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Characterization of the Antibacterial Activity of the Type VI Secretion System 

 

Abstract 

 

This dissertation summarizes advances made toward understanding of the composition, 

structure, mechanism, and regulation of the bacterial type VI secretion system (T6SS). The T6SS 

is a widely conserved bacterial nanomachine used by Gram-negative bacteria to deliver toxic 

effector proteins into the extracellular environment or into adjacent target cells. Systematic 

deletion of open reading frames present in the Vibrio cholerae T6SS gene cluster revealed the 

genes essential for T6SS activity and provided key insights into understanding the mechanism by 

which this organelle is assembled and its components are recycled. Characterization of one 

phage-related T6SS component yielded insight into the mechanism by which many effectors 

associate with the T6SS organelle and are delivered into target cells. This T6SS component 

serves both to sharpen the tip of the membrane-puncturing T6SS spike complex and as a vehicle 

for attaching a diverse set of effector proteins. Time-lapse fluorescence microscopy of GFP-

labeled T6SS components revealed key insights into the behavior and regulation of the T6SS in 

Pseudomonas aeruginosa. The T6SS in this organism assembled in response to exogenous T6SS 

attack by adjacent sister cells as well as heterologous T6SS+ species V. cholerae and 

Acinetobacter baylyi. This retaliatory T6SS counterattack was precisely aimed and caused no 

collateral damage to neighboring, non-aggressive bacteria. These counterattacks are mediated by 
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phosphorylation cascade that recognizes exogenous attacks and post-translationally activates the 

T6SS in P. aeruginosa. Deletion of genes in this pathway eliminated the retaliatory response 

while retaining T6SS functionality. This pathway also induced T6SS counterattacks in response 

to mating pair formation associated with type IV secretion system (T4SS)-mediated DNA 

conjugation as well as treatment with membrane-disrupting natural product polymyxin B, 

suggesting that the signal needed to induce T6SS activity was mechanical perturbation of the 

P. aeruginosa cell membrane. Interestingly, these T4SS-induced counterattacks were able to 

confer resistance to the acquisition of horizontally transferred foreign DNA by selectively killing 

conjugative donor cells. As such, the T6SS of P. aeruginosa may represent a type of general 

bacterial innate immune system capable of responding to a wide range of exogenous threats. 
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Chapter 1.  A view to a kill: the bacterial type 6 secretion system 

 

Advances in the understanding of the structure, mechanical function, assembly, and 

regulation of the bacterial type 6 secretion system (T6SS) are summarized. This newly 

recognized bacterial organelle is structurally and mechanistically analogous to an intracellular 

membrane-attached contractile phage tail. A rapid conformation change in the structure of a 

sheath protein complex propels T6SS spike and tube components along with a diverse set of anti-

bacterial and anti-eukaryotic effectors out of predatory T6SS+ cells and into prey cells. The 

contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at both 

transcriptional and post-translational levels, the latter involving detection of signals associated 

with membrane perturbation in some species. In addition to directly targeting eukaryotic cells, 

the T6SS can also target other bacteria co-infecting a mammalian host, highlighting the 

importance of the T6SS not only for bacterial survival in environmental ecosystems but also in 

the context of infection and disease. 

  



 2 

Foreword 

A modified version of this chapter has been submitted as a review to Cell Host & 

Microbe. 

I would like to thank Dr. Tao Dong for contributing to the initial draft of this chapter, 

specifically to the sections discussing effector discovery strategies and transcriptional regulation. 

I would also like to thank Professor Mekalanos for considerable help in the editing and revising 

of this chapter. 

  



 3 

Introduction 

Several different types of protein secretion systems exist in Gram-negative bacteria that 

function to translocate proteins outside of their cells, into the extracellular milieu, and sometimes 

into other cells. The type 6 secretion system (T6SS) represents one of the most recently 

recognized examples of these organelles. It was first defined functionally in 2006 in Vibrio 

cholerae through genetic identification of several of its critical components and canonical 

substrates (Pukatzki et al., 2006), but genes now known to be integrally associated with the T6SS 

had been identified as playing roles in virulence as early as 2002 for Salmonella (Folkesson et 

al., 2002), Rhizobium (Bladergroen et al., 2003), Fracisella (Nano et al., 2004) and Edwardsiella 

(Rao et al., 2004), while several bioinformatics studies had identified their high conservation and 

broad distribution in nearly 25% of all Gram-negative bacteria (Das and Chaudhuri, 2003; Pallen 

et al., 2002; Schlieker et al., 2005). An explosion of interest in T6SS has led to its rapid study in 

Pseudomonas (Mougous et al., 2006), Escherichia (Dudley et al., 2006), Burkholderia (Schell et 

al., 2007), Agrobacterium (Wu et al., 2008), Aeromonas (Suarez et al., 2008), Helicobacter 

(Bartonickova et al., 2012), and Campylobacter (Lertpiriyapong et al., 2012) as well as other 

organisms. Although these initial studies were understandably focused on the role of T6SS in 

virulence, more recently, T6SSs have been implicated in inter-bacterial interactions ranging from 

bactericidal activity (Hood et al., 2010; MacIntyre et al., 2010) and competitive growth in mixed-

culture biofilms (Schwarz et al., 2010) to self versus non-self discrimination (Alteri et al., 2013; 

Wenren et al., 2013). Like the type 4 secretion system (T4SS), T6SS can translocate proteins into 

both prokaryotic and eukaryotic cells, underlining the versatility of the T6SS nanomachine. This 

review will focus on advances in understanding the structure, mechanical function, assembly, 

and regulation of this remarkable secretion organelle. 
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Components, structure, and energetics 

The first two canonical substrates of the T6SS belong to protein superfamilies commonly 

called Hcp (Haemolysin co-regulated protein) and VgrG (Valine-glycine repeat G) (Pukatzki et 

al., 2006). These proteins are unusual in that they are both secreted and required for T6SS 

apparatus functionality (Mougous et al., 2006; Pukatzki et al., 2006). Structure prediction 

algorithms indicated that VgrG proteins show significant structural homology to a complex 

called (gp27)3-(gp5)3, which corresponds to the tail spike or “needle” of the T4 phage tail 

(Pukatzki et al., 2007). Early evidence suggested that different VgrG proteins could form 

complexes (Pukatzki et al., 2007) and eventual evidence for homotrimeric complexes was 

obtained through crystallographic (Leiman et al., 2009) and biochemical analysis (Hachani et al., 

2011). However, the first T6SS protein to be crystalized was the Hcp1 protein of P. aeruginosa, 

and its atomic structure suggested that this protein could form tubes composed of stacked rings 

of Hcp hexamers (Mougous et al., 2006). Additional evidence for Hcp tube formation was 

obtained through cross-linking studies (Ballister et al., 2008) and further structural analysis of 

the Hcp protein fold showed its similarity to a duplicated ‘b-tube’ domain within the VgrG N-

terminal gp27-like domain of VgrG (Leiman et al., 2009). These analyses predicted that if Hcp 

formed a tube in the context of the functional apparatus, then that tube would likely dock with 

the ‘pseudo hexameric’ b-tube domain of a VgrG trimer (Leiman et al., 2009). The NMR 

structure of the lambda phage tube protein p5 revealed it to be a structural homolog of Hcp (Pell 

et al., 2009), and indeed bioinformatic analysis of genes encoding Hcp orthologs suggests that 

they are as closely related to predicted phage tube proteins as other T6SS-encoded Hcp orthologs 

(Leiman et al., 2009). Such phage tube proteins include gp19 of T4 phage, which lacks a crystal 

structure but forms tubes similar in appearance to Hcp tubes (Leiman et al., 2009). 



 5 

A third component of the T6SS apparatus, now known as TssE (Type six subunit E), 

showed significant homology to the T4 phage base plate component gp25 (Leiman et al., 2009), 

which is known to reside near the interface between the phage spike and the tube complex 

(Kanamaru et al., 2002). The similarities between T6SS components and phage pointed to a 

model predicting that the T6SS represented at least in part a phage tail-like structure in an 

orientation that is opposite that of phage infection (Leiman et al., 2009) (Figure 1.1) and 

supported earlier suggestions (Mougous et al., 2006) that Hcp in its tubular conformation might 

Figure 1.1 Contractile phage tails and the contractile T6SS organelle. T6SS and contractile 
phage share a number of core structural components. Homologous components are depicted in 
the same color. While phage attach to the outer membrane (OM) via tail fibers connected to its 
baseplate, T6SS baseplate attaches to an inner membrane (IM) complex that spans the 
periplasm and associates with the outer membrane. Contraction of phage sheath delivers the 
phage spike into a target cell, while contraction of T6SS sheath forces the T6SS spike out of 
the cell and potentially across a target membrane (TM). Phage T4 gene names of components 
conserved in T6SS are labeled. 
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act as a conduit for protein transport by the T6SS machine once extruded from the cell. 

Support for the phage tail model for the T6SS organelle came through a series of 

observations that revolved around three additional essential T6SS components. In a seminal 

study, Mogk and colleagues determined that in V. cholerae, the Clp family AAA+ ATPase ClpV 

recognized two other T6SS components, VipA and VipB (named for ClpV-interacting protein), 

the latter two of which formed tubular structures in both Escherichia coli and V. cholerae 

(Bonemann et al., 2009). When viewed down the long axis under electron microscopy, VipA/B 

tubules formed 12-tooth cogwheel-like shapes that were completely disintegrated by a process 

dependent on ClpV-mediated ATP hydrolysis (Bonemann et al., 2009). It was first noted by 

Leiman et al. (2009) that the VipA/B tubule structures described by Bonemann et al. (2009) were 

highly similar to ‘contracted’ T4 phage tail sheaths, further suggesting that a VipA/B sheath 

contraction mechanism might provide the energy for T6SS protein transport. With this new 

information, several models appeared in reviews envisioning how the apparatus might be 

organized and might actually work (Bonemann et al., 2010; Filloux, 2009; Records, 2011). 

However, further insights into the functional mechanism of protein translocation by the T6SS 

organelle would require cell biological analysis and visualization of the dynamic action of intact 

organelles in living cells as well as super-high resolution visualization of flash-frozen cells. 

Basler et al. (2012) were the first to report direct visualization of the T6SS organelle 

dynamics in V. cholerae using a combination of time-lapse fluorescence light microscopy and 

electron cryotomography. Utilizing functional, fluorescent VipA-GFP fusion proteins, these 

investigators were able to show that a large VipA-containing sheath structure exists inside cells 

and undergoes cycles of extension, contraction, disassembly, and re-assembly. The T6SS sheath 

polymerizes from a membrane-bound complex in an extended conformation, and like phage, the 
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extended sheath structure then undergoes a rapid contraction event, estimated to occur over less 

than 5 milliseconds (Basler et al., 2012) (Figure 1.1). Disassembly of the contracted sheath 

structure is driven by ClpV, which recognizes only the contracted form of the T6SS sheath in 

both V. cholerae and P. aeruginosa (Basler and Mekalanos, 2012; Basler et al., 2012). The 

contraction event is correlated with protein secretion and delivery of effectors and attack signals 

into target cells (Basler et al., 2013; Basler and Mekalanos, 2012; Basler et al., 2012; Ho et al., 

2013). Both the extended and contracted sheath structures are observed attached to the 

membrane and can be differentiated from each other by their dimensions, surface topology and 

internal density, the last of which has been hypothesized to correspond minimally to the Hcp 

tube (Basler et al., 2012). 

As with phage, the T6SS apparatus needs a way to attach the tube and sheath complex to 

a membrane in order to translocate molecules across it. In phage, this is achieved via a large 

baseplate complex that serves both as a platform for assembly of the tube and sheath, as well as a 

place for tail fibers to attach (Kostyuchenko et al., 2003) (Figure 1.1). In T6SS, gp25-like TssE is 

the only homolog to phage baseplate components present (Leiman et al., 2009; Lossi et al., 

2011). Instead of a fully phage-like baseplate complex, the T6SS tube and sheath are anchored to 

the membrane via a complex related to the Dot/Icm T4SS found in Legionella (Figure 1.1). This 

complex consists of two inner membrane components, TssL (DotU-related) and TssM (IcmF-

related) (Durand et al., 2012; Ma et al., 2009b; VanRheenen et al., 2004), and an outer-

membrane lipoprotein (TssJ) (Felisberto-Rodrigues et al., 2011) (Figure 1.2). In some organisms 

this complex is thought to be anchored to the peptidoglycan through an extension domain of 

TssL or through an additional accessory protein (Aschtgen et al., 2010). Although it remains 

unclear how the T6SS tube and sheath attach to the baseplate, two-hybrid interaction studies 
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indicate that the essential cytoplasmic protein TssK interacts with both the membrane-bound 

TssJ-TssL-TssM complex as well as the Hcp tube and VipA/B sheath and may serve as an 

adaptor between the two (Zoued et al., 2013). There are 3 other essential proteins that are 

virtually universally conserved, TssF, TssG, and TssA (Boyer et al., 2009; Zheng et al., 2011; 

Figure 1.2 T6SS assembly, effector translocation, and component recycling. (A) Baseplate 
complex forms consisting of TssE, TssJ, TssK, TssL and TssM. Other components not 
pictured include TssA, TssF, and TssG. In some T6SSs, Fha is an essential part of this 
complex. TssJ, TssK, TssL and TssM are placed in this drawing based on protein localization 
and interaction studies (Felisberto-Rodrigues et al., 2011; Zoued et al., 2013), while TssE 
position is inferred from phage homolog (Kostyuchenko et al., 2003) (B) VgrG, PAAR, and 
effector proteins are recruited to this complex and assemble into the structure. VgrG 
interaction with PAAR or effectors likely contributes to the overall stability of the apparatus 
assembly. Although these components are pictures here as being cytosolic, it is unclear 
whether there is an opening into the periplasm. (C) Hcp tube polymerizes from VgrG while 
VipA/VipB sheath polymerizes around it. (D) Analogous to phage, a conformation change in 
the sheath structure results in a contraction event that launches the Hcp tube out of the cell and 
across a target membrane. This contraction event delivers the loaded VgrG-effector “warhead” 
through the layers of the cell envelope, however it is not known how often penetration into the 
cytosol occurs if at all. It is also unknown how much Hcp is lost outside the cell and how much 
is retained within the cytosol. (E) ClpV uses ATP to remodel the contracted sheath, restoring 
the pool of available sheath subunits. The now unsheathed Hcp tube disassembles; parts of the 
tube that not expelled from the cell are recycled within the cytosol. (F) The naked baseplate 
complex is then ready to be recycled or disassembled, depending on the T6SS and its 
activation state. 
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Zheng and Leung, 2007), but it is unclear what roles they play in T6SS assembly, structure, or 

function.  

Other genes are clearly accessory in regard to their contribution to T6SS function. For 

example, the protein Fha (Forkhead-associated) (Pallen et al., 2002) is absent in more than half 

of the bioinformatically identified T6SSs (Boyer et al., 2009) (Figure 1.3A), several of which 

Figure 1.3 T6SS counterattack sensing pathway. (A) Hmmsearch (Finn et al., 2011) was 
used to identify 761 VipA (pfam05591)/VipB (pfam05943)-containing gene loci identified in 
sequenced bacterial genomes (ftp://ftp.ncbi.nih.gov/genomes/bacteria). 128 of these loci 
contained nearby (within 40kb) Fha (pfam00498), PpkA (PF00069 or PF13519), and PppA 
(PF13672) genes. Subsets of these loci carrying different combinations of TagQ (pfam13488), 
TagR (pfam03781), TagS (pfam02687), or TagT (pfam00005) homologs were also identified. 
All loci with TagS also had TagT (*). (B and C) Various signals involving membrane 
perturbation including exogenous T6SS attack, T4SS mating pair formation and certain 
membrane disrupting antibiotics like polymyxin B can trigger Fha phosphorylation by PpkA. 
TagR directly activates PpkA, while TagQ positions TagR in the periplasm and associates it 
with the outer membrane. TagS and TagT comprise an inner membrane ABC transporter. It is 
possible that TagS and TagT directly sense the membrane perturbation signal (B) or are 
responsible for localization of the actual signal sensor (C). It should be noted that TagS and 
TagT are not required for delivery of TagQ and TagR to the periplasmic space (Casabona et 
al., 2012) 
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have been confirmed to be functional and active without it, such as in A. baylyi (Basler et al., 

2013) and E. tarda (Zheng and Leung, 2007). However, in at least some of the T6SS that do 

have Fha, such as P. aeruginosa (Mougous et al., 2007) and V. cholerae (Zheng et al., 2011), the 

Fha protein has been shown to be essential. In a subset of these organisms (Figure 1.3A), Fha has 

evolved to play a critical role in mediating post-translational regulation of T6SS activity (Basler 

et al., 2013; Fritsch et al., 2013; Ho et al., 2013; Mougous et al., 2007).  

Based on early data showing subcellular co-localization of Fha and ClpV (Mougous et 

al., 2007), most models that followed hypothesized that Fha orthologs trigger formation of a 

membrane-associated complex that is critical to formation of a functional T6SS organelle. As 

such, one way to conceptualize the T6SS organelle is as a complex composed of two distinct 

assemblies – one analogous to a contractile phage tail and baseplate and the other a trans-

membrane complex (Cascales and Cambillau, 2012; Silverman et al., 2012). However, other than 

using structural or sequence homology as a guide to differentiate the proteins belonging to these 

two complexes, there is no data supporting the concept that these two assemblies can form 

independently. For this reason, we prefer to refer to the entire membrane-associated complex 

excluding the spike, tube, sheath and ClpV components as the “baseplate complex.” 

Clearly, energy is required for the function of the T6SS organelle as a protein 

translocation machine. In this regard, there has been significant controversy in the T6SS field as 

to what role ClpV plays in the process. ClpV was initially identified as a member of the Clp 

family of AAA+ ATPases found almost exclusively in pathogenic bacteria (Schlieker et al., 

2005) before being implicated in T6SS function (Mougous et al., 2006) and recognized as being 

widely conserved in nearly all T6SSs (Boyer et al., 2009). Early localization studies of 

fluorescent ClpV-GFP fusions suggested that ClpV was recruited to specific complexes on the 
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bacterial membrane containing Fha (Mougous et al., 2007). Members of the Clp family form 

hexameric ring structures that bind and unfold protein substrates by threading them through their 

central channel (Mogk et al., 2008). The elegant biochemical studies of Bonemann et al. (2009) 

confirmed these activities in the context of T6SS, but some models for T6SS function have 

perhaps overreached on these observations by suggesting that ClpV also drives effector 

recognition and translocation. For example, one model postulates that after contraction of the 

VipA/B sheath launches the Hcp tube into a target cell to form an intercellular bridge, ClpV is 

recruited to power the translocation of effector proteins by threading them down the Hcp tube 

(Silverman et al., 2012). However, we now know this model is likely incorrect. First, ClpV is not 

essential for T6SS-dependent bacterial killing, but rather it merely increases T6SS efficiency 

(Basler et al., 2012; Zheng et al., 2011). Second, ClpV specifically recognizes and remodels 

VipB (and by association, VipA) in contracted sheaths and not other secreted substrates 

(Bonemann et al., 2009; Pietrosiuk et al., 2011). Third, when observed in time-lapse ClpV-GFP 

visibly coats the entire length of the contracted sheath (Basler and Mekalanos, 2012), an 

observation further confirmed through high-resolution thin-section electron microscopy 

(Kapitein et al., 2013). Binding along the length of a contracted sheath would be unnecessary if 

ClpV were merely translocating effectors down the channel of the Hcp tube. Rather than playing 

a direct role in substrate translocation, these observations suggest that the role of ClpV may 

actually be to recycle T6SS sheath components, allowing for efficient turnover of at least the 

contracted sheath if not the entire organelle (Basler and Mekalanos, 2012; Basler et al., 2012) 

(Figure 1.2). All of the energy required for protein secretion and translocation is contained 

intrinsically within the assembly of the extended sheath structure. All available evidence 

indicates ClpV simply allows the cell to re-access this energy potential by ATP-driven 
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remodeling of VipB/VipB that are trapped in contracted, low energy sheaths (Basler et al., 2012; 

Bonemann et al., 2009; Pietrosiuk et al., 2011). 

The presence of ClpV in the T6SS represents an interesting evolutionary adaptation from 

its phage relatives. Contractile phages utilize a “one-and-done” mechanism, where a single 

contraction even is sufficient for penetration of a host membrane and delivery of components 

needed for successful infection. Unlike phage, bacterial cells benefit greatly from being able to 

reuse intracellular components of the T6SS. Indeed, fluorescence microscopy has revealed that 

sheath components can be limiting for V. cholerae T6SS. Complementation of a vipA mutant 

with low levels of VipA expression from an inducible plasmid reduced the number of T6SS 

structures per cell significantly (Basler et al., 2012). Furthermore, nonfunctional ClpV mutants or 

ClpV mutants unable to recognize VipB show accumulation of contracted sheath structures as 

well as reduced formation of new T6SS structures (Basler and Mekalanos, 2012). This 

observation also explains why residual T6SS activity is still observed in ClpV knockouts (Basler 

et al., 2012; Zheng et al., 2011). In such situations, T6SS structures still form, and assembled 

sheaths still contract, however after this process occurs once, the T6SS structure is locked in a 

contracted form and cannot be recycled. 

Another key difference between phage and T6SS is the inherent difference in penetration 

depth provided by the contraction event. T4 Phage tails, for example, are only about 100 nm in 

length (Duda et al., 1985), while T6SS sheaths can be more than 10 times that length, extending 

across the entire width and sometimes length of a cell (Basler et al., 2012) (Figure 1.4A). This 

difference in assembly length results in a contraction-driven tube extrusion for phage like T4 that 

is only about 50 nanometers. In contrast, T6SS can attack an area up to half the width of the cell 

and therefore possibly penetrate target cells as deep as 500 nanometers (Figure 1.4B). Like 
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phage, which must ultimately deliver genetic information into the cytosol, some T6SS nuclease 

effectors have clear cytosolic targets (Koskiniemi et al., 2013). Although direct delivery into the 

cytosol by a single T6SS contraction event has never been shown, the calculated penetration 

depth of the T6SS spike/tube complex suggests that it could commonly occur. If so, one wonders 

how the tube/spike complex is able to cross the peptidoglycan. Many phage (e.g., T4) carry 

lysozyme domains fused to their tail spike complexes (Arisaka et al., 2003), but T6SS VgrG 

proteins lack equivalent domains (Pukatzki et al., 2007) and those that have lysozyme-like 

effector domains do not need them for target cell intoxication (Zheng et al., 2011). It is possible 

that phages need to digest their way through the peptidoglycan barrier, while the T6SS can use 

brute force to puncture this layer to gain access to the cytosol in one contraction event. 

Ultimately, high-resolution imaging and more precise biophysical measurements of the forces 

involved will be needed to fully resolve these possibilities. 

Figure 1.4 Spatial geometry of anti-bacterial T6SS attacks. (A) Fully assembled T6SS tube 
(orange arrow) and sheath (purple rectangle) can extends across the diameter of the cell. By 
comparison, T4 phage tails are typically only ~100 nm (~1/10 cell width). Phage tail length is 
drawn approximately to scale. (B) After contraction, sheath length is reduced by close to 50%. 
Assuming the inner Hcp completely fills the sheath, the full range of the T6SS (orange halo) is 
a zone approximately 500 nm wide (~1/2 cell width) surrounding the cell. (C) Assuming 
perfectly cylindrical cellular geometry and tight spatial packing, at most 1/6th of the T6SS+ 
attack range will contain a given prey cell. This number is even smaller the larger the distance 
between the T6SS+ predator and the prey cell, highlighting the need for proper aiming of T6SS 
attacks. If a prey cell cannot be sensed, the attacker must fire repeatedly in all directions, 
wasting a majority of the attack potential. 
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Effector identification, T6SS secretion recognition signals, and mechanism of translocation 

The first T6SS effector with confirmed enzymatic activity was the VgrG-1 protein of 

V. cholerae (Pukatzki et al., 2007). This VgrG has become the prototypical example of “evolved 

VgrGs” carrying additional enzymatic domains fused to the C-terminus of their gp5-like b-helix 

domain (Leiman et al., 2009) (Figure 1.5). Other examples include V. cholerae VgrG-3, which 

carries a lysozyme-like domain (Brooks et al., 2013; Dong et al., 2013), A. hydrophila VgrG-1, 

which carries an ADP-ribosylating toxin domain (Suarez et al., 2010), and bioinformatically 

Figure 1.5 Modified MERV model for effector loading and delivery. T6SS effectors are 
loaded onto the VgrG spike complex or within the distal end of the Hcp tube (left panel). 
Sheath contraction leads to the simultaneous delivery of the VgrG spike and all associated 
effectors (middle panel), abrogating the need for the Hcp tube to be stably maintained (right 
panel). Prototypical examples of effector classes 1-3 have been characterized: V. cholerae 
VgrG-1 and VgrG-3 (Class 1), V. cholerae TseL (Class 2), D. dadantii RhsA (Class 3). 
Effector classes 4-6 represent hypothetical mechanisms that are likely to exist. Class 4 
effectors associate with PAAR protein extensions such as transthyretin-like domains (Shneider 
et al., 2013) or Rhs-repeat domains (Koskiniemi et al., 2013). Class 5 effectors bind to the 
inside of the cup-shaped opening in the gp27-like domain of VgrG. Class 6 effectors bind to 
the lumenal side of the Hcp tube; although it has not yet been experimentally confirmed, it is 
likely that P. aeruginosa effector Tse2 falls into this category. 
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identified S-type pyocin nuclease VgrG in Salmonella (Blondel et al., 2009) and VgrG-lipase in 

Burkholderia (Pukatzki et al., 2009). These domain extensions can be further modified through 

interaction with additional effector proteins (Figure 1.5). For example, in V. cholerae, T6SS 

effector TseL (Type six effector Lipase) interacts with VgrG-3 and requires it for its secretion 

(Dong et al., 2013). The modular nature of these C-terminal extension domains and interacting 

proteins suggests that VgrG may be employed as a delivery vehicle for translocation of other 

heterologous functional domains. Indeed, in V. cholerae a b-lactamase domain replacing the 

actin-crosslinking domain of VgrG-1 can be delivered into host cells by the T6SS (Ma et al., 

2009a). 

In both V. cholerae (Pukatzki et al., 2007) and P. aeruginosa (Hachani et al., 2011), there 

is evidence that VgrG forms a trimeric complex with other non-identical VgrG proteins (Hachani 

et al., 2011). Indeed, both hetero- and homo-trimeric VgrG complexes can be observed in 

P. aeruginosa (Hachani et al., 2011), while in V. cholerae, T6SS activity requires that at least 

two distinct VgrG proteins be present for T6SS activity to occur. V. cholerae VgrG-2 is required 

along with at least one of VgrG-1 and VgrG-3 (Zheng et al., 2011), suggesting that formation of 

hetero-trimeric complexes of VgrG-2 and VgrG-1 or VgrG-2 and VgrG-3 is required. 

Differences in spike complex assembly in different organisms may reflect differences in how the 

complex integrates itself within the T6SS apparatus along with other associated effector proteins. 

Indeed, in V. cholerae deletion of VgrG-3 along with secreted effector VasX abolishes T6SS 

activity including Hcp secretion (Dong et al., 2013), suggesting that the associations with VgrG 

complexes may play a direct role in T6SS assembly. These effector-VgrG interactions may 

partially explain why some organisms only have a single copy of VgrG (Rhizobium 

leguminosarum), while others have 3 (V. cholerae), 10 (P. aeruginosa), or even 32 (Sorangium 
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cellulosum) distinct VgrG genes, as incorporation and delivery of different effectors may require 

a specifically adapted VgrG protein. Collectively, these observations suggest that heterotrimeric 

VgrG complexes have, in theory, the ability to deliver more than one effector domain in the 

context of a single spike trimer.  

The first cytotoxic non-VgrG effectors were identified by Mougous and colleagues 

(Hood et al., 2010) and included enzymes that attacked glycan and peptide bonds in bacterial 

peptidoglycan (Russell et al., 2011). Collectively, VgrG and non-VgrG T6SS effectors exhibit a 

diverse range of functions targeting both eukaryotic hosts and bacterial competitors. Known 

effector activities include actin modification (Pukatzki et al., 2007; Suarez et al., 2010), 

muramidases and peptidases that attack the bacterial cell wall (Chou et al., 2012; Dong et al., 

2013; English et al., 2012; Hood et al., 2010; Russell et al., 2011; Russell et al., 2012; Whitney et 

al., 2013), nucleases (Koskiniemi et al., 2013), lipases (Dong et al., 2013; Russell et al., 2013), 

and proteins facilitating eukaryotic membrane fusion (French et al., 2011). In order to prevent 

self or sister cell intoxication, T6SS+ organisms also encode immunity proteins to neutralize their 

cognate antibacterial effectors (Brooks et al., 2013; Dong et al., 2013; English et al., 2012; Hood 

et al., 2010).  

Effectors have been identified using mass spectrometry-based approaches in a number of 

bacteria, including P. aeruginosa (Hood et al., 2010), Serratia marcescens (Fritsch et al., 2013), 

and V. cholerae (Miyata et al., 2011). Interestingly, P. aeruginosa mutants lacking all three 

effectors identified in this manner (Hood et al., 2010) are still able to kill V. cholerae and E. coli 

(Basler et al., 2013; Ho et al., 2013). Although cell envelope puncturing can lead to cell death as 

in the case of R-type pyocins (Michel-Briand and Baysse, 2002), Gram-negative bacteria have 

been reported to survive multiple cell envelope puncturing events where an open channel is not 
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maintained (Suo et al., 2009), suggesting that Tse-independent killing may still involve other 

effectors that have escaped detection by the previously employed proteomic approaches due to 

either low expression levels or their intrinsic properties. Tn-seq (transposon mutagenesis coupled 

with massively parallel sequencing) has recently been employed as an alternative to proteomics 

to detect three pairs of effectors and their cognate immunity proteins in V. cholerae (Dong et al., 

2013). This method takes advantage of the incidental sister cell-sister cell T6SS attacks, as cells 

carrying transposon disruptions of effector immunity genes drop out of mixed populations of 

T6SS+ but not T6SS– cells in a manner detectable by deep sequencing. 

Bioinformatic analyses using the physical properties (i.e., molecular weight, isoelectric 

point and operon structure) of known P. aeruginosa effectors have predicted a large group of 

potential T6SS effectors (Russell et al., 2012). However, these analyses did not identify all of the 

effectors in V. cholerae and S. marcescens, indicating again the diversity of T6SS effectors. 

Notably, T6SS effector genes are often found immediately downstream of orphan hcp-vgrG gene 

pairs not encoded within the main T6SS gene clusters in several organisms, including 

V. cholerae (Dong et al., 2013; Miyata et al., 2011; Zheng et al., 2011), Dickeya dadantii 

(Koskiniemi et al., 2013) and Proteus mirabilis (Alteri et al., 2013; Wenren et al., 2013). By 

extension, genes downstream of these hcp-vgrG gene pairs may encode T6SS effectors in other 

organisms as well. Indeed, many of these downstream genes belong to a diverse family of lipase 

effectors (Russell et al., 2013). 

Recently, another gene product frequently found adjacent to T6SS genes has been 

implicated as both a structural component of the T6SS organelle and as a secreted substrate. 

Specifically, PAAR (Proline Alanine-Alanine-aRginine)-motif-containing proteins have been 

identified as metal-binding, cone shaped proteins that effectively sharpen the b-helical tip of the 
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VgrG trimer (Shneider et al., 2013) (Figure 1.5). Like VgrG, PAAR proteins can also have 

additional extension domains with various predicted effector activities suggesting that the 

hundreds of PAAR proteins identifiable in genome databases may be T6SS effectors as well 

(Shneider et al., 2013). Because the interaction between PAAR proteins and the C-terminal end 

of the VgrG trimer is driven by hydrogen bonding between the backbones of the respective 

proteins, it has been proposed that various PAAR proteins might be able to bind to any given 

VgrG trimer (Shneider et al., 2013). Indeed, an effector nuclease RhsA delivered to target cells 

by the T6SS D. dadantii (Koskiniemi et al., 2013) has been identified to be a PAAR protein 

(Shneider et al., 2013). This nuclease effector requires either of two VgrG genes to be delivered 

to sensitive target cells (Koskiniemi et al., 2013), suggesting that this PAAR protein is capable of 

recognizing distinct VgrG trimers. Furthermore, as with Hcp and VgrG, there are frequently 

multiple genes encoding PAAR proteins in bacterial species that encode T6SS (Shneider et al., 

2013), suggesting that like VgrG effectors, genes encoding PAAR effector proteins have been 

subject to extensive horizontal transmission among organisms. 

The T6SS is also capable of translocating proteins lacking identifiable signals for VgrG 

association such as PAAR motifs. Although it has been suggested that the Hcp tube may function 

as a passive conduit through which these effectors might be translocated (Mougous et al., 2006; 

Silverman et al., 2012), the opening in the Hcp tube is only 40Å wide (Mougous et al., 2006) and 

is too small for all but the smallest effectors to pass through in a folded state (Benz et al., 2012). 

Early on, the triple AAA+ ATPase ClpV was suggested to power unfolded proteins down an 

intercellular Hcp tube (Mougous et al., 2006; Silverman et al., 2012), however, such a 

mechanism would require stable assembly of unsheathed extracellular Hcp tubes, which has 

never been observed. Recent elegant biochemical and electron-microscopy evidence (Silverman 
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et al., 2013) suggests that some effectors can bind to residues displayed on the inside of Hcp1 

hexamers. Given that this interaction stabilizes some effectors such as Tse2, Hcp has been 

designated to have chaperone function (Silverman et al., 2013). Additionally, alteration of 

residues on the lumenal side of the Hcp tube prevents secretion of Tse2 and Tse3 and reduces 

secretion of Tse1. Given that Tse3 (44.4 kDa) is too large to fit into the Hcp tube in a folded 

conformation, Silverman et al. (2013) suggested that Tse3 may be interacting with lumenal Hcp 

residues while in an unfolded state. These Hcp-effector interactions are not without precedent as 

early biochemical analysis of the T6SS in E. tarda showed that secreted T6SS substrate EvpP 

also interacted with Hcp (Zheng and Leung, 2007). Thus, Hcp “effector chaperone” activity may 

be the first step in a process that recruits effectors into fully assembled Hcp tubes. These 

observations suggest that some effectors may be loaded into the Hcp tube during assembly of the 

T6SS structure and may be injected into target cells along with the tube. The effectors that reside 

in the Hcp tube in an unfolded conformation may also act analogously to phage tail “tape 

measure” proteins (Rodriguez-Rubio et al., 2012) and thus control the length of the extended 

T6SS tail/tube complex.  

Another group of potential T6SS effectors whose members are also too large to reside 

within the Hcp tube in a folded confirmation include members of the extended Rhs-repeat-

containing protein family (Koskiniemi et al., 2013). Recently, structural analysis has determined 

that the Rhs-repeat domain of one bacterial toxin forms a shell-like structure that completely 

encloses and protects the toxin’s folded enzymatically active effector domain (Busby et al., 

2013). Given that many PAAR proteins display Rhs-repeat domains as well as putative effector 

domains (Shneider et al., 2013), it seems likely that these caged effector molecules are 

completely folded structures that decorate the VgrG tip. Together these data suggest a refinement 
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of a model termed the Multiple Effector Translocation VgrG (MERV) model (Shneider et al., 

2013). According to this model (Figure 1.5), effectors can be secreted and delivered to target 

cells by the T6SS organelle using as many as five functionally distinct mechanisms. In 

accordance with this model, we propose that effectors can be delivered to target cells as a 

complex of cargo proteins that decorate the VgrG/PAAR spike or reside within the proximal part 

of the Hcp tube lumen (Figure 1.5). A key aspect of this model is that the entire cytotoxic load 

can be delivered in a single T6SS firing event, thereby abrogating the need for a stable 

intercellular channel and prolonged cell-cell association. Rather than providing more time for 

additional effectors to be transferred through a tube, longer cell-cell associations allow for 

repeated T6SS firing events to hit a given prey cell. It is also worth noting that certain large 

toxins also utilize a strategy that involves delivery of multiple effector domains in a presumably 

a single membrane translocation event (Satchell, 2011). 

 

Regulation of T6SS expression and assembly 

Because the assembly, contraction, disassembly and re-assembly cycle of the T6SS 

organelle is likely to be energetically costly to the bacterial cell, it is not surprising that both 

expression and assembly of this organelle is tightly regulated. In most cases, bacteria have some 

sort of transcriptional control over T6SS tied to quorum sensing (Kitaoka et al., 2011; Salomon 

et al., 2013; Zheng et al., 2010), biofilm formation (Aubert et al., 2008; Moscoso et al., 2011), 

iron-depletion (Brunet et al., 2011; Chakraborty et al., 2011), thermoregulation (Pieper et al., 

2009; Salomon et al., 2013), salinity (Salomon et al., 2013) or other stress responses (Brooks et 

al., 2013; Gueguen et al., 2013). In V. cholerae, the major T6SS cluster encodes an essential 

regulator of T6SS, VasH, which acts as a σ54 (RpoN) activator. Indeed, both RpoN and VasH are 
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required for T6SS function (Pukatzki et al., 2006; Zheng et al., 2011), but interestingly RpoN 

and VasH only control the transcription of the two hcp operons but not the major cluster (Dong 

and Mekalanos, 2012). It is worth noting that VasH and RpoN were originally reported to 

directly bind to the main T6SS gene cluster in addition to the hcp2 promoter (Bernard et al., 

2011). However, the authors of this study reached this conclusion using in vitro gel-shift assays 

and heterologous expression of transcriptional reporter fusions in E. coli rather than assaying 

these regulators under native conditions. That RpoN and VasH only control the hcp operons and 

not the main cluster suggests a two-tiered regulatory cascade. Environmental signals first need to 

trigger the transcription of the major cluster so that vasH is expressed, which subsequently 

activates the transcription of the hcp operons by RpoN. Because the hcp operons carry many of 

the secreted T6SS components, namely Hcp, VgrG and their downstream effector proteins, while 

the main cluster contains mostly structural components, this two-tiered regulation may be 

important for maintaining different levels of expression for components that can be internally 

recycled versus those that are secreted and thus consumed by the functioning system. Despite 

this tight control, transcriptional regulation still has its limitations. Given the number of 

independent components of the T6SS apparatus and the multiplicity of subunits required, 

transcriptional regulation does not allow for rapid response to new stimuli. Furthermore, because 

of cellular geometry, T6SS firing events are inherently inefficient at hitting target cells. Even 

assuming perfectly cylindrical geometry and tight spatial packing of adjacent cells, a T6SS+ 

attacker would require on average six randomly positioned T6SS firing events in order to 

actually hit a given neighboring cell (Figure 1.4C). The consequence is that cells are forced into 

one of two states, a docile one with an inactive or ineffective T6SS or an aggressive one with an 

excessively active T6SS that indiscriminately attacks all neighbors.  
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P. aeruginosa addresses both T6SS efficiency and target selection through a post-

translational regulatory system. The T6SS in P. aeruginosa requires the phosphorylation of Fha 

by threonine kinase PpkA (Mougous et al., 2007) (Figure 1.3B, C). PpkA activity requires outer 

membrane lipoprotein TagQ (Type six secretion-associated gene Q) and outer membrane-

associated protein TagR (Silverman et al., 2011). TagR was originally identified as a protein 

bioinformatically predicted to interact with the periplasmic domain of PpkA (Hsu et al., 2009), 

while TagQ was shown to be required for proper localization of TagR (Casabona et al., 2012). 

Two additional proteins, TagS and TagT, comprise a membrane-bound complex related to 

bacterial ABC transporters and are both required for full activation of PpkA (Casabona et al., 

2012). Deactivation of the T6SS is achieved through dephosphorylation of Fha by protein 

phosphatase PppA (Mougous et al., 2007). Deletion mutants of PppA exhibit elevated levels of 

T6SS activity when measured by either the Hcp secretion level (Mougous et al., 2007) or by 

ClpV dynamics (Basler et al., 2013). 

It was initially hypothesized that surface growth triggered this post-translational 

regulation of the T6SS (Silverman et al., 2011), however time-lapse visualization of T6SS 

dynamics through fluorescence microscopy has revealed P. aeruginosa to have a more 

fascinating regulatory system (Basler and Mekalanos, 2012). When grown on a solid surface, a 

P. aeruginosa cell that spontaneously fires its T6SS apparatus will frequently strike a 

neighboring sister cell. This attacked sister cell then builds its own T6SS organelle and fires a 

retaliatory T6SS counterattack. The initial attackers then sense this T6SS counterattack and 

retaliate in turn. Because P. aeruginosa encodes immunity proteins to its own T6SS effectors, 

none of these T6SS attacks between sister cells are lethal, allowing for this reciprocal interaction 

to be stably maintained for several minutes. This phenomenon has been named ‘T6SS dueling’ 
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(Basler and Mekalanos, 2012). Further genetic analysis of this dueling activity confirmed the 

involvement of the threonine phosphorylation pathway (Basler et al., 2013). As expected, 

mutations in PpkA, TagQ, or TagR caused complete loss of all T6SS activation. However, 

deletion of TagT maintained basal levels of T6SS activity but completely suppressed dueling 

activity. In contrast, although a PppA deletion mutant exhibited high levels of T6SS activity in 

virtually all cells, almost none of this activity was associated with T6SS dueling, suggesting that 

dephosphorylation of Fha is required to reposition the T6SS apparatus in response to newly 

sensed attacks. Because dueling activity can only occur if neighboring cells remain adjacent to 

each other, it is not surprising that this phenomenon is manifest only on solid surfaces and not in 

liquid culture. As such, it is highly likely that the observed correlation between surface growth 

and increased PpkA activity (Casabona et al., 2012) is due to accumulation of dueling sister cells 

within a given surface-growing population. 

Although sister cell dueling might play some role in cell signaling involving non-T6SS 

targets of PpkA regulation (Goldova et al., 2011), responding to sister cell attacks is probably not 

the intended use of the T6SS response pathway. Indeed, P. aeruginosa T6SS is capable of 

responding to T6SS attack from heterologous organisms lacking cognate immunity proteins to 

P. aeruginosa T6SS effectors. When grown in competition with P. aeruginosa, T6SS+ 

V. cholerae and A. baylyi but not T6SS– mutants of these organisms were both killed in a TagT-

dependent manner (Basler et al., 2013). A similar differentiation between T6SS+ and T6SS– 

Burkholderia thailandensis has been reported, although this observation was attributed by the 

authors to different degrees of susceptibility to P. aeruginosa T6SS (Leroux et al., 2012). 

Perhaps the most critical aspect of this T6SS response mechanism is its ability to precisely aim 

the retaliatory T6SS response directly at the source of the initial attack. When mixtures of both 
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T6SS+ and T6SS– V. cholerae were mixed with P. aeruginosa, only the T6SS+ V. cholerae cells 

were killed, while the T6SS– cells were largely untouched (Basler et al., 2013). The lack of 

collateral damage associated with activation of P. aeruginosa T6SS is perhaps indicative of the 

prevalence of P. aeruginosa in multispecies communities (Ha et al., 2012; Tashiro et al., 2013), 

where it might stand to gain from coexistence with non-hostile cohabitants. 

An interesting and still unanswered question that arises from these results is how 

P. aeruginosa is able to avoid being killed by the T6SS effectors of these heterologous species. 

The “T6SS effector armor” might be attributable to its notorious outer-membrane impermeability 

(Nikaido, 1994), but it is hard to imagine how any membrane structure could repel T6SS attacks. 

Perhaps modifications of peptidoglycan structure or robust repair mechanisms underlie this 

observed resistance. Thus, immunity to heterologous effectors coupled with T6SS counterattacks 

may be fueling an arms race in antagonistic bacterial cell-cell interactions. 

Based on bioinformatic analysis of the genes needed for dueling, this post-translation 

T6SS regulation is likely limited to a subset of Fha-containing T6SSs (Figure 1.3A). 

Specifically, this phenomenon may be restricted to Pseudomonas species, as this genus is the 

only one so far identified to contain all of the requisite regulatory components. Indeed, other 

organisms such as S. marcescens that still require phosphorylation of Fha by PpkA for T6SS 

activation but lack the TagQRST system do not require cell-cell contact to fully activate their 

T6SS (Fritsch et al., 2013). This observation suggests that the rapid response associated with 

post-translational control is not necessarily limited to responding to attacking bacterial neighbors 

as has been observed in P. aeruginosa. Rather, T6SS in each of these bacterial species might be 

adapted to specifically respond to the threats each species is likely to encounter in nature. 

Recently, the T6SS of E. coli EAEC strain 17-2 has been observed to exhibit what 
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appeared to be T6SS dueling behavior (Brunet et al., 2013). However, given that none of the 

TagQRST system genes required for T6SS dueling in P. aerugionsa are found in sequenced E. 

coli strains (Figure 1.3A), it is unlikely that these bacteria are exhibiting the same process 

observed in P. aeruginosa. Indeed, the dueling cells presented in this study do not appear to 

exhibit the precise geometric orientation observed in P. aeruginosa (Basler et al., 2013; Basler 

and Mekalanos, 2012) and thus may be more a consequence of T6SS organelles coincidentally 

being aimed at each other in adjacent cells. Another important clarification between the putative 

dueling observed in the studies by Brunet et al. (2013) described above and the dueling exhibited 

by P. aeruginosa is that since there is little to no collateral damage from these retaliatory T6SS 

attacks, T6SS activity does not tend to spread through a population of P. aeruginosa cells (Basler 

et al., 2013; Basler and Mekalanos, 2012). The T6SS activity observed in EAEC was reported to 

propagate within a population of growing cells (Brunet et al., 2013), suggesting that this 

organism may be responding to other signals associated with growth on a solid surface as a 

community (e.g., quorum sensing) or some diffusible signal released by cells undergoing T6SS 

attack. These observations stand as a testament to both the diversity and specialization of T6SS 

regulation in diverse bacterial species. 

Although a precise definition of the signal recognized by P. aeruginosa that triggers 

T6SS assembly remains elusive, we now have some significant new clues. Recently, it was 

discovered that broad host range conjugation systems can also induce a P. aeruginosa T6SS in 

the form of a “donor-directed counterattack” (Ho et al., 2013). In this report, T4SS associated 

with the plasmid RP4 was found to render E. coli 30-times more sensitive to killing by the 

P. aeruginosa T6SS. Because this RP4-dependent, T6SS-dependent killing involved precise 

target selection and required both TagT and PppA, the authors concluded that RP4 was 
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triggering aimed assembly of the P. aeruginosa T6SS organelle in a manner perfectly analogous 

to the T6SS dueling response. Extensive genetic analysis of the RP4 conjugation system revealed 

that DNA transfer was not required for this response, but genes involved in sex pilus and mating 

pair formation were (Ho et al., 2013). Furthermore, the antibiotic polymyxin B, a cationic cyclic 

peptide that binds the outer membrane component lipid A to cause disruption of membrane 

integrity, also induced rapid TagT-dependent assembly and firing of the P. aeruginosa T6SS (Ho 

et al., 2013). Altogether, these observations suggested that the signal for T6SS assembly is a 

highly localized, physical or chemical signal associated with membrane perturbation. As such, 

the T6SS represents a generalized bacterial defense mechanism against foreign attack and 

acquisition of potentially infectious DNA elements. It remains unclear whether other membrane-

penetrating processes such as phage infection, eukaryotic defensin or perforin might also induce 

similar T6SS counterattacks or if these hypothetical T6SS counterattacks can be used by bacteria 

to defend against phage or eukaryotic host cell responses. 

As noted earlier, T6SS can also deliver effectors that are toxic to eukaryotic cells and 

indeed, evidence suggest that genes encoding this organelle are induced during infection and 

have been shown to induce host damage in experimental animals (Kapitein and Mogk, 2013; Ma 

and Mekalanos, 2010; Mandlik et al., 2011; Miyata et al., 2013; Zheng et al., 2010). The 

antibacterial activity associated with T6SS may also enhance colonization of the host by 

targeting heterologous or homologous bacterial cells. Recent evidence for the latter has been 

obtained in V. cholerae where a mutant defective in tsiV3, the cognate immunity protein to the 

bactericidal effector VgrG-3 (Dong et al., 2013), exhibited a defect in intestinal colonization 

(Yang et al., 2013). This in vivo colonization defect of the tsiV3 mutant depended on its co-

colonization with T6SS+ strains carrying an intact VgrG3 gene. These data suggest that 
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V. cholerae T6SS is functional during infection and that antagonistic sister cell-sister cell 

interactions occur during the infection process. Such a result predicts that heterologous species 

may also be subject to T6SS-dependent attacks and that these anti-microbiota interactions might 

thereby influence the virulence and in vivo fitness of T6SS+ species. 

In summary, rapid progress has been made toward understanding the scope of biological 

activities associated with the bacterial T6SS, but many questions remain unanswered (Box 1). 

Besides acting in many species as virulence factors, T6SS is likely to be important for the 

ecological fitness of bacteria that live in consortia such as mixed biofilms (Miyata et al., 2013). 

Bacterial species that activate T6SS organelles and fire them in an unregulated manner (e.g., 

Vibrio and Acinetobacter species) are likely using them to kill all susceptible neighbors 

indiscriminately and thus may attack preformed biofilms efficiently. P. aeruginosa may have 

adapted to establishing beneficial complex biofilm communities (Kolenbrander et al., 2010; 

Peters et al., 2012), and therefore as a species P. aeruginosa would cooperate with other 

organisms so long as they do not pose a threat. On the other hand, if microbial neighbors threaten 

P. aeruginosa with either T6SS attack or with T4SS-mediated transfer of infectious conjugative 

elements, P. aeruginosa will use its T6SS as a primitive “innate immune system” (Ho et al., 

2013) to neutralize these challenges. Understanding whether any of these ecological 

phenomenon lead to significant changes in the fitness of pathogens in vivo remains a priority for 

this rapidly moving field. 

 



Chapter 2.  Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI 

secretion system in Vibrio cholerae 

 

A type VI secretion system (T6SS) was recently shown to be required for full virulence 

of Vibrio cholerae O37 serogroup strain V52. Here, we systematically mutagenized each gene in 

the T6SS locus and characterized their functions based on expression and secretion of the 

hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum, 

and killing of Escherichia coli bacterial cells. We grouped the 17 proteins characterized of the 

T6SS locus into four categories: twelve (VipA, VipB, VCA0109–VCA0115, ClpV, VCA0119, 

and VasK) are essential for Hcp secretion and bacterial virulence and likely function as structural 

components of the apparatus; two (VasH and VCA0122) are regulators required for T6SS gene 

expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-

3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are 

unknown; the last group is represented by VCA0118, which is not required for Hcp expression or 

secretion but still plays a role in both amoebae and bacterial killing and may be an effector 

protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is 

less important for killing E. coli. Additionally, one vgrG gene (vgrG-2) outside of the T6SS gene 

cluster was required for bacterial killing, while another (vgrG-1) was not. However, a bacterial 

killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded 

in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward 

Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into 

the functional requirements of V. cholerae’s T6SS in the context of secretion as well as killing of 

bacterial and eukaryotic phagocytic cells.  



 29 

Foreword 

A modified version of this chapter was published in PLoS One on September 13, 2011. 

The published version can be found on the web at the following URL: 
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Introduction 

Pathogenicity of bacteria is often critically dependent on secretion systems to export toxic 

molecules into the environment or translocate effectors into the host cells. These secreted or 

injected molecules result in interference with or stimulation of host cellular processes. At least 

six different secretion systems (type I through type VI) have been found in Gram-negative 

bacterial pathogens of animals and plants (Cascales, 2008; Economou et al., 2006; Filloux et al., 

2008). These secretion systems are distinguished in part by the conserved structural components 

that define them but also by the characteristics of their substrates and the subcellular paths that 

their substrates take during the export process. Among these secretion systems, the type VI 

secretion system (T6SS) has recently emerged as an exciting new topic for experimental 

exploration (Mougous et al., 2006; Pukatzki et al., 2006). 

T6SSs have been described in many bacterial pathogens and have been implicated in a 

variety of functions ranging from inter-bacterial relationships and biofilm formation, to 

cytotoxicity and survival in phagocytic cells (Cascales, 2008; Hood et al., 2010; MacIntyre et al., 

2010; Pukatzki et al., 2009; Schwarz et al., 2010b). T6SS gene cluster can be found in 

approximately 25% of all sequenced Proteobacteria and is a virulence factor in many bacteria 

including Vibrio cholerae (Pukatzki et al., 2006), Edwardsiella tarda (Zheng and Leung, 2007), 

Pseudomonas aeruginosa (Mougous et al., 2006), and Burkholderia species (Aubert et al., 2008; 

Schell et al., 2007). T6SS gene clusters contain from 15 to more than 20 genes and secrete 

substrates lacking N-terminal hydrophobic signal sequences (Bingle et al., 2008). Functional 

assays and protein localization studies suggested that the proteins encoded by T6SS gene clusters 

are assembled into a multi-component apparatus (Aschtgen et al., 2008; Aschtgen et al., 2010a; 

Mougous et al., 2007; Zheng and Leung, 2007). Bioinformatic analysis has identified a core of 
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13 genes that may constitute the minimal number needed to produce a functional apparatus 

(Boyer et al., 2009). T6SS core components include DotU and IcmF orthologs believed to 

stabilize the multi-protein complex in the membrane (Ma et al., 2009b; Zheng and Leung, 2007), 

and an AAA+ family ATPase called ClpV (Bonemann et al., 2009; Mougous et al., 2006). ClpV 

associates with several other conserved T6SS proteins, and its ATPase activity has been reported 

to be essential for T6SS function (Cascales, 2008). In most T6SSs, hemolysin co-regulated 

protein (Hcp) and valine-glycine repeat protein G (VgrG) are exported by T6SS. They are 

proposed to be the extracellular components of T6SS apparatus, and their secretion is 

codependent (Hood et al., 2010; Leiman et al., 2009; Pell et al., 2009; Pukatzki et al., 2007; 

Zheng and Leung, 2007). Multiple distinct T6SS gene clusters have been identified in various 

bacteria (Mougous et al., 2006; Mougous et al., 2007; Pukatzki et al., 2006; Zheng and Leung, 

2007). In E. tarda, a systematic mutation of one T6SS cluster has been performed and three 

categories of proteins have been identified, including 12 genes required for the Hcp secretion 

(Zheng and Leung, 2007). 

V. cholerae is a Gram-negative bacterium that causes a severe, life-threatening diarrheal 

disease, cholera. Disease occurs when contaminated food or water is ingested, resulting in a 

voluminous secretory diarrhea that can lead to dehydration and death if untreated (Faruque et al., 

1998). Orally ingested bacteria colonize the intestinal epithelium through expression of toxin co-

regulated pili (TCP), which in turn is coordinately regulated with cholera toxin (CT), the 

enterotoxin responsible for the bulk of the secretory diarrhea observed during disease 

progression (Matson et al., 2007). Besides these classic virulence factors, T6SS was recently 

implicated as a virulence determinant of V. cholerae using Dictyostelium discoideum, mouse and 

rabbit as model systems (Ma and Mekalanos, 2010; Pukatzki et al., 2006; Zheng et al., 2010). In 
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V. cholerae O37 serogroup strain V52, T6SS is required for full virulence towards Dictyostelium 

amoebae and J774 macrophages (Pukatzki et al., 2006) and for inflammatory diarrhea in infant 

mice (Ma and Mekalanos, 2010). In the seventh pandemic O1 El Tor strain C6706, T6SS 

contributes to fecal diarrhea and intestinal inflammation in infant rabbits (Zheng et al., 2010). In 

addition, the T6SS in V. cholerae displays antimicrobial properties and can cause up to a 

100,000-fold reduction in Escherichia coli K12 survival when they co-cultivated with 

V. cholerae strain V52 on solid agar media (MacIntyre et al., 2010). 

The T6SS in V. cholerae is responsible for the secretion of Hcp as well as three VgrG 

proteins (VgrG-1 to -3) (Pukatzki et al., 2006). VgrG-1, which functions as both a T6SS 

structural element and an effector protein (Pukatzki et al., 2007), contains a C-terminal domain 

with strong homology to the actin cross-linking domain (ACD) of V. cholerae RtxA or MARTX 

toxin (Sheahan et al., 2004). VgrG-1 causes actin cross-linking in host cells following its T6SS-

dependent translocation during infection (Ma et al., 2009a; Ma and Mekalanos, 2010; Pukatzki et 

al., 2007). However, the ACD domain of VgrG-1 is not required for killing E. coli (MacIntyre et 

al., 2010). VgrG-1 is the only effector protein demonstrated to be translocated into eukaryotic 

host cells by a functional T6SS. However, recently several proteins have been identified as being 

likely translocated into bacterial target cells by the T6SS of P. aeruginosa (Hood et al., 2010). 

Structural biology has revealed interesting evolutionary relationships between 

components of the T6SS apparatus and other dynamic structures that penetrate cell membranes 

(Leiman et al., 2009; Pukatzki et al., 2007). For example, the X-ray crystal structure of an E. coli 

VgrG-related protein predicts that VgrG proteins likely trimerize to form a complex that strongly 

resembles the bacteriophage T4 tail spike complex (Leiman et al., 2009; Pukatzki et al., 2007). 

The atomic structure of Hcp-related protein from Pseudomonas aeruginosa (Mougous et al., 
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2006) revealed its ability to form tube-like structures in crystals that are similar to tubes formed 

by the N-terminal domain of trimeric VgrG proteins (Leiman et al., 2009; Pell et al., 2009). 

These data suggest that in the context of a T6SS appratus, Hcp may form a tube-like structure 

that interacts with VgrG trimers in a complex analogous to phage tail tubes and spikes (Leiman 

et al., 2009; Pell et al., 2009). Other T6SS proteins also have domains that are similar to phage 

tail base plate proteins (Leiman et al., 2009). 

In the V. cholerae V52 T6SS locus, VipA, VipB, VasH, VasF, ClpV, VasK, and VgrG-3 

have been characterized by genetic knockout (Bonemann et al., 2009; Pukatzki et al., 2006) and 

bioinformatic analysis (Shrivastava and Mande, 2008). VasH is a regulator and VipA, VipB, 

VasF, ClpV and VasK are T6SS structural components essential for Hcp secretion (Bonemann et 

al., 2009; Pukatzki et al., 2007; Pukatzki et al., 2006). VipA binds to VipB, and together they 

form tubules in E. coli (Bonemann et al., 2009) that Leiman et al. (2009) noted to have a striking 

resemblance to structures corresponding to the contracted tail sheath of bacteriophage T4. Thus, 

a phage sheath-like contraction mechanism might power the membrane penetration/secretion 

process of the VgrG-Hcp portion of the T6SS phage tail-like apparatus (Economou et al., 2006; 

Leiman et al., 2009). ClpV ATPase activity can remodel VipA/VipB tubules in vitro, and the 

ATPase activity of this protein has been reported to be a critical for substrate secretion in 

P. aeruginosa and V. cholerae (Bonemann et al., 2009; Mougous et al., 2006). 

Here we report the genetic analysis of the T6SS locus of V. cholerae V52 in the context 

of its role in virulence against both E. coli and Dictyostelium amoebae. Our results show that 

deletion of 15 individual genes in T6SS locus result in loss of virulence towards amoebae. 

Twelve of these 15 individual genes are required for secretion of Hcp but not its expression. 

Another two, VCA0118 and VCA0122, encode a potential effector protein and a regulator, 
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respectively. In addition, we show that several genes in the putative operons encoding vgrG-1 

and vgrG-2 are likely involved in type VI secretion and affect T6SS-dependent virulence toward 

amoebae. Deletion of any of the genes predicted to encode T6SS structural elements caused 

significant decreases in the ability of V. cholerae to kill E. coli. Additionally, the regulatory gene 

vasH, VCA0118 and VCA0020 also contribute to T6SS-dependent killing of bacterial cells. 

 

Results 

Systematic mutagenesis of genes in the T6SS locus. The T6SS locus in V. cholerae 

contains 18 open reading frames (Pukatzki et al., 2006). Additionally, VCA0118, VCA0121 and 

VCA0122 have been found to be restricted to a smaller group of T6SS+ organisms and could 

have species-specific roles (Shrivastava and Mande, 2008). While some genetic analysis of 

VipA, VipB, VasF, VasH, ClpV, VasK and VgrG-3 has been performed previously (Bonemann 

et al., 2009; Pukatzki et al., 2007; Pukatzki et al., 2006), the function of other proteins encoded in 

this locus have not been explored in terms of their participation in both bacterial and eukaryotic 

T6SS-dependent killing. Thus, we began by systematically mutating all genes predicted to be in 

the T6SS locus of V. cholerae strain V52 (Figure 2.1A). We generated non-polar mutations by 

making in-frame deletions of each gene. Thirteen mutants were successfully constructed but we 

were unable to delete any portion of VCA0124 for unknown reasons. VCA0124 may be essential 

and could encode an immunity protein for a toxic effector as has been reported for the 

P. aeruginosa T6SS (Hood et al., 2010). 

In order to determine the effects of these mutations on T6SS function, standard Hcp 

expression and secretion assays were performed utilizing western blot analysis and anti-Hcp 

antibody. Protein fractions were prepared from bacterial cell pellets and cell-free supernatants 
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from 16 T6SS mutants (∆vca0107 to ∆vca0122). As shown in Figure 2.1B, Hcp was detected in 

the bacterial cell pellet of all the mutants except ∆vasH. In addition, Hcp expression was 

significantly decreased in ∆vca0122 compared to the wild type and other T6SS mutants 

(excluding ∆vasH), suggesting that VCA0122 may either promote the expression of T6SS 

substrates as a regulator or their stabilization as a chaperone. Because Ponceau S staining of the 

western blot membranes showed a similar total protein level among the different mutants 

analyzed (data not shown), we conclude that the different levels of Hcp observed in the bacterial 

pellets was not due to sample loading variation during the analysis. Expression of Hcp in the cell 

Figure 2.1 T6SS locus genes required for Hcp secretion and amoebae killing. (A) 
Schematic representation of the gene organisation in the V. cholerae T6SS locus. Genes that 
have been characterized are represented by arrows filled the indicated patterns and genes that 
have not been characterized were shown with empty arrows. (B) Hcp expression in bacterial 
pellet (P) and secretion in culture supernatant (S) in different T6SS deletion mutants were 
examined by western blot with anti-Hcp serum. (C) D. discoideum plaque formation assay for 
individual T6SS deletion mutants. The minimum number of Dictyostelium amoebae cells 
required for plaque formation on the lawns of V. cholerae wild-type or mutants was shown. 
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pellet did not predict whether Hcp would be secreted by a given mutant. Thus, we examined the 

presence of Hcp in the supernatant of mutants. As shown in Figure 2.1B, Hcp could not be 

detected in the supernatant of twelve mutants (VCA0107 through VCA0116, VCA0119, and 

VCA0120) even though deletion of these genes did not affect Hcp expression in the cell pellet. 

Additionally, the level of Hcp in the ∆vca0122 mutant supernatant was significantly reduced 

when compared to the wild type (Figure 2.1B). VCA0118 and VCA0121 were not required for 

wild-type levels of Hcp secretion (Figure 2.1B). 

To further characterize the effects of these non-polar single gene mutations on 

V. cholerae virulence, we examined plaque formation by Dictyostelium amoebae on bacterial 

lawns produced with different mutant strains. We plated wild-type V52 and different individual 

mutants on SM/5 agar plates. 5 µl of SorC buffer containing different numbers of amoebae was 

then deposited on each of these bacterial lawns. Plaque formation was examined after 3-5 days of 

incubation at 22 С, and the minimum number of Dictyostelium cells required for plaque 

formation was recorded. As shown in Figure 2.1C, 10,000 Dictyostelium amoebae were required 

to form plaque on wild-type V52 lawns. However, 5-10 amoebae cells were sufficient to do so 

on lawns of the 14 mutants carrying deletions in ∆vca0107 through ∆vca0120. The minimum 

number of Dictyostelium cells required to form plaques on a ∆vca0122 lawn was 10-50 amoebae 

cells, slightly higher than other mutants. In contrast, VCA0121 was not required for virulence in 

that it behaved identically to the wild type in these amoebae plaque formation assays. Virulence 

of the ∆vca0121 mutant towards Dictyostelium is consistent with the observation that this mutant 

still secretes normal levels of Hcp (Figure 2.1B). Similarly, deletions of two genes (VCA0105 

and VCA0106) encoded upstream of VCA0107 did not shown any significant Dictyostelium 
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killing defect (Figure 2.1A, C), suggesting that these genes are outside the boundary of the 

functional T6SS locus. 

VCA0122 controls Hcp expression at the transcriptional level. VCA0122 is a gene 

found only in Vibrio species and encodes an 80 amino acid protein with no recognizable 

conserved domains. The ∆vca0122 mutant expressed decreased levels of Hcp in the bacterial 

pellet as well as in its culture supernatant (Figure 2.1B). To determine whether VCA0122 is 

required for transcription of T6SS genes, we examined the expression of hcp-2 in the ∆vca0122 

mutant. We constructed on low copy-number plasmid pTL61T a transcriptional fusion between 

the promoter region of hcp-2 gene and a lacZ reporter gene. The resulting plasmid (pTL-hcp) 

was then transformed into wild-type V52 and ∆vca0122 respectively and the β-galactosidase 

activities of these two strains were examined. As shown in Figure 2.2, strong β-galactosidase 

activity was detected in the bacterial lysate of V52 with pTL-hcp. In contrast, this activity was 

Figure 2.2 VCA0122 is a positive regulator of T6SS. The regulation of VCA0122 on T6SS 
substrate gene hcp-2 was examined using lacZ reporter plasmid. Bacteria were cultured in LB 
broth. The values represent the mean ± SD. Data were analyzed with student’s t test. Double 
asterisks (**) indicates p<0.001 and single asterisk (*) indicates p<0.05. 
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decreased by about 4-fold in the ∆vca0122 mutant. The decrease in β-galactosidase activity was 

partially complemented by a copy of VCA0122 provided in trans (Figure 2.2). These results 

suggest that VCA0122 is a regulator controlling the expression of the hcp-2 locus. 

VCA0118 is not required for VgrG-1 secretion but enhances actin cross-linking 

activity in a macrophage cell line. VCA0118 encodes a 227 amino acid protein that contains a 

conserved uncharacterized domain, DUF3121. VCA0118 homologs can be found in various 

strains of Vibrio as well as many other bacterial species, including E. coli, Aeromonas 

hydrophila, and Pseudomonas putida. However, VCA0118 is absent from many other T6SS+ 

organisms (Shrivastava and Mande, 2008), suggesting that it does not encode an essential 

structural component of the T6SS apparatus. The ∆vca0118 mutant displayed a distinctly 

different phenotype than the other 15 deletion mutants in terms of its Hcp secretion profile and 

virulence towards Dictyostelium amoebae (Figure 2.1B, C). Deletion of VCA0118 had no 

significant effect on Hcp expression or its secretion into the supernatant in vitro (Figure 2.1B). 

However, ∆vca0118 is avirulent toward Dictyostelium amoebae. As shown in Figure 2.3A, 

10,000 amoebae cells are required to form plaques on wild-type V52 lawns, while only 5 

amoebae are needed to form a plaque on ∆vca0118 mutant lawns. This defect was partially 

recovered when VCA0118 was expressed in trans (data not shown). 

We also examined whether VCA0118 was required for the secretion of VgrG-1, the only 

T6SS effector required for Dictyostelium and macrophage virulence so far reported for 

V. cholerae (Pukatzki et al., 2007). As shown in Figure 2.3B, Hcp and an epitope-tagged version 

of VgrG-1 (HA-VgrG-1) were expressed at similar levels in wild-type, ∆vca0118 and ∆vasK 

V52. Deletion of vasK totally abolished Hcp and VgrG-1 secretion into culture supernatant. In 

contrast, deletion of vca0118 did not affect secretion of VgrG-1 and Hcp, both of which were 



 40 

detected in the culture supernatant at similar levels as wild-type V52. Previous reports showed 

that V52 uses T6SS to translocate VgrG-1 into macrophage J774 cells, where the ACD domain 

of VgrG-1 causes actin cross-linking (Ma et al., 2009a; Pukatzki et al., 2007). In these studies, 

Figure 2.3 VCA0118 is a virulence factor. (A) D. discoideum plaque formation assay for 
Δvca0118 (plate b) and its complementation strain (plate c). The plaques formed by amoebae 
on the lawns of V. cholerae wild type (plate a) or wild type with empty plasmid (plate d) were 
also shown as controls. The number of Dictyostelium amoebae cells deposited on the plate was 
1) 5 × 104; 2) 1× 104; 3) 5 ×103; 4) 1×103; 5) 5×102; 6) 1 × 102; 7) 5 × 101; 8) 1×101; 9) 5×100, 
respectively. (B) Western blot showed that VCA0118 is not required for Hcp and VgrG-1 
secretion. (C) Mutation of VCA0118 reduced but does not abolish actin cross-linking by 
VgrG-1 with or without bafilomycin A. 
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the addition of bafilomycin A, a specific inhibitor of vacuolar acidification, enhanced the VgrG-

1-dependent actin cross-linking activity seen in target cells (Ma et al., 2009a). Because 

VCA0118 is required for virulence of V. cholerae towards Dictyostelium amoebae but is not 

essential for the secretion of Hcp or VgrG-1, we tested if the deletion of VCA0118 affected 

VgrG-1 actin cross-linking activity in infected J774 macrophages. For these experiments, 

background actin cross-linking activity was eliminated by disrupting rtxA for all V. cholerae 

strains tested (Ma et al., 2009a; Pukatzki et al., 2007). Consistent with previous reports (Ma et 

al., 2009a; Pukatzki et al., 2007), V52 ∆rtxA induced cross-linking of cytosolic actin in J774 

cells after a 3-hour infection (Figure 2.3C). Interestingly, while the ΔrtxA vca0118 double mutant 

could still cause actin cross-linking in the presence or absence of bafilomycin A, the actin cross-

linking activity we observed was less pronounced than its V52 ∆rtxA parent (Figure 2.3C). As 

expected, no actin cross-linking was detected in ∆rtxA vasK or ∆rtxA vgrG-1 double mutants 

(Figure 2.3C). These results suggest that VCA0118 contributes in some way to the delivery or 

activity of the actin cross-linking domain of VgrG-1 within J774 macrophages and likely within 

D. discoideum amoebae as well. 

Other genes in the vgrG-1 and vgrG-2 operons contribute to virulence. The 

V. cholerae T6SS substrates Hcp-1, VgrG-1 and Hcp-2, VgrG-2 are encoded outside of T6SS 

locus. Bioinformatic analysis using Promscan (Studholme and Dixon, 2003) and Transterm 

(Ermolaeva et al., 2000) suggest that hcp-1, vgrG-1 and the five downstream open reading 

frames (VC1417 to VC1421) use the same promoter upstream of hcp-1 and the same terminator 

downstream of VC1421 (Figure 2.4A). Similarly, vgrG-2 and the three downstream open reading 

frames (VCA0019 to VCA0021) are predicted to use the same promoter and terminator (Figure 

2.4A). All proteins encoded in these putative vgrG-1 and vgrG-2 operons are uncharacterized 
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proteins, and most of them do not contain conserved domains (Table 2.1). Interestingly, 

bioinformatic analysis using HHPRED (Soding, 2005) identified very weak structural homology 

of VCA0020 and VCA0021 to colicins and type 3 secretion system components, respectively 

(Table 2.2, 2.3).  

We deleted all the five genes following vgrG-1 (VC1417 through VC1421) to get the 

Figure 2.4 Genes encoded in vgrG-1 and vgrG-2 operons contribute to V. cholerae 
virulence and Hcp secretion. (A) Schematic representation of genes organization in the 
putative vgrG-1 and vgrG-2 operons. The prompters predicted by PromScan and terminitors 
predicted by TransTerm are indicated by arrows and stars respectively. (B) The minimum 
number of Dictyostelieum amoebae cells required to form plaque on the lawns of different 
mutants in vgrG-1 and vgrG-2 operons. (C) Deletion of genes in vgrG-1 and vgrG-2 operons 
affected Hcp secretion examined by western blot. A 37 kD unknown protein demonstrated by 
Ponceau S staining was used as a control to show the equal protein loading. 
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mutant ∆vc17-21 and deleted the single gene (VC1418) to get the mutant ∆vc1418. Similarly, we 

deleted all three genes following vgrG-2 (VCA0019 through VCA0021) to get ∆vca19-21 and 

deleted the single gene (VCA0020) to get ∆vca0020. We then examined the virulence of each of 

these mutants towards Dictyostelium amoebae. As shown in Figure 2.4B, on average at least 

Table 2.3 The first ten hits of VCA0021 analyzed by HHPRED. 

No. Hit Prob. E-Val. P-Val. Query 
HMM 

Template 
HMM 

1 SseC Secretion system effector C  89.2 1 8.3x10-6 114-147 58-92 
2 DUF3040 Protein of unknown function  73.2 9 7.0x10-5 3-73 6-76 
3 Predicted membrane protein (DUF2208) 68.6 79 6.3x10-4 13-108 56-182 
4 Aluminum activated malate transporter 62.3 80 6.5x10-4 38-135 66-170 
5 Bacteriocin AS-48  60.7 41 3.3x10-4 103-148 16132 
6 EspD 59.4 23 1.9x10-4 114-146 178-213 
7 Photosystem I P subunit  56.1 70 5.6x10-4 24-89 87-149 
8 UPF0239:  Uncharacterized protein family 56 32 2.6x10-4 107-135 14-45 
9 DUF2208 Predicted membrane protein  54.4 230 0.0018 13-108 56-182 

10 Aminoglycoside/multidrug efflux system 52.7 350 0.0028 5-148 307-468 
 

Table 2.1 Properties of proteins encoded in vgrG-1 and vgrG-2 putative operons. 
Protein Protein length (amino acids) Conserved domain Function 
VCA0019 295 No Uncharacterized 
VCA0020 1085 No Uncharacterized 
VCA0021 242 No Uncharacterized 
VC1417 286 No Uncharacterized 
VC1418 641 COG3675; Esterase/Lipase superfamily Uncharacterized 
VC1419 247 No Uncharacterized 
VC1420 245 DUF2931 Uncharacterized 
VC1421 212 LysE superfamily Uncharacterized 

 

Table 2.2 The first ten hits of VCA0020 analyzed by HHPRED. 

No. Hit Prob. E-Val. P-Val. Query 
HMM 

Template 
HMM 

1 RhoGEF and PH domain containing 6, 
pleckstrin homology domain 75.1 48 0.00039 75-177 9-109 

2 RhoGEF and PH domain containing protein 6 74.5 32 0.00026 74-177 8-109 
3 Tapp1 73.9 24 0.00019 75-169 4-98 
4 Pleckstrin 67.9 75 0.00061 73-182 4-112 
5 Colicin pore forming domain 67.5 270 0.0022 773-915 56-182 
6 Variant surface antigen, stevor family 66.8 490 0.0039 797-919 185-311 
7 Src-associated adaptor protein Skap2  66.5 53 0.00043 73-167 8-107 
8 KIAA0640 protein; PH domain 61.2 73 0.0006 75-169 9-101 

9 Src kinase-associated phosphoprotein 
SKAP55 (SCAP1) 59.3 73 0.00059 75-166 2-98 

10 Phosphoinositide phospholipase C 57.4 59 0.00048 74-114 1-43 
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7,500 amoebae cells were required for plaque formation on wild-type lawns. For each of the 

mutants, the minimum number of Dictyostelium cells required to form plaques decreased 

significantly. The most notable of these was the ∆vca19-21 mutant, which supported plaque 

formation with an average of only 300 amoebae cells (Figure 2.4B). These results suggest that 

other genes in the vgrG-1 and vgrG-2 putative operons might contribute to V52 virulence toward 

Dictyostelium amoebae. Since T6SS is the major V. cholerae virulence factor towards 

Dictyostelium, and loss of T6SS activity abolished the virulence to amoebae cells (Pukatzki et 

al., 2006), we tested whether the ∆vca19-21 mutation affected T6SS function. Culture 

supernatants from wild-type V52 and the ∆vca19-21 and ∆vc17-21 mutants were examined for 

Hcp secretion by western blot. As shown in Figure 2.4C, deletion of VCA0019 through 

VCA0021 or VC1417 through VC1421 decreased Hcp secretion. Ponceau S staining of the 

western blot membrane showed a similar amount of other unknown secreted proteins had been 

loaded in each lane, suggesting the differences in Hcp secretion were not due to sample loading 

variation. A similar reduction in Hcp secretion was also observed in the single deletion mutant 

∆vca0020 (data not shown). These results suggest that genes encoded by the vgrG-1 and vgrG-2 

putative operons also contribute to secretion by the T6SS and its function in virulence towards 

Dictyostelium amoebae. 

Antibacterial properties of different T6SS-related mutants. Recently, T6SS has been 

implicated in bacterial killing in P. aeruginosa, Burkholderia thailandensis as well as 

V. cholerae (Hood et al., 2010; MacIntyre et al., 2010; Schwarz et al., 2010b). To test the 

contribution of each T6SS gene to the antibacterial properties of V. cholerae, we examined 

whether each of these mutants could kill E. coli when grown in competition on agar plates. 

V. cholerae and E. coli K12 were mixed, spotted onto Luria-Bertani (LB) agar plates and 
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incubated at 37 С for 3.5 hours. Surviving E. coli K12 was then recovered from the plate and 

enumerated by quantitative plate counts. As previously reported (MacIntyre et al., 2010), 

V. cholerae V52 is highly virulent toward E. coli K12 and no viable E. coli were recovered from 

these plates (Figure 2.5A). In contrast, deletion of VCA0107 (vipA) through VCA0115 (vasF), or 

deletion of VCA0117 (vasH), VCA0119 and VCA0120 (vasK) resulted in complete loss of 

E. coli killing. Under the assay conditions used, T6SS-dependent killing was responsible for a 

1,000 to 10,000-fold drop in the recovery of viable E. coli cells. Furthermore, these results were 

remarkably consistent with the requirement of these same genes for Dictyostelium amoeba 

Figure 2.5 Contributions of different T6SS locus genes to V. cholerae anti-bacterial 
properties. Survival of tetracycline-resistant E. coli CC114 was determined by measuring cfu 
following exposure to the streptomycin-resistant V. cholerae predator listed on the x-axis. The 
data represent three independent experiments and values given are means ± SD. 
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killing (Figure 2.1C). Thus, this group of genes likely consists of genes required for producing a 

functional T6SS apparatus. Remarkably, deletion of clpV (VCA0116) also resulted in a clear 

attenuation in the bacterial killing, but not to the same degree as seen in mutants defective in 

VCA0107-VCA0115, VCA0117, VCA0119 and VCA0120. Compared to the T6SS apparatus 

knockout mutants, approximately 30-fold less E. coli was recovered from the competitions with 

∆clpV mutant, indicating that the ∆clpV mutant still displays significant killing activity. 

Similarly, deletion of VCA0118 caused an attenuation of E. coli killing activity in that about 2-

fold less E.coli was recovered compared to ∆clpV. In contrast, loss of VCA0105, VCA0106, 

VCA0121 and VCA0122 had no significant effect on bacterial killing (Figure 2.5A). 

We next examined the antibacterial properties of the three VgrG proteins (VgrG-1 to -3). 

As shown in Figure 2.5B, deletion of vgrG-2 resulted in complete loss of killing. Surprisingly, 

we did not observe a significant bacterial killing defect in the ∆vgrG-1 and ∆vgrG-3 mutants. 

However, simultaneous deletion of both of these genes (∆vgrG-1/3) produced a similar 

phenotype as ∆vgrG-2 and other T6SS apparatus knockout mutants. Additionally, deletion of 

hcp-1 and hcp-2 together (∆hcp-1/2) also led to loss of bacterial killing. The genes in the vgrG-1 

and vgrG-2 putative operon were also evaluated. There is no virulence defect in bacterial killing 

in ∆vc1418 or ∆vc17-21. However, deletion of VCA0020 caused a slight attenuation in E. coli 

killing. Interestingly, this defect was not observed in ∆vca19-21, in which all three genes 

following vgrG-2 (VCA0019 through VCA0021) were deleted (Figure 2.5B). 

Type 2 secretion system is not required for Hcp secretion. A bioinformatic analysis of 

proteins in V. cholerae T6SS locus did not predict any proteins with trans-membrane domains 

that might provide an outer membrane channel for secretion of T6SS effectors (Shrivastava and 

Mande, 2008). We thus asked whether outer membrane proteins from other secretion systems 
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might be involved in type VI protein secretion. V. cholerae contains a type II secretion system in 

addition to its T6SS (Sandkvist et al., 1997). We deleted EpsD (VC2733), the outer membrane 

channel of type II secretion system. The secreted proteins from bacterial culture supernatants 

were collected and Hcp secretion was examined by western blot. Although EpsD deficiency 

greatly impaired growth of V. cholerae (data not shown), Hcp was still readily detected in the 

bacterial supernatant (Figure 2.6), suggesting that T6SS in V. cholerae does not make use of 

type II secretion system channel for secretion of its substrates.  

 

Discussion 

Using a D. disoideum model, the T6SS of V. cholerae was identified and designated a 

virulent determinant of V. cholerae O37 strain V52 toward amoebae (Pukatzki et al., 2006). 

More recently the T6SS of V52 has also been shown to have antibacterial activity (MacIntyre et 

al., 2010). In this study, to further understand T6SS in V52, we undertook a systematic 

mutagenesis approach. We characterized each mutant for Hcp expression and secretion, and 

examined their contributions to virulence toward Dictyostelium amoebae and E. coli. We 

identified four groups of proteins encoded in the T6SS locus: structural apparatus components, 

regulators, proteins of unknown function and a potential effector. 

VipA, VipB, VasF, ClpV and VasK have been shown to be essential for Hcp secretion in 

O37 serogroup strain V52 in previous reports (Bonemann et al., 2009; Pukatzki et al., 2006). 

Figure 2.6 Type II secretion system outer membrane protein EpsD is not requited for 
Hcp secretion. Western blot of Hcp from the cell-free supernatant fluids of V. cholerae wild 
type and ΔepsD with anti-Hcp was shown. 
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Here we identified another seven genes (VCA0109 through VCA0114, and VCA0119) required 

for Hcp secretion in V52. Deletion of these genes completely abolished Hcp secretion even 

though hcp expression levels remained similar to the wild type levels. These mutants were also 

avirulent towards Dictyostelium amoebae and E. coli bacteria. Thus, we speculate that 

collectively these genes constitute important components of the T6SS apparatus (Table 2.4). 

Deletion of T6SS structural components of the T6SS apparatus might cause defects in either 

secretion or translocation of T6SS effectors, either of which would likely compromise virulence. 

Interestingly, deletion of clpV (VCA116) had a similar effect on Hcp secretion and 

attenuation of Dictyostelium virulence as deletion of other T6SS apparatus genes but had a 

smaller effect on killing activity towards E. coli. These data suggest that ClpV is not essential for 

the process that ultimately allows V. cholerae to kill E. coli, but rather ClpV simply increases its 

efficiency. Given the pore-like structure and protein translocation capability of Clp family 

proteins, there has been speculation that ClpV may provide the energy to translocate T6SS 

substrates out of bacterial cells and into target cells (Bonemann et al., 2009; Mougous et al., 

2006). Indeed, a ClpV ortholog has also been shown to be essential for secretion of Hcp in 

P. aeruginosa (Mougous et al., 2006) and for bacterial killing (Hood et al., 2010). ClpV of 

V. cholerae has previously been shown to be required for remodeling of the tubular complex 

formed by the products of VCA107 (VipA) and VCA108 (VipB) as well as efficient secretion of 

Hcp and VgrG-2 proteins (Bonemann et al., 2009). Our results suggest that ClpV may not be 

required for assembly of a functional T6SS apparatus but rather simply improves the efficiency 

of its function. Because the tubular structure formed by VipA and VipB resembles contracted tail 

sheath of bacteriophage T4, Leiman et al. (2009) suggested that the T6SS-mediated secretion 

and membrane insertion process might be powered through conformational changes in VipA and 
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VipB that mimic those occurring in phage tail contraction (rather than through the energy 

generated by ClpV ATP hydrolysis). It follows that in the absence of ClpV such a phage tail-like 

contraction mechanism might also insert the VgrG spike and Hcp tube structure (Leiman et al., 

2009; Pukatzki et al., 2007) into closely contacting E. coli target cells. The non-essentiality of 

ClpV for V52 killing of E. coli is consistent with the hypothesis that ClpV is not essential for 

formation of the T6SS apparatus per se. Rather, ClpV might play its role in the disassembly of 

the contracted sheath (Economou et al., 2006; Leiman et al., 2009) (after a bacterial killing 

event) and thus likely improves the efficiency of killing by recycling VipA/B out of contracted 

sheath structures and back into functional non-contracted T6SS phage tail-like assemblies. A few 

functional T6SS assemblies might be sufficient to kill detectable numbers of E. coli cells in our 

sensitive bioassay, whereas a larger number of T6SS assemblies (or the rapid recycling of 

contracted assemblies) may be needed to translocate detectable amounts of effector proteins into 

the supernatant or into amoebae or other types of target cells. 

Although V. cholerae encodes three VgrG proteins, we found that VgrG-2 is the only 

VgrG protein individually essential for killing of amoebae and bacteria. VgrG-1 has been 

reported to be essential for Hcp secretion and amoebae killing (Ma et al., 2009a; Pukatzki et al., 

2007; Pukatzki et al., 2006) but is not needed for E. coli killing (Figure 2.5B) (MacIntyre et al., 

2010). This curious fact suggests that bacterial killing may occur by a process that does not 

generate a large amount of extracellular Hcp and that the T6SS apparatus mediating this killing 

can still be assembled in the absence of VgrG-1. It is possible that like ClpV, some T6SS-related 

proteins are not absolutely required for assembly or function of the apparatus, but rather alter the 

efficiency of its assembly or reassembly. For example, despite the fact that inactivation of VgrG-

1 or VgrG-3 alone does not affect bacterial killing, inactivation of both of these genes does block 
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killing. Because VgrG-2 interacts with VgrG-1 and VgrG-3 (Pukatzki et al., 2007), we propose 

that VgrG-2 likely needs to interact with one of these other VgrG proteins to efficiently form a 

critical component of the T6SS apparatus such as a homo- or heterotrimer of VgrG-2. VgrG-2 is 

the shortest of the three V. cholerae VgrG proteins and carries virtually no C-terminal extension 

domain. Leiman et al. (2009) noted that short VgrG proteins are the most common form found 

among the hundreds of VgrG proteins encoded by microbial genomes. Thus, the short form of 

VgrG proteins may be the essential form of the protein needed to form an apparatus with 

antibacterial activity through its ability to puncture cells using its needle-like β-helix C-terminal 

domain (Leiman et al., 2009). By analogy to phage tail-like pyocins (Michel-Briand and Baysse, 

2002), the T6SS phage tail-like spike and needle penetration would be followed quickly by lethal 

channel formation via insertion of the phage tube-like Hcp structure through the envelop of the 

target cell (Leiman et al., 2009). Recently, the T6SS of P. aeruginosa has been shown to have 

antibacterial activity through the delivery of soluble toxic effector proteins (Hood et al., 2010). 

Other than the anti-eukaryotic ACD effector domain of VgrG-1 (Ma et al., 2009a; Ma and 

Mekalanos, 2010; Pukatzki et al., 2007; Pukatzki et al., 2006), we have not uncovered a separate 

antibacterial effector in the present study and thus conclude that a functional T6SS apparatus 

may be sufficient for V. cholerae to kill E. coli. However, it is worth emphasizing that killing 

different bacterial or eukaryotic targets and using different killing mechanisms, such as 

membrane breaching versus delivering a separate toxic effector protein, might all require 

different threshold levels of T6SS assemblies. For example, pyocins kill with single hit kinetics 

(i.e., insertion of one pyocin can kill one bacterial cell) but soluble protein bacteriocins likely 

require more than one molecule to be translocated into a target cell in order to kill (Michel-

Briand and Baysse, 2002). 
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Four genes in the T6SS cluster of V. cholerae are not absolutely required for secretion of 

Hcp including vasH, VCA0118, VCA0121, and VCA0122 (Table 2.4). VCA0121 is also not 

required for virulence toward amoebae and bacteria. A bioinformatic analysis showed that both 

VCA0119 and VCA0121 have ImpA-rel-N superfamily domains, a feature found in inner 

membrane proteins participating in intracellular protein transport (Shrivastava and Mande, 

Table 2.4 Functions of genes encoded by the T6SS locus. 

   Required for  

Gene Function 
Hcp 

secretion 
Virulence 

toward amoebae 
Bacteria 
killing References 

VCA0107 (vipA) Structure protein Yes Yes Yes This study and 
(Bonemann et al., 2009) 

VCA0108 (vipB) Structure protein Yes Yes Yes This study and 
(Bonemann et al., 2009) 

VCA0109 Structure protein Yes Yes Yes This study 
VCA0110 (vasA) Structure protein Yes Yes Yes This study 
VCA0111 Structure protein Yes Yes Yes This study 
VCA0112 Structure protein Yes Yes Yes This study 
VCA0113 Structure protein Yes Yes Yes This study 
VCA0114 Structure protein Yes Yes Yes This study 

VCA0115 (vasF) Structure protein Yes Yes Yes This study and 
(Pukatzki et al., 2006) 

VCA0116 (clpV) Structure protein Yes Yes Yes/Noa This study and 
(Bonemann et al., 2009) 

VCA0117 (vasH) Regulator Yes Yes Yes This study and 
(Pukatzki et al., 2006) 

VCA0118 Putative effector Yes Yes Yes/Noa This study 
VCA0119 Structure protein  Yes Yes Yes This study 
VCA0120 (icmF) Structure protein  Yes Yes Yes This study 
VCA0121 Unknown  No No No This study 
VCA0122 Regulator Nob Yes No This study 
VC1415 (hcp-1), 
VCA0017 (hcp-2c) 

Structure/Secreted 
protein Yes Yes Yes This study and 

(Pukatzki et al., 2006) 

VC1416 (vgrG-1) Structure 
protein/effector Yes Yes Yes/Nod This study and 

(Pukatzki et al., 2007) 

VCA0018 (vgrG-2) Structure/Secreted 
protein Yes Yes Yes This study and 

(Pukatzki et al., 2007) 

VCA0123 (vgrG-3) Unknown/Secreted 
protein No No Yes/Nod This study and 

(Pukatzki et al., 2007) 
a clpV and VCA0118 mutants exhibited bacterial killing activity but at a significantly lower level than wild type. 
b VCA0122 enhances Hcp expression and secretion. The VCA0122 mutant exhibited a slightly lower level of 

Hcp expression than wild type. 
c hcp-1 and hcp-2 fully complement each other. Their requirement for virulence is only observed in the context 

of the double knock-out. 
d vgrG-1 and vgrG-3 are able to complement each other for E. coli killing activity only. The double mutant is 

avirulent toward E. coli. 
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2008). VCA0119 is important for T6SS-dependent secretion (Figure 2.1B, C), suggesting that 

VCA0121 might simply be a non-functional derivative of a VCA0119 duplication. However, 

given their low sequence similarity (12.7% identity) it is possible that VCA0121 was acquired by 

horizontal gene transfer from a non-Vibrio species and may have some as of yet undetermined 

function. 

The expression of T6SS gene clusters is typically tightly regulated (Cascales, 2008; 

Economou et al., 2006; Filloux et al., 2008). Before this study, four regulators have been shown 

to control T6SS in V. cholerae, namely, VasH, TsrA, HapR and RopN (Ishikawa et al., 2009; 

Pukatzki et al., 2006; Zheng et al., 2010). VasH is a sigma-54 dependent regulator encoded in 

T6SS locus and is required for Hcp expression (Pukatzki et al., 2006). TsrA is a global regulator 

that represses T6SS and virulence factors (CT and TCP) and activates the gene for the secreted 

hemagglutinin protease HapA (Zheng et al., 2010). Both HapR and RpoN are positive regulators 

for T6SS, and RpoN has been shown to directly bind to the hcp-1, hcp-2, and vipA promoter 

regions (Bernard et al., 2011; Zheng et al., 2010). Here, we found that VCA0122 is an additional 

regulator for V. cholerae T6SS. VCA0122 is an 80 amino acid protein and is not homologous to 

any characterized protein. Mutation of VCA0122 decreased Hcp expression at the transcriptional 

level presumably by affecting hcp-2 promoter activity. Interestingly, VCA0122 plays important 

role in the Dictyostelium killing but seems to have no contribution to T6SS-dependent bacterial 

killing. Deletion of VCA0122 decreased but did not abolish Hcp expression and secretion 

(Figure 2.1B). It is likely that the number of functional T6SS assemblies in ∆vca0122 is 

sufficient to kill bacteria but not eukaryotic cells. 

VCA0118 is a 227 amino acids protein and predicted to be exported (Shrivastava and 

Mande, 2008). It contains a DUF3121 superfamily domain, which has no characterized function. 
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In V. cholerae, VCA0118 is different from all other proteins encoded in the T6SS locus in that 

deletion of VCA0118 did not affect the secretion of Hcp or VgrG-1, the only known eukaryotic 

effector protein of T6SS, but totally abolished virulence in the Dictyostelium amoebae model. 

Further investigation of actin cross-linking showed that the VCA0118 mutant was still able to 

cause actin cross-linking but at a lower efficiency than its V52 ∆rtxA parental strain (Figure 

2.3C). These results suggest that VCA0118 might be required for efficient translocation of 

VgrG-1 into host cells. VCA0118 may represent an extracellular adhesin that promotes binding 

and phagocytosis of V. cholerae by macrophages. VCA0118 might also participate in the 

translocation of T6SS effectors into target cells after phagocytosis of V. cholerae. If VCA0118 

protein is also translocated into the host cell, then it is also possible that it might interact with 

VgrG-1 to promote VgrG-1 actin cross-linking activity within the host cell cytoplasm. However, 

considering inactivation of VCA0118 causes a total loss of virulence toward Dictyostelium but 

only slightly decreases actin cross-linking, it seems unlikely that VCA0118 functions only 

through its interaction with VgrG-1, as deletion of VCA0118 also decreased virulence toward 

E. coli, which does not require VgrG-1 or its ACD domain (Figure 2.5B) (MacIntyre et al., 

2010). These data suggest that VCA0118 likely plays some other role besides being an enhancer 

of VgrG-1 toxicity. Further experiments are needed to define the contribution that VCA0118 

makes to the functionality of the T6SS of V. cholerae. 

In addition to the proteins encoded in T6SS locus, we also determined that the genes 

encoded downstream of vgrG-1 and vgrG-2 contribute to the virulence of V52 toward 

Dictyostelium. Deletion of a single gene (VCA0020) caused attenuation of V52 virulence toward 

amoebae, possibly by causing a small decrease in Hcp secretion (Figure 2.4C). The attenuation 

level in this mutant as well as a triple mutant lacking genes VCA0019 through VCA0021 was 
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relatively small compared to the decreases in virulence caused by deletion of T6SS apparatus 

genes, suggesting that they do not encode essential structure components of the apparatus. In the 

bacterial killing assay, deletion of VCA0020 showed a decreased virulence toward E. coli. 

Interestingly, this attenuation was not seen in ∆VCA19-21 in which the genes VCA0019-

VCA0021 were deleted simultaneously. This result suggests that VCA0020 may interact with 

VCA0019 and VCA0021 in a complex way that affects the functionality of the T6SS apparatus 

in killing assays. Consistent with these results, Miyata et al. (2011) have recently reported that 

mutation of VCA0020 significantly reduces virulence of V. cholerae toward Dictyostelium 

without altering secretion of Hcp or VgrG proteins. 

In conclusion, we have shown in this study that proteins encoded in V. cholerae T6SS 

locus contribute in different ways to its functionality in Hcp secretion and the killing of amoebae 

and bacteria. Since T6SS is an important virulence factor in many bacterial pathogens, the 

characterization of gene products that are absolutely required for the functionality of the T6SS 

apparatus should benefit the understanding of T6SS mechanism in other bacterial species and 

may provide new targets for control of bacterial infectious diseases. 

 

Materials and Methods 

Strains, plasmids and culture conditions. V. cholerae O37 serogroup strain V52 and its 

derivatives were used in this study. E. coli strains DH5αλpir, and SM10λpir were used for 

cloning and mating, respectively. The bacterial strains and plasmids used in this study are listed 

in Table 2.5. All bacterial strains were grown in LB broth supplemented with streptomycin (800 

µg/ml), kanamycin (50 µg/ml), and carbenicillin (50 µg/ml) when necessary. Macrophage J774 

cells were obtained from the American Type Culture Collection (ATCC). D. discoideum strain 
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AX3 was used for bacterial virulence assay. AX3 was grown in liquid HL5 cultures or SM/5 

agar plate as described by Fey et al. (2007).  

Table 2.5 Strains and plasmids for this study. 
Strain or plasmid Description Reference or source 

V. cholerae 
V52 Wild type, StrepR (Pukatzki et al., 2006) 
Δvca0105 V52, in frame deletion of amino acid 1 to 61 from VCA0105 This study 
Δvca0106 V52, in frame deletion of amino acid 34 to 356 from VCA0106 This study 
ΔvipA V52, in frame deletion of amino acid 8 to 163 from VCA0107  This study 
ΔvipB V52, in frame deletion of amino acid 12 to 486 from VCA0108 This study 
Δvca0109 V52, in frame deletion of amino acid 4 to 142 from VCA0109 This study 
ΔvasA V52, in frame deletion of amino acid 5 to 554 from VCA0110 This study 
Δvca0111 V52, in frame deletion of amino acid 14 to 313 from VCA0111 This study 
Δvca0112 V52, in frame deletion of amino acid 1 to 488 from VCA0112 This study 
Δvca0113 V52, in frame deletion of amino acid 1 to 152 from VCA0113 This study 
Δvca0114 V52, in frame deletion of amino acid 2 to 413 from VCA0114 This study 
ΔvasF V52, in frame deletion of VCA0115 (Pukatzki et al., 2006) 
ΔclpV V52, in frame deletion of amino acid 3 to 850 from VCA0116 This study 
ΔvasH V52, in frame deletion of VCA0117 This study 
Δvca0118 V52, in frame deletion of amino acid 12 to 225 from VCA0118 This study 
Δvca0119 V52, in frame deletion of amino acid 3 to 468 from VCA0119 This study 
ΔvasK  V52, in frame deletion of VCA0120 (Pukatzki et al., 2006) 
Δvca0121 V52, in frame deletion of amino acid 1 to 421 from VCA0121 This study 
Δvca0122 V52, in frame deletion of amino acid 10 to 48 from VCA0122 This study 
ΔvgrG-3 V52, in frame deletion of VCA0123 (Pukatzki et al., 2007) 
ΔvgrG-2 V52, in frame deletion of VCA0018 (Pukatzki et al., 2007) 
Δvca0020 V52, in frame deletion of amino acid 3 to 1077 from VCA0020 This study 
Δvca19-21 V52, in frame deletion of genes from VCA0019 to VCA0021 This study 
ΔvgrG-1 V52, in frame deletion of VC1416 (Pukatzki et al., 2007) 
Δvc1418 V52, in frame deletion of amino acid 2 to 626 from VC1418 This study 
Δvc1417-21 V52, in frame deletion of genes from VC1417 to VC1421 This study 
Δhcp-1/2 V52, in frame deletion of VCA0017 and VC1415 (Pukatzki et al., 2006) 
ΔvgrG-1/3 V52, in frame deletion of VCA0123 and VC1416 This study 
ΔepsD V52, in frame deletion of amino acid 49 to 670 from VC2733 This study 
ΔrtxA V52, in frame deletion of rtxA This study 
ΔrtxAvca0118 V52, in frame deletion of rtxA and VCA0118 This study 
ΔrtxAvgrG-1 V52, in frame deletion of rtxA and vgrG-1 This study 
ΔrtxAvasK V52, in frame deletion of rtxA and vasK This study 

E. coli 

DH5α pir fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 
gyrA96 recA1 relA1 endA1 thi-1 hsdR17 pir 

(Miller and 
Mekalanos, 1988) 

SM10 pir thi thr leu tonA lacY supE recA-RP4-2-Tc-Mu pir (Rubires et al., 1997) 

Plasmids 
pDS132 pCVD442 derivative, pir dependent, sacB, CmR (Philippe et al., 2004) 

pTL61T AmpR, lacZ reporter vector (Linn and St Pierre, 
1990) 

pBBR1MCS2 KmR, broad host range (Kovach et al., 1995) 
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Non-polar deletion mutants and LacZ reporter plasmid construction. Overlap 

extension PCR was used to generate in-frame deletion of individual genes as described 

previously (Zheng et al., 2005). Briefly, for construction of a gene X deletion mutant, two PCR 

fragments were generated from V52 genomic DNA with the primer pair of X-for plus X-int-rev, 

and X-rev plus X-int-for. The resulting products generated about 1kb fragment containing the 

upstream of gene X and a 1kb fragment containing the downstream of gene X, respectively. A 

20-bp overlap sequences in the primers permitted amplification of an about 2 kb product during a 

second PCR with the primers X-for and X-rev. The resulting PCR product contained a deletion 

of the internal fragment of gene X. This PCR product was then sub-cloned into plasmid pDS132 

(Linn and St Pierre, 1990) to result in a suicide plasmid construct. Non-polar deletion mutants 

were generated by sacB-based allelic exchange. Mutants were verified by PCR. For construction 

of LacZ reporter plasmid, hcp-2 putative promoter region was amplified from V. cholerae V52 

genomic DNA and the PCR products were subcloned into XhoI and XbaI digested pTL61T 

plasmid (Linn and St Pierre, 1990). 

Protein assay. Secreted proteins were isolated from mid-log cultured V. cholerae (OD600 

= ~0.4 – 0.5) in LB broth. Briefly, various overnight bacterial cultures were diluted at 1:1,000, 

and were grown for about 3 to 4-hour at 37ºC with shaking. The bacteria were collected by 

centrifuge, and the bacterial pellet was resuspended in 2 × loading buffer. The bacterial culture 

supernatants were sterilized by passing through a 0.2 µm filter, and proteins were precipitated 

with trichloroacidic acid (TCA) and subjected to 10-20% gradient SDS/PAGE. The Hcp 

polyclonal antibodies were generated by New England Peptide (Gardner, MA).  

Plaque formation assay. Two millilitre bacteria grown in LB broth for 16-hour were 

pelleted by centrifugation at 7600 rpm for 5 min, washed once, and resuspended in the same 
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volume of SorC buffer. One hundred microliters of the bacteria were plated on SM/5 agar plate. 

Dictyostelium amoebae cells from mid-logarithmic cultures were collected by centrifugation, 

washed once with SorC buffer, and different number of amoebae cells (5 × 104; 1× 104; 5 ×103; 

3× 103; 1× 103; 5× 102; 1×102; 5×101; 1×101; 5×100, respectively) in 5 µl SorC buffer were 

deposited on the top of the agar plates with wild-type V. cholerae and different mutants. The 

plates were allowed to dry under a sterile flow of air and then were incubated at 22ºC for 3–5 

days. The plaques formed by Dictyostelium amoebae were recorded. The least number of 

Dictyostelium amoebae cells deposited above that was able to form plaque on the bacterial lawns 

was defined as the minimum number of Dictostelium cells required for plaque formation in this 

study. 

Bacterial killing assay. The bacterial killing experiment was performed as described 

(MacIntyre et al., 2010). Briefly, V. cholerae and E. coli K12 CC114 were mixed at a 

multiplicity of infection (MOI) of 10. Twenty microliters of the mixture was spotted on LB agar 

plate and was incubated at 37 С for 3.5 hours. Bacterial spots were harvested and resuspended in 

1 ml of LB broth. The colony-forming unit (cfu) per milliliter of surviving V. cholerae and 

E. coli were measured by a serial dilution and selective growth on LB agar plates containing 100 

µg/ml streptomycin (for V. cholerae) and 12 µg/ml tetracycline (for E.coli) respectively. 

Actin cross-linking assay. Actin cross-linking assay was performed as described 

previously (Pukatzki et al., 2006). Briefly, J774 cells were seeded into six-well tissue culture 

plates at a density of 106 cells per well. After 16-hour incubation at 37 ºC, cells were infected 

with various V. cholerae strains. The infections were performed at a MOI of 10 for 3-hour. Cells 

were harvested and resuspended in 50 µl of 2 × loading buffer, and 10 µl each sample was 

analyzed by western blot using actin antiserum with the dilution at 1:1,000. 
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β-galactosidase assays. Bacteria were grown in LB broth overnight at 37 C. Beta-

galactosidase activities were determined with cells permeabilized with SDS and chloroform as 

described by Miller (Miller, 1972). 



Chapter 3.  PAAR-repeat proteins sharpen and diversify the type VI secretion system spike 

 

The bacterial type VI secretion system (T6SS) is a large multicomponent, dynamic 

macromolecular machine that has an important role in the ecology of many Gram-negative 

bacteria. T6SS is responsible for translocation of a wide range of toxic effector molecules, 

allowing predatory cells to kill both prokaryotic as well as eukaryotic prey cells. The T6SS 

organelle is functionally analogous to contractile tails of bacteriophages and is thought to attack 

cells by initially penetrating them with a trimeric protein complex called the VgrG spike. Neither 

the exact protein composition of the T6SS organelle nor the mechanisms of effector selection 

and delivery are known. Here we report that proteins from the PAAR (proline-alanine-alanine- 

arginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further 

involved in attaching effector domains to the spike. The crystal structures of two PAAR-repeat 

proteins bound to VgrG-like partners show that these proteins sharpen the tip of the T6SS spike 

complex. We demonstrate that PAAR proteins are essential for T6SS-mediated secretion and 

target cell killing by Vibrio cholerae and Acinetobacter baylyi. Our results indicate a new model 

of the T6SS organelle in which the VgrG–PAAR spike complex is decorated with multiple 

effectors that are delivered simultaneously into target cells in a single contraction-driven 

translocation event.  
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Foreword 

A version of this chapter was published in Nature on August 15, 2013. The article can be 

found on the web at the following URL: 
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performed by members of the Leiman laboratory. Acinetobacter baylyi mutants were made by 

Dr. Marek Basler while I made the equivalent mutants in Vibrio cholerae. All of the 
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crystallography and structure figures presented. 
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Infectious Diseases to John J. Mekalanos. The atomic coordinates and the structure factors of the 
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deposited to the Protein Data Bank (http://www.rcsb.org) under the accession numbers 4JIV and 
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4JIW, respectively.  
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Results and Discussion 

The type 6 secretion system (T6SS) (Mougous et al., 2006; Pukatzki et al., 2006) 

organelle is a 1,000-nm long tubular structure consisting of an inner tube made of multiple 

copies of the Hcp protein and an external contractile sheath composed of VipA and VipB 

proteins (also known as TssB/TssC) (Basler et al., 2012). It has been visualized in two 

conformations (extended and contracted), which are both attached to the cell envelope by means 

of a baseplate complex (Basler et al., 2012). Rapid contraction of the sheath results in 

translocation of the inner tube out of the predator cell and into the prey cell (Basler et al., 2012). 

The trimeric VgrG spike protein is positioned at the end of the tube (Leiman et al., 2009). It is 

believed to penetrate the prey cell with its needle- shaped carboxy-terminal β-helical domain. 

VgrG proteins can contain additional C-terminal domains that act as effectors (Pukatzki et al., 

2007) and may also bind effectors through undefined mechanisms (Dong et al., 2013). 

Because VgrG proteins are orthologous to the central baseplate spikes of bacteriophages 

with contractile tails, we reasoned that additional structural components present in certain phage 

spikes might have corresponding orthologous components in T6SS. The cryoEM reconstruction 

of phage T4 baseplate shows that an unknown protein with a molecular weight between 7 and 23 

kilodaltons (kDa) binds to the tip of the β-helical domain of the central spike protein gp5 

(Kostyuchenko et al., 2003). We analysed all known genes encoding small proteins in phage 

genomes with gp5-like spikes and compared them to T6SS genes. Proteins containing the 

PAAR-repeat motif were strongly represented in this group with gp5.4 being the corresponding 

protein of T4 phage. Furthermore, genes encoding proteins with PAAR motifs were frequently 

found immediately downstream of vgrG-like genes suggesting that the two are genetically linked 

(Leiman et al., 2009). Therefore, we devised a strategy to test the hypothesis that these PAAR 
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proteins were binding to the tip of gp5 and VgrG proteins.  

Careful examination of VgrG sequences showed that a β-structural repeat, which is 

presumed to be responsible for β-helix formation (Kanamaru et al., 2002; Pukatzki et al., 2007), 

either extends to the very C terminus of the protein or terminates with a glycine/serine-rich 

stretch (Figure 3.1A). We surmised that the glycine/serine-rich stretch bends the polypeptide 

chain away from the β-helix without disturbing its tip, and that all VgrG β-helices have blunt 

ends resembling that of T4 gp5 β-helix. Thus, we further speculated that the binding site for a 

PAAR protein was the blunt end of the β-helix and designed experiments to test this idea.  

Figure 3.1 Design of gp5–VgrG chimaeras and analysis of their interaction with selected 
PAAR proteins. (A) Identification of the blunt ends of selected VgrG β-helices. The last β-
strand of the known T4 gp5 structure is shown in blue. Putative β-strands terminating VgrG β-
helices are in purple. The glycine/serine-rich motif is bold highlighted. The residue number for 
the first amino acid of the shown fragment and that for the C-terminal amino acid of the 
protein are given. Abbreviations used EC, E. coli CTF073; VC, V. cholerae O1 biovar El Tor 
str. N16961. (B) Binding of several PAAR proteins to gp5-based VgrG-like β-helices. Two 
complexes for which the crystal structures are reported in this paper are highlighted with green 
background. Entries showing gp5 modifications that did not result in PAAR binding have a 
grey background. c1882* contains three mutations T28K, T64K and T90K that were made to 
mimic T4 gp5.4. Note that VCA0105 and VCA0284 contain threonines and serines in these 
positions and they bind wild-type gp5. 
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Because of the solubility problems of most tested VgrG and PAAR proteins, we used a 

soluble fragment of T4 gp5 β-helix (residues 484– 575), which is known to fold into a stable 

native-like trimeric structure (Kanamaru et al., 2002), as a platform for creating β-helices 

mimicking the blunt end of various VgrG spikes. We replaced the tip of gp5 β-helix (the last two 

β-strands) with an equivalent fragment from several putative β-helices of VgrGs from 

Escherichia coli, Vibrio cholerae and Pseudomonas aeruginosa (Figure 3.1B). These gp5–VgrG 

chimaeras (hereafter referred to as gp5(VgrG)) were then co-expressed with various PAAR 

proteins, in cis and in trans, in different combinations (Figure 3.1B). Surprisingly, the 

V. cholerae VCA0105 and E. coli c1882 PAAR proteins were found to bind not only to the ends 

of their endogenous VgrG proteins but also to the non-mutated wild-type end of the gp5 β-helix 

as well. 

The gp5(c1883)–c1882 and gp5(VCA0018)–VCA0105 complexes were purified to 

Figure 3.2 Crystallographic data collection and refinement statistics. Both data sets were 
collected using a single crystal. *Highest resolution shell is shown in parentheses. 
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homogeneity and crystallized (Figure 3.2). The structures were solved by molecular replacement 

(Rossmann and Blow, 1962) using the corresponding gp5 β-helix fragment as a search model 

(Kanamaru et al., 2002). In both complexes, a single chain of the PAAR protein folds into a 

symmetrical cone-shaped structure with a sharp tip and a triangular base fully occupying the 

blunt end of the β-helix (Figure 3.3). The cone contains nine short β-strands, three of which  

  

Figure 3.3 Crystal structure of the VCA0105 PAAR-repeat protein bound to its VgrG-
like partner. (A) Schematic representation of the conserved domains comprising the VgrG–
PAAR complex. The last strands of the β-helix that form the PAAR binding site are in light 
blue. The grey arrow shows the fragment roughly corresponding to the crystal structure. (B) 
Molecular surface representation of the gp5(VCA0018)–VCA0105 complex crystal structure. 
Each protein chain is labeled with its own color. (C) Ribbon diagram of the gp5(VCA0018)–
VCA0105 complex. (D) The polypeptide chain of the VCA0105 PAAR protein is colored in 
rainbow colors with the N terminus in blue and C terminus in red. Residues responsible for Zn 
binding are labeled. PAAR motifs are highlighted with thick purple coils. The sequence and 
residue numbers of the starting and ending position for each of the three PAAR motifs are 
boxed. 
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create its base and participate in binding to the VgrG β-helix and six others form three β-hairpins 

that point towards the vertex of the cone, but have different lengths. The PAAR proteins interact 

with the VgrG β-helix by means of a virtually flat hydrophobic patch and 14 or 16 hydrogen 

bonds for c1882 or VCA0105, respectively (Figure 3.4). In both proteins, 12 hydrogen bonds 

between the main chain atoms of the VgrG β-helix and those of the PAAR domain form a perfect 

Figure 3.4 Surface features of gp5(VgrG)–PAAR complexes and VgrG–PAAR interface. 
(A and B) Molecular surfaces are colored according to their hydrophobicity with sky blue, 
white, and orange corresponding to the most hydrophilic, neutral and hydrophobic patches, 
respectively. Residue hydrophobicity values are according to the Kyte-Doolittle scale (Kyte 
and Doolittle, 1982), which is given as a colored bar labeled ‘KD hydropathy’. Three 
orientations of the gp5(VgrG)–PAAR complex and an ‘open book’ view of the VgrG–PAAR 
interface are shown for both PAAR proteins. 
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triangle surrounding the central hydrophobic patch creating a unique binding platform (Figure 

3.5). PISA software (Krissinel and Henrick, 2007) shows that ~16.5% of the PAAR protein 

surface is buried in this interface and the free energy of interaction between the VgrG tip and 

c1882 or VCA0105 PAAR proteins is -5.5 kcal/mol or -3.4 kcal/mol, respectively.  

Figure 3.5 Main chain hydrogen-bonding network of VgrG–PAAR interface. The dashed 
line rectangle in the left panel indicates the area shown enlarged in the panels on the right. The 
three right panels show the main chain hydrogen bonds between VgrG and PAAR proteins for 
three different sides of the gp5(VgrG)–PAAR complex. Residues with side chains pointing 
inwards and forming the VgrG–PAAR hydrophobic interface are in bold italic. Side chains are 
not shown for clarity. The carbon atoms of the PAAR protein are colored orange. 
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The fold of the PAAR protein is stabilized by a zinc atom positioned close to the vertex 

of the cone (Figure 3.3D). The Zn binding site consists of three histidines and one cysteine – 

H14, H46, H54 and C81 in VCA0105 — that are well conserved in close homologues (Figure 

3.6A). These residues are replaced with similar or complementary metal-binding residues 

(arginines, lysines and glutamines) in more distant homologues suggesting that they also carry a 

metal ion at roughly the same position. The metal ion, being a natural ligand for this site, 

Figure 3.6 Conserved features of PAAR proteins. (A) WebLogo (Crooks et al., 2004) 
sequence alignment of VCA0105 homologues identified with BLAST (Altschul et al., 1990). 
The conserved PAAR motif and residues forming the Zn binding site are labeled. (B and C) 
Pseudotrimeric organization of the three interacting PAAR motifs in VCA0105 and c1882, 
respectively. The buried hydrogen bonds stabilizing the fold are shown with dashed lines. 
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stabilizes the pointed tip of the PAAR domain and is likely to be important for its integrity 

during penetration of the target cell envelope. 

The PAAR motif sequence is also conserved, albeit to a lower degree than the Zn binding 

site (Figure 3.6A). The PAAR motifs function to stabilize the fold by forming the central part of 

the structure where the three regions of the polypeptide chain containing the PAAR motif meet 

and intertwine (Figure 3.3, 3.6B, C). Hydrophobic interactions and buried main chain hydrogen 

bonds mediate the interaction of the three PAAR motifs. (Figure 3.6B, C). The distance between 

the Cα atoms of the third residue of the three PAAR motifs in both proteins is only 5.3 ± 0.1 Å 

(Figure 3.6B, C). c1882 and VCA0105 show 61.3% sequence identity and as a consequence the 

two structures are very similar with a root mean square deviation (r.m.s.d.) of 0.53 Å between all 

94 Cα atoms comprising the backbone (Figure 3.7).  

Given such a critical location of PAAR proteins within the T6SS organelle and their high 

structural conservation, we speculated that inactivation of PAAR genes would likely interfere 

Figure 3.7 Superposition of VCA0105 and c1882 PAAR structures. Residue numbers are 
given at strategic positions. Note that the N- and C-termini are exposed and can be extended 
without disrupting the PAAR-VgrG interaction surface or the overall sharp conical structure. 
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with T6SS functions including protein secretion and prey cell killing. Because some T6SS+ 

organisms have many gene products predicted to carry the PAAR motif, we focused on Vibrio 

cholerae strain 2740-80 and Acinetobacter baylyi ADP1, which each encode only two and three 

PAAR proteins, respectively. In A. baylyi inactivation of all three PAAR genes (aciad0051, 

aciad0052, aciad2681) led to an ~90% reduction in Hcp secretion (Figure 3.8C, D) and at least a 

10,000-fold decrease in T6SS-dependent killing of E. coli (Figure 3.8A). Similarly, inactivation 

of both genes encoding PAAR proteins in V. cholerae 2740-80 (vca0105 and vca0284) resulted 

in a ~100-fold decrease in T6SS-dependent killing of E. coli (Figure 3.8B) and ~70% reduction 

in Hcp secretion (Figure 3.8C, D). Notably, in both bacterial species, mutants inactivated in 

single PAAR genes showed no or only a modest defect in the functionality of their respective 

T6SS apparatuses indicating that PAAR proteins within a species are interchangeable. 

The dramatic reduction in Hcp secretion in the triple PAAR gene knockout mutant of 

A. baylyi suggests that PAAR proteins participate in the assembly of the T6SS complex by either 

nucleating the folding of VgrG trimers or regulating their incorporation into the T6SS organ- 

elle. Similar to the T4 phage system in which mutants lacking gp5 (VgrG orthologue) are tailless 

(Kikuchi and King, 1975), any disruption in VgrG trimeric assembly probably blocks the 

assembly of the T6SS organelle. Alternatively, PAAR proteins may be important for another 

function of the apparatus such as translocation of the VgrG spike through the predator outer 

membrane during the sheath contraction event. 

The PAAR-repeat proteins form a diverse superfamily called CL15808 in the conserved 

domains (CDD) database (Marchler-Bauer et al., 2013) that contains three families PF05488, 

COG4104 and PF13665 (or DUF4150). The first two families are similar and describe PAAR 

domains that are on average ~95 residues long, whereas the PF13665 family is somewhat more 
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distant and its members typically contain ~130 amino acids. The crystal structures reported here 

include representatives of the PF05488 family. Hundreds of hypothetical proteins in the database 

contain PAAR domains that are extended both N- and C-terminally by domains with various 

Figure 3.8 PAAR proteins are required for full functionality of the T6SS in V. cholerae 
and A. baylyi. (A) Recovery of viable E. coli MG1655 after co-incubation with A. baylyi 
ADP1 (wild-type, WT) and its T6SS and PAAR genes knockout mutants. The following genes 
were inactivated in the mutants shown: T6S−, aciad2688 to aciad2694; 2681−, aciad2681; 
0051-52−, both aciad0051 and aciad0052; 3+×+P−, all three PAAR genes aciad0051, aciad0052 
and aciad2681. Uninduced, basal expression of the aciad2681 PAAR gene from plasmid 
pMMB67EH (Furste et al., 1986), labelled as p2681, restores the killing defect in the triple 
PAAR mutant (right panel). (B) Recovery of E. coli MG1655 colony forming units (c.f.u.) 
after co-incubation with V. cholerae 2740-80 and its T6SS and PAAR gene knockout mutants, 
which are labelled as follows: T6S−, vipA; 105−, vca0105; 284−, vca0284; 2+×+P−, vca0105 and 
vca0284. Symbols *, ** and *** indicate deviations from the wild-type with P values of 
6+×+10−3, 8+×+10−3 and 5+×+10−7, respectively, for a sample size of 8. Error bars represent one 
standard deviation. (C) SDS–PAGE for T6SS-dependent secretion of Hcp proteins by the 
parental strains and T6SS and PAAR genes knockout mutants. Panels A and C show one out 
of three experiments with similar outcomes. (D) Hcp secretion was evaluated by quantifying 
the intensity of the Hcp bands in C using the Fiji (Schindelin et al., 2012) software and 
normalizing it to the wild-type. The presented data are the average of three experiments. Error 
bars correspond to one standard deviation. 
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predicted functions (Figure 3.9). The crystal structure shows that the termini of the PAAR 

domain are open to solution and thus can be extended without distorting the VgrG binding site 

(Figure 3.3, 3.7).  

The C-terminal domains of many hypothetical PAAR proteins are predicted to have 

various enzymatic activities that are toxic for prokaryotic and eukaryotic cells (Figure 3.9). Very 

similar putative effector domains can be found fused to the C termini of VgrG proteins (for 

example, VIP2 ADP-ribosyl transferase). Binding of these larger PAAR proteins to the tip of 

Figure 3.9 Bioinformatic analysis of PAAR proteins. (A) Domain organization of all 
identifiable bacterial (non-phage) PAAR proteins present in sequenced genomes. Extension 
domains are defined as sequences of 50 or more residues beyond the PAAR motif. (B) Relative 
abundance of the seven distinct domain organizations. (C) Predicted functions of the C-
terminal domains. TTR stands for transthyretin-like domains. 
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VgrG spikes would decorate the T6SS spike with a great variety of effector domains. To test this 

hypothesis, we expressed a VSV-G epitope-tagged version of the ACIAD2681 PAAR protein in 

the wild-type A. baylyi ADP1 and in its triple PAAR gene knockout mutant (Figure 3.10). The 

epitope-tagged protein was secreted by T6SS and fully restored T6SS-mediated killing of E. coli 

in the triple PAAR gene knockout strain (Figure 3.8A, 3.10), suggesting that other effector 

proteins fused to PAAR domains will probably also be targeted for secretion by binding the tip 

of VgrG trimers.  

VCA0284, the larger of the two V. cholerae V52 PAAR proteins, carries a partial 

transthyretin domain (TTR) at its C terminus, which is a very common architecture of PAAR 

proteins (Figure 3.9). TTR is an immunoglobulin-like domain that is known to form oligomeric 

structures in which these domains interact with each other or with other partners (Hamburger et 

al., 1999). Thus, PAAR-associated TTR domains may act as adapters to further decorate the 

VgrG tip with effectors displaying TTR domains or serve to bind the spike to other TTR domain-

containing proteins such as the TssJ/SciN lipoprotein (Felisberto-Rodrigues et al., 2011), an 

Figure 3.10 The VSV-G epitope-tagged PAAR protein ACIAD2681 is secreted by 
A. baylyi ADP1. T6SS-dependent secretion of VSV-G epitope-tagged ACIAD2681 expressed 
from plasmid pMMB67EH (left panels). VSV-G epitope-tagged ACIAD2681 fully restores the 
Hcp secretion defect of the triple knockout PAAR mutant of A. baylyi ADP1 (right panel). The 
mutants are labeled as in Figure 3.8. A representative of three identical experiments was 
chosen for each panel. 
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outer membrane structural component of the T6SS ‘baseplate’ (Basler et al., 2012). 

Besides being in T6SS gene clusters, many PAAR genes are frequently found 

downstream of vgrG genes (Pukatzki et al., 2007), which in turn, often encode Rhs elements 

(accessory sequences that have the hallmarks of horizontally acquired DNA, Figure 3.9). A 

recent report (Koskiniemi et al., 2013) shows that two different nucleases encoded by the rhsA 

and rhsB genes of Dickeya dadantii are delivered into target cells in a VgrG-dependent process, 

suggesting that the T6SS locus of this organism mediates translocation of these effectors. 

Interestingly, both RhsA and RhsB proteins contain PAAR repeat regions and other features that 

categorize them as Class 7 PAAR domain architecture proteins (Figure 3.9A). Thus, our working 

model (Figure 3.11) predicts that these T6SS nuclease effectors should bind to the tip of VgrG 

trimers through their PAAR repeat domains and in this way be targeted for secretion and 

translocation into prey cells. 

The structural, functional and bioinformatic findings summarized above allow us to make 

several conclusions and predictions. Because a PAAR-repeat protein caps the end of the β-helix 

of a VgrG spike, it is in fact the piercing tip that is responsible for the initial event of creating an 

opening in the target cell envelope. Furthermore, because the crystal structure demonstrates that 

the canonical PAAR-repeat domain can be extended N- or C-terminally without distorting its 

structure or its VgrG β-helix binding site, we predict that large PAAR proteins carrying effector 

domains will probably also bind to VgrG spikes and be translocated into target cells by the T6SS 

organelle. Considering the findings reported here and other published data, we propose that there 

are five mechanisms by which effectors can be incorporated into the T6SS spike complex 

(Figure 3.11). Three of them are supported by direct or indirect experimental evidence: 1) C-

terminal extensions of the VgrG spike (Pukatzki et al., 2007), 2) binding surface features on the 
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VgrG protein (Dong et al., 2013; Hachani et al., 2011), and 3) N- or C-terminal extensions of the 

PAAR protein (Koskiniemi et al., 2013). Two others remain speculative: 4) binding surface 

features or additional domains (for example, the TTR domain) on PAAR proteins and 5) 

incorporation into the cavity formed by the gp27 domain of VgrG. Thus, the T6SS machine may 

be capable of delivering a multifunctional ‘cargo’ or multiple effector translocation VgrG 

(MERV) spike into the target prey cell in a single molecular translocation event driven by T6SS 

sheath contraction.  

  

Figure 3.11 Multiple effector translocation VgrG (MERV) model for the organization of 
the T6SS central spike/baseplate. Effectors are predicted to be loaded onto the spike complex 
by five distinct mechanisms: 1) C-terminal extensions of the VgrG spike; 2) non-covalent 
binding to the VgrG spike; 3) N- or C-terminal extensions of the PAAR protein; 4) non-
covalent binding to the PAAR protein or its extension domains; 5) incorporation into the 
cavity formed by the gp27 domain of VgrG. A single T6SS sheath contraction event 
translocates the VgrG spike with all of its cargo proteins into a nearby target cell. Other 
proteins making up the T6SS ‘baseplate’ (grey colour) are not labelled but presumably reside 
within or attached to the inner and outer membranes and peptidoglycan layer (IM, OM, and 
PG, respectively). 



 76 

Materials and Methods 

Structure determination of gp5(VgrG)–PAAR complexes. The gp5 fragment 

containing residues 484–575 and its variants with modified C termini mimicking VgrG were 

cloned into a derivative of the pET-23a expression vector (Novagen) with a TEV-cleavable N-

terminal polyhistidine tag. For expression in cis, PAAR genes were cloned downstream from the 

gp5 fragment with a spacer containing the AGGAGG ribosome-binding site. For expression in 

trans, PAAR genes were cloned into a modified pACYCDuet-1 expression vector (Novagen), 

retaining its wild-type N- and C-termini. The complexes were purified by metal-affinity, ion 

exchange and size exclusion chromatographies. Conditions yielding diffraction quality crystals 

were refined from the initial hits obtained with the help of commercial crystallization screens 

(Jena Bioscience). The structures were solved by molecular replacement with the help of 

PHASER19 using the corresponding fragment of the gp5 β-helix as a search model (Protein Data 

Bank (PDB) accession ID number 1K28) (Kanamaru et al., 2002). Crystallographic refinement 

was performed with PHENIX (Adams et al., 2011), REFMAC5 (Murshudov et al., 2011) and 

COOT (Emsley et al., 2010). 

Bioinformatics. Putative orthologs of PAAR repeat proteins were identified with the 

help of HMMER (Finn et al., 2011). A search for high confidence hits to PFAM (Punta et al., 

2012) domains PF05488 or PF13665 that describe the two distinct PAAR repeat domains 

resulted in 1353 PAAR domain-containing proteins. Phage proteins and orphan genes were 

excluded from this analysis. Functional assignment of extension domains was based on high 

confidence hits obtained with the help HHpred (Soding et al., 2005), HMMER (Finn et al., 

2011), CDD (Marchler-Bauer et al., 2013) and CDART (Geer et al., 2002) web services. 

Bacterial killing assays. Bacterial competitions and statistical analysis involving 
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V. cholerae 2740-80, A. baylyi ADP1 and E. coli MG1655 were performed as described 

previously (Basler et al., 2013). The plasmid pMMB67EH was used for VSV-G-tagging and 

expression of ACIAD2681 (Furste et al., 1986). Two-tailed Student’s t-test was used to interpret 

the statistical significance of the number of the colony forming units. 

Protein secretion. Protein supernatants were analyzed as described previously (Basler et 

al., 2012). Overnight cultures of V. cholerae 2740-80 and A. baylyi ADP1 were washed in LB 

and diluted 200 fold into fresh LB and cultivated for 5 h at 37 C. One ml of culture supernatant 

was passed through a 0.2-mM filter, precipitated with TCA, subjected to 12% SDS-PAGE and 

stained with Coomassie blue. The recombinantly expressed ACIAD2681 PAAR protein carried a 

C-terminal VSV-G epitope tag. Western blots were performed on the TCA precipitated samples 

following standard methodology using anti-VSV-G primary antibodies (Sigma). Band intensities 

were quantified using Fiji software (Schindelin et al., 2012). 

Molecular graphics. UCSF Chimera (Pettersen et al., 2004) was used to prepare Figures 

3.3-3.7. 



Chapter 4.  Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell 

interactions 

 

The bacterial type VI secretion system (T6SS) is a dynamic organelle that bacteria use to 

target prey cells for inhibition via translocation of effector proteins. Time-lapse fluorescence 

microscopy has documented striking dynamics of opposed T6SS organelles in adjacent sister 

cells of Pseudomonas aeruginosa. Such cell-cell interactions have been termed ‘‘T6SS dueling’’ 

and likely reflect a biological process that is driven by T6SS antibacterial attack. Here, we show 

that T6SS dueling behavior strongly influences the ability of P. aeruginosa to prey upon 

heterologous bacterial species. We show that, in the case of P. aeruginosa, T6SS- dependent 

killing of either Vibrio cholerae or Acinetobacter baylyi is greatly stimulated by T6SS activity 

occurring in those prey species. Our data suggest that, in P. aeruginosa, T6SS organelle 

assembly and lethal counterattack are regulated by a signal that corresponds to the point of attack 

of the T6SS apparatus elaborated by a second aggressive T6SS+ bacterial cell. 
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Introduction 

The ecological interactions between bacterial species range from cooperative (e.g., 

mutualism and commensalism) to competitive (e.g., parasitism and predation). Contact-

dependent, cooperative interactions involving adherence and nutrient scavenging within biofilms 

have been demonstrated (Kolenbrander et al., 2010; Peters et al., 2012). Several types of contact-

dependent, antagonistic interactions have also been described. For example, contact-dependent 

growth inhibition (CDI) in Escherichia coli involves the interaction of outer-membrane protein 

CdiA on cdi+ cells with BamA receptors on cdi− target cells, a process that triggers growth 

inhibition when cdi– cells lack the cognate immunity protein CdiI (Aoki et al., 2008; Aoki et al., 

2005; Aoki et al., 2009). Proteus mirabilis strains display a self- versus nonself- discrimination 

that has been recently genetically defined but is not well understood mechanistically (Gibbs et 

al., 2008; Gibbs et al., 2011). 

One of the most widely distributed examples of contact-dependent antagonistic behavior 

involves the type VI secretion system (T6SS) (Pukatzki et al., 2006). This secretion system is 

functionally analogous to a bacteriophage tail and corresponds to a dynamic organelle located in 

the cytosol and attached to the cell envelope by a base plate structure (Basler et al., 2012; 

Leiman et al., 2009; Pukatzki et al., 2007). The T6SS apparatus can power secretion of proteins 

between cells by utilizing a contractile phage sheath-like structure (Basler et al., 2012; 

Bonemann et al., 2009; Leiman et al., 2009). “T6SS activity” (i.e., T6SS sheath extension, 

contraction, and disassembly cycles) can be readily visualized by time-lapse microscopy utilizing 

fluorescent fusion proteins to orthologs of either of two Vibrio cholerae T6SS gene products, 

VipA or ClpV (Basler and Mekalanos, 2012; Basler et al., 2012). This dynamic activity leads to 

the translocation of proteins that comprise the T6SS spike/tube complex, VgrG and Hcp, out of 
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the cell (Basler et al., 2012; Leiman et al., 2009). 

Approximately 25% of all sequenced Gram-negative bacteria, including members of the 

genera Vibrio, Pseudomonas, and Acinetobacter, encode T6SS gene clusters (Boyer et al., 2009). 

In several of these species, T6SS has been associated with either antagonistic (Hood et al., 2010; 

Schwarz et al., 2010b) or outright bacteriocidal (Chou et al., 2012; MacIntyre et al., 2010; 

Murdoch et al., 2011; Zheng et al., 2011) activity toward heterologous bacterial species. For 

example, Pseudomonas aeruginosa can outcompete Pseudomonas putida in mixed culture 

through the translocation of one or more of three different T6SS effector proteins termed Tse1, 

Tse2, and Tse3 (Russell et al., 2011). P. aeruginosa sister cells avoid inhibiting each other by 

encoding three immunity proteins, Tsi1, Tsi2, and Tsi3, which bind to and presumably neutralize 

the activity of their cognate effectors (Ding et al., 2012; Li et al., 2012). However, despite having 

this immunity, P. aeruginosa cells respond to T6SS activity directed at them by adjacent sister 

cells with their own T6SS activity (Basler and Mekalanos, 2012). The spatial and temporal 

coincidence of T6SS activity between adjacent P. aeruginosa sister cells suggests that contact-

dependent protein translocation produces a signal that triggers T6SS activity in the adjacent cell. 

The dynamic T6SS activity that occurs between pairs of interacting cells was termed “T6SS 

dueling” and was proposed to reflect a biologically significant process that occurred between 

heterologous T6SS+ species (Basler and Mekalanos, 2012). 

In order to characterize the contact-dependent signal that triggers T6SS dueling behavior, 

we have explored the ability of P. aeruginosa to prey upon T6SS+ and T6SS– V. cholerae and 

Acinetobacter baylyi. We found that P. aeruginosa does not efficiently kill T6SS– V. cholerae or 

T6SS– A. baylyi but readily attacks these species if they express a functional T6SS. The 

TagQRST-PpkA-Fha1-PppA regulatory system is essential for P. aeruginosa T6SS dueling and 
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prey selection, indicating that it is likely responsible for sensing a T6SS-mediated attack on 

P. aeruginosa cells by heterologous T6SS+ predatory species. These results provide evidence for 

a bacterial “tit-for-tat” evolutionary strategy that controls the social interaction among different 

bacterial species (Axelrod and Hamilton, 1981). 

 

Results 

P. aeruginosa specifically targets T6SS+ V. cholerae cells for T6SS-mediated 

counterattack. Previously, we proposed that T6SS dueling behavior specifically marks the 

location of T6SS effector delivery between sister cells of P. aeruginosa (Basler and Mekalanos, 

2012). We first considered the possibility that the penetration of the outer membrane by the 

T6SS spike/tube complex injected by sister cells triggers the T6SS dueling response. Because the 

VgrG and Hcp proteins that comprise this complex are highly conserved among different 

bacterial species (Leiman et al., 2009), we hypothesized that the T6SS spike/tube complex of 

heterologous organisms might also induce a T6SS dueling response in P. aeruginosa. 

V. cholerae has been reported to effectively kill E. coli using its T6SS (MacIntyre et al., 2010; 

Zheng et al., 2011), and its T6SS apparatus has been structurally characterized (Basler et al., 

2012). Thus, the T6SS from V. cholerae was a logical candidate for testing this hypothesis. 

To determine whether V. cholerae T6SS could induce T6SS activity in P. aeruginosa, we 

observed mixtures of P. aeruginosa PAO1 with V. cholerae 2740-80 by time-lapse fluorescence 

microscopy. As in previous studies, we used retS derivatives of P. aeruginosa that are known to 

overexpress the H1-T6SS locus at the transcriptional level (Basler and Mekalanos, 2012; 

Mougous et al., 2006). T6SS activity was monitored with ClpV1-GFP and ClpV-mCherry2 

fusion proteins in P. aeruginosa and V. cholerae, respectively. This experiment revealed that 
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Figure 4.1 P. aeruginosa T6SS preferentially targets T6SS+ V. cholerae. VcT6S+ indicates V. cholerae clpV-
mCherry2, VcT6S− indicates V. cholerae ΔvipA clpV-mCherry2, PaT6S+ indicates P. aeruginosa ΔretS clpV1-
gfp, and PaT6S− indicates P. aeruginosa ΔretS ΔvipA1 clpV1-gfp. PaRetS− indicates P. aeruginosa ΔretS, and 
PaRetS+ indicates P. aeruginosa. (A) Examples of morphological changes of V. cholerae seen in mixtures of 
P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) and V. cholerae clpV-mCherry2 (T6SS+, red). 4.5 × 4.5 µm fields 
are shown. (B) Example of a dilution series used to enumerate V. cholerae recovery from a competition with 
P. aeruginosa. (C–G) 30 × 30 µm representative field of cells with a 4× magnified 3 × 3 µm inset (marked by 
box). Bar in (C) is 3 µm and applies to (C)–(G). Arrows point to examples of round V. cholerae cells. (C–E) 
Average number of round V. cholerae cells per 30 × 30 µm field (±SD) is shown for each mixture (n fields were 
analyzed); p value compared to mixture in (C). (C) P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) mixed with 
V. cholerae clpV-mCherry2 (T6SS+, red). (D) P. aeruginosa ΔretS ΔvipA1 clpV1-gfp (T6SS−, green) mixed with 
V. cholerae clpV-mCherry2 (T6SS+, red). (E) P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) mixed with 
V. cholerae ΔvipA clpV-mCherry2 (T6SS−, red). (F and G) V. cholerae clpV-mCherry2 (T6SS+, red) and 
V. cholerae ΔvipA clpV-gfp (T6SS−, green) strains were mixed at equal ratios with (F) P. aeruginosa ΔretS 
(T6SS+, unlabeled) and (G) P. aeruginosa (T6SS+, unlabeled). (H) Quantification of number of round 
V. cholerae cells detected per 30 × 30 µm field (n = 60) for mixtures shown in (F) and (G). See also Movies S4.1 
and S4.2 and Tables 4.1 and 4.2. 
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P. aeruginosa induced striking morphological changes in V. cholerae cells that could be 

differentiated into categories that include cell rounding, cell blebbing, plasmolysis, and overt 

lysis (Figure 4.1A and Movies S4.1, S4.2). Rounding of V. cholerae cells in these mixtures was 

dependent on the functionality of H1-T6SS locus of P. aeruginosa (Figures 4.1C, D and Table 

4.1) and occurred predominantly in V. cholerae cells directly contacting P. aeruginosa cells. 

Remarkably, in accordance with our hypothesis that the activity of the T6SS of a heterologous 

organism might trigger the dueling response of P. aeruginosa, rounding of V. cholerae cells was 

virtually absent in mixtures containing T6SS– V. cholerae (Figure 4.1E, Table 4.1, and Movie 

S4.1). 

To ascertain whether preferential rounding of T6SS+ V. cholerae under microscopic 

conditions also reflected preferential killing of T6SS+ cells by P. aeruginosa, we performed 

quantitative competition assays. In agreement with the observed microscopy data, when 

competed against T6SS+ P. aeruginosa, we recovered ∼100-fold fewer surviving T6SS+ 

V. cholerae cells than T6SS– V. cholerae cells (Figure 4.1B). T6SS+ and T6SS– P. aeruginosa 

Table 4.1 Counting of round cells in mixtures of P. aeruginosa and V. cholerae. 
P. aeruginosa a V. cholerae b Fields c Total round cells Round cells / field (SD d) 

- - 60 1795 30 (14) 
ΔvipA1 - 60 2 0.03 (0.18) 
- ΔvipA 30 34 1.1 (1.2) 
ΔpppA - 30 79 2.6 (3.4) 
ΔpppA ΔvipA 30 78 2.6 (2.6) 
ΔppkA - 30 5 0.17 (0.46) 
ΔppkA ΔvipA 30 0 0.0 (0.0) 
ΔtagT - 30 78 2.6 (2.4) 
ΔtagT ΔvipA 30 72 2.4 (2.4) 
Δtse1 - 30 1 0.03 (0.18) 
Δtse2 - 30 1010 34 (15) 
Δtse3 - 30 811 27 (11) 
Δtse1-3 - 30 1 0.03 (0.18) 
- Tsi1 45 102 2.3 (1.7) 

a Parental strain is P. aeruginosa ΔretS clpV1-gfp, additional mutations are indicated. 
b Parental strain is V. cholerae clpV-mCherry2, additional mutations are indicated;“Tsi1” represents 
V. cholerae/pBAD24-Tsi1-mCherry2. 
c Number of 30 x 30 µm fields of cells (similar to fields shown in Figure 4.1C-E) that were analyzed. 
d SD – standard deviation 
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were only marginally inhibited by T6SS+ V. cholerae, and thus, the difference seen in prey 

sensitivity does not reflect a difference in P. aeruginosa survival in these quantitative assays 

(Figure 4.2A). These data suggest that an antibacterial P. aeruginosa T6SS dueling response was 

likely directed specifically at T6SS+ V. cholerae cells that had attacked P. aeruginosa cells first.  

We sought to confirm the target specificity of the P. aeruginosa heterologous 

dueling/antibacterial response and that this induced response did not cause collateral damage to 

nearby cells that had not attacked the retaliating P. aeruginosa cell. Accordingly, we designed a 

mixture experiment involving three strains that would allow the specificity of the P. aeruginosa 

dueling/antibacterial response to be assessed at the microscopic level. We mixed P. aeruginosa 

with differentially fluorescently labeled T6SS+ (red) and T6SS– V. cholerae (green) and scored 

the relative proportion of red or green cells that showed rounding in the assay. Strikingly, 

Figure 4.2 P. aeruginosa is resistant to T6SS of V. cholerae and A. baylyi and does not 
target E. coli. PaT6S+ indicates P. aeruginosa ΔretS clpV1-gfp, PaT6S− indicates 
P. aeruginosa ΔretS ΔvipA1 clpV1-gfp. (A) Summary of competition assays for P. aeruginosa 
and V. cholerae mixtures. Data are presented as mean of Log10 CFU of recovered 
P. aeruginosa with error bar representing standard deviation (n = 8). VcT6S+ indicates 
V. cholerae clpV-mCherry2, VcT6S− indicates V. cholerae ΔvipA clpV-mCherry2. (B) 
Summary of competition assays for P. aeruginosa and A. baylyi mixtures. Data are presented 
as mean of Log10 CFU of recovered A. baylyi with error bar representing standard deviation 
(n = 8). AbT6S+ indicates A. baylyi parental strain, AbT6S− indicates A. baylyi ΔT6SS. (C) 
Summary of competition assays for P. aeruginosa and E. coli mixtures. Data are presented as 
mean of Log10 CFU of recovered E. coli with error bar representing standard deviation (n = 
15). 
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V. cholerae cells exhibiting rounded morphologies were predominantly T6SS+, whereas T6SS– 

V. cholerae cells remained largely unaffected (Figures 4.1F, H, Table 4.2, and Movie S4.1). This 

selective targeting of T6SS+ V. cholerae was also observed in wild-type P. aeruginosa PAO1 

(Figures 4.1G, H and Table 4.2) and is thus independent of H1-T6SS transcriptional expression 

level. Collectively, these data suggest that P. aeruginosa cells were precisely directing their 

T6SS-dependent antibacterial activity to specifically target only V. cholerae prey cells that had 

attacked first with their own heterologous T6SS apparatus. 

P. aeruginosa T6SS delivers Tse1 effector into V. cholerae cells, but Tse effectors are 

dispensable for dueling and V. cholerae killing. When mixed with T6SS+ P. aeruginosa, the 

cell-rounding morphological response of T6SS+ V. cholerae was reminiscent of one observed in 

E. coli cells engineered to express the P. aeruginosa T6SS effector Tse1 in their periplasm in the 

absence of the cognate immunity protein Tsi1 (Russell et al., 2011). Therefore, we next asked 

whether the rounding morphology exhibited by V. cholerae could be specifically attributed to 

Tse1 activity. Although knockouts of tse2 and tse3 in P. aeruginosa still caused V. cholerae cell 

rounding, knocking out all three effectors or just tse1 alone eliminated the cell-rounding activity 

(Figures 4.3A-D and Table 4.1). Furthermore, expression of Tsi1 (the cognate immunity protein 

of Tse1) in the periplasm of V. cholerae significantly decreased cell rounding when mixed with 

P. aeruginosa (Figure 4.3E and Table 4.1). These data provide clear visual evidence 

Table 4.2 Counting of round cells in three strain mixtures of P. aeruginosa and T6SS+/T6SS– V. cholerae. 
P. aeruginosa V. cholerae Fields a Total round cells Round cells / field (standard deviation) 

ΔretS clpV-mCherry2 60 1010 16.8 (7.9) 
ΔvipA clpV-gfp 60 30 0.50 (0.75) 

wild type clpV-mCherry2 60 571 9.5 (6.1) 
ΔvipA clpV-gfp 60 9 0.15 (0.40) 

a Number of 30 x 30 µm fields of cells (similar to fields shown in Figure 4.1F, G) that were analyzed. 
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Figure 4.3 P. aeruginosa T6SS effector Tse1 is responsible for V. cholerae cell rounding, 
but Tse effectors are dispensable for dueling and V. cholerae growth inhibition. 30 × 
30 µm representative field of cells with a 4× magnified 3 × 3 µm inset (marked by box) is 
shown for (A)–(E), (G), and (H). Bar in (A) is 3 µm and applies to (A)–(E), (G), and (H). 
Strain abbreviations were as used in Figure 4.1. n.s., not statistically significant (p > 0.01). (A–
E) Arrows point to examples of round V. cholerae cells. Average number of round V. cholerae 
cells per 30 × 30 µm field (±SD) is shown for each mixture (n fields were analyzed); p value is 
compared to mixture in Figure 1C. For (A)–(D), V. cholerae clpV-mCherry2 strain was mixed 
with (A) P. aeruginosa ΔretS Δtse1 clpV1-gfp, (B) P. aeruginosa ΔretS Δtse2 clpV1-gfp, 
(C) P. aeruginosa ΔretS Δtse3 clpV1-gfp, and (D) P. aeruginosa ΔretS Δtse1-3 clpV1-gfp. 
(E) P. aeruginosa ΔretS clpV1-gfp was mixed with V. cholerae/pBAD24-Tsi1-mCherry2 
strain. (F) Summary of competition assays for P. aeruginosa and V. cholerae mixtures. Data 
are presented as mean of log10 CFU of recovered V. cholerae with error bar representing SD 
(n = 8-19). (G and H) ClpV1-GFP localization was followed for 3 min and was temporally 
color-coded. Arrows point to examples of dueling P. aeruginosa cells. Average number of 
active cells and dueling cells per 30 × 30 µm field (±SD) is shown (n fields were analyzed); p-
value is compared to strain in (G). (G) P. aeruginosa ΔretS clpV1-gfp and (H) P. aeruginosa 
ΔretS Δtse1-3 clpV1-gfp. (I) Color scale used to temporally color-code ClpV1-GFP signal. See 
also Movie S4.3 and Tables 4.1 and 4.3. 
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(P. aeruginosa T6SS-dependent V. cholerae cell rounding) of the delivery of a specific T6SS 

effector (Tse1) into a bacterial target cell by a functional T6SS organelle. 

Interestingly, when a competition experiment was performed using a tse1-3 triple 

knockout of P. aeruginosa, wild-type levels of T6SS-dependent killing were observed 

(Figure 4.3F). Thus, in the case of V. cholerae, even though T6SS-dependent delivery of Tse1 is 

detected by microscopy, prey cell killing occurs independent of the three known Tse effector 

proteins of P. aeruginosa. Additionally, the tse1-3 effector knockout strain exhibited dueling 

activity between sister cells similar to the wild type (Figures 4.3G, H, Movie S4.3, and Table 

4.3), indicating that T6SS-mediated translocation of these three Tse effectors into target cells is 

also not required for the T6SS dueling response. 

Inactivation of signaling cascade results in loss of P. aeruginosa T6SS dueling. We 

next sought to define the signaling pathway regulating T6SS dueling and the recognition of 

homologous or heterologous T6SS attack. The kinase PpkA is known to be required for T6SS 

function (Mougous et al., 2007). It phosphorylates the essential T6SS apparatus component 

Fha1, which then associates with the T6SS apparatus visualized with ClpV1-GFP (Mougous et 

al., 2007). PpkA activity is counteracted by phosphatase PppA, which deactivates the 

P. aeruginosa T6SS apparatus by dephosphorylating Fha1 (Mougous et al., 2007). Moreover, the 

cell-envelope-associated TagQRST regulatory system controls PpkA phosphorylation of Fha1 

(Casabona et al., 2012). Thus, TagQRST-PpkA-Fha1-PppA has been proposed to control 

assembly or function of the T6SS apparatus posttranscriptionally in response to undefined 

environmental signals (Casabona et al., 2012; Hsu et al., 2009; Mougous et al., 2007; Silverman 

et al., 2011). However, this posttranslational regulatory loop has not been previously evaluated 

for its effect on the dynamics of T6SS organelles. 
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Accordingly, we tested whether inactivation of PpkA (kinase), PppA (phosphatase), or 

TagT (ATP-binding cassette transporter) affects the level of T6SS activity and dueling behavior 

as measured by ClpV1-GFP dynamics (Basler and Mekalanos, 2012). Inactivation of ppkA 

resulted in a complete block of T6SS dynamics (Figure 4.4A, Table 4.3, and Movie S4.3), 

whereas inactivation of pppA resulted in a dramatic increase in the number of cells showing 

T6SS activity compared to the PppA+ parental strain (Figure 4.4B, Table 4.3, and Movie S4.3). 

Like V. cholerae, this T6SS activity occurred spontaneously in most cells and irrespective of 

neighboring cell T6SS activity. However, unlike V. cholerae (Basler and Mekalanos, 2012), the 

T6SS activity visualized with ClpV1-GFP remained localized to a given subcellular site in each 

P. aeruginosa pppA mutant cell (Figure 4.4B and Movie S4.3). T6SS activity of this sort has 

been previously hypothesized to reflect either the recycling of the T6SS baseplate complex 

through multiple rounds of T6SS organelle sheath extension/contraction/disassembly cycles or 

clustering of multiple dynamic T6SS organelles in close proximity to each other (Basler and 

Figure 4.4 T6SS dueling depends on PpkA, PppA, and TagT. (A–C) ClpV1-GFP 
localization was followed for 3 min and temporally color-coded (color scale in Figure 4.3I). 
30 × 30 µm representative field of cells with a 4× magnified 3 × 3 µm inset (marked by box) is 
shown for (A)–(C). Bar in (A) is 3 µm and applies to (A)–(C). Average number of active cells 
and dueling cells per 30 × 30 µm field (±SD) is shown (n fields were analyzed); p value 
is compared to parental strain in Figure 4.3G. (A) P. aeruginosa ΔretS ΔppkA clpV1-gfp, (B) 
P. aeruginosa ΔretS ΔpppA ΔclpV1-gfp, and (C) P. aeruginosa ΔretS ΔtagT clpV1-gfp. See 
also Movie S4.3 and Table 4.3. 
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Mekalanos, 2012). For simplicity, we refer to such cycles of T6SS activity as “firing” in that 

such activity likely also marks the location of extracellular secretion events that could attack a 

correctly positioned neighboring prey cell. This positional restriction of T6SS organelle firing 

was characteristic of a majority of the T6SS activity observed in the pppA knockout mutant. 

Thus, despite its overall increase in T6SS organelle assembly and firing activity, the pppA 

mutant is defective in the T6SS dueling response (Figure 4.4B, Table 4.3, and Movie S4.3). This 

result suggests that the PppA phosphatase is required to dephosphorylate Fha1 and allow the 

T6SS organelle to be targeted for disassembly rather than recycling in the same location. Lastly, 

knocking out tagT resulted in loss of dueling activity without loss of T6SS activity in that cells 

continue to fire their T6SS organelles at the same location, but not in temporal or spatial register 

with an active sister cell (Figure 4.4C, Table 4.3, and Movie S4.3). This result indicates that the 

TagQRST signaling cascade is required for sensing the attack of adjacent sister cells. This 

conclusion is also consistent with the observed stimulation of T6SS organelle formation by the 

TagQRST system on solid medium compared to liquid medium, where such interactions are 

more likely to occur (Casabona et al., 2012). 

Loss of T6SS dueling behavior blocks targeting of T6SS+ prey cells. We further tested 

whether mutations in the TagQRST-PpkA-Fha1-PppA regulatory cascade affected P. aeruginosa 

targeting of V. cholerae cells by counting round V. cholerae cells and measuring inhibition of 

V. cholerae growth. P. aeruginosa ppkA mutant cells, which exhibited no T6SS firing activity, 

did not target V. cholerae for either cell rounding or growth inhibition (Figures 4.5A, B and 

Table 4.1). Similarly, the dueling-defective tagT mutant did not target V. cholerae for cell 

rounding and growth inhibition (Figures 4.5A, B and Table 4.1), which is consistent with the 

notion that the TagQRST signaling cascade is required for detecting the V. cholerae T6SS attack. 
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 Given that the P. aeruginosa pppA mutant cells fire their T6SS apparatus repeatedly in a 

specific arbitrary direction but are unable to respond to external T6SS assault (i.e., they are T6SS 

dueling defective), we made three predictions regarding how effectively the pppA knockout 

mutant would target V. cholerae in competition assays. First, because the T6SS of the pppA 

knockout continually fires in a single unchanging direction, these bacteria should be limited in 

targeting prey cells in a majority of the surrounding space over a unit of time. Thus, a pppA 

mutant cell should attack a target cell only if its T6SS apparatus happened to be in the proper 

orientation relative to the point of contact between predator and prey cells, which would lead to a 

decreased frequency of V. cholerae prey cell rounding in mixtures with the pppA mutant relative 

to its PppA+ parent. Second, we should be able to compensate for this targeting restriction of 

pppA mutant cells by increasing the ratio of P. aeruginosa predator cells to V. cholerae prey 

cells. Increasing the number of P. aeruginosa to V. cholerae contacts would increase the 

likelihood that a P. aeruginosa T6SS apparatus would happen to be in the correct orientation to 

Figure 4.5 PpkA, PppA, and TagT are important for P. aeruginosa targeting of prey. 
Strain abbreviations were as used in Figure 4.1. n.s., not statistically significant (p > 0.01). (A) 
Quantification of number of round V. cholerae cells per 30 × 30 µm field for indicated 
mixtures (n = 60 for VcT6S+/PaT6S+ and VcT6S+/PaT6S− mixtures, and n = 30 for all other 
indicated mixtures). (B) Summary of competition assays for P. aeruginosa and V. cholerae 
mixtures. Data are presented as mean of log10 CFU of recovered V. cholerae with error bars 
representing SD (n = 6–19). (C) Competition assays for P. aeruginosa and V. cholerae 
mixtures at 10:1 ratio. Data are presented as mean of log10 CFU of recovered V. cholerae with 
error bars representing SD (n = 5–10). See also Table 4.1. 
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fire directly at the V. cholerae cell. Third, if dueling behavior reflects an “aiming” process for 

directing T6SS firing at aggressive T6SS+ prey, any residual killing activity displayed by the 

pppA mutant should not be selective for killing T6SS+ prey cells compared to T6SS– prey. 

Indeed, all three of the above predictions were supported by microscopic and quantitative 

competition analysis. When the pppA knockout mutant was mixed with T6SS+ V. cholerae in a 

1:1 ratio, there were very few rounded cells (Figure 4.5A and Table 4.1) and virtually no 

detectable killing of V. cholerae in competition assays (Figure 4.5B); however, increasing the 

relative number of P. aeruginosa to V. cholerae by 10-fold partially restored the observable 

killing activity of the pppA mutant (Figure 4.5C). This killing activity by the pppA mutant was 

still dependent on P. aeruginosa T6SS, and the observable cell rounding and killing activity of 

the pppA mutant exhibited no preference for T6SS+ prey V. cholerae cells versus T6SS– prey 

cells (Figure 4.5 and Table 4.1). Additionally, the absence of target specificity by the pppA 

mutant also confirms that T6SS+ V. cholerae are not inherently more sensitive to P. aeruginosa 

T6SS attack. 

Altogether, these results suggest that exogenous T6SS attack on a P. aeruginosa cell 

produces a signal that is perceived by the TagQRST system, which then promotes local, 

anatomically correct phosphorylation of Fha1 and thus the assembly of a T6SS organelle at the 

site of the attack followed by its firing in a T6SS “counterattack” directed precisely at the contact 

point of the attacker. 

Acinetobacter baylyi T6SS also induces P. aeruginosa T6SS-dependent killing, 

whereas T6SS− E. coli does not. Given that P. aeruginosa can respond to T6SS attack by 

V. cholerae, we wondered whether other heterologous T6SS systems could also induce 

P. aeruginosa T6SS attack. A. baylyi has been shown to have a T6SS-dependent growth 
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phenotype on solid media, suggesting that it has active T6SS (de Berardinis et al., 2008). We 

confirmed that its T6SS is functional and could effectively target and kill E. coli at least as 

efficiently as V. cholerae (Figure 4.6A). When mixed with P. aeruginosa in competition, 

~1,000-fold fewer A. baylyi T6SS+ cells were recovered compared to T6SS− cells (Figures 4.6B, 

C). Neither T6SS+ nor T6SS– P. aeruginosa were killed by A. baylyi T6SS (Figure 4.2B). Like 

V. cholerae, T6SS+ A. baylyi was still killed by P. aeruginosa tse1-3 null mutant (Figure 4.6C). 

Furthermore, the TagQRST-PpkA-Fha1-PppA regulatory cascade was required for sensing 

A. baylyi T6SS attack, as mutants altered in PpkA, PppA, or TagT no longer killed T6SS+ 

A. baylyi (Figure 4.6C). These data suggest that the regulatory cascade activating P. aeruginosa 

T6SS can be triggered in response to attack by any arbitrary T6SS+ organism. 

If the dueling response of P. aeruginosa is indeed an evolutionary adaption to 

counterattack aggressive T6SS+ heterologous species, we reasoned that P. aeruginosa should 

have little or no ability to kill T6SS– species such as E. coli K12. Indeed, retS mutants of 

Figure 4.6 A. baylyi has a functional T6SS and is targeted by P. aeruginosa. Strain 
abbreviations are as used in Figure 4.1. AbT6S+ indicates A. baylyi parental strain, and 
AbT6S− indicates A. baylyi ΔT6SS. (A) Example of a dilution series used to enumerate E. coli 
survival in mixtures with A. baylyi or V. cholerae. (B) Example of a dilution series used to 
enumerate A. baylyi survival in mixtures with P. aeruginosa. (C) Summary of competition 
assays for P. aeruginosa and A. baylyi mixtures. Data are presented as mean of log10 CFU of 
recovered A. baylyi with error bars representing SD (n = 3–8). 
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P. aeruginosa cannot kill this species efficiently under conditions that lead to two to three orders 

of magnitude more efficient killing or inhibition of T6SS+ species (Figure 4.2C). 

 

Discussion 

In this study, we explored the biological activity of the bacterial T6SS when four 

different bacterial species (P. aeruginosa, V. cholerae, A. baylyi, and E. coli) interact on solid 

culture media. In addition to quantitative killing/growth inhibition assays, we utilized time-lapse 

fluorescence microscopy to reveal cellular and subcellular morphological changes that 

specifically correlated with the genetic phenotypes of the interacting heterologous species. Our 

logic for performing these studies stemmed in part from our recent discovery that T6SS+ 

P. aeruginosa cells respond to the T6SS activity of adjacent sister cells with a dramatic increase 

in their own spatial and temporal T6SS activity (Basler and Mekalanos, 2012). We termed this 

phenomenon “T6SS dueling” and reasoned that it might reflect a natural process occurring 

between heterologous T6SS+ species that coexist in the same ecological niche. 

The results presented here document the striking ability of T6SS+ P. aeruginosa to attack 

heterologous T6SS+ organisms much more efficiently than T6SS– organisms. We observed that 

T6SS+ V. cholerae were typically killed ∼100-fold more efficiently than isogenic T6SS– 

V. cholerae (Figures 4.1B and 4.5B). We also observed a statistically significant difference in the 

ability of T6SS+ P. aeruginosa to cause rounding of V. cholerae cells, a morphological change 

attributable to the peptidoglycan degrading T6SS effector Tse1 (Figures 4.1C–H, 4.3A–E and 

Table 4.1). Furthermore, in mixtures of T6SS+ P. aeruginosa, T6SS– V. cholerae, and isogenic 

T6SS+ V. cholerae, only the latter were targeted for attack (Figures 4.1F, G, Table 4.2, and 

Movie S4.1). The T6SS-dependent morphological changes could not be directly correlated with 
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killing activity under microscopic conditions because these conditions are not optimal for 

detecting T6SS-mediated killing; the latter typically requires longer time periods of cellular 

interaction and aerobic conditions. Nonetheless, both assays yielded the same conclusion that 

T6SS-dependent events (i.e., killing or morphological changes in prey cells) were strikingly 

dependent on the T6SS+ activity displayed by V. cholerae prey cells. The T6SS of V. cholerae 

was not unique in this regard, as the T6SS of A. baylyi induced a similar counterattack by 

P. aeruginosa (Figures 4.6B, C). In contrast, P. aeruginosa did not efficiently kill T6SS– E. coli 

(Figure 4.2C), despite the fact that this species is sensitive to Tse1, Tse-2, and Tse-3 effectors 

when expressed inside intact cells (Hood et al., 2010; Russell et al., 2011). Although T6SS+ 

P. aeruginosa have been reported to cause the release of about 4-fold more β-galactosidase from 

E. coli than Tse1-negative P. aeruginosa (Chou et al., 2012), we view such activity as modest 

given that P. aeruginosa T6SS antibacterial activity directed against either T6SS+ V. cholerae or 

T6SS+ A. baylyi appears to be two to three orders of magnitude greater under the conditions we 

employed in our analysis. 

The data presented in this report provide an understanding of prey selection by 

P. aeruginosa. Our results suggest that, in P. aeruginosa, T6SS-mediated killing activity is 

regulated by a signal that corresponds to detection of the point of attack of the T6SS apparatus 

elaborated by a T6SS+ cell, be it V. cholerae, A. baylyi, P. aeruginosa, or likely other T6SS+ 

species. The P. aeruginosa T6SS counterattack is finely directed with spatial and temporal 

accuracy so as to engage the T6SS+ attacker within moments of its initial attack. In this way, 

precise killing of aggressive neighboring T6SS+ cells can be efficiently achieved by 

P. aeruginosa while sparing “peaceful bystanders” despite their close proximity. This strategy 

makes ecological sense in that biofilms composed of communities of diverse but cooperative 
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bacterial species likely have more biodegradative (and thus growth) potential than biofilms 

composed of single bacterial species (Flemming and Wingender, 2010; Wintermute and Silver, 

2010). Thus, regulation of T6SS activity by P. aeruginosa may be an evolutionary reflection of 

the old adage “don’t bite the hand that feeds you” and that P. aeruginosa might prefer to coexist 

and cooperate with other bacterial species as long as they are not aggressive predators. On the 

other hand, the ability of P. aeruginosa to counterattack an aggressive T6SS+ species provides a 

bacterial example of a “tit-for-tat” evolutionary strategy predicted by Axelrod and Hamilton in 

their quantitative analysis of gaming strategies that win the “Prisoner’s Dilemma” challenge 

(Axelrod and Hamilton, 1981). Our results on induced aggressive behavior between competing 

bacterial species should be of interest to evolutionary biologists in this context. 

In this report, we describe a genetic analysis to provide mechanistic detail and biological 

context for T6SS dueling between heterologous bacterial species. We showed that a null 

mutation in pppA dramatically increases P. aeruginosa T6SS dynamic activity on a per cell basis 

but cause the loss of T6SS dueling behavior and failure to selectively kill or induce rounding of 

T6SS+ V. cholerae (Figures 4.4B and 4.5B and Tables 4.1, 4.3). The observed increase in T6SS 

activity is consistent with the known activities of PppA, a phosphatase that regulates T6SS 

secretion through the dephosphorylation of Fha1, a scaffold protein that promotes T6SS 

apparatus assembly in P. aeruginosa specifically after its phosphorylation by the kinase PpkA 

(Mougous et al., 2007). Our results suggest that the PpkA-Fha1-PppA cycle may well play a role 

in 1) suppressing random formation of T6SS organelles within the cell, 2) inducing their 

formation precisely at the point of exogenous T6SS attack, and 3) targeting the disassembly of 

T6SS organelles once exogenous attack signals are no longer perceived. 
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Recently, Casabona et al. (2012) have reported that an outer-membrane lipoprotein 

(TagQ) and a set of periplasmic and inner-membrane proteins (TagR, TagT, and TagS) control 

the activation of PpkA and thus phosphorylation of Fha1 and assembly of the T6SS apparatus. 

The fact that TagQRST acts upstream of the PpkA-Fha1-PppA (Casabona et al., 2012; Hsu et al., 

2009), together with our new data, suggests that this protein complex may play a direct role in 

sensing envelope perturbations (e.g., outer-membrane breach, peptidoglycan disruption, inner-

membrane perforation) caused by exogenous T6SS attack. Thus, T6SS dueling may be the 

manifestation of a signal transduction cascade that starts with recognition by the TagQRST 

system of a subcellularly localized signal associated with exogenous T6SS attack, dimerization, 

autophosphorylation of PpkA, trans-phosphorylation of Fha1, and, finally, phosphorylated Fha1-

directed assembly of a T6SS organelle precisely at the point corresponding to the initial 

exogenous T6SS attack (Figure 4.7). Repeated firing of the newly assembled T6SS organelle 

results in a counterattack aimed precisely at the point of initial attack by the heterologous T6SS+ 

cell. If no further attacks are sensed, then dephosphorylation of Fha1 would allow the T6SS 

organelle to be disassembled and thus primed (by establishing a pool of T6SS organelle 

precursors) for a quick response (i.e., de novo organelle assembly) to a new attack at a different 

anatomical site within the cell (Figure 4.7). It is also worth noting that phosphorylated Fha1 

might promote the formation of multiple, clustered T6SS organelles in the vicinity of the initial 

T6SS exogenous attack as well. 

In contrast, the T6SS+ V. cholerae strains studied here are able to kill E. coli at least 

100,000-fold more efficiently than P. aeruginosa. We propose that the difference observed in 

killing activity reflects the dynamics of the V. cholerae T6SS apparatus, which forms, fires, and 

reforms constantly and in different locations within the cell (Basler et al., 2012). In this way, 
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V. cholerae cells protect their surrounding space and attack all encroaching invaders. However, 

this strategy is not without an energy cost, as most V. cholerae cells show high levels of T6SS 

activity with no benefit gained, whereas P. aeruginosa displays only minor levels until it 

encounters a T6SS+ threat. These two different strategies may also reflect the key underlying 

evolutionary adaption that is characteristic of two distinct uses for the T6SS organelle: 

Figure 4.7 Model for TagQRST-mediated T6SS aiming. (A) Regulation of the T6SS 
response in P. aeruginosa. (A1) T6SS assault from V. cholerae is sensed by the TagQRST/ 
PpkA signal cascade (orange) to phosphorylate Fha1 (blue). (A2) Phosphorylated Fha1 
interacts with the baseplate complex (gray), locking it in place and allowing assembly of the 
Hcp/VgrG tube/spike (red) and VipA/B sheath (green). (A3) Sheath contraction fires the 
retaliatory P. aeruginosa tube/spike complex at V. cholerae. ClpV (light purple) then 
disassembles the contracted sheath. (A4) The baseplate can then be reused to assemble an 
additional tube/spike/sheath complex, or (A5) PppA (yellow) can dephosphorylate Fha1, (A6) 
inactivating or disassembling the baseplate complex. The P. aeruginosa T6SS is now ready to 
respond to new T6SS assaults. (B) T6SS interactions between P. aeruginosa and V. cholerae. 
(B1) V. cholerae T6SS will spontaneously fire, occasionally hitting a nearby P. aeruginosa 
cell. (B2–B6) P. aeruginosa senses the assault and builds its T6SS organelle at the location of 
the assault. (B7) P. aeruginosa fires its T6SS organelle back at the V. cholerae cell. The 
baseplate is then recycled to allow for multiple firing events, or (B8) the Fha1 complex is 
dephosphorylated by PppA and the baseplate complex is disassembled and free to reform at a 
new location. (B5) Meanwhile, V. cholerae continues to fire its T6SS organelle arbitrarily in a 
different location and direction. (B8) After the retaliatory attack from P. aeruginosa, the 
V. cholerae cell dies. 
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V. cholerae uses the apparatus as an offensive weapon, whereas P. aeruginosa uses the organelle 

as a defensive weapon. The ability of P. aeruginosa to detect the attack of another T6SS+ cell 

and to respond with its own T6SS counterattack represents a fascinating example of highly 

selective, antagonistic bacterial interactions. 

In this study, we also show that, although T6SS– E. coli were efficiently killed by T6SS+ 

V. cholerae or A. baylyi T6SS+ strains, neither T6SS+ nor T6SS– P. aeruginosa were killed by 

the V. cholerae T6SS+ or A. baylyi T6SS+ strains (Figures 4.2A, B). Because P. aeruginosa is 

sensitive to its own T6SS effectors in the absence of its cognate immunity proteins (Hood et al., 

2010), it seems highly likely that the resistance of P. aeruginosa to T6SS+ V. cholerae may be 

more intrinsic than specific. The “T6SS armor” that P. aeruginosa deploys against the killing 

activity of the V. cholerae T6SS may be related to its notorious outer-membrane impermeability 

(Nikaido, 1994) or perhaps alterations in its peptidoglycan structure. However, because T6SS+ 

P. aeruginosa detect both T6SS+ sister cells (Basler and Mekalanos, 2012) as well as the T6SS+ 

heterologous species V. cholerae and A. baylyi, it is clear that P. aeruginosa detects T6SS-

associated attack signals even if they have no lethal consequence. Understanding in more detail 

the parameters involved in T6SS+ prey detection as well as prey sensitivity and resistance to 

T6SS-mediated attacks will be a fruitful area for future investigations. Given that the 

P. aeruginosa T6SS is likely also a mammalian virulence factor (Mougous et al., 2006; Schwarz 

et al., 2010a), it will also be of interest to determine whether eukaryotic cell-derived signals can 

induce a P. aeruginosa T6SS counterattack. 

A key question was how important the best-characterized non-VgrG-related antibacterial 

effectors, the Tse proteins of P. aeruginosa (Hood et al., 2010; Russell et al., 2011), were to the 

T6SS-dependent killing of sensitive heterologous target cells. Here, we show that this category 
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of T6SS effector is of little importance to the ability of P. aeruginosa to kill T6SS+ V. cholerae 

(Figure 4.3F) or T6SS+ A. baylyi (Figure 4.6C). Thus, other yet-to-be-discovered P. aeruginosa 

antibacterial effectors may play a role in killing these T6SS+ prey species. Alternatively, Tse-

independent T6SS-dependent killing could be attributed to the dynamic activity of the T6SS 

apparatus alone. Our data support the hypothesis that the T6SS phage tail-like spike/tube 

complex of P. aeruginosa may kill some target cells after T6SS-mediated envelope insertion 

without the need for enzymatically active accessory effector delivery. The breech of the outer 

membrane and/or peptidoglycan and inner membrane of susceptible prey cells with the T6SS 

VgrG spike/Hcp tube complex might be sufficient to initiate a lethal event in prey cell targets 

due to, for example, depolarization of the inner membrane, activation of autolytic pathways, or 

other secondary metabolic responses to this damage (Kohanski et al., 2007; Lewis, 2000; Uratani 

and Hoshino, 1984). 

In this report, we also presented microscopic evidence for delivery of an antibacterial 

effector to a target prey cell by a native T6SS apparatus. Previous evidence presented for such 

delivery included the observation that Tsi immunity proteins protect cells from antibacterial Tse 

effectors secreted by sister cells (Russell et al., 2011) and that Tse effectors are toxic when 

expressed in heterologous bacterial cells such as E. coli (Russell et al., 2011). In our studies, 

T6SS+ V. cholerae cells exposed to T6SS+ P. aeruginosa exhibited a rounded morphology that 

could be specifically attributed to Tse1 activity. Although a Tse1-dependent morphological 

change in T6SS+ V. cholerae could be clearly demonstrated in our studies, as noted earlier, we 

were unable to attribute a significant contribution of this effector (or indeed any of the known 

Tse effectors) to the total T6SS-dependent bacteriocidal activity of P. aeruginosa directed 

against T6SS+ V. cholerae or T6SS+ A. baylyi. We are currently exploring the hypothesis that 
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Tse effectors may be more important to lysing some target species and thus releasing 

cytoplasmic contents that could serve as growth substrates than for killing target cells per se. 

Because there are T6SS+ bacterial species that utilize other bacteria as growth substrates (i.e., 

Myxococcus xanthus), the concept that T6SS effectors may play a role in nutrient scavenging 

rather than simply being the mediators of lethality is an interesting insight that has emerged from 

the studies presented here. 

 

Description of Supplemental Movies 

Movie S4.1 P. aeruginosa T6SS causes morphological changes in T6SS+ V. cholera. 

This movie contains data that are represented in Figure 4.1. Nine individual 3-min-long time-

lapse movies were obtained with a frame rate of 5 sec per frame. The movie shows a 48 × 36 µm 

region and plays 50× faster than real time. Segments: 1–3, P. aeruginosa ΔretS clpV1-gfp 

(T6SS+, green)/V. cholerae clpV-mCherry2 (T6SS+, red), notice V. cholerae cell rounding and 

lysis; 4–6, P. aeruginosa ΔretS clpV1-gfp (T6SS+, green)/V. cholerae ΔvipA clpV-mCherry2 

(T6SS−, red), almost no V. cholerae cell rounding; 7–9, P. aeruginosa ΔretS (T6SS+, 

unlabeled)/V. cholerae clpV-mCherry2 (T6SS+, red) + V. cholerae ΔvipA clpV-gfp (T6SS−, 

green), only T6SS+ (red) V. cholerae cells round and lyse. 

Movie S4.2. P. aeruginosa T6SS causes morphological changes in T6SS+ V. cholerae 

– higher magnification. This movie contains data that are represented in Figure 4.1. Thirty 

individual 3-min-long time-lapse movies were obtained with a frame rate of 5 s per frame. Movie 

shows 4.5 × 4.5 µm region and plays 50× faster than real time. Movie was scaled up 4× with no 

interpolation. P. aeruginosa ΔretS clpV1-gfp (T6SS+, green) + V. cholerae clpV-mCherry2 
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(T6SS+, red). Segments: 1–10, morphological changes in V. cholerae cells; 11–20, inner-

membrane shrinking (plasmolysis); 21–30, V. cholerae cell lysis. 

Movie S4.3. T6SS dueling depends on PpkA, PppA, and TagT, but not on Tse1-3. 

This movie contains data that are represented in Figures 4.3 and 4.4. Ten individual 3-min-long 

time-lapse movies were obtained with a frame rate of 5 sec per frame. Movie shows 48 × 36 µm 

region and plays 50× faster than real time. Segments: 1–2, P. aeruginosa ΔretS clpV1-gfp, T6SS 

dueling; 3–4, P. aeruginosa ΔretS ΔppkA clpV1-gfp, no T6SS activity; 5–6, P. aeruginosa ΔretS 

ΔpppA clpV1-gfp, increased T6SS activity, decreased proportion of dueling; 7–8, P. aeruginosa 

ΔretS ΔtagT clpV1-gfp, no dueling; 9–10, P. aeruginosa ΔretS Δtse1-3 clpV1-gfp, T6SS dueling. 

 

Materials and Methods 

Bacterial Strains. V. cholerae 2740-80 and P. aeruginosa PAO1 strains used in this 

study were described previously (Basler and Mekalanos, 2012; Basler et al., 2012; Mougous et 

al., 2006). Gentamicin-resistant E. coli MG1655 strain was used for bacterial competition assays. 

A. baylyi ADP1 was obtained from ATCC (33305), and spontaneous streptomycin resistant 

mutant was used as a parental strain. Antibiotic concentrations were streptomycin, 100 µg/ml; 

gentamicin, 15 µg/ml; and irgasan, 20 µg/ml. Luria-Bertani (LB) broth (5 g/l NaCl) was used for 

all growth conditions. Liquid cultures were grown aerobically at 37 C. 

DNA Manipulations. Genes pa1844, pa2702, and pa3484 (tse1, tse2, and tse3) in 

P. aeruginosa were replaced using the pEXG2 suicide plasmid (Rietsch et al., 2005) by in-

frame-deleted genes encoding the following peptides: pa1844, MDSLDQCPRAS; pa2702, 

MSYDGL; and pa3484, MTTFLDPGMRFP. In-frame deletions of pa0073, pa0074, pa0075, and 

pa0083 (tagT1, ppkA, pppA, and vipA1) in P. aeruginosa were described previously or prepared 



 103 

by the same approach (Basler and Mekalanos, 2012; Mougous et al., 2006; Mougous et al., 

2007). Gene pa1845 (tsi1) was cloned in-frame with mcherry2 (separated by DNA linker 

encoding 3Ala-3Gly) to pBAD24 plasmid as described previously (Basler et al., 2012) to allow 

for arabinose-inducible expression of Tsi1-mCherry2 fusion protein in V. cholerae. A. baylyi 

T6SS genes aciad2688 to aciad2694 (including homologs of V. cholerae T6SS genes: gp25-like, 

hcp, vipA, vipB, and clpV) were replaced with KanR cassette from pRSFDuet-1 plasmid 

(Novagen) as described previously (Metzgar et al., 2004). All cloning products were sequence 

verified. Chromosomal mutations were verified by PCR using primers outside of the replaced 

region. 

Fluorescence Microscopy. Procedures similar to procedures described previously 

(Basler and Mekalanos, 2012; Basler et al., 2012) were used to detect fluorescence signal in 

V. cholerae and P. aeruginosa. Overnight cultures of V. cholerae or P. aeruginosa were washed 

by LB and diluted 50–200× into fresh LB and cultivated for 2.5-3.5 hr to optical density (OD) 

∼0.5-1.0. For V. cholerae 2740-80 + pBAD24-Tsi1-mCherry2, expression of Tsi1-mCherry2 in 

V. cholerae was induced by 0.01% arabinose. Cells from 100 µl of the culture were resuspended 

in 5-10 µl of fresh LB (to OD ∼10), mixed as indicated, spotted on a thin pad of 1% agarose in 

0.5x PBS (pH 7.4, Invitrogen), and covered with a glass coverslip. Cells were imaged at 25-30 C 

after 20 to 60 min (for 3 min for detection of morphological changes or dueling) or after 40 to 

90 min (for detection of round cells). Cells close to the edge of the agarose pad were imaged. 

Multiple 30 x 30 µm fields of cells (30-60 for detection of round cells and 10-25 for detection of 

dueling, indicated as n in figures) were analyzed for at least four biological replicates. 

Microscope configuration was described previously (Basler and Mekalanos, 2012) – Nikon Ti-E 

inverted motorized microscope with Perfect Focus System and Plan Apo 100× Oil Ph3 DM (NA 
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1.4) objective lens. SPECTRA X light engine (Lumencore), ET-GFP (Chroma 49002), and ET-

mCherry (Chroma 49008) filter sets were used to excite and filter fluorescence. Photometrics 

CoolSNAP HQ2 camera (pixel size was 60 nm) and NIS Elements 4.0 were used to record 

images. 

Image Analysis. Fiji was used for all image analysis and manipulations (Schindelin et 

al., 2012). The individual fluorescence images from a time series were corrected for 

photobleaching by normalizing the intensity of a region containing mostly cells to the same mean 

intensity. Image contrast was set to clearly show localization of signal within cells and is set to 

the same level when direct comparison between strains is presented. Small movement of whole 

field in time was corrected by registering individual frames using StackReg plugin for Fiji 

(“Rigid Body” transformation). Fiji macro “Temporal-Color Code” was used to visualize 

localization of fluorescent foci in time. Merged image of the phase contrast and fluorescence 

images are presented. 

Bacterial Competition Assay. Cells were prepared as for fluorescence microscopy 

analysis. Cells were mixed at OD ∼10 in 1:1 or 10:1 ratio as specified, and 5 µl of the 

mixture was spotted on a dry LB agar plate. After 2 hr at 37 C, bacterial spots were cut out and 

the cells were resuspended in 1 ml LB. The cellular suspension was serially diluted in LB, and 

5 µl of the suspensions was spotted on selective plates (irgasan for P. aeruginosa, streptomycin 

for V. cholerae and A. baylyi, and gentamicin for E. coli). Colonies were counted after ∼16 hr of 

incubation at 30 C. At least three biological replicates were analyzed. 

Statistics. Student’s t test was used to determine significance between indicated groups 

of numbers.  
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Chapter 5.  Type 6 secretion system-mediated immunity to type 4 secretion system-

mediated gene transfer 

 

Gram-negative bacteria use the type VI secretion system (T6SS) to translocate toxic 

effector proteins into adjacent cells. The Pseudomonas aeruginosa H1-locus T6SS assembles in 

response to exogenous T6SS attack by other bacteria. We found that this lethal T6SS 

counterattack also occurs in response to the mating pair formation (Mpf) system encoded by 

broad-host-range IncPα conjugative plasmid RP4 present in adjacent donor cells. This T6SS 

response was eliminated by disruption of Mpf structural genes but not components required only 

for DNA transfer. Because T6SS activity was also strongly induced by membrane-disrupting 

natural product polymyxin B, we conclude that RP4 induces “donor-directed T6SS attacks” at 

sites corresponding to Mpf-mediated membrane perturbations in recipient P. aeruginosa cells to 

potentially block acquisition of parasitic foreign DNA. 
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Results and Discussion 

Bacteria often exhibit antagonistic behaviors toward each other in microbial communities 

(Hibbing et al., 2010). One molecular mechanism mediating such behavior is the type VI 

secretion system (T6SS) (Pukatzki et al., 2006). The T6SS is a widely conserved (Boyer et al., 

2009) dynamic multicomponent nanomachine structurally related to contractile phage tails 

(Basler et al., 2012; Leiman et al., 2009). Gram-negative bacteria use the T6SS to kill 

prokaryotic and eukaryotic prey cells through contact-dependent delivery of toxic effectors 

(Dong et al., 2013; Hood et al., 2010). In P. aeruginosa, T6SS encoded by the H1-T6SS cluster 

(Mougous et al., 2006) selectively targets T6SS+ bacteria that attack it by sensing these 

exogenous attacks and post-translationally activating its own T6SS at the precise location of the 

initial assaults (Basler et al., 2013; Basler and Mekalanos, 2012). We previously hypothesized 

that the signal triggering the T6SS counterattack was the perturbation of the cell envelope 

(Basler et al., 2013). Thus, we wondered whether other systems capable of breeching the cell 

envelope would trigger a similar T6SS response. One system capable of delivering 

macromolecules across the envelopes of other Gram-negative cells is the type IV secretion 

system (T4SS) (Luo and Isberg, 2004). This secretion system is associated with conjugative 

elements such as the broad-host-range, IncPα plasmid RP4 (Pansegrau et al., 1994) as well as 

virulence elements in several bacterial species (Christie and Vogel, 2000). T4SS-mediated DNA 

conjugation involves three sets of proteins: (i) the core structure and pilus components 

comprising the mating pair formation (Mpf) complex, (ii) the relaxosome complex, which 

initiates DNA transfer by binding to and nicking the origin of transfer, and (iii) a coupling 

protein that bridges the relaxosome and Mpf complexes (Schroder and Lanka, 2005). During 

conjugation, the pilus extends from donor cells to mediate close cell-cell contact with recipients, 
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which allows transfer of the DNA-bound relaxosome components to occur (Schroder and Lanka, 

2005).  

If T4SS-mediated cell-cell interactions could trigger T6SS attack, donor cells of a 

heterologous conjugation-proficient T6SS– species should be sensitive to killing by T6SS+ 

P. aeruginosa. Therefore, we determined whether carrying the RP4 plasmid affected survival of 

E. coli K12 strain MC1061 when grown in competition with P. aeruginosa. For consistency with 

previous studies (Basler et al., 2013; Basler and Mekalanos, 2012), a retS mutant with a 

transcriptionally up-regulated H1-T6SS locus was used. When mixed with P. aeruginosa, we 

recovered ~96% fewer viable E. coli cells carrying RP4 as compared with those lacking it 

(Figure 5.1A). This difference was not observed for P. aeruginosa mutants that were T6SS– 

(vipA) but was still observed in a triple mutant lacking the three known P. aeruginosa T6SS 

effectors Tse1, Tse2, and Tse3 (Figure 5.1A) (Hood et al., 2010). Although a pppA mutant with a 

hyperactive but unregulated T6SS could slightly inhibit E. coli growth, there was no enhanced 

killing of E. coli cells carrying RP4 compared with those without it (Figure 5.1A), and deletion 

of tagT, a gene critical for sensing exogenous T6SS attack (Basler et al., 2013), completely 

abolished E. coli killing (Figure 5.1A). Furthermore, in three-strain mixture containing RP4+ and 

RP4– E. coli with P. aeruginosa, only RP4+ E. coli were killed (Figure 5.1B). Thus, T6SS-

dependent killing of RP4+ E. coli involves the same attack-sensing mechanism implicated in the 

T6SS counterattack responses (Basler et al., 2013). 

We next determined the genetic requirements for the RP4-dependent induction of the 

P. aeruginosa T6SS donor-directed attack. RP4 was subjected to transposon mutagenesis and 

transformed into E. coli strain MC1061. Individual mutants were sequenced to determine 

transposon insertion sites (Figure 5.1C). Conjugation efficiency into recipient E. coli strain 
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MG1655 was then determined for each of these RP4 mutants, and T6SS activation efficiency 

was calculated from the survival rate of MC1061 E. coli with these mutant plasmids grown in 

competition with T6SS+ P. aeruginosa (Table 5.1). Plotting the data for each mutant revealed 

several different phenotype clusters (Figure 5.1D). Mutants in cluster 1 maintained wild-type 

Figure 5.1 Mpf induces a donor-directed T6SS attack in P. aeruginosa. (A) Summary of 
competition assays between either MC1061 (gray) or MC1061 RP4 (black) and the indicated 
strains of P. aeruginosa. Reported are the numbers of colony forming units (CFU) of surviving 
E. coli. Data are mean ± SD with n = 4 to 8 independent replicates. (B) Summary of 3-strain 
competitions between MC1061, MC1061 RP4 ∆traG (Tra–, but Mpf+), and P. aeruginosa. 
Surviving CFUs of each E. coli strain determined by plating on media selective for each strain. 
n = 6 independent replicates. (C) Map of the RP4 plasmid indicating positions of transposon 
insertions. Labels with two genes separated by a slash (for example, traE/traF) represent 
insertions into the intergenic region between the two genes. (D) Plot of T6SS activation 
efficiency versus conjugation efficiency for each transposon mutant. See text and Table 5.1 for 
details on the indicated clusters. Efficiencies are scaled so that values for wild-type RP4 are 
100% and the RP4– parent strain are 0%. The cyan dot represents wild-type RP4. The lower 
limit of detection for our assay was ~200 conjugants; mutants for which the conjugation 
efficiency was below this number are reported as 0% in the graph. 
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Table 5.1 Conjugation and T6SS activation efficiency for tested RP4 transposon mutants. 
Cluster 1 Ins. Site a Conj eff. (N) b T6SS act. (N) c p-val vs. WT d p-val vs. NP e 
RP4 WT n/a 7.72 ± 0.12 (2) 6.34 ± 0.33 (8) n/a 5.85 x 10-7 
trbK 27628 7.53 ± 0.08 (4) 6.51 ± 0.66 (5) 6.07 x 10-1 1.27 x 10-2 
parE/istA 36229 7.66 ± 0.18 (3) 6.31 ± 0.20 (3) 8.63 x 10-1 1.39 x 10-3 
traC2-2 40455 7.75 ± 0.19 (3) 6.75 ± 0.23 (3) 6.21 x 10-2 6.85 x 10-3 
kfrA 55596 7.57 ± 0.43 (3) 6.15 ± 0.44 (4) 4.94 x 10-1 3.62 x 10-3 
            
Cluster 2 Ins. Site a Conj eff. (N) b T6SS act. (N) c p-val vs. WT d p-val vs. NP e 
trbB-1 18852 < 2.30 (3) 7.76 ± 0.39 (4) 1.18 x 10-3 9.75 x 10-1 
trbB-2 19196 < 2.30 (3) 7.84 ± 0.32 (3) 2.95 x 10-3 6.94 x 10-1 
trbE 21496 < 2.30 (3) 7.76 ± 0.29 (3) 1.80 x 10-3 9.59 x 10-1 
trbF 23232 < 2.30 (3) 7.91 ± 0.35 (4) 3.86 x 10-4 4.53 x 10-1 
trbG 24755 < 2.30 (3) 7.68 ± 0.39 (4) 1.57 x 10-3 7.32 x 10-1 
trbI-1 25418 < 2.30 (3) 7.83 ± 0.38 (3) 7.76 x 10-3 7.68 x 10-1 
trbI-2 26307 < 2.30 (3) 7.53 ± 0.25 (3) 1.40 x 10-3 2.47 x 10-1 
traE/traF 46057 < 2.30 (3) 7.62 ± 0.34 (4) 8.14 x 10-4 5.10 x 10-1 
traF 46198 < 2.30 (3) 7.70 ± 0.29 (3) 2.29 x 10-3 7.80 x 10-1 
No Plasmid n/a n/a 7.75 ± 0.16 (7) 5.85 x 10-7 n/a 
            
Outliers Ins. Site a Conj eff. (N) b T6SS act. (N) c p-val vs. WT d p-val vs. NP e 
trbH 25212 3.98 ± 0.23 (3) 7.72 ± 0.22 (3) 2.41 x 10-4 8.47 x 10-1 
trbN 30035 7.69 ± 0.12 (4) 7.22 ± 0.15 (4) 8.15 x 10-5 8.90 x 10-4 
            
Cluster 3 Ins. Site a Conj eff. (N) b T6SS act. (N) c p-val vs. WT d p-val vs. NP e 
klcB 4840 7.77 ± 0.07 (3) 5.59 ± 0.18 (3) 2.23 x 10-3 1.80 x 10-4 
trbC 20101 7.70 ± 0.15 (3) 5.32 ± 0.67 (4) 4.92 x 10-2 4.53 x 10-3 
trbJ 27022 7.72 ± 0.14 (5) 4.60 ± 0.43 (5) 1.18 x 10-4 2.66 x 10-5 
trbP 30956 7.84 ± 0.15 (5) 4.68 ± 0.56 (6) 2.47 x 10-4 1.88 x 10-5 
fiwA 32160 7.64 ± 0.18 (3) 5.43 ± 0.16 (3) 3.78 x 10-4 5.15 x 10-5 
parA 34130 7.66 ± 0.17 (5) 4.91 ± 0.66 (5) 5.66 x 10-3 4.77 x 10-4 
istB 37891 7.62 ± 0.14 (4) 4.80 ± 0.56 (4) 6.76 x 10-3 1.30 x 10-3 
traA 39820 7.81 ± 0.29 (3) 5.37 ± 0.12 (3) 5.70 x 10-5 1.05 x 10-6 
traC2-1 40725 7.34 ± 0.29 (3) 4.98 ± 0.28 (3) 2.06 x 10-3 1.24 x 10-3 
traC1 43045 7.43 ± 0.21 (5) 4.66 ± 0.68 (5) 3.12 x 10-3 3.74 x 10-4 
traE-2 43952 7.78 ± 0.27 (3) 5.67 ± 0.24 (3) 1.37 x 10-2 1.16 x 10-3 
traE-1 44529 7.67 ± 0.23 (3) 5.56 ± 0.26 (3) 1.05 x 10-2 1.47 x 10-3 
            
Cluster 4 Ins. Site a Conj eff. (N) b T6SS act. (N) c p-val vs. WT d p-val vs. NP e 
traG 47386 < 2.30 (4) 4.86 ± 0.54 (8) 2.80 x 10-5 3.00 x 10-7 
traI-2 49596 2.72 ± 0.32 (5) 5.53 ± 0.68 (6) 3.23 x 10-2 3.65 x 10-4 
traI-1 50448 < 2.30 (3) 5.31 ± 0.17 (3) 1.83 x 10-4 4.90 x 10-5 
traJ 50755 5.85 ± 0.10 (5) 5.23 ± 0.69 (6) 9.24 x 10-3 2.10 x 10-4 

a Insertion site is given using NC_001621 as the reference sequence. 
b Conjugation efficiency (Conj eff.) is the average number of CFU of successful conjugants from an MC1061 
donor into an MG1655 recipient during standard mating assays ±SD. Number of independent replicates (N) is 
indicated in parentheses. 
c T6SS activation efficiency (T6SS act.) is the number of surviving CFU of MC1061 carrying the indicated RP4 
mutant after competition with P. aeruginosa +/- SD. Number of independent replicates (N) is indicated in 
parentheses. 
d Significance of the T6SS activation calculated relative to the wild-type plasmid. 
e Significance of the T6SS activation calculated relative to the parent strain (NP = No Plasmid). 
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levels of conjugation efficiency and induced T6SS killing at levels comparable with the wild-

type plasmid. Most of these mutants were insertions in genes outside of the tra1 or tra2 loci, the 

exceptions being a disruption in the RP4 entry exclusion factor trbK (Giebelhaus et al., 1996), 

and a disruption of traE, a topoisomerase III homolog (Li et al., 1997). Neither of these genes is 

required for the Mpf system or DNA transfer (Table 5.1) (Haase et al., 1995). Mutants in cluster 

2 were completely defective in their ability to transfer DNA and did not induce the T6SS donor-

directed killing response in P. aeruginosa. All of these insertions disrupted genes encoding Mpf 

structural components (Table 5.1). There were two outliers not quite in Cluster 1 or 2 that were 

still able to transfer DNA, but did not induce a T6SS response (Table 5.1): insertions in trbH, a 

lipoprotein believed to connect the pilus to the core complex (Schroder and Lanka, 2005); and 

trbN, a periplasmic transglycosylase that remodels the donor peptidoglycan and is required for 

pilus synthesis (Schroder and Lanka, 2005). Similar transposon disruptions of homologs of trbH 

(Fernandez et al., 1996) and trbN (Bayer et al., 1995) in heterologous T4SSs affect the formation 

and stability of the Mpf pili. Mutants in cluster 3 induced a greater donor-directed T6SS response 

than that of wild-type RP4 but were defective in DNA conjugation (Figure 5.2B). These mutants 

included disruptions of relaxosome components traI and traJ as well as coupling protein traG 

(Table 5.1). Like those in cluster 3, mutants in cluster 4 also induced more T6SS killing than did 

the wild type but exhibited no defect in conjugation. Although it remains unclear why cluster-3 

and -4 mutants induce more efficient T6SS-mediated killing, it is clear that successful DNA 

transfer is not required to trigger a T6SS attack by P. aeruginosa. We next determined whether 

other conjugative plasmids were also able to induce donor-directed T6SS attack. IncN 

compatibility group plasmid pKM101 (Langer et al., 1981) induced a T6SS attack comparable 

with that of RP4 (Figure 5.2A), whereas E. coli carrying the sex factor F plasmid was unaffected 
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by T6SS+ P. aeruginosa (Figure 5.2B). It is not known why the E. coli F factor cannot be 

successfully transferred into P. aeruginosa (Zhong et al., 2005), but this observation suggests 

that T6SS activation correlates to some degree with whether the host range of a given plasmid 

includes P. aeruginosa.  

If the P. aeruginosa donor-directed T6SS attack could be triggered by the Mpf system of 

donor species, then this attack might suppress plasmid transfer into a population of T6SS+ 

P. aeruginosa cells. Accordingly, we measured the frequency with which the plasmid pPSV35 

(Rietsch et al., 2005) could be transferred into T6SS+ or T6SS- P. aeruginosa from the E. coli 

donor strain SM10 (Simon et al., 1983), which carries a chromosomally-integrated RP4 plasmid. 

Because pPSV35 does not encode its own transfer machinery but can be mobilized by the SM10 

encoded conjugation system (Rietsch et al., 2005), the frequency with which P. aeruginosa cells 

acquired pPSV35 reflects the efficiency at which this plasmid is transferred into but not between 

P. aeruginosa cells. When donor E. coli and recipient P. aeruginosa were mixed at a 1:1 ratio, 

Figure 5.2 IncN but not IncF induces donor-directed T6SS attacks. (A and B) Summary of 
E. coli survival after competition with T6SS+ (black bars) or T6SS– (gray bars) P. aeruginosa. 
Data are mean ± SD, n = 3 independent replicates. (A) Competition assays between 
P. aeruginosa and E. coli MG1655 carrying no plasmid, RP4, or pKM101. pKM101 confers 
streptomycin resistance so MG1655 rather than MC1061 was used. (B) Competition assays 
between P. aeruginosa PAO1 and E. coli MC1061 carrying no plasmid, RP4, RP4 hyper-
inducer Tra- Mpf+ mutant (∆traG), or F´. F´ was confirmed to be functional by successfully 
mating into several different E. coli strains. 
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we observed an ~86% decrease in conjugation efficiency into a T6SS+ strain as compared with 

its isogenic T6SS– vipA mutant (Figure 5.3A). This reduction in transfer efficiency did not match 

the observed magnitude of killing of RP4+ MC1061 (Figure 5.1A) probably because of intrinsic 

differences in the ability of various donor strains to promote Mpf and T6SS activation with 

P. aeruginosa, which is similar to what we observed in our RP4 mutant analysis (Figure 5.1D). 

P. aeruginosa mutants defective in the attack-sensing pathway genes tagT and pppA (Basler et 

al., 2013), also exhibited greater conjugation efficiency as recipient strains (Figure 5.3A). 

Examination of mixtures of T6SS+ P. aeruginosa and E. coli RP4+ donor cells by means of 

fluorescence microscopy revealed rounding and blebbing of E. coli cells – a response that is 

typical of T6SS-mediated bacterial killing (Figure 5.3B). Thus inhibition of the conjugative 

transfer of pPSV35 was likely due to killing of E. coli cells through a donor-directed T6SS attack 

by P. aeruginosa. 

The fact that multiple secretion systems can induce a T6SS counterattack suggested that 

Figure 5.3 Donor-directed T6SS attack blocks heterologous transfer of DNA. (A) The 
conjugation efficiency into different P. aeruginosa mutants. Data are mean ± SD, n = 7 
independent replicates. (B) Representative field of cells containing a mixture of P. aeruginosa 
PAO1 ∆retS clpV1-gfp (green) and E. coli S17-1 RP4+ donor cells (non-fluorescent). E. coli 
cells exhibit cell rounding characteristic of T6SS-mediated killing (arrows). Larger 
magnification of rounding cells are shown in the insets. 
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the signal initiating this response really is a generalized disruption of the P. aeruginosa 

membrane. Accordingly, we asked whether polymyxin B, an antibiotic known to disrupt Gram-

negative bacterial membranes by binding the lipid A component of lipopolysaccharides (Hankins 

et al., 2012; McPhee et al., 2003; Morrison and Jacobs, 1976), could induce T6SS activity in 

P. aeruginosa. We used a P. aeruginosa strain carrying a ClpV1-GFP and fluorescent time-lapse 

microscopy to monitor T6SS organelle formation and dynamics (Basler et al., 2013; Basler and 

Mekalanos, 2012) after exposure to polymyxin B. Cells exhibited a sixfold increase in the 

average number of visible ClpV1-GFP foci per cell within 90 seconds of being spotted onto agar 

pads containing 20 µg/mL of polymyxin B (Figure 5.4A, C and Movie S5.1). After this increase 

Figure 5.4 Activation of T6SS organelle formation in response to polymyxin B treatment 
requires TagT. (A) Wild type (WT) or tagT mutant (∆tagT) P. aeruginosa cells were imaged 
every 10 seconds starting immediately after being spotted onto agar pads containing 0 µg/mL 
[untreated (UT)] or 20 µg/mL polymyxin B (PB). Total number of ClpV1-GFP foci was 
divided by the number of cells for each field of cells to determine the average number of foci 
per cell. Each curve represents the mean of 12 to16 fields with 250 to 600 cells in each field 
± SD. (B) Color scale used to temporal-color code ClpV1-GFP signal. (C-F) ClpV1-GFP 
localization was followed for 5 minutes and temporally color-coded. (C) WT, PB. (D) WT, 
UT. (E) ∆tagT PB (F) ∆tagT UT. 
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in T6SS activity, most ClpV1-GFP foci disappeared over the next 3 minutes with the remaining 

foci becoming non-dynamic (Figure 5.4A, Movie S5.1). The loss of dynamics likely reflects 

consumption of intracellular adenosine 5’-triphophate pools after prolonged exposure to 

polymyxin B intoxication. This increase in T6SS activity was not observed when cells were 

spotted onto agar pads lacking polymyxin B (Figure 5.4A, D and Movie S5.1). Additionally, this 

increase in ClpV1-GFP foci was not observed in tagT mutants even in the presence of polymyxin 

B (Figure 5.4A, E, F and Movie S5.2), suggesting that the same attack-sensing pathway that 

senses T4SS and T6SS attacks is responding to this antibiotic and mediates activation of the 

T6SS. 

These studies support a model in which the donor-directed T6SS attack response in 

P. aeruginosa likely involves detection of perturbations in the cell envelope caused by the 

invasive components of the T4SS conjugation machinery. T6SS may represent a type of bacterial 

“innate immune system” that can detect and attack invading infectious elements not by 

recognizing their molecular patterns [such as nucleic acid sequences, as do the clustered 

regularly interspaced short palindromic repeat (CRISPR) elements (Barrangou et al., 2007; 

Horvath and Barrangou, 2010), or unmethylated DNA as do restriction enzymes (Naito et al., 

1995)] but rather by recognizing “transfer associated patterns” (TAPs), including membrane 

disruptions that occur during interactions with other cells deploying T6SS and T4SS 

translocation machines. Broad-host-range conjugative elements represent infectious bacterial 

“diseases” that can cause metabolic stress on their newly acquired hosts and thus represent a 

fitness burden to bacterial populations unable to combat their acquisition. The donor-directed 

T6SS attack paradigm may represent a strategy for suppressing the movement of horizontally 
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transferred genetic elements in bacterial populations regardless of their signature molecular 

patterns (such as nucleic acid chemical structures or primary sequences). 

 

Description of Supplemental Movies 

Movie S5.1 Polymyxin B induces a burst of T6SS activity in P. aeruginosa. Segments 

1-3: Three concatenated time-lapse videos of P. aeruginosa PAO1 retS ClpV1-GFP growing on 

PBS agar pads containing 20 µg/mL polymyxin B. Cells exhibit a spike in T6SS activity 

frequently with multiple T6SS apparatuses per cell followed a gradual elimination of ClpV1-

GFP dynamics. Segments 4-6: Three concatenated time-lapse videos of P. aeruginosa PAO1 

retS ClpV1-GFP in the absence of polymyxin B. Cells exhibit constant levels of T6SS activity 

with the characteristic ‘T6SS dueling’ activity (Basler and Mekalanos, 2012). 

Movie S5.2 Deletion of tagT eliminates the polymyxin B response. Segments 1-3: 

Three concatenated time-lapse videos of P. aeruginosa PAO1 retS tagT ClpV1-GFP growing on 

PBS agar pads containing 20 µg/mL polymyxin B. Cells exhibit a low, basal level of T6SS 

activity that is not significantly different from the cells grown in the absence of polymyxin B 

treatment. Segments 4-6: Three concatenated time-lapse videos of P. aeruginosa PAO1 retS tagT 

ClpV1-GFP in the absence of polymyxin B. Cells exhibit a low, basal level of T6SS activity. 

Note the absence of ‘T6SS dueling’ activity characteristic of this mutant (Basler et al., 2013). 

 

Materials and Methods 

Bacterial Strains. P. aeruginosa PAO1 and gentamicin-resistant E. coli MG1655 strains 

used in this study were described previously (Basler et al., 2013), and E. coli MC1061 

(Casadaban and Cohen, 1980), SM10 and S17-1 (Simon et al., 1983) were obtained from our 
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laboratory’s collection. F’ plasmid was obtained from E. coli K12 ER2267 (New England 

Biolabs). pKM101 was obtained from E. coli K12 strain DSM-9497 (Leibniz-Institute DSMZ). 

Antibiotic concentrations were streptomycin, 100 µg/mL; gentamicin, 15 µg/mL; and irgasan, 20 

µg/mL, kanamycin, 50 µg/mL, chloramphenicol, 15 µg/mL. Luria-Bertani (LB) broth (5 g/L 

NaCl) was used for all growth conditions. Liquid cultures were grown aerobically at 37 C.  

Competition assay. Procedures were as previously described (Basler et al., 2013). 

Overnight cultures of E. coli or P. aeruginosa were washed with LB and diluted 50–200x in 

fresh LB and cultivated for 2.5–3.5 hr to optical density (OD) ~0.5–1.0. Cells were pelleted by 

centrifugation at 10,000xg for 3 min and resuspended at OD of ~10. Cell suspensions were then 

mixed at 1:1 ratio and 5 µL were spotted onto a dry LB agar plate. After 2 hr at 37 C, the spots 

were cut out, and the cells were resuspended in 1 mL LB. Serial dilutions of the resuspended 

cells were then spotted onto selective plates. T6SS activation efficiency defined as the Log10 of 

surviving colony forming units (CFU) of a given prey strain. 

Transposon Mutagenesis. In vitro transposon mutagenesis EZ-Tn5 Custom 

Transposome Construction Kit (Epicentre) using manufacturer protocols. Briefly, the 

chloramphenicol resistance gene from pBAD33 (Guzman et al., 1995) was cloned into the 

multiple cloning site of pMOD-2. This vector was then linearized and incubated with EZ-Tn5 

transposase and purified RP4 DNA. After heat inactivation of the reaction mixture, it was 

transformed into electro-competent E. coli MC1061 cells. Transposon mutants of RP4 were 

selected for growth on kanamycin and chloramphenicol. Plasmid DNA from individual colonies 

was prepped and sequenced. Transposon map was generated using Geneious software version 

6.1.6 created by Biomatters (available from http://www.geneious.com/). 
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Conjugation efficiency assay. Cells used for determining conjugation efficiency were 

prepared as for the competition assay. Cells were mixed at OD ~10 at 1:1 ratio and 5 µL were 

spotted onto an LB agar plate. These spots were incubated for 1 hr at 37 C, then cut out and 

resuspended in 1 mL LB. Serial dilutions were spotted onto plates selective for the recipient 

strain and the conjugated DNA. The lower limit of detection of conjugation efficiency was ~200 

conjugants per mating. 

Polymyxin-response assay. P. aeruginosa cells were grown aerobically to OD ~ 1.0, 

washed with fresh LB, concentrated to OD ~10, and spotted onto 1% agarose pad (in 0.5x PBS) 

containing polymyxin B at the indicated concentrations. Cells were imaged 10 seconds after 

being spotted onto the agar pad and every 10 seconds thereafter for 5 minutes. ClpV1-GFP 

localization was determined as described previously (Basler and Mekalanos, 2012). Cells and 

ClpV1-GFP spots were counted using ImageJ function “Find Maxima”, accuracy of counting 

was confirmed visually and function parameters adjusted accordingly for individual images. 

Statistics. Student’s t test was used to determine significance between indicated groups 

of numbers. 



Chapter 6.  Retrospective 

 

In this chapter, I recount the major conclusions and insights of the work presented in this 

dissertation and assess their impact on the field as a whole. I also outline key unanswered 

questions representing potential areas for future study. 
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When my graduate studies began, the type 6 secretion system (T6SS) was still a complete 

mystery. Little was known about its genetic composition, the mechanism by which its substrates 

are secreted, what signals controlled its action, or what role it might play in polymicrobial 

communities. Over the course of this dissertation, I have recounted four different studies 

undertaken that have significantly advanced our understanding of the T6SS in each of these 

areas. 

The first study involved systematically knocking out every gene in the Vibrio cholerae 

T6SS gene locus to determine each of their contributions to T6SS function (Zheng et al., 2011). 

This study was groundbreaking on a number of fronts. It was the first report of biological 

evidence for ClpV being dispensable for T6SS activity. This insight along with phenomenal 

biochemical work done by the Mogk laboratory (Bonemann et al., 2009; Pietrosiuk et al., 2011) 

revealed that ClpV did not translocate effectors down an intercellular tube, but rather ClpV 

remodels T6SS sheath subunits allowing for efficient turnover of T6SS compenents. This work 

also made a novel observation regarding the T6SS spike assembly. The T6SS in V. cholerae 

absolutely required one of the VgrG protein (VgrG-2) along with at least one of the other two 

VgrG proteins (VgrG-1 or VgrG-3). This observation was the first evidence suggesting that 

hetero-trimeric VgrG complexes not only could form but are actually required for T6SS activity. 

A third important observation made in this work was that the genes downstream of VgrG-1 and 

VgrG-2 appeared to be effector proteins. Later work from the Pukatzki laboratory (Miyata et al., 

2011) and the Mekalanos laboratory (Dong et al., 2013) would confirm that these genes encode 

T6SS effector proteins and their cognate immunitiy proteins. 

For all the advances that this first study made, it was not without its shortcomings. One of 

the genes encoded by the V. cholerae T6SS, VCA0105, seemed to not play a role in T6SS as its 
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deletion did not significantly affect T6SS activity. However, as was demonstrated in the second 

study presented in this dissertation, this protein actually plays a central role in T6SS assembly 

and effector delivery. The source of this discrepancy was a second copy of this gene located 

almost 200 kb away from the T6SS gene cluster. Deletion of both copies of this protein resulted 

in a substantial T6SS defect. 

Through collaboration with the Leiman laboratory, a high-resolution crystal structure of 

this protein was obtained (Shneider et al., 2013). This crystal structure along with some 

biochemical analysis revealed that these PAAR-motif containing proteins served as a sharp 

conical tip for the VgrG trimer and are secreted along with the T6SS tube/spike complex. I 

preformed further bioinformatic analysis to find that many of these proteins carried N- or C-

terminal extensions with identifiable enzymatic activities. These observations opened the door 

for the identification of a whole new class off T6SS effectors while also providing mechanistic 

insight into how they are secreted and translocated into target cells. Interestingly, while our 

manuscript was under review for publication, the Hayes laboratory independently discovered one 

of these PAAR-motif containing effectors in Dickeya dadantii (Koskiniemi et al., 2013). They 

were able to show that this Rhs and nuclease domain-containing protein was delivered into target 

cells in a T6SS-dependent manner, which served as a fitting biological confirmation of our 

bioinformatic and structure-based predictions. 

The third study presented in this dissertation was a direct result of a brilliant insight made 

by a postdoc in the Mekalanos laboratory, Dr. Marek Basler. Dr. Basler, unlike others before 

him, not only collected static images to determine localization of subcellular bacterial structures 

but also observed how these structures changed over time by using time-lapse video-microscopy 

(Basler et al., 2012). It was through his videos that he discovered T6SS counterattacks between 
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Pseudomonas aeruginosa sister cells – a phenomenon he named “T6SS dueling” (Basler and 

Mekalanos, 2012). Based on these initial observations we worked together to characterize the 

T6SS-dependent killing activity associated with counterattacks toward heterologous species. In 

the years preceding this study, members of the Mougous and Attree laboratories had identified 

the components of a threonine phosphorylation pathway that post-translationally regulated the 

T6SS in P. aeruginosa (Casabona et al., 2012; Hsu et al., 2009; Mougous et al., 2007). We were 

able to demonstrate that this pathway was responsible for sensing exogenous T6SS assault and 

positioning the assembly and firing of the T6SS counterattack. Perhaps the most critical 

observation, however, was that these counterattacks were precisely aimed and caused no 

collateral damage to other neighboring cells, revealing a whole new degree of complexity in the 

interactions with microbial populations. For the first time, bacteria were being observed to 

selectively target individuals within a population not based on intrinsic sensitivities but rather 

based on their manifest behaviors. 

Having observed this T6SS counterattack response in P. aeruginosa in response to its 

own T6SS as well as V. cholerae T6SS and Acinetobacter baylyi T6SS and having learned about 

a similar counterattack response to Burkholderia thailandensis T6SS (Leroux et al., 2012), it 

seemed increasingly unlikely that P. aeruginosa counterattacks were responding to any particular 

effector. Given the significant structural and mechanistic similarity to T6SS, members of our 

laboratory, including a very eager Professor Mekalanos, made a few attempts at observing 

whether bacteriophage might be able to induce P. aeruginosa T6SS activity as well. They, 

however, were met with little success. Despite these negative results, I wondered whether other 

forms of bacterial “poking” such as those associated with type 4 secretion system pili might 

transmit similar mechanical signals as the T6SS. Testing this idea was actually quite simple: mix 
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a conjugative donor strain with a T6SS+ P. aeruginosa and observe under the microscope 

whether they round up and lyse. Taking these initial observations further, I was able to 

genetically determine that the type 4 secretion system structural components but not components 

only needed for DNA transfer itself were responsible for inducing T6SS counterattacks. That 

DNA transfer is not required is actually very important from a mechanistic perspective as it 

suggests that T6SS counterattacks might occur before DNA transfer is able to occur, because if it 

does, the T6SS would be able function as a form of bacterial innate immunity against the 

acquisition of foreign DNA elements. Amazingly, there was a roughly 86% decrease in DNA 

conjugation into T6SS+ P. aeruginosa relative to a T6SS– mutant. Furthermore, the mechanical 

nature of the triggering signal means that this defense cannot simply be overcome by modifying 

or mutating the DNA molecule conferring both general applicability and robustness not observed 

in other foreign DNA resistance mechanisms like the clustered regularly interspaced short 

palindromic repeat (CRISPR) elements (Barrangou et al., 2007; Horvath and Barrangou, 2010) 

or restriction modification (RN) systems (Naito et al., 1995). 

Together these last two studies have made significant insights into the mechanism of 

inter-bacterial communication and antagonism and have broad evolutionary and ecological 

implications. Unlike other systems that require specific receptors on target cells such as CDI 

(Aoki et al., 2008; Aoki et al., 2005; Aoki et al., 2009) and pyocins (Michel-Briand and Baysse, 

2002) or that indiscriminately affect all nearby cells such as antibiotic production (Chater et al., 

2010) or pH modulation (Yoon and Mekalanos, 2006), the T6SS enables P. aeruginosa to 

specifically eliminate threats while maintaining peaceful coexistence with other non-threatening 

bacteria. As such, it is unsurprising that Pseudomonas species are so widely recognized for their 
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ability to form multispecies biofilms (Dowd et al., 2008; Elias and Banin, 2012; Ha et al., 2012; 

Tashiro et al., 2013). 

Despite the extensive progress and development of the T6SS field, there remain a number 

of outstanding unanswered questions. For example, three of the essential T6SS components 

identified in my systematic knockout analysis, namely TssF, TssG and TssA, still have no known 

structure or function. Furthermore, despite having crystal structures for the T6SS tube/spike 

complex components Hcp, VgrG, and the PAAR-motif proteins, we still do not know how they 

are assembled together in the context of a functional apparatus. We also do not know how 

effectors or effector extension domains fit into the assembled structure. In addition to these open 

questions regarding T6SS structure and assembly, we also still do not understand the role of the 

T6SS counterattack response outside of the laboratory setting. Given the generality of the 

mechanism by which the T6SS can be activated it is conceivable that host-derived signals (e.g. 

defensins, perforins, complement, etc.) might also induce T6SS responses. Furthermore, it is still 

unclear what role the antibacterial activity of T6SS might play in the context of the host 

microbiome. It is certainly conceivable that the T6SS might be able to modulate the resident 

microbiota by selectively killing certain bacterial species. Further investigation of the T6SS in 

the context of complex microbial communities is sure to yield exciting new insights into the 

study of microbial ecology both in the environment and within eukaryotic hosts. 
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