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Abstract

Purpose: To present a novel design of an implantable glaucoma valve based on ferrofluidic nanoparticles and to compare it
with a well-established FDA approved valve.

Setting: Massachusetts Eye & Ear Infirmary, Boston, USA.

Methods: A glaucoma valve was designed using soft lithography techniques utilizing a water-immiscible magnetic fluid
(ferrofluid) as a pressure-sensitive barrier to aqueous flow. Two rare earth micro magnets were used to calibrate the opening
and closing pressure. In-vitro flow measurements were performed to characterize the valve and to compare it to AhmedTM

glaucoma valve. The reliability and predictability of the new valve was verified by pressure/flow measurements over a
period of three months and X-ray diffraction (XRD) analysis over a period of eight weeks. In vivo assessment was performed
in three rabbits.

Results: In the in vitro experiments, the opening and closing pressures of the valve were 10 and 7 mmHg, respectively. The
measured flow/pressure response was linearly proportional and reproducible over a period of three months (1.8 ml/min at
12 mmHg; 4.3 ml/min at 16 mmHg; 7.6 ml/min at 21 mmHg). X-ray diffraction analysis did not show oxidization of the
ferrofluid when exposed to water or air. Preliminary in vivo results suggest that the valve is biocompatible and can control
the intraocular pressure in rabbits.

Conclusions: The proposed valve utilizes ferrofluid as passive, tunable constriction element to provide highly predictable
opening and closing pressures while maintaining ocular tone. The ferrofluid maintained its magnetic properties in the
aqueous environment and provided linear flow to pressure response. Our in-vitro tests showed reliable and reproducible
results over a study period of three months. Preliminary in-vivo results were very promising and currently more thorough
investigation of this device is underway.
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Introduction

Glaucoma is a group of diseases that cause loss of vision due to

progressive degeneration of the retinal ganglion cells. [1,2] The

pathogenesis of the disease is still unknown, but it is well

established that lowering the IOP can slow down the progression

of the disease. [3,4] To date, IOP regulation is the primary target

in glaucoma management and is obtained either pharmaceutically

(topical or systemic pressure-lowering drugs) or surgically (trabec-

ular filtration surgery or drainage device implantation).

Among the various surgical procedures, drainage devices have

gained popularity mostly due to their ease of use, their efficacy in

IOP reduction and due to the growing concerns about late

complications associated with standard filtering surgery. [5,6].

Most glaucoma drainage devices are fitted with a soft silicone

tube end that is inserted in the anterior chamber (AC) through a

scleral fistula that shunts aqueous humor (AH) to an end plate with

flow resistance. In plated valves, the end plate is surgically placed

under the conjunctiva in the equatorial region of the globe.

Variations on plate size and valve/shunt architectures have been

described previously.[6–9] These variations were shown to affect

both the IOP as well as the overall function of these devices. The

main drawback in the current designs is that they rely on the

additional flow resistance provided by the conjunctival plate

encapsulation. [5,9] As a consequence, the majority of post-

operative complications are associated with the encapsulation

process resulting in early hypotony or later ocular hypertension.

[6,10] Other factors that may contribute to this process include

ocular injuries, inflammation and autoimmune syndromes. [9]

Other non-valved shunts, such as the ExpressTM are also placed

under a partial-thickness scleral flap which carries similar

complication rate of bleb encapsulation as the current valves. [11].

As a result, there is a clear need for a valve that can reliably and

predictably regulate the IOP without relying on the additional
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resistance from encapsulation (bleb). It will also be advantageous

to have a device designed for external placement of the outlet tip

(plate) while, most important, providing a good closing pressure

thus preventing hypotony. Such valve arrangement could poten-

tially address the complication of plate encapsulation, especially in

keratoprosthesis patients with cicatrizing ocular diseases. [9] The

possibility of placing the outlet tip at the lower lid fornix could

provide accessibility for observation and replacement under a slit-

lamp during a routine clinic encounter.

Ferrofluids are made of magnetic nanoparticles suspended in an

inert, non-magnetic carrier fluid. Due to their small size, typically

10 to 100 nm in diameter, the particles are subject to Brownian

motion. Small magnetite (Fe3O4) particles consist of a single

magnetic domain and exhibit super-paramagnetic properties, i.e. a

drag force along field gradients. To prevent aggregation, the

particles are coated with a surfactant that is compatible with the

carrier fluid they are suspended in. [12] Hence, in the presence of

a static magnetic field, the interfacial force will cause the ferrofluid

to conform to its boundaries. Thus, a ferrofluid in a capillary tube

can act as an on/off valve to flow through capillary blockade. In

order to generate an aqueous flow barrier, both the carrier fluid

and the surfactant must be non-polar to provide water immisci-

bility. Then, a permanent magnet can be used to hold the

ferrofluid in the capillary and a secondary magnet can be used to

adjust the force required to form the capillary barrier. When the

pressure exerted on the ferrofluid by the liquid exceeds the

magnetic force between the secondary magnet and the ferrofluid,

the barrier is broken and flow can initiate. Typically, the distance

between the secondary magnet and the ferrofluid determines the

strength of this barrier as will be described in more detail below.

Within this work, we present a novel, easily replaceable,

ferromagnetic valved tube capable of providing pressure regula-

tion without the necessity of subconjunctival encapsulation. We

describe the design architecture and characterize its performance

in an in-vitro manometric setup. In addition we compare the

performance of the new ferrovalve with an FDA approved

glaucoma valve (AhmedTM). Finally, we undertake characteriza-

tion of the ferrofluid under long-term water and air exposure using

X-Ray diffraction (XRD) analysis.

Methods

Design of the Ferrovalve
The design of the valve was based on soft lithography

techniques using polydimethylsiloxane (PDMS), a very well

characterized and biocompatible polymer. Sylgard 184 (Dow

Corning Corporation, Midland, MI, USA) flexible silicon elasto-

mer was used with a base to curing agent ratio of 10:1 by weight,

to prepare the liquid pre-polymer.

The design of the valve involved 4 steps:

In step 1, a master mold was created using permanent epoxy

negative photoresist SU-8 3050 (MicroChem corporation, New-

ton, MA, USA). The SU-8 was spin-coated on a 3 inches silicon

wafer and exposed to UV light using a photo mask with the desire

features (1000 rpm/100 mm feature size). After developing the

master, PDMS was poured over the master and cured by baking at

65uC overnight (Figure 1).

In step 2, a capillary tube of clear fused quartz (VitroCom

Mountain Lakes, NJ, USA) with inner diameter (ID) 300

micrometers and outer diameter (OD) 400 micrometers was

silanized by flushing it with a PEG-silane solution ([methoxy(po-

lyethyleneoxy)propyl]trichlorosilane, Gelest SIM6492.66). The

capillary was then cut to 5.5 mm length using a diamond blade

and inserted into a soft silicone tube of 300 micrometers ID (VWR

International 60985–700 0.30 mm ID and 0.61 mm OD). The

tube was then mounted on the PDMS mold (from step 1) with two

1/160 cubic rare earth magnets (Nd2Fe14B, K&J Magnetics, Inc.,

Jamison, PA, USA). The PDMS was placed on a silicon wafer in a

petri dish and PDMS pre-polymer was poured and cured at 65u C
over night to embed the capillary tube and magnets in PDMS.

In step 3, the device was cut out from the bulk PDMS (step 2)

and trimmed to its desired shape and size (2.864.762.7 mm in

Length x Width x Height). One millimeter length of silicon tube

was left on both sides for tube connection. A stainless steel tube of

400 micrometer OD and 12 mm length (New England Small

Tube, Litchfield, NH, USA) was used to interconnect the valve

with a longer soft silicone tube (VWR International 60985–700).

The connection was secured with PDMS.

In step 4, a small amount of ferrofluid (,0.1 mL), generously
provided by Ferrotec corporation (Bedford, NH, USA), was

introduced into the capillary using a 30 gauge needle. The

ferrofluid was made of 10 nm monodispersed Fe3O4 particles

suspended in a fluorocarbon carrier oil. The ferrofluid has a

viscosity of 367 cP and maximum magnetization of 404 Gauss (NF

3914). The ferrofluid was securely fixed by the magnetic force of

the two micro magnets, such that the primary micro magnet next

to the tube holds the ferrofluid in place while the secondary acts as

a pressure regulator (Figure 2).

Calibration and Characterization of the Ferrovalve
Before building the final prototype of the ferrovalve with all

components embedded in PDMS, we set up a modular system in

which the magnets could be moved in respect to the capillary tube

containing the ferrofluid, in order to study the pressure/flow

characteristics of the design. The setup was as follows:

The capillary valve was placed on a micro stage (Thorlabs,

Newton, NJ, USA) and connected to a reservoir containing

distilled water (dH2O) via a 40 cm silicone tube (VWR Interna-

tional 60985–700 0.30 mm ID and 0.61 mm OD). The primary

micro magnet was placed adjacent to the capillary valve with the

north magnetic pole towards the direction of the ferrofluid. A

second micro magnet was placed on a separate micro stage with its

south magnetic pole facing the primary magnet (Figure 3).

The primary magnet served as a fixation of the droplet by

providing the highest magnetic attraction on the ferrofluid, while

the secondary magnet placed at the opposite distal end served to

control the opening and closing pressures of the valve. In this way,

the configuration of the PDMS device is replicated in a discrete

fashion that allows adjusting the distance between the second

magnet and the ferrofluid inside the capillary tube.

Each magnet had a surface field of 5754 Gauss providing a

pulling force of 68 g. The maximum energy product ((BH)max) of

each magnet was about 42 MGauss?Oersted (according to the

specifications of the manufacturer).

For experiments aiming at physiologically relevant pressures,

the distance of the secondary magnet was adjusted to provide flow

opening at 10 mmHg of pressure.

A small amount of ferrofluid (0.1 mL) was introduced in the

capillary using a custom-made glass needle. Both magnets

provided bidirectional magnetic attraction to the ferrofluid with

the secondary having less magnetic effect than the primary due to

its greater distance from the capillary (figure 4). Hence, the

magnetic field lines going from one magnet to the other keep the

ferrofluid in place against the flow through the capillary. Only a

high-enough pressure provides the necessary force to displace the

ferrofluid sufficiently to form a channel and allow liquid flow

through the capillary.

Glaucoma Valved Tube
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The dH2O reservoir was elevated to a defined height to

generate a hydrostatic pressure difference, as calculated using the

following formula:

P = rgh.
[P: pressure, r: density of liquid, g = 9.8 N/kg and the value

equals gravitational acceleration, h: height of liquid in meters.].

The hydrostatic pressure was converted to millimeters of

mercury pressure by substituting the liquid density of water

(1.00 g/mL) by the density of Hg (13.55 g/mL). Pressure and flow

measurements were carried out continuously for 3 months.

Pressure calibration was achieved by adjusting the distance of

the secondary micro-magnet to obtain an opening and closing

pressure of 10 and 7 mmHg, respectively. The secondary micro-

magnet was offset horizontally to compensate for the ferrofluid

bending towards the flow direction. Various test pressures were set

by adjusting the height of the dH2O reservoir.

Characterization of the Ferrofluid
To study potential oxidation of the Fe3O4 nanoparticles to

Fe2O3, the ferrofluid was characterized using X-Ray diffraction

(XRD) crystallography. Samples of the ferrofluid were exposed to

either water or air for 8 weeks and chemical analysis was obtained

in order to evaluate the oxidization on the nanoparticles. The

nanoparticles in the ferrofluid were investigated by large angle X-

ray diffraction (XRD, Scintag XDS2000). The peaks of 2h
obtained by the X-ray diffractogram were correlated using the

International Center for Diffraction Data and crystal structure and

composition was identified. In addition, the ferrofluid was assessed

under an optical microscope over the course of the experiment in

order to evaluate its integrity.

The interaction between the ferrofluid and the glass capillary

was assessed with contact angle and adhesion measurements. A

computer-controlled CCD camera (Sony XCD-V50) with green

LED background illumination was used to measure the contact

angle of a ferrofluid droplet on hydrophilic and hydrophobic

coated glass slide in order to assess the surface interaction between

the glass and the ferrofluid. The glass slides we silanized with

either a perfluorosilane (hydrophobic) or PEG-silane (hydrophilic),

while one slide was left non-coated. All slides were thoroughly

cleaned by rinsing them several times with ethanol and water, and

blown dry with compressed filtered air. Contact angle measure-

ments were obtained in air and water interface using a custom-

Figure 1. A silicon wafer with 100 mm height features of negative SU-8 photoresist. The design was used as a master mold for the valve.D.
doi:10.1371/journal.pone.0067404.g001

Figure 2. A prototype implantable ferromagnetic glaucoma valve (ferrovalve). Size comparison with one US cent coin (left), the tip of a
pen (center) and a ruler of 1 cm scale (right). The size of the valve is 2.864.762.7 mm in Length x Width x Height. You can also distinguish the circular
PDMS peg on the tube for scleral suturing.
doi:10.1371/journal.pone.0067404.g002

Glaucoma Valved Tube
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made glass cuvette (figure 5). The adhesion of the ferrofluid to the

various substrates was probed using a jet of pressurized air in an

attempt to blow away the ferrofluid droplet from the substrate.

The results were optically captured as remaining deposits of

ferrofluid on substrates. This qualitative assessment provided

insights to the surface interaction between the different coatings

and the ferrofluid.

Further evaluation of the glass coatings was undertaken with

contact angle measurements of water and Fluorinert FC77 oil

droplets in air and immersed under water.

AhmedTM valve
In order to compare the pressure and flow measurements of the

ferrovalve with the current standard of care, we used the

commercially available, well established, and FDA-approved

AhmedTM Glaucoma Valve (New World Medical Inc., Rancho

Cucamonga, CA). The AhmedTM PF-7 silicone valve was

connected to the same dH2O reservoir, as previously described.

Flow vs. pressure measurements were recorded and the opening

and closing pressure was determined in similar fashion as for the

ferrovalve.

In vivo Experiments
The use of animals for this study was approved by the Animal

Care Committee of the Massachusetts Eye and Ear Infirmary, and

all animal procedures were performed in accordance with the

ARVO Statement for the use of Animals in Ophthalmic and

Vision Research and the National Institute of Health Guidance for

the Care and Use of Laboratory Animals.

Implantation was performed in three NZ White/NZ Red

crossed rabbits (male, weighing 4.3–4.5 Kg). The ferrovalve

housing was connected with a 35 mm of silicone tubing (inner

diameter = 300 mm; outer diameter = 610 mm) that was trimmed

during the surgery and placed at the lower lid fornix temporally.

The tubing was then inserted beneath the conjunctiva and was led

up to the supra-temporal limbus. The tip was then inserted into

the posterior chamber of the eye using a 25 G needle. A small peg,

previously attached to the tubing, was anchored to the sclera with

two 10-0 Nylon sutures, for stability. Thus, the tubing extended

subconjunctivally to enter the eye from a point in the lower fornix.

The ferrovalve housing remained exterior to the conjunctiva at the

inferior lid fornix (Figure 6).

The animals were treated daily with topical Polytrim (polymyx-

in B/trimethoprim, Allergan, Inc., USA) and Pred-forte (prednis-

olone acetate 1%, Allergan, Inc., USA), and followed for two

weeks. Eyes were assessed for inflammation and infection and

daily IOP measurements were performed.

Results

Pressure Calibration
A water-immiscible ferrofluid droplet of 0.1 mL volume was

placed in the tube. The primary magnet was placed in contact

with the tube subsection containing the ferromagnetic droplet and

both were mounted on a microstage (mStage 1). A second magnet

was placed on a different microstage (mStage 2), moving vertically

and opposite to the first (mStage 1). By adjusting the horizontal

spacing between the mStage 1 and mStage 2 to 500 mm, the

magnetic field of the secondary magnet on the ferrofluid droplet

was weakened, thus obtaining an opening and closing pressure of

10 and 7 mmHg, respectively. This pressure calibration was

maintained over the entire duration of the experiment (3 months)

with small variations that resulted to pressure drift of less than

0.5 mmHg. Experimental results at pressure of 7 mmHg over a

period of one week showed no flow or significant leak. Similarly,

Figure 3. Valve calibration using twomovable micro stages. The first stage contains the tube with a micro magnet providing strong magnetic
field on the ferrofluid. The second contains a micro magnet which position can be adjusted to provide weaker magnetic field on the ferrofluid.
doi:10.1371/journal.pone.0067404.g003

Glaucoma Valved Tube
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over a period of 30 days the pressure was varied between 7, 12, 16,

and 21 mmHg. The resulting opening and closing pressure was

maintained as initially calibrated (open: 10 mmHg/close:

7 mmHg) with a small variability of 60.5 mmHg. The flow/

pressure response of the valve showed increase of flow at higher

pressures (1.8 ml/min at 12 mmHg; 4.3 ml/min at 16 mmHg;

7.6 ml/min at 21 mmHg). Flow variations were clinically insignif-

icant during the study period (60.2 mL/min at 12 mmHg).

Analyzing the data collected during the 3 months of experimen-

tation, a linear response was found between flow and pressure

(Adjusted R2= 0.971) (figure 7). The results represent the mean

flow rate at 7, 12, 16 and 21 mmHg of pressure over a period of

three months under varying pressure conditions.

At 12.5 mmHg of pressure the outflow facility achieved was

equal to the aqueous humor (AH) production rate in normal eyes

(,2.5 mL/min). These results suggest that as long as the valve

functions under the pre-defined specifications, the pressure in the

eye cannot exceed the upper threshold of 12.5 mmHg, even if the

valve filters the total AH volume produced per minute.

However, presuming some remaining functionality of the

trabecular meshwork and the uveo-scleral pathway, which are

the principal AH draining sites in the normal eye, this pressure

could easily be reduced to 10 mmHg. Even at this pressure, the

valve would be able to drain approximately 50% of the AH

produced per minute. [13].

The mechanism of opening and closing is presented in figure 8,

which illustrates the shape change in the water immiscible

meniscus of ferrofluid under the influence of various pressures.

XRD Results
The ability of the magnetic Fe3O4 nanoparticles to withstand

oxidization was assessed over an 8 weeks period of exposure to

water and air. This experiment serves as a qualitative predictor of

the performance, integrity and durability of the ferrovalve.

X-ray diffraction (XRD) experiments were performed to

characterize the stability of the Fe3O4 particles suspended in a

fluorocarbon-based carrier fluid. The ferrofluid was exposed to

water and oxygen at room temperature. XRD results before

Figure 4. Representation of the ferrofluidic valve architecture. (a) Enlarged photograph of the valve. An adjustable micro magnet (left), the
capillary with the ferrofluid (center), and the fixed micro magnet (right). (b)Schematic diagram of the ferromagnetic valve.
doi:10.1371/journal.pone.0067404.g004

Glaucoma Valved Tube
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exposure, figure 9(a), and at 8 weeks post-exposure, figure 9(b),

showed that the 2h peaks (the peaks at approximately 30u and

35.5u) are characteristic of magnetite (Fe3O4), suggesting that the

ferrofluid remained chemically stable. Similar results were

previously obtained by the authors in additional experiments

testing the oxidization of the ferrofluid following three months of

flow/pressure exposure (data not shown).

The contact angle of the ferrofluid in air was wair< 25u for plain
glass; 13u for PEG-silane coated glass and 19u for fluorosilane

coated glass. However, the angle measurements in water interface

showed variable results between the coatings with the highest

angle achieved by the plain glass (wwater< 52u), and PEG (wwater<
48u) and the lowest with the fluorosilane coating (wwater< 32u),
figure 10 (a,b).

The contact angle of water was wair< 20u for the non-coated

glass, wair< 37u for the PEG-silane coated glass and wair< 104u for
the fluorosilane coated glass suggesting that the non-coated glass is

more hydrophilic than the PEG-silane coated glass, figure 11.

Figure 5. A computer-controlled CCD camera with green LED background illumination and a water cuvette for measuring the
contact angle of the ferrofluid droplet on coated and non-coated glass slide.
doi:10.1371/journal.pone.0067404.g005

Figure 6. Implantation of the ferromagnetic valve in a rabbit eye. Black arrow indicates the sub-conjunctival tunnel over the valve tubing. A)
The housing remains exterior at the bottom of the lower lid fornix. B) Flow of aqueous humor is shown in vivo.
doi:10.1371/journal.pone.0067404.g006

Glaucoma Valved Tube
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In a different experiment using Fluorinert (FC-77) oil,

simulating the carrier fluid of the ferrofluid, the contact angle in

air was wair< 5u for the non-coated glass, wair< 9u for the PEG-

coated and wair< 26u for the fluorosilane coated glass, while in

water was wwater< 143u for the non-coated glass, wwater< 124u for
the PEG-silane coated and wwater< 38u for the fluorosilane coated
glass.

Increase in hydrophilicity led to increase in contact angle

measurements. However, plain glass exhibited higher contact

angle measurements in water compared to the PEG coated glass.

The adhesion assessment of the ferrofluid with the glass was

achieved using a jet of pressurized air to blow away the ferrofluid

droplet from the glass surface. This has led to the qualitative

characterization of the interaction between the ferrofluid with the

Figure 7. Linearity of the pressure/flow relationship of the ferromagnetic valve (Adj. R2=0.971). The valve provides a flow rate of 1 mL/
min at 10 mmHg of pressure.
doi:10.1371/journal.pone.0067404.g007

Figure 8. The valve mechanism at different pressures. Closed at 7 mmHg (left), open at 13 mmHg (center), open at 18 mmHg providing
increased flow rate (right).
doi:10.1371/journal.pone.0067404.g008

Glaucoma Valved Tube
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glass surfaces. The fluorosilane-coated glass exhibited the highest

adhesive interaction, followed by the PEG and with the plain glass

showing the least interaction, figure 9 (a–c).

AhmedTM Valve
In a series of repeated pressure/flow measurements with the

Ahmed valve, no closing pressure was recordable in an in-vitro set-

up with the outlet tip exposed to atmospheric pressure. Flow was

interrupted only when the dH2O container was completely empty.

Observation under the microscope revealed a continuous sheath

flow between the two parallel membranes that form the valve

mechanism. We also observed that when the accumulated water at

the outlet tip of the Ahmed valve was drained using a filter paper,

the water film between the membranes dewetted, which caused

the membranes to come into contact and interrupt the flow. The

closing pressure at that point was measured to be 2.5 mmHg with

a variation of +/22 mmHg.

In vivo Experiments
Implantation of the valve was successfully performed without

any complications in all three cases. The mean time of surgery was

approximately 40 minutes. The circular PDMS peg resulted in a

Figure 9. Stability analysis of magnetite Fe3O4 nano-particles exposed to water and air exposure using X-ray diffraction analysis.
(a) Top figure: X-ray diffraction analysis (XRD) of the ferrofluid pre-exposure to water and air. The 2h peaks at 30u and 35.5u are characteristic of
magnetite Fe3O4. (b) Bottom figure: X-ray diffraction analysis (XRD) of the ferrofluid post-exposure to water and air for 8 weeks. The 2h peaks at 30u
and 35.5u are characteristic of magnetite Fe3O4. No oxidization was observed on the ferromagnetic nano-particles.
doi:10.1371/journal.pone.0067404.g009

Glaucoma Valved Tube
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good fixation of the tube to the sclera. During the 2 weeks of

follow-up, there were no signs of infection or inflammation other

than a brief period of irritation right after surgery. The

measurement of IOP was performed daily in both eyes, with the

mean values in the valve-implanted eye (11.862 mmHg), signif-

icantly lower than the contralateral control eye (1463 mmHg),

Figure 10. Contact angle measurements of the ferrofluid on different substrates in air (left) and water (center). Images on the right
show the different substrates after the drop of ferrofluid has been blown off with compressed air. (a) Plain glass (non-coated) contact angle and
adhesion measurements. (b) PEG-silane (hydrophilic) contact angle and adhesion measurements. (c) Fluorosilane (hydrophobic coating) contact
angle and adhesion measurements.
doi:10.1371/journal.pone.0067404.g010

Figure 11. Contact angle measurements of a water droplet on non-coated (left), PEG-silane coated (center) and fluorosilane coated
glass slides (right).
doi:10.1371/journal.pone.0067404.g011
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(P,0.0001; paired sample t-test). These values were in agreement

(+/22 mmHg) with those obtained in vitro.

At the last follow-up, two weeks after surgery, a continuous flow

was still noticed at the outlet tip of the valve, demonstrating

functionality during the time of post implantation observation.

Discussion

As previously described, pressure below 5 mmHg (‘‘hypotony’’)

may lead to many ocular complications and may result in loss of

vision as well as loss of the eye. [14] It is essential that any

implantable valve should maintain a critical closing pressure to

avoid hypotony. Available AH drainage devices, such as the

AhmedTM Glaucoma Valve and the BaerveldtH glaucoma implant

rely to various degrees on the extra resistance provided by the

subconjunctival encapsulation of the valve plate in order to

prevent hypotony. However, this encapsulation process is often

delayed and unpredictable due to variable degree of fibrosis of the

bleb. As a result, the post operative management is often

complicated by early hypotony that can cause influx of blood

into the anterior chamber, retinal bleeding and detachment and

later ocular hypertension that can accelerate the glaucoma

progression. Even though the AhmedTM valve is not usually

associated with early post-operative hypotony, our in-vitro results

suggest that it requires subconjunctival implantation to achieve a

closing pressure. No closing pressure was measured when the

outlet tip was exposed to atmospheric pressure. The water

between the valve membranes provide a continuous sheath flow.

We attributed the lack of closing pressure to water surface tension

preventing the membranes from complete de-wetting. During our

experiments we noticed that when the accumulated water at the

outlet tip of the valve was manually removed, a closing pressure

was achieved. We believe that the dewetting of the water film

between the two membranes caused the membranes to adhere.

However, under normal operating conditions of continuous flow

there was no closing pressure, suggesting that the AhmedTM valve

should not be used extraocularly.

Efforts have been made to shunt AH to atmospheric pressure

via a modified AhmedTM valve with a distal tube to the maxillary

sinus or to the lower lid fornix. [9] The incidence of endophthal-

mitis was extremely low and equal to standard trabeculectomy

(0.7% on the basis of 145 cumulative shunt years). In fact, the only

endophthalmitis encountered among 34 patients implanted with

such external valve shunt occurred after a tooth root abscess and

without signs of infection around the shunt. [9] However,

maintaining a closing pressure was impossible, rendering the eye

susceptible to hypotony and its associated visual consequences. In

contrast, the ferromagnetic valve, as described in this study, could

be placed externally in the lower lid fornix via a tube and provide

the desired closing pressure as well as an opening pressure. The

unidirectional flow of AH reduces the possibility of endophthal-

mitis even when the valve is extra ocular.

In this manuscript we present and characterize a novel

glaucoma valve based on ferromagnetic nanoparticles. In the

design of this valve we adhered to the general principles of

simplicity and efficacy. Our work demonstrates in-vitro reproduc-

ible closing and opening pressures of the valve with a hysteresis of

only 3 mmHg between opening and closing pressure.

The excellent pressure response was attributed to the ferrofluid’s

ability of the ferrofluid to radically alter its geometrical charac-

teristics at the event of pressure stimuli.

This work was undertaken in an attempt to address the

limitations of the commercially available devices, which rely on

encapsulation of the valve’s outlet to limit flow. Our promising

preliminary data suggest that further in-vivo evaluation should be

undertaken.

Ferromagnetic Calibration
A custom-made ferrofluid, consisting of water-immiscible

ferromagnetic nanoparticles that are dispersed in a fluorinated

oil as carrier liquid, was used for the design of the valve. Two

permanent NdFeB rare-earth micro magnets were used to provide

non-conduct adjustment of the ferrofluid droplet. The primary

magnet was placed next to the tube sub-section containing the

ferrofluid to hold the droplet from moving with the flow, while the

secondary magnet was placed opposite to the primary, adjusting

the pressure required to bend the droplet and initiate flow. The

bending force was evaluated using liquid flow at various pressures.

The ferromagnetic valve provided flow occlusion at a pressure of

7 mmHg and flow initiation at a pressure of 10 mmHg.

These results suggest that external implantation of the outlet tip

of the valve, such as at the lower lid fornix is possible without the

need of encapsulation for additional flow resistance. External

placement of the valve has the advantage of device accessibility for

direct observation and replacement when needed.

Ferrofluid Biocompatibility
Medical devices and their component materials may leak

compounds or have surface characteristics that can produce

undesirable effects when used clinically. However, based on the

FDA, ISO and JMHLW guidelines, the general testing framework

in the assessment of a device biocompatibility is different between

implantable and external communicating devices. Nevertheless,

any implantable device must comply with the safety and

biocompatibility regulations. The scope of this work was the in-

vitro evaluation of the device, thus literature research was

undertaken to assess the biocompatibility and safety of the

materials used.

Magnetic nanoparticles, such as Fe3O4, have been extensively

used in magnetic field induced localized hyperthermia for the

treatment of cancer,[15–17] for high contrast magnetic resonance

Imaging (MRI) and for iron deficiency due to hemodialysis.

[18,19] No adverse cytotoxic effects have been reported in intra-

venous (IV) administration. Similar nanoparticles were used in this

study.

Perfluoroalkylpolyether (PFPE) is used as carrier fluid and

surfactant to disperse the Fe3O4 magnetic nanoparticles. In

laboratory animal tests, as reported in the manufacturer’s

catalogue, the carrier liquid was found to have a low order of

actuate oral activity. The LD50 dose in rats was greater than

25,000 mg per kg of body weight (data provided by the

manufacturer).

There is no known hazard from short term skin exposure or

inhalation at room temperature, as true for other fluorocarbon oils

that are used in biomedical applications, such as during retinal

detachment surgery. [20,21].

Our new valve is designed such that the outlet tip will be placed

externally in the lower lid fornix. This will minimize the potential

ocular contents exposure to ferrofluid by the extra protection

afforded by the conjunctiva and tear film. In addition, the total

ferrofluid volume in the valve is approximately 0.1 mL, which is a

minute volume compared to the volume used in retinal

detachment surgeries (average 5 mL). We, therefore, expect good

biocompatibility of the device and steps towards in-vivo assessment

of the valve have already been taken by the authors.

Glaucoma Valved Tube
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Flow Measurements
The flow capacity of this valve was studied in this paper under

different pressure regimes. The flow capacity of the valve was

considered as the second most important parameter in the in-vitro

evaluation. IOP is a function of the outflow capacity versus the AH

production rate at a given pressure. At a given IOP the valve

should be able to facilitate the volume of AH that is produced in

the eye per unit time.

Contact Angle Measurements
The variability in the water contact angle measurements was

attributed to the wettability of the glass slide. When the slides were

submerged into water, water molecules compete with the

fluorocarbon molecules in the wettability of the glass. As glass is

hydrophilic, water can wet the surface well and thus reduce the

contact area of the ferrofluid which results in a more compact

droplet. However, the resulting contact angle on the PEG-silane

coated slide was smaller than the plain glass, which led to the

assessment of the ferrofluid interaction with the coating. The

adhesion measurements of the ferrofluid on the glass slides showed

less interaction between the ferrofluid and the plain glass slide.

The results were confirmed using water and FC77 droplets on

non-coated and PEG-silane coated glass. Despite of the increased

hydrophilicity of the PEG-silane, non-coated glass hydrophilicity

was better, providing less adhesion of the ferrofluid on the glass.

These results suggest the non-coated glass is likely to perform

better due to the lower interaction with the ferrofluid.

Reducing the interaction of the ferrofluid with the capillary

walls was shown to provide better ferrofluid adhesion under high

flow rates, smoother bending of the ferrofluid under pressure and

less break-up in the event of micro air bubbles flowing through the

capillary which can cause gradual loss of the ferrofluid material.

XRD Results
Oxidization of ferromagnetic particles is a topotactical reaction

where magnetite (Fe3O4) can become maghemite (c-Fe2O3) upon

further oxidation. Such transformation could decrease the

saturation magnetization of the ferromagnetic particles, changing

the magnetic characteristics of the ferrofluid and permanently

affecting its reliability of the valve. [17].

In vivo Experiments
Implantation of the ferrovalve in 3 rabbit eyes showed

predictable IOP regulation for at least 2 weeks. No inflammation,

keratitis, or other adverse events were noted, indicating that the

valve was well tolerated and biocompatible. In a similar

arrangement in 34 patients operated between 2001–2005, [9] no

discomfort was noted by placing a modified AhmedTM valve at the

lower lid fornix. However, the study was stopped due to hypotony.

The limited discomfort of such an arrangement is attributed to the

lack of lower lid movement during blinking. The implantation of

the ferrovalve was technically uncomplicated. The use of non-

magnetic instruments is recommended to this surgery. The

circular PDMS peg used around the tube provided good fixation

to the sclera with additional sealing of the scleral tunnel. These

preliminary in vivo results were encouraging, and a larger in vivo

study with longer follow up is underway.

Study Limitations
One of the limitations of this device is the incompatibility with

static magnetic field produced either by permanent magnet of by

flow of direct current (DC), such as in magnetic resonant imaging

(MRI) systems. However, this is well known issue with other

implantable devices, such as pacemakers, implantable neurostim-

ulators, cochlear implants and osteosynthesis which face similar

limitations. In the scenario were MRI is inevitable, the valve can

be temporarily removed using a tight suture or a plug around the

tube to prevent AH leakage. More options will be evaluated in

future studies. Walk-through metal detectors, such as those used in

airports do not generate static magnetic fields since they operate in

alternate current (AC). However, Eddy currents can be generated

but are insignificant for the valve since it does not contain active

electronic elements. A broader clinical study incorporating more

animals is necessary to address the aforementioned limitations.

Nevertheless, preliminary in vivo results encourage further explo-

ration in this direction.

Conclusion
In this paper we describe the design and characteristics of a

novel glaucoma valve. The proposed device utilizes a ferrofluid to

provide highly predictable opening and closing pressures while

maintaining ocular tone. Moreover, our valve is suitable for

external implantation, which would facilitate maintenance and

replacement in a non-invasive fashion. Preliminary in vivo results

using rabbits suggest good tolerability and regulation of the IOP.
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