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Abstract 

We test a method that was designed and used previously to reveal the hidden internal architectural 

structure of software systems. The focus of this paper is to test if it can also uncover new facts about the 

components and their relationships in an enterprise architecture, i.e., if the method can reveal the hidden 

external structure between architectural components. Our test uses data from a biopharmaceutical company. In 

total, we analyzed 407 components and 1,157 dependencies. Results show that the enterprise structure can be 

classified as a core-periphery architecture with a propagation cost of 23%, core size of 32%, and architecture 

flow through of 67%. We also found that business components can be classified as control elements, 

infrastructure components as shared, and software applications as belonging to the core.  These findings 

suggest that the method could be effective in uncovering the hidden structure of an enterprise architecture. 

 

1   Introduction 

Managing software applications has become a complex undertaking. Today, achieving effective and efficient 

management of the software application landscape requires the ability to visualize and measure the current 

status of the enterprise architecture. To a large extent, that huge challenge can be addressed by introducing tools 

such as enterprise architecture modeling as a means of abstraction. 

In recent years, Enterprise Architecture (EA) has become an established discipline for business and 

software application management [1]. EA describes the fundamental artifacts of business and IT as well as their 

interrelationships [1-4]. Architecture models constitute the core of the approach and serve the purpose of 

making the complexities of the real world understandable and manageable [3]. Ideally, EA aids the stakeholders 

of the enterprise to effectively plan, design, document, and communicate IT and business related issues; i.e. they 
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provide decision support for the stakeholders [5]. 

In relation to supporting decisions, a key underlying assumption of EA models is that they should 

provide aggregated knowledge beyond what was put into the model in the first place. For instance, the discipline 

of software architecture does more than just keep track of the set of source files in an application; it also 

provides information about the dependencies between those files. More broadly, an EA covers the dependencies 

between the business and the software applications so that, for example, conclusions can be drawn about the 

consequences in the enterprise should a specific application be removed or changed. 

Enabling this type of analysis is extremely important for EA to provide value to stakeholders. 

Unfortunately, though, EA frameworks rarely explicitly state the kinds of analyses that can be performed given 

a certain model, nor do they provide details on how the analysis should be performed [6]. 

In [7], Baldwin et al. present a method based on Design Structure Matrices (DSMs) and classic 

coupling measures to visualize the hidden structure of software system architectures. This method has been 

tested on numerous software releases for large systems (such as Linux, Mozilla, Apache, and GnuCash) but not 

on enterprise architectures with a potentially large number of interdependent components. This paper performs 

such a test using data from a biopharmaceutical company (referred to as BioPharma). The data consisted of a 

total of 407 architecture components and 1,157 dependencies. 

We find that the BioPharma enterprise architecture can be classified as core-periphery, meaning that 1) 

there is one cyclic group (the “Core”) of architecture components that is substantially larger than the second 

biggest cyclic group, and 2) the Core also makes up a large portion of the entire architecture. The analysis also 

shows a propagation cost of 23%, meaning that almost one-fourth of the architecture may be affected when a 

change is made to a randomly selected component in the architecture. In addition, we find that the Core contains 

132 architecture components, which embody 32% of the architecture. And lastly, the analysis uncovers that the 

architecture flow through accounts for as much as 67% of the architecture, meaning that more than half of the 

components are either in, depend on, or are dependent on the Core. 

The remainder of this paper is structured as follows: Section 2 presents related work; Section 3 

describes the hidden structure method; Section 4 presents the biopharmaceutical case used for the analysis; 

Section 5 discusses the approach and outlines future work; and Section 6 concludes the paper. 
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2   Related Work 

In this section, we argue that the EA frameworks available today do not provide support for architecture analysis. 

Then we present system architecture approaches that aim to solve these problems.  

2.1   Enterprise Architecture Analysis 

As stated in the introduction, EA frameworks seldom supply the exact procedure or algorithm for performing a 

certain analysis given an architecture model. But most do recognize the need to provide special-purpose models 

as well as different viewpoints intended for different stakeholders. Unfortunately, however, most viewpoints are 

designed from a model-entity point of view rather than from an analysis-concern point of view. Thus, they 

cannot perform the visualizing and measuring of the modularity or coupling of an architecture in a 

straightforward manner. The Department of Defense Architecture Framework (DoDAF) [8], for instance, 

provides products (i.e., viewpoints) such as “systems communications description,” “systems data exchange 

matrix,” and “operational activity model.” These are all viewpoints based on a delimitation of elements of a 

complete metamodel. The Zachman framework presented in [2, 9] does connect model types describing 

different aspects (Data, Function, Network, People, Time, and Motivation) with abstractly described 

stakeholders (Strategists, Executive Leaders, Architects, Engineers, and Technicians), but it does not provide 

any deeper insights as to how different models should be used for analysis. The Open Group Architecture 

Framework (TOGAF) [4] explicitly states the concerns for each suggested viewpoint, but it does not describe 

the exact mechanism for analyzing the stated concerns. With respect to modularity, the most appropriate 

viewpoints provided would, according to TOGAF, arguably be the “software engineering view,” “systems 

engineering view,” “communications engineering view,” and “enterprise manageability view.” The descriptions 

of these views contain statements such as, “the use of standard and self-describing languages, e.g. XML, is good 

in order to achieve easy to maintain interface descriptions.” What is not included, however, is the exact 

interpretation of such statements when it comes to architectural models or how they relate to the analysis of, for 

example, the flexibility of a system as a whole. Moreover, these kinds of “micro theories” are only exemplary 

and do not claim to provide a complete theory for modularity or similar concerns. 

Other analysis frameworks focus on the assessment of non-functionality qualities such as availability 

[10], interoperability [11], modifiability [12], and security [13]. These frameworks use Bayesian analysis or 
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probabilistic versions of the Object Constraint Language for enterprise modeling. They do not, however, provide 

any analysis capabilities when it comes to revealing the hidden structure of an enterprise architecture. Also, the 

visualization capabilities of these frameworks are limited because they all use entity-relationship modeling 

without any proper views dealing with large complex models. 

2.2   System Architecture Visualization 

If we instead turn to the discipline of system architecture, we find work that aims to solve the issue of 

architecture analysis and visualization. Studies that attempt to characterize the architecture of complex systems 

often employ network representations [14]. Specifically, they focus on identifying the linkages that exist 

between the different elements (nodes) in a system [15, 16]. A key concept here is modularity, which refers to 

the way in which a system’s architecture can be decomposed into different parts. Although there are many 

definitions of “modularity,” authors tend to agree on some fundamental features: interdependence of decisions 

within modules and independence between modules, and hierarchical dependence of modules on components 

that embody standards and design rules [17, 18]. 

Studies that use network methods to measure modularity have typically focused on capturing the level 

of coupling that exists between different parts of a system. In this respect, one of the most widely adopted 

techniques is the so-called Design Structure Matrix (DSM), which illustrates the network structure of a complex 

system in terms of a square matrix [19-21], where rows and columns represent components (nodes in the 

network) and off-diagonal elements represent dependencies (links) between the components. Metrics that 

capture the level of coupling for each component can be calculated from a DSM and used to analyze and 

understand system structure. For example, [22] uses DSMs and the metric “propagation cost” to compare 

software system architectures. DSMs have been used to visualize architectures and to measure the coupling of 

the internal design of single software systems. 

3   Method Description 

The method used for architecture network representation is based on and extends the classic notion of coupling. 

Specifically, after identifying the coupling (dependencies) between the elements in a complex architecture, the 

method analyzes the architecture in terms of hierarchical ordering and cycles, enabling elements to be classified 

in terms of their position in the resulting network. 
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In a Design Structure Matrix (DSM), each diagonal cell represents an element (node), and the off-

diagonal cells record the dependencies between the elements (links): If element i depends on element j, a mark 

is placed in the row of i and the column of j. The content of the matrix does not depend on the ordering of the 

rows and columns, but if the elements in the DSM are rearranged in a way that minimizes the number of 

dependencies above the main diagonal, then dependencies that remain there will show the presence of cyclic 

interdependencies (A depends on B, and B depends on A) which cannot be reduced to a hierarchical ordering. 

The rearranged DSM would then reveal significant facts about the underlying structure of the architecture that 

cannot be inferred from standard measures of coupling or from the architect’s view alone. The following 

subsections present a method that makes this “hidden structure” visible and describe metrics that can be used to 

compare architectures and track changes in architecture structures over time. (Note: A more detailed method 

description can be found in “Hidden Structure: Using Network Methods to Map System Architecture” by 

Baldwin et al. [7].) 

3.1 Identify the Direct Dependencies and Compute the Visibility Matrix 

The architecture of a complex system can be represented as a directed network composed of N elements (nodes) 

and the directed dependencies (links) between them. Fig. 1 contains an example (taken from [22]) of an 

architecture that is shown both as a directed graph and a DSM. This DSM is called the “first-order” matrix to 

distinguish it from a visibility matrix (defined below). 

 

Fig. 1. A directed graph, Design Structure Matrix (DSM), and Visibility matrix example. 
 

If the first-order matrix is raised to successive powers, the result will show the direct and indirect 

dependencies that exist for successive path lengths. Summing these matrices yields the visibility matrix V (Fig. 

1), which denotes the dependencies that exist for all possible path lengths. The values in the visibility matrix are 
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binary, capturing only whether a dependency exists and not the number of possible paths that the dependency 

can take [22]. The matrix for n=0 (i.e., a path length of zero) is included when calculating the visibility matrix, 

implying that a change to an element will always affect itself. 

3.2 Construct Measures from the Visibility Matrix 

Several measures are constructed based on the visibility matrix V. First, for each element i in the architecture, 

the following are defined: 

 VFIi (Visibility Fan-In) is the number of elements that directly or indirectly depend on i. This number 

can be found by summing the entries in the ith column of V. 

 VFOi (Visibility Fan-Out) is the number of elements that i directly or indirectly depends on. This 

number can be found by summing the entries in the ith row of V. 

In the visibility matrix (Fig. 1), element A has VFI equal to 1, meaning that no other elements depend on it, and 

VFO equal to 6, meaning that it depends on all other elements in the architecture. 

To measure visibility at the architecture level, the Propagation Cost (PC) is defined as the density of 

the visibility matrix. Intuitively, it equals the fraction of the architecture affected when a change is made to a 

randomly selected element. It can be computed from Visibility Fan-In (VFI) or Visibility Fan-Out (VFO) as 

described in Eq. 1. 

Propagation Cost = 
∑ ௏ிூ೔
ಿ
೔సభ

ேమ
 =

∑ ௏ிை೔
ಿ
೔సభ

ேమ
 (1) 

 
3.3 Identify and Rank Cyclic Groups 

The next step is to find the cyclic groups in the architecture. By definition, each element within a cyclic group 

depends directly or indirectly on every other member of the group. So we sort the elements, first by VFI 

descending then by VFO ascending. Next we proceed through the sorted list, comparing the VFIs and VFOs of 

adjacent elements. If the VFI and VFO for two successive elements are the same, they might be members of the 

same cyclic group. Elements that have different VFIs or VFOs cannot be members of the same cyclic group, and 

elements for which ni=1 cannot be part of a cyclic group at all. But elements with the same VFI and VFO could 

be members of different cyclic groups. In other words, disjoint cyclic groups may, by coincidence, have the 

same visibility measures. To determine whether a group of elements with the same VFI and VFO is one cyclic 
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group (and not several), we simply inspect the subset of the visibility matrix that includes the rows and columns 

of the group in question and no others. If this submatrix does not contain any zeros, then the group is indeed one 

cyclic group. 

The cyclic groups found via this algorithm are referred to as the “cores” of the system. The largest 

cyclic group (the “Core”) plays a special role in the architectural classification scheme, described next. 

3.4 Classification of Architectures 

The method of classifying architectures is motivated in [7] and was discovered empirically. Specifically, 

Baldwin et al. found that a large percentage of the architectures they analyzed contained four distinct types of 

elements: 1) one large cyclic group, called the “Core,” 2) “Control” elements that depend on other elements but 

are not themselves used by many, 3) “Shared” elements that are used by other elements but do not depend on 

that many others, and 4) “Periphery” elements that are not used by or depend on a large group of other elements. 

From those empirical results, a core-periphery architecture was defined as one containing a single 

cyclic group of elements that is dominant in two senses: it is large relative to the architecture as a whole, and it 

is substantially larger than any other cyclic group. The empirical work also showed that not all architectures fit 

into the category of core-periphery. Some architectures (called “multi-core”) have several similarly sized cyclic 

groups rather than one dominant one. Others (called “hierarchical”) have only a few extremely small cyclic 

groups.  

Based on the large dataset of software architectures analyzed in [7], the first classification boundary is 

set empirically to assess whether the largest cyclic group contains at least 5% of the total elements. 

Architectures that do not meet this test are labeled “hierarchical.” Next, within the set of large-core architectures, 

a second classification boundary is applied to assess whether the largest cyclic group contains at least 50% more 

elements than the second largest cyclic group. Architectures that meet the second test are labeled “core-

periphery”; those that do not (but have passed the first test) are labeled “multi-core.” Fig. 2 summarizes the 

classification scheme. 
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Fig. 2. Architectural classification scheme. 
 
3.5 Classification of Elements and Visualizing the Architecture 

The elements of a core-periphery architecture can be divided into four basic groups: 

 “Core” elements are members of the largest cyclic group and have the same VFI and VFO, denoted by 

VFIC and VFOC, respectively. 

 “Control” elements have VFI < VFIC and VFO ≥ VFOC. 

 “Shared” elements have VFI ≥ VFIC and VFO < VFOC. 

 “Periphery” elements have VFI < VFIC and VFO < VFOC. 

Together the Core, Control, and Shared elements define the flow through of the architecture. (Note: For the 

classification of elements in hierarchical and multi-core architectures, see [7].) 

Using the above classification scheme, a reorganized DSM can be constructed that reveals the “hidden 

structure” of the architecture by placing elements in the order of Shared, Core, Periphery, and Control down the 

main diagonal of the DSM, and then sorting within each group by VFI descending then VFO ascending. 

4   BioPharma Case 

We now apply the described method to a real-world example of a U.S. biopharmaceutical company 

(BioPharma). Data were collected at the research division by examining strategy documents, entering 

architectural information into a repository, using automated system scanning techniques, and conducting a 

survey. A subset of the data employed for the analysis presented in this paper was previously used in the study 

“Digital Cement: Software Portfolio Architecture, Complexity, and Flexibility,” by Dreyfus and Wyner [23], 

with a more extensive exploration in [24]. 
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4.1 Identifying the Direct Dependencies between the Architecture Components 

The BioPharma dataset contains 407 architecture components and 1,157 dependencies. The architectural 

components are divided as follows: eight “business groups,” 191 “software applications,” 92 “schemas,” 49 

“application servers,” 47 “database instances,” and 20 “database hosts” (cf. Table 1).  

Table 1. Component and dependency types in the BioPharma case. 
Component type No. of  Dependency type No. of 
Business Group 8  Communicates With 742 
Software Application 191  Runs On 165 
Schema 92  Is Instantiated By 92 
Application Server 49  Uses  158 
Database Instance 47  
Database Host 20  

 

The dependencies between the architecture components belong to the following types (cf. Table 1): 742 

“communicates with” (bidirectional), 165 “runs on” (unidirectional), 92 “is instantiated by” (unidirectional), and 

158 “uses” (unidirectional). 

We can represent this architecture as a directed network, with the architecture components as nodes 

and dependencies as links, and then convert that network into a DSM. Fig. 3 contains the “architect’s view,” 

with dependencies indicated by dots. (Note: We placed dots along the main diagonal, implying that each 

architecture component is dependent on itself.) The squares in Fig. 3 represent the architecture components, 

which have been ordered in terms of typical enterprise architecture layers (from top left to bottom right): 

business groups, software applications, schemas, applications servers, database instances, and database hosts. 
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Fig. 3. The BioPharma DSM – architect’s view. 

From the DSM, we calculate the Direct Fan-In (DFI) and Direct Fan-Out (DFO) measures by summing 

the rows and columns for each software application, respectively. Table 2 shows, for example, that Architecture 

Component 324 (AC324) has a DFI of four, indicating that three other components depend on it, and a DFO of 

2, indicating that it depends on only one component other than itself. 

4.2 Computing the Visibility Matrix and Constructing the Coupling Measures 

The next step is to derive the visibility matrix by raising the first-order matrix (the architect’s view) to 

successive powers, such that both the direct and all the indirect dependencies appear. The Visibility Fan-In 

(VFI) and Visibility Fan-Out (VFO) measures can then be calculated by summing the rows and columns in the 

visibility matrix for each respective architecture component. Table 2 shows that Architecture Component 403 

(AC403), for example, has a VFI of 173, indicating that 172 other components directly or indirectly depend on it, 

and a VFO of 2, indicating that it directly or indirectly depends on only one component other than itself. 

Table 2. A sample of Biopharma Fan-In and Fan-Outs. 
Architecture component DFI DFO VFI VFO 
AC324 4 2 140 3 
AC333 2 3 139 265 
AC347 2 2 140 3 
AC378 8 23 139 265 
AC403 29 2 173 2 
AC769 1 6 1 267 
AC1030 3 2 3 2 
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Using the VFI and VFO measures, we can calculate the propagation cost of the BioPharma architecture, 

as described in Eq. 2. 

Propagation Cost = 
∑ ௏ிூ೔
రబళ
೔సభ

ସ଴଻మ
= 
∑ ௏ிை೔
రబళ
೔సభ

ସ଴଻మ
 = 23% (2) 

A propagation cost of 23% means that almost one-fourth of the architecture may be affected when a 

change is made to a randomly selected architecture component. 

4.3 Identifying Cyclic Groups and Classifying the Architecture 

To identify cyclic groups, we first ordered the list of architecture components based on VFI descending and 

VFO ascending. We could then identify 15 possible cyclic groups. When inspecting the visibility submatrices of 

these possible clusters, we found that most groups were not cyclic. In other words, these applications had ended 

up with the same VFI and VFO by coincidence. But one possible cluster had 132 architecture components and 

proved to be the largest cyclic group, which we labeled as “Core.” In Table 2, Architecture Components 333 and 

378 are part of the Core. Because the Core makes up 32% of the architecture and because the second largest 

cluster contains only four components, the architecture is classified as core-periphery, according to the 

classification scheme discussed earlier (cf. Fig. 2). 

4.4 Classifying the Components and Visualizing the Architecture 

After identifying components that belong to the Core, the next step is to classify the remainder of the 

architecture components as Shared, Periphery, or Control. To do so, we compare the VFI and VFO of each 

component with the VFIC and VFOC of the Core components. A total of 133 components have a VFI that is 

equal to or larger than the VFIC and a VFO that is smaller than the VFOC, classifying them as Shared. A total of 

135 architecture components have VFI and VFO numbers that are smaller than the Core, classifying them as 

Periphery. And seven components have a VFI that is smaller than the VFIC and a VFO that is equal to or larger 

than the VFOC, classifying them as Control. Table 3 summarizes those results. 

Table 3. BioPharma architecture component classification. 
Classification No. of % of total 
Shared 133 33% 
Core 132 32% 
Periphery 135 33% 
Control 7 2% 
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By sorting the original DSM using the different classifications, we can uncover the hidden structure of 

the architecture. First, the components are sorted in the order of Shared, Core, Periphery, and Control. Then, 

within each group the components are ordered by VFI descending and VFO ascending. 

 

Fig. 4. BioPharma rearranged DSM. 

From Fig. 4, which shows the rearranged DSM, we see a large cyclic group of architecture components 

that appear in the second block down the main diagonal. Each element in this group both depends on and is 

dependent on every other member of the group. These “Core” components account for 32% of the elements. 

Furthermore, the Core, the components depending on it (“Control”), and those it depends on (“Shared”), account 

for 67% of the architecture. The remaining components are “Periphery,” in that they have few relationships with 

other components. 

If we examine where the different types of components in the architecture end up after the 

classification and rearrangement, we find the following: The Shared category contains only infrastructure 

components (schema, application server, database instance, and database host); the Core consists of only 

software-application elements; the Periphery contains a mix; and the Control category consists of just business-

group components (see Table 4).  
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Table 4. Distribution of architecture components between classification categories. 

 Business 
group 

Software 
application 

Schema Application 
server 

Database 
instance 

Database 
host 

Shared 0 0 83 27 15 8 
Core 0 132 0 0 0 0 
Periphery 1 59 9 22 32 12 
Control 7 0 0 0 0 0 

 
5   Discussion and Research Outlook 

As presented in [7], the hidden structure method was designed based on the empirical regularity from cases 

investigating large complex software systems. All those cases were focused on one software system at a time, 

independent of its surrounding environment, analyzing the dependencies between its source files. In other 

words, that work considered the internal coupling of a system. In this paper, the same method is tested on the 

dependencies between architecture components; i.e., the current work considers the external coupling between 

not only software applications but also other enterprise architecture components. 

For the BioPharma case, the method revealed a hidden structure (thus presenting new facts) similar to 

those cases on software systems investigated in previous studies. And the method also helped classify the 

architecture as core-periphery using the same rules and boundaries as in the previous cases. However, because 

this is only one set of data from one company, additional studies are needed. We present one such study using 

enterprise application architecture data from a Telecom company in [25]. 

Compared to many other complexity, coupling, and modularity measures, the hidden structure method 

considers not only the direct network structure of an architecture but also takes into account the indirect 

dependencies between components (not unlike some measures used in social networks). Both these features 

provide important input for management decisions. For instance, components that are classified as Periphery or 

Control are probably easier (and less costly) to modify because of the lower probability of a change spreading 

and affecting other components. In contrast, components that are classified as Shared or Core are more difficult 

to modify because of the higher probability of changes having an impact elsewhere. This information can be 

used in change management, project planning, risk analysis, and so on. 

From just the architect’s view (cf. Fig. 3), we see some of the benefits of using Design Structure 

Matrices for enterprise architecture visualization. If the matrix elements are arranged in an order that comes 

naturally for most companies, with the business layer at the top, infrastructure at the bottom, and software in 
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between, we see that 1) the business groups depend on the software applications, 2) the software applications 

communicate with each other in what looks like a clustered network of dependencies, 3) the software 

applications depend on the schemas and application servers, 4) the schemas depend on the database instances, 

and 5) the database instances depend on the database hosts. Although these observations are neither new nor 

surprising, they do help validate that the components in the investigated architecture do interact as expected. 

From Table 2, we see that architecture components 324, 333, 347 769, and 1030 all have rather low 

Direct Fan-In (DFI) and Direct Fan-Out (DFO) numbers. As such, those components might be considered as 

low risk when implementing changes. But if we also look at the Visibility Fan-In (VFI) and Visibility Fan-Out 

(VFO) numbers, which measure indirect dependencies, we see that application 333 belongs to the Core of the 

architecture. Thus any change to it might spread to many other components (even though it has few direct 

dependencies). The same goes for components 324, 347, and 403, which are classified as Shared. Therefore, we 

argue that the hidden structure method, which considers indirect dependencies, provides more valuable 

information for decision-making. 

In our experience, we have found that many companies working with enterprise modeling have 

architecture blueprints that describe their organization, often with entity-relationship diagrams containing boxes 

and arrows. When the entire architecture is visualized using this type of model, however, the result is typically a 

“spaghetti” tangle of many components and dependencies that are difficult to interpret. But this representation 

can be translated directly to the architect’s view DSM (cf. Fig. 3), which, along with the entity-relationship 

model, can be used to trace a dependency between two components, thus enabling better decision-making 

(compare with the discussion above on DFI/DFO versus VFI/VFO measures). Moreover, if we instead use the 

hidden structure method and rearrange the DSM, as in Fig. 4, we can actually see what components are 

considered to be Core, Shared, Control, and Periphery, which gives us much more insight about the structure of 

the architecture. Lastly, measures such as the propagation cost, the architecture flow through, and the size of the 

core can be useful when trying to improve an architecture because future scenarios can be compared in terms of 

these metrics. 

In the explored BioPharma case, we found that the Control category contains only business groups; the 

Core consists of only software applications; the Shared elements are all infrastructure-related components 
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(schemas, application servers, database instances, and database hosts); and the Periphery category contains a 

mix of all types. These results provide support for the method, as we would expect that the business controls the 

underlying components in the architecture (e.g. a business group depends on the software it uses but not the 

other way around). Also, infrastructure components such as databases are supposed to be shared among the 

applications in a sound architecture. 

A first step in future research is to test the hidden structure method with additional enterprise 

architectures, like the one in [25]. This will provide valuable input either supporting the method as currently 

constructed or with suggested improvements for future versions. 

Both in the previous work by Baldwin et al. [7], Lagerström et al. [25], and in this case, the 

architectures studied have a single large Core. A limitation of the hidden structure method is that it only shows 

which elements belong to the Core but does not help in describing the inner structure of that Core. Thus, future 

research might extend the hidden structure method with a sub-method that could help identify the elements 

within the Core that are most important in terms of dependencies and cluster growth. The hypothesis is that 

there are some elements in a Core that bind the group together or that make the group grow faster. As such, 

removing these elements or reducing their dependencies (either to or from them) may decrease the size of the 

Core and thus the complexity of the architecture. Identifying these elements might also help pinpoint where the 

Core is most sensitive to change. 

We have also seen in previous work that enterprise application architectures often contain non-directed 

dependencies, thus forming symmetric matrices that have special properties and behave differently from 

matrices with directed dependencies. This could, for instance, be due to the nature of the link itself (as in social 

networks), or, as in most cases we have seen, it could be due to imprecision in the data (often because of the 

high costs of data collection). For companies, the primary concern is whether two applications are connected, 

and the direction of the dependency is secondary. In one of our cases, the company had more than a thousand 

software applications but did not have an architecture model or application portfolio describing them. For that 

firm, collecting information about what applications it had and what those applications did was of primary 

importance. That process was costly enough, and consequently the direction of the dependencies between the 

applications was not a priority. 
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Effective tools could help lower the high costs associated with data collection. In the prior work of 

Baldwin et al. [7], the analysis of internal coupling in a software system was supported by a tool that explored 

the source files and created a dependency graph automatically. In the enterprise architecture domain, such useful 

practical tools generally do not exist. Consequently, data collection requires considerable time. The most 

common methods are interviews and surveys of people (often managers) with already busy schedules. As such, 

future work needs to be directed towards data collection support in the enterprise architecture domain. Some 

work has already been done but is limited in either scope or application, as described in [26, 27]. 

For the hidden structure method to be useful in practice, it needs to be incorporated into existing or 

future enterprise architecture tools. Most companies today already use modeling tools like Rational System 

Architect [28] and BiZZdesign Architect [29] to describe their enterprise architecture. Thus, having a stand-

alone tool that supports the hidden structure method would not be feasible or very cost efficient. Moreover, if 

the method is integrated with current tools, companies can then perform a hidden structure analysis by re-using 

their existing architecture descriptions. The modeling software Enterprise Architecture Analysis Tool (EAAT) 

[30] is currently implementing the hidden structure method, and future studies will use it. 

Last, but not least, the most important future work is to test the VFI/VFO metrics and the element 

classification (Shared, Control, Periphery, and Core) with performance outcome metrics such as change cost. 

Doing so will help prove that the method is actually useful in architectural work. Currently, we can argue its 

benefits only with respect to other existing methods. 

6 Conclusions 

Although our method is used in only one case, the results suggests that it can reveal new facts about the 

architecture structure on an enterprise level, equal to past results in the initial cases of single software systems. 

The analysis reveals that the hidden external structure of the architecture components at BioPharma can be 

classified as core-periphery with a propagation cost of 23%, architecture flow through of 67%, and core size of 

32%. For BioPharma, the architectural visualization and the computed coupling metrics can provide valuable 

input when planning architectural change projects (in terms of, for example, risk analysis and resource 

planning). Also the analysis shows that business components are Control elements, infrastructure components 
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are Shared elements, and software applications are in the Core, thus providing verification that the architecture 

is sound. 
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