities, as well as microbial diversity
(while the gill endosymbionts are typically mono-
cultures, our technique would also include any
epibionts or other microbes associated with the snail).
We confirmed host genotypes by sequencing 500bp of
the mitochondrial cytochrome oxidase I gene (as in
Beinart et al., 2012; Table 1). The identity and
abundances of the major symbiont types were assessed
using SYBR Green qPCR assays on a Mx3005P real-
time thermal cycler (Stratagene Inc., Santa Clara, CA,
USA), using previously described primers and proto-
cols (Beinart et al., 2012). Microbial diversity was
assessed via pyrosequencing of the V1–V3 region of
the bacterial 16S rRNA gene (Dowd et al., 2008).

Metatranscriptomic analyses
Sequences were filtered of rRNA sequences using
BLASTN (cutoff bit score¼ 50) against a custom

database of rRNA sequences derived from the SILVA
LSU and SSU databases and microbial genomes
(Pruesse et al., 2007). Non-rRNA reads were
further filtered for potentially artifactual duplicate
sequences (reads of equal length sharing 100%
sequence identity) using custom scripts as in the
study of Gomez-Alvarez et al. (2009). The remaining
reads were annotated using BLASTX against the
NCBI nr database (as of 28 April 2011; bit score
cutoff¼ 50). BLASTX results were examined for
taxonomic representation, gene content, and func-
tional pathways in MEGAN4 (Huson et al., 2011).

Given the representation of both host and sym-
biont sequences in the libraries, we analyzed reads
annotated as eukaryotic or bacterial separately. Each
sample’s eukaryotic and bacterial transcriptomes
were normalized to the total number of non-rRNA
reads assigned to their respective taxonomic divi-
sion in MEGAN. Reads not assigned a division-level
taxonomic identification were excluded from
further analysis.

To validate the results from MEGAN, we sub-
mitted our entire raw transcriptomic data set and,
separately, the fraction of non-rRNA reads identified
as bacterial in origin to MG-RAST (Meyer et al.,

Table 1 Sample information for each metatranscriptome: vent field, collection details, and host and symbiont type

Vent field Dive Date, time (GMT) Latitude, longitude Depth (m) Host type (accession) Symbiont type

Kilo Moana J2-433 6/6/2009, 05:49 20 03.227 S, 176 8.008 W 2615 HT-II (JX134579) e
Tow Cam J2-432 6/5/2009, 11:58 20 18.973 S, 176 8.195 W 2722 HT-II (JX134578) e
ABE J2-431 6/3/2009, 14:29 20 45.794 S, 176 11.478 W 2146 HT-I (JX134580) g-1
Tu’i Malila J2-430 6/2/2009, 09:50 21 59.363 S, 176 34.105 W 1869 HT-III (JX134581) g-1/ g-Lau

Figure 1 The In Situ Mussel and Snail Homogenizer (ISMASH). Cutaway schematic of the ISMASH design (a) and a photograph of the
ROV JASON II manipulator arm depositing an Alviniconcha into the ISMASH body (b), with parts labeled: po, preservative outlet;
l, magnetic sealing acrylic lid; mg, magnets; b, blender body; bl, blade assembly; pi, preservative inlet; mt, motor; c, chassis;
j, ROV JASON II manipulator arm; A, Alviniconcha. An Alviniconcha snail, photograph taken shipboard (c).
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2008). There was broad agreement between results
derived from MEGAN and those from MG-RAST.
Unless otherwise specified, all described results are
derived from manual searches of the bacterial
data sets with SEED/Subsystems annotations in
MG-RAST (e-value¼ 10" 4). All eight datasets are
now publicly available on MG-RAST (Table 2).

Bacterial 16S rRNA gene diversity from amplicon
pyrosequencing was assessed in QIIME v1.4.0
(Caporaso et al., 2010). Raw pyrosequencing flow-
grams were denoised using the QIIME Denoiser
(Reeder and Knight, 2010), then sequences were
filtered for chimeras using the de novo implementa-
tion of the UCHIME chimera checker (Edgar et al.,
2011). Sequences were then clustered at 97%
identity using UCLUST (Edgar, 2010), and the
resulting operational taxonomic units were analyzed
using the default QIIME pipeline.

Results and discussion

Transcriptome characteristics and taxonomic
composition
The ISMASH was highly effective at preserving
RNA in situ. Assessments of extracted RNA showed
good preservation, with clearly defined eukaryotic
and prokaryotic rRNA peaks (Supplementary Figure
S2). Rapid in situ homogenization likely facilitated
the penetration of preservative throughout the
tissues of these large-shelled organisms. More
importantly, in situ homogenization arrests metabo-
lism and alleviates concerns about transcriptional
changes that might arise if specimens are simply
submerged in a preservative in situ, or are recovered
in seawater and preserved on board ship.

Between 160 000 and 200 000 metatranscriptomic
reads were recovered from each sample (Table 2).
Of these, 37–79% matched the rRNA database.
Between 10–27% of the total reads (17 000 and
49 000) matched to protein-coding genes in the NCBI
nr database. In total, we recovered between 9450
and 18 915 putatively bacterial and between 6434
and 28412 putatively eukaryotic protein-coding

transcripts per sample. Approximately 50–60% of
transcripts identified as bacterial in origin were
successfully assigned a functional annotation, com-
pared with just 12–13% of eukaryotic transcripts.
Consistent with our objective of examining sym-
biont gene expression, subsequent analyses focused
solely on genes of bacterial origin. Expression data
presented hereafter are normalized to the total
number of protein-coding transcripts assigned to
bacteria in each sample, and scaled to represent a
10 000 read library.

Host genotyping and assessment of the symbiont
compositions from DNA extracts demonstrated that
the distribution of sampled holobionts along the
spreading center—as well as the observed specifi-
city among host and symbiont types—was concor-
dant with previous results (Beinart et al., 2012).
Partial Alviniconcha mitochondrial cytochrome
oxidase I gene sequences showed that all four
sampled snails had X99% identity to genotypes
previously described from the ELSC (Table 1).
Taxonomic assignment of bacterial 16S rRNA genes
amplified from DNA extracts revealed that 84–98%
of bacteria in each sample matched Alviniconcha
symbiont reference sequences, with the most abun-
dant operational taxonomic units in each sample
matching reference sequences at 99–100% identity
(Table 2). e-proteobacterial symbionts dominated the
host type II samples from the two northern fields
(Kilo Moana and Tow Cam), and g-proteobacterial
symbionts dominated the host type I and type III
samples from the two southern fields (ABE and Tu’i
Malila, respectively). Though three of the four
samples were dominated by a single symbiont
phylotype, the Tu’i Malila sample appeared to
simultaneously host both g-1 and g-Lau phylotypes
(Table 2).

To help confirm that the overall taxonomic
composition of the data set was reflected in key
metabolic pathways, taxonomic assignments for
genes involved in sulfur metabolism, hydrogen
oxidation, and nitrogen metabolism were manually
reviewed in MEGAN (Supplementary Table S1).
Despite the uncertainties associated with taxonomy
assignment to individual short reads, there was very
little evidence for expression of e-proteobacterial
transcripts in g-dominated samples, or vice versa.

Sulfur metabolism
Sulfur oxidation genes were well represented in all
metatranscriptomes, constituting 2–3% of the total
bacterial transcripts in each sample (Figure 2,
Supplementary Table S1). The g-dominated samples
showed expression of sulfur oxidation genes and
pathways typical of chemoautotrophic g-proteo-
bacteria (Figure 3, Supplementary Table S1). From
both g-dominated samples, we recovered transcripts
from the core periplasmic Sox genes, soxXYZ,
though not the soxCD genes. The Sox complex
without SoxCD is utilized for the incomplete

Table 2 Metatranscriptome sequence characteristics

Kilo Moana Tow Cam ABE Tu’i Malila

Total reads 199 679 165105 182311 171 587
rRNA reads 102 675 83 436 67 669 135 141
Non-rRNA reads 97 004 81 669 114642 36 446
Taxon-assigned
proteins

35 497 35 763 48 666 17 408

% Eukaryotic 71% 60% 58% 37%
(MG-RAST accn.) (4492532.3) (4492531.3) (4492530.3) (4492529.3)
% Bacterial 27% 38% 39% 59%
(MG-RAST accn.) (4491348.3) (4491346.3) (4491347.3) (4491344.3)
% g-1a (16S) 0/0% 0/0% 87/98% 33/48%
% g-Laua (16S) 0/0% 0/0% 0/0% 59/51%
% ea (16S) 84/100% 98/100% 0/2% 0/1%

aProportion of symbiont 16S rRNA gene copies in ISMASH DNA as
determined via 454 pyrosequencing/quantitative PCR.
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oxidation of sulfide or thiosulfate, resulting in the
deposition of periplasmic elemental sulfur granules
(Grimm et al., 2008; Ghosh and Dam, 2009). The

g-dominated metatranscriptomes also contained
transcripts for sulfide:quinone (oxido)reductases
(Sqr) and sulfide dehydrogenases (Fcc), which

Figure 2 Summarized differences in expression of the most abundant categories of symbiont genes. Only gene categories with
membership comprising 40.5% of the total data set are represented. Blue- and yellow-shaded bars indicate relative levels of expression
in g- or e-dominated metatranscriptomes, respectively, on a linear scale. Dark gray bars indicate the base-10 logarithm of the odds ratio
((Gg/Tg)/(Ge/Te), where G¼no. reads in that category and T¼ total no. of reads). Positive log (odds ratios) indicate genes more likely to be
expressed in g-dominated metatranscriptomes (‘Protein biosynthesis’ abundance and ‘Sulfate reduction’ log ratio bars exceed the axis
limits in the figure at the scale presented). Genes are summarized by the Level 2 of the SEED Subsystems ontology as annotated in
MEGAN4.
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oxidize sulfide to elemental sulfur in the periplasm
(Frigaard and Dahl, 2008; Ghosh and Dam, 2009).
Consistent with the expression of these genes and
pathways, we frequently observe elemental sulfur
granules in the gills of Alviniconcha hosting
g-proteobacteria. The further oxidation of this ele-
mental sulfur to sulfate is thought to involve
additional pathways (Ghosh and Dam, 2009), such
as reverse dissimilatory sulfate reduction (rDSR).
Indeed, the DSR genes dsrABCEFJKMLOPS were
highly expressed in both g-dominated samples, with
dsrFHR genes present in at least one g-dominated
sample (dsrEFHR abundances determined via
MG-RAST IMG annotation). The presence of dsrEFH
transcripts indicates use of this pathway for the
oxidation of reduced sulfur species. Here, the reverse
DSR pathway is likely coupled to sulfite oxidation
via an indirect pathway involving APS reductase

and sulfate adenylyltransferase, both of which were
identified in the g-dominated metatranscriptomes.

Notably, the expression of an incomplete Sox
complex along with reverse DSR and indirect sulfite
oxidation pathways is common among g-proteobac-
terial chemosynthetic endosymbionts (Harada et al.,
2009; Markert et al., 2011; Stewart et al., 2011). We
detected transcripts from both pathways in the
metatranscriptome derived from a snail dominated
by the g-1 phylotype, suggesting that both pathways
are present and being expressed in this symbiont.
However, as the other metatranscriptome was
derived from a mixed symbiont community of two
g-proteobacterial phylotypes, we cannot say whether
these pathways are expressed by one or both of the
g-proteobacterial symbionts.

In contrast to the g-dominated metatranscrip-
tomes, the e-dominated metatranscriptomes from

Figure 3 Energy metabolism pathways and levels of expression in g- and e-dominated metatranscriptomes. (a) Relative abundance of
genes involved in sulfur oxidation, hydrogen oxidation, nitrogen reduction and assimilation, and aerobic respiration. Circle area reflects
total normalized expression for each gene category for g- or e-dominated metatranscriptomes, respectively. Circles are divided according
to relative contribution of each individual sample. e-dominated metatranscriptomes are shaded yellow, while g-dominated
metatranscriptomes are shaded blue. (b) Energy metabolism models for g- and e-proteobacterial symbionts represented in a stylized
cell. The upper, yellow half shows the model for e-symbionts, while the blue lower half shows the model for g-symbionts. Proteins and
complexes are colored by metabolic category: yellow¼ sulfur metabolism; white¼ aerobic respiration; green¼nitrogen metabolism;
blue¼hydrogen oxidation. Arrows show general direction of electron flux. Sox, Sox multienzyme complex; rDsr, reverse dissimilatory
sulfur reduction pathway; Apr, adenylylsulfate reductase; Sat, sulfur adenylyltransferase; Sdh, sulfite dehydrogenase; Sqr, sulfide
quinone (oxido)reductase; Psr, polysulfide reductase; Hyd, hydrogenase; Nap, periplasmic nitrate reductase; NarK, nitrate/nitrite
transporter; NirA, ferredoxin-dependent nitrite reductase; NirBD, NADH-dependent siroheme nitrite reductase; NirS, membrane-bound
respiratory nitrite reductase; Nor, nitric oxide reductase; Nos, nitrous oxide reductase; GSþGOGAT, glutamine synthetaseþ glutamate
synthase; Amm. Trans., ammonium transporter; Q, quinone; b/c1, cytochrome bc1; c, cytochrome c; CytCO, cytochrome c oxidase.
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the northern two vent fields lacked reverse DSR
transcripts, but were replete with complete Sox–
multienzyme complex and Sqr transcripts (Figure 3,
Supplementary Table S1). The full Sox–multienzyme
complex is employed by e-proteobacteria for the
complete oxidation of sulfide, thiosulfate, and/or
elemental sulfur (Yamamoto and Takai, 2011). Addi-
tionally, we detected high expression of sqr genes,
despite the fact that the e-proteobacterial symbiont,
like its free-living relatives from the genus Sulfur-
imonas, has not been observed to form visible sulfur
granules (Sievert et al., 2008). Many e-proteobacterial
genomes encode genes for Sqr in addition to the
Sox complex, though the role of Sqr in sulfur
oxidation and its relationship to the Sox pathway
is still uncertain in these symbionts and other
e-proteobacteria.

Hydrogen metabolism
Previous work has shown that Alviniconcha hosting
e-proteobacterial symbionts dominate at the north-
ern vent fields, where hydrogen concentrations are
highest, suggesting that hydrogen might serve as an
electron donor for these symbionts (Beinart et al.,
2012). The metatranscriptomes from the two
e-dominated, northernmost samples revealed the
potential for respiratory hydrogen oxidation, with
both samples expressing genes allied to Group 1
NiFe-hydrogenases (B0.5% of all transcripts,
Figure 3 and Supplementary Table S1). This group
of enzymes, often called uptake hydrogenases, are
membrane-bound, respiratory enzymes that oxidize
hydrogen and donate electrons to the quinone pool
(Vignais and Billoud, 2007). Hydrogen oxidation
transcripts for Group 1 NiFe-hydrogenases were also
recovered—though with much lower representa-
tion—from the g-dominated metatranscriptomes
(Figure 3).

The presence of hydrogenase transcripts in
all four of the Alviniconcha metatranscriptomes
indicates that hydrogen could be an electron donor
in both the g- and e-proteobacterial symbionts of
Alviniconcha. However, the difference in expression
of hydrogenases between the e- and the g-dominated
individuals suggests that hydrogen oxidation poten-
tially has a larger role in the energy metabolism of
the holobionts with e-proteobacteria (Figure 3,
Supplementary Table S1). Phylogenetic analysis of
the Alviniconcha e-proteobacterial endosymbionts
from the ELSC shows that they are closely allied to
members of the genus Sulfurimonas (Beinart et al.,
2012), many of which are able to utilize both
hydrogen and reduced sulfur compounds as elec-
tron donors (Nakagawa et al., 2005). A recent study
employed a suite of molecular, physiological, and
geochemical approaches to show that vent mussels
with g-proteobacterial symbionts can oxidize hydro-
gen to support carbon fixation (Petersen et al., 2011).
Future studies will use similar approaches to
elucidate the degree to which these Alviniconcha
e-proteobacterial endosymbionts rely on hydrogen
for energy production.

Carbon fixation
Transcript representation and abundances revealed
clear differences in carbon fixation pathways
between g- and e-dominated individuals (Figure 4,
Supplementary Table S1). Key genes of the Calvin-
Benson-Bassham cycle, including those encoding
Form II Ribulose-1,5-bisphosphate carboxylase/oxy-
genase and phosphoribulokinase, were enriched in
g-dominated metatranscriptomes. In contrast, the
three key genes associated with the reductive tricar-
boxylic acid (rTCA) cycle (ATP citrate lyase,
2-oxoglutarate oxidoreductase, and fumarate reductase)
were found only in snails hosting e-proteobacteria.

Figure 4 Summarized differences in expression of genes involved in carbon fixation, transposase and flagellar genes. Transcript
abundance is normalized to 10000 per sample.
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These patterns are consistent with previous studies of
carbon fixation in both free-living and symbiotic
chemoautotrophs of these two major bacterial groups
(Hugler et al., 2005; Takai et al., 2005; Woyke et al.,
2006; Nakagawa and Takai, 2008; Sievert et al., 2008;
Hügler et al., 2011). Both the Calvin-Benson-Bassham
cycle with Form II Ribulose-1,5-bisphosphate carbox-
ylase/oxygenase and the reductive tricarboxylic acid
cycle are typically associated with autotrophs from
low-oxygen environments (Berg, 2011), suggesting that
the symbionts of Alviniconcha are experiencing such
conditions. This may be due to low environmental
oxygen concentrations around Alviniconcha or limited
provisioning to the symbionts by the snails’ oxygen-
binding proteins hemocyanin and hemoglobin
(Wittenberg and Stein, 1995).

Nitrogen metabolism
All organisms need nitrogen for growth and bio-
synthesis, requiring the assimilation of an exogen-
ous source of nitrogen. At vents, dissolved organic
nitrogen (for example, free amino acids) is quite low
(Johnson et al., 1986), while inorganic nitrogen
compounds are typically abundant. Some vent
fluids contain nM to mM concentrations of dissolved
ammonium, which is easily assimilated by many
organisms. However, there are no data on ammo-
nium concentrations at the ELSC (Tivey, 2007).
Nitrate, however, is typically very abundant in
seawater surrounding vents (occurring at B40 mM;
Johnson et al., 1986).

Nitrate can be used both as a primary nitrogen
source for biosynthesis and growth and as a
respiratory terminal electron acceptor. Assimilatory
nitrate reduction canonically utilizes the cytoplas-
mic nitrate reductase Nas. Dissimilatory nitrate
reduction (DNR) frequently utilizes the membrane-
bound respiratory nitrate reductase Nar, but in some
bacteria may also be catalyzed via a periplasmic–
enzyme complex (Nap) (Potter et al., 2001). The
nitrite generated by DNR may be further reduced to
ammonia via dissimilatory nitrate reduction to
ammonia (DNRA), which may then be utilized for
biosynthesis (though Nap has not typically been
associated with nitrate assimilation, Berks, 1995). In
both assimilatory nitrate reduction and DNRA, the
resulting ammonium is typically assimilated by the
glutamine synthetase-glutamate synthase or gluta-
mate dehydrogenase pathways (Reitzer, 2003).

In all of the metatranscriptomes, we found the
expression of some genes typically associated with
both assimilatory and dissimilatory nitrate reduction,
as well as for ammonium assimilation. Curiously,
though, we did not find evidence for complete
expression of any of the canonical pathways. Instead,
periplasmic nitrate reductase (Nap) appeared to
catalyze nitrate reduction as the first step for both
assimilation and respiration.

Genes involved in ammonium assimilation com-
prised a substantial portion of all metatranscriptomes,

indicating that all Alviniconcha symbionts were
poised to assimilate ammonium either from the
reduction of nitrate or from the environment
(Figure 3, Supplementary Table S1). Both e- and g-
proteobacterial symbionts showed substantial expres-
sion of glutamine synthetase-glutamate synthase and
ammonium transporters. As mentioned above, all
symbionts were poised for nitrate reduction in the
periplasm via the Nap complex. We did not detect the
periplasmic nitrite reductase Nrf, which is typically
the next step in Nap-catalyzed DNRA (Potter et al.,
1999). However, both g- and e-dominated transcrip-
tomes showed expression of the narK nitrite/nitrate
transporter and cytoplasmic ammonifying nitrite
reductases, representing a potential mechanism for
assimilation of periplasmically-reduced nitrate via
the shuttling of nitrite into the cytoplasm and sub-
sequent reduction to ammonium and assimilation by
glutamine synthetase-glutamate synthase (Figure 3,
Supplementary Table S1). This model represents an
alternative to the typical pathway for DNRA.

The substantial expression of genes involved in
respiratory denitrification suggests another possible
fate for periplasmic nitrite (Figure 3, Supplementary
Table S1), raising the possibility that Alviniconcha
symbionts may be utilizing nitrate as an alternative
electron acceptor to oxygen, potentially reducing
competition for oxygen with the host (Hentschel and
Felbeck, 1993; Hentschel et al., 1996). Though we
did not detect transcripts for the canonical dissimi-
latory nitrate reductase Nar, in other bacteria, Nap
has been shown to catalyze the first step in aerobic
denitrification, as the presence of oxygen inhibits
activity of Nar (Potter et al., 2001). We posit that Nap
has a similar role in Alviniconcha symbionts. All
of our samples contained transcripts for the rest of
the denitrification pathway, including periplasmic
respiratory cytochrome cd1 nitrite reductase NirS, the
nitric oxide–reductase complex Nor, and the nitrous
oxide–reductase complex Nos. Denitrification genes
were more abundantly and consistently expressed in
the e-dominated transcriptomes, where they consti-
tuted around 2% of all reads. These genes were less
abundant (0.3% of reads) in the g-proteobacterial
metatranscriptomes. Notably, NirS, which serves the
reduction of nitrite to nitric oxide, and thus may serve
to commit nitrite to a dissimilatory pathway, was
B50-fold more abundant in the e-dominated samples
(Figure 3).

Functionally, this assemblage of assimilatory and
dissimilatory genes may represent a strategy well
suited for life around hydrothermal vents, where
fluid mixing leads to ammonium concentrations
that are inversely correlated with availability of
oxygen as a terminal electron acceptor. The model
outlined in Figure 3 would permit purely respira-
tory reduction of nitrate in holobionts exposed to
oxygen-poor and ammonium-rich vent fluid. Con-
versely, holobionts in more aerobic conditions, with
less access to ammonium, could decrease complete
denitrification to dinitrogen in favor of assimilating
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nitrate to meet the needs of biosynthesis. Under this
hypothesis, the expression differences we observed
between g- and e-dominated metatranscriptomes
would suggest that these symbionts were engaged
primarily in either nitrogen assimilation or denitri-
fication in response to variations in water chemistry
in their respective habitats.

Despite differences in expression, the comple-
ment of nitrogen genes was remarkably consistent
between e- and g-dominated metatranscriptomes.
The similarities in nitrogen gene content were
especially striking in light of the large differences
we observed in sulfur and carbon pathways. Where
the latter differences were typical of pathways found
in free-living members of their respective proteo-
bacterial classes, the combination of nitrogen-
related genes we observed in both classes of
Alviniconcha symbionts was fairly unusual, but
could potentially catalyze functionally identical
pathways in both classes of symbiont. At hydro-
thermal vents, the capacity to use nitrate for both
biosynthesis and respiration is widespread among
e-proteobacteria (Sievert and Vetriani, 2012),
including the free-living relatives of Alviniconcha
e-proteobacterial symbionts, Sulfurimonas (Takai
et al., 2006; Sievert et al., 2008; Sikorski et al.,
2010). Nitrate respiration is less common among
free-living vent g-proteobacteria (Sievert and
Vetriani, 2012), though, curiously, patterns of nitro-
gen gene expression similar to the Alviniconcha
symbionts have been observed in other g-proteobac-
terial symbionts, such as those associated with vent
tubeworms (Markert et al., 2011; Robidart et al.,
2011). Although this model remains to be validated,
such functional convergence may reflect similar
selective pressures imposed by life in this environ-
ment, as well as the symbiotic lifestyle.

Flagellar genes
Flagellar genes showed striking differences in expres-
sion between e- and g-proteobacterial metatranscrip-
tomes (Figure 4, Supplementary Table S1), hinting at
potential differences in host–symbiont interactions.
The e-dominated samples expressed transcripts for at
least 30 flagellum-related genes, including flagellins
flaAB and transcripts associated with the flagellar
hook, ring, motor, basal body, and biosynthesis
(Supplementary Table S1). Only 10 flagellum-related
genes were recovered from g-dominated metatran-
scriptomes and, in aggregate, were B20-fold lower in
abundance. While the diversity of roles that flagellar
genes have in other symbiotic bacteria complicates
interpretation (Anderson et al., 2010), we propose
three hypotheses that might explain the observed
differences in expression.

First, if flagella are used primarily for motility, their
abundant expression in mature-host associations may
signal differences in symbiont motility and transmis-
sion dynamics between the e- and g-proteobacterial
symbionts. Riftia tubeworm symbionts, while

possessing a large number of genes related to motility
and chemotaxis, do not appear to possess flagella
while inhabiting the host trophosome (Harmer et al.,
2008; Robidart et al., 2008). Instead, they may utilize
flagella during horizontal transmission (Harmer et al.,
2008), when flagellar motility could be important in
escaping from parental host tissue and/or chemotaxis
towards a new host. Here, the abundant flagellar gene
expression in e-symbionts could indicate that they
are actively transmitted throughout the lifetime of the
host. The lower expression observed in the g-hosting
snails might in turn reflect either a different
transmission strategy or, potentially, temporal differ-
ences in symbiont transmission.

Second, flagellar proteins are commonly used
in host recognition and attachment. It is plausible
that the expression of flagellar genes in e-dominated
metatranscriptomes relates to host recognition (that is,
specificity). Flagellar proteins are critical to symbiont
recognition and colonization in other systems: for
example, the Euprymna-Vibrio symbioses (Nyholm
et al., 2000; Millikan and Ruby, 2004), another highly
specific, horizontally transmitted marine symbiosis.
A previous study found that one Alviniconcha host
type nearly always hosted solely e-proteobacterial
symbionts, while others hosted mixed populations
of the two g-proteobacterial symbiont lineages
and, occasionally, the e-proteobacterial symbionts
(Beinart et al., 2012). The expression of flagellin in
e-proteobacterial symbionts may contribute to this
specificity.

Finally, flagellar genes may also mediate nutri-
tional export from symbiont to host. Ring- and hook-
associated flagellar proteins have been shown to
have an important secretory role in the intracellular
symbionts of aphids (Maezawa et al., 2006; Toft and
Fares, 2008), though they have lost genes for the
flagellin tail proteins, which were abundantly
expressed in our e-dominated samples. In Alvini-
concha, the mode of nutrient transfer in g-hosting
individuals may predominantly be via digestion
of symbiont cells, as is thought to be the case for
g-proteobacterial symbionts of other vent animals
(Lee et al., 1999). In contrast, translocation of small
organic compounds from symbiont to host may have
a bigger role in Alviniconcha hosting e-proteobac-
teria. Compound-specific isotopic observations
made by Suzuki et al. (2005) suggest as much,
demonstrating that symbiont-associated fatty acids
are detected in non-symbiotic host tissues of g-, but
not e-hosting Alviniconcha.

Transposons
Another surprising difference between symbiont
types was the increased abundance of transposases
in the g-dominated metatranscriptomes, where
predicted transposases accounted for 3–7% of
all bacterial transcripts via IMG in MG-RAST
(SEED called around 2–5% of the transcripts
transposons). Predicted transposases were present
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in the e-dominated samples, but were much lower in
abundance and matched largely to different trans-
posase families (Figure 4, Supplementary Table S1).
The presence of transposons in the genomes of other
chemoautotrophic symbionts is variable: they are
undetected in the genomes of the vertically-trans-
mitted endosymbiont of vent clams (Kuwahara
et al., 2007; Newton et al., 2007), while those of
the horizontally transmitted vent tubeworm endo-
symbionts contain at least one (Robidart et al., 2008;
Gardebrecht et al., 2012), and nearly 20% of an
endosymbiont genome from the oligochaete Olavius
algarvensis is composed of transposable elements
(Woyke et al., 2006).

Moran and Plague (2004) have proposed that the
proliferation of mobile genetic elements occurs early
during the transition to an obligate intracellular
lifestyle, as genetic bottlenecks during transmission
decrease the effective population size of the sym-
bionts, leading to decreased strength of selection.
Combined with the lack of a free-living life stage,
this is thought to relax purifying selection on the
symbiont genome. Although conflicting with the
current hypothesis that both g-proteobacterial and
e-proteobacterial symbionts are transmitted via the
environment, the dramatic differences in transpo-
sase expression observed among these metatran-
scriptomes hints at the possibility that these two
distinct symbiont–host associations either represent
different stages of evolutionary development, or
exhibit differing transmission modes. When taken
in conjunction with the corresponding differences
in flagellar gene expression, these data raise the
hypothesis that e-proteobacterial symbionts in Alvi-
niconcha, relative to the g-proteobacterial sym-
bionts, experience more frequent dispersal and
fewer genetic bottlenecks.

Conclusions

Our results reveal that Alviniconcha symbionts
exhibited marked differences in gene expression
related to energy metabolism. The predominance of
both hydrogen oxidation and DNR genes in the
e-dominated metatranscriptomes would suggest that
these holobionts live in more highly reduced and
potentially less oxygen-rich fluids. This is consis-
tent with the previously observed patterns of
distribution across a regional gradient, wherein
e-hosting Alviniconcha were most abundant in the
more sulfidic, hydrogen-rich fluids found at the
northern vent fields (Beinart et al., 2012). Though
these differences in expression do not necessarily
imply differences in metabolic capability (this is
better addressed via genomic sequencing of each
symbiont type), their striking correlation with
holobiont biogeography supports the hypothesis
that symbiont physiology has an important role in
habitat partitioning among the host types in this
genus.

Unexpectedly, the observed differences in flagellar
genes and transposons between e- and g-dominated
metatranscriptomes hint at differences in symbiont
life histories, potentially related to the dynamics of
association between host and symbiont, including
mode of transmission and nutrient exchange. Though
other chemoautotrophic symbioses have been des-
cribed with widely varying specificities and trans-
mission mechanisms (reviewed in Dubilier et al.,
2008), Alviniconcha is thus far unique in that close
relatives within the genus host unrelated symbionts,
each with apparently variable degrees of specificity
(Beinart et al., 2012).

The data presented here illustrate the value of
using in situ preservation and shore-based tran-
scriptomics to examine symbiont physiological
poise. This technology and methodology allowed
us to test a priori hypotheses as well as to identify
previously unrecognized differences among these
symbionts. Future studies should employ such
approaches when studying both host and symbiont
gene expression within and among different geo-
chemical habitats to better understand the complex
relationships among symbionts, their hosts, and the
environment.
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Chapter 4 
The uptake and excretion of partially oxidized sulfur broadens our understanding  

of the energy resources metabolized by hydrothermal vent symbioses 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(formatted for journal submission) 



! 38 

Abstract 

 Symbioses between animals and chemoautotrophic bacteria predominate at 

hydrothermal vents. In these associations, symbiotic bacteria utilize chemical reductants for the 

energy to support autotrophy, providing primary nutrition for the host. It is well known that 

reductants in venting fluid (e.g., sulfide, methane, hydrogen) can fuel productivity by vent 

symbioses. At vents along the Eastern Lau Spreading Center (ELSC), partially oxidized sulfur 

(e.g., thiosulfate, polysulfides) has also been detected around communities of symbiotic molluscs. 

Thiosulfate is known to drive autotrophy in free-living sulfur oxidizing microbes as well as the 

epibiotic symbionts of some vent crustaceans, but has never been shown in a an intact association 

between animals and intracellular symbionts. To test this metabolism in vent endosymbioses, we 

used high-pressure, flow-through incubations to maintain three symbiotic molluscs from the 

ELSC - the snails Alviniconcha and Ifremeria nautilei, and the mussel Bathymodiolus brevior – at 

conditions mimicking those in situ. We assessed their productivity when oxidizing sulfide or 

thiosulfate via the incorporation of isotopically labeled inorganic carbon, while concurrently 

measuring their effect on sulfur flux from the aquaria with voltammetric microelectrodes. We 

found that the symbionts of all three genera supported carbon fixation while oxidizing thiosulfate 

as well as sulfide, though at different rates. Additionally, we showed that these symbioses excreted 

partially oxidized sulfur under highly sulfidic conditions, which illustrates that these symbioses 

could represent a source for partially oxidized sulfur in their habitat. Finally, by examining the 

rate at which individuals incorporated the isotopic label, we revealed spatial disparity in the rates 

of carbon fixation among the animals in our incubations that might have implications for the 

variability of productivity in situ. Altogether, this work demonstrates that thiosulfate may be an 

ecologically important energy source for vent symbioses and that, beyond the removal of vent-
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derived sulfide, these symbioses may also impact the local geochemical regime through the 

excretion of sulfur compounds.  

 

Introduction 

 Hydrothermal vents support dense assemblages of invertebrates, many of which rely on 

chemoautotrophic bacterial symbionts for nourishment. These microbial-animal associations 

aggregate around vent orifices so that their symbionts can utilize chemicals in venting fluid for 

the energy to support carbon fixation (Stewart et al. 2005). To date, the symbionts of animals 

from multiple phyla have been shown to use sulfide, methane and/or hydrogen from vent fluid as 

energy sources (Belkin et al. 1986; Nelson & Hagen 1995; Girguis & Childress 2006; Childress et 

al. 1991; Ponsard et al. 2012; Watsuji et al. 2012; Watsuji et al. 2010; Fisher et al. 1987; 

Robinson et al. 1998; Petersen et al. 2011). Though these are likely to be the most important 

forms of energy for vent symbioses (Amend et al. 2011), other reduced compounds can be 

present in and around venting fluid (Gartman et al. 2011; Luther et al. 2001; Luther Iii et al. 

2001; Schmidt et al. 2008). In particular, the partially oxidized sulfur compounds polysulfide and 

thiosulfate, which are produced from the abiotic and/or biological oxidation of vent-derived 

sulfide (Mullaugh et al. 2008; Gartman et al. 2011), have been detected at some vent systems 

(Gartman et al. 2011; Mullaugh et al. 2008; Waite et al. 2008; Gru et al. 1998). These 

compounds are typically present away from vent outlets (Gartman et al. 2011; Mullaugh et al. 

2008; Waite et al. 2008). Since competition among vent symbioses for vent-derived resources is 

likely to be intense, the use of reductants that are not sourced directly from vent fluid would be 

energetically advantageous. Moreover, since the proximity that is required for access to 

reductants in venting fluid requires exposure to high temperatures and toxic chemicals (e.g., 

sulfide), the exploitation of reductants that are not obtained directly from the vent could be 
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beneficial to symbioses that cannot tolerate such conditions. Thus, the use of partially oxidized 

sulfur has many ecological advantages for vent symbioses. 

 It is well known that partially oxidized sulfur compounds can be used as energy for 

carbon fixation by some free-living vent chemoautotrophs (Teske et al. 2000; Sievert & Vetriani 

2012), as well as by chemoautotroph-animal symbioses from non-vent ecosystems (Dando et al. 

1986; Scott & Cavanaugh 2007; Giere et al. 1988; Childress et al. 1998). Moreover, experimental 

studies have observed thiosulfate-driven carbon fixation among the epibiotic symbionts of vent 

crustaceans (Watsuji et al. 2012; Watsuji et al. 2010; Ponsard et al. 2012; Polz et al. 1998). A few 

studies have also measured thiosulfate oxidation in vitro by the intracellular symbionts of vent 

mussels and clams that were physically separated from their hosts (Belkin et al. 1986; Wilmot & 

Vetter 1990; Fisher et al. 1987; Childress et al. 1991; Nelson et al. 1995). To date, thiosulfate-

driven carbon fixation has not been demonstrated in an intact symbiosis between a vent animal 

and intracellular symbionts; thus, the extent to which this metabolism is important for 

productivity many vent symbioses remains unclear. 

 The abundance of partially oxidized sulfur in the vent environment has been best 

characterized at vents along the Eastern Lau Spreading Center (ELSC), in the southwestern 

Pacific near the island of Tonga. Three molluscs dominate at these vent fields: the provannid 

snails Alviniconcha and Ifremeria nautilei, as well as the mussel Bathymodiolus brevior. Though each of 

these symbioses can support net carbon fixation with sulfide oxidation (Henry et al. 2008), they 

associate with different, phylogenetically distant lineages of symbiotic bacteria that are housed in 

in their gill tissue (Y. Suzuki, Kojima, Watanabe, et al. 2006b; Y. Suzuki, Kojima, Sasaki, et al. 

2006a; Y. Suzuki, Sasaki, M. Suzuki, Tsuchida, et al. 2005b; Y. Suzuki, Sasaki, M. Suzuki, Nogi, 

et al. 2005a; Beinart et al. 2012; Dubilier et al. 1998; Stein et al. 1988). Interestingly, these 

animals typically form concentric patterns around vent orifices, with Alviniconcha found closest to 
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the outlet, followed by a zone of I. nautilei, and finally B. brevior at the very edges of the 

assemblages (Podowski et al. 2009; Podowski et al. 2010; Waite et al. 2008). It has been suggested 

that these zones reflect both preference for particular temperature and chemical regimes by the 

symbioses, and competitive interactions among them (Podowski et al. 2010; Sen et al. 2013). In 

addition to sulfide originating from the venting fluid, partially oxidized sulfur compounds are 

common in and around these aggregations; surveys with in situ voltammetric microelectrodes 

have detected thiosulfate and polysulfides at concentrations up to 1000 and 400 μM, respectively 

(Waite et al. 2008; Mullaugh et al. 2008; Gartman et al. 2011). Interestingly, the presence and 

abundance of these sulfur compounds correspond to the distribution of the mollusc genera, 

which might be indicative of specific exchanges between particular symbioses and the pools of 

partially oxidized sulfur compounds. In particular, the highest concentrations of thiosulfate in the 

aggregations are found over the zones of B. brevior (Waite et al. 2008; Mullaugh et al. 2008), while 

the highest concentrations of polysulfides are found among the I. nautilei (Gartman et al. 2011; 

Waite et al. 2008).  

 To determine whether these symbioses can use partially reduced sulfur compounds to 

support carbon fixation, we conducted a series of shipboard incubations with all three ELSC 

mollusc symbioses using high-pressure, flow-through aquaria. Inline voltammetric electrodes 

allowed us to assess total sulfur flux through the aquaria, while an isotopic tracer allowed us to 

quantify individual productivity during the incubations. The data presented here reveal which of 

these symbioses can support carbon fixation with thiosulfate, and demonstrate excretion of 

partially oxidized sulfur under highly sulfidic conditions. Additionally, the data suggest that there 

is variability in individual carbon fixation rates within an assemblage of these symbioses that may 

be related to competition for resources.  
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Methods 

Animal collections 

 Animals were collected from the vent fields ABE (-20°45.8’ by -176°11.5’) or Tu’i Malila 

(-21°59.4' by -176°34.1') at the Eastern Lau Spreading Center (ELSC) by the remotely operated 

vehicle JASON II during expedition TM-235 in 2009 on board the R/V Thomas G. Thompson. 

Animals were brought to the ship in insulated containers and, once on board, were kept in 4°C 

seawater. Alviniconcha or I. nautilei that were responsive to touch and B. brevior that were tightly 

closed upon recovery were immediately placed in the flow-through, titanium aquaria that 

represent part of the high-pressure respirometry system (HPRS; described below). For each 

incubation, between 3 and 10 individuals of each genus were placed into three separate aquaria. 

Animals were situated upon perforated acrylic partitions so that they were stacked vertically in 

the cylindrical aquaria.  

 

Incubation conditions and acclimation 

 Three incubations (hereafter ‘rate experiments’ or ‘experiments’) were performed to 

compare net sulfur uptake and excretion rates, as well as carbon fixation rates, by the three 

mollusc genera at three different conditions: 105 μM sulfide, 300 μM thiosulfate, and no sulfur 

compounds. During each rate experiment, an empty high-pressure aquarium (control) was run 

alongside the three animal-containing aquaria in order to account for systematic losses and 

enable the most robust mass specific rate determinations. In addition, two additional incubations 

(hereafter ‘exposure treatments’ or ‘treatments’) were performed to establish the extent of 

variation in carbon fixation rates among the animals within each vessel. Exposure treatments 

were run with a larger number of individuals per aquaria (sometimes double the number in the 
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rate experiments) at 350 μM sulfide or 300 μM thiosulfate (exposure treatments lack a control 

aquaria). Prior to the start of each experiment or treatment, all animals were incubated in 

aerated seawater at 15°C and 25 MPa for 8 hours prior to the addition of sulfur compounds and 

isotopic tracer. During the no sulfur experiment, animals were acclimated with ~300 μM sulfide 

before sulfur was stopped and isotopic tracer was added.  

  

Incubations with the high-pressure respirometry system (HPRS) 

 To measure sulfur oxidation and carbon fixation rates under in situ-like conditions, rate 

experiments and exposure treatments were performed with the HPRS (Fig.4.1). The HPRS was 

housed in a temperature-controlled intermodal shipping container maintained at 15-17°C. 

Surface seawater from the ship’s metal-free seawater systems was filtered to 0.2 μm via inline 

cartridge filters (Millipore Inc), then pumped into into a 40 L polypropylene carboy (Nalgene™). 

Filtered seawater was then amended with 1 g isotopically labeled sodium bicarbonate (as solution 

of 240 mM Na13CO3; 99.9% atom percent; Icon Services), to achieve a final 13C/12C atom 

percent of ~5% in the carboy. In addition, sodium nitrate (NaNO3) was added to achieve a final 

concentration of 40 µM, comparable to deep ocean water.  

For the thiosulfate experiment and treatment, 300 mM sodium thiosulfate (NaS2O3) was 

added to the amended seawater in carboy to achieve a final concentration of 300 μM. This was 

pumped into an acrylic gas equilibration column (Girguis et al. 2000), where it was bubbled with 

carbon dioxide, oxygen, nitrogen using mass flow controllers (Sierra Instruments Inc) to achieve 

concentrations of 4 mM, >300 µM, and 400 µM respectively (Table S4.1). The pH of the 

resulting input water was always 6-7. For the hydrogen sulfide experiment and treatment, the 

conditions were identical except for the absence of the thiosulfate, and the addition of gaseous



!

 

!
Fi

gu
re

 4
.1

 S
ch

em
at

ic
 o

f t
he

 h
ig

h-
pr

es
su

re
 re

sp
iro

m
et

ry
 sy

ste
m

 (H
PR

S)
. F

ilt
er

ed
 se

aw
at

er
 is

 a
m

en
de

d 
w

ith
 c

he
m

ic
al

s t
o 

m
im

ic
 in

 si
tu

 
co

nd
iti

on
s, 

an
d 

th
en

 p
um

pe
d 

th
ro

ug
h 

th
re

e 
tit

an
iu

m
 a

qu
ar

ia
 c

on
ta

in
in

g 
th

e 
sy

m
bi

ot
ic

 m
ol

lu
sc

s, 
an

d 
in

 so
m

e 
ca

se
s, 

th
ro

ug
h 

an
 

ad
di

tio
na

l, 
em

pt
y 

co
nt

ro
l a

qu
ar

ia
. T

he
se

 a
qu

ar
ia

 a
re

 h
el

d 
at

 ~
25

 m
Pa

 w
ith

 b
ac

k-
pr

es
su

re
 v

al
ve

s. 
T

he
 in

pu
t w

at
er

 a
nd

/o
r t

he
 a

qu
ar

ia
 

ef
flu

en
t a

re
 d

ire
ct

ed
, v

ia
 a

 st
re

am
-s

el
ec

tio
n 

va
lv

e,
 to

 a
n 

in
-li

ne
 v

ol
ta

m
m

et
ric

 m
ic

ro
el

ec
tr

od
e 

sy
ste

m
 th

at
 m

ea
su

re
s t

he
 c

on
ce

nt
ra

tio
ns

 o
f 

su
lfu

r c
om

po
un

ds
 (m

od
ifi

ed
 fr

om
 N

yh
ol

m
 e

t a
l.,

 2
00

8)
.

44 
 



! 45 

5% H2S/95% N2 gas via a mass flow controller to achieve the target final concentrations 

(presented above).  

In all incubations, the resulting seawater from the equilibration column was then supplied 

to four high-pressure metering pumps (Lewa GmbH) equipped with titanium wetted parts. The 

pumps generated ~25 mPa and delivered fluid into the three or four titanium high-pressure 

aquaria at a rate of 10-16 ml min-1. Pressure was maintained via 316 stainless steel backpressure 

valves (StraVal Inc). The aquaria effluents and/or equilibration column seawater (hereafter 

‘input water’) were directed toward an electronic, multi-position stream-selection valve (Valco 

Instruments Co. Inc.) that systematically sent each stream to analysis by a voltammetric 

microelectrode (see below), to collection for analyses on shore, or to waste. 

 

Sulfur oxidation and excretion rates 

 To determine the net sulfur oxidation rates, as well as detect the excretion of partially 

oxidized sulfur compounds, the concentrations of sulfur compounds in the effluent of the 

experimental aquaria were compared to the concentrations in effluent from the empty control 

aquarium (rate experiments) or to the concentrations in input water (exposure treatments). 

Oxidation (or uptake) and excretion (or production) of sulfur compounds is defined here, 

respectively, as an observed net decrease or increase in the concentrations of sulfur compounds in 

the effluent of the aquaria relative to the control effluent or the input water. The concentrations 

of the sulfur compounds sulfide (∑H2S and HS-), thiosulfate and polysulfides were measured via 

voltammetric microelectrodes (Luther et al. 2001; Brendel & Luther 1995). Though we were 

unable to quantify oxygen concentrations during the incubations, the voltammetric 

microelectrodes (see below) were always able to detect oxygen in the aquaria effluent during all 

incubations (minimum detection limit is 5 µM; (Gartman et al. 2011)), suggesting that oxygen 
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was never completely depleted by the symbioses in the aquaria. The input and/or effluent water 

was measured in a cyclical series of 30 minute intervals throughout the duration of the 

experiment; one complete 2-hour series of 4 intervals starting with an experimental effluent and 

ending with either the control effluent or input water is hereafter referred to as a ‘set’. 

Electrochemical scans were performed at a rate of 1 per ~43 s, resulting in 42 measurements per 

30 min interval. The detection limits for the voltammetric microelectrodes were 30 μM 

thiosulfate and 0.2 μM sulfide and polysulfide. The electrodes were calibrated for measurement 

of sulfide concentrations with measurements made via discrete water samples from either the 

input water (exposure treatment) or the control vessel effluent (rate experiment) as described 

below (Fig.S4.1). The electrodes were calibrated for measurement of thiosulfate concentration 

based on the 300 μM concentration in the input water. 

At 4 h intervals throughout the course of the experiments, 10 ml of input or control 

effluent water was also preserved with 1 M zinc acetate and stored at -20°C until analysis. Later, 

sulfide concentrations were determined via a colorimetric assay ((Cline 1969); Lamotte Co.) by 

comparing our unknowns to a standard curve varying from 1 to 500 µM on a Spectramax Plus 

384 absorbance microplate reader (Molecular Devices, LLC).  

 Net sulfur oxidation rates were calculated using data obtained after at least 10 h into the 

experiment, as this allowed for three turnovers in the volume of water in the aquaria. To 

calculate the concentrations of each sulfur compound during each 30 min interval, the first 10 

scans of each interval were removed (i.e., the first 24% of the total scans in each interval) to 

exclude the transitory scans that occurred after the switch to a different aquarium effluent. The 

concentrations resulting from the remaining scans were averaged, resulting in a single 

concentration value per interval (hereafter, ‘interval concentration’). To calculate oxidation rates 

for each mollusc genus within a set, the interval concentration of the control effluent was 
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subtracted from the interval concentration of the experimental effluent, and these in turn were 

divided by the total gill mass of the animals in each aquarium.  

 

DIC isotopic composition  

 To measure the exact amount of isotopic tracer Na13CO3 available during each 

experiment or treatment, input water was sampled 2-3 times over the course of each. 

Approximately 10 ml of input water taken directly from the gas equilibration column was filtered 

(0.2 μm) to remove particulate carbon. Dissolved inorganic carbon (DIC) in the samples was 

base-trapped with a solution of sodium hydroxide so that the final pH was >11 and stored frozen 

at -20°C in gas-tight, glass Hungate tubes until analysis. The atom percent of the DIC was 

measured at the Yale Institute of Biospheric Studies’ Earth System Center for Stable Isotopic 

Studies, where 1 ml of thawed sample was injected into pre-flushed 12 ml exetainers containing 

H3PO4 to evolve DIC as CO2 for analysis via a ThermoFinnigan DeltaPLUS Advantage mass 

spectrometer (Thermo Scientific) coupled to a Costech ECS 4010 EA elemental analyzer 

(Costech Analytical Technologies). 

  

Sampling of experimental animals 

 At the conclusion of each experiment, the aquaria were depressurized and animals were 

quickly removed from the high-pressure aquaria, excised from their shells, and total wet weight 

for each individual was determined via a motion-compensated shipboard balance (Childress & 

Mickel 1980). From these weights, each individual’s gill weight was estimated from linear 

equations derived from the regression of total body mass to gill mass (Fig.S2) for each genus. Gill 

and foot tissue was subsampled for isotopic analysis and frozen at -80°C until further processing. 

 In addition, subsamples of gill tissue were homogenized and preserved in Trizol™ (Life 
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Technologies) for extraction of nucleic acids. DNA was extracted from the Trizol™-preserved 

tissue samples following RNA extraction via the manufacturer’s protocol. DNA was back-

extracted from the resulting interphase with a buffer consisting of 4 M guanidine thiocyanate, 50 

mM sodium citrate and 1 M Tris (free base). The DNA was then extracted again with 

chloroform:isoamyl alcohol and precipitated with isopropanol. The resulting DNA pellets were 

washed twice with 75% ethanol and air-dried. DNA pellets were resuspended in 8 mM sodium 

hydroxide, adjusted to pH 7-8 with 0.1 M HEPES and amended with 1 mM EDTA. 

 

Symbiont identities  

 Symbiont 16S rRNA genes were directly amplified from diluted I. nautilei and B. brevior 

DNA extracts using the universal bacterial primers 27F and 1492R (Lane 1991). PCR reactions 

were performed with Crimson Taq DNA polymerase (New England Biolabs, Inc.) for 2 min at 

95 °C, 30 cycles of 30 s at 95°C, 30 s at 55°C, 90 s at 68°C, followed by 5 min at 72°C. PCR 

products were subjected to electrophoresis on a 1.2% (wt/vol) agarose gel stained with SYBR 

Safe (Invitrogen, Inc.) to check the quantity and the quality of the products using a U:Genius UV 

transilluminator (Syngene, Inc.). PCR products were cleaned with ExoSAP-IT (Affymetrix, Inc.), 

then bidirectionally sequenced. Quality assessment of the sequences and assembly of forward and 

reverse reads were performed in Geneious v6.1.6 (BioMatters, Inc.). Sequences were aligned with 

other symbiont and free-living Proteobacterial sequences using the SILVA Incremental Aligner 

v1.2.11 (Pruesse et al. 2012). A Bayesian inference phylogeny was produced with MrBayes 

(Huelsenbeck & Ronquist 2001) implementing the GTR+I+G model of substitution. Three 

replicate runs of 5 x 107 generations were performed with sampling every 103 generations and 

burn-in of 12,500 samples. Quantitative and qualitative diagnostics were performed for each of 
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the three runs using the Coda package in R (Plummer et al. 2006), the three replicate runs were 

combined, and a 50% majority rule consensus tree was created in MrBayes. 

  Because Alviniconcha from the ELSC are known to host an assemblage of phylogenetically 

distinct symbionts (Beinart et al. 2012), direct amplification and sequencing of symbiont 16S 

rRNA genes was not performed. Instead, the symbiont populations associated with the 

experimental Alviniconcha were assessed as in Beinart et al. (2012), with three 16S rRNA gene 

quantitative PCR assays that are specific to their symbiont phylotypes. Briefly, we estimated the 

proportion of each symbiont phylotype in the diluted Alviniconcha gill DNA extracts by applying 

all the assays to 2 μl of each sample (in duplicate), which were compared against duplicate 

standard curves and no-template controls. A standard curve for each assay was constructed from 

linearized plasmid containing a representative 16S rRNA gene from the three symbiont 

phylotypes, diluted so that 101 to 107 gene copies were added per reaction.  

 

Tracer incorporation into tissue samples and carbon fixation rates 

 Approximately 300 mg symbiont-containing gill and symbiont-free foot tissue were 

subsampled while frozen for carbon isotopic analysis. Samples were lyophilized for 24 h and then 

were acidified with 0.1 N HCl to remove any unincorporated Na13CO3 contamination. The 

samples were subsequently dried for 24–48 h at 50–60°C, weighed to determine the dry weight, 

homogenized to a fine powder, and ~1 mg sealed within tin capsules.  

 The carbon isotopic composition and percent carbon content was determined for foot 

tissue samples at Washington State University by combustion in an elemental analyzer 

(Eurovector, Inc.) and separating the evolved CO2 by gas chromatography before introduction to 

a Isoprime™ isotope ratio mass spectrometer (Micromass Inc). Gill tissue samples were assayed 

at the Yale Institute of Biospheric Studies’ Earth System Center for Stable Isotopic Studies using 
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a ThermoFinnigan DeltaPLUS Advantage mass spectrometer (Thermo Scientific) coupled to a 

Costech ECS 4010 EA elemental analyzer (Costech Analytical Technologies). Measurements of 

isotopic composition are expressed as the atomic percent (%A = [13C/(13C+12C)] x 100%) and 

carbon contents expressed as a percentage of dry weight (%C). 

 To obtain the percentage of 13C incorporated during these experiments (%13Cinc), the 

following formula was used: 

%13Cinc=
A%g- A%f
A%w- A%f

  

where A%g is the atomic percent of the gill tissue sample; A%f is the atomic percent of the same 

individual’s foot tissue sample; and A%w is the atomic percent of the input water DIC. The 

average isotopic composition of the foot tissue of each genus from all experiments was 

comparable to the natural isotopic composition of these animals (Table S4.2), indicating that 13C 

incorporation into foot tissue or contamination of the samples did not occur. Foot tissue was not 

sampled at the conclusion of the sulfide exposure treatment, so the average A%f from the other 

experiments was used to calculate rates for the individuals in this experiment (averages 1.076%, 

1.075%, and 1.075% for Alviniconcha, I. nautilei and B. brevior, respectively). For the Alviniconcha 

individuals in the sulfide exposure treatment that hosted ε-proteobacterial symbionts, the A%f 

average from the previous experiments could not be used since Alviniconcha from the other 

experiments hosted γ-proteobacterial symbionts. For these individuals, the previously published 

average A%g (1.093%; (Beinart et al. 2012)) for ε-proteobacteria-hosting individuals was used 

since gill tissue is typically a reasonable approximation of the A%f in Alviniconcha (Y. Suzuki, 

Kojima, Sasaki, et al. 2006a).  

 The weight of incorporated carbon (W13Cinc) was then calculated by multiplying the 

%13Cinc by the dry weight of the gill tissue (DWg) and the carbon content of the sample (%C). 
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Carbon incorporation rates (Cinc) are expressed as umoles 13C per gram of wet tissue per hour. 

This was first calculated as a rate of carbon incorporation expressed as umoles 13C per gram of 

dry tissue per hour (DryCinc) with the formula: 

 

  DryCinc = [ W
13Cinc!  MWc  × 1000]

(DWg× t)
!

 

where MWc is the molecular weight of 13C; and t is the duration of the experiment. Cinc was then 

converted to Cinc by multiplying dryCinc by the ratio of DWg to the wet weight of that same 

sample (Wg). 

 

Results 

Symbiont identity 

 Via assessment of the symbiont populations through analysis of the 16S rRNA genes, we 

found that the symbionts of each host genus had low symbiont diversity. Except for a number of 

Alviniconcha from the sulfide exposure treatment, individuals from all three genera used in the 

incubations hosted γ-proteobacterial symbionts. Alviniconcha from the ELSC are known hosts to 

three phylotypes of symbionts: two γ-proteobacterial phylotypes (γ-1, γ-Lau) or an ε-

proteobacterial phylotype. With the exception of some individuals in the sulfide exposure 

treatment, all experimental Alviniconcha were dominated by symbionts from one of the two γ-

proteobacterial phylotypes (i.e., ≥93% of the detected 16S rRNA genes; Table S4.3). Most of 

these individuals hosted mainly γ-1 symbionts; only two individuals from the no sulfur 

experiment were dominated by γ-Lau symbionts. Among individuals of I. nautilei and B. brevior, 

there was low diversity in their symbionts as indicated by their 16S rRNA genes. Additionally, 

direct amplification and sequencing resulted in chromatograms with no evidence of mixed 
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symbiont populations within individuals (data not shown). Individuals of I. nautilei yielded six 

unique sequences that are at least 99.5% identical to one another, while B. brevior individuals 

yielded three unique sequences that are at least 98.8% identical to one another. Bayesian 

phylogenetic analysis (Fig.4.2) showed that the experimental B. brevior symbiont sequences fell in a 

well-supported clade consisting of symbionts from Bathymodiolus mussels and Calyptogena clams and 

a few free-living marine bacteria. Experimental I. nautilei symbiont sequences fell in a well-

supported clade of I. nautilei symbionts from the Lau basin and other hydrothermal vent regions. 
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!
Figure 4.2: Bayesian inference phylogeny of γ-proteobacterial 16S rRNA gene sequences with β-proteobacterial outgroup. The 
symbionts of B. brevior and I. nautilei from all incubations are shown in bold with the number of individuals yielding that sequence 
indicated in brackets. Accession numbers are shown in parentheses. Posterior probabilities are indicated above the nodes if >0.7. 
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Sulfur metabolism and carbon fixation in rate experiments 

 All three symbioses demonstrated net sulfide and thiosulfate uptake (or oxidation; Table 

4.1). Though seawater sulfur concentrations were depleted by the animals during the incubations 

(relative to the control vessel), 

measurable concentrations of sulfide 

and thiosulfate were detected in the 

vessel effluent during all 

experiments, suggesting that sulfur 

compounds did not become limiting 

in the experiments (sulfur limitation 

would prohibit the determination of 

mass-specific sulfur uptake rates). 

Average mass-specific net sulfide 

oxidation rates were comparable 

among the three genera at these experimental conditions (Fig.4.3a). The average mass-specific 

net thiosulfate oxidation rates varied more among the three genera, with I. nautilei having almost 

twice the average rate of Alviniconcha (Fig.4.3b). Additionally, net thiosulfate oxidation rates 

fluctuated more widely over the duration of the experiment than did net sulfide oxidation rates 

(Fig.4.3a,b). Other than the provided sulfur species, no sulfur compounds were detected the 

effluent of the three experiments, indicating that sulfur excretion did not occur at these 

conditions.  
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Figure 4.3: Average (±S.D.) mass specific net sulfur oxidation 
rates (μmoles of sulfur per gram of wet gill tissue per hour) during 
the sulfide (a) and thiosulfate (b) rate experiments for Alviniconcha 
(△), B. brevior (☐), and I. nautilei (◇).  
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 Carbon incorporation (or fixation) was stimulated in the gills of individuals from all three 

symbiotic genera when provided sulfide, but only in Alviniconcha and I. nautilei individuals when 

given thiosulfate (Fig.4.4, Fig.S4.3). When supplied sulfide, carbon incorporation rates among the 

genera did not differ significantly from one another (Kruskal-Wallis, p=0.424) (Fig.4.4b). Among 

all three experiments, the greatest rates of carbon fixation occurred in I. nautilei individuals 

supplied thiosulfate (Fig.4.4c), though I. nautilei did not differ significantly from Alviniconcha 

individuals in that experiment (Mann-Whitney U, p=0.114). Carbon fixation was not stimulated 

in Alviniconcha and I. nautilei individuals in the no sulfur (control) experiments, though minor 

carbon incorporation was detected in two of the four B. brevior individuals.  
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Figure 4.4: Individual mass-specific carbon incorporation rates (μmoles of 13C per gram of wet gill tissue per 
hour) for Alviniconcha (A), I. nautilei (I), and B. brevior (B) during the no sulfur (a), sulfide (b), and thiosulfate (c) rate 
experiments. 
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Sulfur metabolism and carbon fixation during exposure treatments 

 Both sulfide and thiosulfate concentrations were depleted in the effluents of the 

experimental aquaria relative to the input water in their respective exposure treatments (Table 

4.2). As with the rate experiments, measurable concentrations of sulfide and thiosulfate were 

detected in the experimental effluent in their respective treatments, indicating that the symbioses 

did not completely exhaust these compounds in the aquaria. Mass-specific rates of uptake 

(oxidation) calculated relative to the input water were comparable among treatments, though the 

average rate of sulfide oxidation was greater than the average rate of thiosulfate oxidation for all 

three genera (Table 4.2). Sustained sulfur excretion was observed throughout the duration of the 

sulfide treatment, but not during the thiosulfate treatment (Table 4.2). 
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 Alviniconcha and I. nautilei individuals from both the sulfide and thiosulfate exposure 

treatments incorporated carbon (Fig.4.5a,c,d,f; Fig.S4.3). No carbon incorporation was observed 

by B. brevior in the sulfide treatment (Fig.4.5b, Fig.S4.3), though, two of the six B. brevior 

individuals from the thiosulfate exposure treatment incorporated carbon (Fig.4.5e, Fig. S4.3).  

In both treatments, carbon 

incorporation rates were greatly variable 

but likely related to substrate limitation 

in the aquaria. Animals positioned in the 

aquaria closest to the input of water 

generally had the highest carbon fixation 

rates, though this trend is more 

pronounced in the sulfide treatment 

then the thiosulfate treatment. 

Additionally, individuals from these 

treatments demonstrated the highest 

rates of carbon fixation among all of the 

animals in either the rate experiments or 

exposure treatments. Alviniconcha and B. 

brevior individuals from the thiosulfate 

exposure treatment showed the highest 

rates of carbon fixation among all 

individuals of their genus. Additionally, 

an individual from the sulfide exposure 
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Figure 4.5 Individual mass-specific carbon incorporation rates 
(μmoles of 13C per gram of wet gill tissue per hour) during the 
exposure treatments. Sulfide exposure treatment with Alviniconcha 
(a), B. brevior (b), and I. nautilei (c); thiosulfate exposure treatment 
with Alviniconcha (d), B. brevior (e), and I. nautilei (f). Black symbols 
indicate Alviniconcha hosting ε-proteobacterial symbionts. 
Individuals are shown according to their relative position in the 
HPRS aquaria. 
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treatment had the highest carbon fixation rate for any I. nautilei.  

 

Discussion   

The significance of thiosulfate oxidation for hydrothermal vent symbioses 

 Here, we demonstrated, for the first time, that exogenous thiosulfate drove carbon 

fixation in intact symbioses between vent animals and intracellular symbionts. This has only 

previously been tested in the intact vent tubeworm Riftia pachyptila, which does not oxidize 

thiosulfate (and carbon fixation was not measured; (Wilmot & Vetter 1990)). In vitro studies of the 

intracellular symbionts of Bathymodiolus mussels and Calyptogena clams show that they can support 

carbon fixation with thiosulfate oxidation (Belkin et al. 1986; Wilmot & Vetter 1990; Fisher et al. 

1987; Childress et al. 1991; Nelson et al. 1995). However, since many animals produce 

thiosulfate from sulfide as a detoxification mechanism (Grieshaber & Völkel 1998), these 

experiments left it ambiguous whether these symbionts were only able to utilize endogenous 

thiosulfate produced by their host, or if the intact symbioses could take up and use thiosulfate 

from their surroundings. Our results demonstrated that these three mollusc symbioses were 

clearly able to support carbon fixation through the uptake of exogenous thiosulfate. 

 This discovery, along with previous work showing thiosulfate-based carbon fixation in the 

epibionts of vent crustaceans (Watsuji et al. 2012; Watsuji et al. 2010; Polz et al. 1998; Ponsard et 

al. 2012), expands our understanding the many ways in which vent symbioses can derive energy 

from chemical reductants. Sulfide oxidation is often considered the main driver of primary 

productivity by chemoautotrophs at these habitats (Amend et al. 2011). However, with respect to 

standard Gibbs free energies, the complete oxidation of thiosulfate with oxygen is comparable to 

the complete oxidation of HS- (-738.7 and -732.6 kJ mol substrate-1, respectively) (Kelly 1999). 

Moreover, in our experiments, individual, thiosulfate-dependent carbon fixation rates often met 
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or exceeded individual mass-specific rates with approximately the same concentration of sulfide. 

Furthermore, thiosulfate is non-toxic and may be readily concentrated within the host’s or 

symbionts’ cells, leading to higher Gibbs energies resulting from an elevated concentration of the 

substrate. Thus, thiosulfate has the potential to be an important energy source for some 

hydrothermal vent symbioses, though the extent to which the ELSC symbioses (or others) 

selectively use thiosulfate over sulfide remains to be determined.  

 The potential ecological importance of thiosulfate-fueled carbon fixation is emphasized 

by the results of our experiment without sulfur, which underscores that sustained access to 

exogenous reductants is necessary for the productivity of these symbioses. It has long been 

hypothesized that many vent symbioses can utilize stored, intracellular elemental sulfur granules 

when exogenous reductants are absent (Vetter 1985; Stein et al. 1988). However, we 

demonstrated that the absence of reduced sulfur compounds results in a cessation of carbon 

fixation in the ELSC symbioses. Instead of depending on stored compounds, flexible use of 

multiple sulfur compounds may enable vent symbioses to contend with the dynamic conditions at 

hydrothermal vents. Given the variability in access to vent fluid that they are likely to experience 

due to temporal and spatial fluid dynamics, the ability to use multiple reductants (e.g., both 

sulfide and thiosulfate) may relieve the energy limitation that could occur if a symbiosis was 

exclusively dependent on energy sources found only in venting fluid.  

 

Sulfur oxidation by the mollusc symbioses at the ELSC 

 Our experiments showed that all three tested symbiotic mollusc genera used both sulfide 

and thiosulfate to fuel carbon fixation, though their capacities for these metabolisms varied. The 

specific rates of sulfide oxidation we report are comparable to the previous findings of Henry et al. 

(2008). Our mass-specific sulfide oxidation rates were similar in magnitude to those reported with 
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conditions analogous to our incubations, though our I. nautilei mass-specific carbon fixation rates 

were higher than previously reported. Since their rates are based on the net uptake of carbon 

dioxide, high rates of respiration by I. nautilei may have masked higher rates of carbon fixation in 

their experiments. Our isotopic labeling experiments suggest that I. nautilei may be as productive 

as Alviniconcha at our experimental conditions, e.g., when sulfide and oxygen are replete.  

 Previous work on the distribution of ELSC symbioses has suggested that the use of 

thiosulfate by the mussel B. brevior may play a role in its distribution. In particular, it was 

hypothesized that thiosulfate may be especially important for B. brevior physiological intolerance 

to high sulfide concentrations or temperature may prevent it from inhabiting areas of high fluid 

exposure (Waite et al. 2008). Consequently, thiosulfate oxidation may enable exploitation of 

habitat away from the venting fluid, where sulfide concentrations are typically low to 

undetectable but thiosulfate concentrations are elevated. While we observed that B. brevior can 

indeed use thiosulfate to power carbon fixation, only two of the nine total individuals tested 

incorporated the tracer (Fig.4.3,4.4), suggesting an inefficient coupling between the metabolisms. 

Therefore, determining the relative significance of this energy source to B. brevior’s overall 

productivity will require further work.  

We did, however, observe relatively high mass-specific rates of thiosulfate-dependent 

carbon fixation in both I. nautilei and Alviniconcha. These snails typically live in closer proximity to 

the venting source, where sulfide is more abundant and thiosulfate concentrations are low 

(Podowski et al. 2010; Waite et al. 2008; Gartman et al. 2011). Regardless, the data clearly reveal 

a robust coupling between thiosulfate oxidation and carbon fixation in I. nautilei and Alviniconcha. 

Consequently, the observation that I. nautilei and Alviniconcha commonly inhabit regions of low 

thiosulfate may simply reflect removal of thiosulfate via oxidation. This supposition is supported 
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by the observed increase in thiosulfate concentrations when Alviniconcha and I. nautilei were 

removed from snail and mussel aggregations in situ (Mullaugh et al. 2008).  

   

Variability in carbon fixation rate and substrate limitation in the aquaria 

 Use of an isotopic label to assess carbon fixation rates among the population of 

individuals in each exposure treatment revealed striking patterns in the carbon fixation rates that 

likely reflect substrate limitation in the aquaria seawater. Most previous experiments measuring 

the rates of carbon fixation by intact hydrothermal vent symbioses have been performed on low 

numbers of individuals, most often one at a time (Girguis & Childress 2006; Childress et al. 1991; 

Wilmot & Vetter 1990; Henry et al. 2008), and used the resulting change in chemical 

composition and the total biomass to estimate mass-specific metabolic rates. Here, the use of 

stable isotopically labeled inorganic carbon in our aquarium seawater allowed us to examine the 

variability in productivity among individuals; in our exposure treatments, we interrogated the 

mass-specific rates of carbon fixation for between five and ten individuals per genus. We found 

that the most productive animals in each aquarium likely accounted for much of the sulfur 

oxidation occurring in each during the exposure treatments. Using the molar ratios of 6.21 and 

6.64 for the amount of carbon fixed per sulfide or thiosulfate (Kelly 1999) with an assumed 10% 

efficiency of energy conservation, we calculated the predicted rate of sulfur oxidation by the most 

productive animals in each aquarium from their individual rates of carbon fixation. In the sulfide 

exposure treatment, sulfide oxidation by the two most productive individuals may have 

accounted for 27% and 51% of the total oxidation in the Alviniconcha and I. nautilei aquaria, 

respectively. In the thiosulfate exposure treatment, oxidation by the productive individuals (all 

other individuals showed no carbon incorporation) may have accounted for 100% and 64% 

(Alviniconcha and I. nautilei, respectively) of the total oxidation in each aquarium.  
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 The striking disparity in mass-specific carbon fixation rates among individuals was 

unlikely to be linked to biological diversity (e.g., differences in symbiont populations), but 

alternatively may be due to individual differences in access to resources in the aquaria. Based on 

16S rRNA gene sequences, all I. nautilei and B. brevior symbionts were very closely related. Except 

for some symbionts in the sulfide exposure treatment and no sulfur rate experiment, the 

symbionts of the Alviniconcha in our incubations were from one phylotype (γ-1). Instead, we 

discovered that the individuals closest to the input of water incorporated the greatest amount of 

carbon, and those near the outflow showed no measurable carbon incorporation, indicating that 

the most productive individuals near the input were limiting some substrate for those 

downstream. This pattern was clearly seen in the exposure treatments (Fig.4.4). Because both 

sulfur and oxygen were not completely depleted in the effluent, it is unclear which of these 

substrates, or any other substrate for that matter, was restricting the productivity of the 

symbioses. Moreover, it is plausible that waste-products from the more productive individuals 

may have inhibited productivity by those located downstream, though it is unclear what those 

waste-products might be (the predominant waste-products of chemoautotrophic sulfide oxidation 

are oxidized sulfur compounds and hydrogen ions) (Girguis, Childress, Freytag, et al. 2002; 

Girguis & Childress 1998). 

Our results have important implications for our understanding of total productivity of 

assemblages of these organisms in their habitats, particularly if the observed variability in carbon 

fixation rates is due to sulfur limitation. Large communities of these symbioses are often found 

piled around hydrothermal vent orifices, often two to seven animals deep (C. Fisher, pers. 

comm.). In these piles, an individual’s access to sulfide (or any vent-derived substrate) is governed 

by the confluence of end-member concentration, fluid flow rate, and animal/microbial uptake 

rate. In situ populations are likely experiencing gradients in vent-derived geochemistry resulting 
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from the net effect of biotic and abiotic factors. Our data suggest that competition for vent-

derived resources, which is tied to spatial position in the fluid flow relative other individuals, may 

be significant for these symbioses. Interestingly, these results also provide another perspective 

from which to view thiosulfate-driven autotrophy in these ecosystems. At the tops of the 

assemblages, where vent-derived reductants may be depleted by the activity of those below, use 

of an energy source that is not sourced from venting fluid could sustain productivity. Therefore, 

metabolic flexibility has the potential to relieve competition for vent-derived reductants, both 

within and between genera. 

 

Excretion of sulfur compounds 

 Though links between the distribution of particular ELSC symbioses and elevated 

concentrations of partially oxidized sulfur may indicate a preference for that particular 

geochemical niche, it is also possible that such correlation may be the result from excretion of 

that compound by the associated symbioses. To address the potential for sulfur excretion by the 

ELSC symbioses, we measured the production of partially oxidized sulfur in our incubations. 

Our sulfide exposure treatment showed that these symbioses have the potential to contribute to 

the partially oxidized sulfur pools in their environment. During the ~350 μM sulfide exposure 

treatment, the snail I. nautilei released polysulfides (as previously described in Gartman et al., 

(2011). Additionally, both Alviniconcha and B. brevior excreted thiosulfate, though the mass-specific 

rate was nine times higher in Alviniconcha. Since our incubations were performed on intact 

symbioses, we are unable to discern which partner, host or symbiont, is the source of the excreted 

sulfur. Many invertebrates, even those without chemoautotrophic symbionts, detoxify sulfide via 

oxidation to thiosulfate with their mitochondria (Grieshaber & Völkel 1998). Because we did not 

observe sulfur excretion in the other incubation with a lower sulfide concentration (i.e., the rate 
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experiment with a ~105 μM sulfide), this could be the case. Additionally, B. brevior did not fix 

carbon when exposed to ~350 μM sulfide, though sulfide oxidation was observed. The sulfide 

concentration in this treatment was much higher than what B. brevior would experience in situ 

(Podowski et al. 2009; Podowski et al. 2010; Sen et al. 2013), thus it is possible that it was 

oxidizing sulfide to thiosulfate as a detoxification mechanism.  

 It is also conceivable that the excreted partially oxidized sulfur was the product of sulfide 

oxidation by the symbionts of these animals. Experiments with the sulfur-oxidizing isolate 

Thiobacillus thioparus showed that both thiosulfate and polysulfides can be produced via sulfide 

oxidation when oxygen is limiting (van den Ende & Gemerden 1993). Though >5 μM oxygen 

was always detected in the effluent of the aquaria (data not shown), respiration by the high 

biomass in the exposure treatment could have caused low concentrations in the aquaria, resulting 

in high sulfide to oxygen ratios. In addition, the symbionts of the vent tubeworm Riftia pachyptila 

produce polysulfides from the oxidation of sulfide in vitro (Wilmot & Vetter 1990), though this is 

thought to be a normal intermediate during the production of sulfur granules as it is with other 

sulfide oxidizers (Dahl & Prange 2006).  

 Regardless of the partner of origin, net excretion of partially oxidized sulfur by these 

symbioses reveals a biological source for these compounds in situ. High polysulfide concentrations 

are detected around I. nautilei and Alviniconcha at the ELSC, while high thiosulfate concentrations 

are found around B. brevior (Gartman et al. 2011; Waite et al. 2008; Mullaugh et al. 2008). It was 

suggested previously that these partially oxidized sulfur compounds result from the abiotic 

oxidation of sulfide in venting fluid by aqueous iron or rocky substrate, or from biological 

oxidation by the symbioses. Here, we demonstrate that biological oxidation may influence the 

presence of these sulfur compounds, ultimately affecting the local sulfur regime. Since both free-

living microbes and vent symbioses can use these compounds for autotrophy, biological sulfur 
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transformations have the potential to affect the distribution and activities of many organisms 

within these ecosystems.  

 

Conclusions 

 The extent to which vent symbioses can use exogenous thiosulfate to drive autotrophy 

remains unknown, though genomic analyses of the symbionts of vent organisms has revealed that 

many possess the metabolic pathway for the oxidation of sulfur, including thiosulfate (Kleiner et 

al. 2012; Newton et al. 2007; Kuwahara et al. 2007; Robidart et al. 2008; Nakagawa et al. 2013; 

Gardebrecht et al. 2011). Thiosulfate concentrations at vent habitats have only been extensively 

surveyed at the ELSC. However, given the rapid abiotic oxidation of sulfide to thiosulfate in the 

presence of certain metals (Santos Afonso & Stumm 1992; Pyzik & Sommer 1981), as well as the 

potential for some symbioses to contribute to pools of partially oxidized sulfur, it is likely that it is 

also present in other systems. Thiosulfate-fueled autotrophy has ecological benefits, particularly 

for symbioses that cannot be near the high concentrations of reductants in venting fluid, either 

due to physiological intolerance to high temperatures or toxic vent chemicals, or because of 

competitive exclusion. Additionally, flexible use of multiple reductants may help vent symbioses 

cope with periods of low exposure to reductants in vent fluid that result from the temporal and 

spatial inconsistency of these habitats. Though we showed that access to particular sulfur 

compounds differentially affects the productivity of these symbioses, the ability of all three, 

coexisting genera to fuel autotrophy with both sulfide and thiosulfate indicates that metabolic 

flexibility has important advantages in these ecosystems.  

 Altogether, these experiments broaden our understanding of sulfur metabolism in animal-

bacterial symbioses at hydrothermal vents. Though it has long been expected that vent symbioses 

can alter the local geochemical regime through the uptake and oxidation of sulfide, the observed 



! 68 

excretion of partially oxidized sulfur suggests a new mode for these associations to affect their 

ecosystem. Since the discovery of hydrothermal vents, sulfide has been known to play a 

fundamental role in structuring and supporting vent assemblages (Fisher et al. 2007); here, our 

data suggests that the influence of vent symbioses on sulfur biogeochemical cycling extends 

beyond the acquisition and oxidation of sulfide, and the resulting production of sulfate. Rather, 

these symbioses may be influencing the availability of partially oxidized sulfur compounds that 

are of energetic value to the free-living microbes that live in these ecosystems. While tubeworm 

symbioses have previously been described as ecosystems engineers for the role they play in 

shaping the physical structure of their environment, these data extend that role and illustrate the 

extent to which they might govern the local sulfur regime. 
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Intracellular Oceanospirillales among the chemosynthetic symbionts  

of the hydrothermal vent snail Alviniconcha: secondary symbionts or parasites? 
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Summary 

 Associations between bacteria from the γ-proteobacterial order Oceanospirillales and 

invertebrates are increasingly recognized as common in marine habitats. Members of the 

Oceanospirillales exhibit a diversity of interactions with their various hosts, ranging from the 

catabolism of complex compounds that benefit host growth to attacking and bursting host nuclei. 

Here, we describe the association between a novel, intracellular Oceanospirillales phylotype and 

the hydrothermal vent snail Alviniconcha. Alviniconcha typically harbor chemoautotrophic γ- or ε-

proteobacterial symbionts, but we also observed (via fluorescence in situ hybridization and 

transmission electron microscopy) this Alviniconcha Oceanospirillales phylotype (AOP) among the 

dense populations of proteobacterial symbionts that Alviniconcha host inside their gill cells. 

Notably, AOP were separately contained in membrane-bound vacuoles. Using AO-specific 

quantitative PCR, we surveyed 283 Alviniconcha individuals, and found that AOP occurred more 

frequently and at greater abundance in Alviniconcha hosting γ-proteobacterial symbionts. 

However, the population size of AOP was always minor relative to those of the canonical 

symbionts. The high incidence of AOP in γ-proteobacteria hosting Alviniconcha implies that it 

could play a significant ecological role for these snails either as a host parasite or as an additional 

symbiont with unknown physiological capacities.   

 

Introduction 

 In recent years, lineages from the γ-proteobacterial order Oceanospirillales have emerged 

as widespread associates of marine invertebrates. In shallow-water habitats, Oceanospirillales are 

common and even dominant members of the tissue and mucus-associated microbiota of 

temperate and tropical corals (Bourne et al., 2013; Bayer, Arif, et al., 2013; Bayer, Neave, et al., 

2013; La Rivière et al., 2013; Sunagawa et al., 2010; Chen et al., 2013) and sponges (Bourne et 



! 76 

al., 2013; Nishijima et al., 2013; Bayer, Arif, et al., 2013; Kennedy et al., 2008; Bayer, Neave, et 

al., 2013; Flemer et al., 2011; La Rivière et al., 2013; Sunagawa et al., 2010; Chen et al., 2013), 

and they have been detected in the gills of commercially important shellfish (Costa et al., 2012), 

as well as invasive oysters (Zurel et al., 2011). In deep-water habitats, Oceanospirillales have been 

found in association with hydrothermal vent and hydrocarbon seep bivalves (Jensen et al., 2010; 

Zielinski et al., 2009), polychaete worms and gastropods from whale carcasses (Johnson et al., 

2010; Goffredi et al., 2005; Verna et al., 2010). In almost all cases, the nature of these animal-

bacterial relationships remains undetermined. Cultivated members of the Oceanospirillales are 

heterotrophs known for their abilities to degrade complex organic compounds (Garrity et al., 

2005). Thus, hypotheses about the function of animal-associated Oceanospirillales have ranged 

from parasitic consumers of host tissue to beneficial symbionts that assist in the metabolism or 

cycling of organic compounds.  

 Two well-characterized examples from the deep-sea show that Oceanospirillales can be 

either beneficial or harmful to their hosts. In bone-eating Osedax worms found at whale-falls, 

Oceanospirillales are intracellular symbionts thought to assist in the digestion of bone-derived 

organic compounds (Goffredi et al., 2005). In contrast, bacteria from another lineage of 

Oceanospirillales are parasites of Bathymodiolus mussels from hydrothermal vent and cold seeps, 

proliferating in and bursting host nuclei (Zielinski et al., 2009). These cases demonstrate the 

range of interactions that Oceanospirillales can mediate with marine invertebrates.  

 Here, we report a novel Oceanospirillales phylotype discovered in a general survey of the 

bacterial community associated with gill tissue of the hydrothermal vent snail Alviniconcha. 

Alviniconcha are dominant members of the animal communities at hydrothermal vents in the 

south-western Pacific and Indian Ocean (Desbruyeres et al., 1994; Podowski et al., 2009; 2010; 

Van Dover et al., 2001; Ramirez-Llodra et al., 2007). This symbiotic genus is comprised of at 
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least five lineages (likely species) that are supported by the productivity of chemoautotrophic 

bacterial symbionts, which utilize the reductants in emitted fluid for the energy to fix inorganic 

carbon (Henry et al., 2008; Y. Suzuki, Sasaki, M. Suzuki, Tsuchida, et al., 2005; Y. Suzuki, 

Sasaki, M. Suzuki, Nogi, et al., 2005; Y. Suzuki et al., 2006; Sanders et al., 2013). Dense 

populations of the bacterial symbionts reside intracellularly in Alviniconcha gill tissue and provide 

the bulk of host nutrition (Y. Suzuki, Sasaki, M. Suzuki, Tsuchida, et al., 2005; Y. Suzuki, Sasaki, 

M. Suzuki, Nogi, et al., 2005). Alviniconcha snails are typically dominated by one γ- or ε-

proteobacterial phylotype according to their species, although individuals from one of these 

species harbor relatively equal populations of two distinct γ-proteobacterial phylotypes (Beinart et 

al., 2012). On the basis of molecular surveys and microscopic examination, we describe the 

phylogenetic relationship of a novel, Alviniconcha-associated Oceanospirillales phylotype to other 

lineages in this order, localize it inside the gill cells of Alviniconcha, and report its frequency and 

abundance across a population of Alviniconcha from hydrothermal vents at the Eastern Lau 

Spreading Center. 

 

Results and Discussion 

Identification and phylogeny of an Oceanospirillales phylotype in Alviniconcha  

 Alviniconcha specimens were obtained from four Lau Basin hydrothermal vent fields, which 

are separated by 10s of kilometers along the approximately 300 kilometer north-south Eastern 

Lau Spreading Center (ELSC). The bacterial communities associated with the gills of ELSC 

Alviniconcha were surveyed by amplifying and sequencing 16S rRNA gene sequences from the 

pooled tissue DNA of 30 individuals recovered from two vent fields (as described in Beinart et al., 

2012). While sequences with affiliation to previously known Alviniconcha ε- and γ-proteobacterial 

symbiont phylotypes dominated the survey (Beinart et al., 2012), we also observed a novel 
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phylotype from the γ-proteobacterial order Oceanospirillales (hereafter referred to as ‘AOP’ for 

‘Alviniconcha Oceanospirillales phylotype’). To augment the clone library, we used BLASTN 

(Altschul et al., 1990) to search for AOP in 16S rRNA pyrosequence libraries from four 

Alviniconcha individuals (Sanders et al., 2013). This revealed only one matching operational 

taxonomic unit (OTU) that comprised of sequences with ≥ 97% identity to our AOP sequence. 

One other OTU was taxonomically characterized as an Oceanospirillales, but only comprised of 

two, comparatively short sequence reads (94% identity to the AOP sequence).     

 To ascertain the relationship of AOP to other Oceanospirillales (and, more broadly, the 

γ-proteobacteria), Bayesian inference was used to construct a phylogeny of 16S rRNA genes 

(Fig.5.1). AOP falls within a well-supported clade of Oceanospirillales that have all, with the 

exception of one clone, been found in association with diverse marine invertebrates from various 

habitats. The closest relatives of AOP are clones recovered from tropical, shallow-water corals 

from the Caribbean (Sunagawa et al., 2010) and the Great Barrier Reef (Bourne and Munn, 

2005). The few cultivated representatives from this clade are members of the genera 

Endozoicomonas and Spongiobacter, which have been isolated from sea slugs (Kurahashi and Yokota, 

2007), corals (Bayer, Arif, et al., 2013; Yang et al., 2010; Raina et al., 2009), and sponges 

(Nishijima et al., 2013; Flemer et al., 2011). Though there is increasing evidence that this clade of 

Oceanospirillales is specific to marine invertebrates, the relationship between its members and 

their animal hosts, as well as their location in or on host tissue, is, as yet, uncharacterized. A 

notable exception is “Candidatus Endonucleobacter bathymodiolii”, a parasite of hydrothermal 

vent mussels that has been shown to infect host nuclei, multiply and eventually burst from the 

organelle (Zielinski et al., 2009). The AOP 16S rRNA gene has 95% sequence identity to a “Ca. 

E. bathymodiolii” 16S rRNA gene sequence recovered from a Gulf of Mexico cold seep mussel. 



 

Fi
gu

re
 5

.1
: A

 B
ay

es
ia

n 
in

fe
re

nc
e 

ph
yl

og
en

y 
of

 1
6S

 rR
N

A
 g

en
e 

se
qu

en
ce

s s
ho

w
in

g 
th

e 
re

la
tio

ns
hi

p 
of

 A
O

P 
(in

di
ca

te
d 

w
ith

 a
n 

ar
ro

w
) 

to
 o

th
er

 O
ce

an
os

pi
ril

la
le

s, 
th

e 
ch

em
oa

ut
ot

ro
ph

ic
 sy

m
bi

on
ts 

of
 A

lvi
ni

co
nc

ha
 a

nd
 o

th
er

 a
ni

m
al

s, 
an

d 
th

e 
se

qu
en

ce
s f

ro
m

 th
e 

ou
t-g

ro
up

 β
-

pr
ot

eo
ba

ct
er

ia
. A

ll 
Al

vin
ico

nc
ha

-a
ss

oc
ia

te
d 

se
qu

en
ce

s a
re

 s
ho

w
n 

in
 b

ol
d.

 G
ra

y 
hi

gh
lig

ht
in

g 
in

di
ca

te
s 

th
at

 th
e 

cl
on

e 
or

 s
tr

ai
n 

ha
s 

be
en

 
fo

un
d 

in
 a

ss
oc

ia
tio

n 
w

ith
 a

 m
ar

in
e 

in
ve

rt
eb

ra
te

. P
os

te
rio

r p
ro

ba
bi

lit
ie

s a
re

 in
di

ca
te

d 
ab

ov
e 

th
e 

no
de

s i
f >

0.
7.

 

79 



! 80 

Localization of AOP in Alviniconcha gill tissue 

 To localize AOP in Alviniconcha gill tissue, we examined Alviniconcha individuals via 

fluorescence in situ hybridization (FISH) using universal 

bacterial and AOP-specific probes targeting 16S rRNA 

(Fig.5.2), as well as used transmission electron 

microscopy (TEM) to describe its morphology in 

association with Alviniconcha gills (Fig.5.3, 5.4). Three 

animals hosting γ-proteobacterial symbionts and three 

animals hosting ε-proteobacterial symbionts were 

selected for these analyses.  

 

Figure 5.2: Identification of AOP (yellow) and all 
bacteria (red), including the chemoautotrophic 
symbionts, in Alviniconcha gill tissue with fluorescence in 
situ hybridization. Additionally, DNA-containing 
organelles or cells were stained with DAPI and shown 
in blue. (A) Gill filaments of Alviniconcha hosting γ-
proteobacterial symbionts with AOP-containing 
vacuoles distributed sporadically. (B) A typical AOP 
vacuole. (C) Gill filament of Alviniconcha hosting ε-
proteobacterial symbionts, with no AOP-containing 
vacuoles. All scale bars are shown in μm.    
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Figure 5.3: Transmission electron micrographs of the γ-proteobacterial symbionts of 
Alviniconcha. (A) One side of a gill filament, showing bacteriocytes, but no suspected AOP-
containing vacuoles. n, host nuclei; s, symbiont cells. (B), (C) and (D) show the two symbiont 
morphotypes, distinguished by white and black arrows. All scale bars are shown in μm.   

  

 Examination of Alviniconcha gills using FISH confirmed the presence of AOP inside host 

cells, though there was no evidence of their presence in host nuclei (Fig.5.2a,b). Via FISH, AOP 

was found to be present only in the gills of the γ-proteobacteria-hosting snails and not in the ε-

hosting individuals (Fig.5.2a,c). We consistently found AOP populations localized in vacuoles, 

approximately 10 - 40 μm in diameter, which were sporadically distributed throughout the gill 

filaments in symbiont-containing cells (bacteriocytes). Unlike the filamentous and rod-shaped 

symbionts that dominate gill filaments, the AOP-cells inside these vacuoles appear to be coccoid. 

The AOP-containing vacuoles were never observed in symbiont-free cells near the dorsal ends of 

the filaments where they attach to the snail’s mantle (not shown). This contrasts sharply with the 

exclusive infection of “Ca. E. bathymodiolii” in the nuclei of symbiont-free intercalary cells in the 

gills of their mussel hosts (Zielinski et al., 2009).   
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 We also used TEM to examine the structure and morphology of the bacteria inhabiting 

Alviniconcha gill tissue, revealing membrane-bound vacuoles likely containing AOP. Inspection of 

the gill tissue of a γ-proteobacteria-hosting individual showed that gram-negative, filamentous 

and rod-shaped bacterial symbionts were densely packed at the apical ends of the cells (Fig.5.3a), 

consistent with previous descriptions of Alviniconcha gill morphology (Endow and Ohta, 1989; 

Stein et al., 1988; Urakawa et al., 2005). Our examination clearly showed that these canonical 

symbionts consist of two morphotypes (Fig.5.3b,c,d), which are either free in the host cytoplasm 

or contained within individual vacuoles (challenges with preservation makes it difficult to 

distinguish their precise position). These two distinct morphologies very likely represent the two 

γ-proteobacterial symbiont phylotypes, though they could also reflect morphological variation 

within a single symbiont phylotype. As we observed via FISH, we found vacuoles containing a 

third bacterial morphotype–likely the AOP 

phylotype- distributed sporadically throughout 

the gill tissue (Fig.5.4). These membrane-bound 

compartments are full of small (~1 μm), coccoid, 

gram-negative bacterial cells that contain 

electron-dense particles, that are somewhat 

similar to those observed in “Ca. E. 

bathymodiolii” via TEM (Zielinski et al., 2009).  

 

Figure 5.4: A transmission electron micrograph of a suspected AOP vacuole inside a 
bacteriocyte of a γ-proteobacteria-hosting Alviniconcha. Inset shows a single cell inside the 
suspected AOP vacuole. All scale bars are shown in μm. 
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Distribution and abundance of AOP in ELSC Alviniconcha 

 Because our microscopic examination of AOP in gill tissue suggested specificity for 

Alviniconcha types hosting γ-proteobacteria, we used quantitative PCR (qPCR) to examine the 

distribution and abundance of AOP in 283 Alviniconcha from across four vent fields at the ELSC 

(Supporting Methods). We had previously genotyped these Alviniconcha host individuals by 

sequencing their mitochondrial cytochrome-c oxidase gene and quantified the proportions of the 

three chemoautotrophic symbiont phylotypes in each using qPCR of their 16S rRNA genes 

(Beinart et al., 2012). This survey demonstrated that there are three genetically distinct 

Alviniconcha host types (likely undescribed species), which form specific associations with three 

proteobacterial phylotypes. Host types I and III mainly associate with two γ-proteobacterial 

phylotypes (γ-1, γ-Lau) and host type II primarily associates with an ε-proteobacterial phylotype 

(Beinart et al., 2012). Among the three host types, each individual snail is typically dominated by 

either γ- or ε-proteobacterial symbionts, with only one of the three phylotypes representing 

>99% of the detected symbiont 16S rRNA genes in a single individual. Minor, co-occurring 

populations of one of the other phylotypes are sometimes detected, and a small number of γ-

proteobacteria-hosting individuals associate with equal proportions of the two γ-proteobacterial 

phylotypes.  

 Using qPCR primers targeting AOP’s 16S rRNA gene (Supporting Methods), we 

determined the proportion of AOP relative to the canonical symbiont populations within each 

snail, as well as their prevalence according to host type (Tables S5.1, S5.2). AOP was detected in 

63% of the surveyed Alviniconcha individuals but consistently represented only a minor proportion 

of the total detected bacterial 16S rRNA genes (0-36%, median 0.53%) (Table S5.1, S5.2). As 

seen with FISH, the prevalence of AOP differed between Alviniconcha dominated by ε- and γ-

proteobacterial symbionts. In Alviniconcha hosting primarily γ-proteobacteria of either or both 
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phylotypes (host type I and III), AOP was detected in the large majority (96%) of individuals. In 

contrast, AOP was detected in only 5 of the 102 Alviniconcha individuals hosting primarily ε-

proteobacteria (mainly host type II, a few host type I).  

 Along with a greater frequency, we also found a greater relative abundance of AOP 16S 

rRNA genes in Alviniconcha that host γ-proteobacteria (Mann-Whitney U p<0.0001, SPSS v20). 

Similarly, our search of 16S rRNA gene pyrosequences from Alviniconcha hosting γ-  or ε-

proteobacteria (Sanders et al, 2013) revealed that sequences allied to AOP were only detected in 

Alviniconcha that host γ-proteobacteria (0.3 and 2% of the sequence reads). No sequences classified 

as Oceanospirillales were detected in the Alviniconcha hosting ε-proteobacteria.  Additionally, 

when we compared the proportion of AOP 16S rRNA genes among Alviniconcha dominated by 

each symbiont phylotype, excluding the 8 individuals with approximately equal proportions of 

the two γ-proteobacterial phylotypes, we also observed a significant difference (data not shown; 

Kruskal-Wallis p<0.0001, SPSS v20). Individuals dominated by either the γ-1 or the γ-Lau 

phylotypes had significantly greater proportions of AOP than individuals dominated by the ε-

proteobacterial symbiont (Post-hoc Mann-Whitney U p<0.0001 for both, Bonferroni corrected 

α=0.0167, SPSS v20) but were not significantly different than one another (Mann-Whitney U 

p=0.027, Bonferroni corrected α=0.0167, SPSS v20). Even within the single host type (III) that 

can be dominated by either of the γ-proteobacterial phylotypes, we found no significant 

difference in AOP proportion between individuals dominated by the γ-1 or γ-Lau (Mann-

Whitney U p=0.352, SPSS v20).  

 These patterns demonstrated that AOP predominantly associated with Alviniconcha 

hosting γ-proteobacteria and was only rarely detected in Alviniconcha hosting ε-proteobacteria. 

This specificity was relatively consistent throughout Alviniconcha from the four ELSC vent fields 

(Table S5.3), despite the fact that γ- and ε-proteobacteria hosting Alviniconcha are conversely 
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dominant at geographically distant vent fields separated by 10s to 100s of kilometers (Beinart et 

al., 2012). For example, of the 10 ε-proteobacteria hosting individuals from ABE, a vent field that 

is inhabited by mostly γ-proteobacteria hosting Alviniconcha with typical levels of AOP, only one 

had detectable AOP. Thus, even at a vent field where most of their neighbors are hosting AOP, 

Alviniconcha hosting ε-proteobacteria still have an apparent low frequency of association. This 

indicates that geography is not structuring the frequency of AOP in the ELSC Alviniconcha 

population, but rather that biological determinants are more important.  

 Overall, the observed pattern of correspondence with the γ-proteobacterial symbionts 

implies that AOP interacts with these particular symbionts and/or has specificity for the two host 

types that associate with them. It is difficult to resolve these two options, since host and symbiont 

identity are linked. However, to address this issue, we compared the abundance of AOP among 

individuals of host type I, which can either associate with γ-proteobacterial or ε-proteobacterial 

symbionts, and found that there was no significant difference between individuals hosting the 

different symbiont classes (Mann-Whitney U p=0.092, SPSS v20). This must be interpreted with 

caution, however, since there is a large difference in sample size between host type I individuals 

hosting ε-proteobacteria (n=6) and those hosting γ-proteobacteria (n=93). With that caveat, it 

appears that host type may be more important than symbiont class in determining infection by 

the AOP.  

 

Potential Modes of Interaction between AOP and Alviniconcha 

 Here we present two possibilities that represent ends of the spectrum of animal-bacterial 

associations, from parasitic to beneficial, and consider the degree to which these data are 

consistent with both scenarios. In terms of parasitism, AOP is closely related to the intranuclear 

parasites of hydrothermal vent mussels (95% 16S rRNA gene identity).  However, we never 
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definitively observed AO in host nuclei. Even if it is not nuclear-specific, it is possible that AOP 

represents a parasite or pathogen of Alviniconcha that is contained inside a membrane-bound 

vacuole, as is common with other intracellular pathogens (Goebel and Gross, 2001; Casadevall, 

2008; Kumar and Valdivia, 2009). Alternatively, AOP may be mutualistically associated with 

Alvinivoncha. AOP appears to be lower in abundance than the canonical symbionts. As such, AOP 

may represent a minor, secondary symbiont of Alviniconcha that provides beneficial function 

directly (e.g., the breakdown of an organic compound) or indirectly (e.g., by facilitating the 

metabolism of the other symbionts). Among insects, secondary symbionts, although an order of 

magnitude lower in abundance than the primary symbionts, can confer ecologically important 

advantages for their hosts (Mira and Moran, 2002; Oliver et al., 2010). It is worth noting that 

AOP is most closely related to Endozoicomonas-like phylotypes found in association with tropical, 

shallow-water corals (Bourne and Munn, 2005; Sunagawa et al., 2010). Recent efforts have led to 

the cultivation of Endozoicomonas-like isolates from corals, and have shown that they can degrade 

dimethylsulfoniopropionate (DMSP) (Raina et al., 2009) that is produced by the algal symbionts 

of corals (Van Alstyne et al., 2008). This suggests that Endozoicomonas play an important role in 

sulfur cycling within or around the host corals. Though DMSP production is thought to be 

specific to marine algae, AOP could similarly play a role in sulfur cycling in Alviniconcha.     

 

Conclusions 

 The discovery of symbioses between chemoautotrophic bacteria and invertebrates led to 

a watershed of research on these types of associations from many habitats, with much of the focus 

on the canonical, chemoautotrophic symbionts (Dubilier et al., 2008; Cavanaugh et al., 2006). 

Throughout 40 years of research, there has been little evidence for the presence of minor 

microbial associates (i.e., microbes that form specific associations with their hosts but are present 
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in low abundance, including non-chemoautotrophs). Here, through a combination of 

phylogenetics, microscopy and qPCR surveys, we have established that AOP are minor, but 

specific and frequent, associates of Alviniconcha. While the precise nature of the interaction 

remains to be determined, the data presented herein further extends the diversity –and 

potentially the functional role- of intracellular bacteria associated with Alviniconcha. This is the 

first description of an Oceanospirillales associating with Alviniconcha or any other hydrothermal 

vent gastropod and the second description of an Oceanospirillales associating with a symbiotic, 

hydrothermal vent mollusc. With growing awareness of the significance of microbes, either as 

parasites or mutualists, to organismal health and function, investigations of minor microbial 

associates across the known diversity of invertebrate-chemoautotrophic symbioses are warranted.  

 

Experimental Procedures 

Alviniconcha collections:  

Animals were recovered with the remotely operated vehicle JASON II during expedition TM-235 

in 2009 on-board the RV Thomas G. Thompson. Upon recovery, Alviniconcha snails were placed into 

ice-cold seawater and kept at 4 °C prior to sampling. Gill tissue was excised and preserved for 

molecular and microscopic analysis of the bacterial populations associated with Alviniconcha. See 

(Beinart et al., 2012) for details of Alviniconcha collected for 16S rRNA gene sequencing and the 

quantitative PCR survey. In addition to these specimens, the gills of six other Alviniconcha were 

fixed for microscopy. The ε-proteobacterial-hosting individuals were collected from the vent field 

Tow Cam (Dive 432) on June 7, 2009. The γ-proteobacterial-hosting individuals were collected 

from the vent field ABE (Dive J2-435) on June 14, 2009.  

 

Phylogenetic Analysis 
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16S rRNA gene sequences were recovered from the pooled DNA of 30 Alviniconcha individuals 

from two vent fields (as described in Beinart et al., 2012). Briefly, the 16S rRNA gene was 

amplified using the universal bacterial primers 27F and 1492R, cloned with the TOPO TA 

cloning kit (Invitrogen Inc., Carlsbad, CA USA) and sequenced unidirectionally. BLASTN 

(Altschul et al., 1990) of all recovered sequences revealed that two of the clones held novel 16S 

rRNA gene sequences from the Order Oceanospirillales. One clone from this pair was 

bidirectionally sequenced and deposited in Genbank with accession number JX198551 and the 

other partial sequence with accession number JX206825. An alignment of 16S rRNA gene 

sequences was created with the NAST Alignment tool in GreenGenes (DeSantis, Hugenholtz et 

al. 2006), trimmed to the shortest sequence (1264 positions) with Geneious (Drummond AJ, 

Ashton B et al. 2011), then used to produce a Bayesian inference phylogeny with MrBayes 

(Altekar, Dwarkadas et al. 2004) implementing the GTR+I+G model of substitution. Three 

replicate runs of 107 generations each were performed with sampling every 103 generations and 

burn-in of 2500 samples. Quantitative and qualitative diagnostics were performed for each of the 

three runs using the Coda package in R (Plummer, Best et al. 2006), the three replicate runs were 

combined and a 50% majority rule consensus tree was created in MrBayes. 

 

Fluorescence in situ hybridization 

An oligonucleotide FISH probe (AOP 5'CCGTACTCCAGCCACCCA) targeting the AOP 16S 

rRNA gene sequences was created by modifying the FISH probe Bnix643 that was previously 

designed to target the closely related Oceanospirillales found to infect the vent mussels of the 

genus Bathymodiolus (Zielinski et al., 2009). Specific hybridization conditions for the AOP probe 

were found by varying the concentration of formamide in the hybridization buffer.  
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 Dual FISH hybridizations were performed using a Cy3-labeled, AOP-specific probe 

(5'CCGTACTCCAGCCACCCA) and Cy5-labeled, universal bacterial EUB338(I-III) probes 

(Amann et al., 1990). Subsamples of Alviniconcha gill tissues were fixed for 12-24 hours at 4°C in 

1X phosphate buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM 

KH2PO4) containing 2% paraformaldehyde. Gill samples were subsequently washed three times 

in 1X PBS, transferred to storage solution of equal parts 1X PBS and ethanol and kept at 4°C 

until embedding. Gill samples were dehydrated in an ascending ethanol series, washed twice in 

xylene, then embedded in paraffin. Paraffin blocks were sectioned with a microtome into 5 μm 

thick sections. The sections were placed onto Super-Frost slides (Fisher Scientific, Waltham, MA 

USA), dewaxed in three successive baths of xylene for 10 min each and a descending ethanol 

series (96%, 80%, 70%, 50%) for 5 min each and finally air dried. Each section was circled with 

a wax pen (PAP-pen, Kisker Biotech, Steinfurt, Germany), then covered with 30% formamide 

hybridization buffer (Pernthaler et al., 2002) containing fluorescently labeled oligonucleotide 

probes (5 ng μl-1 final concentration). Hybridization, washing, DAPI staining and mounting of 

sections on slides was performed as in (Jillian et al., 2010). Negative controls to account for 

background autofluorescence were performed with NON338 (Wallner et al., 1993). Sections 

were examined and photographed using the fluorescence microscope Axioskop2 mot plus (Carl 

Zeiss, Inc., Göttingen, Germany). The ImageJ software plugin DeconvolutionLab (Vonesch and 

Unser, 2008) was used for deconvolution of the images, and ImageJ used for contrast adjustment, 

and assignment of colors to the different wavelengths. 

 

Transmission Electron Microscopy 

Subsamples of the paraformaldehyde fixed gills (see FISH preservation) were post-fixed in a 

solution of 1% osmium tetroxide and 0.8% potassium ferricyanide in 0.1M sodium cacodylate 
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with 0.375M NaCl for 1.5 hr at 4°C, then washed in distilled water, dehydrated through an 

ascending ethanol series, cleared in 100% acetone, and embedded in an epoxy mixture of Embed 

812 (Electron Microscopy Sciences, Hatfield, PA USA) and Araldite 506 (Ernest Fulham Inc., 

Albany, NY USA). Thin sections (80 nm) were obtained using a diamond knife on a LKB 

Ultramicrotome V followed by staining with 2% uranyl acetate and Reynold’s lead citrate, and 

viewed with a FEI Tecnai Biotwin G2 Spirit electron microscope (Hillsboro, OR USA) operated 

at 80 kV. The contrast of the micrographs was adjusted in Adobe Photoshop Elements. 

 

Quantitative PCR Survey 

A SYBR-green quantitative PCR (qPCR) assay was designed to target the AOP 16S rRNA 

genes. QPCR was performed with the primers AOP-F (5' 

TTTCCAGAGATGGATGGGTGCCTT) and AOP-R (5' 

ACCCAAAGTGCTGGTAACTGAGGA) at a final concentration of 300 μM. The proportion 

of AOP was estimated in each individual Alviniconcha as in (Beinart et al., 2012) using a standard 

curve made of 10 to 107 copies of linearized plasmid containing the 16S rRNA AOP 

representative sequence. Via tests against plasmid-based standard curves containing the 16S 

rRNA genes of the other Alviniconcha symbiont phylotypes, the AOP-specific qPCR assay was 

found to cause slight non-specific amplification with the 16S rRNA gene of the Alviniconcha 

symbiont γ-Lau. The maximum number of γ-Lau 16S rRNA gene copies, in any given sample, 

was on the order of 106, which we found would result in non-specific amplification equal to that 

of 10 copies of AOP. Therefore, to ensure that the number of AOP 16S rRNA gene copies was 

not overestimated due to this non-specific amplification, 10 copies were subtracted from the AOP 

counts for all samples. Additionally, all quantities were also adjusted for amplification inhibition 

as in (Beinart et al., 2012). 
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SI Methods
Vent Fluid End-Member Calculations. The isobaric gastight samplers
used for sampling vent effluent are precharged with a small amount
of seawater to fill the dead volume, and varying amounts of ambient
seawater may be entrained inadvertently during sampling. The
proportions of seawater and vent end-member fluid in the samples
were determined via the concentrations of dissolved magnesium
ions (Mg2+), because seawater contains abundant Mg2+, whereas
end-member hydrothermal fluids exiting the vent orifice typically
contain nearly zero Mg2+ concentrations (1). End-member vent-
fluid composition then is calculated by assuming conservative
mixing and extrapolating the measured concentration of a given
species to a zero-Mg2+ value using a least squares linear re-
gression forced through seawater composition.

PCR Amplification, Sequencing, and Phylogenetic Analyses of the Host
Mitochondrial Cytochrome Oxidase 1 Genes. The cytochrome oxi-
dase 1 (CO1) mitochondrial gene was amplified using universal
invertebrate primers LCO1490 and HCO2198 (2) in association
with the TW2 and Gastro 3 primers (3). PCRs were performed
with EconoTaq DNA Polymerase (Lucigen, Inc.), with 5 min at
95 °C, 40 cycles of 40 s at 94°c, 60 s at 50 °C, 90 s at 72 °C,
followed by 5 min at 72 °C. PCR products were run on a 1%
(wt/vol) agarose gel stained with ethidium bromide to check the
quantity and the quality of the products and then were purified
with ExoSAP-IT (Affymetrix, Inc.). Purified PCR products for
the mitochondrial gene CO1 were sequenced bidirectionally with
BigDye chemistry (version 3.1) (Applied Biosystems, Inc.) on an
ABI 3730xl capillary sequencer (Applied Biosystems, Inc.).
Quality of the sequence reads and alignment of the sequences
were assessed with Chromas 2.22 (Technelysium Pty. Ltd.) and
Geneious Pro-5 (4). Sequences were aligned with MUSCLE (5)
in Mesquite v2.75 (6) and trimmed to 192 characters, the length
for which all samples had unambiguous sequence. Bayesian in-
ference phylogenies were produced with BEAST (7) using the
SRD06 model of nucleotide evolution (8), which partitions
protein coding sequence into first plus second and third codon
positions, estimating parameters for each. Three replicate runs
of 50 million generations were performed with sampling every
1,000 generations, thinning to every 3,000 generations with
a burn-in of 3,000 samples. Quantitative and qualitative diag-
nostics were performed for each of the three runs using the Coda
package in R (9), the three replicate runs were combined using
LogCombiner, and a tree was created with TreeAnnotator (7).
Host CO1 gene sequences used for phylogenetics were deposited
in GenBank; accession numbers can be found in Table S1.

PCR Amplification, Sequencing, and Phylogenetic Analyses of the
Symbiont 16S rRNA Genes. 16S rRNA genes were amplified from
30 individual snails from three collections: ABE-1, KM-1, and
KM-2. PCR reactions were performed with High Fidelity Plati-
num Taq polymerase (Invitrogen, Inc.), using universal bacterial
27F and 1492R primers (10), 2 mMMgSO4 for 2 min at 95 °C, 30
cycles of 30 s at 95 °C, 30 s at 55 °C, 90 s at 72 °C, followed by
5 min at 72 °C. PCR products were subjected to electrophoresis
on a 1.2% (wt/vol) agarose gel stained with SYBR Safe (Invitrogen,
Inc.) to check the quantity and the quality of the products using
a U:Genius UV transilluminator (Syngene, Inc.). Then 5 μL of
product from each reaction were combined in separate pools for
each collection. Pooled PCR products were cleaned and con-
centrated with the QIAQuick PCR Purification kit (Qiagen, Inc.)
and then were cloned with the TOPO TA Cloning kit (In-

vitrogen, Inc.). Partial sequences from each collection were ob-
tained by sequencing unidirectionally. The resulting 16S rRNA
gene sequences were trimmed of vector using Sequencher 4.10
(Gene Codes, Inc.) and classified into phylotypes based on their
affiliation, via BLAST (11), with known Alviniconcha symbiont
phylotypes. Partial sequences were deposited in GenBank under
accession nos. JX206808–JX206824, JX206826, and JX206827.
Representative longer sequences were aligned with other sym-
biont and free-living Proteobacterial sequences using the NAST
Alignment tool in GreenGenes (12). Bayesian inference phy-
logenies using separate 1,240-position alignments of the γ- and
ε-proteobacteria (with β- and δ-proteobacterial sequences as the
outgroups, respectively) were produced with BEAST (7) im-
plementing the GTR+I+G model of substitution. For the
ε-proteobacterial tree, three replicate runs of 10 million gen-
erations each were performed with sampling every 1,000 gen-
erations and burn-in of 3,000 samples. For the γ-proteobacterial
tree, three replicate runs of 50 million generations each were
performed with sampling every 1,000 generations, thinning to
every 5,000 generations (to reduce autocorrelation), and a burn-
in of 3,000 samples. Quantitative and qualitative diagnostics
were performed for each of the three runs using the Coda
package in R (9), the three replicate runs were combined using
LogCombiner, and a tree was created with TreeAnnotator (7).

Design and Optimization of Quantitative PCR Assays Targeting the
Symbiont 16S rRNA Genes. Primers were designed and initially
checked for specificity to Alviniconcha symbiont phylotypes by
comparison with all available 16S rRNA gene sequences with
Primer-BLAST (13). All assays were performed on a Stratagene
MX3005p sequence detector (Stratagene, Inc.) in 96-well opti-
cal-grade plates and seals. Each assay was optimized using
standard curves created from linearized plasmids (pCR2.1; In-
vitrogen) with the 16S rRNA gene from each symbiont type in-
serted (same clones as used in phylogenetic analysis). These
standard curves spanned seven orders of magnitude and were
designed to allow the addition of 101–107 gene copies as 2 μL of
template in each PCR. Twenty-microliter reactions were used,
with a final concentration of 1× Perfecta SYBR Green FastMix,
low ROX (Quanta BioSciences, Inc.), and varying concen-
trations of primers (Table S2). PCR cycling conditions were
3 min at 95 °C, then 40 cycles of 30 s at 95 °C, 1 min at 65 °C, and
30 s at 72 °C. Data analyses were carried out with the system
software MXPro (Stratagene Inc.). The potential cross-reactivity
of each assay for nontarget symbiont sequences was evaluated by
comparing the amplification of nontarget controls (plasmids
containing nontarget 16S sequences at 107 and 106 plasmid
copies per reaction) with a standard curve (plasmids containing
the target 16S sequence) for each quantitative PCR (qPCR)
assay. No cross-reactivity was found among any combination of
qPCR assay and nontarget plasmids.

Assessment of and Accounting for Amplification Inhibition in qPCR
Reactions.To assess potential influences of PCR inhibition on the
amplification of the diluted Alviniconcha DNA samples, γ-1
qPCR reactions with each diluted DNA sample were spiked with
104 copies of target sequence (plasmids containing the target γ-1
16S rRNA gene). An increase in the cycle threshold (Ct) of the
positive control caused by inhibition by the diluted DNA extract
was detected by comparison with the Ct of the positive control
alone. The PCR efficiency was calculated as in ref. 14. The av-
erage efficiency for all samples was 98.8% ± 0.07%.
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Assessing Symbiont Genome Equivalents with 16S rDNA qPCR. The
interpretation of qPCR targeting the 16S rRNA gene can be
complicated by the fact that bacterial genomes can contain
multiple copies of this gene. Both ε- and γ-proteobacteria have
multiple 16S rRNA genes (2.58 copies and 5.81 copies, re-
spectively) (15). However, these averages are likely over-
estimates for the symbionts of Alviniconcha, because the
genomes of all chemosynthetic endosymbionts sequenced to date
of have been found to contain a single copy of this gene (16–18).
Additionally, the differences in the number of detected 16S
rRNA genes in the different symbiont phylotypes within a single
individual typically were found to be at least one order of
magnitude. Therefore, any differences in 16S rRNA gene copy

number (if they exist) are not likely to alter the trends found here
significantly.

Analysis of Similarity. All multivariate statistics were performed
with the software package PRIMER-E (v6) (19). Analysis of
similarity tests yield a test statistic, R, that can range from −1 to
1. A value of zero indicates the null hypothesis: that there is
equal dissimilarity within and between groups. A value greater
than 0 indicates that there is greater dissimilarity among groups
than within them, and an R value less than 0 indicates greater
dissimilarity within groups than between them. Values of R, if
significant, can be compared, because R values are an absolute
measure of dissimilarity between groups.
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Table S2. Alviniconcha host mitochondrial CO1 haplotypes, with number of individuals according
to vent field

Haplotype Accession No.

No. of individuals

TotalKilo Moana Tow Cam ABE Tu’i Malila

Host type I 3 JQ624364 1 1
6 JQ624367 1 1
8 JQ624369 2 2
9 JQ624370 1 1
10 JQ624371 1 1
13 JQ624374 1 1
16 JQ624377 5 2 7
17 JQ624378 1 11 4 16
22 JQ624383 1 1
23* AB235211 1 4 24 13 42
24 JQ624384 1 1
27 JQ624387 1 1
28 JQ624388 5 5 1 11
39 JQ624397 1 1
40 JQ624398 1 5 5 11
41 JQ624399 2 2
49 JQ624407 1 1
51 JQ624408 1 1
53 JQ624410 1 1
55 JQ624412 1 1

Host type II 4 JQ624365 1 1
7 JQ624368 1 1
15 JQ624376 1 1
18 JQ624379 1 1
20 JQ624381 1 1
21 JQ624382 1 1
31 JN402310 7 8 1 16
32 JQ624391 1 1
37 JQ624395 1 1
38 JQ624396 1 1
42 JQ624400 5 6 1 12
44 JQ624402 1 1
48 JQ624406 1 1
56* AB235212 14 36 4 54

Host type III 1 JQ624362 1 1
2 JQ624363 1 1
5 JQ624366 6 6
11 JQ624372 2 2
12 JQ624373 1 1
14 JQ624375 1 1
19 JQ624380 1 1
25 JQ624385 1 1
26 JQ624386 1 1
29 JQ624389 6 6
30 JQ624390 1 1
33 JQ624392 1 1
34 JQ624393 1 1
35 JN402311 8 8
36 JQ624394 1 1
43 JQ624401 1 1
45 JQ624403 1 1
46 JQ624404 2 2
47 JQ624405 1 1
50* AB235215 2 2
52 JQ624409 1 1
54 JQ624411 1 35 36

*Haplotypes found in previous studies as well as here.
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Table S3. Carbon-stable isotopic values of gill tissues according to
dominant symbiont phylotype

Vent field Symbiont phylotype n δ13C average ± SD

Kilo Moana ε 7 −11.5 ± 0.2
Tow Cam ε 5 −11.4 ± 0.5

γ-1 2 −29.2
ABE ε 5 −11.8 ± 0.5

γ-1 9 −29.5 ± 1.6
Tu’i Malila γ-1 10 −28.9 ± 1.1

γ-Lau 25 −26.2 ± 3.2
γ-Both 8 −26.8 ± 1.9

ε, ε-proteobacteria; γ-1, γ-proteobacteria type 1; γ-Lau, γ-proteobacteria
type Lau; γ-Both, snails that have γ-1 and γ-Lau in approximately equal
proportions.

Table S4. qPCR primer sets designed to target Alviniconcha symbiont phylotypes

Symbiont genotype Primers (5′–3′) Amplicon length (bp) Primers (nM) Average % efficiency ± SD Average R2 ± SD

γ-1 Forward ACGGAATAAAGGTGGCCTCTGGTT 108 300 90 ± 0.06 0.996 ± 0.002
Reverse TGGATCGTCGCCTTGGTAGACCT

γ-Lau Forward CCTTCGGGAGTGAGTAGAGTG 58 300 94 ± 0.04 0.996 ± 0.003
Reverse TACTGGGCAGATTTCCACGCGTTA

ε Forward AACGCCGCGTGGAGGATGAC 163 100 90 ± 0.06 0.982 ± 0.016
Reverse TACGTGTCCTTTACGCCCAGTGAT

Average efficiencies and R2 for plasmid standard curves are shown. Symbiont phylotypes: ε, ε-proteobacteria; γ-1, γ-proteobacteria type 1; γ-Lau, γ-proteo-
bacteria type Lau.

Table S5. Intragill comparison of symbiont proportions

Individual Vent field (dive) Gill section % γ-1 % γ-Lau % ε

1 Tow Cam (J2-432) A 0.00 0.00 100.00
B 0.00 0.00 100.00
C 0.00 0.00 99.99

2 Tow Cam (J2-432) A INH INH INH
B 0.00 0.00 100.00
C 0.00 0.00 100.00

3 Tow Cam (J2-432) A INH INH INH
B 0.00 0.00 100.00
C 0.00 0.00 100.00

4 ABE (J2-435)* A 99.99 0.00 0.01
B 99.92 0.00 0.08
C 99.84 0.00 0.16

5 ABE (J2-435)* A 99.96 0.00 0.04
B 99.92 0.00 0.08
C 99.97 0.00 0.03

6 ABE (J2-435)* A 99.99 0.00 0.01
B 99.87 0.05 0.08
C 99.87 0.00 0.13

A, adjacent to pallial margin; B, middle gill; C, posterior gill end; J2-435
from cruise TM-235, June–July 2009; INH, amplification was inhibited, thus
sample was not measurable; symbiont phylotypes: ε, ε-proteobacteria; γ-1,
γ-proteobacteria type 1; γ-Lau, γ-proteobacteria type Lau.
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Supplementary Methods: 
In situ homogenization 
 To effectively preserve holobiont RNA in situ, we designed a combined sample 
container/homogenizer capable of operation at depth, hereafter referred to as the In-Situ 
Mussel And Snail Homogenizer (ISMASH; Fig. 1). ISMASH consists of a stainless steel 
cylinder of approximately 1L volume, wherein the cylinder bottom contains a rotating 
blade assembly (Waring Inc.) and preservative inlet. One-half inch diameter nylon rods 
are affixed to the interior sides of the blender to disrupt fluid flow and improve blending 
performance. The rotating blade assembly is coupled via a custom-machined coupling 
to a hydraulic motor (.218 cubic inch displacement gerotor, max 5000 RPM / 12 HP 
power / 35 in-lbs torque; Model # MGG20010, Parker Hannifin, Youngstown, OH). 
Based on approximate hydraulic flow rates from the Jason 2 submersible and motor 
manufacturer data, we estimate actual blade rotation speeds of approximately 2000-
3000 RPM.  
 The top of the blender chamber is sealed by a detachable lid with an o-ring that 
seals against the upper flange of the cylinder. The lid is held in place by six pairs of 
neodymium magnets, one set of which is mounted on the lid while the other set is 
affixed to the cylinder flange. The lid also includes a polypropylene rope for ease of 
removal and emplacement by the robotically operated vehicle, as well as a one-way 
plastic diaphragm-style check valve with a low cracking pressure. The preservative inlet 
also includes a one-way, low cracking-pressure spring-operated check valve to isolate 
blender contents, and a compression fitting for connection to the preservative reservoir, 
a plastic collapsible 10 L container.  
 For sample collection, the collapsible container is cleaned and filled with the 
preservative RNALater™ (Ambion Inc), which has been dyed using FD&C red no. 5 
food coloring. The preservative container is then affixed to the robotically operated 
vehicle (ROV) and connected to the inlet at the base of the blender body. Individual 
samples are collected using the ROV’s manipulators, deposited in the cylinder, and the 
magnetically latched lid is closed by the ROV operator. RNALater™ is pumped into the 
cylinder by compressing the collapsible container in situ using the ROV manipulator, 
displacing the less-dense seawater through the lid’s check valve. Once the cylinder is 
flooded (as indicated by the color and visible differences in density and refractive index 
of the effluent emitted from the lid check valve), the hydraulic motor is actuated to 
homogenize the sample.  The time from collection of the sample to homogenization is 
typically around seven minutes. Upon completion, the sample is left in the chamber until 
recovery at the surface. One-way check valves on the inlet and outlet, and the robust 
latching of the lid to the cylinder, ensure that the sample has minimal contact with the 
surrounding seawater.  At the surface, samples are carefully transferred to sterile glass 
jars and incubated per the manufacturer’s instructions prior to freezing for shipment to 
the laboratory. 
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Supplementary Figures: 
 

 
Figure S1:  Map of the Eastern Lau Spreading Center, with four vent fields from which 
Alviniconcha were sampled with the ISMASH. Dive numbers associated with each 
sample are shown next to each vent field.   
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Figure S2: Agilent Bioanalyzer traces of total ISMASH RNA from each sample.  Peaks 
are labeled for bacterial (symbiont) 16S and 23S rRNA and snail host 18S rRNA.  In the 
snails, as with most protostomes, the 28S RNA is post-transcriptionally fragmented into 
two large pieces that are attached in vivo via hydrogen bonds. During extraction, most 
of these separate and migrate with the 18S rRNA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 105 

 
 
 
Supplementary Table: 
 
 
Table S1:  Normalized read counts for pathways and gene categories discussed here.  
Annotation was performed in MGRAST using SEED/Subsystems unless indicated by an 
asterisk (*), which designates MGRAST IMG annotation. † indicates that one or more 
(non-normalized) reads for this gene was assigned to the non-dominant symbiont class 
(e.g., assigned to ε-proteobacteria in a γ-dominated metatranscriptome) in MEGAN.  “% 
reads” = the percentage of reads that were allied to the non-dominant symbiont class in 
that category. 

MGRAST SEED/Subsystems EC # 
KM 
ε 

TC 
ε 

ABE 
γ 

TM 
γ 

Sulfur Oxidation      
% reads   0.0 0.0 1.9 0.0 
      
Sox multienzyme complex      
Sulfur oxidation protein SoxA  1 4 1† 0 
Sulfur oxidation protein SoxB  7 10 1† 0 
Sulfur oxidation molybdopterin C protein SoxC  104 74 0 0 
Sulfite dehydrogenase cytochrome subunit SoxD  6 15 0 0 
Sulfur oxidation protein SoxX  0 16 9 9 
Sulfur oxidation protein SoxY  3 18 3 2 
Sulfur oxidation protein SoxZ  2 15 3 1 
      
Reverse DSR      
Sulfite reductase alpha subunit DsrA 1.8.99.1 0 0 41† 16 
Sulfite reductase beta subunit DsrB 1.8.99.1 1 0 47 20 
Sulfite reductase, dissimilatory-type gamma subunit DsrC 1.8.99.3 0 0 34 37 
DsrE*  0 0 23 18 
DsrF*  0 0 2 0 
DsrH*  0 0 8 6 
Sulfite reduction-associated complex DsrMKJOP multiheme 
protein DsrJ (=HmeF)  0 0 0 1 
Sulfite reduction-associated complex DsrMKJOP protein DsrK 
(=HmeD)  0 0 25 20 
Similar to glutamate synthase [NADPH] small chain, clustered 
with sulfite reductase DsrL  0 0 26 28 
Sulfite reduction-associated complex DsrMKJOP protein DsrM 
(= HmeC)  0 0 10 19 
Sulfite reduction-associated complex DsrMKJOP iron-sulfur 
protein DsrO (=HmeA)  0 0 4 3 
Sulfite reduction-associated complex DsrMKJOP protein DsrP 
(= HmeB)  0 0 6 13 
DsrR*  0 0 0 2 
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Indirect sulfite oxidation pathway      
Sulfate adenylyltransferase, dissimilatory-type Sat 2.7.7.4 6 1 7† 1 
Adenylylsulfate reductase alpha-subunit AprA 1.8.99.2 0 0 54 12 
Adenylylsulfate reductase beta-subunit AprB 1.8.99.2 0 0 5 0 
Adenylylsulfate reductase membrane anchor 1.8.99.2 0 0 12 3 
       
Sulfide dehydrogenase       
Sulfide dehydrogenase [flavocytochrome C] flavoprotein chain 
precursor FccB  1.8.2.- 0 0 1 4 
sulfide dehydrogenase, flavoprotein subunit FccB  1.8.2.- 0 0 1 0 
       
Sulfide quinone (oxido)reductase      
sulfide qunione (oxido)reductase Sqr  41 66 22† 55 
Hydrogen oxidation       
% reads  0.0 0.0 0.0 0.0 
      
Hydrogenases      
Uptake hydrogenase cytochrome 1.12.99.6 13 10 1 0 
Uptake hydrogenase large subunit 1.12.99.6 19 16 1 0 
Uptake hydrogenase small subunit or precursor  1.12.99.6 11 12 1 2 
Hydrogen-sensing hydrogenase large subunit  0 1 3 2 
Hydrogen-sensing hydrogenase small subunit   0 0 1 0 
Dissimilatory nitrogen metabolism        
% reads   0.0 0.0 2.5 0.0 
      
Nitrate respiration      
Assimilatory nitrate reductase large subunit NapA 1.7.99.4 19 17 9† 10 
Periplasmic nitrate reductase precursor NapA 1.7.99.4 83 52 13 10 
Nitrate reductase cytochrome c550-type subunit NapB  58 48 0 0 
Cytochrome c-type protein NapC  0 0 8 7 
Periplasmic nitrate reductase component NapD  1 0 0 0 
Ferredoxin-type protein NapF (periplasmic nitrate reductase)  0 0 1 1 
Ferredoxin-type protein NapG (periplasmic nitrate reductase)  19 15 10 6 
Polyferredoxin NapH (periplasmic nitrate reductase)  49 39 19 9 
Periplasmic nitrate reductase component NapL  0 0 0 0 
       
Denitrification      
Cytochrome cd1 nitrite reductase NirS 1.7.2.1 85 69 2† 3 
Nitric-oxide reductase subunit B NorB 1.7.99.7 57 33 23 10 
Nitric-oxide reductase subunit C NorC 1.7.99.7 12 12 6 3 
Nitric oxide reductase activation protein NorE  0 0 1 2 
Nitric oxide reductase activation protein NorD  0 0 6 3 
Nitric oxide reductase activation protein NorQ  0 0 4 2 
Nitrous-oxide reductase NosZ 1.7.99.6 50 28 7 10 
Nitrous oxide reductase maturation protein NosD  2 3 2 2 
Nitrous oxide reductase maturation protein NosF (ATPase)  0 2 0 1 
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Nitrous oxide reductase maturation transmembrane protein 
NosY  1 3 1 5 
Nitrous oxide reductase maturation protein, outer-membrane 
lipoprotein NosL  0 0 0 0 
Nitrogen assimilation       
% reads   0.0 0.0 0.0 0.0 
      
Assimilatory nitrite reduction      
Nitrate/nitrite transporter NarK  3 17 3 1 

Nitrite reductase [NAD(P)H] large subunit NirB  1.7.1.4 0 0 14 2 
Nitrite reductase [NAD(P)H] small subunit NirD  1.7.1.4 0 0 1 2 
Ferredoxin--nitrite reductase NirA 1.7.7.1 1 4 0 0 
       
Ammonia assimilation      
Ammonium transporter  17 49 15 21 
Glutamine synthetase type I   6.3.1.2 51 57 10 9 
Glutamate synthase [NADPH] large chain  1.4.1.13 16 23 50 21 
Glutamate synthase [NADPH] small chain  1.4.1.13 18 19 4 13 
Carbon Fixation 
Calvin-Benson Cycle       
Triosephosphate isomerase 5.3.1.1 1 1 12 10 
Transketolase 2.2.1.1 10 15 56 27 
Ribulose-phosphate 3-epimerase 5.1.3.1 1 0 8 8 
Ribulose bisphosphate carboxylase 4.1.1.39 0 0 16 6 
Ribose 5-phosphate isomerase B 5.3.1.6 2 7 0 0 
Ribose 5-phosphate isomerase A 5.3.1.6 0 0 3 6 
Phosphoribulokinase 2.7.1.19 0 0 5 8 
Phosphoglycerate kinase 2.7.2.3 7 12 19 15 
NADPH-dependent glyceraldehyde-3-phosphate 
dehydrogenase 1.2.1.13 0 0 14 8 
NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 8 5 4 8 
Fructose-bisphosphate aldolase Class II 4.1.2.13 5 4 19 10 
Fructose-bisphosphate aldolase class I 4.1.2.13 1 0 0 0 
Fructose-1,6-bisphosphatase, type 1 3.1.3.11 2 6 0 0 
Fructose-1,6-bisphosphatase, GlpX type 3.1.3.11 2 0 0 1 
       

Reverse TCA Cycle      
Pyruvate:ferredoxin oxidoreductase, alpha subunit 1.2.7.1 24 15 0 0 
Pyruvate:ferredoxin oxidoreductase, beta subunit 1.2.7.1 28 22 0 0 
Pyruvate:ferredoxin oxidoreductase, gamma subunit 1.2.7.1 5 8 0 0 
Pyruvate:ferredoxin oxidoreductase, delta subunit 1.2.7.1 2 1 0 0 
Citrate lyase, subunit 1 2.3.3.8 15 7 0 0 
Citrate lyase, subunit 2 2.3.3.8 38 49 1 0 
2-oxoglutarate oxidoreductase, alpha subunit 1.2.7.3 30 35 1 0 
2-oxoglutarate oxidoreductase, beta subunit 1.2.7.3 6 3 0 0 
2-oxoglutarate oxidoreductase, gamma subunit 1.2.7.3 19 21 1 0 
2-oxoglutarate oxidoreductase, delta subunit 1.2.7.3 33 24 1 0 
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Flagellum       
Flagellar L-ring protein FlgH  3 1 0 0 
Flagellar M-ring protein FliF  8 8 0 0 
Flagellar P-ring protein FlgI  0 7 0 0 
Flagellar basal-body rod modification protein FlgD  1 5 0 0 
Flagellar basal-body rod protein FlgB  4 2 0 0 
Flagellar basal-body rod protein FlgC  2 4 0 0 
Flagellar basal-body rod protein FlgF  1 0 0 0 
Flagellar basal-body rod protein FlgG  4 3 0 1 
Flagellar biosynthesis protein FlhA  2 5 0 0 
Flagellar biosynthesis protein FlhB  3 2 0 0 
Flagellar biosynthesis protein FlhF  1 4 0 0 
Flagellar biosynthesis protein FliP  1 1 0 0 
Flagellar biosynthesis protein FliQ  0 1 0 0 
Flagellar biosynthesis protein FliR  1 1 0 0 
Flagellar biosynthesis protein FliS  1 1 0 0 
Flagellar hook protein FlgE  5 11 1 0 
Flagellar hook-associated protein FlgK  6 4 1 0 
Flagellar hook-associated protein FlgL  0 0 1 0 
Flagellar hook-associated protein FliD  2 0 0 0 
Flagellar hook-basal body complex protein FliE  6 4 0 0 
Flagellar hook-length control protein FliK  29 47 0 0 
Flagellar motor rotation protein MotA  0 1 1 0 
Flagellar motor rotation protein MotB  1 3 1 1 
Flagellar motor switch protein FliG  4 3 0 0 
Flagellar motor switch protein FliM  4 2 0 0 
Flagellar motor switch protein FliN  10 7 0 0 
Flagellar protein FlbB  1 0 0 0 
Flagellar regulatory protein FleQ  0 0 1 1 
Flagellar synthesis regulator FleN  2 1 1 0 
Flagellin protein FlaA  31 32 0 1 
Flagellin protein FlaB  6 0 0 1 
Flagellum-specific ATP synthase FliI   1 2 0 0 
Sulfur reduction 
Polysulphide reductase   0 0 1 3 
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Table S4.1: Input water conditions for all experiments and treatments. Mean (min, max) sulfide concentrations as 
determined via a colorimetric assay as applied to discrete water samples of input water; partial pressure of O2 and 
calculated concentration of O2 in input water; mean (min, max); and atom percent of 13C in dissolved inorganic 
carbon (DIC).  

Incubation 
Mean [sulfide] 
(min, max) (μM) 

pO2 
(%) 

[O2] 
(μM)* Mean A% DIC (min, max) 

No sulfur NA 50 562 5.08 (4.22, 5.59) 
Sulfide 105 (57, 137) 27.5 310 5.44 (5.25, 5.75)  
Thiosufate 0 (0,0) 54.8 618 4.83 (3.70, 5.63) 
Sulfide treatment  388 (338,459) 54.5 615 6.45 (6.28, 6.62) 
Thiosulfate 
treatment 0 (0,0) 52.3 590 3.38 (2.89, 3.74) 
 
*Concentration of O2 calculated based on concentration of 100% pO2 in seawater at 20°C, 35 psu 
(Weiss et al., 1970) 

 
 
 
Table S4.2: The average (± S.D.) of the stable isotopic composition of experimental foot and natural tissue 
expressed as δ13C (‰).  
  Experimental Foot Natural  
Alviniconcha -27.0 ± 1.16 -27.6 ± 2.30a 
I. nautilei -28.0 ± 0.95 -28.5b 
B. brevior -28.1 ± 1.93 -30.6 ± 2.52c  

 
a gill tissue values, Lau Basin, from Beinart et al., 2012 
b gill tissue value, Lau Basin from Suzuki et al., 2006 
c foot tissue values, North Fiji Basin from Dubilier et al., 1998 
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Table S4.3: Proportions of symbiont phylotypes associating with Alviniconcha as assessed via quantitative PCR. 
Experiment/Treatment Individual   %γ-1  %γ-Lau  %ε 
No sulfur 1 100 0 0 

 
2 99 1 0 

 
3 100 0 0 

 
4 3 97 0 

  5 3 96 0 
Sulfide 1 100 0 0 

 
2 100 0 0 

 
3 93 7 1 

 
4 99 1 0 

  5 96 0 4 
Thiosulfate 1 100 0 0 

 
2 99 0 1 

  3 100 0 0 
Sulfide treatment 1 0 0 100 

 
2 99 0 1 

 
3 99 0 1 

 
4 100 0 0 

 
5 100 0 0 

 
6 0 0 100 

 
7 0 0 100 

 
8 0 0 100 

 
9 0 0 100 

  10 0 0 100 
Thiosulfate treatment 1 100 0 0 

 
2 100 0 0 

 
3 100 0 0 

 
4 100 0 0 

 
5 99 0 1 

 
6 100 0 0 

 
7 100 0 0 

 
8 100 0 0 
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!
Figure S4.1: Two-point calibration of voltammetric microelectrodes with the average [sulfide] as determined via a 
colorimetric assay applied to discrete water samples from input water (exposure treatment; blue) or control effluent 
(rate experiment; red). 
 
 

!
Figure S4.2: Linear regression of gill weight to body weight for each of the three mollusc genera.  
 

!
!
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!
Figure S4.3 Stable carbon isotopic composition of Alviniconcha (△), B. brevior (☐), and I. nautilei (◇) gill tissue after 
rate experiments and exposure treatments.  

!
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