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Low Speed Avian Maneuvering Flight 

  

 

Abstract 

 

Low speed avian maneuvering flight is an ecologically crucial behavior that has contributed to 

the explosive diversification of several avian taxa by allowing access to complex spatial 

environments.  Negotiating a sharp aerial turn requires finely tuned interactions between an 

animal's sensory-motor system and its environment. My thesis work focuses on how 

aerodynamic forces, wing and body dynamics, and sensory feedback interact during aerial 

turning in the pigeon (Columba livea). 

 

 Using high-speed kinematics and inertia data, I resolve the aerodynamic forces during 

low speed turns. The pigeons’ tip-reversal upstroke is found to be aerodynamically active, 

indicating its role for increased power production. The overall turning strategy consists of body 

rotations that redirect aerodynamic forces to change flight trajectory, followed by body rotations 

that re-establish forward flight posture upon exiting the turn. 

 

 Through mechanical modeling, I separate aerodynamic from inertial effects, showing that 

aerodynamic torques dominate in pigeon flight. Contrary to previous findings, contra-lateral 

asymmetries in wing speed do not appear to underlie aerial turns, and surprisingly, nor do contra-

lateral differences in wing area, angle of attack, wingbeat amplitude, or timing. The pigeons 

simply reorient their wing trajectories toward the desired direction. As a result, the aerodynamic  
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force, which acts above the center of mass, is redirected into the turn, generating the torques 

required to turn. 

 

 Detailed measurements of body, wing and head orientations and velocities confirm a 

functional decoupling between head and body motions, allowing insight into sensory control 

principles. Brief head motions (saccades) during aerial turns provide visual feedback to control 

the bird’s flight trajectory and, likely, cervical mechanosensory feedback to control body 

orientation. 

 

 Visual (versus vestibular) cues dominate in the perception of motion in birds. To test 

whether vision is used to stabilize flight, I present freely hovering hummingbirds (A. colubris) 

with rear-projected, artificial, rotating panoramas. The hummingbirds separate optical cues that 

arising from self-rotation from those arising from translational flight, and use both visual inputs 

to stabilize their vision and control their hovering flight. Similar visual-motor principles have 

been observed in insects, suggesting that these may be robust control strategies common to a 

wide range of flying animals. 
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"Perfect as the wing of a bird may be, it will never enable the bird to fly if unsupported by the air. 
Facts are the air of science. Without them a man of science can never rise” 

 
~ Ivan Pavlov 
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Introduction 

Well known derived features of birds are asymmetrical flight feathers and the fusion of 

lightweight bones (Gill, 1995). These adaptations to flight illustrate strong selective evolutionary 

pressures. An enlargement of the keel and pectoralis muscles predominantly evolved to generate 

the high mass-specific power required for slow flight (Gill, 1995). Adaptations allowing for the 

ability to maneuver are anatomically less obvious. However, this does not imply that adaptations 

for flight control carry less evolutionary weight. It is suggested that the ability to maneuver 

allowed for the explosive diversification of certain avian taxa by lifting the constraint to large 

spatial environments (Warrick et al. 1998). 

  

 For a flying animal, negotiating a sharp turn requires many finely tuned interactions 

between the external environment, the animal's sensory systems, central nervous system and 

musculo-skeletal system. Understanding the organization and constraints of these systems 

benefits greatly from an integrative approach, in which the systems are not only investigated 

individually, but also as a collective (figure 1).  
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Figure 1_1. The interactions between various components of the avian flight system. 

 

 Flapping flight is an intense mode of locomotion, due to both fluctuating aerodynamic 

forces and inertial consequences of moving wings which each comprise about 6 % of the body 

mass at high frequencies. These mechanical challenges in combination with the control 

requirements of moving through a three-dimensional environment with many degrees of freedom 

across the avian body plan, and high mass-specific power requirements, make low speed 

maneuvering flight an especially complex sensorimotor behavior.  
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 The pigeon is an ideal animal and species model system in which to examine 

maneuvering flight. Much of the influential past work on avian neural organization, perception, 

behavior, motor control, and muscle physiology has been performed on pigeons (see Zeigler and 

Bischof, 1993; Davies & Green, 1994). Furthermore, specimens are readily available, reasonably 

sized, trainable and, last but not least, very adept at low speed maneuvering, which is required in 

their natural habitats of cliffs and rock ledges (Baptista et al., 1997). In addition to the pigeon, I 

use the hummingbird to study the involvement of optic flow in flight stabilization. 

   

 Hummingbirds excel at hovering among birds, with several specializations, such as in 

their in  their skeletal morphology (Stolpe & Zimmer, xxxx), neuroanatomy (Iwaniuk) and wing 

stroke kinematics (Hedrick et al., 2012). 

 

 In Chapter 2 the role of body rotations in relation to aerodynamic force production is 

investigated to obtain a fundamental understanding of turning flight. Aerodynamic forces are 

found to be produced in a uniform anatomical direction, emphasizing the central role of body 

rotations in low speed aerial turning. Two functionally separate body rotations are identified, 

separating analysis of flight trajectory, or course, from analysis of angular body positioning.  The 

relationship between these body rotations and aerodynamic force production elucidates that 

turning pigeons prioritize changes in flight course over angular positioning of the body, or flight 

posture. Furthermore, the functionally distinct body rotations allow for targeting of sensory 

feedback specific to the control of course, or flight path, and body orientation in chapter 4. 
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 The mechanisms of torque generation crucial to aerial turns are investigated in chapter 3. 

From chapter 2 it follows that torques, which underlie body rotations, play a cardinal role in 

flight control. To separate aerodynamic from inertial bases for these torques, in chapter 3, 

aerodynamic and inertial accelerations of pigeons turning during low speed flight are separately 

calculated using segment masses, moments of inertia and time-varying wing and body 

configurations. Directly measured body accelerations were predicted by aerodynamic torques, 

with aerodynamic torques correlating with contralateral asymmetries in swept wing trajectories 

and wing long axis rotation angles. No contra-lateral asymmetries were found in wing speed, 

wing area, angle of attack, wingbeat amplitude, or timing. Instead of using mosaic of kinematic 

variables, turning pigeons appear to generate aerodynamic torques by simply reorienting their 

wing trajectories toward the desired direction. The thereby initiated body rotations are 

subsequently arrested through aerodynamic damping, resulting in the previously described 

impulsive nature of low speed aerial turns in pigeons. 

 

 In chapter 4 I investigate head stabilization in relation to the sensory control of turning 

flight. Based on previous observations that the eyes remain fixed relative to the head, control 

inputs are inferred from detailed head and body orientations and velocities during 90-degree 

aerial turns. Visual cues induced by rapid head reorientations, or saccades, predict changes in 

flight trajectory, whereas the magnitude of neck bending predicts changes in angular positioning 

of the body. 
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 Expanding on the visual control of flight, in chapter 5, the role of optic flow in flight 

stabilization is investigated in ruby-throated hummingbirds. I present freely hovering ruby-

throated hummingbirds with projected virtual panoramas, or surrounds, rotated in different 

directions and at different speeds. The birds counter these illusory self-motions by rotating their 

head and body, and by flying with the surround. The hummingbirds apparently separate 

rotational from translational optic flow and use both these visual cues to stabilize their vision and 

control hovering flight, much like insects. 

 

 The collective goal of the thesis work is to expand on the current understanding of 

maneuvering flight and provide insight into general principles in areas such as muscle and 

general physiology, control theory, neurobiology and the evolution of animal flight.  
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ABSTRACT. Turning is crucial for animals, particularly during predator-prey 

interactions and to avoid obstacles.  For flying animals, turning consists of changes in 1) 

flight trajectory, or path of travel, and 2) body orientation, or 3D angular position.  

Changes in flight trajectory can only be achieved by modulating aerodynamic forces 

relative to gravity. How birds coordinate aerodynamic force production relative to 

changes in body orientation during turns is key to understanding the control strategies 

used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic 

forces in a uniform direction relative to their body, requiring changes in body orientation 

to redirect those forces to turn. Using detailed 3D kinematics and body mass 

distributions, we examined net aerodynamic forces and body orientations in slowly flying 

pigeons (Columba livia) executing level 90º turns. The net aerodynamic force averaged 

over the downstroke was maintained in a fixed direction relative to the body throughout  
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the turn, even though the body orientation of the birds varied substantially. Early in the 

turn, changes in body orientation primarily redirected the downstroke aerodynamic force, 

affecting the bird’s flight trajectory. Subsequently, the pigeons mainly reacquired the 

body orientation used in forward flight without affecting their flight trajectory. 

Surprisingly, the pigeon’s upstroke generated aerodynamic forces that were 

approximately 50% of those generated during the downstroke, nearly matching the 

relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed 

turns much like helicopters, by using whole-body rotations to alter the direction of 

aerodynamic force production to change their flight trajectory. 

 

INTRODUCTION. Maneuverability is critical to the movement of animals in their 

natural environment. Turning represents a basic maneuver that is particularly relevant to 

predator-prey interactions and obstacle avoidance. To begin to understand the 

mechanisms by which birds achieve and control aerial turns, we examine the role of body 

rotations in relation to aerodynamic force production to alter the flight trajectory, or path 

of travel, during turns. More specifically, we ask whether body rotations serve to redirect 

aerodynamic forces during low speed 90° level turns in pigeons. 
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Figure 2_1. 
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Figure 2_1 (Continued). Schematic representation of the experimental hypotheses. 
The global frame (thin grey lines) with z (vertical) defined in line with gravity, and x and 

y defined along the two perpendicular horizontal axes of the flight corridor (Fig. 2_2). 

Upper right inset: The bird’s body frame with antero-posterior (along the spine), medio-

lateral and dorso-ventral axes in red, green and blue, respectively. Rotations about these 

anatomical axes are defined as roll, pitch and yaw (red, green and blue circular arrows). 

(A, B) Hypothetical aerodynamic forces (solid light blue vectors) in the global frame 

(thin solid grey lines) during a level, 90° aerial turn to the right. Horizontal and vertical 

global projections (dashed blue vectors) of the aerodynamic forces early, during and upon 

completion of the turn provide braking, centripetal and accelerating forces, respectively, 

as well as vertical forces. (A) H0: Birds produce aerodynamic forces in variable directions 

in the body frame, requiring only realignment of the antero-posterior body axis with the 

flight trajectory. (B) Force-vectoring Hypothesis: Birds produce aerodynamic forces in a 

uniform direction in the body frame, requiring body rotations to redirect aerodynamic 

forces in the global frame to change flight trajectory (grey curved line). NB: the grey 

triangles shown between the antero-posterior body axis and resultant aerodynamic force 

vector are of identical dimensions in each of the four represented positions of the turn, 

emphasizing the anatomically fixed direction of aerodynamic force. 

 

 The three dimensional (3D) nature of flight requires analyses of aerodynamic 

force production in relation to body motions not only in a global reference frame, but also 

in a local, body reference frame (Fig. 2_1). The global frame allows for application of 

Newton’s laws of motion, which for a flying bird means that the resultant of aerodynamic 

and gravitational forces can be estimated from accelerations of the whole body center of 

mass (CM). However, the bird’s torso moves relative to the CM, primarily due to the 

time-varying wing configurations during the wingbeat cycle. Therefore, localization of 

the CM cannot rely solely on the torso, but requires detailed assessment of the motions of 

the head and wings as well. The body frame corrects for the displacements and rotations 

of the torso, allowing for analyses of head and wing motions and forces relative to the 

body, which subsequently can be related to underlying musculoskeletal and sensory- 
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motor function. The combination of global and local frames therefore can reveal how 

aerodynamic force production is coordinated with a bird’s 3D body orientation, or body 

angular position, during aerial turns. 

 There are two major reasons for animals to change their body orientations during 

turns: 1) to reacquire their preferred body orientation for forward movement, and 2) to 

alter the direction of propulsive force needed to change their movement trajectory. 

Bilaterally symmetric animals have body plans that are best suited for forward 

locomotion with a particular 3D body orientation (Arbib et al., 1997). Consequently, this 

preferred body orientation must be reacquired during a turn to move along the new 

movement trajectory.  Additionally, body rotations must also occur to redirect the 

animal’s propulsive turning forces, if these forces are directionally constrained within the 

animal’s body frame. Redirecting resultant forces in the global frame due to changes in 

body orientation is referred to as force vectoring (Fig. 2_1). In fact, flying insects have 

been argued to turn primarily by force vectoring, meaning that the majority of the 

redirection of aerodynamic forces is based on changes in body orientation, and not on 

changes in the direction of aerodynamic forces relative to the insect’s body (Dudley, 

2000). 

 Even though quantifying the time-varying aerodynamic forces produced during 

flapping flight is challenging, estimates of aerodynamic force production during flight 

maneuvers have been made in insects (Blondeau, 1981; Götz & Wandel, 1984; Sugiura & 

Dickinson, 2009; Wagner, 1986). Turning calliphorid, muscid and drosopholid flies  



Chapter 2 Pigeons steer like helicopters 

13 

 

support the use of force vectoring as a means to redirect aerodynamic force, as the 

aerodynamic forces produced by their wings operate within a limited range relative to 

their bodies. Most of the redirection of aerodynamic force within the body frame occurs 

within the animal’s mid-sagittal plane, varying over a range of merely 20°; although fruit 

flies also generate moderate lateral forces with respect to their body. Notable exceptions 

are hover flies (Syrphidae), which seem to achieve a wider variation in aerodynamic 

force orientation relative to their body (Collet & Land, 1975, Nachtigall, 1979), though 

these findings have been questioned (Wagner, 1986). 

 Vertebrate fliers also appear to have a limited ability to redirect aerodynamic 

force relative to their body. Horseshoe bats, fruit bats, pigeons and rose-breasted 

cockatoos roll during aerial turns (Aldridge, 1986; Warrick & Dial 1998; Hedrick & 

Biewener, 2007; Iriarte-Diaz & Swartz, 2008), indicating that they likely rely on force 

vectoring to turn. Fruit bats rotate their bodies in the direction of the turn in addition to 

rolling, increasing their centripetal acceleration (Iriarte-Diaz & Swartz, 2008). Finally, 

pigeons appear to redirect aerodynamic forces to accelerate after flight take-off and brake 

prior to landing by pitching movements of their bodies (Berg & Biewener, 2010). 

 Here, we ask whether pigeons redirect aerodynamic forces (in the global frame) 

by redirecting aerodynamic forces relative to their body (Fig. 2_1A), or by rotating the 

body itself (Fig. 2_1B). Given the constrained musculoskeletal and stereotypical 

kinematic features of the avian wingstroke (Sy, 1936; Rayner, 1988; Dial et al., 1991; 

Gatesy & Baier, 2010), we hypothesize that pigeons generate aerodynamic forces in a  



Chapter 2 Pigeons steer like helicopters 

14 

 

uniform direction relative to their body (i.e. in the body frame), necessitating the use of 

force vectoring to turn (Fig. 2_1B). To test this hypothesis, we used high-speed 

videography to obtain 3D positions of body markers of pigeons performing low speed, 

90º level turns within a netted, 10m long, square-corner corridor (Fig. 2_2).  Detailed 

analysis of the pigeons’ whole-body mass distributions enabled their non-body-fixed CM 

to be accurately tracked, from which time-varying, whole-body, or net, aerodynamic 

forces were assessed (Fig. 2_2-2_5). To interpret the functional significance of changes 

in body orientation made throughout the turn, body rotations of the pigeons were 

quantified relative to the redirection of aerodynamic force averaged over successive 

downstrokes. Specifically, for each downstroke in the turn the component of the body 

rotation that redirected the average aerodynamic force was mathematically separated 

from the component of the 3D body rotation that had no effect on the direction of the 

average downstroke force. This approach allowed any 3D body rotation to be 

decomposed into two complementary body rotation fractions, one that redirected and one 

that rotated about the downstroke average aerodynamic force (Fig. 2_6). 
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Figure 2_2. Instantaneous net aerodynamic forces (F) visualized on corresponding 

center of mass (CM) positions throughout a representative right 90
o 
turn. 

Downstroke forces in blue and upstroke forces in red, plotted at 4 ms intervals. (A-C) F 

in the global frame with axes x, y and z.  (A) Top view. (B) Schematic of the flight 

corridor with viewpoints for (A) and (C). (C) Level view. (D) Caudo-lateral view of F for 

a single wingbeat in the body frame with antero-posterior (ap, red), medio-lateral (ml, 

green) and dorso-ventral (dv, blue) axes. Arrows connecting vector tips indicate temporal 

sequence. (A,C,D) Axes lengths represent two body weights of force. 
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RESULTS. Three pigeons with a mean body mass of 319 + 33 g (all results are 

expressed as mean + SD) negotiated the 90° level turn at a CM speed of 3.3 + 0.2 ms
-1
, 

with mean flight trajectory slopes relative to the global horizontal plane of 2.5 + 0.2
o
, and 

a wingbeat frequency of 8.3 + 0.3 Hz. Combined wing mass distal to the shoulder 

comprised 12.5 + 1.4% of total body mass. 

 Aerodynamic forces are reaction forces resulting from the interactions of the 

animal’s body, wings and tail with the surrounding air. In mid-air, an animal’s flight 

trajectory can only be changed by gravity or the aerodynamic forces produced by the 

animal. Since the external force on an object equals the product of its mass and 

acceleration, the instantaneous aerodynamic force acting on the pigeon’s center of mass 

(CM) can be estimated after factoring out gravity (see methods for details). However, the 

time-varying configurations of the bird’s wings and head relative to its torso cause the 

whole-body, or net, CM to vary in position with respect to the torso through time. This 

non-body-fixed CM therefore requires estimates based on detailed 3D kinematics and 

body mass distributions (Fig. 2_3). Using a mass-distribution model then provides 

estimates of instantaneous net aerodynamic forces (F) throughout the turns. The 

aerodynamic origin of these forces and any force components that cancel out internally, 

however, cannot be identified by this method. 
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Figure 2_3. Pigeon marker locations and mass-distribution model. Silhouette at mid 

downstroke with sixteen marker locations (solid black circles) and calculated elbow 

locations (open circles). The approximate wingstrip edges (dashed lines) and marker 

descriptors are provided for the bird’s right side (dm: dorsal midshaft; ru: rump; sh: 

shoulder, 5p: fifth primary; 9p: ninth primary; tl: tail; 1s: innermost secondary; see 

methods for details). Modeled point masses (blue spheres), with size representing relative 

mass. Note that the tail is considered part of the torso mass (largest blue sphere). 

 

 Pigeons turn with an aerodynamically active upstroke. Throughout the 90
o
 

turn the pigeons produced aerodynamic forces during the upstroke as well as the 

downstroke (Fig. 2_2,  2_4).  In the global frame, aerodynamic forces were directed  
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vertically to support the pigeon’s body weight and horizontally to change its flight 

trajectory during the turn (Fig. 2_2). 

Table 2_1. Body rotations accumulated throughout the turn. Mean + SD of means of 

three individuals for both continuous and net wingbeat effects in terms of roll, pitch and 

yaw. 

 

Body 

rotations 

Continuous 

effects (deg) 

Net wingbeat 

effects (deg) 

Roll 143  +  16 77  +  14 

Pitch 125  +  24 43  +    2 

Yaw   81  +  10 58  +    4 

 

 Substantial body rotations occur about all three anatomical axes. The 3D 

body rotations of the turning pigeons consisted of substantial roll, pitch and yaw 

components, defined as rotations about the antero-posterior (along the spine), the medio-

lateral and dorso-ventral body frame axes, respectively (Phillips, 2004) (Table 2_1; Fig. 

2_1). During the turn, body rotations oscillated back and forth within wingbeats, but led 

to net changes in body orientation between successive wingbeats. The pigeons’ 3D body 

rotations predominantly consisted of roll, both continuously and on a net wingbeat basis; 

although pitch and yaw components were also substantial (Table 1). Over the course of a 

turn, early wingbeats rolled the pigeons into the turn, with subsequent wingbeats 

producing net roll rotations out of the turn. In contrast, net wingbeat rotations about the 

pitch and yaw axes were directed upwards and into the turn, respectively, throughout 

turning. Oscillations of body rotations within wingbeats were larger in pitch and roll (16 

+ 5 and 13 + 6 °/wingbeat, respectively), and smallest in yaw (4 + 3 °/wingbeat), 

indicating yaw angular velocities were most uniform. 
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Figure 2_4. Net aerodynamic force magnitude (|F|) in line with the stroke averaged 

aerodynamic force for turning pigeons. The force magnitude is normalized to body 

weight (BW) and wingbeat duration. Grey shading indicates downstroke. (A)  Mean |F| + 

SD (N=20) for each of 3 individual pigeons. (B) Pooled mean + SD of the mean |F| 

across the three pigeons. Representative silhouette at both phases of upstroke and 

downstroke peak force (black arrows) illustrates timing with respect to wing 

configuration. Note that the discontinuity between upstroke and downstroke traces results 

from normalization to the half-stroke phases, necessitated by variations in stroke 

durations. 
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 Pigeons produce consistent patterns of aerodynamic force. The directions and 

magnitudes of instantaneous net aerodynamic force (F) exhibited stereotypic patterns 

within the body frame during both downstroke and upstroke. (Fig. 2_2D, 2_4, 2_5). 

During downtroke F was directed mainly in the midsagittal plane of the birds, whereas 

during upstroke F was more variably directed.  Net aerodynamic force magnitude (|F|) 

approximated zero at the upstroke-downstroke transition, before peaking near mid-

downstroke (4.5 + 0.4 body weights (BW) at 53% of the downstroke period; Fig. 2_4). At 

the downstroke-upstroke transition, F momentarily opposed the stroke average. 

Throughout the remainder of the upstroke, however, the pigeons produced aerodynamic 

force in support of body weight, in line with the stroke average. |F| reached a maximum 

at mid-upstroke (2.3 + 0.3 BW, Fig. 2_4), coinciding with tip-reversal (Fig. 2_4B, left 

silhouette). Although upstroke peak |F| averaged about half the downstroke peak |F|, the 

aerodynamic impulse generated during upstroke averaged 27 + 4% of the impulse 

generated during downstroke. Aerodynamic forces averaged 1.33 + 0.07 BW over the full 

wingbeat cycle, consistent with the pigeons’ need for centripetal forces in addition to 

weight support to fly through the turn. A sensitivity analysis consisting of a decrease and 

an increase of the wing masses by 10% resulted in an increase and a decrease of upstroke 

peak force estimate by approximately 5%, respectively, indicating the robustness of our 

findings for upstroke aerodynamic force based on a full body and wing mass distribution 

model of the birds. 
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Figure 2_5. Mean net downstroke aerodynamic forces (Fd) for three turning pigeons 

expressed in the body frame and superimposed on a pigeon outline. The mean + SD 

vector cone is depicted by a different color for each individual averaged for all analyzed 

wingbeats of the turns. For clarity, three views are provided. (A) rear view, (B) side view 

and (C) oblique view. 
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 As the pigeon rotated its body and changed its flight trajectory, downstroke-

averaged aerodynamic forces (Fd) were produced in a uniform direction with respect to 

the pigeon’s body during the five sequential wingbeats of the turn (Fig. 2_5). Fd were 

oriented in the mid-sagittal plane of the bird’s body and directed anterior to the dorso-

ventral body axis by 38 + 7° (Fig. 2_5), consistent with the ‘pitched-up’ body orientation 

of pigeons during slow steady flight (~ 32° at a flight speed of 5-6 ms
-1
 (Biewener et al., 

1998)). During slow flight aerodynamic drag is small and, by approximation, only gravity 

needs to be countered by near vertical aerodynamic forces. 
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Figure 2_6.  
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Figure 2_6 (Continued). Decomposition of sequential body rotations of a turning 

pigeon. (A,B) Outline of a pigeon, with superimposed Fd and SD vector cone, as well as 

the plane to which Fd is normal, and an exemplary axis of body rotation (thick black 

line), all in the body frame. (A) The component of the body rotation that redirects Fd 

(blue circular arrow). Note that the axis describing this rotation fraction lies within the 

circular blue plane. (B) The component of the body rotation about Fd (orange circular 

arrow). (C) Fractions of body rotation for four sequential, complete wingbeats of the turn, 

showing the orthogonal components of body rotations that redirect Fd (blue fraction) 

versus which occur about Fd (orange fraction). Pooled mean + SD of means of three 

individuals. Mid-downstroke outlines of five sequential wingbeats, as seen from a single 

elevated viewpoint from inside the turn. Grey arrows and dotted lines link colored bars to 

positions in the turn. Asterisks indicate significant differences between body rotation 

fractions. 

 

 Turning pigeons prioritize changes in trajectory over angular positioning of 

the body.  By comparing rotations of the pigeon’s torso with respect to redirection of Fd 

over the course of a wingbeat in the global frame, we evaluated the extent to which 

pigeons relied on body rotations to redirect Fd versus to what extent body rotations 

occurred about the direction of Fd (see methods for details). Body rotations that redirect 

Fd alter flight trajectory, but body rotations about Fd leave the direction of Fd in the 

global frame unaffected, and therefore do not change flight trajectory. This analysis 

revealed that for each sequential wingbeat of the turn, the pigeon’s body progressively 

rotated about an axis that was increasingly aligned with the direction of Fd (Fig. 2_6). 

Body rotations produced over the course of the first two wingbeats of the turn 

predominantly redirected Fd (70.1 + 4.1 % and 64.4 + 17.8 %, respectively), whereas 

body rotations during the last two wingbeats occurred predominantly about Fd (60.2 + 5.6 

% and 69.4 + 2.3 %) (Fig. 2_6C). 
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 In summary, during turning flights the pigeon’s torso oscillated vigorously due to 

the combined effect of the flapping wings (resulting from inertial forces) and 

aerodynamic forces in relation to gravity. Aerodynamic forces accelerating the bird’s 

center of mass peaked during downstroke, but also peaked during upstroke and were 

roughly half the downstroke magnitude. These aerodynamic forces serve to offset gravity 

and change the bird’s flight trajectory to achieve level 90° turns. Even though the 

pigeon’s orientation changed significantly about all three body-axes, downstroke-

averaged aerodynamic forces were produced in a uniform anatomical direction.  

Decomposition of successive wingbeat 3D body rotations revealed that early in the turn 

body rotations of the pigeon mainly redirected downstroke-averaged aerodynamic forces, 

reflecting anatomical constraints on the direction of aerodynamic force production. 

However, later in the turn body rotations mainly served to reorient the bird’s body for 

straight flight, and had little effect on the direction of aerodynamic force production. 
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DISCUSSION. Using an analytical approach based on high-speed 3D kinematics and 

detailed body mass distributions, we determined the time-varying net aerodynamic forces 

produced by slowly flying pigeons as they negotiated 90
o
 level turns (Fig. 2_2_2).  We 

identified the tip-reversal upstroke as aerodynamically active (Fig. 2_2, 2_4B), indicating 

its role for increased power production and control of body position. Net aerodynamic 

forces were produced in a uniform direction within the pigeon’s body frame, requiring 

that changes in flight trajectory be mediated by body rotations that redirect aerodynamic 

force in the global frame (Fig. 2_5). Consistent with our hypothesis, the overall turning 

strategy consisted of force vectoring to change the pigeon’s flight trajectory, followed by 

re-acquisition of the bird’s preferred body orientation for forward flight (Fig. 2_6). 

 

 Substantial rotations occurred about all three anatomical axes indicating that 1) 

pigeons are not restricted to a particular anatomical axis to change their body orientation, 

and 2) body rotations function to redirect net aerodynamic forces as needed to negotiate 

the turn (Table 1). That body rotations occurred mainly about the birds’ roll axis does not 

necessarily reflect a preference for this axis, but may simply reflect the birds’ body 

orientation upon entering the turn and the reliance on force vectoring to negotiate the 

turn. 
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 Net Aerodynamic force magnitude (|F|) varied consistently, with minima and 

maxima occurring at wingbeat phases as predicted by aerodynamic theory (Greenewalt, 

1975), across all individuals and trials. The average net aerodynamic force per wingbeat 

was greater than one BW because turning birds need to accelerate themselves to redirect 

their flight trajectory, as well as offset their weight due to gravity. The small negative 

peak in |F|, opposing the stroke-averaged aerodynamic force, may well reflect an 

aerodynamic consequence of strong supination of the wings near the downstroke-

upstroke transition (Brown, 1963). 

 Positive aerodynamic force during the upstroke coincided with wing tip-reversal 

(Fig. 2_4B, left silhouette). During an upstroke with tip-reversal, the elbow and wrist are 

flexed, and the hand-wing is supinated, causing it to be inverted. Elbow and wrist flexion 

effectively moves the point of wing rotation from the shoulder during the downstroke 

towards the wrist during the upstroke, facilitating the upward ‘back flick’ of the hand-

wing. This tip-reversal mechanism is found in the slow to intermediate flight of birds 

with relatively pointed wings, as well as some birds with rounded wings (Brown, 1963; 

Zimmer, 1943; Tobalske, 2007), and bats (Aldridge, 1986; Norberg, 1976; 1990). The 

functional significance of wing tip-reversal has been the subject of debate since the 

pioneering work of Brown (Brown, 1948), and has been proposed by others in prior 

studies of avian flight to be aerodynamically active (Aldridge, 1986, Tobalske, 2007; 

Norberg, 1976; 1990; Brown, 1948; Alexander, 1986; Azuma, 1992; Bundle & Dial, 

2003; Hedrick et al., 2004; Iriarte-Diaz et al., 2011; Lorenz, 1933; Spedding et al, 1984).  
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Until now, however, aerodynamic force production of the tip-reversal upstroke had not 

been convincingly demonstrated during vertebrate flight. 

 The consistent force patterns observed here across wingbeats of all three pigeons 

provide the first definitive evidence for upstroke aerodynamic force production during 

slow flight in birds larger than hummingbirds (Fig. 2_2, 2_4).  Useful contributions of an 

active tip-reversal upstroke to weight support can therefore be expected during other 

modes of flight where tip-reversal is present, such as hovering, landing and steady slow 

flight. This is reinforced by the fact that we observed no significant differences in 

upstroke force patterns across the five wingbeats during which birds entered, executed 

and left the 90° turn. Aerodynamic force generation by the tip-reversal mechanism also 

agrees with recent force measurements of pigeon wings spun like a propeller, while 

positioned in an upstroke configuration (Crandell & Tobalske, 2011). 

 Although maximum F during the upstroke reached 50% of maximum F during the 

downstroke (Fig. 2_4), the upstroke generated only 27 + 4% of the downstroke impulse. 

The smaller impulse of the upstroke reflects its shorter period (42% of the wingbeat 

duration), as well as the opposing aerodynamic force production relative to weight 

support early in the upstroke (Fig. 2_4B).  

 In a comparative context, the relative contribution of upstroke aerodynamic force 

to total impulse in pigeons is nevertheless surprisingly high. Hummingbirds operate at 

temporal and spatial scales similar to insects (2), and, until recently, were thought to 

share weight support between the two halves of the wingbeat (Weis-Fogh, 1972).  
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However, hovering rufous hummingbirds generate only 33% of the downstroke impulse 

during upstroke ((Warrick et al, 2005), based on wake measurements).  With an upstroke 

that generates 27% of their downstroke impulse, pigeons achieve a similar impulse 

distribution to that found in rufous hummingbirds, which is remarkable since 

hummingbirds are thought to have evolved a highly derived upstroke (Stolpe & Zimmer, 

1939). 

 Our hypothesis that pigeons produce aerodynamic forces in a uniform anatomical 

direction is also clearly supported (Fig. 2_5). Fd was oriented within the mid-sagittal 

body plane and directed antero-dorsally, with little variation across successive turning 

wingbeats. Thus, during low speed flight, pigeons exhibit a consistent direction of net 

aerodynamic force production with respect to their body, reflecting the fundamental 

anatomical features that underlie powered avian flapping flight. 

 The constrained direction of force production in the body frame indicates that 

pigeons turn much like insects and helicopters. Helicopters redirect aerodynamic forces 

relative to their fuselage (in the body frame) within relatively narrow ranges (roughly 

20°; (Talbot & Corliss, 1977)), meaning that maneuvers with more substantial 

redirections of resultant forces in the global frame require force vectoring, as we found 

for pigeons. Airplanes, with decoupled wing lift and engine thrust, can redirect resultant 

forces to a larger degree within the body frame, particularly in the fore-aft direction (for 

modern fighter planes this can be > 90° (Winchester, 2006)), reducing their reliance on 

force vectoring to maneuver. 
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 The turning strategy of pigeons appears to prioritize trajectory changes over 

readjustments of body orientation. Body rotations of the pigeons early in the turn mainly 

contribute to changes in flight trajectory, whereas body rotations progressively later in 

the turn predominantly serve to realign the body for subsequent forward flight, having a 

smaller effect on redirecting aerodynamic force (Fig. 2_6C). This turning strategy likely 

arises from constraint of Fd direction with respect to the bird’s body, which requires force 

vectoring to redirect Fd. However, body rotations that redirect Fd during the first part of 

the turn result in a body orientation that is not well suited for the bird’s new flight 

trajectory. Therefore, once the bird achieves its new target flight trajectory, its preferred 

body orientation for forward flight must be reacquired by rotating its body about Fd. Only 

body rotations that occur about Fd leave the newly acquired flight trajectory unaffected, 

which explains why these body rotations predominantly occur later in the turn. 

 To the extent that aerodynamic force production may be anatomically constrained 

in avian flapping flight, it seems likely that the pattern of early flight trajectory 

adjustment followed by reacquisition of a preferred forward flight body orientation 

observed here for slow turning flight may also apply for fast turning flight.  At higher 

flight speeds, however, changes in wings and/or tail configurations are likely to produce 

more substantial changes in aerodynamic force with respect to the bird’s body (Rüppell, 

1977), allowing for changes in aerodynamic force direction, independent of force 

vectoring, to achieve a turn. Additionally, given that flight power requirements are lowest 

at intermediate speeds (Tobalske et al., 2003), birds may be able to redirect aerodynamic  
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force within the body frame by differentially activating flight muscles between their 

inside and outside wings. This could enable an alternative turning strategy to that 

observed here.  For instance, during flight versus when flap-running, chukars produced 

aerodynamic forces roughly in the same global direction, yet body pitch orientation 

differs by about 30° between these behaviors (Dial et al., 2008). These findings indicate 

that birds may be able to re-direct aerodynamic forces more variably with respect to the 

body depending on behavior or power output. 

 At the low flight speeds examined here, pigeons operate much like helicopters, 

which have limited capacity to redirect aerodynamic forces relative to their body, relying 

on whole-body force vectoring to change flight trajectory, similar to fruit flies, blow flies 

and house flies (Götz & Wandel, 1984; Wagner, 1986; Fry et al., 2003; Vogel, 1966). 

The moderate redirection of Fd with respect to the pigeon’s body that does occur, may 

contribute to body torques required to produce the body rotations needed for turning 

(Warrick & Dial, 1998; Hedrick & Biewener, 2007). Understanding flight control will 

therefore require insight into the specific mechanisms used by pigeons to generate the 

torques that produce the observed body rotations. However, torques cannot be inferred 

from Newton’s second law of motion because the distribution of applied forces remains 

unknown. Nevertheless, by limiting the direction of aerodynamic force production to a 

single main axis relative to the body, our results indicate that birds may simplify the 

problem of controlling turns from six to four degrees of freedom (LaValle, 2006). 
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METHODS. Three rock doves (Columba livia) were selected from ten wild-caught 

individuals, based on subjective assessment of their initial turning flight performance 

during training. These pigeons were housed, trained and studied at the Concord Field 

Station (Bedford, MA, USA) in accordance with protocols approved by Harvard 

University’s Institutional Animal Care and Use Committee. The pigeons were trained to 

fly back and forth between two perches situated at either end of two 5m long by 1m wide 

by 2m high netted sections, connected by a 90º turn midway (Fig. 2_2B). The 

symmetrical, square-corner corridor was constructed of lightweight, 2-cm mesh nylon 

deer netting supported by a PVC frame consisting of 4-cm diameter piping. 

 Using nine synchronized, high-speed cameras, 3D positions of body markers were 

collected within a calibrated 1.8 m
3
 cubic volume that encompassed the turn. Trials 

accepted for analysis were those in which the birds 1) did not contact the netting, and 2) 

maintained a turning flight trajectory relative to global horizontal of < 5°. The pigeons 

were marked at 16 anatomical locations (Fig. 2_3): Dorsum at the second thoracic 

vertebra (dm); Left and right rump (4-cm lateral to the vertebral column over the 

synsacrum) (ru); Center of head (hd); Left and right wing roots (sh); Left and right wrists 

(wr); Tip of left and right 5
th
 primary feathers (5p); 67% of the length of left and right 9

th
 

primary feathers (9p); 67% along the length of left and right outer tail feathers (tl); Left 

and right tip of the innermost secondary feathers (1s). Elbow position was determined 

trigonometrically based on two lengths and three positions: brachial and ante- brachial 

segment lengths and wing root, wrist and tip of the innermost secondary feather  
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positions. Flights were recorded with two camera systems: A high-speed light video 

system recording at 250 Hz with 0.001 sec exposure time, consisting of one FastCam-X 

1280 PCI and two FastCam 1024 PCI cameras (Photron USA Inc., San Diego, CA, 

USA), and an infrared-based auto-tracking system recording at 240 Hz with 0.0004 sec 

exposure time, consisting of six ProReflex MCU240 cameras (Qualisys AB, Gothenburg, 

Sweden), was used to track flight kinematics. The two camera systems were 

synchronized using a start trigger signal. The visible-light videos were digitized using 

DLTdv3 (Hedrick, 2008). Calculations were performed in Matlab (Mathworks Inc., 

Natick, MA) using custom-written scripts. Positional data were filtered with a fourth- 

order Butterworth filter using a low-pass cutoff frequency three times the wingbeat 

frequency. Cutoff frequency was determined by residual analysis (Winter, 2005).  

 Rotations. The sum of absolute back and forth rotations within a wingbeat and 

the net change in body orientation over a wingbeat period were defined as continuous and 

net wingbeat body rotations, respectively, about each of the body axes. For each turn, five 

sequential wingbeats were analyzed, during which continuous and net wingbeat body 

rotations about each axis were accumulated. 

 Aerodynamic Forces. The position of the net CM was approximated throughout 

the turn using a mass-distribution model of the body and tail, head, and wings (Fig. 2_3). 

The torso and tail were represented by a single point-mass, because the effect of tail 

movements on net CM were assumed to be minor and are difficult to model. The head 

and 14 chord-wise strips per wing were modeled as point-masses, with time-varying  
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positions based on segment kinematics (Fig. 2_3). The two wings together constitute 

approximately 1/8
th 
of a pigeon’s body mass. The motion of the flapping wings causes the 

net CM to move substantially relative to a pigeon’s torso CM, necessitating the time-

dependent, non-body-fixed CM calculations.  

 Wingbeats were partitioned into upstroke and downstroke phases, based on 

reversal of the major bending direction of the primary feathers. This bending-reversal of 

the primary feathers coincided with the instant the primary feather markers moved 

laterally relative to the body, in both ventral (start of upstroke) and dorsal (start of 

downstroke) positions.  

 Instantaneous net aerodynamic forces (F) were determined throughout the turn 

based on net CM accelerations relative to gravity, because the CM of a freely flying bird 

can only be accelerated by external gravitational and aerodynamic forces. F vectors were 

normalized to wingbeat phase and expressed in the body frame. The net aerodynamic 

forces averaged over the duration of the downstroke (Fd) act in line with the main impulse 

vector, the time integral of force, produced during each wingbeat. 
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 Redirection of aerodynamic forces versus rotation about aerodynamic forces. 

Identification of Fd allowed for decomposition of body rotations relative to this direction 

of main aerodynamic impulse imparted during each downstroke. Body rotations of the 

bird were analyzed with respect to Fd over the five wingbeats of the turn. Two 3D 

rotations were calculated between successive mid-downstroke instants of each wingbeat: 

a 3D body rotation and a 3D redirection of Fd. Body rotations identical to the redirection 

of Fd were designated as representing 100% redirection of Fd. Conversely, if body 

rotations did not redirect Fd, body rotations were designated as representing 100% 

rotation about Fd. Mathematically, this approach is identical to expressing the 3D body 

rotation as a vector in the body frame and determining the relative magnitudes of two 

perpendicular projections of this vector: 1) The projection of the 3D body rotation vector 

on the plane normal to Fd represents the component of the body rotation that redirects Fd 

(force vectoring), and 2) The projection of the 3D body rotation vector on Fd represents 

the component of the body rotation about Fd.  This approach allowed any 3D body 

rotation to be decomposed into two complementary body rotation fractions, one that 

redirected Fd and one that rotated about Fd (Fig. 2_6A, 2_B). 

 Statistics. All results were based on five complete wingbeats nearest the center of 

each of two left and two right turns for each individual (20 wingbeats per bird, N=3) 

expressed as mean + SD. Paired t-tests (JMP, SAS Institute, Cary, NC) were used to 

compare group means for the three individuals.  Differences were considered significant 

when p<0.05. 
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Pigeons in low speed aerial turns  

produce aerodynamic torques through wing trajectory changes 
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Summary 

The complexity of low speed maneuvering flight is apparent from the combination of two critical 

aspects of this behavior: high power and precise control. To understand how such control is 

achieved we examined the underlying kinematics and resulting aerodynamic mechanisms of low 

speed turning flight.  Three rock pigeons (Columba livia) were trained to perform a 90-degree 

level turn in a stereotypical fashion and detailed three-dimentional (3D) kinematics at high 

speeds were recorded. Applying the angular momentum principle, we used mechanical modeling 

based on time-varying 3D moments of inertia and mass distributions to separate aerodynamic 

from inertial accelerations of the turning pigeons’ bodies. 

 Directly measured body accelerations were predicted by aerodynamic torques, justifying 

an exploratory comparison of inside wing versus outside wing kinematic proxies for 

aerodynamic torque generating mechanisms. Contrary to previous findings, contra-lateral 

asymmetries in wing speed did not appear to underlie the 90-degree aerial turns, and 

surprisingly, nor did contra-lateral differences in wing area, angle of attack, wingbeat amplitude,  
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or timing. However, body accelerations into the turn were associated with the outside wing 

sweeping more anteriorly, compared to a more laterally-directed inside wing. Together with the 

relatively more retracted path, the inside wing pronated about the wing long axis more strongly 

than the outside wing, offsetting any difference in angle of attack that would arise from the 

observed asymmetry in wing trajectory.  

 To generate a roll and pitch torque into the turn, the pigeons simply reorient their wing 

trajectories toward the desired direction. As a result, the aerodynamic force, which acts above the 

center of mass, redirects inward, generating the torques required to turn. 

 

Introduction 

High power and precise control are two critical aspects of low speed maneuvering flight. Insight 

into the control of flight maneuvers requires understanding the mechanics and aerodynamics 

involved, which to date, has received little attention compared with steady forward flight.  

 Mechanistically, the task of turning can be decomposed in two sub-objectives.  

 1) Re-direction of the flight path (translational movement): During this change in course, 

any linear momentum present upon entering the turn that is not in the direction of the new 

desired course must be transferred to the surrounding air. Additionally, any ‘new’ required 

momentum to successfully negotiate the turn must be acquired. To achieve this change in 

direction of momentum, slowly flying vertebrates, including horseshoe bats, pigeons, fruit bats 

and cockatoos, all bank, redirecting the resultant aerodynamic force into the turn, analogous to 

turning fixed-wing aircraft (Aldridge, 1989; Warrick & Dial, 1998; Hedrick & Biewener, 2007;  
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Iriarte-Diaz & Swartz, 2008; Chapter 2). Fruit bats also reorient their body towards the turn 

using thrust as an additional source of centripetal acceleration (Iriarte-Diaz & Swartz, 2008). 

 2) Reorientation of the body (rotational movement): There are two mechaniss by which a 

flying animal can rotate its body: (i) aerodynamic reorientation, achieved by generating 

aerodynamic forces that are not directed through the center of mass (CM), resulting in an 

aerodynamic moment arm and subsequent torque, and (ii) inertial reorientation, due to phasic 

changes in the moments of inertia (I) of moving appendages, which result in inversely related 

phasic changes of angular velocity of the body leading to net changes in orientation (Frolich, 

1980). The mass distributions and time varying configurations of head, body and wings 

determine both aerodynamic and inertial maneuvering in flying birds.  

 Irrespective of the nature of the torque generating mechanisms, initiation and active 

control of maneuvering flight requires asymmetries in the locomotor system. Resolving 

maneuvering mechanisms on a fine timescale (within wing beats) is necessary to identify the 

mechanisms involved in turning flight that require differential neuromuscular control. 

 Pigeons and cockatoos redirect net aerodynamic forces through bilateral asymmetries in 

both downstroke velocity and angular momentum of the two wings (Warrick & Dial, 1998; 

Hedrick et al. 2007). Furthermore, pigeons maneuvering through a course with multiple turns 

generate small, sequential, pectoralis muscle force asymmetries to bank and navigate through the 

course (Warrick et al. 1998). 
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 The generation of torques that rotate the bird are integral to low speed avian turning flight 

(Chapter 2). Here we seek to characterize the key mechanism of low speed turning in the pigeon, 

by investigating whether the relevant turning torques are of aerodynamic or inertial nature, and 

which contralateral wing and/or tail asymmetries are associated with these torques. 

 Based on previous findings in pigeons, cockatoos and bats (Warrick & Dial, 1998; 

Hedrick et al. 2007; Iriarte-Diaz et al., 2011), we expect inertial and aerodynamic effects to act 

synergistically in rotating the body, with a greater influence of the aerodynamic reorientations.  

We further hypothesize that aerodynamic torques are generated through contralateral 

asymmetries in wing velocity and aerodynamic angle of attack.  

 To test these hypotheses, we record detailed kinematics of three pigeons negotiating a 

level 90-degree turn. By merging morphological mass-distribution measurements with these 

kinematic data we generate a full three-dimensional (3D) dynamics model that can separate 

aerodynamic from inertial accelerations of the turning pigeon’s body, based on application of the 

angular momentum principle. A determination of the timing and magnitude of both inertial and 

aerodynamic body accelerations is expected to provide a more accurate description of the 

rotational component of the maneuver, as well as allow for more a detailed identification of the 

wing and tail kinematics underlying these body accelerations. 

 

Materials and Methods 

Three rock doves (Columba livia) were selected from 10 wild-caught individuals, based on their 

turning flight performance during training. These pigeons were housed, trained, and studied at  
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the Concord Field Station (Bedford, MA) in accordance with protocols approved by Harvard 

University’s Institutional Animal Care and Use Committee. The pigeons were trained to fly back 

and forth between two perches situated at either end of two 5-m-long by 1-m-wide by 2-m-high 

netted sections, connected by a 90° turn (Fig. 3_1). The symmetrical, square-corner corridor was 

constructed of lightweight, 2-cm mesh nylon deer netting supported by a PVC frame consisting 

of 4-cm diameter piping. 

 
 

Figure 3_1. Schematic top view of the flight corridor.   Camera outlines represent viewing 

angles, with camera distances underrepresented by 50%, for the high-speed (blue) and infrared-

based auto-tracking (red) systems. The spatially calibrated section of the 90-degree turn (dark 

blue), pigeon silhouettes, and perches (grey lines) are drawn to scale. Dimensions are noted 

along the outside of one leg of the symmetrical corridor. 
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 Flights were recorded with two camera systems. A high-speed light video system 

recording at 250 Hz with 0.001 sec exposure time consisted of one FastCam-X 1280 PCI, two 

FastCam 1024 PCI cameras (Photron USA Inc., San Diego, CA, USA), and two RedLake PCI 

500 cameras (RedLake Inc., San Diego, CA, USA). An infrared-based auto-tracking system 

recording at 240 Hz with 0.0004 sec exposure time consisting of six ProReflex MCU240 

cameras (Qualisys AB, Göteborg , Sweden) was used simultaneously. The two camera systems 

were synchronized using an electrical pulse trigger. 

 Using the eleven synchronized high-speed cameras, time-varying positions of 10 mm 

diameter torso and tail markers, as well as 4 mm diameter head and wing markers were collected 

within a calibrated 1.8 m
3
 cubic volume that encompassed the turn. Trials accepted for analysis 

were those in which the birds (i) did not contact the netting and (ii) maintained a turning flight 

trajectory relative to global horizontal of <5°. The markers were adhered at 16 anatomical 

locations (see Fig. 2_3): dorsum at the second thoracic vertebra; left and right rump (4-cm lateral 

to the vertebral column over the synsacrum); center of head; left and right wing roots; left and 

right wrists; tip of left and right fifth primary feathers; 67% of the length of left and right ninth 

primary feathers; 67% along the length of left and right outer tail feathers; left and right tip of the 

innermost secondary feathers. Elbow position was determined trigonometrically based on two 

lengths and three positions: brachial and antebrachial segment lengths and wing root, wrist, and 

tip of the innermost secondary feather positions. The maximum mass added to a bird was 14 g, 

or 4% of the body mass. 
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 The 3D marker positions were reconstructed based on the volumetric calibration, using 

freely available digitization software (Hedrick, 2008). Calculations were performed in 

Mathematica (Wolfram Research, Champaign, IL, USA) and Matlab (Mathworks Inc., Natick, 

MA, USA) using custom-written scripts. Positional data were filtered with a fourth-order 

Butterworth filter using a low-pass cutoff frequency three times the wingbeat frequency. Cutoff 

frequency was determined by residual analysis (Winter, 2005). Correlations were tested with 

standard least squares regression models with individual effect leverage (JMP, SAS Institute, 

Cary, NC). Unless noted otherwise, results were expressed as mean ± SD.  
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Figure 3_2. Dynamics model of a pigeon. Representations of the mass distribution and 

moments of inertia of a pigeon in late downstroke (a), and near mid-upstroke (b). The body and 

head (large and small grey ellipsoids) were treated as rigid objects for which the moments of 

inertia were assigned about the principal axes: anterior-posterior (roll, red line), medio-lateral 

(pitch, green line) and dorso-ventral (yaw, blue line). Point-masses represent three articulating 

segments of each wing: the brachium (two masses), antebrachium (one mass) and the hand wing 

distal to the wrist (eleven masses). The volumes of the spheres and ellipsoids represent relative 

masses. 
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 Applying the angular momentum principle (Pratab & Ruina, 2009along with wing-

segment masses and moments of inertia for the body and head, to the time-varying 3D marker 

positions allowed for calculations of aerodynamics- and inertia-based accelerations of the body. 

The principle of conservation of angular momentum states that the rate of change of the angular 

momentum of a system, e.g., an entire bird, is equal to the sum of all torques acting about the 

center of mass (Mitiguy,  2008). For the body plan of a pigeon, with many spatial degrees of 

freedom, the angular momentum can be calculated through summation of the angular momentum 

of each body segment about the collective, or system, center of mass (���).  Note that ��� can 

move relative to the torso, due to varying wing and head positions. 

 

Table 3_1. Inertial morphological properties measured for Columba livia (N=4): segment 

masses. 

 

segment % of ���   

torso (including tail) 83.6 ± 1.3 

head   3.9 ± 0.3 

brachium   1.5 ± 0.3 

ante-brachium   2.9 ± 0.4 

hand wing   1.9 ± 0.1 
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Table 3_2. Inertial morphological properties measured for Columba livia (N=4): mass moments 

of inertia. 

 

 

(*10-5 kg*m
2
) roll pitch yaw 

torso 20.98 ± 3.75 56.38 ± 0.28 71.19 ± 8.62 

head   3.90 ± 0.45   5.93 ± 0.90   4.42 ± 0.13 

 

 To calculate the system angular momentum, a mass-distribution model was created that 

treated the torso/tail (body), and head, as rigid objects, and modeled the wings as a series of point 

masses positioned along the wing segment (Fig. 3_2; Table 3_1). Here, the head was assumed to 

remain in a fixed orientation with respect to the body and the inertial effect of tail movement to 

be negligible. The wing masses were measured as described in Ros et al. (2011) (Chapter 2). The 

moments of inertia about the antero-posterior (roll), medio-lateral (pitch), and dorso-ventral 

(yaw) axes of the head and body (Table 3_2) were calculated from the angular swing periods 

during two-point suspensions (see Newman and Searle, 1957 and Alexander, 1968). 

Additionally, the centers of mass of the head and body were determined by multiple single-point 

suspensions as the intersection of the direction of gravity. 
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The expanded angular momentum principle for the pigeon system about ��� was given by: 

 �� �	⇀� ��⁄dt = (�(��� ∗ [(�⇀�� �����⁄ − 1�� ∗ ( (��� ∗ �⇀�� �����⁄ )
!

"#$
)) ⨯

!

"#$
 

(((− 1�� ∗ ( (��� ∗ (( ����&⇀�� +  �(⇀���� ⨯  ����)⇀��) + (( �*⇀���� ⨯ �⇀�� �����⁄ ) + ( �(⇀���� ⨯  ����)⇀��))))
!

"#$
)) + 

  �*⇀���� ⨯ �⇀�� �����⁄ +   �(⇀���� ⨯ (  �(⇀���� ⨯ �⇀�� �����⁄ )) +  ����&⇀�� + 2  �(⇀���� ⨯  ����)⇀��)])) + 

((-���� �����⁄ ·� *⇀����) + (����� ∗ (− 1�� ∗ ( (��� ∗ �⇀�� �����⁄ )
!

"#$
)) ⨯ 

(− $/0 ∗ ( (��� ∗ (( ����&⇀�� +  �(⇀���� ⨯  ����)⇀��) + (( �*⇀���� ⨯ �⇀�� �����⁄ ) + ( �(⇀���� ⨯ ( ����)⇀�� +  �(⇀���� ⨯ �⇀�� �����⁄ )))))!
"#$ )))), (1) 

 with: 

 12 13⇀0 0�⁄
�4  = rate change of angular momentum in the inertial frame (N) about ���; 

��� = mass of particle Pi; 

��  = mass of the system (entire bird); 

-���� �����⁄  = inertia dyadic of the body about the center of mass of the body; 

 

�⇀�� �����⁄  = vector from the body center of mass to Pi; 

 

 ����)⇀�� = velocity of Pi, relative to the body; 

 �(⇀���� = angular velocity of the body; 

 

 ����&⇀�� = acceleration of Pi, relative to the body; 

 �*⇀���� = angular acceleration of the body. 
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 Because only external torques can change the angular momentum of the entire bird, a 

bird in mid-air can only be rotationally accelerated by aerodynamics. Gravity, by definition, acts 

through ��� and therefore does not apply a torque about ���. The rate change of the angular 

momentum solved in three dimensions for the pigeon (Eq. 1) therefore is equivalent to the 

aerodynamic torque acting about ���. 

 Similarly, in a hypothetical absence of air, any changes in the angular momentum of the 

wings will be matched by an equal and opposite change in the angular momentum of the rest of 

the bird (torso, head and tail), referred to here as the body. By equating the entire right hand side 

of equation (1) to 0,  �*⇀���� can be solved between each time step. Furthermore, by comparing 

the expected angular velocity from inertial reorientation to the measured angular velocity, body 

accelerations based on aerodynamics can be deduced. These aerodynamic body accelerations 

closely matched measured aerodynamic torques, and were used for further analysis, since they 

allowed for a direct comparison with inertial body accelerations.  

 

Table 3_3. Net wingbeat reorientations accumulated throughout the turn. 

 

 

body rotation 

components 

reorientation (deg) 

(mean ± SD) 

roll  76.8 ± 13.6 

pitch  42.6 ±   1.6  

yaw  58.1 ±   4.3 
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 Wingbeats were partitioned into upstroke and downstroke phases, based on reversal of 

the major bending direction of the primary feathers. This bending reversal of the primary 

feathers coincided with the instant the primary feather markers moved laterally relative to the 

body, in both ventral (start of upstroke) and dorsal (start of downstroke) positions. Net wingbeat 

body rotations were defined as the resulting changes in body orientation over entire wingbeat 

periods and were calculated about each of the body axes. For each turn, five sequential 

wingbeats were analyzed, during which net wingbeat body rotations about each axis were 

accumulated (Table 3_3). 

 Potential wing and tail kinematic predictors were compared on an inside vs outside wing 

basis by averaging between left turn and right turn wingbeat cycle pairs. Due to the incremental, 

yet impulsive nature of pigeon turning flight (Warrick et al., 1998), wingbeat characteristics, 

such as variations in aerodynamic power output from one wingbeat to the next, could lead to 

higher wing speeds or angles of attack of both the inside and outside wing in a left turn as 

compared to a right turn (or vice versa), without accurately reflecting torque-related contra-

lateral asymmetries. To account for such potential differences between left and right wingbeat 

cycles, as well as differential left-right marker placement, wing kinematics were averaged over 

the left turn and right turn inside wings. Outside wing kinematics were averaged accordingly. 

 Averaging for inside versus outside wing comparisons was performed over wingbeat 

cycles, which were identified by the occurrence of head saccades. Turning pigeons tend to rotate 

their body to redirect aerodynamic force production during a wingbeat cycle immediately 

following a head saccade, which is consistently made into the direction of the turn (Chapter 4). 
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Results 

The three pigeons negotiated the 90° level turn at a CM speed of 3.3 ± 0.2 ms−
1
 and a wingbeat 

frequency of 8.3 ± 0.3 Hz. Of the whole-body mass of 319 ± 33 g, each wing (distal to the 

shoulder) comprised 6.3 ± 0.7 % and the head 3.9 ± 0.3 % (Table 3_1).  

 The low-speed, level turns in pigeons were predominantly driven by roll and yaw 

rotations (Fig. 3_3). Only pitch fluctuated with consistent periodicity within the wingbeat cycle. 

Body orientations about all three anatomical axes fluctuated within wingbeats independent of 

changes in body orientation across wingbeats (net wingbeat reorientations). Net wingbeat 

reorientations, summed throughout the turn, about the roll and yaw body axes comprised the 

majority of the body reorientations (Table 3_2). The birds consistently yawed into the turn, 

whereas roll changed direction, initially being directed into the turn, and later directed outwards. 

Pitch reorientations were generally directed upwards (head-up). 
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Figure 3_3. Low-speed, level turns in pigeons are predominantly based on roll and yaw 

rotations. Integrated angular velocities about the principal body axes throughout a representative 

right turn, with positive roll and yaw into the turn, as well as head-up pitch (small depictions, and 

Fig. 2-2a). Initial angles are based on the inclinations of the corresponding body axes with 

respect to the horizontal at the start of recording. The majority of body reorientations occurs 

about the roll and yaw axes. Only pitch varies periodically with the wingbeat cycle (blue shading 

represents downstroke phases). The bird’s center of mass passes the midpoint of the turn at t = 0 

s. 
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Figure 3_4. 
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Figure 3_4 (Continued). Aerodynamic estimates predict body accelerations. Body 

accelerations based on aerodynamic torque estimates predict measured body accelerations 

throughout left and right turns for three individuals (plotted symbols), about roll ( red; R
2
=0.44, 

p<0.01), pitch (green; R
2
=0.93, p<0.01) and yaw (blue; R

2
=0.43, p<0.01) axes. Body 

accelerations based on rate of momentum exchange (inertia) between the wings and the body 

(right panels) are either not correlated (roll), weakly correlated (yaw: R
2
=0.01, p=0.02), or 

weakly, negatively correlated (pitch: R
2
=0.02, p<0.01) with observed body accelerations. 

 

 Aerodynamic torques, not inertia-based momentum exchanges between the wings and 

body, predicted body accelerations (Fig. 3_4). Estimated aerodynamic accelerations of the body 

correlated positively with measured body accelerations about each of the principal body axes. 

Aerodynamic estimates most reliably predicted pitch rotations (p<0.01, R
2
 = 0.93), with body 

acceleration correlations about both roll (p<0.01, R
2
 = 0.44) and yaw (p<0.01, R

2
 = 0.43) of 

similar strength. The range of estimated aerodynamic accelerations was smallest about the yaw 

body axis. Inertial roll did not correlate with observed accelerations (p=0.82), but inertial and 

observed body accelerations did correlate about pitch (p<0.01) and yaw axes (p=0.02), although 

with extremely low predictive power (R
2
 = 0.02 and 0.01, respectively). 
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Figure 3_5. Roll velocity is initiated early and arrested late in the downstroke. (a) Mean ± sd 

of individual mean body velocities in roll (red), pitch (green) and yaw (blue) throughout three 

left and three right wingbeats early in the turn, and normalized to the wingbeat cycle period. 

Near the middle of the downstroke (blue shading) the body pitches bill-down (-) and rolls into 

the turn (+). (b) The mean individual roll and pitch accelerations peak in the first half of the 

downstroke (red and green, respectively), with extremes reversed in the second half of the 

downstroke, arresting the roll velocity and reversing the pitch velocities in (a), respectively. Pitch 

accelerations also show peaks near mid-upstroke, whereas roll accelerations are more variable 

during the upstroke.  
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Figure 3_6. Turning wingbeats are characterized by differentially swept wing trajectories. 
Mean ± sd (trace thickness) of individual mean trajectories of the distal wing marker for the 

inside (green) and outside (purple) wing for the same wingbeats as in Fig. 2-5. Both trajectories 

are represented as a right wing. The trajectories are displayed relative to the body frame, 

represented by the anterior (red), right (green) and dorsal (blue) directions, as well as the right 

shoulder location (black sphere). The means of the 3D trajectories, with the upstroke in a lighter 

shade, are projected on each of the anatomical planes, emphasizing the more protracted 

(anteriorly projected) path of the outside wing early in the downstroke. 

 

 During the turning wingbeats selected for analysis (Fig. 3_5-3_7), i.e. those following 

head saccades, roll velocity was initiated early and arrested late in the downstroke, with a peak in 

angular velocity into the turn occurring at mid downstroke (Fig. 3_5a, b). Roll velocities varied 

and were of much smaller magnitude during the upstroke. Body pitch velocities and 

accelerations consistently varied with wingbeat phase: head-up pitch acceleration peaked near 

the temporal middle of the upstroke and approximately two-thirds into the downstroke, whereas  
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a head-down pitch acceration peak coincided with the peak in roll acceleration near the first third 

of the downstroke. These pitch patterns were consistent for all wingbeat cycles analyzed, 

whereas body roll and yaw angular movements were more variable throughout the turn (not 

shown). Yaw velocity was consistently positive and directed into the turn over the full wingbeat 

cycle, with a moderate deceleration phase near the end of the downstroke. 

 

 Turning wingbeats were characterized by differentially swept wing trajectories, or paths 

relative to the body, accompanied by contralateral differences in axial wing orientation. 

Corresponding with the roll acceleration early in the downstroke phase (Fig 3_5b), the outside 

wing was swept and initiated relatively more anteriorly, compared to a more laterally directed 

inside wing trajectory (Fig 3_6). In concert with the contra-lateral asymmetry in wing 

trajectories, the inside wing was more strongly pronated, or rotated forward (leading-edge down) 

about the long axis of the wing during the first half of the downstroke (Fig 3_7a). This contra-

lateral difference in axial wing rotation was reversed in the second half of the downstroke 

through supination of the inside wing and pronation of the outside wing near the middle of the 

downstroke (Fig 3_7a). As the body rolled into the turn in the downstroke, the inside wing also 

acquired a higher speed (Fig 3_7b), and became oriented more laterally (Fig 3_7c). 
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Figure 3_7. 
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Figure 3_7 (Continued). Wing pronation accompanies a more caudally swept inside wing, 

whereas a greater wing speed and later projection aerodynamically dampen roll velocity. 

(a) For the same wingbeats as in Fig. 2-5; 2-6, during the upstroke, the inside wing (green) and 

outside wing (purple) supinate and subsequently pronate about the wing long-axis in synchrony. 

Early in the downstroke, the inside wing pronates to a larger degree than the outside wing 

(purple), resulting in an inside versus outside wing differential that is negative, or pronated 

(black trace ± sd). The more pronated inside wing in combination with the contra-lateral 

difference in wing trajectory  maintains comparable angles of attack between the wings. 

However, these wing-configuration and kinematic differences likely results in aerodynamic 

forces that act above the center of mass to be directed upwards and to the right side of the body, 

causing the pitch down and roll torques into the turn. (b)  Inside wing speed starts surpassing 

outside wing speed as the roll velocity (a) increases towards the inside wing. The higher speed of 

the inside wing persists longer than the roll velocity, indicating its contribution to passive 

aerodynamic roll damping, aided by a more lateral orientation angle (e) of the inside wing (the 

angle between the wing long axis and the sagittal plane of the body). 

 

Discussion 

Aerodynamic and inertial accelerations of pigeons turning during low speed flight were 

calculated using segment masses, moments of inertia and time-varying wing and body 

configurations. Directly measured body accelerations correlate with aerodynamic torques, 

justifying an exploratory comparison of inside wing versus outside wing kinematic proxies for 

aerodynamic torque generating mechanisms. Contrary to previous findings (Warrick & Dial, 

1998), contra-lateral asymmetries in wing speed do not appear to underlie these aerial turns, and 

surprisingly, nor do contra-lateral differences in wing area, angle of attack, wingbeat amplitude, 

or timing. To generate roll and pitch torques into the turn, the pigeons reorient their wing 

trajectories toward the desired direction (Fig. 3_6-3_7). As a result, the aerodynamic force, 

which acts above the center of mass, is redirected into the turn, generating the torques required to 

turn. 
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 Pigeons use a complex combination of roll, pitch and yaw body rotations to turn, with the 

largest contribution resulting from roll reorientations (Fig 3_2; Table 3_3). The roll rotations 

likely serve to redirect aerodynamic force production and therefore change the flight path 

(Chapter 2), since during the first half of the turn the birds roll into the turn, whereas during the 

second half they roll out. The observed roll patterns may also serve a secondary function 

allowing changes in body pitch to contribute to the turn. Due to the banked orientation while 

turning (Warrick & Dial, 1998; Hedrick & Biewener, 2007; Chapter 2), nose-up pitch 

reorientations can contribute to reorienting the body into the desired direction. Theoretically, a 

full 90-degree bank and a subsequent 90-degree pitch-up, followed by a restoring 90-degree 

outward roll, would accomplish a net change in yaw of 90 degrees, meeting the reorientation 

requirement of the 90-degree turn. However, because of the dual function of body rotations, 

changing flight trajectory and reorienting the body (Chapter 2), substantial yaw rotations are 

simultaneously required.   

 The summed net wingbeat yaw  reorientations  never fully matched the 90 degrees of the 

turn (Fig. 3_2), again illustrating the need for a composite of body rotations components to 

simultaneously meet the rotational (acquisition of the desired, new flight orientation) and 

translational (flight path changes and offsetting of gravity) requirements of the turn (Chapter 2). 
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 The consistent aerodynamic pitch accelerations related to the phase of the wingbeat cycle 

(Fig. 3_3, 3_5b), in combination with a “pitched-up” body posture and wing positions, strongly 

suggest that the center of pressure of the resultant aerodynamic force is positioned dorsally 

relative to the center of mass during the first half of the downstroke, and ventrally and anteriorly 

near the second half of the downstroke and the middle of the upstroke, respectively. These 

inferences corroborate the aerodynamic activity of the tip-reversal upstroke (Crandell & 

Tobalske, 2011; Chapter 2) and agree with previous findings that aerodynamic forces acting 

dorsal of the center of mass during the downstroke of the Japanese White-eye (Su et al., 2011). 

  Contra-lateral differences in wing trajectory and axial wing orientation angles (Fig. 3_6; 

3_7a) coincide with roll accelerations early in the downstroke directed towards the inside wing 

(Fig. 3_5b), and are likely indicative of the aerodynamic mechanism employed to generate the 

steering torque. Body accelerations that increase the angular momentum of the bird as a whole, 

likely require differential activation of contra-lateral flight muscles. In contrast to Warrick and 

Dial (1998), these ‘active’ body accelerations do not correlate with contra-lateral asymmetries in 

either wing speed relative to the body (relevant from a control perspective), or in the inertial 

frame (relevant for aerodynamics). Furthermore, contra-lateral differences in wing length (a 

proxy for wing area), angle of attack, wingbeat amplitude, or timing also do not relate to body 

accelerations. Instead, the pigeons simply reorient the flapping sweep of their wing trajectories 

toward the desired direction, which likely redirects the aerodynamic force into the turn. 

Assuming the aerodynamic force produced by the wings indeed acts above the center of mass,  
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the redirected aerodynamic force would therefore generate the observed roll towards the inside 

wing, in addition to the consistently observed nose-down pitch. 

  Considering the similarities in body plan across avian species, especially compared to 

flying insects, and the fairly simple nature of the aerodynamic torque generating mechanism 

described here, it is likely that other bird species use the observed mechanism to generate 

aerodynamic torques during slow turning flight. For example, cockatoos turning at low speeds 

displayed contralateral differences wing kinematics similar to those described in this study for 

pigeons, even though these differences did not relate significantly to roll accelerations in the 

cockatoos (Hedrick & Biewener, 2007). 

 The observed contra-lateral differences in wing trajectory and hand wing axial rotation 

angle corroborate the idea that fore-arm musculature is involved in low speed flight maneuvers 

(Bilo, 1985; 1994; Dial, 1992). The current results, however, do not exclude involvement of 

differential forces between the pectoralis muscles of the inside and outside wing (Warrick et al, 

1998) or corresponding differential wing speeds (Warrick & Dial, 1998) as additional or 

complementary torque generating mechanisms. Here, we found that differences in wing speed 

occur near the middle and end of the downstroke (Fig. 3_7b), when roll velocities are substantial 

and being arrested, respectively (Fig. 3_5a). The rotational speed of the body could passively 

increase the speed of the wing on the side of the bird that moves with the wingbeat (the inside 

wing). Such a mechanism has been termed passive rotational damping (Hedrick et al, 2009), and 

could be responsible for arresting the roll velocity near the end of the downstroke.  
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Additionally, the more lateral projection angle of the inside wing in the second half of the 

downstroke (Fig. 3_6; 3_7c), resulting from the differential wing trajectory established earlier in 

the downstroke likely gives the aerodynamic force produced by the inside wing a greater 

moment arm about the roll axis, adding to even stronger rotational damping. Body rotations that 

are passively damped would not require differential activation of contra-lateral wing muscles. 

 To further understand the neuro-muscular components of flight control, we are currently 

examining activation and strain patterns of flight muscles throughout aerial turns. Differential 

activation of distal wing muscles has been found to relate to steering in simulated flight in 

pigeons (Bilo & Bilo, 1983), in addition to which an antebrachial hand wing extensor, the 

extensor metacarpus radialis, was found to predict lower frequency components of turning 

(Hedrick and Biewener, 2007). Combined with the torque generating mechanisms observed here, 

differential activation of inside and outside wing muscles involved in turning maneuvers can be 

expected for muscles related to wing trajectory, such as the scapulohumeralis caudalis and 

pectoralis pars sternobrachialis muscles (Dial et al. 1991), and hand wing pronation, such as the 

extensor metacarpi radialis and the ulnometacarpalis ventralis muscles (Vasquez, 1995). 

 Lastly, investigating torque generating mechanisms in different maneuvers, such as those 

employed during turns at higher flight speeds, and in different (avian) species may provide 

insight into the generality of the currently observed mechanism. Furthermore, such investigations 

will elucidate the breadth of the repertoire of turning mechanisms not only available, but actually 

employed by birds (see also Warrick and Dial, 1998). 
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Head stabilization and visual control of turning flight in the pigeon 

Control inputs for avian turning flight 

 

Ivo G. Ros, Andrew A. Biewener 

 

Summary 

 Growing recognition that similar flight control principles operate across insect and 

vertebrate fliers indicates that robust solutions have evolved to meet complex behavioral 

challenges. To examine potential similarities in visual and cervical feedback control of flight 

between birds and insects, we investigate the role of head stabilization in providing feedback 

cues for controlling turning flight in the pigeon. Based on previous observations that the eyes 

remain fixed relative to the head, we inferred control inputs from detailed head and body 

orientations and velocities during 90-degree aerial turns. Periods of angular head stabilization 

alternated with rapid repositioning movements (head saccades), confirming that control of head 

motion is decoupled from aerodynamic and inertial forces acting on the body during flapping 

flight.  Moreover, visual cues induced by these head saccades predicted changes in flight 

trajectory, whereas the magnitude of neck bending predicted changes in angular positioning of 

the body. Controlling head motion to stabilize the visual field may therefore not only facilitate 

extraction of important motion cues but also offer mechanisms for controlling body and wing 

movements. Similarities between sensory flight control of birds and insects can inspire novel 

designs of robust controllers for autonomous aerial vehicles.  
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Introduction  

 The ability to maneuver, turn and maintain stable flight has been critical to the 

evolutionary diversification and success of flying animals. Rapid integration of sensing with the 

actuation and motion of the wings or other control surfaces is required for active flight control. 

However, the mechanisms by which sensory input is coupled to motor output for maneuvering 

flight in birds has been understudied compared to studies of avian functional anatomy, neural 

organization and sensory neurophysiology (for review, see (Zeigler & Bischof, 1993)).  

 Sensory input clearly shapes behavior, but behavior can also shape sensory perception 

(Zeil  et al., 2008). For instance, fly flight is characterized by brief, sharp turns alternated with 

periods of straight, translational flight (Schilstra & Van Hateren, 1998), confining visual motion 

induced by self-rotation, or angular optic flow, to these rapid turns. As a consequence, course, 

speed, and distance information is more easily extracted from the translational optic flow during 

straight flight periods (Land, 1999). This flight behavior is inferred to be adapted to improving 

sensory perception in flies (Zeil et al., 2008). Understanding the relationship between sensory 

input and behavioral output is a key first step in identifying the underlying components of 

behavior that represent specific sensory adaptations. 

 Translational optic flow appears to guide the flight behavior of several unrelated species, 

indicating that it may provide a general visuomotor control stimulus. When flying down a 

corridor, budgerigars and honeybees follow flight paths that balance left and right lateral optic 

flow (Bhagavatula et al., 2011; Srinivasan et al., 1991). Furthermore, as optic flow increases, 

budgerigars, bees, moths, fruit flies, and blowflies reduce their flight speed to maintain an optic  
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flow rate below a possible internal limit (Bhagavatula et al., 2011; Srinivasan et al., 1991; David, 

1979; Fry  et al., 2009; Verspui & Gray, 2009; Kern  et al., 2012). 

By moving their head backwards and forwards relative to the body just before landing 

(but not after take-off), pigeons may similarly use fluctuations in translational head speed 

relative to their surroundings to increase close-range perception of a landing site (Green  et al., 

1994). These in-flight head speed fluctuations are reminiscent of the head bobbing readily 

observed during walking in many birds.  However, in contrast to the periods of stationary head 

‘hold’ phases that occur during walking (Dunlap & Mowrer, 1930; Friedman, 1975; Frost, 1978), 

the pigeon’s head never comes to a complete stop during landing flight. Based on associations of 

head orientations during turning in pigeons (Bilo  et al., 1985), ascending and descending flight 

in pigeons, as well as during jumping and slope walking in domestic chicks, the control of head 

movements has been proposed as an essential underlying component of the visual control of 

avian locomotion (Green, 1998). 

 In addition to optic flow, cervical mechano-receptors assist flight control in insects, 

including dragonflies (Mittelstaedt, 1950), flying locusts (Goodman, 1965), and blowflies (Land, 

1973; Liske, 1977). Similarly, reflexes related to cervical and vestibular systems in normal and 

labyrinthectomized hand-held pigeons led to comparing the flight control system of birds to the 

autopilot of an airplane. Groebbels (1926; 1929) proposed that birds control body motion by 

tracking head motion, essentially ‘following their turning heads’. In support of this hypothesis, 

certain wing and tail muscles in the pigeon react to vestibular stimulation, angular visual 

stimulation, and passive or active lateral head deflections when under simulated flight conditions  
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(Bilo & Bilo, 1978; Bilo & Bilo, 1983). Observations of maneuvering pigeons and zebra finches 

provide further evidence that head stabilization during flight may play a role in flight control 

(Bilo  et al., 1985; Warrick  et al., 2002; Eckmeier  et al., 2008). Finally, the importance of head 

stabilization for flight control is reinforced by the inability of pigeons to recover from 

perturbations when wearing restraining neck collars (Warrick  et al., 2002). 

 Head stabilization and visual control of locomotion may therefore be tightly linked in 

flying birds. Nearly all animals “foveate,” changing their gaze, or viewing direction, in an 

alternating pattern of stable gaze fixations and fast saccades, defined as rapid movements of the 

eye (Land, 1999). However, in most birds, gaze changes are primarily driven by head (rather 

than eye) movements (Gioanni . Furthermore, pigeons actively maintain the direction of their 

eyes within their head, referred to as the primary gaze position (Wallman & Pettigrew, 1985; 

Wallman & Velez, 1985; Nalbach et al., 1990). Thus, head orientation is often used as an 

indicator of gaze in birds (see Kjearsgaard  et al., 2008). 

 Here, we use head orientation to investigate the potential link between head stabilization 

and sensory inputs for the control of turning flight in pigeons, by analyzing detailed 3D 

movements of the head and body during low-speed, 90 degree, level turns (Fig. 4_1). 

Measurements of head velocity and gaze direction are used to infer visual feedback during 

turning flight. A flying animal’s trajectory (velocity direction) determines the focus of expansion 

(FOE), resulting from the optic flow induced by its translational movement. Any deviation 

between the FOE and the head’s mid-sagittal plane, therefore, produces a “FOE offset” (Fig. 

4_2A). Additionally, cervical proprioceptive feedback is inferred from cervical flexure and/or  
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twisting, defined here as “head offset” (Fig. 4_2B). Using these estimates of visual and 

proprioceptive feedback, we examine how these two sensory inputs predict body rotations that 

redirect aerodynamic force to control turning flight. We use body rotations as the output of flight 

control, given that pigeons change their flight trajectory and orientation through body attitude 

changes, much like helicopters and fruit flies (Fry & Dickinson, 2003), during low speed flight 

(Chapter 2). 

 

  

Figure 4_1. Schematic top view of the flight corridor.  Light blue camera outlines represent 
viewing angles, with camera distances underrepresented by 50%. The spatially calibrated section 
of the 90-degree turn (dark blue), the pigeon silhouettes, and the perches (grey lines) are drawn 
to scale. Dimensions are noted along the outside of one leg of the symmetrical corridor. 
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 We expect that visual feedback will more accurately predict these body rotations, because 

the most direct measure of the required amount of steering is the deviation between the animal’s 

current and desired flight trajectory. By directing its gaze in the desired flight direction, a bird 

creates an offset between its gaze and the current velocity-induced FOE, proportional to the 

amount of steering required. In contrast, we hypothesize that cervical flexure, or head offset, 

correlates with subsequent re-orientation of the body to re-align with the head and not with 

changes in flight trajectory. 

 

 

 

Figure 4_2. Representations of visual and cervical proprioceptive feedback. (A) Visual 
feedback is represented by the FOE offset (orange, shaded wedge); the angle between the head 
velocity (red vector) and its projection (dashed red line) on the mid-sagittal plane of the head 
(grey partial circle). Head orientation indicates gaze (blue vector), or viewing direction. (B) 
Cervical proprioceptive feedback is represented by head offset (blue curved arrow); the 3D angle 
between a straight flight head orientation (grey outline of the head) and the instantaneous head 
orientation (black outline of the head).  
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Materials and Methods 

Three wild-type pigeons (Columba livia) were housed and studied at the Concord Field Station 

(Bedford, MA) in accordance with protocols approved by Harvard University’s Institutional 

Animal Care and Use Committee. The pigeons were trained to fly back and forth between two 

perches situated at either end of two 5-m-long by 1-m-wide by 2-m-high netted sections, 

connected by a 90° turn midway (Fig. 4_1). The symmetrical, square-corner corridor was 

constructed of lightweight, 2-cm mesh nylon deer netting supported by a PVC frame consisting 

of 4-cm diameter piping.  

 The pigeons were marked at seven anatomical locations, and the bill tip was used as an 

additional, natural marker. All artificial markers consisted of polystyrene foam and were attached 

using thermoplastic adhesive. On the head, two 4-mm diameter spheres were attached to feathers 

near the lateral ends of the coronal suture of the skull. On each wing, at 67% of the length of the 

ninth primary feathers, 4-mm diameter spheres were attached to the dorsal side of the rachis. On 

the body, three 19-mm diameter hemi-spheres were attached to 5-cm by 10-cm strips of elastic 

tape (to reduce feather movement). One marker was placed ventrally over the rostral end of the 

keel, and two markers were placed on the left and right rump (4-cm lateral to the vertebral 

column, over the synsacrum). 

 Using four synchronized high-speed cameras, 3D positions of the markers were 

reconstructed within a calibrated 2.9 m3 volume that encompassed the turn. Only trials in which 

the birds did not contact the netting were accepted for analysis. The synchronized video system, 

consisting of one FastCam 1024 PCI, and three FastCam SA3 cameras (Photron USA Inc.),  
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recorded at 250 Hz with 0.001 sec exposure time. A total of 10,624 video frames were digitized 

using DLTdv5 (Hedrick, 2008) in Matlab (Mathworks Inc.). Data processing and calculations 

were also performed in Matlab using custom-written scripts. Positional data were filtered with a 

fourth-order Butterworth filter using a low-pass cutoff frequency four times the wingbeat 

frequency. The cutoff frequency was determined by residual analysis (Winter, 2005). 

 Wingbeats were partitioned into upstroke and downstroke phases, based on reversal of 

the major bending direction of the primary feathers. This bending reversal of the primary 

feathers coincided with the instant the primary feather markers moved laterally relative to the 

body, in both ventral (start of upstroke) and dorsal (start of downstroke) positions. 

 Visual feedback can be deduced from head velocity and orientation, assuming that the 

eyes maintain a constant orientation within the head; this is generally the case in pigeons and 

many other species of birds (Bloch  et al., 1984; Wallman & Pettigrew, 1985; Wallman & Velez, 

1985; Nalbach et al., 1990). The head velocity vector relative to the mid-sagittal plane of the 

head therefore indicates the retinal location of the focus of expansion (FOE) resulting from 

translational optic flow. Head position was represented by the midpoint between the eyes, and 

calculated based on the three head markers. Head velocity was determined by the time-derivative 

of 3D head position.  

 Gaze indicates where the bird’s head is ‘facing’, defined as the direction of a head-fixed 

vector in the mid-sagittal head plane and 30 degrees above the line running through the center of 

the head and the bill-tip (Fig. 4_2A). Gaze lies within the plane formed by the lateral canals of  
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the vestibular systems, which are held close to horizontal during level flight (Erichsen et al., 

1989).  

 Angular head saccades were identified objectively whenever the angular speed of the 

head surpassed the propagated spatial (1 mm) and temporal (0.04 µs) measuring errors. The 

spatial measuring error was based on the average deviation of the measured length of an object 

from its known size, whereas the temporal measuring error was obtained from Photron USA Inc.  

Saccade duration was measured over the period during which gaze changed outside of the noise 

level with respect to the phases of head stabilization. However, saccades started before and 

stopped after gaze changed outside of the noise level on either side of saccades. Therefore, to 

obtain a more accurate saccade duration, we added an average-based period of gaze change 

within the noise level at the start and end of saccades. 

 Estimates of both visual and cervical proprioceptive feedback were tested as predictors of 

body rotations. FOE offset, the angle between the head velocity vector and the mid-sagittal plane 

of the head, represented visual feedback (Fig. 4_2A). Head offset, the angle between the 

instantaneous head orientation and the straight flight head orientation, both relative to the body, 

represented cervical proprioceptive feedback (Fig. 4_2B). FOE offset and head offset were 

measured at the end of a saccade, or, for wingbeat cycles without saccades, at the average phase 

of the end of a saccade, which was 34% into the upstroke (Fig. 4_5A). 
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Figure 4_3.  
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Figure 4_3 (Continued). Head speed fluctuates phasically throughout aerial turns. (A) Head 
speed (solid purple trace), and its horizontal component (dotted purple trace), fluctuate 
throughout a representative turn. Downstroke periods (blue shading) are defined relative to the 
center of the turn (time = 0 s). Subtraction of the running-average (blue trace) from the 
instantaneous head speed gives the relative head speed (red trace). (B) Relative head speeds 
(mean ± sd) normalized to wingbeat period for three individuals (blue, n=18; green n=16; and 
red n=16). Head speed peaks immediately after the down-upstroke transition (4 ± 6 ms). (C) 
Head speed relative to the body (grey trace) throughout the same turn shows no clear pattern, 
indicating an absence of mechanical coupling between the head and body. 

 

 These estimates of sensory feedback were compared to two functionally separate body 

rotation components, based on previous findings that pigeons produce aerodynamic forces in a 

uniform direction relative to their body during turns: 1) Aerodynamic roll / pitch: body rotations 

that redirect the aerodynamic force, analogous to helicopter roll and pitch, and 2) aerodynamic 

yaw: body reorientations about the direction of the aerodynamic force, analogous to helicopter 

yaw (Chapter 2). 

 The analyses were based on a total of forty-nine wingbeat cycles from nine turns, both 

left and right, in three individuals. Unless noted otherwise, results were expressed as mean± SD. 

Correlations were tested with standard least squares regression models with individual effect 

leverage (JMP, SAS Institute). To account for multiple comparisons (n=28) a Bonferroni 

corrected significance level of pc< 0.00179 was used to identify statistically significant trends. 

 

  



  Chapter 4 Control inputs for avian turning flight 

77 

 

Results 

 The three pigeons flew through the 90° level turn in 5.5 ± 0.5 wingbeat cycles over a 

period of 0.63 ± 0.06 s. Throughout the turns, the 3D translational speed of the head fluctuated 

with an amplitude of 0.79 ± 0.14 m/s, consistently peaking 4 ± 6 ms following the down-

upstroke transition (Fig 3 A,B). Fluctuations in head speed were predominantly horizontal (99.4 

± 0.6%), for head speeds ranging from 2.2 to 4.5 m/s. Head speeds relative to the body were 

comparable in magnitude to overall head speed fluctuations and exhibited no consistent relation 

to the wingbeat cycle (Fig. 4_3C).  

 Although translational head speed fluctuated continuously, pigeons displayed distinct 

periods of 3D angular head stabilization, despite continuous rotations of the body (Fig. 4_4A, B). 

Periods of angular head stabilization were interrupted by brief head repositioning movements 

lasting 25.9 ± 5.8 % of the wingbeat period in nearly two-thirds (63 ± 7 %) of the turning 

wingbeats. These angular head saccades were characterized by step-wise changes in horizontal 

gaze (Fig. 4_3C). All head saccades were directed away from the flight trajectory and into the 

turn. Peaks in speed of gaze change occurred near the downstroke-upstroke transition, 

immediately following peaks in translational head speed (Fig. 4_4D, 4_5A). Identification of 

head saccades was based on the speed of horizontal gaze change surpassing the propagated 

kinematics measuring error (Fig. 4_4D). Saccades varied in magnitude (5-30 deg), duration (14-

39 ms), and speed (400-1200 deg/s). Larger saccades occurred earlier in the wingbeat cycle 

(p<0.0001) (Fig 5B), lasted longer (p<0.0001), and reached higher peak speeds (p<0.0001) (Fig. 

4_5C). 
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Figure 4_4 (Continued). Angular head stabilization and saccades during aerial turns.  (A) 
Rotations about the roll, pitch, and yaw axes of the head (dark, medium and light grey traces, 
with positive roll, pitch, and yaw defined as right ear down, bill up, and bill right, respectively). 
Downstroke is indicated by blue shading. (B) Roll, pitch and yaw of the body, defined as in (A). 
(C) Unfiltered (blue dots) and low-pass filtered (blue trace) horizontal component of gaze (head 
direction). Gaze changes are directed into the turn (positive). The focus of expansion (FOE) 
offset (red trace) defined as the angle between the head velocity and the mid-sagittal plane of the 
head peaks following successive saccades. (D) Peaks in horizontal head angular speed (black 
trace, n=4) that surpass the measuring error (grey trace) indicate angular head saccades. 

 

Saccade amplitude was modulated 1.99 times more strongly by speed than by duration. Saccades 

were predominantly horizontal (slope between 3D saccade amplitude and its horizontal 

component = 0.995, N=3; Fig. 4_5C), consistent with the level nature of the flight turns that 

were studied. 

 Estimates of visual and cervical proprioceptive inputs were compared to body rotations 

during turning flight. These body rotations, representing behavioral outputs, were calculated 

discretely over whole wingbeat cycles to integrate over finer scale body motions that occur 

within wingbeats, but which are unrelated to net changes in body orientation (Fig. 4_4B, 

(Warrick & Dial, 1998; Hedrick & Biewener, 2007)).  Based on prior analysis of body rotations 

that underlie changes in flight trajectory versus body orientation (Chapter 2), two orthogonal 

body rotation components were calculated: (i) aerodynamic roll/pitch, which changes the 

direction of the aerodynamic force and (ii) aerodynamic yaw, which reorients the body about the 

aerodynamic force but does not affect flight trajectory (Fig. 4_6). 
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Figure 4_5. 
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Figure 4_5 (Continued). Characteristics of angular head saccades in turning pigeons. (A) 
The timing of angular head saccades normalized to wingbeat duration, for three individuals 
(blue, green and red). Narrow colored bars indicate the ranges of saccade start and end phases, 
whereas wide colored bars indicate average saccade duration, measured from average saccade 
start to end phases. Thick black lines indicate the mean ± sd phase of the saccade angular speed 
peaks. The asterisk indicates the average end phase of a saccade. (B) Saccade amplitude as a 
function of wingbeat phase, with symbols indicating three different individuals. Larger saccades 
occur earlier in the wingbeat cycle. (B and C) Solid lines represent standard least squares 
regressions, corrected for individual effects (p<0.001 for all four trends). (C) Both saccade speed 
and saccade duration (filled and unfilled symbols, respectively) increase with saccade amplitude. 
Saccade peak speed and duration trend lines indicate their relative contributions to saccade 
amplitude. Their scaling relative proportionality (dotted grey line) based on constant average 
duration and speed shows that saccade amplitude is modulated 1.99 times more strongly by 
speed than by duration. Saccades are predominantly horizontal, as indicated by a slope of 0.995 
between 3D saccade amplitude and its horizontal component (grey circles). 

  

 Whereas FOE offset resulting from a saccade positively predicted subsequent 

aerodynamic roll / pitch body rotations, head offset positively predicted subsequent aerodynamic 

yaw body rotations (Fig. 4_7).  However, associations of FOE offset and head offset with 

aerodynamic body rotations were of opposite sign and occurred at different relatively timed 

wingbeat cycles. FOE offset was associated with aerodynamic roll/pitch over the wingbeat cycle 

immediately following a saccade (Fig. 4_7A, B), whereas head offset was associated with 

aerodynamic yaw, but phase delayed over the second full wingbeat cycle following the saccade 

(Fig. 4_7A, C). Neither estimate of sensory input predicted 3D body rotations (Fig. 4_7). 

Notably, changes in angular horizontal head velocity direction that occurred over the 

subsequent 1.5 wingbeat cycles were also strongly predicted by FOE offset (Fig. 4_8). 
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Figure 4_6. Two functionally separate body rotation components of a turning pigeon. 

Outline of a pigeon, superimposed with the average direction of aerodynamic force production 
during the downstroke (blue arrow, after Ros et al. 2011). An exemplary 3D body rotation is 
represented by a single axis of rotation (thick black solid line with dashed extension, and black 
circular arrow). The 3D rotation is decomposed into two perpendicular components: 
aerodynamic roll/pitch (ARP, purple circular arrow), and aerodynamic yaw (AY, orange circular 
arrow). Note that the axis describing ARP lies within the circular blue plane, which is normal to 
the aerodynamic force. ARP is therefore the component of the body rotation that redirects the 
aerodynamic force, whereas AY represents re-orientation of the body about the aerodynamic 
force and, therefore, does not cause changes in flight trajectory. 
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Discussion 

 Throughout low-speed aerial turns pigeons stabilize angular motions of their head, 

despite continuous and independent oscillations of their body (Fig. 4_4A, B). For level turns, 

translational fluctuations in head speed are horizontal and peak in-phase with the wingbeat cycle 

near the ventral stroke transition (Fig. 4_3). Angular head saccades occur in nearly two-thirds of 

turning wingbeats (Fig. 4_4), allowing pigeons to stabilize their gaze during intervening periods. 

Angular head saccades are also nearly horizontal, being directed into the turn and away from the 

bird’s flight trajectory. Saccade magnitude correlates with saccade timing and duration: larger 

saccades occur earlier in the wingbeat cycle, reach higher peak speeds and last slightly longer 

(Fig. 4_5). The focus of expansion (FOE) offset induced immediately after a saccade 

significantly predicts body rotations that underlie flight trajectory changes (Chapter 2) over the 

wingbeat cycle immediately following the head saccade, as well as the resulting change in flight 

trajectory over the subsequent wingbeat cycle (Fig. 4_7, 4_8). Conversely, the head offset 

induced by neck bending immediately after a saccade predicts changes in body orientation over 

the subsequent 1.5 wingbeat cycles that realign the bird’s body with the new flight trajectory, but 

which do not affect the flight trajectory itself (Chapter 2) (Fig. 4_7). 

 The predominantly horizontal fluctuations in head speed likely serve a visual function. 

These translational head movement patterns during low-speed turns are similar to the head 

bobbing observed in pigeons prior to landing (Davies & Green, 1988) and reminiscent of the 

head bobbing observed during walking in many bird species (Frost, 1978), both of which are 

thought to serve a primarily visual function. Consequently, translational head speed peaks that  
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occur during turning flight (Fig. 4_3) may also serve to improve parallax-based perception of 

speed and depth by either increasing translational optic flow, or by dishabituating ganglion cells 

involved in motion sensing (Frost & DiFranco, 1976). In addition, head speed troughs may serve 

to reduce motion blur and facilitate detection of independently moving objects (Fig. 4_3; (Land, 

1999; Frost & DiFranco, 1976; Necker, 2007; Frost, 2009)). Furthermore, the consistent phase 

relationships of head speed fluctuations (Fig. 4_3) and angular saccades (Fig. 4_4) with respect 

to the wingbeat cycle suggest that head motions and gaze changes are likely coupled to the 

central pattern generator network driving the flapping wings (Grillner, 2006). 

 Importantly, the pigeon’s head stabilization strategy isolates its head from body motions 

(Fig. 4_3C; 4_4A, B (Warrick et al., 2002; Videler  et al. 1983)).  As a result head and body 

movements, both translational and angular, are uncorrelated, illustrating the absence of 

mechanical coupling (Fig. 4_3C; 4_4A, B). The transmission of strong, impulsive aerodynamic 

and inertial flight forces from the wings to the body suggests that head stabilization is actively 

mediated through cervical muscles controlled by optomotor and vestibulocollic reflexes 

(Gioanni, 1988). 

 One advantage of fixating gaze though head orientation, as birds do, rather than by 

optical nystagmus of the eyes, as in humans and other animals (Land, 1999), is that a stationary 

head may enable cervical sensors to provide information about the orientation of the body 

relative to the surroundings. Fast and robust control could be achieved by using cervical 

feedback as a single control input to steering muscles, as suggested by Groebbels (1929), 

effectively integrating visual and vestibular information. Alternatively, cervical feedback could 
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Figure 4_7.  
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Figure 4_7 (Continued). Temporal correlations between potential sensory inputs and body 

rotations. (A) A representation of the relative timing between FOE and head offset measured at 
the end of saccades (green area, S), and subsequent body rotations. Downstroke (ds) and 
upstroke (us) timing is shown in black and white, respectively. Grey rectangles indicate periods 
over which body rotations were calculated, relative to each saccade (four rows for four discrete 
progressive regressions). The asterisk indicates the end of the saccade. P-values for least squares 
regression analyses, corrected for individual effects, are shown in upper right table for 
correlations with 3D, aerodynamic roll/pitch (ARP) and aerodynamic yaw (AY) body rotations. 
Statistical significance was corrected for multiple comparisons (pc= 0.00179). Regressions for 
outlined p-values are plotted in (B) and (C). (B) FOE offset, the angle between head velocity and 
the mid-sagittal plane of the head, is positively associated with ARP over the wingbeat cycle 
immediately following saccades. AY over the same relative wingbeat cycle is negatively 
associated with FOE offset. (C) Head offset, the degree of neck bending and/or twisting, is 
negatively associated with aerodynamic roll/pitch over the subsequent wingbeat cycle. AY over 
the same relative wingbeat cycle is positively predicted by head offset. (B) and (C) Significant 
regressions are represented by solid purple and orange lines. 
 

be used to transform steering directions relative to the head into steering directions relative to the 

body. Such a coordinate system transformation from the head to the body is necessary because 

external perception occurs within the head (eyes and vestibular systems), whereas steering motor 

output occurs within the body (wings and tail). Therefore, controlling head motion to stabilize 

the bird’s visual field could not only facilitate extraction of important motion cues, but also offer 

a mechanism for controlling body and wing movements. 

 Our results show for the first time that offsets in visual feedback are primarily determined 

by head saccades during turning flight in pigeons (Fig. 4_4).  Because head saccades are 

consistently directed into the turn and away from the flight trajectory, the saccades generally lead 

to increases in focus of expansion offset. Although saccades do not consistently start from a zero 

FOE offset and not all of head rotation necessarily results in FOE offset, the majority of FOE 

offset is determined by head saccade movement.  The pattern of angular gaze stabilization  
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observed here is similar to that observed in pigeons held fixed while stimulated with an artificial 

visual surround under simulated flight conditions (Gioanni & Sansonetti, 1999), as well as in 

freely flying blowflies (Schilstra & Van Hateren, 1998).  Whereas pigeons mediate angular gaze 

stabilization largely through head movements, blowflies additionally use their whole body to 

stabilize gaze. 

 

 

Figure 4_8. FOE offset predicts subsequent changes in flight velocity.  (A) Representation of 
the relative timing between FOE offset at the end of a saccade (green area, S) and changes in 
direction of horizontal head velocity. Grey rectangles indicate periods over which changes in 
head velocity direction where calculated relative to each saccade. Regressions for highlighted 
significant p-values are plotted in (B). (B) FOE offset is positively associated with changes in 
horizontal velocity direction over the subsequent 1.5 wingbeat cycles following a saccade. 
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 FOE offset predicts subsequent aerodynamic roll/pitch motions of the pigeon, whereas 

head offset predicts subsequent aerodynamic yaw, yet neither predicts full 3D body rotations 

(Fig. 4_7). Based on our analysis of the potential sensory inputs that guide turning flight in 

pigeons, these key relationships indicate that flight trajectory and flight orientation are 

individually, yet concurrently, controlled through visual and cervical afferent inputs, 

respectively. Further, the timing of aerodynamic roll/pitch body rotations predicted by FOE 

offset over the wingbeat cycle immediately following a head saccade suggests that they may be 

sufficiently delayed to be controlled through a dedicated visuomotor pathway. Recordings of in 

vivo muscle activation referenced to wing stroke timing (Ros et al. in prep.) show that the onset 

of pectoralis muscle activation powering the downstroke occurs 23 ± 9 ms after the end of a 

saccade when FOE offset is maximal. At present, temporal delays involved in optic flow 

processing via the accessory optic system in birds are unknown (Arends & Zeigler, 1991; Frost 

et al., 1990). Thus, additional study of visuomotor timing is needed to determine whether the 

delay between head saccade and aerodynamic roll/pitch is sufficient for FOE offset control of 

flight muscles. 

FOE offset resulting from angular head saccades also predicts changes in flight trajectory 

over the subsequent wingbeat cycle (Fig. 4_8). The temporal delay between the timing of 

aerodynamic roll/pitch rotations and of actual changes in flight trajectory indicates that pigeons 

first need to change the direction of aerodynamic force production before substantially changing 

the flight trajectory. Therefore, this temporal delay indicates a significant mechanical component 

in the total delay between visual input and desired mechanical output.  
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The correlation of head offset with subsequent aerodynamic yaw body rotations (Fig. 

4_7) similarly suggests that head offset may control flight re-orientation of the bird’s body after 

it has changed its flight trajectory. Thus, in-flight head stabilization may indirectly couple visual 

cues that guide changes in flight trajectory through aerodynamic roll/pitch, with afferent cervical 

feedback that subsequently guides body re-orientation through aerodynamic yaw (Chapter 2). 

The possible role of cervical afferents in controlling flight orientation is consistent with wing 

muscle activity in response to neck bending in pigeons under simulated flight conditions (Bilo & 

Bilo, 1978).  

 Our kinematic analysis of head, body and wing motions indicates that pigeons use visual 

information to guide their flight trajectory and use head deviations relative to their body to 

control body re-orientation during turning flight. Future work is needed to test the predictions 

that emerge from these kinematic patterns and the sensorimotor control mechanisms they 

suggest.  Nevertheless, our results suggest that visual and proprioceptive offsets are used as 

steering inputs for turning flight in birds as well as insects, providing new insight into 

widespread flight control principles that can inspire design of robust controllers for autonomous 

aerial vehicles. 
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Ruby-throated hummingbirds use optic flow in flight stabilization 

 

Hummingbirds go with the flow 
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Summary 

Within birds, hummingbirds excel at hovering, being the only group able to sustain aerobic 

hovering and feed from swaying flowers while doing so. Flight stabilization, a key component of 

flight control, requires measurement of self-motion as a negative feedback signal. Vision is the 

dominant sense used for gaze stabilization in birds and relays information about self-motion 

through optic flow, or movement of the visual panorama across the retina. Whether generated 

through actual motion of a bird or through projection of moving images, if vision is used to 

stabilize flight, birds should reduce optic flow through corrective flight maneuvers. To test this 

hypothesis, we present freely hovering ruby-throated hummingbirds with projected virtual 

panoramas, or surrounds, rotated in different directions and at different speeds. The birds counter 

these illusory self-motions by rotating their head and body, and by flying with the surround. The 

hummingbirds apparently separate rotational from translational optic flow and use both these 

visual cues to stabilize their vision and control hovering flight.  
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Introduction 

Flight control is crucial in ecologically relevant flight behaviors such as predator-prey 

interactions, courtship, and foraging in dynamically and geometrically complex environments 

(Dudley, 2002). An underlying component of flight control is the detection of self-motion as a 

control-input for flight stabilization.  

 Birds fly in three-dimensionally complex environments and can detect self-motion using 

various sensory modalities, most notably the visual, vestibular and somatosensory systems 

(Warren & Wertheim, 1990). In cases of conflicting signals, the visual system overrules other 

modalities (Friedman, 1975). The visual cue indicating self-motion is optic flow: the resulting 

movement of the panorama, or visual surround, across the retinae (Simpson, 1984). Optic flow 

resulting from rotations (angular movement) and translations (movement along a straight line) 

are processed separately by the avian visual system (Wylie &Frost, 1990). 

 Birds use optic flow to guide various sensorimotor behaviors. Budgerigars choose flight 

paths that balance optic flow between the left and right sides and reduce their flight speed to 

maintain the optic flow rate below a possible internal limit (Bhagavatula et al., 2011). Optic flow 

parameters are also used by hawks and pigeons to land, and by hummingbirds to approach 

feeders (Davies & Green, 1990; Lee et al., 1993; Lee et al, 1991).  

 Optomotor responses, as observed in a variety of animals ranging from vertebrates to 

arthropods, serve to prevent rotation of the eyes, head and/or body (Simpson, 1984), resulting in 

gaze stabilization through active negation of optic flow (e.g. Collet & Land, 1975). Gaze  
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stabilization not only improves image resolution and the ability to detect relative object motion, 

but also facilitates the extraction of direction, speed and distance information (Land, 1999). The 

optomotor response in pigeons, in which the gaze is reflexively stabilized by moving the eyes 

and head in response to visual stimuli, is another example of the use of optic flow by birds (Bilo, 

1992; Gioanni &Vidal, 2012). 

 Here, we test whether illusory visual sensations of self-motion in hummingbirds elicit 

corrective responses in flight speed and body orientation. By projecting moving images that 

result in a combination of rotational and translational optic flow under untethered flight 

conditions, we expect natural (closed-loop) behavioral response dynamics (see Gioanni &Vidal, 

2012). In pigeons, certain wing and tail muscles react to rotational visual stimulation during 

simulated flight (Bilo, 1992), indicating that optic flow (in addition to gaze stabilization) is 

involved in flight control, much like in insects (e.g. Collet & Land, 1975). Following from these 

earlier studies, we hypothesize that hummingbirds will orient and fly to reduce perceived self-

motion imposed by a rotating visual surround. Alternatively, the birds may only track the virtual 

surround through smooth head rotations following the visual surround until a fast saccade returns 

the head to its original orientation, without any change in body orientation or flight path. This 

null-hypothesis would predict that optic flow is merely used for vision stabilization, whereas 

orienting the body and flying with the virtual surround would indicate that optic flow also 

functions to control flight. 
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Materials and Methods 

Five female ruby-throated hummingbirds, Archilocus colubris, were trapped, housed and studied 

at the Concord Field Station (Bedford, MA, USA) in accordance with protocols approved by 

Harvard University’s Institutional Animal Care and Use Committee. Each bird was acclimatized 

within the experimental setup and subsequently studied during two 2-hour flight sessions. 

 To generate virtual surround rotations (VSR), four projectors (MW663, BenQ 

Corporation, Taipei, Taiwan) were positioned equidistantly around a 1.2 m inner diameter, 

vertically oriented, acrylic cylinder. The acrylic cylinder wall was coated for rear-projection and 

had black fabric extending above and below to eliminate extraneous visual cues (Fig.1). The 

birds were prevented from ascending beyond two-thirds of the cylinder height by an acrylic 

ceiling, supporting a 3 cc syringe with artificial nectar (Nekton GmbH, Pforzheim, Germany) at 

its center. A total of 32 equal-width vertical bars (alternating black and white) were projected 

synchronously at 120 Hz. Given the short photoreceptor response time expected of 

hummingbirds (Healey, 2013), we projected under low-light conditions to lower their critical 

fusion frequency (CFF). The projected images resulted in an illuminance of 38 lux at the center, 

and a contrast of 47 lux measured at the perimeter of the cylinder. The VSR was either held 

stationary or rotated horizontally in either direction at 62, 98 or 134 deg/s, resulting in seven 

experimental conditions. All quantified motions and directions were normalized to the VSR 

direction. 
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Figure 5_1. Free-flying hummingbirds track virtual surround rotations, negating apparent 

self-motion. (a, b) Two high-speed video cameras, black silhouettes, aimed at the center of a 

vertical, hollow cylinder record hummingbirds flying near a centrally suspended feeder.  (b) Top 

view. The hummingbird rotates clockwise with the virtual surround (dotted grey arrow) and is 

depicted at two instances separated by 0.02 s. Inset (greyscale inverted): body orientation (red) 

and head orientation (blue), as well as circumferential flight distance (green), all within the 

horizontal plane, are referenced against arbitrary starting positions (corresponding darker dashed 

lines).  (c-e) Representative trials at VSR speeds of 0 deg/s (c), -98 deg/s (d), and 134 deg/s (e), 

with the VSR projected at 120 Hz (grey trace). To completely negate translational optic flow, the 

hummingbirds must fly circumferentially (green dotted trace), depending on their radial position 

within the cylinder and the imposed VSR velocity. 
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 The hummingbirds flew freely within the cylinder and were recorded with two FastCam 

1024 PCI cameras (Photron USA Inc., San Diego, CA, USA) operating in synchrony at 500 Hz 

(Fig. 1a), for which sufficient illumination was provided by two 850 nm wavelength infra-red 

LED arrays, imperceptible to the hummingbirds. 

 Using thermoplastic and cyanoacrylate adhesives, four light-weight white polystyrene 

markers, 2-3 mm in diameter, were attached to each individual: on the head, two markers were 

positioned near the lateral ends of the coronal suture of the skull, and on the body, two markers 

were positioned dorsally over the spine, separated by 14 mm (Fig. 5_1b). Additionally, a 2 mm 

diameter dot of white non-toxic correction fluid was deposited on the bill. The maximum mass 

added to a bird was 0.04g, or 1% of the body mass.  

 Using the high speed camera images and DLTdv5 (Hedrick, 2008) in Matlab (Mathworks 

Inc., Natick, MA), 3D positions of the markers were determined within a calibrated 0.2 m
3
 

volume at the center of the cylinder. Calculations were performed in Matlab using custom-

written scripts. The circumferential component of flight velocity was calculated using a virtual 

head center marker. For both head and body, the azimuth, or angle between a global horizontal 

reference and the horizontal projection of a direction-vector based on marker positions is 

hereafter simply referred to as ‘orientation’ (Fig. 5_1b, inset).  
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Figure 5_2. 
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Figure 5_2 (Continued). Rotational velocities of the head and body, and translational flight 

velocities match projected virtual surround speeds. (a) Head orientation velocity, averaged 

across individuals (solid traces ± shading (SD)), begins matching imposed VSR speed (dotted 

traces) approximately 0.5 seconds following VSR onset (t = 0 s), for all three VSR speeds. Note 

that head saccades are omitted to illustrate tracking during the slow phases. (b-d) Between 0.5 s 

to 1.5 s after VSR onset, head (blue) and body (red) orientation velocities, as well as 

circumferential flight velocities (green), correlate with corresponding VSR velocities (multiple 

least squares regressions with individual effect leverages (solid dark prediction lines; p<0.001 for 

all three variables), although variation in body orientation tracking (c) is considerably greater 

than tracking of head orientation (b) to the virtual surround. Means per VSR speed (dark colors) 

± SD (light error bars and light green traces) illustrate VSR tracking (grey dashed lines). (e) 

Unfiltered head orientations of five individuals for a VSR speed of 134 deg/s (light blue lines), 

as well as the mean ± SD (dark blue trace and shaded area). Conservatively, the range of visuo-

mechanical delay (grey shading) between stimulus onset and kinematic response was estimated 

from the instant when mean head orientation superseded one SD of the steady head orientation 

and the instant when the mean superseded twice that amount. 

 

Results 

The five hummingbirds hovered near the center of the cylinder with a wingbeat frequency of 

42.7 ± 1.3 Hz. For each individual, the VSR was initiated randomly for a period between 0.8 s 

and 1.8 s for each non-zero surround speed condition. During stationary surround trials, 

voluntary fast turns of the head, or head saccades, alternated with periods of rotational head 

stabilization (Fig. 5_1c). During the non-zero VSR trials (± 62, 98 and 134 deg/s), fast phases 

(saccades) alternated with slow phases of rotational head motion (Fig. 5_1d, e). During the slow 

phases, the head rotated in the same direction as the VSR (Fig. 5_1c-e). Furthermore, after 

approximately 0.5 s following VSR onset, the speed of the slow phases matched that of the VSR, 

differing less than the propagated measuring error (26 deg/s for the three-wingbeat running-

average measure of head orientation velocity) (Fig. 5_2a). Between 0.5 to 1.5 s after VSR onset,  
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head orientation velocity correlated with the projected VSR speed (adjusted R
2
 = 0.98; p<0.001; 

multiple least-squares linear regression with individual effect leverage; Fig. 5_2b).  

 Among the 81 head saccades at non-zero VSR speeds, the hummingbirds tended to 

saccade in the direction of the projected rotations, making 12.2 ± 5.5 (individual mean ± SD) 

saccades with the VSR direction and 4 ± 3 saccades against (e.g. Fig. 5_1e) (two-sample t-test P 

< 0.05). 

 Fluctuations in body orientation were more continuous, but generally tracked low-

frequency changes in head orientation (Fig. 5_1c-e). VSR speed during the period 0.5 to 1.5 s 

after stimulus onset predicted body orientation velocity (R
2
 = 0.17; P < 0.001; Fig. 5_2b), though 

not as strongly as head orientation. When both slow and fast phases of head orientation velocity 

were included (and temporally corrected for a cross-correlation lag of -0.020 ± 0.002 s), the 

correlation with body orientation velocity was even stronger (R
2
 = 0.40; P < 0.001). 

Circumferential flight velocity of the hummingbirds followed similar trends (Fig. 5_1c-e) and 

was correlated with the circumferential VSR speed corrected for the bird’s radial position (R
2
 = 

0.53; P < 0.001).  
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Table 5_1. Measured velocities are all directed with the VSR (+).  

 

tracking gain (measured/VSR) 

across individuals (N=5) 

between individuals  

(mean ± SD) 

within individuals 

(mean SD) 

head orientation velocity (slow phases) 1.01  ±  0.04 0.10 

body orientation velocity 1.48  ±  0.68 2.32 

circumferential flight velocity 0.93  ±  0.22 0.66 

 

 

 Consistently, variation in all three variables between individuals (head and body 

orientation velocity, and circumferential flight velocity) as a function of VSR speed was smaller 

than the variation observed throughout a given trial within individuals (Fig. 5_2b-d; Table 5_1). 

  

After VSR onset, a temporal latency of 52 to 62 ms was observed before changes in head 

orientation began tracking the motion of the virtual surround. This temporal latency range was 

estimated from the instants at which head orientation changed more than one and two standard 

deviations of head orientation during phases of head stabilization (Fig. 5_2e). 

  

Discussion 

When presented with a virtual visual surround rotated in different directions and at different 

speeds, hummingbirds counter this apparent self-motion by rotating their head and body, and by 

flying with the surround (video S1; Fig. 5_2b-d). These results suggest that hummingbirds 

separate rotational from translational optic flow and use both visual cues to stabilize hovering 

flight. 
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The greater variability of the body orientation tracking of the virtual surround compared with the 

slow phases of the head orientation (Table 5_1) likely has multiple causes. First, control of body 

orientation is not clearly compartmentalized between slow phases of stabilization relative to the 

surround and rapid saccades, as is control of head orientation. The higher degree of stabilization 

and more faithful tracking observed for head orientation may reflect greater control authority of 

the head by direct action of neck muscles, whereas rotational and translational stabilization of the 

body, with its larger mass and moment of inertia, depends on aerodynamic forces generated by 

the wings. Second, body rotations are likely needed to change flight speed in order to move with 

the surround (Chapter 1), as observed here. Third, spontaneous brief reorientations and changes 

in hovering position occur during normal hummingbird hovering (Greenewalt, 1960) and can, 

therefore, also be expected relative to a virtual rotating surround. Whereas slow phase head 

orientation tracking of VSR exhibits a gain of almost precisely 1.0, the higher tracking gain of 

body orientation relative to VSR (1.48, Table 5_1) likely reflects the cross-correlation of body 

orientation and head orientation that includes the fast phases (head saccades) in combination 

with the tendency of birds to saccade with the VSR. 
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 Not surprisingly, all three flight variables related to virtual surround rotational tracking 

and underlying flight stabilization (head orientation velocity, body orientation velocity and 

circumferential flight speed) display a temporal latency relative to the instantaneous onset of the 

visual stimulus. This latency is likely comprised of multiple components, including visuomotor 

processing delay, muscle actuation electromechanical delay, and body and head rotational 

inertia. Furthermore, separate types of neurons involved in optic flow processing tuned to 

different magnitudes of optic flow may contribute to the temporal lag in establishing VSR 

tracking (see Crowder et al., 2003). As observed here, the pure ‘visuomechanical’ delay between 

stimulus onset and the initiation of head rotations, was estimated to be between 52 and 62 ms 

(Fig 2e). Such a delay is longer than visuomechanical delays observed in insects, which are 

approximately 20 ms (e.g. Collet & Land, 1975), consistent with their smaller size and higher 

wingbeat frequencies (Healey, 2013). 
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