

Visualizing and Measuring Enterprise Architecture: An Exploratory
BioPharma Case

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Lagerstrom, Robert, Carliss Baldwin, Alan MacCormack, and
David Dreyfus. "Visualizing and Measuring Enterprise
Architecture: An Exploratory BioPharma Case." Harvard Business
School Working Paper, No. 13-105, June 2013.

Accessed February 19, 2015 1:44:26 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11591704

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH

https://core.ac.uk/display/28945641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11591704&title=Visualizing+and+Measuring+Enterprise+Architecture%3A+An+Exploratory+BioPharma+Case
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11591704
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Copyright © 2013 by Robert Lagerström, Carliss Baldwin, Alan MacCormack, and David Dreyfus

Working papers are in draft form. This working paper is distributed for purposes of comment and
discussion only. It may not be reproduced without permission of the copyright holder. Copies of working
papers are available from the author.

Visualizing and Measuring
Enterprise Architecture: An
Exploratory BioPharma Case

Robert Lagerström
Carliss Baldwin
Alan MacCormack
David Dreyfus

Working Paper

13-105

June 28, 2013

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Visualizing and Measuring Enterprise Architecture:

An Exploratory BioPharma Case

Robert Lagerström, Carliss Y. Baldwin, Alan MacCormack and David Dreyfus

Abstract

We test a method that was designed and used previously to reveal the hidden internal architectural

structure of software systems. The focus of this paper is to test if it can also uncover new facts about the

components and their relationships in an enterprise architecture, i.e., if the method can reveal the hidden

external structure between architectural components. Our test uses data from a biopharmaceutical company. In

total, we analyzed 407 components and 1,157 dependencies. Results show that the enterprise structure can be

classified as a core-periphery architecture with a propagation cost of 23%, core size of 32%, and architecture

flow through of 67%. We also found that business components can be classified as control elements,

infrastructure components as shared, and software applications as belonging to the core. These findings

suggest that the method could be effective in uncovering the hidden structure of an enterprise architecture.

1 Introduction

Managing software applications has become a complex undertaking. Today, achieving effective and efficient

management of the software application landscape requires the ability to visualize and measure the current

status of the enterprise architecture. To a large extent, that huge challenge can be addressed by introducing tools

such as enterprise architecture modeling as a means of abstraction.

In recent years, Enterprise Architecture (EA) has become an established discipline for business and

software application management [1]. EA describes the fundamental artifacts of business and IT as well as their

interrelationships [1-4]. Architecture models constitute the core of the approach and serve the purpose of

making the complexities of the real world understandable and manageable [3]. Ideally, EA aids the stakeholders

of the enterprise to effectively plan, design, document, and communicate IT and business related issues; i.e. they

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

provide decision support for the stakeholders [5].

In relation to supporting decisions, a key underlying assumption of EA models is that they should

provide aggregated knowledge beyond what was put into the model in the first place. For instance, the discipline

of software architecture does more than just keep track of the set of source files in an application; it also

provides information about the dependencies between those files. More broadly, an EA covers the dependencies

between the business and the software applications so that, for example, conclusions can be drawn about the

consequences in the enterprise should a specific application be removed or changed.

Enabling this type of analysis is extremely important for EA to provide value to stakeholders.

Unfortunately, though, EA frameworks rarely explicitly state the kinds of analyses that can be performed given

a certain model, nor do they provide details on how the analysis should be performed [6].

In [7], Baldwin et al. present a method based on Design Structure Matrices (DSMs) and classic

coupling measures to visualize the hidden structure of software system architectures. This method has been

tested on numerous software releases for large systems (such as Linux, Mozilla, Apache, and GnuCash) but not

on enterprise architectures with a potentially large number of interdependent components. This paper performs

such a test using data from a biopharmaceutical company (referred to as BioPharma). The data consisted of a

total of 407 architecture components and 1,157 dependencies.

We find that the BioPharma enterprise architecture can be classified as core-periphery, meaning that 1)

there is one cyclic group (the “Core”) of architecture components that is substantially larger than the second

biggest cyclic group, and 2) the Core also makes up a large portion of the entire architecture. The analysis also

shows a propagation cost of 23%, meaning that almost one-fourth of the architecture may be affected when a

change is made to a randomly selected component in the architecture. In addition, we find that the Core contains

132 architecture components, which embody 32% of the architecture. And lastly, the analysis uncovers that the

architecture flow through accounts for as much as 67% of the architecture, meaning that more than half of the

components are either in, depend on, or are dependent on the Core.

The remainder of this paper is structured as follows: Section 2 presents related work; Section 3

describes the hidden structure method; Section 4 presents the biopharmaceutical case used for the analysis;

Section 5 discusses the approach and outlines future work; and Section 6 concludes the paper.

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

2 Related Work

In this section, we argue that the EA frameworks available today do not provide support for architecture analysis.

Then we present system architecture approaches that aim to solve these problems.

2.1 Enterprise Architecture Analysis

As stated in the introduction, EA frameworks seldom supply the exact procedure or algorithm for performing a

certain analysis given an architecture model. But most do recognize the need to provide special-purpose models

as well as different viewpoints intended for different stakeholders. Unfortunately, however, most viewpoints are

designed from a model-entity point of view rather than from an analysis-concern point of view. Thus, they

cannot perform the visualizing and measuring of the modularity or coupling of an architecture in a

straightforward manner. The Department of Defense Architecture Framework (DoDAF) [8], for instance,

provides products (i.e., viewpoints) such as “systems communications description,” “systems data exchange

matrix,” and “operational activity model.” These are all viewpoints based on a delimitation of elements of a

complete metamodel. The Zachman framework presented in [2, 9] does connect model types describing

different aspects (Data, Function, Network, People, Time, and Motivation) with abstractly described

stakeholders (Strategists, Executive Leaders, Architects, Engineers, and Technicians), but it does not provide

any deeper insights as to how different models should be used for analysis. The Open Group Architecture

Framework (TOGAF) [4] explicitly states the concerns for each suggested viewpoint, but it does not describe

the exact mechanism for analyzing the stated concerns. With respect to modularity, the most appropriate

viewpoints provided would, according to TOGAF, arguably be the “software engineering view,” “systems

engineering view,” “communications engineering view,” and “enterprise manageability view.” The descriptions

of these views contain statements such as, “the use of standard and self-describing languages, e.g. XML, is good

in order to achieve easy to maintain interface descriptions.” What is not included, however, is the exact

interpretation of such statements when it comes to architectural models or how they relate to the analysis of, for

example, the flexibility of a system as a whole. Moreover, these kinds of “micro theories” are only exemplary

and do not claim to provide a complete theory for modularity or similar concerns.

Other analysis frameworks focus on the assessment of non-functionality qualities such as availability

[10], interoperability [11], modifiability [12], and security [13]. These frameworks use Bayesian analysis or

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

probabilistic versions of the Object Constraint Language for enterprise modeling. They do not, however, provide

any analysis capabilities when it comes to revealing the hidden structure of an enterprise architecture. Also, the

visualization capabilities of these frameworks are limited because they all use entity-relationship modeling

without any proper views dealing with large complex models.

2.2 System Architecture Visualization

If we instead turn to the discipline of system architecture, we find work that aims to solve the issue of

architecture analysis and visualization. Studies that attempt to characterize the architecture of complex systems

often employ network representations [14]. Specifically, they focus on identifying the linkages that exist

between the different elements (nodes) in a system [15, 16]. A key concept here is modularity, which refers to

the way in which a system’s architecture can be decomposed into different parts. Although there are many

definitions of “modularity,” authors tend to agree on some fundamental features: interdependence of decisions

within modules and independence between modules, and hierarchical dependence of modules on components

that embody standards and design rules [17, 18].

Studies that use network methods to measure modularity have typically focused on capturing the level

of coupling that exists between different parts of a system. In this respect, one of the most widely adopted

techniques is the so-called Design Structure Matrix (DSM), which illustrates the network structure of a complex

system in terms of a square matrix [19-21], where rows and columns represent components (nodes in the

network) and off-diagonal elements represent dependencies (links) between the components. Metrics that

capture the level of coupling for each component can be calculated from a DSM and used to analyze and

understand system structure. For example, [22] uses DSMs and the metric “propagation cost” to compare

software system architectures. DSMs have been used to visualize architectures and to measure the coupling of

the internal design of single software systems.

3 Method Description

The method used for architecture network representation is based on and extends the classic notion of coupling.

Specifically, after identifying the coupling (dependencies) between the elements in a complex architecture, the

method analyzes the architecture in terms of hierarchical ordering and cycles, enabling elements to be classified

in terms of their position in the resulting network.

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

In a Design Structure Matrix (DSM), each diagonal cell represents an element (node), and the off-

diagonal cells record the dependencies between the elements (links): If element i depends on element j, a mark

is placed in the row of i and the column of j. The content of the matrix does not depend on the ordering of the

rows and columns, but if the elements in the DSM are rearranged in a way that minimizes the number of

dependencies above the main diagonal, then dependencies that remain there will show the presence of cyclic

interdependencies (A depends on B, and B depends on A) which cannot be reduced to a hierarchical ordering.

The rearranged DSM would then reveal significant facts about the underlying structure of the architecture that

cannot be inferred from standard measures of coupling or from the architect’s view alone. The following

subsections present a method that makes this “hidden structure” visible and describe metrics that can be used to

compare architectures and track changes in architecture structures over time. (Note: A more detailed method

description can be found in “Hidden Structure: Using Network Methods to Map System Architecture” by

Baldwin et al. [7].)

3.1 Identify the Direct Dependencies and Compute the Visibility Matrix

The architecture of a complex system can be represented as a directed network composed of N elements (nodes)

and the directed dependencies (links) between them. Fig. 1 contains an example (taken from [22]) of an

architecture that is shown both as a directed graph and a DSM. This DSM is called the “first-order” matrix to

distinguish it from a visibility matrix (defined below).

Fig. 1. A directed graph, Design Structure Matrix (DSM), and Visibility matrix example.

If the first-order matrix is raised to successive powers, the result will show the direct and indirect

dependencies that exist for successive path lengths. Summing these matrices yields the visibility matrix V (Fig.

1), which denotes the dependencies that exist for all possible path lengths. The values in the visibility matrix are

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

binary, capturing only whether a dependency exists and not the number of possible paths that the dependency

can take [22]. The matrix for n=0 (i.e., a path length of zero) is included when calculating the visibility matrix,

implying that a change to an element will always affect itself.

3.2 Construct Measures from the Visibility Matrix

Several measures are constructed based on the visibility matrix V. First, for each element i in the architecture,

the following are defined:

 VFIi (Visibility Fan-In) is the number of elements that directly or indirectly depend on i. This number

can be found by summing the entries in the ith column of V.

 VFOi (Visibility Fan-Out) is the number of elements that i directly or indirectly depends on. This

number can be found by summing the entries in the ith row of V.

In the visibility matrix (Fig. 1), element A has VFI equal to 1, meaning that no other elements depend on it, and

VFO equal to 6, meaning that it depends on all other elements in the architecture.

To measure visibility at the architecture level, the Propagation Cost (PC) is defined as the density of

the visibility matrix. Intuitively, it equals the fraction of the architecture affected when a change is made to a

randomly selected element. It can be computed from Visibility Fan-In (VFI) or Visibility Fan-Out (VFO) as

described in Eq. 1.

Propagation Cost =
∑ ௏ிூ೔
ಿ
೔సభ

ேమ
 =

∑ ௏ிை೔
ಿ
೔సభ

ேమ
 (1)

3.3 Identify and Rank Cyclic Groups

The next step is to find the cyclic groups in the architecture. By definition, each element within a cyclic group

depends directly or indirectly on every other member of the group. So we sort the elements, first by VFI

descending then by VFO ascending. Next we proceed through the sorted list, comparing the VFIs and VFOs of

adjacent elements. If the VFI and VFO for two successive elements are the same, they might be members of the

same cyclic group. Elements that have different VFIs or VFOs cannot be members of the same cyclic group, and

elements for which ni=1 cannot be part of a cyclic group at all. But elements with the same VFI and VFO could

be members of different cyclic groups. In other words, disjoint cyclic groups may, by coincidence, have the

same visibility measures. To determine whether a group of elements with the same VFI and VFO is one cyclic

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

group (and not several), we simply inspect the subset of the visibility matrix that includes the rows and columns

of the group in question and no others. If this submatrix does not contain any zeros, then the group is indeed one

cyclic group.

The cyclic groups found via this algorithm are referred to as the “cores” of the system. The largest

cyclic group (the “Core”) plays a special role in the architectural classification scheme, described next.

3.4 Classification of Architectures

The method of classifying architectures is motivated in [7] and was discovered empirically. Specifically,

Baldwin et al. found that a large percentage of the architectures they analyzed contained four distinct types of

elements: 1) one large cyclic group, called the “Core,” 2) “Control” elements that depend on other elements but

are not themselves used by many, 3) “Shared” elements that are used by other elements but do not depend on

that many others, and 4) “Periphery” elements that are not used by or depend on a large group of other elements.

From those empirical results, a core-periphery architecture was defined as one containing a single

cyclic group of elements that is dominant in two senses: it is large relative to the architecture as a whole, and it

is substantially larger than any other cyclic group. The empirical work also showed that not all architectures fit

into the category of core-periphery. Some architectures (called “multi-core”) have several similarly sized cyclic

groups rather than one dominant one. Others (called “hierarchical”) have only a few extremely small cyclic

groups.

Based on the large dataset of software architectures analyzed in [7], the first classification boundary is

set empirically to assess whether the largest cyclic group contains at least 5% of the total elements.

Architectures that do not meet this test are labeled “hierarchical.” Next, within the set of large-core architectures,

a second classification boundary is applied to assess whether the largest cyclic group contains at least 50% more

elements than the second largest cyclic group. Architectures that meet the second test are labeled “core-

periphery”; those that do not (but have passed the first test) are labeled “multi-core.” Fig. 2 summarizes the

classification scheme.

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Fig. 2. Architectural classification scheme.

3.5 Classification of Elements and Visualizing the Architecture

The elements of a core-periphery architecture can be divided into four basic groups:

 “Core” elements are members of the largest cyclic group and have the same VFI and VFO, denoted by

VFIC and VFOC, respectively.

 “Control” elements have VFI < VFIC and VFO ≥ VFOC.

 “Shared” elements have VFI ≥ VFIC and VFO < VFOC.

 “Periphery” elements have VFI < VFIC and VFO < VFOC.

Together the Core, Control, and Shared elements define the flow through of the architecture. (Note: For the

classification of elements in hierarchical and multi-core architectures, see [7].)

Using the above classification scheme, a reorganized DSM can be constructed that reveals the “hidden

structure” of the architecture by placing elements in the order of Shared, Core, Periphery, and Control down the

main diagonal of the DSM, and then sorting within each group by VFI descending then VFO ascending.

4 BioPharma Case

We now apply the described method to a real-world example of a U.S. biopharmaceutical company

(BioPharma). Data were collected at the research division by examining strategy documents, entering

architectural information into a repository, using automated system scanning techniques, and conducting a

survey. A subset of the data employed for the analysis presented in this paper was previously used in the study

“Digital Cement: Software Portfolio Architecture, Complexity, and Flexibility,” by Dreyfus and Wyner [23],

with a more extensive exploration in [24].

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

4.1 Identifying the Direct Dependencies between the Architecture Components

The BioPharma dataset contains 407 architecture components and 1,157 dependencies. The architectural

components are divided as follows: eight “business groups,” 191 “software applications,” 92 “schemas,” 49

“application servers,” 47 “database instances,” and 20 “database hosts” (cf. Table 1).

Table 1. Component and dependency types in the BioPharma case.
Component type No. of Dependency type No. of
Business Group 8 Communicates With 742
Software Application 191 Runs On 165
Schema 92 Is Instantiated By 92
Application Server 49 Uses 158
Database Instance 47
Database Host 20

The dependencies between the architecture components belong to the following types (cf. Table 1): 742

“communicates with” (bidirectional), 165 “runs on” (unidirectional), 92 “is instantiated by” (unidirectional), and

158 “uses” (unidirectional).

We can represent this architecture as a directed network, with the architecture components as nodes

and dependencies as links, and then convert that network into a DSM. Fig. 3 contains the “architect’s view,”

with dependencies indicated by dots. (Note: We placed dots along the main diagonal, implying that each

architecture component is dependent on itself.) The squares in Fig. 3 represent the architecture components,

which have been ordered in terms of typical enterprise architecture layers (from top left to bottom right):

business groups, software applications, schemas, applications servers, database instances, and database hosts.

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Fig. 3. The BioPharma DSM – architect’s view.

From the DSM, we calculate the Direct Fan-In (DFI) and Direct Fan-Out (DFO) measures by summing

the rows and columns for each software application, respectively. Table 2 shows, for example, that Architecture

Component 324 (AC324) has a DFI of four, indicating that three other components depend on it, and a DFO of

2, indicating that it depends on only one component other than itself.

4.2 Computing the Visibility Matrix and Constructing the Coupling Measures

The next step is to derive the visibility matrix by raising the first-order matrix (the architect’s view) to

successive powers, such that both the direct and all the indirect dependencies appear. The Visibility Fan-In

(VFI) and Visibility Fan-Out (VFO) measures can then be calculated by summing the rows and columns in the

visibility matrix for each respective architecture component. Table 2 shows that Architecture Component 403

(AC403), for example, has a VFI of 173, indicating that 172 other components directly or indirectly depend on it,

and a VFO of 2, indicating that it directly or indirectly depends on only one component other than itself.

Table 2. A sample of Biopharma Fan-In and Fan-Outs.
Architecture component DFI DFO VFI VFO
AC324 4 2 140 3
AC333 2 3 139 265
AC347 2 2 140 3
AC378 8 23 139 265
AC403 29 2 173 2
AC769 1 6 1 267
AC1030 3 2 3 2

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Using the VFI and VFO measures, we can calculate the propagation cost of the BioPharma architecture,

as described in Eq. 2.

Propagation Cost =
∑ ௏ிூ೔
రబళ
೔సభ

ସ଴଻మ
=
∑ ௏ிை೔
రబళ
೔సభ

ସ଴଻మ
 = 23% (2)

A propagation cost of 23% means that almost one-fourth of the architecture may be affected when a

change is made to a randomly selected architecture component.

4.3 Identifying Cyclic Groups and Classifying the Architecture

To identify cyclic groups, we first ordered the list of architecture components based on VFI descending and

VFO ascending. We could then identify 15 possible cyclic groups. When inspecting the visibility submatrices of

these possible clusters, we found that most groups were not cyclic. In other words, these applications had ended

up with the same VFI and VFO by coincidence. But one possible cluster had 132 architecture components and

proved to be the largest cyclic group, which we labeled as “Core.” In Table 2, Architecture Components 333 and

378 are part of the Core. Because the Core makes up 32% of the architecture and because the second largest

cluster contains only four components, the architecture is classified as core-periphery, according to the

classification scheme discussed earlier (cf. Fig. 2).

4.4 Classifying the Components and Visualizing the Architecture

After identifying components that belong to the Core, the next step is to classify the remainder of the

architecture components as Shared, Periphery, or Control. To do so, we compare the VFI and VFO of each

component with the VFIC and VFOC of the Core components. A total of 133 components have a VFI that is

equal to or larger than the VFIC and a VFO that is smaller than the VFOC, classifying them as Shared. A total of

135 architecture components have VFI and VFO numbers that are smaller than the Core, classifying them as

Periphery. And seven components have a VFI that is smaller than the VFIC and a VFO that is equal to or larger

than the VFOC, classifying them as Control. Table 3 summarizes those results.

Table 3. BioPharma architecture component classification.
Classification No. of % of total
Shared 133 33%
Core 132 32%
Periphery 135 33%
Control 7 2%

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

By sorting the original DSM using the different classifications, we can uncover the hidden structure of

the architecture. First, the components are sorted in the order of Shared, Core, Periphery, and Control. Then,

within each group the components are ordered by VFI descending and VFO ascending.

Fig. 4. BioPharma rearranged DSM.

From Fig. 4, which shows the rearranged DSM, we see a large cyclic group of architecture components

that appear in the second block down the main diagonal. Each element in this group both depends on and is

dependent on every other member of the group. These “Core” components account for 32% of the elements.

Furthermore, the Core, the components depending on it (“Control”), and those it depends on (“Shared”), account

for 67% of the architecture. The remaining components are “Periphery,” in that they have few relationships with

other components.

If we examine where the different types of components in the architecture end up after the

classification and rearrangement, we find the following: The Shared category contains only infrastructure

components (schema, application server, database instance, and database host); the Core consists of only

software-application elements; the Periphery contains a mix; and the Control category consists of just business-

group components (see Table 4).

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Table 4. Distribution of architecture components between classification categories.

 Business
group

Software
application

Schema Application
server

Database
instance

Database
host

Shared 0 0 83 27 15 8
Core 0 132 0 0 0 0
Periphery 1 59 9 22 32 12
Control 7 0 0 0 0 0

5 Discussion and Research Outlook

As presented in [7], the hidden structure method was designed based on the empirical regularity from cases

investigating large complex software systems. All those cases were focused on one software system at a time,

independent of its surrounding environment, analyzing the dependencies between its source files. In other

words, that work considered the internal coupling of a system. In this paper, the same method is tested on the

dependencies between architecture components; i.e., the current work considers the external coupling between

not only software applications but also other enterprise architecture components.

For the BioPharma case, the method revealed a hidden structure (thus presenting new facts) similar to

those cases on software systems investigated in previous studies. And the method also helped classify the

architecture as core-periphery using the same rules and boundaries as in the previous cases. However, because

this is only one set of data from one company, additional studies are needed. We present one such study using

enterprise application architecture data from a Telecom company in [25].

Compared to many other complexity, coupling, and modularity measures, the hidden structure method

considers not only the direct network structure of an architecture but also takes into account the indirect

dependencies between components (not unlike some measures used in social networks). Both these features

provide important input for management decisions. For instance, components that are classified as Periphery or

Control are probably easier (and less costly) to modify because of the lower probability of a change spreading

and affecting other components. In contrast, components that are classified as Shared or Core are more difficult

to modify because of the higher probability of changes having an impact elsewhere. This information can be

used in change management, project planning, risk analysis, and so on.

From just the architect’s view (cf. Fig. 3), we see some of the benefits of using Design Structure

Matrices for enterprise architecture visualization. If the matrix elements are arranged in an order that comes

naturally for most companies, with the business layer at the top, infrastructure at the bottom, and software in

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

between, we see that 1) the business groups depend on the software applications, 2) the software applications

communicate with each other in what looks like a clustered network of dependencies, 3) the software

applications depend on the schemas and application servers, 4) the schemas depend on the database instances,

and 5) the database instances depend on the database hosts. Although these observations are neither new nor

surprising, they do help validate that the components in the investigated architecture do interact as expected.

From Table 2, we see that architecture components 324, 333, 347 769, and 1030 all have rather low

Direct Fan-In (DFI) and Direct Fan-Out (DFO) numbers. As such, those components might be considered as

low risk when implementing changes. But if we also look at the Visibility Fan-In (VFI) and Visibility Fan-Out

(VFO) numbers, which measure indirect dependencies, we see that application 333 belongs to the Core of the

architecture. Thus any change to it might spread to many other components (even though it has few direct

dependencies). The same goes for components 324, 347, and 403, which are classified as Shared. Therefore, we

argue that the hidden structure method, which considers indirect dependencies, provides more valuable

information for decision-making.

In our experience, we have found that many companies working with enterprise modeling have

architecture blueprints that describe their organization, often with entity-relationship diagrams containing boxes

and arrows. When the entire architecture is visualized using this type of model, however, the result is typically a

“spaghetti” tangle of many components and dependencies that are difficult to interpret. But this representation

can be translated directly to the architect’s view DSM (cf. Fig. 3), which, along with the entity-relationship

model, can be used to trace a dependency between two components, thus enabling better decision-making

(compare with the discussion above on DFI/DFO versus VFI/VFO measures). Moreover, if we instead use the

hidden structure method and rearrange the DSM, as in Fig. 4, we can actually see what components are

considered to be Core, Shared, Control, and Periphery, which gives us much more insight about the structure of

the architecture. Lastly, measures such as the propagation cost, the architecture flow through, and the size of the

core can be useful when trying to improve an architecture because future scenarios can be compared in terms of

these metrics.

In the explored BioPharma case, we found that the Control category contains only business groups; the

Core consists of only software applications; the Shared elements are all infrastructure-related components

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

(schemas, application servers, database instances, and database hosts); and the Periphery category contains a

mix of all types. These results provide support for the method, as we would expect that the business controls the

underlying components in the architecture (e.g. a business group depends on the software it uses but not the

other way around). Also, infrastructure components such as databases are supposed to be shared among the

applications in a sound architecture.

A first step in future research is to test the hidden structure method with additional enterprise

architectures, like the one in [25]. This will provide valuable input either supporting the method as currently

constructed or with suggested improvements for future versions.

Both in the previous work by Baldwin et al. [7], Lagerström et al. [25], and in this case, the

architectures studied have a single large Core. A limitation of the hidden structure method is that it only shows

which elements belong to the Core but does not help in describing the inner structure of that Core. Thus, future

research might extend the hidden structure method with a sub-method that could help identify the elements

within the Core that are most important in terms of dependencies and cluster growth. The hypothesis is that

there are some elements in a Core that bind the group together or that make the group grow faster. As such,

removing these elements or reducing their dependencies (either to or from them) may decrease the size of the

Core and thus the complexity of the architecture. Identifying these elements might also help pinpoint where the

Core is most sensitive to change.

We have also seen in previous work that enterprise application architectures often contain non-directed

dependencies, thus forming symmetric matrices that have special properties and behave differently from

matrices with directed dependencies. This could, for instance, be due to the nature of the link itself (as in social

networks), or, as in most cases we have seen, it could be due to imprecision in the data (often because of the

high costs of data collection). For companies, the primary concern is whether two applications are connected,

and the direction of the dependency is secondary. In one of our cases, the company had more than a thousand

software applications but did not have an architecture model or application portfolio describing them. For that

firm, collecting information about what applications it had and what those applications did was of primary

importance. That process was costly enough, and consequently the direction of the dependencies between the

applications was not a priority.

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

Effective tools could help lower the high costs associated with data collection. In the prior work of

Baldwin et al. [7], the analysis of internal coupling in a software system was supported by a tool that explored

the source files and created a dependency graph automatically. In the enterprise architecture domain, such useful

practical tools generally do not exist. Consequently, data collection requires considerable time. The most

common methods are interviews and surveys of people (often managers) with already busy schedules. As such,

future work needs to be directed towards data collection support in the enterprise architecture domain. Some

work has already been done but is limited in either scope or application, as described in [26, 27].

For the hidden structure method to be useful in practice, it needs to be incorporated into existing or

future enterprise architecture tools. Most companies today already use modeling tools like Rational System

Architect [28] and BiZZdesign Architect [29] to describe their enterprise architecture. Thus, having a stand-

alone tool that supports the hidden structure method would not be feasible or very cost efficient. Moreover, if

the method is integrated with current tools, companies can then perform a hidden structure analysis by re-using

their existing architecture descriptions. The modeling software Enterprise Architecture Analysis Tool (EAAT)

[30] is currently implementing the hidden structure method, and future studies will use it.

Last, but not least, the most important future work is to test the VFI/VFO metrics and the element

classification (Shared, Control, Periphery, and Core) with performance outcome metrics such as change cost.

Doing so will help prove that the method is actually useful in architectural work. Currently, we can argue its

benefits only with respect to other existing methods.

6 Conclusions

Although our method is used in only one case, the results suggests that it can reveal new facts about the

architecture structure on an enterprise level, equal to past results in the initial cases of single software systems.

The analysis reveals that the hidden external structure of the architecture components at BioPharma can be

classified as core-periphery with a propagation cost of 23%, architecture flow through of 67%, and core size of

32%. For BioPharma, the architectural visualization and the computed coupling metrics can provide valuable

input when planning architectural change projects (in terms of, for example, risk analysis and resource

planning). Also the analysis shows that business components are Control elements, infrastructure components

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

are Shared elements, and software applications are in the Core, thus providing verification that the architecture

is sound.

References

1. Ross, J.W., Weill, P., Robertson, D.: Enterprise Architecture As Strategy: Creating a Foundation for Business Execution.

Harvard Business School Press (2006)

2. Zachman, J. A.: A Framework for Information Systems Architecture. IBM Systems Journal 26.3, 276--292 (1987)

3. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Architecture. Journal of Enterprise

Architecture 3.2, 7--18 (2007)

4. The Open Group: The Open Group Architecture Framework (TOGAF). Version 9, The Open Group (2009)

5. Kurpjuweit, S., Winter, R.: Viewpoint-based Meta Model Engineering. In: the 2nd International Workshop on Enterprise

Modelling and Information Systems Architectures: Concepts and Applications, pp. 143--161 (2007)

6. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise Architecture Analysis with Extended Influence

Diagrams. Information Systems Frontiers 9.2-3, 163--180 (2007)

7. Baldwin, C., MacCormack, A., Rusnack, J.: Hidden Structure: Using Network Methods to Map System Architecture.

Harvard Business School Working Paper, no. 13-093, May (2013)

8. Department of Defense Architecture Framework Working Group: DoD Architecture Framework. Version 1.5, Technical

report, Department of Defense, USA (2007)

9. Zachman International, http://www.zachmaninternational.com

10. Franke, U., Johnson, P., König, J., Marcks von Würtemberg, L.: Availability of Enterprise IT Systems: An Expert-based

Bayesian Framework. Software Quality Journal 20.2, 369--394 (2012)

11. Ullberg, J., Johnson, P., Buschle, M.: A Language for Interoperability Modeling and Prediction. Computers in Industry 63.8,

766--774 (2012)

12. Lagerström, R., Johnson, P., Höök, D.: Architecture Analysis of Enterprise Systems Modifiability: Models, Analysis, and

Validation. Journal of Systems and Software 83.8, 1387--1403 (2010)

13. Sommestad, T., Ekstedt, M., Holm, H.: The Cyber Security Modeling Language: A Tool for Assessing the Vulnerability of

Enterprise System Architectures. IEEE Systems Journal, Online-first (2013)

14. Barabási, A.: Scale-Free Networks: A Decade and Beyond. Science 325.5939, 412--413 (2009)

15. Simon, H. A.: The Architecture of Complexity. In: the American Philosophical Society 106.6, pp. 467--482 (1962)

16. Alexander, C.: Notes on the Synthesis of Form. Harvard University Press (1964)

Visualizing and Measuring Enterprise Application Architecture June 28, 2013

17. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley Publishing Co. (1980)

18. Baldwin, C., Clark, K.: Design Rules, Volume 1: The Power of Modularity. MIT Press (2000)

19. Steward, D.: The Design Structure System: A Method for Managing the Design of Complex Systems. IEEE Transactions on

Engineering Management 3, 71--74 (1981)

20. Eppinger, S. D., Whitney, D.E., Smith, R.P., Gebala, D. A.: A Model-Based Method for Organizing Tasks in Product

Development. Research in Engineering Design 6.1, 1--13 (1994)

21. Sosa, M., Eppinger, S., Rowles, C.: A Network Approach to Define Modularity of Components in Complex Products.

Transactions of the ASME 129, 1118--1129 (2007)

22. MacCormack, A., Baldwin, C., Rusnak, J.: Exploring the Duality Between Product and Organizational Architectures: A Test

of the "Mirroring" Hypothesis. Research Policy 41.8, 1309--1324 (2006)

23. Dreyfus, D., Wyner, G.: Digital Cement: Software Portfolio Architecture, Complexity, and Flexibility. In: the Americas

Conference on Information Systems (AMCIS), Association for Information Systems (2011)

24. Dreyfus, D.: Digital Cement: Information System Architecture, Complexity, and Flexibility. PhD Thesis. Boston University

Boston, MA, USA, ISBN: 978-1-109-15107-7 (2009)

25. Lagerstrom, R., Baldwin, C. Y., MacCormack, A., Aier, S.: Visualizing and Measuring Enterprise Application Architecture:

An Exploratory Telecom Case. Harvard Business School Working Paper, no. 13–103, June (2013)

26. Holm, H., Buschle, M., Lagerström, R., Ekstedt, M.: Automatic Data Collection for Enterprise Architecture Models.

Software & Systems Modeling, Online first (2012)

27. Buschle, M., Grunow, S., Matthes, F., Ekstedt, M., Hauder, M., Roth, S.: Automating Enterprise Architecture

Documentation using an Enterprise Service Bus. In: the 18th Americas Conference on Information Systems (AMCIS) (2012)

28. IBM Rational System Architect, www.ibm.com/software/products/us/en/ratisystarch

29. BiZZdesign Architect, www.bizzdesign.com/tools/bizzdesign-architect

30. The Enterprise Architecture Analysis Tool, www.ics.kth.se/eaat

