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Abstract—We initiate the study of privacy for the analyst
in differentially private data analysis. That is, not only
will we be concerned with ensuring differential privacy
for the data (i.e. individuals or customers), which are the
usual concern of differential privacy, but we also consider
(differential) privacy for the set of queries posed by each
data analyst. The goal is to achieve privacy with respect
to other analysts, or users of the system.

This problem arises only in the context of stateful
privacy mechanisms, in which the responses to queries
depend on other queries posed (a recent wave of results
in the area utilized cleverly coordinated noise and state in
order to allow answering privately hugely many queries).

We argue that the problem is real by proving an
exponential gap between the number of queries that can be
answered (with non-trivial error) by stateless and stateful
differentially private mechanisms. We then give a stateful
algorithm for differentially private data analysis that also
ensures differential privacy for the analyst and can answer
exponentially many queries.

Keywords-differential privacy; list decoding; long code

I. INTRODUCTION

Differential privacy is a widely studied notion of
privacy designed for statistical analysis of confidential
data [1], [2], [3]. All research on differential privacy to
date has focused exclusively on the privacy of the data.
In this work, we introduce the additional requirement
of privacy for the data analyst — hiding the questions
one asks about the data.

People studying a data set (“data analysts”) may
desire confidentiality for the questions they ask for a
variety of reasons, including fear of embarrassment,
persecution, leakage to competitors and in the case
of law enforcement, informing criminals about the in-
vestigation. Allowing individuals to carry out research
privately is well-recognized as being important for a free

Research supported in part by a grant the Israel Science Foundation
and by a grant from the CITI Foundation. Part of this work was done
while visiting Microsoft Research.

Center for Research on Computation and Society (CRCS) and
School of Engineering and Applied Sciences (SEAS). Supported in
part by a gift from Google, Inc. Work done in part while on leave
as a Visiting Researcher at Microsoft Research SVC and a Visiting
Scholar at Stanford University.

society, for example, as reflected in the strong protec-
tions given to library records. Thus, the Council of the
American Library Association “strongly recommends
that the responsible officers of each library... Advise all
librarians and library employees that such records shall
not be made available to any agency of state, federal, or
local government except pursuant to such process, order
or subpoena” [4]. Confidentiality of this type is also
the motivation behind Private Information Retrieval [5],
which ensures that the library itself does not learn what
the user reads.

In this same spirit, we investigate the problem of
privacy for the data analyst in differentially private
mechanisms. Unlike in a library, or in PIR, where the in-
formation delivered to a user is exactly the information
requested (the original, copyrighted, version of a book,
for example), a feature of differential privacy is that
the responses to queries suffer some (hopefully minor)
distortion. In some algorithms, this distortion reveals
information about queries posed to the system by other
analysts, and thus may compromise their privacy. This
is analogous to some of the concerns motivating secure
computation of approximations, which ensure that ap-
proximations leak no more information than exact val-
ues [6], and history-independent data structures, which
ensure that a data structure representation in memory is
independent of the prior history of queries [7].

The absence of this natural question in the differential
privacy literature may stem from several causes. First,
the accuracy of responses to queries must deteriorate as
the number and complexity of these queries increases
([8] et sequelae). Thus to obtain maximal utility of
data it might make sense to publicize the answers
to all the queries posed, so that the utility can be
shared by all who desire this information. Second, the
“first wave” of differentially private algorithms were all
stateless, meaning that the probability distribution for
the response to one query is the same regardless of
what other queries have been asked (except perhaps with
respect to the amount of the privacy budget the query is
allowed to consume). Combining this with the fact that



the curator is typically trusted,1 the issue of privacy for
the analyst was not investigated.

In a “second wave” of differentially private algo-
rithms, initiated in [11] (see also [12], [13], [14], [15],
[16], [17]), the responses to the different queries depend
on other queries, either because the queries are handled
as a batch [11], [14], [17], or because the algorithm
explicitly maintains state [13], [15]. The benefit of these
“second wave” algorithms is their ability to provide
answers to truly huge numbers of queries, even expo-
nential in the number of rows in the database (whereas
the known stateless mechanisms can only handle up to
a sub-quadratic number of queries).

The current work was motivated by seeking to
distribute the work of the “second-wave” algorithms
among multiple servers, and our subsequent realization
that the need for shared state raises privacy concerns for
the data analysts, even when the curator is trustworthy.

A. Our Results

State is Necessary: We first prove that a stateless
differentially private algorithm cannot answer more
than Õ(n2) counting queries2 with nontrivial accuracy,
where n is the number of rows in the database. This
bound is tight up to polylogarithmic factors, and shows
an exponential gap between the number of queries
that can be answered by stateless and stateful differen-
tially private mechanisms. The proof relies on the list-
decoding properties of the “long code” [18].

Our result can be interpreted as a negative result
about distributing the work of answering queries among
servers while maintaining differential privacy: either the
servers must share information about what queries are
asked to them, or they can only answer a small number
of queries. A second interpretation is that it may be
difficult to achieve perfect privacy for the data analysts,
if we have differential privacy for the dataset.3

Turning to the algorithmic problem of privacy for
the analyst, we see immediately that this is impossi-
ble for a batch algorithm that takes a set of queries
coming from different analysts and produces a public
and differentially private summary of the dataset that
allows each analyst to compute an accurate answer to
its query: We know from lower bounds on noise [8] that
the output of any batch algorithm must fail to accurately
answer some potential queries. At the same time, with

1Exceptions include [9] and all work in the local model [10].
2A counting query asks what fraction of the database lies in a

specified subset of the universe U .
3By perfect privacy for the data analysts, we mean that changing

any query has no effect on the joint distribution of responses to the
other queries. Stateless mechanisms provide this property, but are
somewhat more constrained. We thank an anonymous reviewer for
a question that brought out the difference.

high probability all queries in the batch are answered
accurately. Thus, any query not well answered is likely
not to have been asked. We therefore consider only
interactive mechanisms.

A Stateful Mechanism with Privacy for the Ana-
lysts: In light of our negative result, if we want privacy
for both the data subjects and the data analysts, we must
look at stateful algorithms. We will also settle for less
than perfect privacy for the data analysts (e.g. look for
an analogue of differential privacy). We achieve this in
a model where every analyst is assigned an ID, which
is fed to the mechanism along with every query made
by that analyst. Specifically, we construct a stateful
mechanism that:
• is differentially private for the data subjects
• can answer up to an exponential number of count-

ing queries (as in the existing stateful mechanisms)
• provides analyst privacy in the following sense:

the view of any one analyst (or few analysts) has
approximately the same distribution regardless of
what other queries are asked by all of the other an-
alysts. Here “approximately the same distribution”
is defined in the same sense as in the definition of
differential privacy, namely every event occurs with
the same probability up to a (1 + ε) multiplicative
factor (and a negligible additive factor).

Our algorithm is based on nesting two privacy-
preserving algorithms. The idea is to have two levels
of responses — the inner layer and the outer layer.
The inner layer is common to all the analysts and
handles all their queries, without regard to which analyst
issues which query. It answers them using a data-private
algorithm, and guarantees that (whp) the accuracy of
all the answers is within an additive α = Õ(1/n1/2)
(hiding the dependence on all parameters other than the
number n of rows in the database). We think of the inner
layer as providing an α-accurate oracle for queries on
the database. This layer is in charge of the privacy of the
database elements. The second, outer, layer runs several
instantiations of an algorithm, one for each analyst (the
analyst is specified by an id). The purpose of the outer
layer is to protect the privacy of the analysts: The
algorithm does not operate on the real database, but
views what the inner layer tells it as an α-accurate oracle
for queries on the database, and its goal is to protect this
oracle, that is to yield no information about which α-
accurate oracle is used, since the precise nature of the
oracle may yield information about the queries asked by
the other analysts. The resulting scheme gives answers
that are within ±Õ(α1/2) = ±Õ(1/n1/4) of the real
answer on all queries.

We remark that our analyst-private algorithm provides
privacy for the entire set of queries posed by each



analyst. This is analogous to a user-level privacy guaran-
tee [19], [20]. The set of analysts, together, may make
an exponential number of queries. In particular, any
given user may make a truly huge number of queries,
and the presence or absence of this entire, potentially
huge, set is protected.

Additional Related Work: Kasiviswanathan et al.,
in their work on differentially private release of con-
tingency tables, consider a class of stateless mecha-
nisms, which they call instance-independent, obtaining
stronger lower bounds on distortion for these mecha-
nisms than they obtain for general mechanism [21].

Subsequent to the current paper, Ullman [22] proved
that, under standard cryptographic assumptions, it is
computationally intractable for even a stateful differen-
tially private mechanism to answer more than n2+o(1)

arbitrary (but efficiently computable) counting queries
on a large data universe. His proof exploits an intimate
connection to “traitor-tracing schemes” from [12] and
uses some ideas related to our negative result. Intu-
itively, he constructs an adversarial sequence of count-
ing queries that can be viewed as encrypted versions
of the queries in our attack, so that it is infeasible for
the mechanism to take advantage of the correlations
between the queries despite being stateful.

II. THE POWER OF STATE

In this section, we prove that a stateless differentially
private algorithm cannot answer more than a quadratic
number of (counting) queries with nontrivial accuracy.
We prove our negative result for statelessness in the
“easiest possible” case for a stateless algorithm: we have
a large set of processors, each of which will respond
to at most a single query. The processors share the
same database, and they may have an unlimited amount
of shared initial state, including an arbitrarily long
random tape. At each step of the attack, the adversary
chooses a processor, poses a query to this processor, and
receives a response. The processors have unrestricted
computational resources, and each processor may have
its own program, say, depending on its processor id4.
However, the processors do not communicate once
interaction with the data analyst (the adversary) has
begun5. Thus, in this work statefulness and coordination
are equivalent.

4A more stringent requirement is order-obliviousness, in which the
answer to the ith query does not depend on i. Our adversary succeeds
even with the less stringent requirement described above.

5What makes this the “easiest possible” case for a stateless differen-
tially private algorithm (with non-trivial accuracy) is the sharing of ini-
tial state and randomness. If there is no sharing of private randomness
then a fairly straightforward hybrid argument and sampling argument
show that differential privacy can be defeated with ω(n2) queries
to the noncommunicating processors. This also has implications for
cumulative privacy loss over participation in multiple, independently
operated, databases.

We consider databases that consist of n uniformly
random rows from some data universe U (chosen with-
out replacement), and mechanisms that answer counting
queries. For any stateless mechanism that provides a
nontrivial bound on the expected error, we exhibit an
efficient adversary that makes O(n2 log |U|) counting
queries and can reconstruct an unknown row of the
database with probability Ω(1/n2) (based on knowing
the other n− 1 rows of the database). This implies that
the mechanism cannot be differentially private, provided
that the data universe is of size |U| = ω(n2) (which is
also tight — see Section II-B).

Several remarks are in order:
(1) The success probability of the attack is independent
of the size of the universe U , although the number of
queries needed to launch the attack depends logarith-
mically on |U|. For a small universe, this probabil-
ity of success can be achieved simply by guessing a
random member of the universe (even without posing
any queries), so the result is significant only when the
universe has size ω(n2) (and we contradict differential
privacy only in this case). If we think of a database as
containing the data of n different Americans, identified
by their social security numbers, then the universe is at
least the size of the US population, and the reconstruc-
tion attack will produce the social security number of a
member of the database, together with the rest of this
individual’s data. If, moreover, this is a database, say,
of HIV-positive individuals, then the attack immediately
identifies someone as being HIV-positive.
(2) Suppose each datum is very complex; for example,
it may be a patient’s name together with his completely
sequenced DNA. In this case the universe is huge, but
the attack is flexible in that it permits the attacker
to focus on, say, 100 “interesting” bits in the DNA
sequence. In this case a successful adversary produces
the name of the individual together with these 100 bits.

A. Model for Proving the Separation Result

The database is a collection of elements, each drawn
from a universe U , and queries map databases to re-
als. In this section, our databases are (unordered) sets
(not multisets), and queries operate on subsets of the
universe U of elements.

A query is a function q : 2U → R. For a data universe
U , an integer t ∈ N , and a query family Q = {q : 2U →
R}, a query release mechanism is a randomized function
M : 2U ×Qt → Rt, which takes a database x ∈ 2U and
a sequence of t queries q(1), . . . , q(t) ∈ Q, and outputs a
sequence M(x, q(1), . . . , q(t)) = (y(1), . . . , y(t)) where
y(j) is intended to be an estimate of q(j)(x). When we
want to make the coin tosses r of M explicit, we will
write M(x, q(1), . . . , q(t); r).



Databases x, x′ ∈ 2U are adjacent if they satisfy
|x∆x′| ≤ 1.

Definition II.1. Random variables Y and Z are (ε, δ)-
indistinguishable if for every set S, we have

Pr[Y ∈ S] ≤ exp(ε) · Pr[Z ∈ S] + δ, and
Pr[Z ∈ S] ≤ exp(ε) · Pr[Y ∈ S] + δ.

Definition II.2. A query release mechanism M :
2U × Qt → Rt is (ε, δ) differentially private iff
for all adjacent databases x, x′ ∈ 2U and all query
sequences q(1), . . . , q(t) ∈ Q, the random vari-
ables M(x, q(1), . . . , q(t)) and M(x′, q(1), . . . , q(t)) are
(ε, δ)-indistinguishable (over the coin tosses of M ).

Typically, we think of ε as a small constant, and δ
as negligibly small (e.g. δ = 1/nω(1)). The above def-
inition only considers privacy for nonadaptive queries,
making our negative result stronger. For our positive re-
sult in Section III, we achieve privacy even for adaptive
queries.

Definition II.3. We say that a query release mechanism
M : 2U ×Qt → R is stateless iff for every j ∈ [t], the
answer to the jth query does not depend on the other
t− 1 queries given to M ; i.e.,

M(x, q(1), . . . , q(t); r)

= (M (1)(x, q(1); r), . . . ,M (t)(x, q(t); r))

for some mechanisms M (1), . . . ,M (t).

We now define a game played by the adversary where
a ‘win’ for the adversary is a privacy compromise.
We begin with an informal description: A random
database x is chosen and the adversary is given all but
one element ξ from the database; such an adversary
is sometimes referred to as “totally informed”. Based
on x \ ξ, the adversary then asks some t queries to
the mechanism, and tries to guess (or“reidentify”) the
unknown element ξ of the database. The adversary wins
if it guesses correctly.

In order to obtain tighter parameters in our negative
results about differential privacy, we will consider a gen-
eralization of the above game where the adversary in-
stead outputs a probability distribution p on the data uni-
verse, where p(w) represents the adversary’s confidence
that ξ = w. Thus, if the adversary guessed the value of ξ
according to p, the probability of reidentification would
be p(ξ). However, we will instead give the adversary a
payoff of

√
p(ξ). This can be related to reidentification

probability by the relation E[p(ξ)] ≥ E[
√
p(ξ)]2, but

will enable tighter lower bounds for differential privacy
than analyzing only E[p(ξ)].

Definition II.4. Let M : 2U × Qt → Rt be a query-
release mechanism and let n ∈ N be a database size.

For a (randomized and computationally unbounded)
adversary A, the totally informed reidentification game
is defined as follows:
1. Let x be a uniformly random subset of U of size n.
2. Let ξ be a uniformly random element of x.
3. Feed the set ξc def

= x \ ξ to A, who then outputs a
query sequence q(1), . . . , q(t).
4. Run M(x, q(1), . . . , q(t)) to obtain output y =
(y(1), . . . , y(t)).
5. Feed y to A, who then outputs a probability distri-
bution p on U .
A’s payoff is defined to be

√
p(ξ). The expected value

of A’s payoff, E[
√
p(ξ)], is over all the randomness in

the above game (including the randomness of both M
and A).

Proposition II.5. If M : 2U × Qt → Rt is an
(ε, δ)-differentially private query release mechanism,
then for every (randomized and computationally un-
bounded) adversary A: A’s expected payoff in the
totally informed reidentification game is at most eε ·√

1/(|U| − (n− 1)) + δ.

Proof: By (ε, δ) differential privacy, A’s expected
payoff is at most eε · µ + δ, where µ is A’s expected
payoff in a modified game where we feed the mecha-
nism M only ξc rather than all of x. In this modified
game, ξ is equally likely to be any element of U \ ξc
even conditioned on A’s view. Thus, when A outputs
probability distribution p, its expected payoff is

Eξ←U\ξc
[√

p(ξ)
]
≤
√

Eξ←U\ξc [p(ξ)] ≤

√
1

|U| − (n− 1)
.

We will use the following measure of utility in our
negative result.

Definition II.6. We say that a query release mechanism
M : 2U × Qt → Rt has expected error γ if for every
database x ∈ 2U , sequence q(1), . . . , q(t) ∈ Q, and j ∈
[t], if we let (y(1), . . . , y(t))←M(x, q(1), . . . , q(t)), we
have

E[|y(j) − q(j)(x)|] ≤ γ.

The probability space is over the coin flips of the
adversary and the mechanism.

Counting Queries: In the literature, a (fractional)
counting query is specified by a predicate q : U →
{0, 1}. When evaluated on a database x ⊆ U , the
counting query q gives the fraction of elements of
x that satisfy the predicate. We abuse notation and
write q to denote both the predicate on U , and the
corresponding function on databases (which are subsets



of U). Specifically, for a predicate q : U → {0, 1} and
a database x ⊆ U of size n, we have:

q(x) =
1

|x|
∑
w∈x

q(w) =
1

n

∑
w∈x

q(w).

For technical convenience, in this section we formulate
counting queries as {±1}-valued predicates; That is,
q : U → {±1}, so that q(x) = 1

|x|
∑
z∈x q(z) =

1
n

∑
z∈x q(z) ∈ [−1, 1].

B. The Separation Result

Our main negative result is given by the following
attack on stateless mechanisms:

Theorem II.7. There is a universal constant c such that
the following holds. Let Q = {±1}|U| be the set of all
counting queries on data universe U , and let M : 2U ×
Qt → [−1, 1]t be a stateless query release mechanism
that has expected error at most 1− γ and supports t ≥
cn2 log |U| queries. Then there is an adversary, running
in time poly(n, t, |U|) that achieves payoff Ω(γ/n) in
the totally informed reidentification game. In particular,
if γ = Ω(1), |U| = ω(n2), ε = O(1), and δ = o(1/n),
them M cannot be (ε, δ)-differentially private.

This theorem is nearly tight in almost all parameters:
The requirement that t & n2 is necessary because o(n2)
queries can be privately answered using independent
noise. The condition that |U| & n2 is necessary, be-
cause for data universes of size o(n2), many counting
queries can be answered using “randomized response”.
Requiring δ . 1/n is necessary because random sub-
sampling achieves (0, Õ(1/n)) differential privacy and
can answer many queries accurately. And providing
the adversary some information about the database is
necessary because otherwise a simple “density estima-
tion” strategy can compute an accurate response with
high probability without even looking at the database
(thereby providing perfect privacy).

Proof of Theorem II.7: As in the totally informed
reidentification game, we consider a database x that is
a uniformly random set of n distinct elements drawn
from U , and we write x = (ξ, ξc), where ξc is the set
of elements in x known to the adversary. The adversary,
A(ξc), generates its counting queries q(1), . . . , q(t) ∈ Q
as follows.
1. Choose k←{0, 1, . . . , n− 1}.
2. Choose a uniformly random predicate q• (pronounced
“q-known), where q• : ξc → {±1}, such that q•(w) = 1
for exactly k elements w ∈ ξc, so q• has value 1 on
exactly k elements known by the adversary to be in
the database and value −1 on the remaining n− 1− k
elements known by the adversary to be in the database.
3. For j = 1, . . . , t:

Select q(j)
◦ : (U \ ξc) → {±1} (pronounced “q-

unknown”) uniformly at random, so elements not
known by the adversary to be in the database are
included in the query with probability 1/2.

Let q(j) = (q•, q
(j)
◦ ) : U → {±1} be the predicate

that equals q• on ξc and equals q(j)
◦ on U \ ξc.

4. Output the queries (q(1), . . . , q(t)).
The attack is not adaptive, strengthening the result.
Upon receiving the response (y(1), . . . , y(t)) =

(M (1)(x, q(1); r), . . . ,M (t)(x, q(t); r)), the adversary
computes, for each element w ∈ U \ ξc:

c(w) =
1

t

t∑
j=1

q
(j)
◦ (w) · y(j)

and outputs any probability distribution that assigns
each element w ∈ U \ ξc probability at least p(w) =
max{c(w)−γ/2n, 0}2. (If

∑
w p(w) > 1, the adversary

fails and the payoff is 0.)
We now provide some intuition for the analysis

of the expected payoff. Consider any fixed setting of
x = (ξ, ξc), k, r, and q•. Conditioned on these values
the expectation of c(w) is the correlation between the
function g : {±1}U\ξc → [−1, 1] defined as

g(q◦) = E
j
[M (j)(x, (q•, q◦); r)]

and the “dictator” function χw that maps each q◦ ∈
{±1}U\ξc to q◦(w). (Note that χw is the encoding of
w in the long code of [18].) That is, conditioned on
these values of x, k, and q•, we have

E[c(w)] = 〈g, χw〉

=
1

2|U|−n+1
(dot product of g and χw as vectors)

= Eq◦ [g(q◦)χw(q◦)].

Thus, by setting p(w) = max{c(w)− γ/2n, 0}2, our
adversary is trying to identify and assign positive proba-
bility to all w such that g has significant correlation with
the dictator function χw. This can be viewed as the task
of “list-decoding” g according to the long code.

If M were to always answer with perfect accuracy
(without adding noise for privacy), then its outputs
would be completely uncorrelated with all dictator
functions except that of ξ. However, all the adversary
has to work with is that, in some average sense, the
mechanism’s responses must be correlated with (most)
elements in the database, and independent of (most)
elements outside of the database.

We next analyze the expected payoff of the adversary,
assuming that

∑
w p(w) > 1 does not occur.



Claim II.8.
E
[√

p(ξ)
]
≥ γ

2n
,

where the expectation is taken above all the randomness
in the above experiment (namely x, k, r, q•, and
q

(1)
◦ , . . . , q

(t)
◦ ).

Proof: We have

E
[√

p(ξ)
]

= E [max{c(ξ)− γ/2n, 0}] ≥ E[c(ξ)]−γ/2n.

Thus it suffices to show E[c(ξ)] ≥ γ/n. First, note that

E
x,k,r,q•,q

(1)
◦ ,...,q

(t)
◦

[c(ξ)]

= E
x,k,r,q•,q

(1)
◦ ,...,q

(t)
◦

1

t

t∑
j=1

q
(j)
◦ (ξ) ·M (j)(x, q(j); r)


= E

j,x,k,r,q•,q◦

[
q◦(ξ) ·M (j)(x, (q•, q◦); r)

]
,

where the first equality is by definition and in the last
expression j←[t] and q◦ is a uniformly random function
from U \ ξc to {±1}.

With this simplified notation, we proceed as follows:

E[c(ξ)] = E
j,x,k,r,q•,q◦

[
q◦(ξ) ·M (j)(x, (q•, q◦); r)

]

=

(
1

2

)
E

j,x,k,r,q•

[
E

q◦:q◦(ξ)=1
[M (j)(x, (q•, q◦); r)]

− E
q◦:q◦(ξ)=−1

[M (j)(x, (q•, q◦); r)]

]
=

(
1

2

)
E

j,x,k,r

[
E

q:#{w∈x:q(w)=1}=k+1
[M (j)(x, q; r)]

− E
q:#{w∈x:q(w)=1}=k

[M (j)(x, q; r)]

]
=

(
1

2n

)
E
j,x,r

[
E

q:#{w∈x:q(w)=1}=n
[M (j)(x, q; r)]

− E
q:#{w∈x:q(w)=1}=0

[M (j)(x, q; r)]

]
≥

(
1

2n

)
· (1− (1− γ)− (−1 + (1− γ)) =

γ

n

The next claim shows that the event
∑
w p(w) > 1

occurs rarely, and thus has little effect on E[
√
p(ξ)].

Claim II.9. With probability at least 1−γ/4n, we have∑
w p(w) ≤ 1.

Proof: Consider any fixed setting of x = (ξ, ξc), k,
r, and q•. As in the proof of Claim II.8, the expectation
of c(w) conditioned on these values is exactly:

ĝ(w) = E
j,q◦

[q◦(w)M (j)(x, (q•, q◦); r)].

and recall that ĝ(w) is exactly the correlation between
g : {±1}U\ξc → [−1, 1] defined by

g(q◦) = E
j
[M (j)(x, (q•, q◦); r)]

and the dictator function that maps each q◦ ∈ {±1}U\ξ
to q◦(w). Dictators constitute the first level of the
Fourier basis over {±1}m). By Parseval’s Identity, we
have ∑

w

ĝ(w)2 ≤ E
q◦

[g(q◦)
2] ≤ 1.

(Parseval’s Identity becomes an inequality here because
the dictators are only a subset of the Fourier basis.)

To show that
∑
w c(w)2 is also bounded with high

probability, we observe that each c(w) is the average of
the t random variables q(j)

◦ (w) ·M (j)(x, (q•, q
(j)
◦ ); r) ∈

[−1, 1], which are independent once we fix x = (ξ, ξc),
k, r, and q•. Thus, by a Chernoff bound and union
bound, the probability that c(w) > ĝ(w) + γ/2n for
some w is at most |U| · exp(−Ω(t · (γ/2n)2)) ≤ γ/4n
by the choice of t ≥ c·(n/γ)2 ·log |U|. (We may assume
that |U| ≥ (n/γ)2, else the adversary can achieve payoff
γ/n by just outputting the uniform distribution on U .)
As long as c(w) ≤ ĝ(w) + γ/2n for all w, we have∑
w

p(w) =
∑
w

max{c(w)−γ/2n, 0}2 ≤
∑
w

ĝ(w)2 ≤ 1.

By Claims II.8 and II.9, the expected payoff of our
adversary is at least:

E[
√
p(ξ)]−Pr

[∑
w

p(w) ≥ 1

]
≥ γ/2n−γ/4n = Ω(γ/n).

Remarks and Extensions: The above proof only
requires a very weak consequence of expected error,
namely that on a uniformly random database x ⊆ U
of size n, a uniformly random counting query q that
is constant on the rows of x, and a uniformly random
j ∈ [t], the expectation of M (j)(x, q) is within ±(1−γ)
of q(x) (which is either 1 or −1).

In case the expected error is a relatively small α
(instead of being close to 1), the adversary can attack
with knowledge of substantially fewer rows. Suppose
the adversary knows some number n′−1 < n rows of x,
together with a bound α on the expected error. Writing
n′ = d(α + γ)ne, and solving for γ, the adversary
can launch of modification of the attack, with improved
expected payoff Ω((γ/n)) = Ω(γ/((γ + α)n)).

When the data universe is large, the number t of
queries needed by our adversary grows proportionally to
log |U|, and the description size of a query and running
time of our adversary grow proportionally to |U|. These
blow-ups can be remedied by effectively reducing the



universe size, either by considering databases where
the rows come from a smaller subset U ′ ⊆ U , or by
considering an adversary that only tries to learn the
first few “attributes” of a row (i.e. take U = U ′ × U ′′,
consider queries that only look at the U ′ component, and
construct an adversary that outputs the U ′ component of
a random row). Restricting the data universe in either
of these ways preserves differential privacy.

To have an adversary that learns all log |U| bits
of a row chosen uniformly from U , then the num-
ber of queries must grow proportionally to log |U|
by information-theoretic arguments. However, the de-
scription size of queries can be reduced from |U| to
O(n log |U|) by using counting queries whose underly-
ing predicates come from an (n+ 1)-wise independent
family Q of hash functions q : U → {±1}.

Using (n+ 1)-wise independent hash functions as in
the previous item, we can also reduce the running time
of the adversary to poly(n, log |U|), while still having
the adversary learn all log |U| bits of information about
a uniformly random row. Specifically, we use a family
Q of hash functions where each q ∈ Q is described a
bit string q̃ of length m = O(n log |U|), and where for
every w ∈ U , q(w) is an F2-linear function of q̃. That
is, q(w) = (−1)〈q̃,`w〉 for some bit-string `w of length
m.

We exploit this linear structure in the adversary as
follows. The adversary selects q• : ξc → {±1} as in
the current attack. Restricting the query q(j) to agree
with q• on ξc amounts to imposing n − 1 F2-linear
constraints on the description of q(j). That is, we can
now describe each query q

(j)
◦ by a bitstring q̃

(j)
◦ of

length m − n + 1, and for every w /∈ ξc, we have
q

(j)
◦ (w) = (−1)〈q̃

(j)
◦ ,`′w〉, where `′w is also of length

m − n + 1. Now we can efficiently find all w such
that g(q◦) has noticeable correlation with the dictator
function χw(q◦) = q◦(w) = (−1)〈q̃◦,`

′
w〉 using the

Goldreich–Levin algorithm [23].

III. PRIVACY FOR THE ANALYST

We now show that it is possible for a centralized
curator to give rigorous guarantees on the privacy of
the analysts while maintaining differential privacy for
the data subjects against exponentially many queries.
Our mechanism will be stateful (as is necessary by
Theorem II.7), and will also require assigning analysts
IDs (see below). The curator will ensure that the coordi-
nation of answers does not leak substantial information
about the queries. This is done by yet another level of
coordination.

A. Model and Definitions

Definition III.1 (stateful mechanisms with IDs). For
a data universe U , an integer t ∈ N , a query family

Q = {q : 2U → R}, and an ID space I, a stateful query
mechanism with analyst IDs is a randomized function
M : 2U ×Q×I ×S → R×S, which takes a database
x ∈ 2U , a query q ∈ Q, an analyst id ∈ I, and a state
s ∈ S and outputs an answer y ∈ R (intended to be
an approximation of q(x) and a new state s′. M also
comes associated with an initial state s0 ∈ S. If I = ∅,
we simply refer to M as a stateful query mechanism
(without analyst IDs).

We will require and achieve privacy even against
adversaries that ask their queries adaptively (in contrast
to Definition II.2 used in our negative result). Recall
Definition II.1 of (ε, δ)-indistinguishable.

Definition III.2 (differential privacy for stateful mech-
anisms). Let M : 2U × Q × I × S → R × S be
a stateful query mechanism with analyst IDs. We say
that M is (ε, δ) differentially private if the following
holds for every two adjacent databases x, x′ ∈ 2U and
every randomized adversary A that adaptively queries
M (i.e. submits a (query, id) pair (q(1), id(1)), receives a
response y(1), then computes its next query (q(2), id(2)),
and so on): the view of A (consisting of the coins of
A and all the responses y(i)) when interacting with
M(x, ·, ·, ·) and the view of A when interacting with
M(x′, ·, ·, ·) are (ε, δ)-indistinguishable.

We also require accuracy when the queries are posed
adaptively.

Definition III.3 (accuracy for stateful mechanisms). Let
M : 2U × Q × I × S → R × S be a stateful query
mechanism with analyst IDs. We say that M is (α, β)
accurate for t queries on databases of size n if for every
database x ∈ 2U of size n and every every randomized
adversary A that adaptively queries M with queries
q(1), . . . , q(t), with probability at least 1 − β, all the
responses y(j) differ from q(j)(x) by at most α.

Now we define privacy for the analyst. This defini-
tion will rely on the analyst IDs, and guarantees that
no analysts can learn much about the other analysts’
queries.

Definition III.4 (analyst privacy for stateful mecha-
nisms). Let M : 2U × Q × I × S → R × S be a
stateful query mechanism with analyst IDs. We say that
M provides (ε, δ) many-to-one analyst privacy if for
every database x ∈ 2U , every id ∈ I, and every two
randomized, adaptive “honest” query strategies H0 and
H1 that can issue queries with any IDs other than id,
and every randomized, adaptive adversary A that always
issues queries under id, the views of A in the following
experiment when H = H0 and H = H1 are (ε, δ)-
indistinguishable:



A and H interact in an interleaved manner
with M(x, ·, ·, ·), where A determines when
H gets to make queries and how many queries
H can make (but does not see the queries
made or the results of those queries).

B. The Analyst-Private Mechanism

We show how to construct a mechanism that satisfies
the above notion of privacy for the analyst, differential
privacy for the data subjects, and provides accuracy for
a large number of queries. This is summarized in the
following theorem:

Theorem III.5. Let Q = {0, 1}U be the set of all count-
ing queries on data universe U , let β, δ, ε, ε′ ∈ (0, 1),
and let t ∈ N . There is a stateful mechanism with
analyst IDs that:
• Is (ε, δ) differentially private,
• Provides (ε′, β) many-to-one privacy for the ana-

lysts, and
• Is (α, β) accurate for up to t queries on databases

of size n, where α is

O


(

log3/8 |U|
)(

log1/8(1/δ)
)(

log1/4(1/β)
)(

log3/4(t/β)
)

(εn)1/4 · (ε′)1/2

 .

Note that we can take 1/δ, 1/β, |U|, and t to all
be 2n

Ω(1)

, and ε, ε′ to be 1/nΩ(1) and still have the
error vanishing polynomially in n. Also note that the
many-to-one privacy for the analysts is guaranteed with
β rather than its own separate parameter δ′, since there
is a tight connection between the accuracy guarantee of
the inner one and the privacy provided for the analyst.

Our algorithm is based on a nested version of the Pri-
vate Multiplicative Weights (PMW) algorithm of Hardt
and Rothblum [15], which achieves the best parameters
of any known stateful differentially private algorithm
(using its analysis from [24]; a simpler proof appears
in [25]):

Theorem III.6 (Private Multiplicative Weights [15],
[24]). LetQ = {0, 1}U be the set of all counting queries
on data universe U , let β, δ, ε, ε′ > 0 be real numbers,
and let t ∈ N . There is a stateful mechanism that:
• Is (ε, δ) differentially private,
• Is (α, β) accurate on for up to t queries on

databases of size n, where α is

O


(
log1/4 |U|

)(
log1/4(1/δ)

)(
log1/2(t/β)

)
(εn)1/2

 .

Our algorithm utilizes a single, long-lived, “inner” in-
stantiation of the PMW algorithm, denoted PMWinner,
which provides privacy for the data subjects over all the
queries posed by all the analysts. For this part we simply
rely on the standard differential privacy properties of the

algorithm and not on any specific characteristics of it
(i.e. any algorithm with good differential privacy would
do).

Then, for each analyst (as specified by their id), we
spawn an “outer” instantiation of the PMW algorithm,
denoted PMWid. These outer PMWid algorithms do
not access the database directly, but only through
PMWinner. To show that an analyst with a given id does
not learn much about the queries of the other analysts,
we combine the accuracy properties of PMWinner with
the privacy properties of PMWid. Specifically, regard-
less of what questions are asked by the other analysts,
PMWinner will still respond to PMWid with answers
that are within ±α of what the database itself would
have provided (except with probability at most β).

By generalizing the PMW privacy analysis, we show
that the output distribution of PMWid is approximately
the same as it would be if it accessed the database
directly (instead of through PMWinner). Indeed, we
show that this holds not just for accessing the database
through PMWinner but through any stateful oracle that
provides answers that are close to those obtained on
the true database. Consider the following definition of
oracle-aided mechanism and the corresponding privacy
requirements. The intuition is that the value given by the
oracle is taken “as truth.” The oracle may be stateful,
and does not have to give consistent answers (repeating
a query need not yield the same result).

Definition III.7 (oracle-aided mechanism). A stateful
mechanism M : Q×S → R×S is said to be an oracle-
aided stateful query mechanism if to answer queries q ∈
Q on a database x ∈ 2U , it never directly accesses the
database, but instead forwards q to a (possibly stateful)
“oracle” x̂ : Q × S ′ → R × S ′, where S ′ is the set
of states of the oracle, and uses the oracle’s answer
together with its (the mechanism’s) state to respond.

One example of a possible oracle x̂ is the database
x itself, which does not use any state and responds to
any query q with q(x).

Definition III.8 ((ε, δ) privacy for α-accurate oracles).
Let M : Q × S → R × S be an oracle-aided stateful
query mechanism. We say that M has (ε, δ) privacy
for α-accurate oracles if the following holds: for every
database x ∈ 2U , every stateful oracle x̂ : Q× S → R
that always responds to a query q ∈ Q with an
answer that differs from q(x) by at most α, and every
randomized adversary A that adaptively queries M :
the view of A when interacting with M x̂(·, ·) and the
view of A when interacting with Mx(·, ·) are (ε, δ)-
indistinguishable.

Note that this requirement is a generalization of the



differential privacy requirement, since a neighboring
database can be viewed as an oracle that provides
answers that are close (α = 1/n) to those obtained on
the true database; that is, exact answers on a neighboring
database are very close to exact answers on the true
database (for counting queries, or more generally low-
sensitivity queries on x). Furthermore, this also applies
to group differential privacy where the goal is to hide
whether a group is inside or outside the database (for
small groups). The standard Laplace mechanism [2] us-
ing independent noise of magnitude O(α·t/ε) (added to
the oracle answer rather than the evaluation of the query
on the database) provides (ε, 0) privacy for α-accurate
oracles. (Noise of magnitude O(

√
t log(1/δ)/(εn)) suf-

fices for (ε, δ) differential privacy.)
However it is not true that any (sufficiently) good

differentially private mechanism provides privacy for
α-accurate oracles as in Definition III.8. To see this,
consider an α-accurate oracle x̂ that on query q ∈ Q
simply takes q(x), the true answer on x, and adds to it
at random +1/n or −1/n. Given oracle access to x̂ it
is very easy to distinguish it from one always yielding
q(x) simply by checking for consistency. Now take
any good differentially private mechanism that is oracle
aided, and modify it so that it remembers previous
queries to its oracle, and the oracle’s responses. If at
any point it detects that the same query receives two
different values from the oracle, it leaks this fact as fol-
lows: It continues with the usual operation of ensuring
differential privacy, but encodes in the least significant
bit of its outputs whether the oracle is the randomized x̂
or simply the one yielding q(x). The differential privacy
properties are not affected, but obviously the mechanism
does not hide the oracle.

Nevertheless, we observe that the Private Multiplica-
tive Weights algorithm can be used for this purpose and,
furthermore, that the analysis of the Private Multiplica-
tive Weights algorithms extends to this more general
notion:

Theorem III.9 (Private Multiplicative Weights for
α-accurate Oracles). Let Q = {0, 1}U be the set
of all counting queries on data universe U , and let
α0, β, δ, ε > 0 be real numbers, and let t ∈ N . There
is a stateful mechanism that:
• Ensures (ε, δ) privacy for α0-accurate oracles,
• Is (α, β) accurate for up to t queries on databases

of size n, where α is

O

((
log1/4 |U|

)(
log1/4(1/δ)

)(
log1/2(t/β)

)(α0

ε

)1/2)
.

Note that the major loss is a square root deterioration
in accuracy, i.e. α is Õ(

√
α0).

Now, to obtain Theorem III.5, we set the parameters
in Theorems III.6 and III.9. We take PMWinner to be

an (ε, δ) differentially private and (α0, β/6) accurate
mechanism with

α0 = O


(

log1/4 |U|
)(

log1/4(1/δ)
)(

log1/2(t/β)
)

(εn)1/2

 .

We take each PMWid to provide (ε′/2, β/6) privacy
for α0-accurate oracles, and to be (α, β/2t) accurate
for α equal to

O

((
log

1/4 |U|
)(

log
1/4

(2/β)
)(

log
1/2

(2t
2
/β)
)( α0

(ε′/2)

)1/2
)

=

O


(

log3/8 |U|
)(

log1/8(1/δ)
)(

log1/4(1/β)
)(

log3/4(t/β)
)

(εn)1/4 · (ε′)1/2

 .

Accuracy: There is one PMWinner executed and
since there are at most t queries there are at most t
different executions of PMWid. By a union bound, the
probability that accuracy fails for any of the invocations
of PMW is at most β/6 + t · (β/2t) < β, so we have
(α, β) accuracy for the combined mechanism.

Privacy of the analysts: To show privacy for the
analyst, fix an id of the adversarial analyst. Whatever
queries the other “honest” analysts ask, PMWinner

still provides an α-accurate oracle to PMWid, except
with probability β/6. Since PMWid is chosen to have
(ε′/2, β/6) privacy for α-accurate oracles, the view of
the adversarial analyst is (ε′/2, β/3) indistinguishable
from its view if we replace PMWinner with the actual
database x. Thus every two strategies for the “honest”
analysts are (ε′, β′) indistinguishable to the adversary
for β′ = (1 + eε

′/2) · (β/3) ≤ β.
Differential Privacy of the data: There is a single

instance of PMWinner and the data is only accessed
through it. So what an adversary sees is a (randomized)
function of the output of PMWinner. Therefore the
differential privacy properties are maintained and we
get (ε, δ) differential privacy.

IV. OPEN PROBLEMS

This work opens a new direction for differentially
private data analysis: protecting the privacy of the
analyst. Many intriguing problems remain.
Collusion: Our Analyst-Private Mechanism from Sec-
tion III-B only provides many-to-one privacy for the
analysts (Definition III.4), meaning that the queries of
many analysts are kept private against one adversarial
analyst. The analyst privacy does not resist collusion by
many adversarial analysts (in contrast to the privacy for
the data subjects, which resists even full collusion). In
particular, a natural and interesting goal is to achieve
one-to-many analyst privacy, where the queries made
under any one ID are hidden from all other analysts
(even if they collude). An ultimate goal would be to



entirely remove the use of IDs and achieve many-to-
many privacy, where any subset of queries is hidden
from an adversary controlling all of the remaining
queries.
Better Utility: The utility of our analyst-private mecha-
nism (Theorem III.5) does not quite match that of differ-
entially private algorithms that do not provide privacy
for the analyst (Theorem III.6). First, as the database
size n grows, the error only decays proportionally to
1/n1/4 instead of 1/n1/2. Second, the maximum num-
ber t of queries that can be answered while providing
nontrivial error is 2Ω̃(n1/3) instead of 2Ω̃(n). Can these
gaps be closed or are they an inherent price of providing
privacy for the data analyst in addition to the data
subjects?
Communication / Query Tradeoff: As noted in the
Introduction, our negative result can be interpreted as a
negative result about distributing the work of answering
queries among servers while maintaining differential
privacy: either the servers must share information about
what queries are asked to them, or they can only answer
a small number of queries. Is there a tradeoff between
amount of communication and number of queries that
can safely be answered with non-trivial accuracy?
Other types of queries: Another issue is for what other
types of queries (e.g. low sensitivity queries) do we have
mechanisms that preserve the privacy of the analysts. Is
there a general method that translates any differentially
private mechanism into one that is secure in this sense?
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