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ABSTRACT

We investigate the shape of the extinction law in two 1◦ square fields of the Perseus
Molecular Cloud complex. We combine deep red-optical (r, i, and z-band) obser-
vations obtained using Megacam on the MMT with UKIDSS near-infrared (J , H ,
and K-band) data to measure the colours of background stars. We develop a new
hierarchical Bayesian statistical model, including measurement error, intrinsic colour
variation, spectral type, and dust reddening, to simultaneously infer parameters for in-
dividual stars and characteristics of the population. We implement an efficient MCMC
algorithm utilising generalised Gibbs sampling to compute coherent probabilistic in-
ferences. We find a strong correlation between the extinction (AV ) and the slope of
the extinction law (parameterized by RV ). Because the majority of the extinction to-
ward our stars comes from the Perseus molecular cloud, we interpret this correlation
as evidence of grain growth at moderate optical depths. The extinction law changes
from the “diffuse” value of RV ∼ 3 to the “dense cloud” value of RV ∼ 5 as the column
density rises from AV = 2 mags to AV = 10 mags. This relationship is similar for the
two regions in our study, despite their different physical conditions, suggesting that
dust grain growth is a fairly universal process.

Key words: ISM: dust, extinction – ISM: clouds – methods: statistical

1 INTRODUCTION

Interstellar dust affects virtually all astronomical observa-
tions, yet remains poorly understood. A full prescriptive
theory which quantitatively explains the production, de-
struction and steady state conditions of interstellar dust
does not exist although various simple models (e.g. Inoue
2011) have been proposed. In particular, the specific min-
erals, the shape (or structure), mass/size distribution, and
total amount of interstellar dust cannot generally be pro-
duced from first principles. Much progress, though, has
been made toward a descriptive theory. A basic model
with separate power-law size distributions of bare graphite
and silicate grains was shown to adequately reproduce

⋆ E-mail: jonathan.b.foster@yale.edu
† E-mail: k.mandel@imperial.ac.uk

most of the observational evidence by Draine & Lee (1984).
Weingartner & Draine (2001) updated the model to in-
clude very small grains—polycyclic aromatic hydrocarbons
(PAHs)—which are necessary both to reproduce observed
mid-infrared spectral features and to explain the transiently
heated grains identified by Sellgren (1984). Although the
Weingartner & Draine (2001) model is relatively simplis-
tic (the model uses spheroidal grains although grains are
probably “fluffy” and fractal) and slightly ad hoc (the sil-
icate is “astronomical amorphous silicate” with a few lab-
measured spectral features modified to accommodate the
observations), this model has proven to be quite robust and
is still widely used to interpret the extinction and emission
features of dust from the X-ray through the mid-infrared
(see Draine 2003, for a review of this model’s successes and
shortcomings).

Another nice feature of the Weingartner & Draine
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2 J. Foster, K. Mandel et al.

(2001) model is that it directly relates an observational pa-
rameter to an underlying physical change. In particular, the
highly influential work of Cardelli et al. (1989) (CCM) found
that different extinction curves towards different lines of
sight could all be adequately fit by a one-parameter fam-
ily of curves:

Aλ = AV (aλ + bλR
−1

V ) (1)

where RV does double-duty as both the slope of the extinc-
tion law at V band relating the colour excess E(B − V ) to
the extinction AV

RV =
AV

E(B − V )
(2)

and as the parameter distinguishing different extinction
laws. The coefficients aλ and bλ are high-order polyno-
mial functions of wavelength in the optical, but simple
power laws (with index ∼ 1.61) in the near-infrared (see
also Mathis 1990; Rieke & Lebofsky 1985). The model of
Weingartner & Draine (2001) explains this result by observ-
ing that as grains grow in their model the value of RV grows
(in the sense that larger average grain sizes have larger RV )
and the extinction law at other wavelengths changes consis-
tent with the parameterization of CCM. RV = 3.1 is a typi-
cal value for the “diffuse” interstellar medium (ISM). Dust
growth may either be due to the accretion of icy mantles or
from coagulation of fluffy dust grains. Thus, a connection is
established between observational changes to the extinction
law and the physical properties of the underlying model.

Inside dense clouds, dust undergoes significant pro-
cessing. The two most important processes are coagulation
(grains sticking together and growing) and mantle-accretion
of volatile elements. Some accretion of a volatile mantle onto
refractory dust grains is presumed to occur in cold dense re-
gions because observations of gas in molecular cores show
severe depletion of several important molecules at high den-
sities. This is particularly true for carbon-bearing species
(see Bergin & Tafalla 2007, and references therein). Indeed,
a theory of grains where bare silicate cores are covered by
carbon-rich mantles can do a fair job of explaining the ISM
dust more generally (Greenberg & Li 1999). Additionally,
the mid-infrared spectra of dense regions often shows fea-
tures which are interpreted as ice mantles of volatiles. At
the same time, coagulation must be important, because the
extinction per hydrogen atom (AV /N(H)) is observed to de-

crease in dense regions. This is interpreted by Mathis (1990)
as requiring the coagulation of grains, which can be thought
of as preventing the interiors of grains from effectively par-
ticipating in extinction. Adding more material to the extin-
guishing dust via depletion without also coagulating would
generally tend to increase the total amount of extinction
per hydrogen atom simply because there is more material
blocking radiation.

Observations of background stars behind a column of
dust provide the best way to directly measure the shape of
the extinction law but the wavelength range must be chosen
with care. Dust exhibits rich spectral features in the mid-
infrared which are normally ascribed to PAHs. The strength
of these features is expected to be a function of the pre-
cise chemical history of a population of dust grains and
the particular radiation environment to which the dust is
currently exposed. These features can also produce emis-

sion which contributes to the mid-infrared fluxes of back-
ground stars observed through a dust cloud, complicating
the use of these wavebands and presumably explaining the
disparate attempts to nail down this portion of the extinc-
tion curve (compare Indebetouw et al. 2005; Flaherty et al.
2007; Chapman et al. 2009). Wavelengths in the blue-optical
or UV are quite sensitive probes of the extinction law, but
it is prohibitively expensive to obtain observations of highly
reddened stars at these wavelengths. The red-optical and
near-infrared is thus the best place to study the question.

A single molecular cloud is a complex hierarchical struc-
ture, with a dense filamentary web and a vast range of phys-
ical environments. The cores that eventually form stars are
often well-modelled as simple Bonner-Ebert spheres (e.g.
Alves et al. 2001; Schnee & Goodman 2005). Within such a
centrally condensed spherical object the observed quantity—
the total column density, which we shall call AV for con-
ventional reasons—can be loosely related to the underlying
physical driver of dust grain growth—the volume density—
in the sense that increasing column density implies increas-
ing volume density. Our chain of inference is thus RV ∝ 〈a〉
∝ n ∝ AV , where n is the volume density and 〈a〉 represents
the average size of dust grains. Outside of a single centrally
condensed object, the connection between column and vol-
ume density will break down. Nonetheless, because struc-
tures in molecular clouds tend to be centrally condensed
this chain of inference may hold, at least for the portions of
the cloud were we are predominantly seeing through a single
structure.

Previous studies of changes in extinction law in molec-
ular clouds have mostly been at large AV (AV > 10 mag-
nitudes). Cambrésy et al. (2011) report a transition in
the extinction law at AV = 20 magnitudes in Spitzer

IRAC bands (3.6, 4.5, and 5.8 µm). Román-Zúñiga et al.
(2007) measured the extinction law at large optical depths
(up to AV of 60 magnitudes) in B59 and found no evi-
dence for variation in the extinction law at these depths;
the favoured extinction law through the entire cloud was
the Weingartner & Draine (2001) model with RV = 5.5.
Cambrésy et al. (2005) report a change in the extinction
properties around AV = 1 magnitude averaged over the
galactic anti-centre hemisphere. This analysis is based on
a comparison against the Schlegel et al. (1998) dust emis-
sion maps maps, so this could also correspond to the regime
where the Schlegel et al. (1998) dust temperature correc-
tion is uncertain (Arce & Goodman 1999). Studies using
other methods have also inferred changes in dust proper-
ties as a function of increasing depth inside a cloud using,
for example, scattered light (e.g. Steinacker et al. 2010) or
changes in the dust emissivity at submillimetre wavelengths
(e.g. Stepnik et al. 2003).

In this study, we combine deep multi-wavelength data
in the red-optical (r, i, z) with near-infrared (J,H,K) data
from the UKIRT Infrared Deep Sky Survey (UKIDSS) for
large sections of the Perseus molecular cloud in order to
test the relationship between RV and AV over the range of
column densities where the diffuse ISM-like matter of the
molecular cloud transitions into the dense-core regime. We
employ a novel hierarchical Bayesian approach to statisti-
cally model multiple sources of uncertainty and coherently
estimate the parameters for individual stars and the popu-
lation. We find strong evidence that there is a global corre-

c© 2012 RAS, MNRAS 000, 1–18



Bayesian Extinction 3

lation in the sense that the extinction law becomes steeper
(RV becomes larger which corresponds to larger dust grains
in the model of Weingartner & Draine (2001)) as AV in-
creases from around 2 magnitudes to about 10 magnitudes
of extinction.

In § 2 we describe the acquisition, reduction, and cal-
ibration of our photometric data. In § 3 we describe our
model to fit the photometric data using an empirical colour
locus and a parameterized extinction law. We describe a tra-
ditional least-squares approach (§ 3.1) as well as a hierarchi-
cal Bayesian model (§ 3.2) to overcome some of the problems
in the least-squares approach. We present the results from
this hierarchical Bayesian model in § 4, and we conclude in
§ 5. We describe the mathematical details of our statistical
model in Appendix A. In Appendix B, we present details of
our MCMC algorithm for computing statistical inferences.

2 DATA

2.1 Megacam Data Acquisition

Our red-optical data were taken during the second halves of
the night on November 2nd and 3rd, 2007 using Megacam
at the 6.5-m MMT on Mt. Hopkins1. We observed two fields
within the Perseus molecular cloud complex; one field was
centred on B5 (R.A., Dec = 56.96◦, +32.84◦; Figure 1) and
the other field was centred on the “West-End” of Perseus
(see Pineda et al. 2008, for the definition of this region),
containing L1448, L1451, and L1455 (R.A., Dec = 51.58◦,
+30.50◦; Figure 2). Individual exposures were 80 seconds in
r, 60 seconds in i and 50 seconds in z. The general pattern
was to observe all of one field each night, so the West-End
(WE) was observed on 11/2/07, while B5 was observed on
11/3/07. However, a few additional WE images were ob-
tained on 11/3/07 at the end of the night.

Science observations were interlaced with images of our
calibration field in order to provide airmass solutions. Our
calibration field was Per-Cal, a portion of the Perseus super-
cluster of galaxies included in the Sloan Digital Survey Ex-
tension for Galactic Understanding and Exploration (SDSS-
SEGUE; Aihara et al. 2011) and centred at R.A., Dec =
(54.9755◦, +41.1533◦). All r-band science images and cali-
bration images were taken first during the night, and were
thus taken between an airmass of 1.0 and 1.06, providing
insufficient lever arm to fit for an airmass correction term.
Total exposure times were 800 seconds in r, 600 seconds in i
and 500 seconds in z. For i and z, data were typically taken
between 1.1 and 2.0 airmass and the observations were in-
terleaved with 5 repetitions of the following pattern: i,z,z,i.
Each field was observed as four different quadrants, with
some overlap between quadrants (see Figures 1 and 2) and
each quadrant was observed contiguously in i and z. Thus,
for an individual quadrant, the r band images were taken
near zenith and then the i and z observations were taken in
an interleaved fashion later in the night.

The weather was generally good but not perfectly pho-
tometric. On 11/02/2007 the seeing was excellent with typi-
cal values of 0.6′′, sometimes improving to 0.4′′. Some cirrus

1 Megacam has since moved to the Magellan Clay telescope at
Las Campanas Observatory

clouds were observed during the first half of the night (be-
fore our data were collected) and were occasionally observed
during the early part of our observing (mostly during cali-
bration images of Per-Cal). On 11/03/2007 the seeing was
relatively poor (0.7 - 1′′). Again, a few clouds were observed
earlier in the night, but then cleared. In B5, the r-band im-
ages for the first quadrant were taken at 45◦ with respect to
north, causing us to have some gaps in our final images and
catalogue (see Figure 1).

2.2 Megacam Data Reduction

Data reduction of the Megacam data followed a largely stan-
dard set of procedures in IRAF (Image Reduction and Anal-
ysis Facility; Tody 1993). Bias and flat frames were made
and used to process the images. Bad pixels were identified
and cosmic rays removed. Significant interference fringing
(where unabsorbed light reflects off the bottom of the CCD
and interferes with incoming radiation) is present in the i
and z images, and the de-fringe program by B. McLeod was
used to remove it. Megacam is made up of 36 individual
CCDs. Because the de-fringing algorithm scales the inten-
sity of the fringe pattern before subtracting it from an in-
dividual CCD, in places where individual bright stars or
strong surface brightness features dominate the background
for an entire individual CCD the fringes are poorly sub-
tracted. Bright stars also cause some “ghosts” or halos on
the final images, where light scatters internally in the tele-
scope optics, and these increased surface brightness causes
additional problems for the de-fringing scaling. Defects from
bright stars and other features can be seen in both Figures 1
& 2.

An illumination correction was also applied, although
this correction was only significant at r. This correction re-
moves most large variations in zero-point from one CCD
chip to the next, but in practice this correction was not suf-
ficient, and we applied a different zero-point for each CCD
in the calibration.

We used swarp (Bertin et al. 2002) to co-add individ-
ual images (weighting was based on measured noise within
the images) to produce Figures 1 & 2, and source detec-
tion was performed on these deep co-added images to use
in cross-referencing the catalogues. Calibrated photometry
was performed on each frame individually (so that the air-
mass and zero-point corrections discussed in the following
section could be applied) and final source magnitudes were
the noise-weighted average of the magnitudes measured in
each frame.

2.3 Megacam Data Calibration

Because we wish to fit a parameterized main sequence in
SDSS colours, it is necessary to place our Megacam pho-
tometry onto the SDSS (r, i, z) system. This process ac-
counts for variations in filter and atmospheric transmission
at different sites, as well as any other optical features of
the telescope which may change the efficiency with which
a flux at a given wavelength is measured. Literature colour
corrections of this type are often based on only a small num-
ber of comparison standard stars, and are thus rather per-
ilous. For example, Carpenter (2001) use roughly 50 stars

c© 2012 RAS, MNRAS 000, 1–18



4 J. Foster, K. Mandel et al.

Figure 1. A three-colour (r, i, z) image of B5 with contours at 3 and 5 mags of AV from a 2MASS-based extinction map (Ridge et al.
2006). Also shown are the four quadrants used in observing. The most energetic young star, B5-IRS1 is visible at the centre with a small
reflection nebula around it. Processing artefacts include the “donut” shaped ghosts around bright stars and streaks from satellites. In the
top-left of the image, green lines show areas not covered by r band due to a mistaken alignment. The bright star in this corner caused
problems for the de-fringing algorithm, resulting in a corrupt image here.

to derive the widely-used transformation equations between
Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006)
and other near-infrared photometric systems. Our calibra-
tion fields contain thousands of stars in the SDSS catalogue
and were taken concurrently with our data, reducing the in-
fluence of variable atmospheric transparency. This provides
us with a robust way to calculate these transformations.

For each filter, x, we solve for CCD chip-dependent pho-
tometric zero-points (ZPx,j) and chip-independent airmass
(cx) and colour terms (dx) by fitting for

Instr = SDSSr + ZPr,j + dr(SDSSr − SDSSi) (3)

Insti = SDSSi + ZPi,j + ciA+ di(SDSSr − SDSSi) (4)

Instz = SDSSz + ZPz,j + czA+ dz(SDSSr − SDSSi) (5)

where A is the airmass at which a particular image was
taken. Note that because all our r band images were taken

at low airmass, we had no leverage on the airmass term in
this filter and thus do not fit for it. However, since our data
r band images were also taken at the same low airmass,
the lack of this term will not significantly influence our cal-
ibration. We solved for the calibration parameters for each
night separately to account for the different conditions, and
list the resulting fits in Table 1.

The colour terms (dx) proved to be quite significant for
the r and i bands but insignificant for z. We show the re-
sults of applying this calibration to the control field stars for
the second night in Figures 3–5 for r, i, and z respectively.
Figures for the first night of data are similar. We experi-
mented with expanding the colour correction to include a
term proportional to SDSSi − SDSSz but found that this
additional complexity did not significantly reduce the ob-
served scatter around the calibration relation. Plots similar

c© 2012 RAS, MNRAS 000, 1–18
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Figure 2. A three-colour (r, i, z) image of our data from the West-End of Perseus with pink contours at 3 and 5 mags of AV from a
2MASS-based extinction map (Ridge et al. 2006). Also shown are the four quadrants used in observing. The three main clouds, L1448,
L1451, and L1455 are labelled. L1448 and L1455 contain young stars. Visible remaining artefacts include the faint “donut” shaped ghosts
around bright stars, streaks from some satellites or asteroids, and some residual fringing around the “comet” in the lower-centre of the
image where the scaling algorithm failed.

Filter (x) Zero-Points (ZPx,j) Airmass (cx) Colour (dx)

WE
r -1.01 – -1.08 N/A -0.127
i -0.28 – -0.32 0.0104 -0.153

z 0.8 – 0.9 0.073 -0.0089
B5

r -1.0 – -1.1 N/A -0.133
i -0.21 – -0.30 0.033 -0.156
z 0.9 – 1.0 0.093 -0.0067

Table 1. Calibration to SDSS. Colour term is SDSSr - SDSSi for
r, i, z. See Eqns. 3-5 for the definition of these coefficients.

to Figures 3–5 but versus i-z showed that applying the r− i
colour correction corrected this colour as well.

Preliminary results of this analysis were presented by

Foster et al. (2008), combining these Megacam observations
with 2MASS data to infer a relationship between AV and
RV similar to what we report here. The photometric uncer-
tainties of the 2MASS data, however, dominated the error
budget of this prior analysis and motivated us to modify
our analysis to incorporate higher quality NIR photometry
from the UKIDSS survey (see § 2.4). The subsequent im-
provement in our error budget also revealed the presence of
a photometric offset in the fourth quadrant of the B5 Mega-
Cam photometry.

Because the four quadrants for each field overlapped
slightly, we were able to check the reliability of our calibra-
tion by comparing the calibrated magnitudes for stars ap-
pearing in multiple quadrants. The spread in magnitude was
typically consistent with our estimated measurement and
calibration uncertainty. The only exception was the fourth

c© 2012 RAS, MNRAS 000, 1–18
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Figure 3. The effect of colour correction in r band. Left-panel shows (MMT - SDSS) r-band magnitude after solving for zero-point but
before correcting for the colour term. Right-panel shows the same difference after applying our colour term.

Figure 4. The effect of colour correction in i band. Left-panel shows (MMT - SDSS) i-band magnitude after solving for zero-point but
before correcting for the colour term. Right-panel shows the same difference after applying our colour term.

quadrant in B5. For this quadrant, magnitudes were not con-
sistent with the other three quadrants (the other three were
all consistent). We found the median offset in the overlap-
ping stars and offset the magnitudes in the fourth quadrant
by these amounts (∆r = 0.01 mag, ∆i = 0.23 mag, ∆z
= 0.13 mag). Since the i and z magnitudes (which were
observed interleaved together) are most significantly dis-
crepant, it is likely that some of the cirrus observed earlier in
the night was in front of our field during these observations.
We used these offsets with overlapping stars to correct the
magnitudes in this quadrant.

2.4 UKIDSS Data

We obtained UKIDSS Data for our two regions from the
WFCAM Science Archive2. B5 is covered in the Galactic
Clusters Survey (GCS) while most of the West-End is cov-
ered in the Galactic Plane Survey (GPS; Lucas et al. 2008).
We used the following quality cuts in the SQL query as rec-
ommended by Lucas et al. (2008) for high-reliability pho-
tometry:

2 http://surveys.roe.ac.uk/wsa/index.html

c© 2012 RAS, MNRAS 000, 1–18
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Figure 5. The effect of colour correction in z band. Left-panel shows (MMT - SDSS) z-band magnitude after solving for zero-point but
before correcting for the colour term. Right-panel shows the same difference after applying our colour term. Note that the correction was
insignificant for this band.

jAperMag3 > -10 and hAperMag3 > -10 and

k_1AperMag3 > -10 and jAperMag3Err < 0.03

and hAperMag3Err < 0.03 and k_1AperMag3Err < 0.03

and jEll < 0.2 and hEll < 0.2 and k_1Ell < 0.2

and jpperrbits < 256 and hpperrbits < 256 and

k_1pperrbits < 256 and pstar > 0.99 and

sqrt(hXi*hXi + hEta*hEta) < 0.3 and

sqrt(k_1Xi*k_1Xi + k_1Eta*k_1Eta) < 0.3

and mergedClass !=0 and

(PriOrSec=0 or PriOrSec=framesetID)

and cross-matched the Megacam data with the UKIDSS
data for stars within 0.6′′. The UKIDSS survey data is ap-
proximately on the 2MASS colour system, although the fil-
ters and system responses are slightly different. We discuss
the influence this may have on our results in Section 3.4.
The UKIDSS data is preferable to the 2MASS data because
the uncertainties on 2MASS colours for our stellar sample
are many times larger than the uncertainties on our Mega-
cam data and so 2MASS errors would dominate the errors
in our analysis.

3 FITTING PROCEDURES

3.1 Least-Squares Fitting Approach

The traditional least-squares method for determining cor-
relation between AV and RV involves first deriving best-fit
estimates for each star’s AV and RV and then testing these
best-fit values for correlation with another least-squares pro-
cedure.

We formalise the details of our fitting procedure as fol-
lows. Our input data are five observed colours On derived
from 6 photometric bands and their associated errors σOn

.
Our set of colours (On) is (r− i,i− z,z − J ,J −H , H −K).

Our model relies on an empirically-derived, fifth-order poly-
nomial parameterization of the intrinsic colours of the stellar
locus, Cn:

Cn =

5
∑

k=0

Dk,nx
k (6)

where the parameters, Dk,n defining each locus come from
Covey et al. (2007), and are based on an examination of the
SDSS and 2MASS colours of 600,000 point sources at low
extinction values. The equation in Covey et al. (2007) uses
g− i colour in Eqn. 6 as a proxy for stellar type. We use the
variable x ≡ g − i instead, to emphasize that we do not use
g-band data in this study. Eqn. 6 simply provides a means
to convert a single parameter (x, the intrinsic stellar type)
into our observed colours (the set Cn).

This stellar locus has finite (observed) width, which
is due to both intrinsic and measurement dispersion. This
width is different for each colour, n, and varies along the
sequence (i.e. is a function of intrinsic stellar type, x). We
average this dispersion along x to produce a single number
characterising the width of the observed stellar locus, σCn

,
and we assume that the intrinsic width of this distribution
is one-half the reported width, to crudely account for the
difficult-to-assess influence of measurement error.

Our model also includes extinctions, En, where

En = Aλ1
− Aλ2

(7)

Aλ1
= AV (aλ1

+ bλ1
R−1

V ) (8)

and λ1 represents the effective central wavelength for a par-
ticular band. The coefficients aλ1

and bλ1
are taken to be

constant for each band, although formally, this is an inte-
gration across the band which is contingent on the stellar

c© 2012 RAS, MNRAS 000, 1–18



8 J. Foster, K. Mandel et al.

Figure 6. Red-optical (r − i versus i − z) colours of a
Castelli & Kurucz (2004) model K0V star produced in synphot

by convolving the stellar spectrum with the filter response curves
for the MMT. The stellar spectrum is reddened with a CCM RV

= 3.1 reddening law in steps of AV = 1 magnitude (plus symbols).
The change in the effective wavelength of the reddened spectrum
causes the colours to trace out a curved line in colour-colour space,
rather than the straight vectors assumed in our model (straight
lines). This effect makes it look as if a star behind more extinction
is being reddened by an extinction law with a smaller RV .

spectrum (parameterized in our model by x), the filter re-
sponse, and the atmospheric opacity at the time (t) of each
observation :

Aλ1
=

∫

∆λ1

Filter(λ)× Atmosphere(λ, t)× SED(λ, x)dλ.

(9)
The extinction in a given waveband is therefore not a sin-
gle number, but a function of the intrinsic stellar SED and
the amount of extinction that starlight has already passed
through. It is more correct to think of reddening curves
rather than vectors (Stead & Hoare 2009, uses the term ‘red-
dening track’). Figure 6 shows this effect by plotting the r−i
versus i− z colours of a K0 V stellar spectrum with increas-
ing amounts of extinction assuming a CCM law with RV =
3.1 (produced with synphot

3). The extinction vectors plot-
ted are appropriate for an un-reddened stellar spectrum, but
as the spectrum undergoes increasing amounts of extinction
the effective wavelength changes. As AV increases, the re-
sulting stellar colours describe a curve, rather than a straight
vector.

Figure 6 shows the worst case in our study, since it con-
siders the r − i and i − z colours which are most sensitive
to reddening and includes up to 10 magnitudes of visual ex-
tinction, which is the maximum value we infer for any stars
in this study. Most stars are behind only a few magnitudes
of AV or less, and the longer-wavelength colours are less in-
fluenced. Including this effect would increase the complexity
of the model significantly since we would have to iteratively
compute the reddening. Therefore we do not include it for
this study (but see Section 3.4 for a discussion of systematic
biases and other possible errors), where the column of dust

3 www.stsci.edu/resources/software_hardware/stsdas/synphot

Filter λeff (Å) aλ bλ

r 6374 0.930 -0.240
i 7797 0.799 -0.533
z 9052 0.675 -0.619
J 12554 0.414 -0.380
H 16358 0.260 -0.239
K 22002 0.162 -0.149

Table 2. CCM Coefficients

is relatively small (< 10 magnitudes of extinction in AV ),
but it should not be ignored when considering the extinction
law in denser regions.

We evaluate aλ and bλ from the CCM model. Defining
ξ ≡ λ−1µm−1, for ξ > 1.1 (i.e. for r and i)

y ≡ ξ − 1.82, (10)

where the numerical factor of 1.82 is simply for convenience,

aλ = 1.0+0.177y−0.504y2−0.024y3+0.721y4+0.020y5−0.775y6+0.330y7

(11)

bλ = 1.413y+2.283y2+1.072y3−5.384y4−0.623y5+5.303y6−2.090y7

(12)
while for ξ < 1.1 (i.e. for z, J , H , K)

y ≡ ξ1.61 (13)

aλ = 0.574y (14)

bλ = −0.527y. (15)

These coefficients are summarised in Table 2.
We then attempt to minimize (using

mpfitfun(Markwardt 2009), aka minpack-1) for each
star the quantity

M =
∑

n





On −Cn(x) + En(AV , RV )
√

σ2

On
+ σ2

Cn





2

(16)

with the constraints that AV > -0.5 mags, 2.1 < RV < 5.5,
and 0 < x <4.5 (recall that x ≡ g − i and parameterizes
the spectral type of the star). We allow AV to go slightly
negative because the intrinsic Cn are derived from fitting
real stars with some small amount of AV .

The problem with this approach is that we often run
into limits on RV . Relaxing the RV limits does not help;
there is no local minimum in χ2-space along this dimension.
In particular, in the case of low AV , we have very little han-
dle on RV , and not a great deal on AV (the intrinsic spec-
tral type, x, is normally fit robustly in such a case). The
large number of points which hit our limits on RV make
it hard to test the hypothesis that Cov(AV ,RV ) 6= 0 for
confidence. Another statistical drawback of this approach
is that applying standard statistical estimators to a sample
of estimates in the presence of error results in biased esti-
mates of the population variance and correlation (e.g. Kelly
2007; Loredo & Hendry 2010). That is, when each individual
star’s (AV , RV ) parameters are fitted separately, the result-
ing ensemble of estimates will be wider than the intrinsic

c© 2012 RAS, MNRAS 000, 1–18
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Figure 7. Least-squares fits for AV and RV for the stars in our
data samples for B5 (left panel) and the West-End (right panel).
The shades of grey show the density of points at a particular lo-
cation in the diagram. A representative error bar is shown, which
displays the median uncertainty on AV and RV for a single star
(rather than for one of the bins displayed in this figure). Stars
for which no local χ2-minimum exists between RV = 2 and RV

= 5.5 “pin” at these extreme values. These points are therefore
unreliable.

variance, and the apparent correlation of the ensemble will
be diminished relative to the true intrinsic correlation.

We plot these results for both B5 and the West-End in
Figure 7. Despite the large number of points which hit the
limit, there is a suggestion of a correlation in the remaining
points for values of AV above 1 magnitude. This correlation
is in the direction expected—larger values of RV at higher
column density.

3.2 A Hierarchical Bayesian Approach

We developed a hierarchical Bayesian model to address some
of the problems present in the least-squares fitting approach.
This model allows us to constrain the properties of the dust
towards, and the intrinsic colours of, individual stars by si-
multaneously modelling the populations of dust properties
and stellar colours. These parameters of the full population
are called hyper-parameters, and describe the shape of the
distributions of AV and RV . An advantage to this approach
is that we can include the correlation of AV and RV explic-
itly in our model as a hyper-parameter, and then examine
its marginal posterior probability distribution conditional
on our full data-set in order to make probabilistic inferences
about the dust population. Furthermore, by taking a fully
Bayesian approach, we can coherently compute the joint un-
certainties in the estimates of both the hyper-parameters
governing the population and the dust and colour parame-
ters of individual stars. By modelling the intrinsic popula-
tion distribution directly, the hierarchical approach coher-
ently accounts for the relevant estimation errors when in-
ferring the intrinsic population covariances, thus correcting
the biases that plague standard estimators in the presence of
error. The mathematical details of the statistical model are
given in Appendix A. All other aspects of the dust model are

as described in § 3.1. The statistical and numerical meth-
ods used here are similar in principle to those introduced by
Mandel et al. (2009, 2011) for estimating dust extinction to
Type Ia supernovae using optical and near-infrared photom-
etry.

The distribution of column densities (AV ) within a
molecular cloud is often observed to be log-normal (e.g.
Goodman et al. 2009), though this is not always true. For
example, Lombardi et al. (2008) find a log-normal distribu-
tion for Ophiuchus and Lupus, but Lombardi et al. (2006)
see a more complex density distribution for the Pipe neb-
ula, possibly due to multiple clouds along the line of
sight. Many simulations of turbulent molecular clouds (e.g.
Vazquez-Semadeni 1994; Ostriker et al. 2001) predict a log-
normal volume density distribution. This is equivalent to a
log-normal column density distribution if the column density
along each line of sight through the cloud is dominated by
a single feature. We therefore take a log-normal distribution
as a prior on AV :

log(AV ) ∼ N(µA, σ
2

A). (17)

The distribution of RV values within a molecular cloud is
unknown. However, in the range of column densities probed
in this study we expect RV to occupy a range of values
peaked near the value for the diffuse ISM (RV = 3.1) or
slightly larger. A Gaussian in the inverse of RV (rV ≡ R−1

V )
is a particularly mathematically convenient choice:

rV ∼ N(µr, σ
2

r). (18)

We assume a flat (uninformative) prior for the intrinsic spec-
tral type, x, between 0.2 and 4.2, as our experience suggests
that this is a parameter well-constrained by the data. See
§ 3.4 for a further discussion of this choice. Our probabil-
ity model for the stellar colours is that each measured colour
comes from a normal distribution, with the mean colour vec-
tor (conditional on the intrinsic spectral type, x) given by a
5th order polynomial (Eq. 6), and the standard deviations
in each colour given by a 5th order polynomial derived from
the uncertainties quoted in Covey et al. (2007).

We further assume the intrinsic spectral type, x, is not
a priori correlated with the other parameters in the pop-
ulation, although a weak correlation is possible with AV

because only bright blue stars are visible through high col-
umn density material. We aim to test the hypothesis that
AV and rV have a non-zero population correlation, which
we express as
(

rV
log(AV )

)

∼ N

[(

µr

µA

)

,

(

σ2
r ρ σAσr

ρ σAσr σ2

A

)]

.

(19)
In fact our model could be extended to describe a gen-
eral polynomial dependence between rV and AV . However,
we restrict ourselves to a linear dependence, in which case
the joint population distribution of log(AV ) and rV is suf-
ficiently described by a linear correlation parameter ρ. The
exact form of this linear relationship is

logAV = α0 + α1(rV − 0.32)/0.04 + ǫ (20)

where α0 and α1 are the intercept at RV = 3.1 and the
slope of the linear relationship, respectively. The numerical
constants are simply for convenience. The residual variance
Var[ǫ] = σ2, and α are related to the mean and covariance
hyper-parameters of Eq. 19, via Eqs. A7.
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10 J. Foster, K. Mandel et al.

Figure 8. The global posterior density of the unknowns given
the full data set of apparent stellar colours is represented by a
directed acyclic graph. Unknown parameters are represented by
open nodes. Observed data (measured colours O) and knowns
are represented by shaded nodes. The directed arrows between
the nodes indicate relations of conditional probability. The hi-
erarchical model coherently incorporates randomness and uncer-
tainties due to measurement error (purple arrows), spectral class
(x = g−i) and the intrinsic stellar locus (µC(x),ΣC(x)) (blue ar-
rows), and dust extinction and reddening (AV , RV ), and its popu-
lation (α, σ2, µr , σ

2
r ) (red arrows) into inferences about individual

stars and the population. The probabilistic graphical model de-
scribes a conceptual mechanism for generating the observed data.

Again representing the intrinsic stellar colour as x ≡
g − i, and denoting the parameters and data for each of
N stars with the label s, the suite of hyper-parameters as
H = [µr, σ

2
r ,α, σ2], and the vector of observed colours for

each star as Os, we seek to compute the global posterior
distribution

P ({As
V , rsv, xs};H| {Os}) ∝

N
∏

s=1

[

P (Os|xs, A
s
V , rsv)× P (xs, As

V , rsv|H)

]

× P (H),

(21)

where we place uniform (non-informative) priors, P (H), on
the hyper-parameters. The derivation of this expression is
described in detail in Appendix A. The probabilistic struc-
ture of the statistical model is shown as a directed acyclic
graph (DAG) in Fig. 8. In this graphical model, the unknown
parameters are depicted with white boxes. The knowns and
observed data that the inferences are conditioned upon are
described by grey boxes. The relationships of conditional
probability between all the variables (specified in detail in
§A) are shown as directed arrows. The graph can be thought
of as a generative model, or conceptual mechanism for pro-
ducing the observed data. Given the intrinsic stellar locus,
for a given spectral class (xs), a set of intrinsic stellar colours
is generated. From the dust population, random values of the
dust parameters (AV , RV ) are drawn. The intrinsic colours
and dust effects combine to produce the apparent colours,
which are then sampled with measurement error to generate
the observed colours Os. Further information on DAGs and
examples of their application in astronomy can be found in
Mandel et al. (2009, 2011); Bishop (2006).

Because we are considering several thousand stars at
once, there is a large number of parameters and hyper-
parameters to be estimated jointly (3N + 5). Details of an
efficient algorithm for solving this problem are presented
in Appendix B. A Markov Chain Monte Carlo algorithm

with generalised Gibbs sampling was used to efficiently ex-
plore the probability distribution of the model parameters.
This algorithm was designed to avoid getting stuck at spu-
rious local maxima with extreme RV (the problem plaguing
the least-squares fitting approach), and to negotiate multi-
ple possible solutions in the global posterior distribution. At
each step we draw a new value of a given parameter by sam-
pling from the probability distribution of this parameter,
conditioned on the current value of all the other parameters
at this step. In each full cycle we sample the intrinsic colour
(x), AV and rV for each star, and then sample the hyper-
parameters which describe the whole population. After a full
cycle, the current value of all parameters is recorded as the
position of the Markov chain. After a sufficient number of
iterations the Gibbs sampler converges to a stationary solu-
tion and maps out the full posterior probability distribution
of parameters and hyper-parameters conditioned on the full
data set of observed colours.

We used least square fitting (Eq. 16) to estimate ini-
tial values for each parameter for each stars. To each value
we added some random noise to generate different starting
positions for each individual Markov chain. We remove the
first 10% of each chain as “burn-in”, during which time the
chain is still seeking the equilibrium distribution of the pa-
rameters. We sample 2500 times with 4 parallel, independent
chains, but record only every 10th sample to reduce the auto-
correlation within each chain. We measure the convergence
of the model using the Gelman-Rubin (Gelman & Rubin
1992) statistic. This compares the variance between chains
and within chains to estimate the mixing of the chains and
diagnose their convergence to the equilibrium posterior dis-
tribution. We consider a chain to have converged if the max-
imum Gelman-Rubin ratio is less than 1.1.

This general approach in which we use population infor-
mation to infer properties of individual stars in a Bayesian
context is similar to the work reported in Bailer-Jones
(2011). Unlike that work, our model does not include paral-
lax information. We make no attempt to solve for distance,
considering only colours rather than magnitudes. In addi-
tion, our model does not consider prior information about
the expected density of stars of different spectral types; we
consider all spectral types (g-i) to be equally probable. Our
study incorporates a more detailed model for the dust ex-
tinction as that is the focus of this work.

In some respects this work is similar to Kelly et al.
(2012). Kelly et al. (2012) use a hierarchical Bayesian ap-
proach to infer changes in dust grain properties as a function
of dust temperature and column density in the Bok Glob-
ule CB244. Kelly et al. (2012) examined the dust emissivity
spectral index (β) in the far infrared and millimetre and
found, in contrast to many prior studies, no anti-correlation
between β and temperature, but a strong correlation be-
tween β and column density. In that work, each independent
pixel in an emission map was fit individually, and the over-
all population modelled with hyper-parameters. In our work,
each individual star is fit individually, and the overall popu-
lation is modelled with hyper-parameters. Future work could
combine the information about dust emission in Kelly et al.
(2012) with the information in this study about dust extinc-
tion to more tightly constrain models of dust growth.
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3.3 Testing the Gibbs Sampler

To test our hierarchical model for sensitivity to factors which
could lead to spurious correlations, we constructed fake data
sets and assessed our ability to recover input parameters.
Un-reddened stars were drawn from the empirical distribu-
tion of Covey et al. (2007) using the observed distribution
of intrinsic g − i colours as the underlying probability dis-
tribution. This basic g − i colour was used to generate the
other five colours (r− i, i− z, z− J , J −H , and H −K) by
drawing from Gaussian distributions with means and stan-
dard deviations determined by the stellar colour loci and
standard deviations tabulated in Covey et al. (2007). Values
of log(AV ) and rV were drawn from specified distributions
with known hyper-parameters and used to redden stellar
colours according to our CCM parameters. Gaussian errors
of a specified magnitude were then added to simulate the
observed colours.

Our primary goal is to constrain ρ, the correlation be-
tween log(AV ) and rV . To test this, we generated test data
sets, each with 2000 stars. Values of log(AV ) and rV were
drawn from joint normal populations in order to produce
data with a particular correlation. Because of finite sam-
pling, these simulations did not produce a population with
exactly the specified correlation, so we measured the sample
correlation in these parameters after generation and use that
value for comparison. The marginal posterior distributions
on most hyper-parameters were approximately normal, with
mean values close to (well within the 95% interval) the input
values. As would be expected, the posterior distributions for
the parameters of individual stars covered the input values—
we had to recover the input values of individual stars reason-
ably well in order to get the population parameters correct.
Many stars had very broad posterior distributions on RV ,
as we expected.

As a basic test of our sensitivity to the mathematical
form of our prior distributions, we conducted another series
of tests in which log(AV ) and rV were drawn from a bivariate
uniform distribution with a linear correlation over a sensible
range (AV from 0.1 to 10 mag, RV from 2.0 to 5.5). Again,
ρ was recovered accurately.

3.4 Potential Biases

We know that our model contains some important simplifi-
cations which may bias our result. In addition, our catalogue
of stellar colours has been produced using some simplify-
ing assumptions that could, since we are considering small
colour shifts, bias our result. We discuss what we believe are
the most important assumptions and sources of bias here.

For each filter (r, i ,z ,J ,H ,K) we assume a single ef-
fective wavelength for all stars when calculating the param-
eters in Table 2, but this assumption is not precisely true.
However, the spread in effective wavelengths for the stellar
population we study (which is dominated by late-type stars)
is small. The spread in effective wavelength is largest in z,
where ∆λeff = 15Å between an F0 and K0 star.

A more significant shift in the effective wavelength is
produced by reddening itself. As seen in Figure 6, when ex-
tinction reaches many magnitudes of visual extinction, the
extinction tracks are actually curves rather than straight
vectors (as we assume). This introduces a bias in our work,

but crucially it is the opposite direction of the effect we infer
in § 4. That is, if we were to calculate RV from Figure 6 for
theAV = 10 point, we would infer a value of RV < 3.1, closer
to RV = 2. Since all stellar spectra behave in qualitatively
the same way under extinction (effective wavelengths be-
come longer in each band, but more quickly in blue bands),
this effect would tend to bias us toward inferring that RV

decreases with AV , the opposite of what we actually infer.
The effect is small for the low extinction we study here, and
thus probably has only a small impact biasing our results
toward finding less of a correlation between RV and AV .

Naoi et al. (2007) point out the dangers of photometric
transformations in studies which attempt to study the ex-
tinction law (they also find a change in the extinction law
as a function of increasing optical depth). A similar con-
clusion is reached by Gosling et al. (2009) in their study
of near-infrared extinction toward the nuclear bulge and
Kenyon et al. (1998) in their study of Taurus—their results
are only properly valid in their own photometric system. We
have attempted to transform our Megacam data onto the
SDSS system and the UKIDSS data is calibrated onto the
2MASS system. These transformations are necessary, since
we use an observed stellar colour locus in SDSS and 2MASS
colours. Despite the large number of stars we are able to
use for these transformations, this transformation probably
remains our largest source of systematic uncertainty.

Our prior on intrinsic spectral type (parameterized by
x ≡ g− i) is relatively uninformative. That is, we use a uni-
form prior between a range of intrinsic g − i colours. The
true distribution of intrinsic spectral types is probably not
uniform, but we do not have a good estimate for this dis-
tribution a priori. In § 3.3 we use the observed g − i colour
distribution from Covey et al. (2007) when testing the Gibbs
sampler, but this distribution is for the portion of the Galaxy
sampled by the low-extinction SDSS footprint; it is not nec-
essarily appropriate for the particular portion of the Galactic
stellar population sampled in this study. Even with our un-
informative prior, the median posterior uncertainty on the
intrinsic g − i colour is only 0.24, significantly smaller than
the width of allowed colours in our prior (0.2 < g− i < 4.2).
We choose to leave the prior relatively uninformative, rather
than use a potentially incorrect prior.

We also do not assume that there is an a priori corre-
lation between intrinsic stellar type and AV . This correla-
tion may be is present at large column densities where only
the brightest background stars and foreground stars are de-
tected. In extinction studies, methods such as NICEST im-
prove on the NIR colour excess method (NICE) to account
for the bias that this correlation produces in extinction maps
(Lombardi 2009). As noted in Lombardi (2009), the bias in
extinction maps only becomes significant at column densi-
ties where AV > 10 magnitudes, which is the maximum
extinction we probe. For this reason, we do not attempt to
model this correlation.

Additional possible systematic effects include calibra-
tion problems with our Megacam data as we saw in the
fourth quadrant of B5 and correlations in the underlying
population not represented in our model. Our study fits
slope of the extinction law under the parameterization of the
CCM model. If the extinction in these portions of Perseus
is not well described by the CCM model then our fits to the
CCM model may not be particularly enlightening. A number
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Figure 9. The mean and standard deviations of the marginal
posterior distributions on AV and RV for all the stars in our
data samples for B5 (left panel) and the West-End (right panel)
from our hierarchical Bayesian model. The shade of grey shows
the density of points at a position within the diagram. A represen-
tative error bar is shown, which displays the median width of the
posterior probability distribution for AV and RV for a single star
(rather than for one of the bins displayed in this figure). Note that
the widths of the posterior probability distributions for AV and
RV vary greatly among individual stars. When we include only
sources with AV < 2 magnitudes the correlation between AV and
RV is no longer distinguishable from zero. For these points we are
unable to infer any underlying correlation and the tight relation-
ship seen in this diagram is due to the strong correlation inferred
for stars with AV > 2 magnitudes.

of objects in our survey may not have intrinsic colours lying
on the Covey et al. (2007) tracks. These include unresolved
background galaxies or quasars, embedded young stars and
brown dwarfs. These objects probably constitute a small
fractional contamination (∼ 10%) at the depths studied in
this work (see the estimates in Foster et al. 2008).

4 RESULTS

We ran our two regions separately, but the results are simi-
lar. In each case, a few objects failed to converge, producing
large maximum values of the Gelman-Rubin statistic. Other
than that, the chains behaved well, with Gelman-Rubin less
than 1.1 for 99.9% of the objects in both regions. We identi-
fied the objects which failed to converge, removed them from
the catalogue, and re-ran the model. Doing this verified that
the inferences on the hyper-parameters were unaffected by
these objects.

The inferences on RV and AV are shown in Figure 9.
These plots show the same basic behaviour in both samples,
with RV rising with AV . The points at low AV are poorly
constrained by the data from the individual stars, and the
posterior estimates of RV and AV in this regime are strongly
informed by the population hyper-parameters.

To assess the reliability of inferences at low AV we per-
formed a series of tests in which we progressively removed
stars with large inferred values of AV . We used our ini-
tial catalogue of inferred values for AV to remove the most

highly extinguished stars and reran the analysis with these
subsets of low-extinction stars. The posterior probability dis-
tribution on ρ becomes broader until, when considering only
stars with AV < 2 magnitudes, the inference on ρ no longer
is inconsistent with zero. That is, if we consider only stars
with AV < 2 magnitudes, we are not able to claim that a
significant correlation exists between RV and AV . The in-
ference on RV is very weak for these stars because there is
not a significant amount of reddening. Ultimately, therefore,
the RV and AV inferences for these stars is strongly deter-
mined by the (linear) relationship we assume between rV
and log(AV ) and the hyper-parameters which describe this
relationship. Without the stars at high extinction we would
have very little information about the relationship between
RV and AV . One should therefore not pay too much at-
tention to the relationship below AV of 2 magnitudes. This
result gives us some confidence that subtle errors in cata-
logue colours (due to errors in calibration or photometric
transformations as discussed in § 3.4) are not producing a
spurious relationship; the lack of strong correlation at low
AV makes it more likely that the strong correlation we infer
at high AV is genuine.

An alternative approach would be to expand our model
to allow for a non-linear population relation between logAV

and rV , with which the strength of the correlation could
change as a function of logAV . This would require building
a more advance statistical model and significant changes to
the sampling algorithm, which we leave for future work.

We compute the posterior distributions of individual
hyper-parameters marginalised over all the other parame-
ters. These posterior distributions are all roughly normal so
we summarise them with the median values and standard de-
viations in Table 3. In particular, the two regions are found
to have relatively similar distributions in rV but the West-
End has a larger average AV as well as a larger range in
this parameter. Translating the median values in Table 3
into the conventional units, B5 has a median RV of 2.6, and
a median AV of 2.2 magnitudes while the West-End has a
median RV of 2.8 and a median AV of 4.3 magnitudes. The
low median in B5 is easily seen in Figure 10, which shows
the spatial distribution of inferred AV values for both re-
gions. Our solutions for AV exhibits spatial structure which
is consistent with known cloud features, as seen in Figure 10.

Consistent with the appearance of Figure 9, the poste-
rior distribution of ρ is negative and inconsistent with zero.
Remember that ρ is the correlation between rV and log(AV ),
and so a negative ρ implies a positive correlation between
AV and RV . The posterior distributions of ρ are shown in
Figure 11 and the results from the two regions are consistent
with each other.

The consistency in posterior distributions exists despite
the differences between the two regions. In their consid-
eration of sub-regions within Perseus, Pineda et al. (2008)
found that B5 was the most quiescent region with a simple
density structure and a simple relationship between column
density and CO intensity, while the West-End had a more
complicated relationship between column density and CO
intensity, suggesting significant clumping within the region.
Later studies have found that the quiescent core within B5
(Pineda et al. 2010) is dominated by a very narrow (5000
AU wide) filament (Pineda et al. 2011).

Chapman & Mundy (2009) proposed that outflows
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Figure 10. Spatial distribution of inferred AV in B5 (left panel) and the West-End (right panel) using our hierarchical model with
extinction coded in colour. Overlain are AV contours from the COMPLETE NICER map (Ridge et al. 2006) with contour levels at
1.6, 2.4, 3.2, 4.0, 4.8, 5.6 and 6.4 magnitudes of AV . The spatial distribution of stars with high extinction from our Bayesian analysis
conforms to known cloud structures. The lower density of points in West-End is principally the UKIDSS/GPS data available for this
region is less deep than the UKIDSS/GCS data for B5. Gaps at the edges can be due to non-uniform coverage either in our Megacam
observations (e.g. B5) or in the UKIDSS data (e.g. West-End). Gaps in the stellar distribution in regions of high extinction are areas
where the extinction is too high for background stars to be seen in our Megacam observations.

# Stars µr σr µA σA α0 α1 ρ

B5
3144 0.391±0.002 0.062±0.001 0.34±0.01 0.31±0.01 0.95±0.02 -0.338±0.008 -0.86±0.01

West-End
1278 0.363±0.003 0.082±0.002 0.63±0.02 0.38±0.01 0.94±0.02 -0.287±0.008 -0.84±0.01

Table 3. Median Marginal Posteriors of Hyper-parameters. µr and σr are the hyper-parameters describing the normal distribution of
rV , which is R−1

V
; µA and σA describe the normal distribution of log(AV ). α0 and α1 describe the linear relationship between rV and

log(AV ) as defined in Eqn. 20. ρ is the correlation between rV and log(AV ).

within two isolated molecular cores may be the cause of re-
gions where the mid-infrared extinction law is inconsistent
with dust models as the outflows impact the dust popula-
tion. As shown in Figure 1, B5 is dominated by a single dense
structure, at the heart of which lies B5-IRS1, which drives a
powerful multi-parsec molecular outflow (Bally et al. 1996;
Yu et al. 1999; Arce et al. 2010). Most of the high-extinction
stars in the B5 data-set come from areas near this outflow.
The West-End hosts a few impressive outflows in L1448, but
also a large number of isolated, dense, cores with little or no
star formation (see Figure 2). L1448 is mostly outside the
UKIDSS coverage of this region. Thus the majority of the
West-End stars at high extinction are found in cores without
strong outflows.

Geometrical differences between the two regions could
also be expected to produce different correlations between
AV and RV . Recall our basic assumption that RV ∝ 〈a〉 ∝
n ∝ AV , where n is the volume density and 〈a〉 is the aver-
age size of dust grains. Increasing the scatter in the connec-
tion between n and AV would tend to increase the scatter
between RV and AV and thus decrease any measured cor-
relation. As described above, B5 is a relatively simple large
single structure. Velocity information from the COMPLETE
CO survey (Ridge et al. 2006) and an exhaustive search for

outflows and shells throughout Perseus by (Arce et al. 2010,
2011) suggest that the region is simple in velocity space
too. Here, the assumption that column density is simply re-
lated to volume density is probably reasonably robust. In the
West-End the story is quite different. A large shell appears
to be disturbing the entire region, and there are multiple
velocity components toward some positions—and therefore
likely multiple independent clouds along some lines of sight.
These additional velocity components have relatively low
antenna temperatures and so do not contribute much to the
measured column density along the line of sight, maintaining
the connection between column density and volume density.
The consistency of our results for these two regions suggests
that geometrical effects are not a significant problem.

We compute a simple estimate of the volume density
at which we are seeing significant changes in the extinction
law. By a column density of AV = 10 magnitudes we have
typical RV values of 4-5. Arce et al. (2011) estimates the
width of B5 to be no more than 0.5 pc. Ten magnitudes
of visual extinction corresponds to roughly 1022 cm−2 H2

atoms (Bohlin et al. 1978). If we simply assume a constant
volume density we can calculate a typical volume density at
10 magnitudes of AV inside B5 is 6.6×103 cm−3. Because
of the density substructure within B5 (Pineda et al. 2011),
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Figure 11. The marginal posterior distributions for the hyper-
parameter ρ, which describes the correlation between rV and
log(AV ), for both B5 (solid) and the West-End (dashed). The
two distributions are consistent with each other and inconsistent
with ρ = 0. The sense of the correlation is that RV increases with
increasing AV .

this estimate represents a lower limit on the volume density
by which point we are seeing clear evidence of grain growth.

5 CONCLUSION

We have used r, i, z deep data from Megacam on the MMT
combined with UKIDSS J,H,K to probe the extinction law
in the column density range 0.1 mag < AV < 10 mag using
a hierarchical Bayesian model. The Bayesian model allows
us to place a well-motivated prior on AV (log-normality),
and work in a consistent framework with the correlation be-
tween AV and RV treated as just another parameter for
which we compute the posterior distribution. This model is
implemented using a generalised Gibbs sampler to generate
Monte Carlo Markov Chains which explore the full joint pa-
rameter space. The implementation has undergone a series
of tests using synthetic data similar to our study data, and
performs well.

We find evidence that the extinction law changes over a
relatively narrow range of column densities, rising from an
RV ∼ 3 at 2 magnitudes of AV to an RV ∼ 5 by 10 magni-
tudes of AV . Below 2 magnitudes of AV we have insufficient
sensitivity to infer a relationship between RV and AV . The
two regions in our study, B5 and the West-End lie at oppo-
site ends of Perseus and have different physical conditions,
yet both show a strong correlations between RV and AV ,
suggesting that the steepening of the extinction curve (most
likely via grain growth) is a fairly universal process.

We deliberately do not provide an explicit relation pre-
dicting the value of RV for a given value of AV . These rela-

tions are slightly different for the two different regions and
are effectively determined only over a narrow range of AV .
In addition, we expect the underlying predictor of RV to be
the volume density, n, not AV , and the relation between n
and any observed AV is likely to be highly variable in differ-
ent regions. This is particularly the case for observations of
more distant objects, when substantial column density can
be the result of a long path through diffuse matter.

Several recent studies have used Sloan Digital Sky
Survey data to study dust reddening and extinction (e.g.
Jones et al. 2011; Schlafly & Finkbeiner 2011; Schlafly et al.
2010). SDSS data is typically not of sufficient quality in
high-extinction regions (we examined the portion of Tau-
rus covered in SDSS-SEGUE) to be useful in constraining
the extinction law. Future surveys with deeper coverage in
the red-optical (Pan-STARRs and LSST) and broader sky
coverage will provide the necessary depth to apply this tech-
nique to a large number of molecular clouds without the need
for dedicated deep observations.
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APPENDIX A: HIERARCHICAL BAYESIAN

MODEL FOR STELLAR COLOURS AND DUST

Hierarchical Bayesian analysis is a framework for proba-
bilistically modelling multiple sources of randomness and
uncertainty underlying observed data and unifies infer-
ence for both populations and individuals of those popu-
lations. Statistical inference with hierarchical models pro-
vides a principled method of probabilistic de-convolution
of physically distinct and random effects that are com-
bined in the observed data. Probabilistic inference allows
for not only the estimation of each separate effect, but
also the exploration of the joint uncertainties and trade-
offs between the multiple effects. It enables the estima-
tion of the statistical characteristics of an underlying in-
trinsic population distribution while accounting for the dis-
tortions in the observed distribution caused by estimation
error. This correction is called shrinkage. This is accom-
plished by hierarchical models via partial pooling, which
combines the individual estimates with population infor-
mation. Similar issues regarding inferring the intrinsic dis-
tributions of inferred quantities in the presence of random
error have been discussed and specific Bayesian techniques
have been applied by Kelly (2007); Kelly & Bechtold (2007),
Hogg, Myers, & Bovy (2010), Loredo & Hendry (2010),
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Mandel et al. (2009, 2011), among others, in other astro-
physical contexts. An excellent statistical reference for hier-
archical Bayesian modelling is Gelman et al. (2003).

Our statistical model includes a population distribution
that models the intrinsic stellar locus of colours, a popula-
tion distribution for the the dust extinction and reddening
to each star, and incorporates the measurement error for the
observed colours for each star. Using Bayes’ Theorem, prob-
abilistic estimates for the unknown parameters of individual
stars, as well as the hyper-parameters of the populations, are
coherently derived. In the following sections, we build the
components of our statistical model and then derived the
global posterior density of the unknown parameters condi-
tional on the data.

A1 The Observed Colour Likelihood Function

Let C be a set of linearly independent intrinsic colours of a
star. For example, C = (r−i, i−z, z−J, J−H,H−Ks). This
represents the colours of the stars in the absence of dust.
Let O be the set of observed colours in the same bands
with estimates of the measurement uncertainty described
by a covariance matrix ΣO. The dust absorption in a par-
ticular band F for a given AV and rV ≡ R−1

V is modelled
using the CCM law: AF = AV (aF + bF rV ), where the coef-
ficients aF and bF are determined from stellar spectra. Let
E(AV , rV ) ≡ AV (∆a+∆b rV ) be a vector of colour excesses
in the selected colours for a given AV , rV , and ∆a is a fixed
vector with elements, e.g. (ar − ai), and ∆b is defined simi-
larly. Then, conditional on the intrinsic colours and the dust
parameters, the observed colours areO = C+E(AV , rV )+ǫ.
Under the assumption of Gaussian measurement noise, the
likelihood function is:

P (O|C, AV , rV ) = N(O|C +E(AV , rV ),ΣO). (A1)

The multivariate Gaussian probability density in vector y

with mean µy and covariance matrix Σy is denoted by
N(y|µy,Σy).

A2 The Intrinsic Colour Population Model

We can construct a population model for the intrinsic
colours of stars using the empirical results of Covey et al.
2007 (C07) based upon analyses of the un-reddened stellar
locus using SDSS and 2MASS data. They use the intrinsic
g − i colour as a proxy for spectral class. We shall refer to
this variable as x = g − i. Conditional on x, we can con-
struct a normal distribution of colours using the estimated
means and “pseudo-standard deviations” computed by C07
for each bin in x. Here x ranges from 0.1 to 4.3. Hence, we
can write for any individual star

P (C|x) = N(C|µC(x),ΣC(x)) (A2)

where µC(x) and ΣC(x) are known functions of x based
upon the locus values of Table 1 of C07. Since they do not
provide estimates of the colour correlations for a given x,
we set the diagonal elements of the covariance matrix to the
squared pseudo-standard deviations in each colour, and the
off-diagonal terms to zero. To complete the intrinsic popu-
lation model, we should specify a distribution P (x). We find
it is sufficient to take a conservative approach and assume a
flat prior on x: P (x) ∝ 1 over the range of x.

It will be convenient to analytically integrate out the
intrinsic colours C. The marginal likelihood of the observed
colours for a single star, given its parameters x, AV and rV
is then:

P (O| x,AV , rV ) =

∫

dC P (O|C, AV , rV )P (C|x)

= N [O|µC(x) +E(AV , rV ),ΣO +ΣC(x)]

(A3)

A3 Dust Population Model with Correlations

If the parameters of dust to a set of stars are drawn from a
common population, it is advantageous to model that popu-
lation. We may expect the dust to stars to have some central
(logAV , rV ) values with correlated deviations. A reasonable
choice is a bivariate Gaussian distribution in (logAV , rV ).
(

rV
log(AV )

)

∼ N

[(

µr

µA

)

,

(

σ2
r ρ σAσr

ρ σAσr σ2

A

)]

.

(A4)
This implies lognormal marginal distribution in AV ,

P (AV |µA, σ
2

A) = N(logAV |µA, σ
2

A)× A−1

V , (A5)

and a marginal distribution rV ∼ N(µr, σ
2
r ). The population

mean and variance of logAV are µA, σ
2

A, respectively. The
population mean and variance of rV ≡ R−1

V are µr, σ
2
r , re-

spectively. The linear correlation between logAV and rV is
ρ. We additionally limit RV to lie in the physically plausible
range between 2 and 5.5 (0.18 < rV < 0.5).

The above model can also be understood as a Gaussian
distribution on rV coupled with a mean linear regression of
logAV on rV , i.e. rV ∼ N(µr, σ

2
r) and

logAV | rV = α0 + α1(rV − 0.32)/0.04 + ǫ (A6)

where the regression coefficients and residual variance are
defined by the hyper-parameters.

α0 ≡ µA + ρ
σA

σr

(0.32− µr), α1 ≡ 0.04ρσA

σr
(A7)

The error term ǫ ∼ N(0, σ2) has variance Var[ǫ] ≡ σ2 =
σ2

A(1 − ρ2). Using these equations we can work with either
{µA, σ

2

A, ρ, µr, σ
2
r} or {α0, α1, σ

2, µr, σ
2
r} and translate be-

tween the parameterizations. For implementing the Gibbs
sampler, we choose the latter parameterization, since it is
more easily extended to non-linear relations by adding poly-
nomial terms to Eq. A6.

A4 The Hierarchical Posterior Probability

Density

To complete the full probability model we must specify the
hyper-prior density on the hyper-parameters α, σ2, µr, and
σ2
r . We choose standard diffuse non-informative distribu-

tions: uniform distributions on µr, α, log σ2
r and log σ2.

We can now construct the hierarchical posterior den-
sity. Suppose we have Ns stars with observed colours {Os},
s = 1 . . . Ns. The unknown parameters for each star are
the intrinsic colours Cs, the spectral type xs, and the dust
parameters As

V , rsV . We can, however, analytically integrate
out Cs and use the marginal likelihood, Eq. A3. Further-
more, there are several hyper-parameters describing the dust

c© 2012 RAS, MNRAS 000, 1–18



Bayesian Extinction 17

probability model: α, σ2, µr and σ2
r . For star s, the poste-

rior distribution over all remaining parameters conditioning
on the observed colour data and on the population hyper-
parameters is

P (As
V , r

s
V , xs|α, σ2, µr, σ

2

r ;Os)

∝ P (Os|xs, A
s
V , rsV )× P (xs)

× P (As
V , r

s
V |α, σ2, µr, σ

2

r)

(A8)

Since the hyper-parameters are unknown and must be esti-
mated jointly with the parameters from the data, we must
compute the joint posterior density over all unknown param-
eters and hyper-parameters conditioned on the entire data
set. This is just a product of N terms for each star times
the hyper-prior.

P ({As
V , rsV , xs};α, σ2, µr, σ

2

r | {Os}) ∝
[

N
∏

s=1

P (As
V , rsV , xs|α, σ2, µr, σ

2

r ;Os)

]

× P (α, σ2, µr, σ
2

r)

(A9)

All fully Bayesian inferences are based upon the computa-
tion of this posterior probability distribution.

APPENDIX B: MCMC SIMULATION OF THE

POSTERIOR PROBABILITY DENSITY WITH

GIBBS SAMPLING

For a data set with N ∼ 2000 stars, there are 3N + 5
parameters and hyper-parameters to be estimated jointly
from the hierarchical posterior distribution, after analyti-
cally marginalising out the intrinsic colours {Cs}. To do
this efficiently, we have developed a Markov Chain Monte
Carlo algorithm based on Gibbs sampling.

Markov Chain Monte Carlo (MCMC) is a class of al-
gorithms that generate random draws from an arbitrary
probability distribution by simulating a stochastic process
or random walk through parameter space. Gibbs sampling
is a particular MCMC strategy that uses the information
in the set of conditional distributions to make the random
moves in the stochastic process. One parameter at a time is
updated from its conditional probability density, holding the
other parameters fixed at their current values. Cycling this
process through all the parameters repeatedly generates a
Markov chain that explores parameter space and converges
to the joint posterior probability density. Once the random
samples are generated, inferences can be computed using
these samples. Further theory and techniques of MCMC can
be found in various textbooks, e.g. Liu (2002); Gelman et al.
(2003); Robert & Casella (2005).

An advantage of using a Gibbs sampling approach by
sequential sampling of the conditional densities compared to
a standard Metropolis strategy is that the Gibbs sampling
approach does not require tuning the jump size of the pro-
posal distribution. This is important when probing a high-
dimensional parameter space as we do here; it is practically
infeasible to optimise the jump size for thousands of param-
eters.

A disadvantage of traditional Gibbs sampling is that it
allows only for orthogonal moves in the parameter space,
as one parameter is sampled conditional on the fixed cur-
rent values of the other parameters. This problem can be

acute if there are strong posterior degeneracies or correla-
tions between parameters. For example, in this work, we ex-
pect there to be trade-offs between the intrinsic colours and
dust reddening in the fit for a single star’s observed colours.
This trade-off will depend upon the shape of the intrinsic
stellar locus as well as the current estimate of the reddening
law parameter RV for the dust to the star. If there exist
multiple local posterior maxima in parameter space sepa-
rated along a directions oblique to the parameter axes, the
orthogonal nature of the Gibbs sampling moves could cause
the Markov Chain to get stuck at a sub-optimal solution.

To alleviate these problems, we have included gener-

alised conditional sampling steps to our MCMC algorithm.
These steps enable the chain to move along expected degen-
eracies between parameters that may be oblique with respect
to the natural co-ordinate system defined by the chosen
parameters (Liu & Sabatti 2000; Liu 2002). This strategy
allows for non-orthogonal moves through parameter space
that change several parameters at once. For example, we
found it advantageous when fitting for each star to simul-
taneously reduce dust extinction and increase the intrinsic
colour while adjusting the reddening law. This corresponds
to an oblique translation through parameter space described
by AV → AV +γ, x → x+cxγ, and rV → rV +crγ. The coef-
ficients (cr, cx), determining the direction of the translation,
are randomly chosen according to pre-determined probabil-
ity distributions, and the magnitude of the translation γ is
sampled from the posterior density, such that the stationary
distribution of the chain is left invariant. These generalised
conditional sampling steps are described below in Step 4.
Note that the Gibbs sampler without these steps (i.e. using
only Steps 1-3, 5-7) generates a valid Markov Chain. The
additional Step 4 is added to speed convergence of the chain
and help it escape local maxima.

We start with initial guesses of the unknown parameters
and hyper-parameters. The current position of the Markov
Chain is S = ({As

V , rsV , xs};α, σ2, µr, σ
2
r ). Our Gibbs sam-

pling strategy proceeds as follows. At each step we sample a
new value of a parameter conditional on all the others, and
replace the new value in the state vector S . The first four
steps are repeated for all stars, conditional on the current
values of the population hyper-parameters.

(i) Draw a new xs from the conditional posterior density
P (xs|·, {Os}) ∝ P (Os|xs, A

s
V , rsV ) × P (xs). (We use (·) to

denote all other parameters and hyper-parameters not writ-
ten explicitly). This is done by evaluating Eq. A3) on a fine
grid in xs and using the inverse-cdf sampling method.

(ii) Draw a new As
V from the conditional posterior

P (As
V |·, {Os}) = P (As

V |xs, r
s
V ,α, σ2;Os)

∝ N(As
V |Â, V̂A)× P (As

V |rsV ,α, σ2),
(B1)

where Â = V̂Aβ
TΣ(x)−1[Os − µC(xs)] is the least-squares

estimate of AV with variance V̂A = (βTΣ(x)−1β)−1, and
β = ∆a+∆b rV and Σ(x) = Σs

O +ΣC(xs). The last term
is given by Eq. A6. Since this is non-Gaussian, we obtain a
draw by evaluating this on a fine grid in As

V and using the
inverse cdf sampling method.
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(iii) Sample a new rsV from the conditional posterior

P (rsV |·, {Os}) = P (rsV |xs, A
s
V ,α, σ2, µr, σ

2

r ,Os)

∝ N(rsV |r̂V , σ̂2

r)×N(rsV |µr, σ
2

r)

× P (As
V |r

s
V ,α, σ2)

(B2)

where r̂V = σ̂2
rA

s
V ∆bTΣ−1

O (Os − µC(xs) − As
V ∆a)

is the least-squares estimate of rV and σ̂2
r =

(∆bTΣ−1

O ∆b(As
V )2)−1 is its variance. A new rsV is

generated by evaluating this on a fine grid in rsV between
0.18 and 0.50 and using the inverse-cdf sampling method.

(iv) Generalised Gibbs sampling. We translate along di-
rections involving changes in the three parameters:

As
V → As

V + γ, xs → xs + cxγ, rsV → rsV + crγ. (B3)

The direction is randomly chosen each time from the follow-
ing distributions:

cx ∼
1

3
N(−0.60, 0.052)+

1

3
N(−0.55, 0.022)+

1

3
N(−0.50, 0.052)

(B4)

cr ∼
1

3
N(0.03, 0.022) +

1

3
N(0.05, 0.022) +

1

3
N(0.08, 0.022),

(B5)
and the sign of cr is flipped with 50% probability. These dis-
tributions were chosen via experimentation and were found
to significantly help the mixing of the chains. The shift γ is
sampled from

P (γ) ∝ P (As
V +γ, rsV +crγ, xs+cxγ|α, σ2, µr, σ

2

r ;Os) (B6)

by evaluating this density on a fine grid in γ and using the
inverse-cdf method. Then with γ, cx, cr chosen, the transla-
tion Eqs. B3 is performed.

(v) Steps 1-4 are repeated for all stars. Once all individ-
ual parameters have been updated, we update the hyper-
parameters. First, we sample from the joint conditional
posterior density P (µr, σ

2
r |·, {Os}) = P (µr|r̄V , σ2

r)P (σ2
r |s

2
r),

where r̄V is the sample mean of the current rsV of all stars,
and s2r is the sample variance. This is done by drawing σ2

r

from a scaled inverse chi-squared distribution and, condi-
tional on that, drawing µr from a normal:

σ2

r | s
2

r ∼ Inv-χ2(N − 1, s2r) (B7)

µr| r̄V , σ2

r ∼ N(r̄V , σ2

r/N). (B8)

(vi) Next we sample from the joint conditional posterior
P (α, σ2|·, {Os}) = P (α, σ2|{logAs

V , rsV }). This is equiva-
lent to the Bayesian ordinary linear regression problem. If
we let Y be vector with elements logAs

V , then we have
Y |α, σ2, {rsV } ∼ N(Dα, Iσ2). The design matrix D has
rows Ds = [1, (rsV − 0.32)/0.04]. Compute V̂α = (DTD)−1,
α̂ = V̂αD

TY , and

S2

Y =
1

(N − 2)
(Y −Dα̂)T (Y −Dα̂). (B9)

Gibbs sampling proceeds by drawing a new σ2 from a scaled
inverse chi squared distribution, and then, conditional on
that, sampling new α from a multivariate normal:

σ2|S2

Y ∼ Inv-χ2(N − 2|S2

Y ) (B10)

α|Y ,D, σ2 ∼ N(α̂, V̂ασ
2) (B11)

(vii) At this point, we have updated every parameter and
hyper-parameter, and we record the state of the chain S .
We return to step 1 and iterate the Gibbs sampler with the
current parameter values many times until convergence.

We typically run multiple independent chains in parallel
starting from randomised positions and monitor convergence
using the Gelman-Rubin ratio (Gelman & Rubin 1992).
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