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Introduction

For many bacterial pathogens, the host immune system success-
fully eliminates the invading bacteria and the infection resolves. 
In certain infections, however, bacteria evade the host immune 
system and persist within the host. In some cases these persis-
tent infections are asymptomatic for long periods of time, but 
can undergo future reactivation into clinically significant dis-
ease, or can be associated with malignancy or subsequent disease 
dissemination. Alternatively, some persistent infections result in 
clinically apparent, chronic symptoms. In these cases, even stan-
dard treatment with antibiotics often fails to effectively sterilize 
persistent infections, and prolonged or repeated courses of antibi-
otics are required for successful eradication. At an extreme, life-
long chronic suppression with antibiotics can be required in the 
absence of eradication.

Many factors contribute to the ability of pathogens to establish 
persistent infections, including both host and bacterial factors. 
Certain pathogens appear uniquely adapted to evade the host 
immune system and persist in infected individuals for decades in 
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Certain bacterial pathogens are able to evade the host immune 
system and persist within the human host. The consequences 
of persistent bacterial infections potentially include increased 
morbidity and mortality from the infection itself as well as 
an increased risk of dissemination of disease. Eradication of 
persistent infections is difficult, often requiring prolonged or 
repeated courses of antibiotics. During persistent infections, a 
population or subpopulation of bacteria exists that is refractory 
to traditional antibiotics, possibly in a non-replicating or 
metabolically altered state. This review highlights the clinical 
significance of persistent infections and discusses different 
in vitro models used to investigate the altered physiology of 
bacteria during persistent infections. We specifically focus 
on recent work establishing increased protection against 
oxidative stress as a key element of the altered physiologic 
state across different in vitro models and pathogens.
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the absence of symptoms, for example Mycobacterium tuberculosis 
or Salmonella Typhi.1,2 Other pathogens like Pseudomonas aeru-
ginosa or Escherichia coli can cause both symptomatic acute and 
chronic infections, with specific changes in the host facilitating 
the establishment of a persistent infection. The first section of this 
review highlights the clinical significance of persistent infections 
and the wide range of strategies employed by bacteria to survive 
the host immune system response (see Table 1 for examples of 
bacteria associated with persistent infections). In the second sec-
tion, we discuss different in vitro models used to investigate the 
physiology of bacteria involved in persistent infections. Despite 
differences, many models share a common theme: bacteria adapt 
to environmental stresses imposed by the host by entering a dif-
ferent physiologic state. A key element of this different physi-
ologic state is a non-replicating or slowly replicating growth rate, 
which may have the additional benefit of contributing to a patho-
gen’s defense against antibiotic exposure. Walsh McDermott first 
suggested in the 1950s that the relative metabolic state of bacteria 
affects antibiotic efficacy, causing cells to become “indifferent” 
to antibiotics, thereby relating the physiologic state of bacteria to 
antibiotic efficacy.3

One of the most significant environmental stresses encountered 
by bacteria is the host oxidative immune response. In addition, 
studies have suggested that treatment with bactericidal antibiot-
ics may result in increased oxidative stress via the Fenton reac-
tion, though this finding remains controversial with more recent 
studies questioning this mechanism of cell death.4-9 Increased 
antioxidant capabilities may therefore protect a bacterium from 
both the host immune response as well as antibiotic therapy. In 
this review we specifically focus on recent work demonstrating 
the role of increased defenses against oxidative stress in various in 
vitro models for persistent infections. Increased antioxidant capa-
bilities may protect a bacterium from the host immune response 
as well as facilitate survival during antibiotic exposure, thereby 
enabling the establishment of a persistent infection.

Clinical Significance of Persistent Infections

Asymptomatic persistent infections. Several persistent infec-
tions are clinically asymptomatic yet still have significant conse-
quences for their human host. In some cases these consequences 
represent an increased risk of developing clinically significant dis-
ease at a later time, exemplified by M. tuberculosis and Treponema 
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asymptomatic, persistent infection in the gallbladder may occur 
following an acute episode of typhoid fever or even in the absence 
of a clinical history of typhoid fever.2 These asymptomatic car-
riers shed Salmonella Typhi bacteria in their stools and urine 
without any apparent signs of disease, exemplified by the historic 
case of Typhoid Mary, infecting other individuals and causing 
symptomatic disease. Thus, asymptomatic carriers represent a 
significant public health hazard. In addition, Salmonella Typhi 
infection in the gallbladder is associated with an increased risk of 
carcinoma of the gallbladder.14

Symptomatic persistent infections. In contrast to clinically 
asymptomatic persistent infections, some persistent infections 
are associated with clinically apparent symptoms at the time of 
or intermittently during infection. Many symptomatic persistent 
infections are associated with changes in the host that facilitate 
the establishment of a persistent infection, for example, the inser-
tion of a foreign device. Device associated infections represent 
one of the most common forms of persistent infections. It is 
estimated that more than 50% of hospital-acquired infections 
are due to infected medical devices, including prosthetic joints, 
central venous catheters (CVCs), and prosthetic heart valves.15 
Prosthetic joint infections are often very difficult to diagnose, as 
the patient may present with pain as the only complaint, and diag-
nostic aspiration of the joint may be unrevealing. The mortality 
rate for infected prosthetic hip and knee joints is reported to be 
as high as 2.5% and treatment often requires operative debride-
ment of the joint, possibly including removal of the prosthesis, 
combined with long-term intravenous antibiotic treatment.16,17 
The estimated cost for treating an infected prosthetic joint is 
$50 000, representing a significant burden on the healthcare sys-
tem.18 In the case of CVCs, catheters are rapidly colonized with 
skin organisms after insertion into the body, complicating diag-
nosis of CVC-associated infections. While colonization does not 
uniformly result in disease, colonization increases the risk that 
bacteria may spread hematogenously, resulting in symptomatic 
blood stream infections or secondary infections like endocardi-
tis.19 It is estimated that there are 80 000 episodes of catheter-
related bloodstream infections annually in the US.20

Infection in patients with cystic fibrosis (CF) is another exam-
ple of a persistent infection with devastating consequences. In CF 
patients, mutations in the cystic fibrosis transmembrane regulator 

pallidum, the causative agents of tuberculosis and syphilis, 
respectively. In 95% of patients infected with M. tuberculosis, 
the innate and adaptive immune response is able to successfully 
contain bacterial growth and a clinically silent or latent infec-
tion results. Macrophages, monocytes, and T cells are recruited 
to contain the infection in the lungs by forming well-organized 
structures called granulomas, containing a reservoir of live bac-
teria. The immune response is unable, however, to completely 
sterilize the lungs, resulting in the creation of a long-term reser-
voir of bacteria.1 An individual with latent M. tuberculosis infec-
tion can remain asymptomatic for decades, but has a 10% risk of 
developing symptomatic and infectious disease over the course 
of their lifetime. The risk of developing active disease increases 
if the immune system becomes compromised, for example, from 
HIV, cancer chemotherapy or treatment with a tumor necrosis 
factor (TNF) inhibitor. Similar to M. tuberculosis, T. pallidum, 
described as a stealth pathogen due to poorly antigenic surfaces 
and antigenic variation, represents another pathogen with a 
“latent” asymptomatic stage.10 Following an initial symptomatic 
infection period, the symptoms of syphilis normally resolve in 
the absence of antibiotic treatment. Despite an absence of symp-
toms, however, T. pallidum is able to persist within a diverse range 
of tissues.10 Ultimately, 1/3 of patients with latent T. pallidum 
infection can later progress to tertiary syphilis, the most danger-
ous stage of syphilis infection. Tertiary syphilis is characterized 
by the formation of chronic gummas, which are benign tumors 
commonly affecting skin or bones, neurologic disease affecting 
the central nervous system, and cardiovascular disease including 
syphilitic aortitis.11

In other asymptomatic persistent infections, the consequences 
of infection can include increased risk of malignancy and dis-
semination of disease. Helicobacter pylori is a gram-negative 
pathogen that can colonize the gastric epithelium, resulting in 
an asymptomatic, superficial chronic gastritis. H. pylori infec-
tion can persist for decades with the bacterium employing several 
strategies to evade the host immune system, including suppress-
ing the adaptive immune response and adapting to an intracellu-
lar environment during part of its lifecycle.2 The consequences of 
H. pylori infection include increased risk of duodenal and peptic 
ulcers as well as an increased risk of gastric adenocarcinoma and 
gastric lymphoma.12,13 Finally, in the case of Salmonella Typhi, an 

Table 1. Pathogens associated with persistent bacterial infections

Pathogen Persistent disease Biologic mechanisms

Asymptomatic 
persistent  
infections

Mycobacterium tuberculosis Latent tuberculosis Intracellular growth, persisters

Helicobacter pylori Gastritis, gastric cancer Intracellular growth

Salmonella Typhi Chronic carrier, gall bladder carcinoma Intracellular growth, biofilm formation

Treponema pallidum Latent syphilis Intracellular growth

Symptomatic 
persistent  
infections

Pseudomonas aeruginosa Bronchiectasis/pneumonia in CF patients Biofilms, small colony variants, persisters

Escherichia coli Recurrent urinary tract infections Intracellular growth, biofilms

Staphylococcus aureus Bronciectasis/pneumonia in CF patients; device-associated 
infections

Biofilms, small colony variants

Hemophilus influenza Recurrent otitis media Biofilms

Mycobacterium leprae Leprosy Intracellular growth
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Biofilms are bacterial communities embedded within an extra-
cellular matrix and adherent to a surface,28 for example a foreign 
device in the case of device-associated infections, or gallstones 
in the case of Salmonella Typhi.29 One important characteristic 
of biofilms is the intrinsic resistance of the bacterial commu-
nity to the host immune system. This is due to multiple factors, 
including decreased efficacy of antibodies and antimicrobial 
peptides against bacteria within biofilms, decreased phagocytic 
uptake, and decreased sensitivity to polymorphonuclear leuko-
cyte (PMN)-mediated killing.30-33 The extracellular matrix com-
ponent of a biofilm is also believed to partly limit the diffusion 
of antibiotics. Finally, some persistent infections are associated 
with intracellular growth, including infection by M. tuberculosis, 
T. pallidum, H. pylori, and Salmonella Typhi.2,34 Similar to bio-
films, the intracellular environment confers protection from host 
immune responses including antibodies and complement factors, 
and may limit the effective concentration of antibiotics presented 
to bacteria.

Evidence suggests, however, that the concept of a “protected 
niche” is not sufficient to fully explain persistent infections. 
For example, some pathogens establish persistent infections in 
regions of the host that are not considered protective niches. 
Furthermore, several studies have demonstrated that antibiotics 
can in fact diffuse through biofilms, and imaging studies with 
radiolabeled antibiotics demonstrate that antibiotics do success-
fully penetrate granulomas.35-38 Thus, the barrier argument is 
insufficient to explain the ability of bacteria in these niches to 
survive chemotherapy.

In addition to sequestration from the immune system and 
antibiotics, another factor contributing to persistent infection is 
the ability of bacteria to adopt an altered physiologic state against 
which current antibiotics that predominantly target replicat-
ing cells are less efficacious. Walsh McDermott first suggested 
the ability of bacteria to “play dead” or transform themselves by 
“adaptive plasticity” in 1958.3 He proposed that staphylococci 
and tubercle bacilli in mice adopt an alternative, reversible state 
that is “indifferent” to antibiotics.3 This hypothesis was sup-
ported by later work with M. tuberculosis in an in vivo mouse 
infection model. Mice infected with M. tuberculosis appear to 
clear infection after 12 weeks of treatment with multiple antibi-
otics, as cultures from the homogenized lungs and spleen of these 
mice are sterile. However, with continued observation, 2/3 of the 
mice relapse with drug-sensitive bacteria, either spontaneously or 
with immunosuppression.39 This observation suggests both that 
bacteria are present within the host in a non-replicating or slowly 
replicating state that cannot be easily cultured in vitro, and that 
antibiotics are relatively ineffective against this physiologic state.

Models Used to Study Persistent Infections In Vitro

As efforts have been made to understand the role of altered bacte-
rial physiologic states, specifically non-replicating or slowly rep-
licating states, in persistent infections, several different in vitro 
models have emerged. Here, we focus on five of these models: fac-
ultative intracellular growth, the small colony variant phenotype, 
a “persisters” subpopulation, environmentally induced antibiotic 

(CFTR) lead to defects in chloride transport. As a result, mucus 
in the airways becomes thickened, which results in dilatation 
and cystic changes in the lungs. Together, these changes create a 
niche for pathogens such as P. aeruginosa, Staphylococcus aureus, 
Burkholderia cepacia, and Haemophilus influenza. These patho-
gens are extremely difficult to eradicate from CF patients, and 
ultimately 80–95% of patients with CF die of respiratory failure 
secondary to chronic bacterial infections, often either P. aerugi-
nosa or S. aureus.21

In some cases, symptomatic persistent infections develop even 
in the absence of a clear change in the host environment. These 
pathogens are usually associated with acute infections, but for 
unclear reasons may establish a more persistent infection in some 
individuals. For example, recurrent or chronic cystitis is a com-
mon consequence of an acute urinary tract infection.22 In one 
study, 30% of women experienced at least one culture confirmed 
recurrence within six months of their initial infection.23 In some 
patients recurrent cystitis can become so problematic to neces-
sitate prophylactic or suppressive therapy with antimicrobials.24 
Other examples of symptomatic persistent infections without 
clearly identifiable host risk factors, aside from obvious ana-
tomical factors, include native-valve endocarditis, osteomyelitis, 
chronic sinusitis, and otitis media.

Treatment of persistent infections. It is clear that there are 
indications to treat both asymptomatic and symptomatic per-
sistent infections. Unfortunately, the treatment of persistent 
infections is generally more difficult than the treatment of acute 
infections. In the case of latent M. tuberculosis, the standard 
treatment regimen requires 9 mo of antibiotics, and treatment of 
latent syphilis is three times longer than treatment of acute syphi-
lis infection.25 Chronic Salmonella Typhi infection is extremely 
difficult to eradicate, even with very aggressive antibiotic ther-
apy, and can require removal of the gallbladder.26 Treatment 
of device-associated infections often requires removal of the 
infected device in addition to prolonged courses of antibiotics.27 
Antibiotic therapy against P. aeruginosa and S. aureus infections 
in CF patients becomes less and less effective later in the course of 
disease with increasing resistance in the infecting pathogen, and 
many patients ultimately succumb to infection despite appropri-
ate antibiotic therapy.21

Why are persistent infections so difficult to treat? Numerous 
factors contribute to the difficulty in sterilizing persistent infec-
tions. One contributing factor may be that bacteria often estab-
lish persistent infections within a “protected niche” in the host. 
For example, there are specific regions within the host where 
physical structures may obstruct an effective immune response 
and prevent adequate penetration with antibiotics, notably the 
blood-brain barrier, joint spaces and the sinuses. In other cases, 
the host immune response may actually create a “protected 
niche” by attempting to sequester the bacteria, exemplified by 
granulomas. While granuloma formation during M. tuberculosis 
infection represents a mechanism of host-defense, granulomas 
are also believed to protect bacteria, though incompletely, from 
antibiotics. Finally, some pathogens may develop their own “pro-
tected niche,” either through the formation of bacterial commu-
nities known as biofilms or by adapting to intracellular growth. 
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In non-activated macrophages mycobacteria are able to arrest 
phagosome maturation, preventing fusion with the lysosome. 
The mechanisms responsible for phagosome arrest are not com-
pletely understood, but likely involve multiple factors including 
mycobacterial cell wall lipids as well as effectors secreted via the 
ESX and SecA2 secretion systems.47,48 In IFN-γ-activated macro-
phages, phagolysosome fusion and maturation occurs; neverthe-
less, M. tuberculosis is able to survive in this harsh environment.49 
In response to nitric oxide synthesized by the macrophage, the 
bacterium expresses multiple enzymes and antioxidants to coun-
teract the reactive nitrogen species (RNS) and ROS encountered 
within the phagolysosome, including the KatG catalase-peroxi-
dase, superoxide dismutases, low molecular weight thiols, and an 
NADH-dependent peroxidase.50,51 Mutants with defects in katG 
catalase-peroxidase or superoxide dismutases display decreased 
virulence in mouse infection models, demonstrating that the 
ability of M. tuberculosis to detoxify ROS and RNS is therefore 
crucial for its survival within the host.52,53

The multiplicity of pathways for ROS and RNI detoxifica-
tion within M. tuberculosis may likely provide protection against 
bactericidal antibiotics as well, given data implicating ROS in 
death from bactericidal antibiotics.4-7 Evidence supporting this 
link between the oxidative stress response and antibiotic toler-
ance was recently described in the intracellular model for persis-
tence using the pathogen Mycobacterium marinum. M. marinum 
displays antibiotic tolerance shortly after phagocytosis.54 This 
antibiotic-tolerant phenotype was found to depend on the expres-
sion of bacterial efflux pumps required for intracellular growth. 
Efflux pumps have recently been implicated in the oxidative 
stress response mechanism, perhaps functioning as a mecha-
nism for the bacterium to efflux proteins damaged by ROS.55,56 
While the upregulation of efflux pumps is classically associated 
with increased efflux of antibiotics resulting in lower intracellular 
concentrations, in intracellular mycobacteria, it could also serve 
both as a mechanism for the bacterium to adapt to intracellu-
lar growth as well as provide protection against hydroxyl radical 
mediated antibiotic killing.

Small colony variants. The small colony variant (SCV) 
phenotype represents another bacterial phenotype associated 
with persistent infections. First described in Salmonella Typhi 
in 1910, more recent work has associated the SCV phenotype 
with P.  aeruginosa and S. aureus infection in CF patients.57-61 
The phenotype, most well studied in S. aureus, is associated with 
smaller colony morphology when plated on agar plates, decreased 
expression of toxins, increased expression of adhesins, intracellu-
lar growth and resistance to antibiotics.62 The SCV phenotype is 
associated with a thick cell wall63 and clinical SCV isolates dem-
onstrate upregulation of genes under the control of the alternative 
sigma factor SigB that plays a role in oxidative stress response, 
suggesting that the SCV phenotype may be a defense mecha-
nism against environmental stress.64 SCV isolates obtained from 
clinical specimens rapidly revert to a wild-type phenotype when 
sub-cultured in vitro, complicating the study of this phenom-
enon.65 However, mutants in the electron transport chain, either 
hemB or menD mutants, mimic the SCV phenotype, and work 
with these mutants has suggested that the SCV phenotype may 

indifference, and biofilms. In each of these models, bacteria 
enter a different physiologic state during persistent infection 
that is associated with refractoriness to antibiotic-mediated kill-
ing. While there are clear differences between these models, this 
review focuses on recent work establishing increased protection 
against oxidative stress as a key element across models and patho-
gens. At the outset we acknowledge that the terminology used 
in the field to describe these phenomena is confusing and vari-
able. The term antibiotic tolerance is often used in the scientific 
literature to describe the phenomena of non-heritable antibiotic 
resistance, but historically antibiotic tolerance has also been used 
to describe specific cases of heritable resistance.40 For clarity, in 
this review we define the term antibiotic tolerance as the reduced 
efficacy of antibiotics in the absence of genotypic resistance.

Intracellular pathogens. Many pathogens involved in persis-
tent infections are facultative intracellular pathogens, including 
uropathogenic E. coli (UPEC), Salmonella Typhi and M. tuber-
culosis. For UPEC and Salmonella Typhimurium, the data sug-
gests that adaptation to the intracellular environment causes the 
bacterium to enter a non-replicating state. Helaine et al. used a 
fluorescence dilution method to quantify bacterial replication 
of Salmonella Typhimurium within macrophages.41 They found 
that after entry into macrophages a subset of the initial popu-
lation did not undergo any replication, suggesting the onset of 
a non-replicating state. Likewise, UPEC, which is primarily an 
extracellular pathogen, has been shown to survive intracellularly 
in a non-replicating state during the course of urinary tract infec-
tions and pyelonephritis. During acute infection, UPEC invades 
superficial epithelial cells. In some cases, the epithelial cells expel 
the bacteria via a TLR4-dependent pathway. However, some bac-
teria escape from endocytic vesicles into the cytoplasm and rep-
licate to form intracellular bacterial communities (IBCs). These 
communities, which have been identified in vivo in women with 
acute cystitis,42 are protected from the host immune system, 
display antibiotic tolerance, and are required for infection.43,44 
Ultimately the superficial epithelial cells undergo apoptosis and 
bacteria contained within IBCs are released.22 At this point, the 
acute infection may resolve, or UPEC may establish a persistent 
infection by invading exposed transitional cells and forming 
“quiescent intracellular reservoirs”.45 These bacteria, contained 
in membrane-bound compartments in bladder transitional cells, 
do not replicate, but are able to survive for months, even in the 
face of antibiotic therapy. These reservoirs of bacteria are then 
thought to represent a source for recurrent or chronic cystitis.45 
Interestingly, the formation of quiescent intracellular reservoirs 
depends on the severity of the initial immune response during 
acute infection.46 It is unclear whether a more severe immune 
response induces phenotypic changes in bacteria that are more 
conducive to chronic infection, or whether a more severe immune 
response simply facilitates chronic infection through damage to 
the epithelium.

Similar to UPEC, M. tuberculosis can replicate intracellularly. 
However, while UPEC requires specific factors to escape from 
the endosome prior to active replication, M. tuberculosis is able 
to replicate within the phagosome, expressing specific factors to 
counteract the harsh conditions encountered in the lysosome. 
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a gain of function and a high persistence phenotype.81 Balaban 
et al. used single cell microfluidic studies to characterize persist-
ers in the hipA7 mutant as well as in a second toxin-antitoxin 
mutant, hipQ, and identified two persister types. Type I persisters 
are generated during stationary phase and are characterized by 
a prolonged lag time when transferred to fresh media.82 Type II 
persisters are continuously generated by a phenotype-switching 
mechanism independent of growth phase.

Stochastic processes within the cell are believed to result in the 
formation of the persisters observed by Balaban et al. Multiple 
pathways have been suggested for persister formation. One of the 
first classes of genes implicated in persister formation was toxin-
antitoxin (TA) genes such as hipA7 and hipQ. Recent transcrip-
tome profiling of persisters, isolated by collecting cells that failed 
to lyse after β-lactam or d-cycloserine exposure, has also revealed 
that several stress response regulons, including the SOS response, 
as well as several toxin-antitoxin (TA) genes, are upregulated in 
persister populations in E. coli77 and in M. tuberculosis.83 One 
mechanism by which TA loci may induce stochastic persistence 
in E. coli was recently described. Many toxin genes, activated 
upon degradation of the cognate antitoxin, encode mRNases that 
rapidly degrade mRNA, stopping translation and replication, 
thereby inducing antibiotic tolerance.84 The degradation of anti-
toxins is mediated by the Lon protease, and stochastic variation 
in the number of Lon molecules within a cell may affect antitoxin 
levels, toxin activity, and therefore persistence rates.84,85 More 
recently, an additional mechanism for stochastic persistence was 
described by Wakamoto et al. in Mycobacterium smegmatis using 
the antibiotic isoniazid (INH). Single cell microfluidic studies 
revealed that stochastic expression of KatG, the enzyme required 
for activation of INH, determined whether a cell survived anti-
biotic stress.86

Recently, several suggested pathways for persister forma-
tion implicate a role for oxidative stress in persister formation 
and survival. Kim et al. observed greater numbers of persisters 
in E. coli subpopulations with normal morphology and lower 
hydroxyl radical concentrations following antibiotic treatment, 
compared with filamentous populations with increased hydroxyl 
radical concentrations, suggesting a role for ROS in persister sur-
vival.87 Oxidative stress is one of several signals that results in 
induction of the SOS response, which has been shown in E. coli 
to induce both β-lactam and fluoroquinolone antibiotic toler-
ance.88-90 More recently, the small molecule indole, induced by 
oxidative stress, has been implicated in persister formation. Lee 
et al. found that exposure to antimicrobials and oxidative stress 
results in increased indole production through transcriptional 
upregulation of the tnaA gene responsible for indole synthesis.91 
Indole is thus secreted by a small subpopulation of E. coli cells in 
response to antibiotic exposure. Indole then induces transcrip-
tional changes in neighboring cells, most notably upregulation 
of efflux pumps and oxidative stress protective mechanisms, 
resulting in antibiotic tolerance in the greater population.91,92 In 
addition, Wu et al. demonstrated that treating an E. coli popula-
tion with the pro-oxidant paraquot results in increased antibi-
otic tolerance within the population via upregulation of MDR 
efflux pumps.93 One possibility suggested by the authors is that 

represent an adaptation to facilitate intracellular survival and 
growth.66 In support of this hypothesis, S. aureus hemB mutants 
have been reported to survive within the lysosome,67 and several 
studies have reported the proliferation and persistent survival of 
SCV S.  aureus within endothelial cells.68-70 The survival of SCV 
within endothelial cells may also be a consequence of decreased 
α-toxin expression and consequently decreased apoptosis of 
infected cells.71 Tuchscherr et al. studied a virulent wild-type 
S. aureus clinical isolate in several in vitro and in vivo infection 
models and found that persistence in all models strongly favored 
the SCV phenotype.65

A mechanism for the rapid switching between SCV and 
wild-type phenotypes was suggested by Cui et al. after study-
ing a S. aureus strain that simultaneously produces both SCVs 
and normal colony variants.72 Whole genome sequencing of the 
two variants revealed that a reversible, large-scale inversion of the 
chromosome occurs at high frequencies, accounting for the two 
observed phenotypes. Comparing the expression profiles of the 
two variants revealed that the SCV was associated with decreased 
expression of genes involved in thiamine metabolism (required 
for menadione synthesis, a component of the electron transport 
chain) as well as oxidative phosphorylation. These findings are 
consistent with prior observations associating SCV with defects 
in the respiratory chain.58 The SCV phenotype is associated with 
tolerance to antimicrobials, which previously has been attributed 
to the decreased growth rate and metabolism associated with this 
phenotype, and decreased antibiotic uptake due to a defect in 
the electron transport chain.73 While these may be contribut-
ing factors, the association of SCV with defects in the electron 
transport chain suggests that the SCV phenotype may also be a 
mechanism to protect the cell against oxidative stress. Repression 
of the electron transport chain will lead to decreased endogenous 
free radical production and decreased superoxide stress.74 The 
SVC phenotype may therefore protect the bacteria from super-
oxide stress encountered during intracellular persistence with 
the additional consequence of protection against bactericidal 
antimicrobials.

Persisters. The term “persisters” refers to a small population 
of bacteria that survives treatment with high doses of antibiotics 
in the absence of genetic resistance. The phenomenon was first 
described shortly after scientists began using penicillin to treat 
bacterial infections. In 1942, Hobby et al. noted that approxi-
mately 1% of hemolytic streptococci survived treatment with 
penicillin in vitro.75 Joseph Bigger, who similarly discovered that 
small numbers of S. aureus cells consistently survive antibiotic 
treatment in vitro without developing genetic resistance, then 
described these surviving bacteria as “persisters”.76 Since these 
initial observations, persister subpopulations have been observed 
in many different human pathogens, including E. coli, S. aureus, 
M. tuberculosis, and P. aeruginosa,76-79 as well as in vivo3 in sev-
eral mouse infection models. Examination of persisters in E. coli 
was facilitated by the discovery of the high persistence hipA 
mutant.80 hipA encodes the toxin in a toxin-antitoxin module, 
with the antitoxin hipB neutralizing hipA activity. Expression of 
hipA in excess of hipB results in cessation of cell growth; the high 
persistence hipA7 mutant has two point mutations resulting in 
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bacteria exhibited tolerance to penicillin.105 In vivo, work in 
M. tuberculosis suggests RelA is also required for persistent infec-
tion, as bacteria with a relA deletion are significantly impaired 
in their ability to establish persistent infection in mice. The 
mechanism linking RelA and persistence has been further sup-
ported in recent work by Nguyen et al., who studied a relA dele-
tion mutant in P. aeruginosa and found that the RelA mediated 
stringent response in P. aeruginosa directly affects antioxidant 
enzyme expression and decreases production of pro-oxidant 
molecules.106 Therefore, the coordinated stress response medi-
ated by RelA results in increased protection against oxidative 
stress, potentially explaining the observed antibiotic tolerant 
phenotype.

Biofilms. Biofilms are bacterial communities embedded 
within an extracellular matrix and adherent to a variety of sur-
faces, including living tissue and indwelling medical devices.28 
An extensive exopolysaccharide layer surrounds bacteria within 
biofilms. This physical barrier is believed to provide protection 
against environmental stresses like heat-shock and desiccation, 
as well as against the host immune system.107 Biofilm formation 
is induced by a variety of stresses, including nutrient limita-
tion, iron limitation, and cell envelope stress. The general stress 
response, regulated by the alternative sigma subunit of RNA 
polymererase, RpoS, is important for biofilm formation as dele-
tion of rpoS leads to decreased biofilm formation in E. coli.108 
Once biofilms are established, the process of detachment, when 
planktonic bacteria periodically escape the biofilm, is also regu-
lated.109 Recently, d-amino acids, produced by many bacteria, 
were shown to break down biofilms and signal for biofilm dis-
assembly.110 The in vivo consequence of biofilm disassembly is 
bacterial dissemination and the establishment of a new nidus of 
infection, potentially explaining the natural history of chronic, 
relapsing infections.109 A caveat to this model, however, is that 
actual in vivo biofilms or bacterial communities may vary in 
their resemblance to in vitro biofilms, depending on the type of 
infection.

Similar to the other three models discussed, bacteria within 
biofilms display phenotypic antibiotic tolerance, and several links 
to oxidative stress within biofilms have recently been described. 
Boles et al. recently showed that bacteria within biofilms expe-
rience significant endogenous oxidative stress and consequently 
upregulate several genes involved in the oxidative stress response, 
including soxS, a regulator of the superoxide response.111,112 This 
induction suggests that increased antioxidant responses within 
biofilms could contribute to the antibiotic tolerant phenotype. 
A link between antibiotic tolerance and oxidative stress has also 
been illustrated in the yeast Candida albicans, using a strain with 
reduced antioxidant capabilities due to the deletion of two super-
oxide dismutases, Sod4 and 5. The C. albicans deletion strain 
exhibited significantly less antibiotic tolerance in biofilms com-
pared with the wild-type strain.113 Finally, the work in P. aeru-
ginosa demonstrating a RelA-dependent antioxidant response 
discussed in the context of antibiotic indifference is also relevant 
to biofilms. Bacteria within biofilms are relatively starved of 
nutrients due to reduced diffusion through the biofilm, result-
ing in induction of the RelA-mediated stringent response with 

upregulation of the MDR efflux pumps results in an effective 
decrease in fluoroquinolone concentration, allowing for the sur-
vival of a greater number of bacteria. An alternative explanation 
is that increased expression of MDR efflux pumps, implicated as 
an important component of the oxidative stress response, may 
provide increased protection against oxidative stress and facilitate 
bacterial survival even at the same intracellular concentration of 
antibiotic.55,56 The importance of the oxidative stress response 
in persister populations was further highlighted by recent work 
demonstrating that the persister subpopulation in M. smegmatis 
and M. tuberculosis is differentiated from the larger antibiotic sus-
ceptible population by differential sensitivities to ROS.94 When 
decreased concentrations of ROS are achieved, either through 
small (20%) reductions in oxygen tension or with the addition 
of thiourea, a free radical quencher, the antibiotic tolerant per-
sister population survives antibiotic treatment. In contrast, when 
increased concentrations of ROS are achieved via redox cycling 
with the antibiotic clofazamine, the persister population is unable 
to survive antibiotic treatment.95 It is intriguing to conjecture 
based on the differential susceptibilities of persisters to ROS in 
M. smegmatis that the stochastic expression of KatG recently 
observed in M. smegmatis may affect bacterial survival not only 
from differential antibiotic activation, but also from enhanced 
protection against oxidative stress.86

Environmentally induced antibiotic indifference. 
Environmental stress, for example the deprivation of nutrients, 
hypoxia or low pH, induces the phenotype of antibiotic indif-
ference, characterized by arrested growth and population-wide 
antibiotic tolerance.96-102 Similarly, stationary phase bacteria, 
which encounter the depletion of nutrients and changes in the 
pH of the media, also exhibit antibiotic indifference. While sta-
tionary phase is associated with both “environmentally induced” 
antibiotic indifference and the generation of type I persisters 
described above, important differences exist between these two 
models for antibiotic tolerance. In the case of persisters, station-
ary phase cells are diluted into fresh media prior to antibiotic 
challenge and only a minority of the population survives. With 
antibiotic indifference, the bacteria are held in stationary phase at 
the time of antibiotic challenge and a majority of the population 
survives (Fig. 1). It is not known whether a common biological 
mechanism contributes to these two different antibiotic tolerant 
phenotypes.

The antibiotic indifferent phenotype observed after nutri-
ent deprivation is associated with a coordinated transcriptional 
response to carbon and amino acid starvation, called the strin-
gent response. The stringent response is mediated by the produc-
tion of hyperphosphorylated guanine nucleotides, (p)ppGpp, 
by the protein RelA.103 The (p)ppGpp molecule synthesized by 
RelA has multiple roles in the cell, including binding to RNA 
polymerase and changing transcription factor expression and 
activity as it coordinates the extensive bacterial response to 
stress. In addition, (p)ppGpp production is important for the 
antibiotic tolerance phenotype in vitro. In E. coli relA deletion 
mutants that are unable to synthesize (p)ppGpp, nutrient starva-
tion does not elicit tolerance to penicillin.104 Conversely, when 
the relA gene was used to overexpress (p)ppGpp in E. coli, the 
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intracellular bacterial communities in uropathogenic E. coli, as 
it has been suggested that the intracellular bacterial communities 
of UPEC are actually organized within biofilms on the surface 
of intracellular membrane surfaces.22 The complex relationships 
between the models for persistent infections can also be observed 
within the larger context of clinical infections, for example, pseu-
domonas infection in CF patients. P. aeruginosa forms biofilms 
within the cystic fibrosis lung,117 and P. aeruginosa and S. aureus 
infections in CF patients are both associated with small colony 
variant phenotypes. Finally, clinical isolates of P. aeruginosa cul-
tured from CF patients contain increased numbers of “persisters” 
when tested in vitro.118

Conclusions

Many different models have been proposed to explain chronic 
infections and their associated antibiotic tolerance in the absence 
of genetic resistance, including facultative intracellular growth, 
small colony variants, persister populations, environmentally 
induced antibiotic indifference, and biofilm formation. In light 

subsequent increased protection from oxidative stress. In addi-
tion, RelA has been shown to be important for successful biofilm 
formation in Streptococcus mutans.114

In many ways, the biofilm model highlights how the different 
suggested mechanisms for antibiotic tolerance may be occurring 
simultaneously and may be interconnected. For example, some 
studies suggest that the antibiotic tolerance phenotype observed 
within biofilms results from antibiotic indifference induced in 
response to oxygen or nutrient deprivation.36,115 Other studies 
have suggested that the unique physiologic state of stochastic 
persisters is similar to the physiologic state of bacteria within bio-
films, and pre-existing persisters in a population may even rep-
resent a mechanism for initiation of biofilm formation.37 Finally, 
bacteria with a small colony variant phenotype are associated 
with enhanced biofilm formation.59,116 Thus, antibiotic tolerance 
observed within biofilms is the result of the bacterial popula-
tion exhibiting characteristics of several different in vitro mod-
els, including facultative intracellular growth, environmentally 
induced antibiotic indifference, stochastic persisters and small 
colony variants. Biofilms are also believed to play a role in the 

Figure 1. Persistence vs. environmentally induced antibiotic indifference. (A) Type I persistence. Slowly replicating, antibiotic tolerant cells result from 
passage through stationary phase, and are characterized by an extended lag time after dilution in fresh media (type I persisters). The number of type I 
persisters observed is directly proportional to the size of the stationary phase inoculum. When the diluted population is exposed to antibiotics the 
majority of cells die, but the persisters survive. Persister cells are represented by red ovals, and rapidly growing, antibiotic-sensitive cells are represent-
ed by white ovals. (B) Type II persistence. Slowly replicating, antibiotic tolerant cells also may be continuously generated during exponential growth 
(type II persisters). When the population is exposed to antibiotics, the majority of cells die, but the persisters survive. When the surviving cells are re-
grown in fresh media, the bacteria regain antibiotic sensitivity as this is a phenotypic change, but new persister cells may be generated. Persister cells 
are represented by black ovals and rapidly growing, antibiotic-sensitive cells are represented by white ovals. (C) Environmentally induced antibiotic 
indifference. Slowly replicating or non-replicating, antibiotic-tolerant cells may also result from environmental stresses like hypoxia or carbon starva-
tion, which induce population-wide antibiotic indifference. When the population is exposed to antibiotics, all the cells survive. When the environmen-
tal stress is removed, the surviving cells resume growth and regain antibiotic sensitivity as this is a phenotypic, not genetic, change. Environmental-
induced antibiotic-tolerant cells are represented by green ovals and rapidly growing, antibiotic-sensitive cells are represented by white ovals. This 
figure depicts theoretical extremes for persistence and environmental-induced antibiotic indifference. In reality, all three types of antibiotic-tolerant 
cells can co-exist depending on the conditions of growth and the culture.
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(Fig. 2). Mounting evidence suggests that bacteria confronting 
host immunity within many different environments are trying 
to protect themselves from oxidative stress.74 Thus, it is tempt-
ing to hypothesize that the same bacterial adaptive responses to 
oxidative stresses in the host microenvironment may provide the 
additional benefit of facilitating bacterial survival during anti-
biotic exposure. This survival advantage may reflect the physio-
logic changes occurring in bacteria in response to oxidative stress, 

of the wide range of experimentally supported models, it is likely 
that numerous mechanisms, rather than a single one, play a 
role in the establishment of a chronic infection and the associ-
ated difficulty in sterilizing these infections.119 In this review, 
we highlight that despite the heterogeneity of the mechanisms 
contributing to the antibiotic tolerant population, the cellular 
response to oxidative stress may be a shared theme among the 
diverse pathways to chronic infections and antibiotic tolerance 

Figure 2. The role of oxidative stress in different in vitro models for persistent infections. (A) Biofilms. Bacteria in biofilms are exposed to increased en-
dogenous oxidative stress, resulting in upregulation of soxS, a regulator of the superoxide response. In addition, for bacteria in biofilms or exposed to 
starvation conditions, the RelA mediated stringent response results in increased expression of superoxide dismutases (SOD) and decreased expression 
of pro-oxidants (HAQ). As a result, bacteria exhibit higher tolerance to ROS. (B) Persisters. Persisters have been shown to exhibit differential sensitivity 
to ROS compared with rapidly growing, antibiotic susceptible bacteria. Proposed mechanisms include increased expression of efflux pumps, a compo-
nent of the oxidative stress response, the secretion of indole, which may induce oxidative protective mechanisms in neighboring cells, and upregula-
tion of the SOS response. (C) Intracellular infection. M. tuberculosis, an intracellular pathogen, expresses specific factors to counteract the ROS and RNS 
encountered in the phagosome, including expression of efflux pumps, superoxide dismutases and low molecular weight thiols. Antibiotic tolerance 
within the macrophages is mediated by the expression of efflux pumps in M. marinum. (D) Small colony variants. The small colony variant phenotype, 
which may represent an adaptation to facilitate intracellular survival and growth, is characterized by deficiencies in the electron transport chain. 
Repression of the electron transport chain results in the generation of fewer ROS within the cell as well as reduced ATP production and transmem-
brane potential, all of which may affect antibiotic efficacy. In all panels, antibiotic tolerant cells are represented by black ovals, and antibiotic sensitive 
bacteria are represented by white ovals.
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small molecules have the potential to more effectively sterilize 
infections that currently defy our antibiotic arsenal.95,119,120 By 
impairing protective mechanisms against oxidative stress, these 
“new therapeutics” may serve the dual function of acting on 
bacteria as primary antibiotics, as well as impairing the bacterial 
defense to host immunity.
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allowing survival at the same intracellular concentration of anti-
biotic. Alternatively, the upregulation of efflux pumps as part of 
the oxidative stress response may decrease the effective intracel-
lular concentration of antibiotics, enabling bacteria survival. The 
link between the oxidative stress response and persistent infec-
tions suggests a new approach to managing persistent infections, 
regardless of the underlying mechanism. If small molecules can 
be identified that potentiate oxidative stress or subvert cellular 
mechanisms that protect against reactive oxygen species, these 
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