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Abstract

Evidence-based medicine employs expert opinion and clinical data to inform clinical decision making. The objective of this
study is to determine whether it is possible to complement these sources of evidence with information about physician
‘‘group intelligence’’ that exists in electronic health records. Specifically, we measured laboratory test ‘‘repeat intervals’’,
defined as the amount of time it takes for a physician to repeat a test that was previously ordered for the same patient. Our
assumption is that while the result of a test is a direct measure of one marker of a patient’s health, the physician’s decision
to order the test is based on multiple factors including past experience, available treatment options, and information about
the patient that might not be coded in the electronic health record. By examining repeat intervals in aggregate over large
numbers of patients, we show that it is possible to 1) determine what laboratory test results physicians consider ‘‘normal’’, 2)
identify subpopulations of patients that deviate from the norm, and 3) identify situations where laboratory tests are over-
ordered. We used laboratory tests as just one example of how physician group intelligence can be used to support evidence
based medicine in a way that is automated and continually updated.
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Introduction

In evidence-based medicine (EBM), clinical practice guidelines

are driven by expert consensus, which is typically based on review

of the literature, clinical experience, and outcomes analyses [1,2].

A major challenge of EBM is the effort and cost needed to keep the

knowledge of clinical practice up to date across an ever-widening

array of diagnostic and therapeutic options [3]. One way to

approach this problem is through analysis of the large amounts of

data collected in electronic health records (EHR) [4]. Usually the

variable being examined in these datasets is a patient outcome,

such as survival [5]. However, in this study we will demonstrate

that EHRs not only contain information about patient outcomes,

but they also provide insight to providers’ knowledge of their

patients’ state of health, which can also be used in generating EBM

guidelines. We will do this in the context of laboratory tests.

Instead of looking at the results of the tests, we will examine when

physicians ordered the tests. Whereas the result of a test is a direct

measure of one maker of a patient’s health, a physician’s decision

to order a test is based on multiple factors including past

experience, available treatment options, and information about

the patient that might not be coded in the EHR.

Specifically, we will measure laboratory test ‘‘repeat interval’’,

defined as the amount of time it takes for a physician to repeat a

test that was previously ordered for the same patient. For

example, if a white blood cell count (WBC) test is ordered for a

patient, and the next time that patient has a WBC test is seven

days later, then the repeat interval is seven days. The physician

ordering the repeat test is not necessarily the same person who

ordered the previous test, but could presumably access the result

of the previous test through the EHR. By examining these

repeat intervals in aggregate over large numbers of patients, we

can quantify physician behavior and observe how it varies under

different conditions. To demonstrate how this can be used for

EBM, we will use the laboratory test repeat intervals from the

EHRs of two large and independent hospitals in the Boston area

to answer three questions: Firstly, can collective physician

laboratory test-ordering behavior, which we call physician

‘‘group intelligence’’, be used to define what it means for a

laboratory test result to be ‘‘normal’’? Secondly, can subpop-

ulations of patients be identified when their physicians’ behavior

differs from the norm? Finally, can physician group intelligence

be used to identify situations where laboratory tests are over-

ordered?
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Table 1. Summary of repeat intervals for 97 laboratory tests.

Laboratory Test (LOINC Name) LOINC Code

Median
Repeat
Interval

Min Bin
Median
Repeat
Interval

Max Bin
Median
Repeat
Interval

Ratio Bin
Median
Repeat
Interval

StDev
Repeat
Interval Entropy Category

pH SerPl-sCnc 2753-2 0.121 0.059 0.150 2.541 111.8 0.722 BGB

Base Excess BldA-sCnc 1925-7 0.122 0.078 0.176 2.248 144.1 0.881 BG

O2 Satn from pO2 Fr Bld 2713-6 0.123 0.065 0.176 2.691 135.6 0.881 BGB

pO2 Bld Qn 11556-8 0.124 0.027 0.168 6.205 117.4 0.811 BGB

pCO2 Bld Qn 11557-6 0.124 0.063 0.150 2.400 127.5 0.610 BGB

Inhaled O2 rate 3151-8 0.136 0.059 0.235 3.976 43.0 1.279 GB

Ca-I Bld-sCnc 1994-3 0.157 0.082 0.169 2.068 156.8 0.286 BGB

HCO3 Bld-sCnc 1959-6 0.208 0.118 0.253 2.147 76.8 0.881 BG

Ca-I SerPl-sCnc 1995-0 0.218 0.167 0.258 1.550 169.2 0.722 BG

Gentamicin SerPl-mCnc 35668-3 0.379 0.076 2.418 31.945 199.4 1.915 BG

CK MB SerPl EIA-cCnc 6773-6 0.402 0.342 0.472 1.379 368.9 0.971 BGB

CK/CK MB SerPl-cRto 2158-4 0.424 0.383 0.463 1.208 337.7 0.934 GBGB

Osmolality SerPl Qn 2692-2 0.444 0.278 0.850 3.060 269.4 1.458 GB

Troponin T SerPl-mCnc 6598-7 0.485 0.440 0.539 1.224 116.6 0.000 BG

CK SerPl-cCnc 2157-6 0.642 0.424 1.017 2.402 400.8 0.881 GB

Troponin I SerPl-mCnc 10839-9 0.741 0.439 19.857 45.244 284.7 1.882 GB

aPTT Plas Qn 5898-2 0.927 0.378 1.270 3.356 346.7 1.141 GB

Potassium SerPl-sCnc 2823-3 0.958 0.444 0.987 2.224 291.7 0.286 BGB

Vancomycin SerPl-mCnc 20578-1 0.974 0.144 1.519 10.519 174.3 0.848 BG

Magnesium SerPl-sCnc 11554-3 0.977 0.483 1.042 2.157 284.7 0.286 GB

CO2 SerPl-sCnc 2028-9 0.988 0.408 1.144 2.801 311.5 0.748 BGB

Glucose SerPl-mCnc 6777-7 0.996 0.292 24.978 85.437 332.3 2.528 GB

Sodium SerPl-sCnc 2951-2 0.997 0.426 1.846 4.329 310.6 0.748 BGB

Anion Gap3 SerPl-sCnc 10466-1 1.000 0.829 1.015 1.224 307.1 0.000 BGB

Hgb Bld-mCnc 718-7 1.010 0.391 33.962 86.865 324.8 2.461 BG

Hct Fr Bld Auto 4544-3 1.026 0.490 40.188 81.970 336.9 2.595 BG

PT PPP Qn 5902-2 1.035 0.974 3.119 3.202 332.6 1.054 GBG

Chloride SerPl-sCnc 2075-0 1.049 0.600 1.876 3.127 330.5 0.748 BGB

INR PPP Qn 6301-6 1.053 0.982 6.998 7.127 235.8 1.154 GBG

BUN SerPl-mCnc 3094-0 1.068 0.722 2.994 4.145 338.5 1.439 BGB

Creat SerPl-mCnc 2160-0 1.090 0.892 2.193 2.460 333.4 0.993 BGB

RDW RBC Auto-Rto 788-0 1.103 0.987 42.922 43.495 337.1 1.871 GB

MCH RBC Qn Auto 785-6 1.204 1.052 2.788 2.650 351.9 0.992 GBG

MCV RBC Qn Auto 787-2 1.205 1.052 2.754 2.618 347.8 1.076 GBG

WBC # Bld Auto 6690-2 1.213 0.769 15.403 20.037 351.6 1.923 BGB

Phenytoin SerPl-mCnc 3968-5 1.217 1.122 1.944 1.733 201.3 0.610 GBGB

RBC # Bld Auto 789-8 1.217 0.796 43.963 55.242 347.5 2.361 BG

Platelet # Bld Auto 777-3 1.225 0.735 7.033 9.573 349.8 2.009 BGB

MCHC RBC Auto-mCnc 786-4 1.231 1.040 2.024 1.947 355.6 0.993 BGB

Calcium SerPl-sCnc 2000-8 1.644 0.736 35.068 47.640 390.6 2.458 BG

Digoxin SerPl-mCnc 10535-3 1.960 1.001 3.143 3.139 263.6 1.157 GB

Phosphate SerPl-mCnc 2777-1 1.965 1.003 5.594 5.574 384.3 1.971 BGB

Lipase SerPl-cCnc 3040-3 1.974 0.999 5.031 5.038 427.1 1.839 BGB

Metamyelocytes Fr Bld Manual 740-1 2.426 1.053 4.111 3.902 289.6 1.720 GB

Amylase SerPl-cCnc 1798-8 2.446 0.989 10.447 10.564 529.3 2.204 BGB

Myelocytes Fr Bld Manual 749-2 2.456 1.043 4.278 4.101 277.0 1.720 GB

Neuts Seg Fr Bld Manual 769-0 2.673 1.067 5.905 5.536 365.7 2.195 BGB

Monocytes Fr Bld Manual 744-3 2.760 1.092 4.041 3.699 358.7 1.788 BGB

Basophils Fr Bld Manual 707-0 2.776 2.021 6.968 3.448 359.8 1.076 BG

Lymphocytes Fr Bld Manual 737-7 2.790 1.060 11.269 10.627 390.8 2.409 BGB

Physician Group Intelligence
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Table 1. Cont.

Laboratory Test (LOINC Name) LOINC Code

Median
Repeat
Interval

Min Bin
Median
Repeat
Interval

Max Bin
Median
Repeat
Interval

Ratio Bin
Median
Repeat
Interval

StDev
Repeat
Interval Entropy Category

Eosinophil Fr Bld Manual 714-6 2.846 1.886 5.990 3.176 367.6 1.713 BG

Neuts Band # Bld Manual 763-3 2.924 1.028 8.065 7.842 172.1 2.285 GB

Estradiol SerPl-mCnc 2243-4 2.988 1.051 13.929 13.248 232.2 1.981 GBG

Atypical Lymphs Fr Bld Manual 735-1 3.040 2.123 5.901 2.780 416.0 1.739 BG

Neuts Band Fr Bld Manual 764-1 3.894 1.020 42.122 41.291 396.5 2.771 GBGB

Cyclosporin Bld-mCnc 3520-4 5.970 2.974 11.236 3.778 92.6 1.533 GB

LDH SerPl-cCnc 2532-0 8.132 1.031 33.894 32.889 368.5 2.984 BGB

HCG SerPl-sCnc 2119-6 8.895 2.992 276.063 92.256 531.9 2.704 GBG

Globulin Ser-mCnc 2336-6 10.912 1.037 28.033 27.038 458.4 2.409 BGB

Prot SerPl-mCnc 2885-2 15.105 0.982 102.826 104.717 448.8 2.566 BG

Retics/100 RBC Fr 4679-7 17.717 6.372 41.006 6.436 516.0 2.522 BGB

Bilirub SerPl-mCnc 1975-2 19.547 0.956 47.202 49.362 442.4 2.458 GB

Urate SerPl-mCnc 3084-1 20.169 1.050 44.928 42.789 415.0 2.823 BGB

Albumin SerPl-mCnc 1751-7 20.757 1.118 128.127 114.598 444.0 3.141 BG

ALP SerPl-cCnc 6768-6 27.978 1.289 70.348 54.580 443.2 2.561 GB

Basophils Fr Bld Auto 706-2 28.043 2.110 52.266 24.774 410.5 2.804 BGB

Eosinophil Fr Bld Auto 713-8 28.081 2.555 52.915 20.711 410.3 2.522 BGB

ALT SerPl-cCnc 1742-6 28.414 1.110 58.151 52.369 430.1 2.361 BGB

Eosinophil # Bld Auto 711-2 28.920 2.501 60.021 24.002 409.5 2.746 BGB

Basophils # Bld Auto 704-7 29.528 4.877 52.957 10.858 411.1 2.571 BGB

AST SerPl-cCnc 1920-8 30.291 1.055 78.035 73.977 431.8 2.461 BGB

Monocytes Fr Bld Auto 5905-5 34.410 5.740 56.119 9.776 464.5 2.384 BGB

Neutrophils Fr Bld Auto 770-8 34.686 1.885 92.702 49.168 468.3 3.141 GB

Lymphocytes Fr Bld Auto 736-9 34.826 1.797 114.231 63.560 464.9 2.946 BG

Neutrophils # Bld Auto 752-6 34.932 1.768 75.975 42.971 457.9 2.461 BGB

Monocytes # Bld Auto 742-7 35.744 3.636 83.958 23.090 470.4 2.358 BGB

Lymphocytes # Bld Auto 731-0 37.134 1.963 99.138 50.498 462.7 2.622 BG

PMV Bld Qn 28542-9 37.998 10.019 67.001 6.687 254.6 2.119 BGB

Sp Gr Ur Qn Strip 5811-5 49.284 33.625 81.578 2.426 581.0 1.782 GBGB

RBC # UrnS HPF 5808-1 49.988 12.815 83.504 6.516 619.8 2.115 GB

pH Ur Strip-sCnc 5803-2 51.020 36.494 70.001 1.918 594.1 1.295 BGB

Trigl SerPl-mCnc 2571-8 108.380 42.058 225.953 5.372 498.3 2.121 GB

ESR Bld Qn Westrgrn 4537-7 125.983 21.147 246.166 11.641 672.5 2.085 GB

Cholest SerPl-mCnc 2093-3 127.327 1.059 204.759 193.346 503.5 1.933 BGB

Hgb A1c Fr Bld 4548-4 132.945 113.022 216.175 1.913 328.8 1.076 GB

Mean Glucose Bld gHb Est-mCnc 27353-2 137.837 120.280 266.906 2.219 325.6 1.076 GB

Ferritin SerPl-mCnc 2276-4 151.261 34.569 213.974 6.190 622.9 1.457 GB

T4 SerPl-mCnc 3026-2 154.974 47.040 202.118 4.297 629.6 1.357 BGB

Iron SerPl-mCnc 2498-4 160.883 83.993 266.211 3.169 628.1 1.846 BGB

TIBC SerPl-mCnc 2500-7 166.066 27.024 248.118 9.182 649.0 1.717 BG

TSH SerPl-aCnc 3016-3 232.133 55.991 368.103 6.574 578.2 1.579 BGB

Cholest/HDLc SerPl-mRto 9830-1 247.117 131.251 367.034 2.796 348.0 1.234 GB

VLDLc SerPl-mCnc 2092-5 253.763 175.665 363.871 2.071 563.9 0.993 GB

B-LP SerPl Calc-sCnc 14815-5 264.197 166.951 346.086 2.073 578.8 0.881 BGB

LDLc SerPl-mCnc 2090-9 273.672 172.881 343.069 1.984 517.4 0.881 BGB

HDLc SerPl-mCnc 2086-7 276.331 146.957 370.070 2.518 528.6 1.188 BG

PSA SerPl-mCnc 2857-1 350.024 75.940 380.037 5.004 392.9 1.076 BGB

Listed for each test are the LOINC (Logical Observation Identifiers Names and Code) name and code; the median repeat interval and standard deviation for all 100,000
repeat intervals; the minimum and maximum median repeat intervals of the 20 value bins and their ratio; the entropy; and the category: ‘‘bad-good’’ (BG), ‘‘bad-good-
bad’’ (BGB), ‘‘good-bad’’ (GB), ‘‘good-bad-good’’ (GBG), and ‘‘good-bad-good-bad’’ (GBGB). Repeat intervals are given in days.
doi:10.1371/journal.pone.0064933.t001
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Methods

Data Sources
The data used for this study were laboratory test results

contained within the Partners Research Patient Data Repository

(RPDR), a large clinical database, which combines data from

Brigham and Women’s Hospital (BWH) and Massachusetts

General Hospital (MGH) [6–8]. From an initial dataset, which

included 3,534,666 patients with 465,313,629 laboratory test

results between 1/1/1986 and 6/30/2004, we extracted two

datasets: (1) Firstly, we obtained a random sample of 100,000

repeat intervals for each of the 97 different laboratory tests listed in

Table 1 (9.7 million repeat intervals). Other laboratory tests were

excluded either because they have fewer than 100,000 occurrenc-

es, or there are known problems with how the data are recorded.

Although there are 4,926 tests in the RPDR, these 97 represent

71% of all test results because they are the ones most frequently

ordered. (2) Secondly, we obtained a random sample of 1,000,000

repeat intervals for white blood cells (WBC), which indicated the

patient age in days at the time of the tests and whether the tests

were performed in inpatient or outpatient settings. The laboratory

test dates in the RPDR are typically the dates when the results are

ready, rather than when the specimens were obtained or when the

results were read. The datasets may be requested by registration

and submission of a Data Use Agreement at http://www.i2b2.

org/Publication_Data/.

Defining normality
Reference ranges of laboratory test values are defined by

sampling a healthy population and recording the upper and lower

nth percentiles [9–11]. There are numerous challenges with

determining these ranges and in using them for clinical decision-

making. Many factors such as age, sex, and sampling bias can

influence these values; it can be difficult to identify healthy

individuals; and there is disagreement over which statistical

techniques and percentiles to use [12–15]. Furthermore, it is

unclear how useful reference ranges are in clinical decision-making

since there is a distinction between a reference limit and the value

that will actually change a physician’s clinical decision [16–19].

The latter is based not on healthy population percentiles, but

rather the types of clinical actions that are available to the

physician and his or her clinical knowledge, prior experience, and

intuition. Can we quantify this to define a new robust measure of

laboratory test value normality that reflects clinical expertise?

We defined repeat interval as the amount of time it took for

physicians to repeat the same test in the same patient. A repeat

interval consists of two tests—an initial test and a repeat test. In

this study, we looked at the relationship between the result of the

initial test and when the repeat test is ordered. To study this

relationship, for each of the 97 laboratory tests we partitioned the

100,000 repeat intervals into 20 equal-size bins based on the result

of the initial test. For example, the first bin contains the 5,000

repeat intervals with the smallest initial test result values, and the

Figure 1. Repeat intervals for 97 common laboratory tests. (a) Frequency distribution of repeat intervals for all labs. Vertical bars indicate the
boundaries used in the entropy calculations to convert repeat intervals to one of 20 discrete categories. (b) Median repeat interval for each of 97 tests.
Vertical bars indicate the 25th and 75th percentiles.
doi:10.1371/journal.pone.0064933.g001

Table 2. Entropy time periods.

Time Period Description Start (Days) Peak (Days)

1 2 hours 0.000 0.093

2 4 hours 0.103 0.170

3 8 hours 0.188 0.342

4 12 hours 0.418 0.510

5 24 hours 0.624 1.028

6 2 days 1.533 2.070

7 3 days 2.528 3.088

8 4 days 3.413 4.169

9 7 days 5.627 6.873

10 2 weeks 10.253 13.840

11 3 weeks 16.905 20.648

12 4 weeks 25.219 27.872

13 5 weeks 30.803 34.042

14 6 weeks 37.622 41.579

15 2 months 45.952 62.029

16 3 months 75.763 92.536

17 4 months 113.024 124.911

18 6 months 152.567 186.345

19 1 year 251.540 375.253

20 2 years 683.756 755.667

Listed are the start of each time period and the most common repeat interval
(peak).
doi:10.1371/journal.pone.0064933.t002

Physician Group Intelligence
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20th bin contains the 5,000 repeat intervals with the highest initial

values. For each bin, we calculated the median repeat interval

duration and the 25th and 75th percentiles. We did not use the

result of the repeat test in this study—we only measured the

amount of time that had elapsed since the initial test. Note how

this differs from traditional EBM studies, in which physicians

perform interventions, and then the patient outcomes are

measured. In this study, we start with data about the patients

(their initial laboratory test results), and then measure the

interventions chosen by their physicians (the time until the test

was repeated). In other words, we are examining the physicians as

a way of indirectly learning more about the patients.

In the first part of this study, we used repeat intervals to

examine normality in laboratory tests. Whereas laboratory test

reference ranges suggest there are only two states of patient health,

normal and abnormal, we hypothesized that repeat intervals

would reveal more subtle patterns that demonstrate the variability

among patients and the different clinical contexts in which they

are seen.

Identifying subpopulations
To determine if we can automatically identify the various

factors that can influence physician behavior, such as patient

demographics and clinical settings, we calculated the median

repeat intervals for white blood cells (WBC) for different pediatric

age groups and for inpatient vs outpatient visits. If these

subpopulations indeed represent distinct patient states that have

different clinical meaning, then differences in normative behavior

might be detectable.

Measuring informativeness
The initial test result may or may not influence when the repeat

test is ordered. We used entropy as a measure of how much the

median repeat interval varies across the 20 bins for each test. If all

20 median repeat intervals are equal, then the initial test result

provides no information towards predicting when the repeat test

will be ordered, and the entropy is therefore zero. Because

physician behavior is not being affected by the result of the test, we

hypothesize that some tests with low entropy are being over-

ordered. In contrast, tests whose initial result has a greater

influence over physician behavior will have higher entropy,

suggesting that those tests are more informative.

In order to calculate entropy, we first discretized the median

repeat interval for each laboratory test’s 20 value bins by mapping

it to one of 20 frequently observed time periods (Table 2). These

time periods were determined by combining the repeat intervals

for all 97 laboratory tests and noting from its frequency

distribution that there are approximately 20 peaks (Figure 1a).

The points between the peaks with the fewest repeat intervals were

chosen as the boundaries of the time periods. This ensured that

most repeat intervals would be near the center of a time period

rather than at the boundary, thus making the results less sensitive

to the precise location of the time period boundaries. Entropies

were then calculated using the equation -Sum[p(x)*log2(p(x))]

where p(x) is the fraction of a laboratory test’s 20 value bins whose

median repeat intervals fall within time period x. For example, if a

laboratory test has 10 value bins whose median repeat intervals fall

within time period 6 (2 days), 5 value bins that fall within time

period 4 (12 hours), and 5 value bins that fall within time period 7

Figure 2. The median repeat interval for different initial (a) WBC, (b) HDLc, (c) HbA1c, and (d) hCG values. Error bars represent the 25th
and 75th percentiles. Triangles indicate reference values for BWH (black) and MGH (gray).
doi:10.1371/journal.pone.0064933.g002
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(3 days), then the entropy is 2[0.5*log2(0.5)+0.25*log2(0.25)+
0.25*log2(0.25)] = 1.5.

Results

Table 2 and Figure 1a show that the frequency of 9.7 million

repeat intervals across the 97 tests has approximately 20 peaks,

with 24 hours being the most common, followed by 2 days, 1 year,

7 days, and 6 months. When looking at individual laboratory tests,

Table 1 and Figure 1b show that the median repeat interval can

range from as small as 3 hours for blood gases to as large as year

for cholesterol and prostate-specific antigen (PSA), with a large

variance for most tests. However, the repeat intervals can be

highly dependent on the initial value of the test as well as the

patient population and clinical setting. The next three sections

describe this relationship by testing three hypotheses.

Can physician group intelligence derive knowledge that
all physicians already know, but can be difficult to
quantify?

The reference ranges for white blood cell count (WBC) in adult

patients at BWH and MGH are 4.0–10.0 and 4.5–11.0,

respectively [6,7]. In Figure 2a, which illustrates the repeat

intervals for WBC, we can see a complex relationship between the

initial WBC value and when physicians order a second WBC test.

In general, the repeat interval for WBC is larger within the

hospital reference ranges (indicated by markers on the horizontal

axis) than outside. However, it is not a binary response. Rather,

there is a continuum, with a maximum median repeat interval of

almost two weeks at an initial WBC value of 6, and gradually

decreasing at larger or smaller values. As seen in Figure 2b and

Figure 2c, a similar pattern exists for other tests, such as high-

density lipoprotein (HDLc) and hemoglobin A1c (HbA1c), where

the largest repeat intervals occur when the initial test results are

within the hospital reference ranges, and the intervals decrease the

further outside those ranges.

The vertical bars in Figure 2 represent the 25th and 75th

percentiles of repeat intervals. The initial test result not only affects

the median repeat interval, but it also greatly affects the variance.

If we think about an initial test result being followed by a large

median repeat interval as a ‘‘good’’ test result, and an initial test

result being followed by a small median repeat interval as a ‘‘bad’’

test result, then the amount of variance corresponds to the degree

of consensus among physicians on whether a particular test result

is ‘‘good’’ or ‘‘bad’’. For example, on average, a WBC of 6 is

‘‘good’’, but the large variance means that other information is

needed to determine the patient’s state of health. At the upper

value of the reference range (10.0–11.0), the repeat interval is

smaller, but there is still large variability. However, once the WBC

is greater than 16, then there is agreement among physicians that

the result is ‘‘bad’’.

Laboratory tests can be classified according to how their repeat

intervals vary with different initial values. Although WBC is

‘‘good’’ in mid-range values and ‘‘bad’’ at the low and high

extremes (‘‘bad-good-bad’’, or ‘‘BGB’’), the repeat intervals for

HDLc are largest at high values (‘‘BG’’), and the repeat intervals

for HbA1c are largest at low values (‘‘GB’’). Table 1 shows that

most laboratory tests fall into one of these three categories, with 44

BGB tests (e.g., sodium and glucose), 19 BG tests (e.g., hematocrit

and vancomycin), and 24 GB tests (e.g., bilirubin and erythrocyte

sedimentation rate (ESR)). An exception is human chorionic

gonadotropin (hCG), which has not one, but two ‘‘good’’ states

(‘‘GBG’’) depending on whether the patient is pregnant (Figure 2d).

Although we are not arguing that this method should replace

the standard way of determining laboratory test reference ranges,

we want to highlight how remarkable it is that repeat intervals

alone, without any additional information about the patients’

health, can be used to derive physician consensus around what it

means for a test result to be ‘‘normal’’. In other words, we can use

physician group intelligence to quantify the significance of

different test results and determine the values that require

immediate action.

Can group intelligence capture the knowledge of subsets
of physicians that treat specific patient populations?

Normality as defined by physician behavior can vary greatly

with different subpopulations. In neonates, for example, the typical

WBC is higher than in adult populations. Figure 3a shows that

physicians adjust their ordering behavior for this, with a peak time

to repeat for patients less than 1 month old at a WBC of 16.3

(58,121 repeat intervals). As pediatric patients age, the ‘‘ideal’’

WBC value decreases and the maximum repeat interval increases.

For patients 1–5 months the preferred value is 12.6 (16,237 repeat

intervals), and for patients 6–23 months the preferred value is 8.9

(32,556 repeat intervals). The median time to repeat of WBC is at

a maximum of 153 days when patients are between 2–5 years old

(33,666 repeat intervals). Beyond this age, physician behavior

mimics that seen throughout adulthood (38,051 repeat intervals).

Figure 3. Factors that affect repeat interval, including (a) age and (b) inpatient vs outpatient setting. Error bars represent the 25th and
75th percentiles.
doi:10.1371/journal.pone.0064933.g003
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However, while the preferred WBC remains consistent until old

age, the repeat intervals decrease for all values in elderly

populations.

Can group intelligence identify inconsistencies in clinical
behavior and situations where the frequency of ordering
laboratory tests can be reduced?

Figure 3b shows that physician ordering behavior for WBC also

changes when patients are in an inpatient setting compared to

when they are relatively healthy in an outpatient setting. In both

cases, the maximum repeat interval is at a WBC value of about 6.

However, that interval is 22.9 hours for inpatients (365,769 repeat

intervals) and 59.1 days for outpatients (481,591 repeat intervals).

Thus, the same laboratory test result can have a dramatically

different effect on clinical decisions depending on physician’s

perceived state of the patient. It might also suggest that hospital

guidelines in an inpatient setting influence ordering behavior in

ways that are counterintuitive to physicians’ true estimate of risk.

The extent to which the initial value of a laboratory test affects

the repeat interval can indicate how informative that test is. For

nearly all 97 laboratory tests studied, the initial value does indeed

influence the repeat interval greatly (Table 1). For example, the

ratio between WBC’s best bin’s repeat interval (15.4 days) and the

worst (0.77 days) is 20-fold. There was at least a 2-fold difference

in 87 tests, a 10-fold difference in 35 tests, a 50-fold difference in

13 tests, and a more than 100-fold difference in three tests (serum

protein, albumin, and cholesterol). However, this does not tell the

full story. A test whose repeat interval is the same in nearly all

cases except for the most extreme values might provide less

information to a physician, on average, than a test whose repeat

intervals vary across the full range of values for that test. This can

be quantified using entropy.

Of the 97 tests, albumin and neutrophil fraction had the highest

observed entropies (3.141), meaning that their values, more than

any other tests, had the greatest influence on physician behavior

(Table 1). There are several explanations for why the entropy can

be low for certain laboratory tests: a) they can be routinely ordered

as part of a hospital protocol (e.g. Troponin T has zero entropy), b)

they are ordered automatically as part of a panel but are not

generally the reason for which the panel was ordered (e.g. mean

corpuscular volume (MCV) in a complete blood count (CBC) has

an entropy of 1.076), or c) they are part of a screening protocol in

which the vast majority of the test results are normal (e.g. prostate-

specific antigen (PSA) has an entropy of 1.076 because 75% of its

values are less than 3.6 and are not repeated for a one year).

Discussion

We introduced this study by enumerating three questions that

we sought to answer, at least preliminarily in a study of two large

academic hospitals. We have shown that we can use collective

physician behavior to identify normal ranges that correspond to

the published normal ranges used in these institutions but without

the threshold effect of strict limits and instead providing a smooth

function relating these values to normality and disease acuity.

Secondly, we have shown that these normative ranges are very

specific to the subpopulations being treated going from adult to

childhood and the neonatal period where the personalized

interpretation of these laboratory studies is markedly different.

Thirdly, we have shown that clinical setting, the grouping of tests

into panels, and screening guidelines can potentially lead to

overuse of laboratory tests. This automated form of EBM does

not depend on an ongoing knowledge extraction process from

experts; it is driven directly from aggregate physician behavior

as seen in EHRs. If styles of practice change, if the meaning of

particular clinical variables and their values are understood

differently over time, if additional phenotypes such as genomic

are introduced then the normative practice for the patient’s state

induced from physician behavior will automatically be changed.

This study represents only a beginning in developing an

automated application of physician group intelligence, similar

to what has been done with ‘‘crowdsourcing’’ for scientific

discovery in other fields [20–23].

There are far more sources of data that are accessible beyond

laboratory data, that are driven by physician behavior and their

integrated understanding of the patient’s state. For example, one

could examine which medications are prescribed and the number

of refills included on the initial prescriptions, which procedures are

ordered and the time intervals between them, how often follow-up

visits are scheduled, and the number of different physicians that

treat a patient. These are processes, not outcome measures, but in

aggregate represent a consensus estimate.

As in other applications of group intelligence, the use of

physician behavior rather than measured outcomes to drive the

personalization of medical practice has some obvious risks that

are built upon several underlying assumptions. The most

important of these is that physicians in aggregate are well

informed of the current state of the art. Further, over large

populations of patients, sufficient numbers of decisions can be

measured that across the varying states of patients there will be

robust characterizations of the patient subpopulations. These

assumptions can be tested empirically in the future by

comparing physician behavior at different institutions and

determining, for example, how rapidly physician behavior

changes to account for the emergence of innovative and

expert-approved clinical practices.

The intent of this study was not to draw conclusions about

specific laboratory tests. A more detailed analysis of which tests are

grouped into panels, how policies vary across different clinics, and

what changes have been seen over time would be needed for that.

Rather, our goal was to demonstrate that a wealth of often

overlooked information about physician behavior exists in EHRs,

which could provide an important source of data for future EBM

research.
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