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Recent neutron scattering experiments on the spin-1/2 kagome lattice an-

tiferromagnet ZnCu3(OH)6Cl2 (Herbertsmithite) provide the first evidence of

fractionalized excitations in a quantum spin liquid state in two spatial dimen-

sions [1]. In contrast to existing theoretical models of both gapped and gapless

spin liquids [2–7], which give rise to sharp dispersing features in the dynamic

structure factor [8, 9], the measured dynamic structure factor reveals an ex-

citation continuum which is remarkably flat as a function of frequency. Here

we show that many experimentally observed features can be explained by the

presence of topological vison excitations in a Z2 spin liquid [10]. These visons

form flat bands on the kagome lattice, and thus act as a momentum sink for

spin-carrying excitations which are probed by neutron scattering. We compute

the dynamic structure factor for two different Z2 spin liquids [2] and find that

our results for one of them are in qualitative agreement with the neutron scat-

tering experiments above a very low energy cutoff, below which the structure

factor is likely dominated by impurities.

Herbertsmithite, a layered spin-1/2 kagome lattice antiferromagnet [11], is one of the

strongest contenders for an experimental realization of a spin liquid state [12]. Indeed,

no sign of magnetic ordering is observed down to temperatures around 50mK, while the

natural energy scale set by the magnetic exchange coupling J ∼ 200K is four orders of

magnitude larger [13]. Neutron scattering experiments [1] on single crystals of this material

are consistent with a continuum of fractionalized spinon excitations as expected in a quantum

spin liquid state. However, mean-field theories predict a vanishing structure factor below

the onset of the two spinon continuum, which is at a finite energy even for gapless spin

liquids, apart from the small set of crystal momenta where the spinon gap closes. This is

in stark contrast to experiments, where the measured structure factor is finite and almost

constant as a function of frequency down to energies on the order of ∼ J/10 [1].

Here we propose an explanation for the lack of a momentum-dependent spinon continuum

threshold via the interaction of spinons with another set of excitations which form a (nearly)

flat band. Such localized excitations act as a momentum sink for the spinons, thereby

flattening the dynamic structure factor. So far, the only theoretical model for a spin liquid

state on the kagome lattice which naturally gives rise to a flat excitation band at low energies

are the Z2 spin liquids [2–4]. Besides spinons, these states exhibit gapped vortex excitations

2



FIG. 1: Density plots of the the dynamic spin-structure factor S(k, ω) for the Q1 = Q2

spin liquid state. (a), (d) and (e) show S(k, ω) at zero temperature for different spinon-vison

interaction strengths as a function of frequency and momentum along high symmetry directions

between the Γ, M and K points of the extended Brillouin zone, indicated by the blue arrows in

(c). Panel (a): non-interacting spinons. Note that in the Q1 = Q2 state two of the three spinon

bands are degenerate, whereas the third, highest energy spinon band is flat. This flat spinon band

gives rise to the horizontal feature at ω ' 0.75J in (a). (d): spinon-vison interaction g0 = 0.2, (e):

spinon-vison interaction g0 = 0.6. Panels (b) and (c) show S(k, ω) for non-interacting spinons at

fixed frequency ω/J = 0.4 (b) and ω/J = 0.85 (c). The elementary Brillouin zone of the kagome

lattice is indicated by a dashed hexagon in (c). Note the sharp onset of the two-spinon continuum

for non-interacting spinons in (a) and (b), which is washed out when interactions with visons are

accounted for. All data in this figure was calculated for |Q1| = 0.4 and the spinon gap was fixed

at ∆s ' 0.05J . The vison gap is set to ∆v = 0.025J in (d) and (e).

[14, 15] of an emergent Z2 gauge field [16, 17], so called visons [10], which indeed have a lowest

energy band which is nearly flat [18, 19]. Since the visons carry neither charge nor spin,

they do not couple directly to neutrons. They interact with spinons, however, and we show

that this coupling is responsible for flattening the dynamic structure factor and removing

the sharp onset at the two-spinon continuum, in accordance with experimental results. Note

that the vison gap has to be small for this mechanism to work. This assumption is justified

by numerical density matrix renormalization group calculations [20–22], which indicate that

a Z2 spin liquid ground-state on the kagome lattice is proximate to a valence bond solid

(VBS) transition, at which the vison gap vanishes.

Model

Our aim is to compute the dynamic structure factor for two Z2 spin liquids which have

been discussed in detail in Ref. 2. We start from the standard bosonic spin liquid mean-field

theory of the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice. Using a

Schwinger-boson representation of the spin-1/2 operators Si = b†iασαβbiβ/2 and performing

a mean-field decoupling in the spin-singlet channel, the Heisenberg Hamiltonian can be

written as

Hb = −J
∑
〈i,j〉

Q∗ij εαβ biαbjβ + h.c. + λ
∑
i

b†iαbiα , (0.1)
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with Q∗ij = 〈εαβ b†iαb
†
jβ〉/2, εαβ is the fully antisymmetric tensor of SU(2) and λ denotes

the Lagrange multiplier which fixes the constraint of one Schwinger boson per lattice site.

In order to study the effect of vison excitations on the spinons, we have to include phase

fluctuations of the mean field variables Qij in our theory. The Z2 spin liquid corresponds

to the Higgs phase of the resulting emergent gauge theory, where the phase fluctuations are

described by an Ising bond variable σzij. The Hamiltonian describing bosonic spinons and

their coupling to the Ising gauge field takes the form

H = −J
∑
〈i,j〉

σzij
(
Q∗ij εαβ biαbjβ + h.c.

)
+ λ

∑
i

b†iαbiα

+K
∑
plaq.

∏
plaq.

σzij − h
∑
〈i,j〉

σxij , (0.2)

where the terms in the second line are responsible for the dynamics of the gauge field σzij.

Vison excitations are vortices of this emergent Z2 gauge field, i.e. excitations where the

product
∏
σzij on a plaquette changes sign. For practical caluclations it is more convenient

to switch to a dual description of the Z2 gauge field in terms of its vortex excitations [23],

where the pure gauge field terms in the second line of Eq. (0.2) take the form of a fully-

frustrated Ising model on the dice lattice. This model has been studied in detail in Refs. 18

and 19 and gives rise to three flat vison bands if restricted to nearest neighbor vison hopping.

Since only the gap to the lowest vison band is small, we neglect effects of the other two bands

in the following.

The coupling between spinons and visons is a long-range statistical interaction (a spinon

picks up a Berry’s phase of π when encircling a vison [19]), which cannot be expressed in the

form of a simple local Hamiltonian in the vortex representation. However, the fact that visons

on the dice lattice are non-dispersing comes to the rescue here. Since these excitations are

localized and can only be created in pairs, the long-range statistical interaction is effectively

cancelled. Indeed, if a spinon is carried around a pair of visons, it does not pick up a Berry’s

phase. This is in precise analogy to an electron carried around a pair of superconducting

Abrikosov vortices, where the total encircled flux is 2π and thus no phase is accumulated.

The vison pairs are excited locally by a spinon, and thus it is reasonable to model the spinon-

vison interaction by a local energy-energy coupling, neglecting the long-range statistical part.

Accordingly we choose the simplest, gauge-invariant Hamiltonian of bosonic spinons on the
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kagome lattice coupled to a single, non-dispersing vison mode on the dual Dice lattice

H = Hb +
∑
i

∆vφiφi

+ g0∆v

∑
i∈Dice3
`,m∈5i

φiφi (εαβQ
∗
`mb`αbmβ + h.c.) . (0.3)

Here, the real field φi describes visons living on the dice lattice sites i and ∆v is the vison

gap. The sum in the interaction term runs only over the three-coordinated Dice lattice

sites i and couples the spinon bond energy on the triangular kagome plaquettes to the local

vison gap at the plaquette center. Further terms, where spinons on the hexagonal kagome

plaquettes interact with visons at the center of the hexagons are allowed, but neglected for

simplicity.

A more detailed discussion of this interaction term can be found in the supplementary

material. We are going to compute the dynamic structure factor S(k, ω) using the model

(0.3) for a particular Z2 spin liquid state which has been identified in Ref. 2. For the

nearest neighbor kagome antiferromagnet there are two independent bond expectation values

Qij ∈ {Q1, Q2} and the two distinct, locally stable mean-field solutions have Q1 = Q2 or

Q1 = −Q2. TheQ1 = Q2 state has flux π in the elementary hexagons, whereas theQ1 = −Q2

state is a zero-flux state. During the remainder of this article we focus only on the Q1 = Q2

state, since it gives rise to a little peak in S(k, ω) at small frequencies at the M point

of the extended Brillouin zone, in accordance with experimental results. Results for the

other state are discussed in the supplementary material. Two other bosonic Z2 states have

been identified on the kagome lattice[3], but we refrain from computing the structure factor

for these states, because both have a doubled unit-cell which complicates the calculations

considerably.

Dynamic structure factor

Neutron scattering experiments measure the dynamic structure factor

S(k, ω) =
1

N

∑
i,j

eik·(Ri−Rj)

∫
dt e−iωt 〈Si(t) · Sj(0)〉 , (0.4)
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FIG. 2: Feynman diagrams for the spinon self energy and spin-susceptibility for the

theory in Eqn. (0.3). Spinon self energy (left), one-loop contribution to the spin susceptibility

(middle) and corresponding lowest order vertex correction (right). Double lines are dressed spinon

propagators and dashed lines are bare vison propagators.

FIG. 3: Qualitative comparison between experimental measurements [1] and our the-

oretical results for the dynamic structure factor S(k, ω). Experimental data at fixed fre-

quency are shown for (a) ω = 0.75meV and (b) ω = 6meV. Theoretical results for the Q1=Q2 spin

liquid at fixed frequency are plotted for (c) ω = 0.37J and (d) ω = 0.6J . The extended Brillouin

zone is indicated by the dashed hexagons. Note that the peak at the M point at low frequencies,

as well as the flatness of S(k, ω) between the M and K points at higher frequencies is captured by

our theory. Cuts of our theoretical results for S(k, ω) along high symmetry directions at different

frequencies are plotted in (e) between the M and K point, as well as in (f) between the Γ and M

point, again showing the peak at the M point at low frequencies. Panel (g) shows details of the

calculated structure factor as function of frequency for various momenta between the M (bottom

curve) and K point (top curve). Note that all curves in (g) are shifted by 0.12J with respect to

each other for better visibility. All theoretical data shown was computed for the Q1 = Q2 state

with a spinon-vison interaction strength g0 = 0.6 and other parameters as in Fig. 1.

which we are going to compute for the model presented in Eq. (0.3). Note that S(k, ω) is

periodic in the extended Brillouin zone depicted in Fig. 1(c). After expressing Si · Sj in

terms of Schwinger bosons and diagonalizing the free spinon Hamiltonian with a Bogoliubov

transformation, the one loop expression for the dynamic spin-susceptibility shown in Fig.

2, χ(k, iωn), can be derived straightforwardly (see Methods). The dynamic structure factor

can then be obtained from the susceptibility via

S(k, ω) =
Imχ(k, iωn → ω + i0+)

1− e−βω
. (0.5)

Results of this calculation at zero temperature are shown in Figs. 1 and 3 for the Q1 = Q2

state for different spinon-vison interaction strengths g0. In the region around and in-between
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the high symmetry points M and K the lowest order vertex correction shown in Fig. 2 gives

only a relatively small contribution to S(k, ω) and thus has been neglected in the data shown

in these figures (see supplementary material for a discussion).

Discussion

Fig. 1 shows the two spinon contribution to the dynamic structure factor for the Q1 = Q2

state (results for the Q1 = −Q2 state can be found in the supplementary material). The

onset of the two spinon continuum, which has a minimum at the M point, is clearly visible

in Fig. 1(a) as the line of frequencies below which the dynamic structure factor vanishes.

Moreover, several sharp peaks appear inside the spinon continuum. We note that such

features in the two-spinon contribution to S(k, ω) are generic and are present also for gapless

Dirac spin liquids.

Figs. 1(d) and (e) show the dynamic structure factor along the same high symmetry direc-

tions as in Fig. 1(a), but now including the effect of spinon-induced vison pair production for

two different interaction strengths g0. The non-dispersing visons act as powerful momentum

sink for the spinons and lead to a considerable shift of spectral weight below the two-spinon

continuum. The computed structure factor is considerably flattened at intermediate ener-

gies. Our results for the Q1 = Q2 state also capture the small low-frequency peak in S(k, ω)

at the M point, which has been seen in experiment. This peak is a remnant of a minimum in

the threshold of the two-spinon continuum at the M point, and we conjecture that it might

be an indication that this particular Z2 spin liquid state is realized in Herbertsmithite. In

Fig. 3 we show plots of S(k, ω) at constant energy, where this peak is clearly visible, and

compare our results qualitatively to the experimental data. Note that we did not choose the

parameters in order to fit the experimental data, instead we tried to use reasonable values

for the spinon gap ∆s ' 0.05J and the vison gap ∆v = 0.025J in order to make features

related to the momentum-independent onset of the dynamic structure factor better visible.

Also the spinon bandwith was adjusted to be on the order of J .

In Figs. 1(e) and 3(g) one can barely see small oscillations of S(k, ω) at low frequencies.

These oscillations originate from the self-consistent computation of the spinon self-energy

Σ(k, ω) and are related to resonances in the self-energy at energies corresponding to the

creation of two, four and higher even numbers of vison excitations.
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The experimental results show a strong increase of the dynamic structure factor at ener-

gies below 1meV away from the M point. We attribute this feature to impurity spins, which

are not accounted for in our approach. In Herbertsmithite excess copper substitutes for zinc

in the interlayer sites. These spin-1/2 impurities are only weakly coupled to the kagome

layers, with an exchange constant that is on the order of one Kelvin [24]. While it is un-

likely that these impurities contribute considerably to a flattening of the dynamical structure

factor as discussed in this paper, we believe they are responsible for the above mentioned

low energy contribution. This is in accordance with recent low-energy neutron scattering

measurements on powder samples of Herbertsmithite [25], but a detailed calculation remains

an open problem for future study. Also note that such a low energy-contribution would hide

the momentum-independent onset of the dynamic structure factor, which is at the energy

ωonset = 2∆v + 2∆s in the scenario discussed here.

Dzyaloshinskii-Moriya (DM) interactions as well as an easy axis anisotropy on the order

of ∼ J/10 are known to exist in Herbertsmithite, but have been neglected in our analysis

for simplicity. The effect of DM interactions has been studied within a 1/N expansion in

Refs. [8, 26], where the Q1 = Q2 state is favored over the Q1 = −Q2 if the DM interactions

are sufficiently strong.

Lastly, neutron scattering experiments explored energies up to ω ' 0.65J and concluded

that the integrated weight accounts for roughly 20% of the total moment sum rule [1].

Consequently it is reasonable to expect that the dynamic structure factor is finite up to

energies of a few J . For the parameters chosen in our calculation (i.e. Q1 = 0.4 and a

spinon gap ∆s = 0.05) the structure factor for non-interacting spinons has a sharp cutoff

at an energy around ω ' 1.3J , corresponding to roughly twice the spinon bandwidth. If

interactions with visons are included, this upper cutoff is shifted to considerably larger

energies, however. For a spinon-vison coupling g0 = 0.6, the structure factor has a smooth

upper cutoff at an energy around ω ' 3J . Such large bandwidths are hardly achievable in

theories with non-interacting spinons. We note that similarly large bandwidths have been

found in exact diagonalization studies [27].
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Methods

The one loop expression for the dynamic spin-susceptibility, χ(k, iωn), is given by

χ(k, iωn) =
3

2

∑
q,Ωn

G`(q, iΩn)Gm(k− q, iωn − iΩn)

×
[
Uj`(q)Vjm(k− q) + Vj`(q)Ujm(k− q)

]
×U∗i`(q)V ∗im(k− q) + . . . , (0.6)

where the dots represent similar terms which give a contribution at negative frequencies after

analytic continuation and thus play no role for calculating S(k, ω) at zero temperature. The

summation over the sublattice indices i, j, `,m ∈ {1, 2, 3} is implicit here and the 3 × 3

matrices Uij and Vij form the Bogoliubov rotation matrix

M =

U −V ∗
V U∗

 , (0.7)

as defined in Ref. 2, which diagonalizes the mean-field spinon Hamiltonian. G`(q, iΩn)

denotes the dressed spinon Green’s function with band-index `

G−1
` (q, iΩn) = iΩn − ε`(q)− Σ`(q, iΩn) (0.8)

The spinon self-energy (see Fig. 2), which we compute self-consistently, is determined by the

equation

Σ`(q, iΩn) =
∑
p,m

λ†`m(p,q)λm`(p,q)Gm(iΩn − 2∆v,p) . (0.9)

Here the 6× 6 matrix λ(p,q) denotes the bare spinon-vison interaction vertex, with p (q)

the momentum of the outgoing (incoming) spinon. Note that the six spinon bands come

in three degenerate pairs due to the SU(2) spin-symmetry. Furthermore, note that the flat

vison band is not renormalized at arbitrary order in the spinon-vison coupling.

We emphasize here that a self-consistent computation of the spinon self-energy is nec-

essary, because the real part of Σ(k, ω) is large and broadens the spinon bands. A non-

selfconsistent computation thus leads to sharp spinon excitations above the bare spinon

band, which are unphysical as they would decay immediately via vison pair production. A
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different approximation, which circumvents this problem, would be to calculate Σ(k, ω) non-

selfconsistently and neglect the real part completely. This approximation violates sum-rules

however, as the integrated spectral weight of the spinon is no longer unity (for a detailed

discussion, see the supplementary material).

Note that we do not determine the parameters |Q1| and λ variationally. Instead, we use

them to fix the spinon gap as well as the spinon bandwidth. |Q1| is restricted to values

between 0 and 1/
√

2 and quantifies antiferromagnetic correlations of nearest neighbor spins

(|Q1| = 1/
√

2 if nearest neighbor spins form a singlet). All data shown in this paper was

computed for |Q1| = 0.4, and λ has been adjusted such that the spinon gap takes the value

∆s/J ' 0.05. As mentioned in the introduction, we assume that the vison gap ∆v is small

due to evidence of proximity to a VBS state, and we chose ∆v/J = 0.025 for all data shown

in this article, i.e. the vison gap is roughly half the spinon gap.
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of the S=1/2 Heisenberg Model on the Kagome Lattice, Phys. Rev. Lett. 109, 067201 (2012).

[23] Wegner, F., Duality in Generalized Ising Models and Phase Transitions without Local Order

Parameters, J. Math. Phys. 12, 2259-2272 (1971).

[24] Bert, F., Nakamae, S., Ladieu, F., L’Hote, D., Bonville, P., Duc, F., Trombe, J.-C., Low

temperature magnetization of the S = 1/2 kagome antiferromagnet ZnCu3(OH)6Cl2, Phys.

Rev. B 76, 132411 (2007).

[25] Nilsen, G. J., de Vries, M. A., Stewart, J. R., Harrison, A., and Ronnow, H. M., Low-energy

spin dynamics of the s = 1/2 kagome system herbertsmithite, J. Phys.: Condens. Matter 25,

106001 (2013).

[26] Huh, Y., Fritz, L., and Sachdev, S., Quantum criticality of the kagome antiferromagnet with

Dzyaloshinskii-Moriya interactions, Phys. Rev. B 81, 144432 (2010).

[27] Laeuchli, A. M. and Lhuillier, C., Dynamical Correlations of the Kagome S = 1/2 Heisenberg

Quantum Antiferromagnet, arXiv:0901.1065.

12


	Model
	Dynamic structure factor
	Discussion
	Methods
	References

