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Abstract

Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression
quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover,
recent technological developments and cost decreases have further enabled studies to collect expression data in multiple
tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs
more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related
to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to
detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However,
eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This
heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop
a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs
across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many
eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that
accurately predicts whether an eQTL has an effect in a particular tissue.
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Introduction

Advances in genotyping and gene expression technologies have

enabled researchers to study associations between genetic variants

and gene expression levels. These studies often treat expression

levels as quantitative traits and apply statistical tests to identify

genomic locations known as expression Quantitative Trait Loci

(eQTLs) that segregate the traits. Genome-wide maps of eQTLs

for several organisms including budding yeast [1,2], Arabidopsis

[3], mouse [4,5] and human [6,7] have been successfully

generated. Furthermore, recent technological developments and

cost decreases in microarrays allow studies to collect expression

data in more than one tissue in human [6,8,9] and mouse [4,5]. A

collection of expression data from multiple tissues enables studies

to explore the tissue-specific nature of eQTLs as well as their

global effects on different types of tissues.

Multiple tissue datasets can potentially allow studies to more

effectively identify eQTLs by combining information from

multiple tissues. Due to a limited sample size, a standard single

tissue eQTL method or ‘‘tissue-by-tissue’’ approach that examines

each tissue individually may not detect an eQTL in any one tissue,

or it may overestimate the proportion of tissue specific eQTLs

[10]. However, if a genetic variant is associated with the

expression of a gene in more than one tissue, we can aggregate

information from multiple tissues to increase statistical power. This

idea is similar to the idea of meta-analysis in genome-wide

association studies (GWAS) that combines results of several studies

on the same phenotype. In our case, each tissue is considered as a

separate ‘‘study’’ in the meta-analysis.

One key difficulty in combining results from multiple tissues is

that it is not known in which tissues a genetic variant has an effect.

For example, a variant may influence gene expression in all tissues,

may have different effects on different tissues, or may have an

effect in some tissues but may not have any effect in other tissues.

This phenomenon, different effect sizes among tissues, is called

heterogeneity. Meta-analysis methods have different assumptions

on the distribution of effect sizes, and to better detect eQTLs,

studies will perform best if they apply a meta-analysis method

whose assumptions are consistent with the actual effect sizes of

eQTLs in multiple tissues. For instance, if an eQTL has an effect

in all tissues, studies would perform best if they utilize the fixed-

effects model (FE) [11–13] that assumes no heterogeneity. On the

other hand, to effectively detect an eQTL whose effects on gene

expression differ across tissues, studies will perform best if they

apply the random-effects model (RE) [14–18] that considers

heterogeneity.
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Another challenge in applying meta-analysis to multi-tissue

datasets is that studies often collect multiple tissues from the same

individuals, which may cause the expression between tissues of the

same individual to be correlated. This correlation may cause false

positives for standard meta-analysis methods which assume a

disjoint set of individuals in each study.

In this paper, we present a novel approach called ‘‘Meta-

Tissue’’ that identifies eQTLs from multiple tissues by utilizing

meta-analysis. The critical advance of our methodology is that we

extend meta-analysis to a mixed model framework. We apply the

mixed model to account for the correlation of expression between

tissues, and perform meta-analysis to combine results from

multiple tissues. Since we do not know in advance the distribution

of effect sizes for eQTLs among different tissues, we utilize both

the FE and RE models to identify as many eQTLs as possible, and

for RE, we use a recently developed random-effects model [18]

that achieves higher statistical power than the traditional random-

effects model. We first show by simulations that Meta-Tissue is

more powerful than the tissue-by-tissue approach in detecting

eQTLs when eQTLs have effects in multiple tissues, while

controlling for the false positive rate correctly.

We then apply Meta-Tissue to a mouse expression dataset. This

dataset is ideal for evaluating methods for discovering eQTLs for

several reasons. The data are generated through a cross which

limits the genetic diversity in the dataset, and all variants have

similar frequencies which eliminate effects of allele frequency on

power. In addition, the dataset contains gene expression from

many different tissues and different numbers of individuals for the

tissues, allowing us to compare results between different scenarios.

We analyze four tissues from 50 samples per each tissue and ten

tissues from 22 samples. We apply Meta-Tissue to both datasets

and demonstrate that Meta-Tissue detects many eQTLs that are

undetected by the tissue-by-tissue method.

In addition to accurately detecting eQTLs from multiple tissues,

our method can also predict whether an eQTL affects or does not

affect expression in a specific tissue. Predicting the existence or

absence of an effect is a very difficult problem in meta-analysis,

and it is known that making predictions based on p-values is not

effective [19]. One of the reasons is that a non-significant p-value

is not necessarily evidence of an absence of an effect since the

study may be underpowered. Our method instead computes the

posterior probability of the presence or absence of an effect for

each study building on recent work in interpretation of meta-

analysis [19]. Applying the framework to the four and ten tissue

datasets, we identify more eQTLs that are predicted to have effects

in all tissues compared to the p-value based approach, which are

interesting potential candidates with possible global regulatory

mechanisms. Meta-Tissue is publicly available at http://genetics.

cs.ucla.edu/metatissue/.

Results

Meta-Tissue
The main idea of Meta-Tissue is that it combines the effect size

estimates from multiple tissues using a ‘‘meta-analysis’’ approach.

Meta-analysis techniques are widely applied to combine the results

of GWAS studies. In our case, we consider each tissues as a

‘‘study.’’ This has the advantage of increasing the statistical power

to detect eQTLs shared across tissues. There are several challenges

corresponding to the inherent differences between combining

GWAS studies and expression quantitative trait loci studies in

multiple tissues. The first challenge is that we expect that there

may be differences in effect sizes between tissues. For this reason,

we utilize both the random-effects model which allows Meta-

Tissue to detect eQTLs when heterogeneity is present, and the

fixed-effects model when it is not. A second challenge is that in

many multi-tissue eQTL study designs, multiple tissues are

collected from the same individuals which induce correlation

between measurements of expression levels in different tissues.

However, meta-analysis methods assume that studies are inde-

pendent and may be susceptible to false positives. To overcome

this challenge, we utilize the linear mixed model to correct our

effect size estimates before performing the meta-analysis.

We assume that multi-tissue eQTL studies collect expression

values of G genes from N individuals in T tissues. However, those

N individuals are not necessarily the same for all T tissues; some

individuals may provide a subset of tissues. The studies also collect

genotype information of M SNPs from the individuals. To

determine eQTLs in a specific tissue, or pairs of SNP and gene

that are significantly correlated, eQTL studies often use the

following linear model.

y
g
t ~1atzxjbtze,

where y
g
t is gene expression g of individuals in tissue t, xj is

information on SNP j, and 1 is a vector of ones. bt is the effect size

of SNP j on gene g in tissue t, and if it is not zero, we claim the

pair of SNP j and gene g as an eQTL. The Tissue-By-Tissue

(TBT) approach computes bt for every tissue (t[f1 . . . Tg), and

determines whether at least one bt is not zero.

To increase the statistical power to detect eQTLs, Meta-Tissue

utilizes meta-analysis that combines bt from T tissues. A naive

approach to apply meta-analysis to multi-tissue eQTL datasets is

directly using bt computed from the linear model for TBT. This

approach, however, violates the main assumption of meta-analysis

that bt is independent for T tissues. Because multiple tissues are

often collected from the same individuals, there exists correlation

between gene expression values across different tissues, and this

leads to correlated bt.

To apply meta-analysis to correlated bt, Meta-Tissue uses a

linear mixed model to explicitly capture correlation between bt:

Yg~1azXjbzuze,

where Yg and Xj contain gene expression and SNP information in

all T tissues, and Figure 1 shows how they are encoded using a

simple example. u is the random effect of a mixed model due to

Author Summary

The combination of gene expression and genetic variation
data has enabled the identification of genetic variants that
affect gene expression levels. It has been shown that some
variants influence gene expression in only one tissue while
others influence gene expression in multiple tissues.
However, an analysis of multiple tissue data using
traditional statistical methods typically fails to identify
those variants that affect multiple tissues because each
tissue is treated independently and due to low statistical
power, the effect in a given tissue may be missed. Building
on recent advances in statistical methods for meta-analysis
and mixed models, we present a novel method that
combines information from multiple tissues to identify
genetic variation that affects multiple tissues. We show
that our method detects more genetic variation that
influences multiple tissues than traditional statistical
methods both on simulated and real data.

Identification of eQTLs from Multiple Tissues
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the fact that multiple tissues are collected from the same

individuals. u follows the multivariate normal distribution whose

covariance matrix (D matrix in Figure 1) represents sharing of

individuals in multiple tissues. Meta-Tissue applies the generalized

least squares to estimate b and its covariance or correlation

between bt. Meta-Tissue ‘‘un-correlates’’ bt using the covariance it

estimated and use the ‘‘un-correlated’’ bt for meta-analysis (see the

Materials and Methods section for more details).

There is a fundamental difference between Meta-Tissue and the

TBT approach. The statistical test in Meta-Tissue tests whether or

not a gene is involved in an eQTL in any of the tissues. In other

words, the null hypothesis of Meta-Tissue assumes that no effect is

present in any of the tissues for a specific gene. A rejection of this

null hypothesis is effectively predicting the presence of an effect in

at least one of the tissues. However, the tissue-by-tissue approach

tests whether or not an eQTL is present in each tissue. Hence, the

null hypothesis of TBT assumes that no effect is present in a

specific tissue. This means that Meta-Tissue performs one test per

gene and TBT performs one test per gene in each tissue. In our

comparisons of Meta-Tissue and TBT, we adjust the significant

thresholds so that the overall false positive rate of implicating any

tissue of a gene in an eQTL is constant for both methods.

Once we identify a significant association using Meta-Tissue,

this means that at least one of the tissues contains an eQTL. In

order to identify which subset of the tissues contain an eQTL, we

utilize a recently developed meta-analysis interpretation frame-

work which computes an m-value statistic for each tissue [19]. The

m-value estimates the posterior probability that an effect is present

in a study included in a meta-analysis. Utilizing the m-values, we

can predict tissues in which an effect is present.

Power comparison by simulation
We first simulate gene expression data to compare the power

between the traditional Tissue-By-Tissue approach (TBT), Meta-

Tissue FE, and Meta-Tissue RE. We create a dataset that has 100

individuals with one SNP and one gene expression level simulating

one eQTL. We set the minor allele frequency to 30%. We

simulate four tissues and consider four scenarios where a SNP has

the same effect in (1) a single tissue, (2) in two tissues, (3) in three

tissues, and (4) in all four tissues. The first three scenarios

correspond to eQTLs with heterogeneity while eQTLs have no

heterogeneity in the last scenario. We check I2 statistics [20] of

eQTLs that measure the magnitude of heterogeneity in each

scenario and verify that eQTLs have high levels of heterogeneity

in the first three scenarios, but very low levels in the last scenario

(Figure S1). We assume that each individual provides four tissues,

and hence this simulation corresponds to a repeated measures

design. We use the mixed model discussed in the Materials and

Methods section to generate the gene expression levels of

individuals while taking into account the repeated measures

design. We generate 1,000 datasets (each a potential eQTL) and

the power is estimated as a proportion of eQTLs detected at a

significance threshold of 5|10{8 for meta-analysis methods. We

choose this threshold because the number of tests we perform in

mouse datasets is on the order of one million (135 SNPs|10,588

genes). The significance threshold adjusted for one million tests as

in typical GWAS is 5|10{8. For TBT, we apply a significance

threshold of 1:25|10{8(5|10{8=4) such that the overall false

positive rate of TBT is the same as that for Meta-Tissue as

discussed in the previous section.

To apply the proposed methods to the simulations, we use the

following approach. For TBT, we perform a standard F-test using

a linear model to obtain a p-value for each pair of a SNP and a

gene expression level in each tissue (see Materials and Methods).

The tissue-by-tissue approach declares a SNP-gene expression pair

as an eQTL if the p-value for the association statistic is below the

threshold for any one of the tissues. For Meta-Tissue, we first

perform generalized least squares (GLS) to correct for the fact that

individuals are shared among tissues. Meta-Tissue then combines

information from multiple tissues to obtain either fixed effect or

random effect meta-analysis p-values as described in the Materials

and Methods section. A SNP-expression pair is considered as an

eQTL if its meta-analysis p-value is below the significance

threshold. As a separate simulation, we verify that both of our

Figure 1. A simple example showing how gene expression and SNP in multi-tissue eQTL studies are encoded in the mixed model of
Meta-Tissue. This example has five samples (S1, S2, S3, S4, and S5) in three tissues (T1, T2, and T3). The leftmost table shows which tissues are
collected from each sample; yij means gene expression of jth sample in ith tissue, and NA means the tissue is not collected. In this example, each
tissue has gene expression measured in three samples. Yg is a vector containing expression of samples in all tissues; there are a total of 9 gene
expression values. In the Xj matrix, xi denotes genotype of ith sample. The b matrix contains three intercepts (at) and three bt for the three tissues. u

is the random effect of the mixed model, and u*N (0,s2
v D). D is 9|9 matrix whose entry at ith row and jth column is 1 if the ith and jth entries of

Yg are collected from the same individual, and 0 otherwise.
doi:10.1371/journal.pgen.1003491.g001

Identification of eQTLs from Multiple Tissues
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implementations (Meta-Tissue FE and RE) control the false

positive rates (Text S1). This simulation also shows that utilizing

the mixed model is critical for controlling false positives when

expression levels from multiple tissues are collected from the same

individual.

Figure 2 shows that Meta-Tissue methods are more powerful

than TBT when effects exist in multiple tissues; Meta-Tissue RE is

the most powerful when an eQTL has effects in two or three

tissues, and Meta-Tissue FE outperforms TBT and Meta-Tissue

RE when the effects exist in all tissues. The TBT approach has

higher power than Meta-Tissue methods when the effects exist in a

single tissue. These results show that TBT is an ideal approach to

detect an eQTL that is specific to a certain tissue while Meta-

Tissue approaches are ideal for detecting an eQTL that has effects

in more than one tissue. As the number of tissues with effects

increases, the power of Meta-Tissue methods increases while that

of TBT decreases. These results suggest an integrated approach in

eQTL studies to apply TBT for detecting tissue-specific eQTLs

and Meta-Tissue methods for detecting eQTLs shared between

tissues.

Simulation of heterogeneity in multiple tissues using
mouse data

To verify the results of the previous power simulation in real

multiple tissue data, we simulate heterogeneity using a liver

tissue expression from mouse. This dataset contains 108

samples, 135 SNPs and 10,588 probe expression levels. We

detect 389 eQTLs in this single tissue dataset using the

standard linear model with a p-value threshold of 5|10{8,

which corresponds to the false discovery rate (FDR) of 0.017%

level. We consider these detected associations as the gold

standard for measuring accuracy of methods in this simulation.

We then split the 108 samples into three groups of 36 samples

to simulate three tissues, and this means that eQTLs have

effects in all three tissues. In our simulations, we expect to find

fewer eQTLs because each of our ‘‘tissues’’ only has 36

samples compared to the original 108 samples. We then

consider three scenarios similar to scenarios in the previous

power simulation; (1) eQTLs have effects only in the first tissue

by permuting expression of the second and third tissues, (2)

eQTLs have effects only in the first and second tissues by

permuting expression of the third tissue, and (3) eQTLs have

effects in all three tissues without any permutation. Permuting

the expression of a specific tissue removes effects of eQTLs

from the tissue, and hence allows simulation of heterogeneity.

We apply Meta-Tissue FE, Meta-Tissue RE, and TBT to this

multiple tissue dataset and measure how many eQTLs out of

the original 389 eQTLs each method can recover using the

same threshold (5|10{8=3 for TBT). Because the number of

eQTLs methods recover can change depending on how we

Figure 2. Power comparison between the tissue-by-tissue approach, Meta-Tissue fixed effects model (FE), and Meta-Tissue random
effects model (RE) using simulated data. X-axis indicates the number of tissues having effects out of four tissues, and Y-axis is the power.
doi:10.1371/journal.pgen.1003491.g002

Identification of eQTLs from Multiple Tissues
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split the 108 samples, we perform ten iterations of the

experiment where we divide individuals differently in each

iteration, and average the results.

The result of this simulation shows that Meta-Tissue methods

recover the most eQTLs when eQTLs have effects in more than

one tissue (Figure 3). When effects exist in two out of three tissues,

Meta-Tissue RE recovers the most eQTLs; it recovers 144 eQTLs

out of the 389 eQTLs on average, and this is 27% and 133% more

than the number of eQTLs Meta-Tissue FE and TBT recover,

respectively. When eQTLs have effects in all tissues, Meta-Tissue

FE recovers the most eQTLs, and when effects exist in a single

tissue, TBT does. This result is consistent with the previous power

simulation in which Meta-Tissue methods were more powerful

than TBT when eQTLs have effects in multiple tissues.

Detecting eQTLs in multiple tissue mouse data
We apply Meta-Tissue to detect eQTLs in multiple tissues from

mouse. Our data consists of two sets; one with four tissues (cortex,

heart, liver, spleen), and the other with ten tissues (bone marrow,

hippocampus, kidney, pancreas, stomach, white fat, and the four

tissues). The four tissue dataset has 50 samples per each tissue

while the ten tissue dataset has 22 samples per tissue. In both

datasets, not all individuals provided all different types of tissues;

on average, 34% of individuals are shared between two tissues in

the four tissue dataset while 11% of individuals are shared in the

ten tissues dataset. The number of SNPs (135 SNPs) and the

number of probes (10,588) are the same as those of the liver tissue.

Figures 4A (four tissues) and 4B (ten tissues) show the number of

eQTLs detected by Meta-Tissue RE, Meta-Tissue FE, and TBT

using a threshold of 5|10{8 (5|10{8/the number of tissues for

TBT). The number substantially increases by using Meta-Tissue

RE or FE, showing up to two fold and twelve fold increases

compared to TBT in the four and ten tissue datasets, respectively.

These results indicate that methods that combine results of

multiple tissues outperform a method that uses results of each

tissue separately as all meta-analysis methods detect more eQTLs

than TBT. Moreover, these results suggest a possibility that there

exist a considerable number of eQTLs with different effect sizes

across tissues as Meta-Tissue RE consistently identifies more

eQTLs than Meta-Tissue FE. In addition to the number of eQTLs

(SNP-expression pairs), we also analyze the number of eSNPs

(unique SNPs influencing gene expression) and eProbes (unique

probes for gene expression). Similar to the results of the number of

eQTLs, Meta-Tissue detects more eSNPs and eProbes than TBT

(Figure 5).

Another important implication comes from comparing the two

datasets. TBT finds substantially fewer number of eQTLs in the

ten tissue dataset than in the four tissue dataset. This is possibly

Figure 3. The average number of eQTLs that the tissue-by-tissue approach, Meta-Tissue FE, and Meta-Tissue RE recover from three
tissues generated from the liver tissue. The liver tissue has 108 samples from which we simulate three tissues of 36 samples. X-axis indicates the
number of tissues having effects out of three tissues. The original liver tissue has 389 eQTLs.
doi:10.1371/journal.pgen.1003491.g003

Identification of eQTLs from Multiple Tissues
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because the sample size of each tissue is decreased from 50 to 22.

On the other hands, the meta-analytic methods find more eQTLs.

One possible reason is that the total sample size is slightly

increased from 200 to 220. Therefore, the results demonstrate that

by using information from multiple tissues and leveraging meta-

analysis methods, we may be able to detect eQTLs even if the

sample size for each tissue is small.

In addition to the number of eQTLs that different methods

detect, we also analyze the overlap of eQTLs using Venn diagrams

(Figures 4C and 4D). The Venn diagrams show the number of

eQTLs detected only by each of the three methods, by both TBT

and each of Meta-Tissue methods, by both Meta-Tissue methods,

and by all three methods. In the four tissue dataset, the three

methods detect 493 unique eQTLs overall, and a majority of

eQTLs (95.1% of total eQTL) are detected by either of Meta-

Tissue methods. There are, however, 24 eQTLs (4.9% of total

eQTLs) that only TBT detects, and they are likely to be tissue-

specific eQTLs. In the ten tissue dataset, almost all eQTLs (99.3%

Figure 4. The number of eQTLs detected by the tissue-by-tissue approach (TBT), Meta-Tissue FE, and Meta-Tissue RE in A) four and
B) ten tissues of mouse, and the overlap of eQTLs detected by the three methods in C) four and D) ten tissues. The datasets consist of
the gene expression levels from 50 individuals (four tissues) and 22 individuals (ten tissues). We apply a p-value threshold of 5|10{8 for Meta-Tissue
and a threshold of 5|10{8/the number of tissues for tissue-by-tissue. The Venn diagrams (C and D) show the number of eQTLs detected by either
TBT, FE, or RE, by TBT and either of FE and RE, by FE and RE, and by all three methods.
doi:10.1371/journal.pgen.1003491.g004

Identification of eQTLs from Multiple Tissues
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of total eQTLs) are detected by Meta-Tissue RE or FE, and there

are 4 eQTLs (0.7% of total eQTLs) detected only by TBT, which

may be due to the low statistical power due to the limited number

of samples.

Instead of the common genome-wide significance threshold (e.g.

5|10{8) to identify eQTLs, an alternative approach is to use the

false discovery rate (FDR) approach, and we use the QVALUE

package in R [21] to compute a q-value for each SNP-expression

pair. We consider only cis-eQTLs for the FDR approach; we

consider an eQTL as cis if a SNP is on the same chromosome as

the probe for gene expression. While typical eQTL studies

consider 1 Mb as a distance between a SNP and a probe for cis-

eQTLs, we consider a much longer distance due to a small

number of genotyped SNPs (135 SNPs). Figures S2A and S2B

show the number of eQTLs detected by Meta-Tissue methods and

TBT using FDR of 0.05 level in four and ten tissues, respectively,

and Figures S2C and S2D are Venn digrams showing the overlap

of eQTLs. The results using the FDR approach are consistent with

those using the common genome-wide significance threshold;

Meta-Tissue RE detects most eQTLs among the three methods,

and a majority of eQTLs (86% and 93% of total eQTLs for four

and ten tissues) are detected either by Meta-Tissue RE or FE.

Measuring heterogeneity in mouse data
The number of eQTLs detected only by TBT or by RE in

Figures 4 and S2 indicates that there can be several eQTLs with

different effect sizes in different tissues. To measure the magnitude

of heterogeneity of eQTLs, we use the Cochran’s Q statistic [14]

and the I2 statistic [20]. We make a plot whose x-axis is the I2

statistic and whose y-axis is the log of p-value of Cochran’s Q

statistic, and a histogram showing the distribution of I2 statistics.

Figures S3, S4, and S5 show the heterogeneity of eQTLs detected

by TBT, FE, and RE, respectively, in the four tissues of mouse

data. These plots show that the eQTLs detected by RE show

higher level of heterogeneity than the eQTLs detected by FE, as

expected. Given the p-value threshold of 0:05=k where k is the

number of eQTLs detected, 65, 17, and 53 eQTLs show

statistically significant heterogeneity in TBT, Meta-Tissue FE,

and Meta-Tissue RE, respectively, using the p-value of Cochran’s

Q statistic.

Predicting the presence of effects in multiple tissue data
Our Meta-Tissue approach not only detects more eQTLs from

multiple tissues but also provides an interpretation framework that

predicts whether an eQTL has effects in a specific tissue. Meta-

Tissue computes a statistic called m-value [19], and it is the

posterior probability that an effect exists in a specific tissue. If the

m-value is greater than a threshold t, we predict that an effect

exists, and if it is less than 1{t, we predict that an effect does not

exist. Another approach to predict an effect is to use a p-value. In

this approach, an effect exists if a p-value is less than a significance

threshold and does not exist otherwise.

We first apply this prediction framework to the 3-way split liver

tissue dataset that we previously generated. Recall that the liver

tissue has 389 eQTLs, and we simulated three tissues from it and

three scenarios in which we varied heterogeneity of eQTLs. For

this simulation, we consider only the scenario where eQTLs have

effects in the first two tissues out of three since this corresponds to

heterogeneity in which the number of eQTLs that TBT and Meta-

Tissue recover is relatively large. We measure how accurately

Meta-Tissue and the p-value approach predict the presence and

absence of effects of the 389 eQTLs in the three tissues. More

specifically, Meta-Tissue makes a correct prediction if m-values

are greater than 0.9 in the first two tissues and the m-value is less

than 0.1 in the third tissue (t~0:9). We consider an m-value

prediction to be ambiguous if any of the three tissues has the m-

value between 0.1 and 0.9. If the prediction is not either correct or

ambiguous, it is considered as an incorrect prediction. For the p-

value approach, p-values of the first two tissues need to be less than

the significance threshold (5|10{8/3) and p-value of the third

Figure 5. The number of eSNPs and eProbes detected by the tissue-by-tissue (TBT) approach, Meta-Tissue FE, and Meta-Tissue RE
in A) four tissues and B) ten tissues of mouse. We apply a p-value threshold of 5|10{8 for Meta-Tissue and a threshold of 5|10{8/the
number of tissues for TBT.
doi:10.1371/journal.pgen.1003491.g005
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tissue needs to be greater than the threshold for a correct

prediction. Otherwise, the prediction is an incorrect prediction

since the p-value approach does not have the notion of the

ambiguous prediction. In the original 3-way split liver tissue

experiment, we had ten simulations which differed in how the

individuals were divided. Over the ten simulations, Meta-Tissue

and TBT recovered 146 eQTLs out of total 389 eQTLs on

average (Figure 3). Since we use m-values for the interpretation

purpose (not for detecting eQTLs), we apply m-values to only

those 146 eQTLs. We also predict effects of the 146 eQTLs using

the p-value approach.

Meta-Tissue makes the correct prediction for 35% (51/146) of

the eQTLs and predicts the ambiguous prediction for 56% (82/

146). The p-value approach only makes the correct prediction for

11% (16/146) of the eQTLs. The number of correct predictions of

Meta-Tissue is more than three times greater. In addition, given the

advantage of the fact that Meta-Tissue can make ambiguous

predictions, the number of incorrect predictions for Meta-Tissue

(13/146) is ten times fewer than that for the p-value approach (130/

146). The results demonstrate that by combining the meta-analysis

method and the interpretation framework, we may predict effects of

eQTLs more accurately than the approach utilizing p-values.

We then apply our interpretation framework to the four and ten

multiple tissue datasets from mouse to predict effects of eQTLs

that were discovered using Meta-Tissue and TBT (493 and 568

eQTLs in four and ten tissue datasets, respectively). We calculate

the m-value for each eQTL per each tissue and make a prediction

that the eQTL affects expression in that tissue if the m-value is

greater than 0.9. We also compare our approach to the p-value

approach as in the previous simulation using the same threshold

(5|10{8/the number of tissues).

First, we apply the two approaches to the four tissue dataset,

and Table 1 lists the number of eQTLs predicted to have effects

across various combinations of tissues (e.g. eQTLs affecting

expression in heart/liver, heart/cortex, heart/liver/cortex). The

results show that Meta-Tissue consistently categorizes more

eQTLs having effects in multiple tissues than the p-value

approach. Among those eQTLs, ones that influence expression

levels in all tissues are particularly interesting because they may

provide insights into the global regulatory mechanisms of eQTLs.

Meta-Tissue predicts 283 such eQTLs while the p-value approach

predicts 15 eQTLs. The small number of predictions in p-value

approach is expected because even if the effect exists in all T
tissues, given power p of tissue-by-tissue approach, we can predict

the global effect only with probability pT .

We next predict effects of eQTLs in the ten tissue dataset, and

for this dataset, we would expect to detect a fewer number of

eQTLs having effects across all tissues since it becomes less likely

that all p-values or m-values pass the threshold as we try to detect

effects in more tissues. Table 2 shows the number of eQTLs

predicted to affect expression across different numbers of tissues

considered (e.g. eQTLs having effects across any two tissues, any

three tissues). Similar to the results of the four tissue dataset, Meta-

Tissue predicts more eQTLs with effects in several tissues than the

p-value approach. Unlike the four tissues, we detect a fewer

number of eQTLs having effects in all ten tissues; 134 and zero

such eQTLs by Meta-Tissue and the p-value approach, respec-

tively. The results indicate the intrinsic difficulty in detecting

eQTLs influencing expression across many different tissues.

Discussion

We presented a statistically powerful approach to detect eQTLs

from multiple tissues. Our approach, Meta-Tissue, takes advan-

tage of two meta-analysis methods that differ in their assumptions

on effects of eQTLs in different tissues. The first method assumes

that effects exist in all tissues with the same magnitude, and this

assumption allows us to detect eQTLs shared across all tissues.

The second method assumes that effect sizes of variants are

different among studies. By assuming the heterogeneity, we may

be able to accurately describe the nature of eQTLs whose patterns

of genetic regulation differ across tissues. Meta-analysis methods,

however, assume that studies are independent, and this assump-

tion is unlikely to be true in multi-tissue dataset since studies collect

multiple tissues from the same individuals. This may cause

correlation in expression between tissues, and to correct for the

correlation, we utilized a mixed model that enables the meta-

analysis method to achieve correct false positive rates.

To measure the performance of Meta-Tissue, we first showed

by simulations that our methods are generally more powerful than

a naive approach that looks at results of each tissue individually.

Table 1. The number of eQTLs predicted to have effects by
Meta-Tissue and the p-value approach across various
combinations of the four tissues.

Tissues Meta-Tissue p-values

Cortex/Heart 7 6

Cortex/Liver 1 2

Cortex/Spleen 4 2

Heart/Liver 7 3

Heart/Spleen 7 4

Liver/Spleen 10 2

Cortex/Heart/Liver 28 7

Cortex/Heart/Spleen 49 1

Cortex/Liver/Spleen 17 0

Heart/Liver/Spleen 24 2

All four tissues 283 15

Meta-Tissue uses m-value statistics to predict effects; if m-value is greater than
0.9, the effect exists. The p-value approach uses p-values to make predictions;
the effect exists if p-value is less than the significance threshold (5|10{8/the
number of tissues).
doi:10.1371/journal.pgen.1003491.t001

Table 2. The number of eQTLs predicted to have effects by
Meta-Tissue and the p-value approach across different
numbers of tissues considered in the ten tissue dataset (eQTLs
having effects across any two tissues, any three tissues, etc.).

Meta-Tissue p-values

2 tissues 12 10

3 tissues 7 0

4 tissues 20 4

5 tissues 33 0

6 tissues 36 1

7 tissues 88 0

8 tissues 99 0

9 tissues 124 0

10 tissues 134 0

doi:10.1371/journal.pgen.1003491.t002
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Next, by using data from mouse liver tissue, we simulated the

heterogeneity in effect sizes across a subset of tissues as well as in

all tissues. Meta-Tissue methods were shown to recover more

original eQTLs from multiple tissues than the naive tissue-by-

tissue approach when effects exist in multiple tissues. We then

observed that Meta-Tissue detects many eQTLs that the naive

approach does not detect in four and ten tissue datasets from

mouse. However, we note that there are a few tissue-specific

eQTLs that only the naive approach detects, and hence we

recommend that eQTL studies also apply the naive approach in

addition to Meta-Tissue.

In addition to detecting more eQTLs, Meta-Tissue can also

accurately predict whether an effect exists in a specific tissue.

Meta-Tissue calculates the posterior probability that an eQTL has

an effect in a certain tissue, and we demonstrated that this

probability is more effective in predicting the effect than a p-value

is by using the same liver tissue simulation. We then predicted

effects of eQTLs that we found in the four and ten tissue datasets

and showed our method predicts more eQTLs having effects in

multiple tissues than the p-value approach.

Our approach is fundamentally different from previous

approaches that also attempt to detect eQTLs from multiple

tissues, and to the best of our knowledge, Meta-Tissue is the first

method to apply both a mixed model and meta-analysis methods

to eQTL mapping. A traditional approach to detect associations

from repeated measurements from same individuals such as

multiple tissue data is MANOVA. However, MANOVA is not

directly applicable to our multiple tissue data because not all

samples provided all different types of tissues, and hence our data

are not completely ‘‘repeated measurements.’’ Meta-Tissue is

more general than MANOVA since Meta-Tissue can be applied

to both ‘‘repeated measures design’’ in which individuals are

shared across all tissues and to a scenario in which only a subset of

individuals are shared. Another advantage of our method is that

Meta-Tissue can take into account population structure by adding

an additional variance component term in our mixed model. This

may be important to multiple tissue datasets in which individuals

are sampled from different populations, which may cause inflation

of false positives.

Meta-Tissue leverages the recently developed random effects

model [18] that achieves higher power than the traditional

random effects model [14–17]. Han and Eskin showed that the

traditional random effects model never achieves higher power

than the fixed effects model due to its conservative null hypothesis.

We apply the traditional RE to our power simulation (Figure S6),

the heterogeneity experiment with the liver tissue (Figure S7), and

the four and ten tissue datasets of mouse data (Figure S8), and we

observe the same phenomenon; the traditional RE is always less

powerful than FE and the recently developed RE.

There are a few other methods that attempt to detect eQTLs

from the multiple tissue data such as Sparse Bayesian Multiple

Regression and the GFlasso approach proposed by Petretto et al.

[22] and Kim et al. [23] However, a key difference between these

methods and Meta-Tissue is that they attempt to detect multiple

variants (‘‘multi-locus’’) associated with multiple traits while our

method focuses on an association of a single variant. Another

difference and one main advantage of Meta-Tissue is that since it

is a meta-analysis method, studies can combine results of many

published eQTL analyses without actual data assuming that those

analyses are independent; only results of an eQTL analysis such as

effect size estimates are needed when the analyses are indepen-

dent. Meta-Tissue has another advantage that it is simpler and

more computationally efficient than other methods that involve

computationally challenging algorithms such as Bayesian variable

selection and regularized linear regression including Lasso. While

we applied Meta-Tissue to the multi-tissue dataset with a small

number of genotyped SNPs and samples (135 SNPs and about a

total of 200 samples across tissues), our algorithm and software are

efficient enough to be applied to larger eQTL studies where there

are hundreds of individuals genotyped at hundreds of thousands

SNPs.

Materials and Methods

Mouse strains
F1N2 mice from a C57BL6/N6129/OlaHsd cross were

produced as follows. Male ES cell chimeric founders (E14 ES

line [24]) were crossed to C57BL6/N females (Harlan Laborato-

ries). Male agouti offspring were backcrossed to C57BL6/N

females, and F1N1 offspring were intercrossed to produce F1N2

animals, Figure 6. All animals were maintained in ventilated

microisolator caging (Allentown), fed a standard lab chow diet

(Harlan Teklad) and provided water ad libidem. F1N2 animals

were group housed with littermates until 9 weeks of age. Mice

selected for tissue harvest were singly housed for one additional

week, to minimize socialization effects. Only males were used, to

avoid estrus related effects on gene expression. While the

production crosses segregated various gene targeted alleles, all

mice selected for this study carried only wild type genomes and did

not carry any engineered genomic alterations such as gene

knockouts.

Gene expression
Animals were sacrificed by cervical dislocation and immediately

dissected. A set of thirty tissues were collected from each animal in

a prescribed order, beginning with the pancreas. Each tissue was

briefly rinsed in PBS and deposited in RNAlater (Ambion), held at

room temperature to allow diffusion of RNAlater into the tissue,

and then stored at 286C.

Tissue homogenization, total RNA isolation, cDNA production,

in vitro transcription and fluorescent labeling were performed as

per Affymetrix gene chip recommended protocols. The hybrid-

ization mixes were analyzed using Affymetrix U74Av2 expression

microarrays, washed and scanned using Affymetrix instrumenta-

tion and protocols.

We consider the 10588 probes for which we have annotations.

For each tissue type, we filter out array outliers which show an

average correlation of v0:98 with respect to all other arrays.

The mice were genotyped at 140 SNPs that are polymorphic

between 129S1/SvImJ and C57BL/6J from the JAX SNP

Genotyping Panel [25]. Information on SNPs is listed in Table

S1. We use 135 out of the 140 SNPs that are polymorphic in all

tissues for our analysis.

Normalization and selection of individuals
In our analysis, we consider the gene expression levels of

G~10588 probes collected in 4 tissues (liver, spleen, cortex and

heart) over N~50 individuals. To be consistent with the different

tissue datasets we analyze, we randomly chose 50 individuals from

those datasets that have more than 50 individuals. We first used

RMA to perform background adjustment on the raw expressions

and then quantile normalization to normalize the adjusted

expressions. For 10 tissues, we collect the same number of gene

expression levels over N~22 individuals.

Power simulation framework
Our power simulation assumes that we collect four tissues from

100 individuals, and considers four scenarios where an eQTL has

Identification of eQTLs from Multiple Tissues
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an effect in (1) one tissue, (2) in two tissues, (3) in three tissues, and

(4) in all four tissues. To generate the gene expression level of

individuals that considers the repeated measurements from the

same individuals, we first sample gene expression from the

multivariate normal distribution:

ye~e ð1Þ

where ye is a vector of size 400 corresponding to gene expression

of 100 individuals in 4 tissues, and e*N (0,s2
vDzs2

eI) where D is

a 400 by 400 matrix representing correlation between individuals

across the tissues. More specifically, Dij~1 if i and j are the same

individual between two tissues, and Dij~0 otherwise. I is an

identity matrix with size of 400. s2
v and s2

e are coefficients of the

two variance components, and we use the real mouse dataset to

obtain realistic values of the two coefficients. We estimate s2
v and

s2
e for every pair between a gene expression and a SNP, and find

that on average, s2
v~0:0988 and s2

e~0:9039. We use these values

for our simulation.

After sampling ye, we add a SNP effect to ye for tissues in which

an effect exists using the following equation:

yt~xbtzye
t

where yt is gene expression of 100 individuals in tissue t
(t[f1,2,3,4g), ye

t is ye on tissue t (size of 100), and x is SNP

information of 100 individuals. bt~0 if an eQTL does not have an

effect in tissue t, and btw0 if an eQTL has an effect. Since the

goal is to compare the relative power between methods, we vary

the effect size (bt) depending on the scenario to avoid too high or

too low power. Specifically, we set bt~1:5,1:175,1:0,0:75 for the

scenarios (1), (2), (3), (4), respectively.

Linear model for tissue-by-tissue approach
We assume an additive linear model to represent the

relationship between the expression of one gene and one SNP.

We can write that relationship in the following way for an

arbitrary gene g and SNP j at tissue t:

y
g
t ~1atzxjbtze, ð2Þ

where y is a size N vector denoting gene expression levels of N
individuals, xj is a size N vector denoting SNP, 1 is a vector of

ones, and e*N(0,s2I). To assess the significance of an association

between a SNP and a gene, we perform a standard F-test for the

null hypothesis bt~0 and also obtain an estimate of bt using the

lm function in R. In the tissue-by-tissue approach, if any single

tissue turns out to be significant (bt=0), the pair of SNP and gene

expression are reported as a significant eQTL. TBT can also find

tissues in which an eQTL exists by examining which bt is non-

zero.

Figure 6. The mice were generated by creating a chimera with heterozygous 129/Sv cells in a C56Bl/6J blastocyst. The chimera was
crossed with a wildtype C56Bl/6J to obtain heterozygous KOs and homozygous WTs. The heterozygous KOs were backcrossed to wildtype C56Bl/6J
to obtain animals that are 75% C56Bl/6J. The male and female heterozygous KOs are intercrossed and only the resulting wildtype males are used in
this study. The complicated structure of the cross is due to the fact that the knockouts were designed to be used subsequently for other studies.
doi:10.1371/journal.pgen.1003491.g006
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Meta-Tissue - linear mixed model
We use a linear mixed model to take into account the fact that

eQTL studies collect multiple tissues from the same individuals.

This is called a ‘‘repeated measures design,’’ and the mixed model

is often used to model the correlation induced by the repeated

measurements such as in longitudinal data. Let T be the number

of tissues, and for simplicity, we assume there are N individuals for

each tissue, but individuals collected in one tissue do not

necessarily completely overlap with those in another tissue; it is

possible that some individuals may provide all tissues while others

may provide a subset. We also assume that we have SNP

information for all individuals. We apply the following linear

mixed model to assess the statistical significance between gene

expression g and SNP j:

Yg~1azXjbzuze, ð3Þ

Here is a description of each variable in above equation. Let

NT~N|T .

N Y is an NT|1 matrix denoting expression levels of N
individuals in T tissues. In other words, the first N rows are

expression of N individuals in the first tissue, the next N are

expression in the second tissue, and so on. Expression values of

each tissue are normalized to N (0,1).

N 1 is an NT|T matrix denoting the intercepts for T tissues.

The first column of 1 denotes the intercept for the first tissue;

the first N rows are ones, and the next NT{N are zeros. In

the second column that denotes the intercept for the second

tissue, the first N rows are zeros, the next N rows are ones, and

the next NT{2T rows are zeros.

N a is a T|1 matrix denoting coefficients of intercepts.

N Xj is an NT|T matrix denoting SNP for T tissues. This is

similar to the 1 matrix, and we replace ones in the 1 matrix

with SNP information. For example, in the first column, the

first N rows are SNP information of N individuals in the first

tissue, and the next NT{N rows are zeros.

N b is a T|1 matrix denoting coefficients of SNP effects in T

tissues.

N u is the random effect of the mixed model due to the repeated

measurements of individuals, and u*N (0,s2
vD) where D is an

NT|NT matrix representing how individuals are shared

across the tissues (discussed in the Power simulation framework

section). e represents random errors and e*N (0,s2
eI) where I

is an identity matrix. To efficiently estimate the two variance

components (s2
v and s2

e ), we use the efficient mixed-model

association (EMMA) package [26].

To estimate b and its covariance, we apply the generalized least

squares. Let S~ŝs2
vDzŝs2

eI. Then, the estimated b is

b̂b~ X0jS
{1Xj

� �{1

X0jS
{1Ym ð4Þ

Meta-Tissue - meta-analysis

Given the estimate b̂b~(b̂b1,:::,b̂bT ), we combine information

from multiple tissues by applying meta-analysis to b̂b. If the effect of

eQTL is the same for all tissues, applying fixed effects model (FE)

meta-analysis will be a powerful approach. If the effects of eQTL

differs by tissues, applying random effects model (RE) meta-

analysis will be a powerful approach [18].

Fixed effects model. Fixed effects model (FE) is a meta-

analysis method that assumes the effect size of a variant is fixed

across datasets [12,13], and its statistic is computed based on the

inverse-variance-weighted effect size [27]. Let B1, . . . ,BT and

V1, . . . ,VT be the estimates of effect-size and the standard error of

Bi, respectively, in T tissues. Let m be the unknown true effect size.

The null hypothesis of FE is m~0; in other words, effect size in all

tissues is zero. A statistic of FE (SFE ) and its distribution under the

null hypothesis are

SFE~

PT
i~1 V{1

i BiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i~1 V{1

i

q *N (0,1) ð5Þ

A p-value of SFE is obtained from the standard normal

distribution.

Random effects model. Our Meta-Tissue method leverages

new random effects model (RE) [18] to detect eQTLs from

multiple tissues while taking into account heterogeneity of effect

sizes in different tissues. The assumption of the random effects

model is that the effect size of a variant is different among datasets

and follows a probability distribution with mean m and variance t2.

The null hypothesis of the random effects model is equivalent to

that of the fixed effects model; that is, m~0. The traditional

random effects model, however, assumes a conservative null

hypothesis model. The new random effects model corrects this

conservative null hypothesis model and outperforms the tradition-

al random effects model. More specifically, a statistic of RE (SRE )

is defined as

SRE~
X

log
Vi

Vizt̂t2

� �
z
XB2

i

Vi

{
X Bi{m̂mð Þ2

Vizt̂t2
ð6Þ

where m̂m and t̂t2 are estimated mean and variance of the effect size,

and the maximum likelihood estimates of the two parameters are

calculated iteratively as following

m̂m(nz1)~

P
Vizt̂t2

(n)

� �{1

BiP
Vizt̂t2

(n)

� �{1
t̂t2

(nz1)~

P Bi{m̂m(nz1)

� �2
{Vi

Vizt̂t2
(n)

� �2

P
Vizt̂t2

(n)

� �{2

The initial value of t̂t2 is estimated using approaches in the

traditional random effects model [14,20,28]. We obtain a p-value

of SRE from p-value tables that are constructed from numerous

null statistics.

Accounting for covariance of effect size estimates. Since

we use linear mixed model to account for the fact that multi-tissue

eQTL studies often collect multiple tissues from the same

individuals, our estimates of effect size, b̂b~(b̂b1,:::,b̂bT ) in Equation

(4) can become correlated. The covariance structure is estimated

using the standard formula of the generalized least squares,

var(b̂b)~ X0jS
{1Xj

� �{1

ð7Þ

It is important that the meta-analysis methods account for this

covariance structure of effect size estimates.
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To take into account the covariance structure in meta-analysis,

we use an extension [29] of the Lin and Sullivan approach [30].

Given b̂b and their covariance V~var(b̂b), the optimal fixed effects

model meta-analysis statistic is

SLin~
eTV{1b̂b

eTV{1e

where e is the vector of ones (e~(1,:::,1)). The variance of the

statistic is given

var(SLin)~
1

eTV{1e

Note that if b̂b is independent (V is a diagonal matrix), SLin and

var(SLin) are equivalent to the inverse-variance weighted effect

size estimate (the numerator of equation (5)) and its variance.

It can be shown that this approach is equivalent to building a

new ‘‘un-correlated’’ variance of b̂b,

varnew(b̂b)~Diag(V{1e){1

and then giving b̂b and varnew(b̂b) as input to the traditional meta-

analysis approaches assuming independent estimates [29]. This

‘‘un-correlating’’ idea allows us flexibility to use the correlated

estimates in any meta-analysis framework requiring independent

estimates. We use b̂b and its ‘‘un-correlated’’ variance for the fixed

effects model (which gives equivalent results to the Lin and

Sullivan approach [30]), random effects model, heterogeneity

estimation (Q and I2), and the m-value estimation [19].

Predicting effects of eQTLs in multiple tissues. To

predict whether an eQTL has effects in a specific tissue, Meta-

Tissue computes a statistic called the ‘‘m-value’’ proposed by Han

and Eskin [19] that specifies the posterior probability that an effect

exists in a tissue. First, we denote B as a vector of Bi;

B~fB1,B2, . . . ,BTg. Let Ri be a random variable whose value

is 1 if dataset i has an effect and 0 otherwise. We also denote R as a

vector of Ri, and since each Ri has two values, R has 2T possible

values. Let rj be one of those 2T values, and let U~fr1, . . . ,r2T g
denote a vector of rj . To estimate the m-value mi, we need to

compute the probability, P(Ri~1DB), which is the probability of

dataset i having effects given the observed effect sizes. We can

compute this probability using the Bayes’ theorem

mi~P(Ri~1DB)~

P
r[Ui

P(BDR~r)P(R~r)P
r[U P(BDR~r)P(R~r)

where Ui is a set of rj in which ith value is 1. The equation shows

that we need to compute P(BDR~r) and P(R~r) terms for every r

to compute mi. We can compute P(R~r) as

P(R~r)~
Beta(DrDzc,T{DrDzd)

Beta(c,d)

where DrD denotes the number of 1’s in r and Beta denotes the beta

function. c and d are set to one [19]. The probability of B given r,

P(BDR~r), is computed as

P(BDR~r)~�DD:N(�BB; 0, �VVzs2)P
i[q0

N(Bi; 0,Vi)

where

�BB~

P
i[q1

WiBiP
i[q1

Wi

and �VV~
1P

i[q1
Wi

N(B; a,b) denotes the probability density function of the normal

distribution with mean equal to a and variance equal to b, and q0

and q1 denote the indices of 0 and 1 in r, respectively. Wi~V{1
i is

the inverse variance, and N(0,s2) is the prior for the effect size;

s~0:2 when an effect is small while s~0:4 when an effect is large

for binary traits [31,32]. For quantitative traits, there is no general

guidelines for the normally distributed priors, so we choose to use

the default value s~0:2. �DD is a scaling factor defined as

�DD~
1

(
ffiffiffiffiffiffi
2p
p

)T{1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi WiP

i Wi

s
:exp {

1

2

X
i

WiB
2
i {

(
P

i WiBi)
2P

i Wi

 !( )

More detailed derivations of P(BDR~r) and P(R~r) terms are

discussed in Han and Eskin [19].

Practical issues in combining mixed model and meta-
analysis

There are subtle issues in our framework combining mixed

model and meta-analysis. First, the effect size estimates from linear

model or mixed model are typically t-distributed, while most of

meta-analysis methods assume normally distributed effect sizes.

Second, our approach simultaneously considers all tissues using

Equation (3), but the error model is slightly different from the

tissue-by-tissue approach in Equation (2). In the tissue-by-tissue

approach, the error e*N(0,s2I) is fit in each tissue separately,

while in our new approach, the error is fit in all tissues together,

which is often less powerful than the former. We correct for these

subtle differences using simple heuristics (See Text S2).
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Supporting Information

Figure S1 Histograms showing the distribution of I2 statistics in

the power simulation. There are four scenarios in the power

simulation where an eQTL has an effect 1) in one tissue, 2) in two

tissues, 3) in three tissues, and 4) in all four tissues. There are 1,000

eQTLs in each scenario, and the histograms show the distribution

of I2 statistics of the 1,000 eQTLs.

(TIF)

Figure S2 The number of eQTLs detected by the tissue-by-

tissue approach (TBT), Meta-Tissue FE, and Meta-Tissue RE in

A) four and B) ten tissues of mouse using FDR of 5%, and the

overlap of eQTLs detected by the three methods in C) four and D)

ten tissues. We consider only cis-eQTLs for the FDR approach,

and a pair of SNP-probe for gene expression are considered cis if a

SNP and a probe are on the same chromosome.

(TIF)

Figure S3 A plot showing heterogeneity of eQTLs detected by

the tissue-by-tissue approach. X-axis of the top plot indicates I2

statistic and Y-axis indicates log of p-value of Cochrans Q statistic.

The vertical dashed line is drawn at I2 = 50%, and the horizontal

dash line is drawn at p-value = 0.05/the number of eQTLs
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detected. The bottom histogram shows the distribution of I2

statistic.

(TIF)

Figure S4 A plot showing heterogeneity of eQTLs detected by

Meta-Tissue FE. X-axis of the top plot indicates I2 statistic and Y-

axis indicates log of p-value of Cochrans Q statistic. The vertical

dashed line is drawn at I2 = 50%, and the horizontal dash line is

drawn at p-value = 0.05/the number of eQTLs detected. The

bottom histogram shows the distribution of I2 statistic.

(TIF)

Figure S5 A plot showing heterogeneity of eQTLs detected by

Meta-Tissue RE. X-axis of the top plot indicates I2 statistic and Y-

axis indicates log of p-value of Cochrans Q statistic. The vertical

dashed line is drawn at I2 = 50%, and the horizontal dash line is

drawn at p-value = 0.05/the number of eQTLs detected. The

bottom histogram shows the distribution of I2 statistic.

(TIF)

Figure S6 Power comparison between the tissue-by-tissue

approach, Meta-Tissue fixed effects model (FE), Meta-Tissue

random effects model (RE), and Meta-Tissue traditional random

effects model using simulated data. X-axis indicates the number of

tissues having effects out of four tissues, and Y-axis is the power.

(TIF)

Figure S7 The average number of eQTLs that the tissue-by-

tissue approach, Meta-Tissue FE, Meta-Tissue RE, and Meta-

Tissue traditional RE recover from three tissues generated from

the liver tissue. Effects of eQTLs exist in only two tissues. The

original liver tissue has 389 eQTLs.

(TIF)

Figure S8 The number of eQTLs detected by the tissue-by-

tissue approach, Meta-Tissue FE, Meta-Tissue RE, and Meta-

Tissue traditional RE in A) four tissues and in B) ten tissues of

mouse.

(TIF)

Table S1 Information on genotyped SNPs (chromosome, ID,

and position).

(XLS)

Text S1 False positive rates of Meta-Tissue.

(PDF)

Text S2 Practical issues in combining mixed model and meta-

analysis.

(PDF)
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