

Hierarchical Sparse Coding for Wireless Link Prediction in an
Airborne Scenario

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Tarsa, Stephen J., and H.T. Kung. 2013. “Hierarchical Sparse
Coding for Wireless Link Prediction in an Airborne Scenario.” In
Proceedings of MILCOM 2013 - IEEE Military Communications
Conference, 18-20 Nov. 2013, San Diego, CA, 894-900.
doi:10.1109/milcom.2013.156.
http://dx.doi.org/10.1109/MILCOM.2013.156.

Published Version doi:10.1109/milcom.2013.156

Accessed April 17, 2018 4:28:34 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11857772

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28945609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11857772&title=Hierarchical+Sparse+Coding+for+Wireless+Link+Prediction+in+an+Airborne+Scenario&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=3aa65b2296d4205087eac8779a950102,215b72ff3911a84835bcfc3945ddc87a&department=Engineering+and+Applied+Sciences
http://dx.doi.org/10.1109/milcom.2013.156
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Hierarchical Sparse Coding for Wireless Link
Prediction in an Airborne Scenario

Stephen J. Tarsa and H.T. Kung
Harvard University, Cambridge, MA

Abstract—We build a data-driven hierarchical inference model
to predict wireless link quality between a mobile unmanned
aerial vehicle (UAV) and ground nodes. Clustering, sparse feature
extraction, and non-linear pooling are combined to improve
Support Vector Machine (SVM) classification when a limited
training set does not comprehensively characterize data varia-
tions. Our approach first learns two layers of dictionaries by
clustering packet reception data. These dictionaries are used to
perform sparse feature extraction, which expresses link state
vectors first in terms of a few prominent local patterns, or
features, and then in terms of co-occurring features along the
flight path. In order to tolerate artifacts like small positional
shifts in field-collected data, we pool large magnitude features
among overlapping shifted patches within windows. Together,
these techniques transform raw link measurements into stable
feature vectors that capture environmental effects driven by
radio range limitations, antenna pattern variations, line-of-sight
occlusions, etc. Link outage prediction is implemented by an
SVM that assigns a common label to feature vectors immediately
preceding gaps of successive packet losses; predictions are then
fed to an adaptive link layer protocol that adjusts forward error
correction rates, or queues packets during outages to prevent
TCP timeout. In our harsh target environment, links are unstable
and temporary outages common, so baseline TCP connections
achieve only minimal throughput. However, connections under
our predictive protocol temporarily hold packets that would
otherwise be lost on unavailable links, and react quickly when
the UAV link is restored, increasing overall channel utilization.

I. INTRODUCTION

Wireless airborne networks face the challenge of providing
fast reliable data delivery over flaky links. Link loss arises
due to a confluence of factors, including signal strength
attenuation, antenna pattern nulls, line of sight occlusions,
and multipath interference. In general, these effects are deter-
mined by complicated environmental properties like geometry,
and are exacerbated by node mobility. Accurate link state
predictions in airborne scenarios like this would facilitate a
host of network performance improvements, such as adaptative
forward error correction to boost throughput and lower nodes’
power consumption.

Predictive link models tend to be complex and require large
amounts of input data. The two most common approaches
are ray tracing and statistical modeling. Ray tracing uses
detailed physical simulation to compute signal strength, and
requires comprehensive geometric and propagation character-
istics about the environment [1], [2]. In contrast, statistical
modeling abstracts away physical effects by capturing struc-
tures such as correlations in training data. In this paper, due to
the size and complexity of the flight environment, we pursue a

Link State

 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0

Interdependency
Feature Dictionary

Link State
Feature

Dictionary

SVM Classifier

Link State
Feature

Dictionary

Link State
Feature

Dictionary

Link State
Feature

Dictionary

…

Patches

Max Pooling Max Pooling Max Pooling Max Pooling

Sparse Coding
Layer 2

Sparse Coding
Layer 1

Concatenated Sparse Feature Vectors

Window 1 Window 2 Window 4 Window 3

Fig. 1. Our two-layer hierarchical inference model extracts sparse feature
vectors from five-packet-long windows in a first layer. Max pooling at Layer
1 selects the most prominent features from shifted overlapping patches within
a window. A second layer extracts feature interdependency patterns from the
concatenated pooled outputs of Layer 1. This model improves the accuracy
of statistical tools like SVM classifiers when training data is modest relative
to the degree of data variation.

statistical approach to predicting wireless air-to-ground links.
The accuracy of a statistical model is limited by both

the amount of available training data, and the correctness of
modeling assumptions. Statistical link models in the literature
include applications of Markov chains to capture the first and
second order statistics for 802.11 and GSM networks [3],
[4], [5], and latent variable Gaussian processes to map
location-based signal strength statistics [6]. However, these
methods are not well suited to capturing predictive correlations
that span many packet times; the number of Markov chain
state transitions that must be trained explodes with the length
of link state sequences, and physical drivers of packet loss like
occlusions violate Gaussian assumptions.

We will therefore use a data-driven hierarchical model based
on the sparse coding framework, that combines clustering,
sparse feature extraction, and non-linear pooling to exploit
structure in link state information arising from environmental
factors. Together, these techniques result in an approach that is
tolerant to data variations. We show that our method improves
the accuracy of statistical tools like Support Vector Machine
(SVM) classifiers [7] when the amount of available training
data is modest relative to the degree of data variation. As a
result, we can perform inference tasks like outage prediction

based on effects lasting many packet times, without suffering
onerous training data requirements or restrictive modeling as-
sumptions. Furthermore, due to improved variation tolerance,
we show that SVM classification accuracy holds across flights
with different environmental conditions or node locations,
without retraining.

Figure 1 illustrates our model, instantiated with a two layer
configuration. Using sparse coding [8], the first layer extracts
short patterns in packet losses, or features, from windows of
link trace data. In order to improve tolerance to variations
like small positional shifts, we combine the largest magnitude
features from overlapping shifted patches within a window,
a technique known as max pooling [9]. In this paper, these
patches are sized equal to window size. The second layer then
captures feature co-occurrence across consecutive regions of
the flight path by sparse coding concatenated outputs from
Layer 1. In this way, raw packet traces are transformed into
a more-stable feature representation that characterizes the link
in terms of a few canonical patterns. These feature vectors
are fed to a top-level statistical inference module — in this
case, an SVM that implements outage prediction by assigning
a common label to vectors preceding gaps in packet delivery.

The model is initialized by training feature dictionaries for
sparse feature extraction at Layers 1 and 2, in addition to
the top level SVM. We cluster small patches of packet trace
data using the K-SVD algorithm [10], and seed the Layer 1
dictionary with the learned cluster centroids. Training samples
are then sparse coded at Layer 1 using Orthogonal Matching
Pursuit (OMP) [11], and max-pooled. Concatenated outputs
from Layer 1 feed a second round of clustering at Layer 2 to
capture feature co-occurrence across neighboring windows.

Each technique used to transform link state data in our
model improves variation tolerance for the top-level inference
module. Clustering and sparse feature extraction together de-
noise link state measurements, and restore incomplete infor-
mation [10]. Max pooling corrects for small variations like
positional shifts that are difficult to control for during data
acquisition. The model’s overall hierarchical structure eases
the difficulty of recognizing patterns over large spatial scales
by independently characterizing local relationships, and then
reusing the same training data to learn how those pieces fit
together. Furthermore, in cases where the first layer feature
dictionary is universal to all input data, only higher layers
need be retrained to adapt the model for new environments.
All of these general techniques also figure prominently in
recent state-of-the-art computer vision results, such as face
recognition under uncertain illumination [12], [13], [14], [15].
Interestingly, researchers have found evidence that similar
techniques are employed in neuro biological systems like the
visual cortex [16] [17]. To our knowledge, we are the first to
apply this approach to predict wireless link quality.

Using this predictive model, we implement an adaptive link-
layer protocol that improves aggregate channel throughput for
TCP connections. Our protocol fixes intermittent packet drops
with retransmissions, and queues packets to ride out predicted
outages. This not only prevents TCP timeout when the UAV is

Rx	

Tx	 2	

Tx	 1	

0%	 100%	

Packet	 Recep0on	 Rate	

UAV	 Flight	 Path	

Rx	
Temporal	 Effect	 of	 Engine	 Occlusion	

Time	
1	 2	 3	 4	 5	

Fig. 2. A diagram of our UAV’s flight path, with an illustration of typical
packet loss rates. The UAV has two wing-mounted 802.11 transmitters that
maintain independent TCP connections to a ground receiver. Inset, packet
drops due to line-of-sight occlusion by the aircraft engine are depicted with
red arrows. Occlusion is just one of several effects that cause temporary link
outages.

out of range, but also avoids packet-loss-induced multiplicative
decreases in TCP throughput at radio range edges, where
links are available but unstable. As a result, connections react
quickly when the UAV comes in range, and throughput is
significantly increased.

The rest of this paper is organized as follows: in Section
II, we describe our scenario and data measurement campaign.
In Section III, we demonstrate the shortcomings of inference
directly on packet traces, introduce hierarchical inference, and
present our link model. In Section IV, we describe the adaptive
link layer protocol, and in Section V, train the model and
evaluate performance in emulation using trace replay.

II. UAV SCENARIO

Our UAV scenario is shown in Figure 2: a low-altitude
fixed-wing aircraft flies multiple laps in a dumbbell shaped
path over an airfield in upstate New York. Auto-pilot main-
tains positional consistency between laps, and GPS location
variation is on the order of 15m when banking through turns.
Two wing-mounted 802.11 b/g transmitters communicate with
a ground node in the middle of the airfield. The property
spans both fields and forest, and contains multiple vehicles and
shelters. We target this scenario both because it is of tactical
interest, and because results from the open interference-free
environment can be corroborated by simple models, and serve
as building blocks for more complicated scenarios.

We conducted two measurement campaigns, the first in
June, and the second in October. In the June campaign,
leaves and ground cover were in full bloom, and wind was
minimal. In October, leaves had mostly fallen, temperatures
were significantly lower, and wind was strong. The same
flight path was used in both campaigns, however UAV speed
fluctuated due to wind, the ground receiver’s position was
changed abitrarily, and signal propagation was subject to dif-
ferent environmental conditions [18]. During our experiments,
transmitters broadcast 1500 byte packets at 1 Mbps, while
receivers logged packets’ SNRs and sequence numbers so

contiguous packet traces could be reconstructed.1

Characterizing the UAV’s flight path using packet loss rates
reveals three distinct regions: out-of-range, close-range, and
intermediate. When out-of-range, packet loss is 100%, while at
close range, it is lower than 10%. However, in the intermediate
region, packet loss fluctuates wildly since transmissions are
sensitive to occlusions from the aircraft engine, antenna nulls,
multi path interference, etc. As a result, frequent gaps (i.e., link
outages lasting multiple packet times) make it hard for off-
the-shelf TCP implementations to maintain connections, and
throughput often drops to zero outside the close-range regions.
Our goal in this paper will be to improve data delivery in these
intermediate regions by anticipating temporary outages.

The UAV link has inherent predictive power because phys-
ical factors cause correlations among packet transmissions,
an effect known as “channel memory.” For example, when
the UAV engine blocks line-of-sight transmission, a pattern
of consecutive packet losses may predict the success of a
transmission in the next packet time. However, since UAV
position and speed are not exactly repeatable, such an event is
unlikely to have a precise unique signature observable in raw
link data. Furthermore, while high level trends in link quality
are stable between June and October data, packet reception
rates change in magnitude, indicating that statistical methods
sensitive to variation would require recalibration or additional
training between flights.

III. A PREDICTIVE LINK MODEL

A. Classification-Based Gap Prediction

To illustrate the sensitivity of off-the-shelf statistical
inference tools to variations in raw link data, we first present
a simple classification example. We train an SVM to label
packet traces as belonging to one of two models: noisy
channel or temporary outage. Input vectors are binary, with
0 indicating packet loss and 1 indicating reception. Consider
an SVM trained on the following samples:

Noisy Channel Training Data:
(short intermittent strings of 0’s)

[1111110111]
[0010101110]
[1101010011]

Temporary Outage Training Data:
(long strings of 0’s)

[0000111111]
[1000011111]
[1111110000]

1For a more detailed description of a similar campaign, see [4]. We
graciously acknowledge those contributing researchers and engineers for their
role in these experiments, including Chit-Kwan Lin, Dario Vlah, Dan Hague,
Mike Muccio, Brendan Poland, Bob Gorman, and Jason Cassulis

and the new channel observation:

[1111000011]

Intuitively, the new observation belongs to the temporary
outage class, but an SVM labels it otherwise. This is because
linear SVMs compute projections of training data to maximize
separation between classes; if an unlabeled input vector is
not a linear combination of training samples in its class, the
projection gives unexpected results. In the UAV case, such a
problematic variation could easily arise if the UAV’s speed
changes between training and evaluation flights. SVMs are
a powerful tool, but this example illustrates the difficulty of
variation tolerant inference when training data is limited.

B. Hierarchical Inference Background

To improve classification, and ultimately link prediction, we
draw on advances that have appeared in several communities,
including biologically-inspired computer vision [19], neural
networks [20], and natural language processing [21]. Recent
advances in these fields share several important insights:

1) Hierarchical feature extraction – By progressively trans-
forming raw input data into feature vectors at larger and
larger scales, complicated correlational relationships can
be captured over large spatial ranges without training
data requirements that are infeasible to meet.

2) Extraction of sparse feature sets – By latching signal
patches to a small number of prominent exemplars,
noisy or incomplete information is restored, and weakly
expressed confounding information is discarded.

3) Non-linear pooling of overlapping patches – Similar to
taking the maximum response of a convolutional filter,
pooling improves tolerance to a broad class of minor
variations like positional shifts that arise often in real-
world data.

These general modeling techniques often appear alongside ma-
chine learning algorithms, which are used to find appropriate
features in data that is difficult to model by hand.

Fascinatingly, neurobiology researchers have found evi-
dence that these data processing techniques are active in the
brain. The visual cortex is organized hierarchically into layers
V1 through V4 that perceive visual cues at increasing levels
of complexity. Meanwhile, neurons in these areas are known
to fire sparsely in response to stimuli. And, the foveal system
combines and attenuates the responses of bundled photorecep-
tor cells from different regions of the field of vision [22].

Applying these ideas to the example in Section III-A,
we can show improved classification. We use a two level
hierarchy similar to the one depicted in Figure 1 (accordingly
analyzing only two windows of five packets for this input
size). Layer 1 dictionaries are initialized to contain features
corresponding to a four packet gap, no losses, and single
losses at various positions. During training, Layer 2 dictionary
features that group a four packet gap feature with a no-loss

feature will be labeled to the temporary outage class. Under
this configuration, the new sample will be correctly labeled.

C. A Hierarchical Sparse Coding Channel Model

We now extend this methodology to real link data, yielding
the full model shown in Figure 1. Our link data is again a
contiguous 0/1 packet stream over a flight’s duration, and is
evaluated using a sliding window of 24 packet times. At Layer
1, 16 patches of 5 packets are enumerated, sparse coded, and
pooled into 4 neighboring windows. Feature vectors from these
windows are concatenated before being passed to Layer 2.
Our top-level SVM assigns labels to training samples based
on whether or not they precede a gap of 5+ packet times.

We use the sparse coding framework for dictionary learning
and feature extraction [8], which solves the minimization:

min ‖X −DZ‖2 s.t. ‖zi‖0 < k for i = 1...n (1)

where X is an m × n matrix of n training samples (e.g.,
patches of size m = 5 at Layer 1), D an m × r dictionary
matrix with r features, and Z an r × n coefficient matrix,
whose columns contain at most k non-zero coefficients. We
use the K-SVD algorithm to solve this problem [10]. K-SVD
alternately fixes D to find the best Z via Orthogonal Matching
Pursuit (OMP) [11], and then fixes Z to find the best D by
a sequence of rank-one approximations. Post training, when
dictionaries are fixed, OMP performs feature extraction on new
input data.

Max pooling combines the largest components over shifted
patches within a window. For example, using three shifted
patches, this process would proceed as follows:

1) Given link measurements x = [x(1), x(2), ...], shifted
patches of size m = 3 are enumerated:

Xwin =

x(1) x(2) x(3)
x(2) x(3) x(4)
x(3) x(4) x(5)

2) Patches are then sparse coded:

Zwin := min
Z
‖Xwin −DZ‖2 s.t ‖zi‖0 < k

with zi the ith column vector of Z.

3) A pooled feature vector z is computed from the
maximum responses over shifted patches:

z =

max(Zwin(1, 1), Zwin(1, 2), Zwin(1, 3))

...
max(Zwin(r, 1), Zwin(r, 2), Zwin(r, 3))

The effect of max pooling is to ensure that extracted feature
information is not erroneously altered simply due to artifactual
positional shifts.

Out	 of	 Radio	
Range	

Learned	 Feature	
Interdependency	

	

Learned	 Link	
State	 Features	

	
Intermi9ent	

Noise	
Intermi9ent	

Noise	

+" +" +"

Window	 2	 Window	 3	

Stable	 Channel	
0 5 10 15 20

−1

−0.5

0

0.5

1

1.5

2

Window	 1	

Temporary	
Outage	

0 5 10 15 20
−1

−0.5

0

0.5

Window	 4	

0 5 10 15 20
−1

−0.5

0

0.5

Fig. 3. An example of a learned Layer 2 dictionary feature. The corre-
sponding co-occurring Layer 1 features capture a stable channel that begins
to exhibit noise, and intermittent outages. This sequence is associated often
with with UAV positions at the edge of radio range.

In our experiments, we found better performance on binary
0/1 packet loss streams than fine-grained SNR data. This can
be interpreted using previous arguments by noting that the
degree of variation in SNR data is higher than in binary packet
reception streams, so latching SNR data to loss/reception
“features” acts as an initial sparse coding step that reduces
noise to improve classification accuracy.

D. Learned Link Features

To verify that dictionary learning yields meaningful results,
we train a simple version of the above model and corrorborate
the model’s results with experiential knowledge. We set the
Layer 1 dictionary size r1 = 10 and sparsity constraint k1 = 1,
and the Layer 2 dictionary size r2 = 10 with sparsity k2 = 1.
Dictionary learning at Layer 1 will thus find the ten most
prominent features in packet reception data, and Layer 2
will find the ten most prominent feature combinations that
characterize the link.

Figure 3 illustrates the Layer 2 feature that is most often
associated with UAV positions at the edge of radio range
under these parameter settings. We see the co-occurrence
of three different Layer 1 features, intuitively describing a
previously good channel that begins to exhibit intermittent
losses, followed by longer outages. This characterization of
the UAV link matches with our understanding of intermediate
regions of the flight path, where signal strength degrades
and causes increased sensitivity to effects like occlusion and
antenna nulls that lead to temporary outages.

IV. ADAPTIVE LINK LAYER PROTOCOL

Our ultimate goal is to use prediction to improve throughput
in intermediate regions of the flight path. Furthermore, we
would like to support TCP connections, which are ubiquitous
due to their reliability and congestion control mechanisms.
However, TCP is ill-suited to the changing UAV environment
due to its assumption that the transmission medium is sta-
tionary. Two major issues result: first, unmitigated link loss is
misinterpreted as a congestion signal, causing transmitters to
improperly throttle back, and second, when acknowledgements
for packets in a transmission window are all lost, TCP must
wait for a time out before reviving the connection. Since
timeouts are ignorant of the flight path, swaths of close-range

transmission may go unused, or worse, the connection will
completely die [23].

In response, we implement an adaptive link layer protocol.
The most common method to compensate for intermittent
losses is to use a small number of link layer retransmis-
sions [24]. Though the number of retransmissions can be
scaled up for especially bad links, this strategy introduces
unnecessary channel contention in the network when nodes
try repeatedly to send packets over unavailable links. Given
the UAV’s elevation, these extraneous transmissions could
significantly hurt network performance for configurations with
additional UAV transmitters or ground links. Instead, using
gap prediction, we will queue packets during these outages
to avoid TCP performance degradation, and quiet transmitters
when appropriate.

To support prediction, we assume a probe that constantly
collects link state information. Unlike MIMO systems that
must estimate fine-grained link parameters, our prediction
requires a coarse 0/1 input stream, and is naturally tolerant
to some degree of noise. Therefore, a lightweight side-channel
mechanism is sufficient. We earmark the design of an as-light-
as-possible probe that exploits our model’s tolerance to noisy
incomplete data for future work, and use the field-collected
packet streams as probe data.

V. TRAINING AND EVALUATION

A. Training by High Throughput Screening

Previous results have shown that, while the structure of hier-
archical inference models drives performance improvements,
results are sensitive to parameter settings. Therefore, we
adopt high throughput screening [19] to conduct a parallelized
sweep of the parameter space, and identify high performing
configurations. Models are trained using packet traces from
both wing-mounted nodes together, collected over multiple
flights on a single day in June. Out-of-range segments, and
segments with no loss are excluded from training to focus
classifiers on intermediate regions of the flight path. We
evaluate performance while scaling up the amount of training
data, adding new samples in the order that they appear along
the flight path to properly reflect the data acquisition process.

Table I compares precision and recall at each data size
using three methods: an SVM applied directly to link data, the
best hierarchical inference model configuration identified by
screening, and a hybrid model optimized on predictions from
both methods simultaneously. This co-optimized hybrid trains
both a hierarchical inference model and an SVM on raw data,
and logically ORs their predictions to combine complementary
results. The resulting prediction accuracies are plotted in
Figure 5. We see that the SVM-only method converges quickly
to 0.71/0.72 precision and recall on the training set, translating
to 78% overall prediction accuracy on the evaluation set.
For this method, additional flying time does not improve
performance. In contrast, the best trained hierarchical model,
with parameters r1 = 12, k1 = 8, r2 = 40, k2 = 22, continues
to improve as more data is added, achieving 0.72/0.88 preci-
sion/recall, or 84% prediction accuracy. At 51, 200 samples,

TABLE I
PRECISION / RECALL FOR GAP PREDICTION ON AN OCTOBER FLIGHT

Training
Samples: 400 6400 12800 51200
SVM 0.66 / 0.77 0.70 / 0.74 0.71 / 0.72 0.71 / 0.72
Hierarch. Inf. 0.66 / 0.65 0.72 / 0.68 0.77 / 0.70 0.80 / 0.83
Co-Opt. Hybrid 0.67 / 0.78 0.70 / 0.80 0.72 / 0.81 0.73 / 0.88

While an SVM classifier applied directly to packet traces quickly converges
in both precision and recall, our hierarchical model continues to improve
classification quality as more training samples are added. Initially, a
co-optimized hybrid can boost recall by logically ORing positive alarms
from both methods to combine complementary results, however hierarchy’s
performance eventually surpasses all others.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
et

ec
tio

n
(T

ru
e

P
os

iti
ve

)
R

at
e

False Positive Rate

1600 Samples
3200 Samples

Fig. 4. Receiver Operating Characteristic (ROC) curve, plotting detection
rate (true positives) against false positives, for model configurations trained on
1600 samples in red, and 3200 samples in blue. Though multiple parameters
are varied within the screening process, these curves represent models with
the maximum observed detection rate for a given false positive rate. In order
to identify the best model among many configurations, we optimize equally
between both metrics. In general, we see that adding training data improves
the ROC profile for hierarchical inference.

this represents roughly 30 minutes of flying time for training.
We also see that when little training data is available, the two
methods complement each other. As a result, the co-optimized
hybrid model is useful for bootstrapping link prediction.

B. Emulated TCP Results

Finally, we implement our link layer protocol in emulation,
replaying the October flight trace. End nodes run live TCP
connections, and the emulator delivers or drops packets based
on trace data. Upstream ACKs are small relative to the packet

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

400 800 1600 3200 6400 12800 51200

P
re

di
ct

io
n

A
cc

ur
ac

y

Training Samples

Hierarch. Inf
SVM

Co-opt. Hybrid

Fig. 5. Prediction accuracy for the three modeling methods in Section V-A
on October flight data, plotted logarithmically against the number of training
samples. In contrast to the SVM, hierarchical inference improves prediction
accuracy as flight time increases. When little training data is available, a hybrid
predictor that logically ORs together results from both methods increases
accuracy.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

B
ps

)

T (s)

Adaptive Link Layer
DTN-1

DTN-10
Raw TCP

Fig. 6. A comparison of aggregate throughput for one lap of the UAV’s flight, using different link layer protocols. In green, raw TCP times out during the
first out-of-range portion of the flight, and the connection never resumes. In red, DTN-1 is a Delay Tolerant Networking (DTN) protocol that queues packets
when the UAV is out of range (no packet deliveries are possible). This protocol suffers TCP timeouts at the unstable edges of radio range, limiting data
transmission to close-range regions of the flight path. In purple, DTN-10 queues packets until 10 packet deliveries are possible, allowing the link to stabilize
before resuming transmission. This protocol improves intermediate region transmission at the 30s mark, but utilization is low during the intermediate region
at the 60s mark. In blue, our prediction-based adaptive link layer leads to consistently good throughput in intermediate regions.

size in our channel sounding data, so we only modulate data
packets, and drop ACKs with 10% probability. Due to the
channel’s high loss rate, we boost the default retransmissions
for all packets to 12 retries, over the Linux default 8.

Figure 6 plots throughput for one lap of the UAV, comparing
our adaptive link layer to a raw TCP connection that relies
solely on retransmissions, and to two delay-tolerant protocols,
DTN-1 and DTN-10 [25]. The DTN protocols queue packets
when the UAV is out of range, and rely on retransmissions
when the UAV is in range of the ground receiver. DTN-
1 detects an in-range transition when a successful packet
transmission is first possible, while DTN-10 waits for the link
to stabilize enough for ten packets to be transmitted.

In this case, the raw TCP connection sets up properly, but
suffers a large throughput drop when the link temporarily
destabilizes at the 9s mark. The connection then dies when
the UAV passes out of range, and never recovers. The DTN-1
protocol successfully recovers when the UAV comes in range
after the 30s mark, however reaction time is slow. This is
because many transmissions at the radio range edge fail. This
problem occurs again after the 60s mark. Here, several packets
are delivered successfully, but are not acknowledged. They are
held at the receiver until TCP timeout, when the window is
completed, nearly 20 seconds after the link becomes available.
DTN-10 fairs better at the 30s mark, and begins quickly, but
suffers a delayed reaction after the 60s range transition.

Finally, we see that the adaptive link layer not only prevents
out-of-range timeouts, but copes well with radio range edges,
improving throughput greatly during these limited opportu-
nities. The total throughput boost is 5.5x over raw TCP,
2.5x over DTN-1, and 1.3x over DTN-10. The comparison
difference between DTN-1 and DTN-10 shows how important
these intermediate regions are for achieving good throughput.
We note that, for this flight path and network configuration,
intermediate regions are relatively short in duration. We expect
gains from the prediction-based adaptive link layer to increase
proportionally to the duration of these intermediate regions in
different flight scenarios.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we applied hierarchical sparse coding and
machine learning techniques to implement wireless link pre-
diction for air-to-ground UAV links. This approach computes a
non-linear transformation of link data into a sparse variation-
tolerant feature space, where prediction is more stable. We
show that training samples from flight data can be used
for good prediction during future flights in different condi-
tions. Using the resulting predictor, we improve aggregate
throughput for TCP connections during regions of intermediate
connectivity over the UAV’s flight path. To our knowledge, this
study is the first to use hierarchical sparse coding for wireless
link prediction and TCP performance improvement. Results
suggest a promising approach that generalize to a wide variety
of scenarios.

Future work will focus on two areas. First, we will conduct
additional flight experiments in order to more comprehensively
characterize how stable the model’s predictive power is across
different scenarios. These experiments will include different
flight paths, transmitter positions, airspeeds, and ground struc-
ture density. Second, we will investigate the minimum require-
ments for a lightweight channel probe to support inference.
This will include measuring the effect on predictive power of
probing with smaller packets, possibly on adjacent channels in
the frequency space. Furthermore, since inference is naturally
tolerant to noisy and incomplete data, we will characterize
whether or not opportunistic probes that are derived passively
from data transmissions can take the place of a constant active
channel probe.

ACKNOWLEDGMENTS
This material is based on research sponsored in part by the Intel Corporation,
and by the Air Force Research Laboratory under agreement number FA8750-
10-2-0180. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Air Force Research Laboratory,
the U.S. Government, or the Intel Corporation.

REFERENCES

[1] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation measure-
ments and models for wireless communications channels,” Communica-
tions Magazine, IEEE, vol. 33, no. 1, pp. 42–49, 1995.

[2] R. Valenzuela, “A ray tracing approach to predicting indoor wireless
transmission,” in Vehicular Technology Conference, 1993., 43rd IEEE.
IEEE, 1993, pp. 214–218.

[3] A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig, “A markov-based
channel model algorithm for wireless networks,” Wireless Networks,
vol. 9, no. 3, pp. 189–199, 2003.

[4] H.-T. Kung, C.-K. Lin, T.-H. Lin, S. J. Tarsa, D. Vlah, D. Hague,
M. Muccio, B. Poland, and B. Suter, “A location-dependent runs-and-
gaps model for predicting tcp performance over a uav wireless channel,”
in Military Communications Conference. IEEE, 2010, pp. 635–643.

[5] K. Kumar, R. Chandramouli, and K. Subbalakshmi, “On stochastic
learning in predictive wireless ARQ,” Wireless Communications and
Mobile Computing, vol. 8, no. 7, pp. 871–883, 2008.

[6] B. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian process
latent variable models,” in Proceedings of the 20th International Joint
Conference on Artificial Intelligence, 2007, pp. 2480–2485.

[7] M. A. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support
vector machines,” Intelligent Systems and their Applications, IEEE,
vol. 13, no. 4, pp. 18–28, 1998.

[8] V. M. Patel and R. Chellappa, “Sparse representations, compressive
sensing and dictionaries for pattern recognition,” in Pattern Recognition
(ACPR), 2011 First Asian Conference on. IEEE, 2011, pp. 325–329.

[9] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, 2005.

[10] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the K-SVD algorithm using batch orthogonal matching pursuit,” CS
Technion, 2008.

[11] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Signals, Systems and Computers, 1993. 1993 Con-
ference Record of The Twenty-Seventh Asilomar Conference on. IEEE,
1993, pp. 40–44.

[12] N. Pinto, J. J. DiCarlo, and D. D. Cox, “How far can you get with
a modern face recognition test set using only simple features?” in
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009, pp. 2591–2598.

[13] T. S. Lee and D. Mumford, “Hierarchical bayesian inference in the visual
cortex,” JOSA A, vol. 20, no. 7, pp. 1434–1448, 2003.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609–616.

[15] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
Proceedings of the international conference on artificial intelligence and
statistics, vol. 5, no. 2. MIT Press Cambridge, MA, 2009, pp. 448–455.

[16] B. A. Olshausen, D. J. Field et al., “Sparse coding with an overcomplete
basis set: A strategy employed by VI?” Vision research, vol. 37, no. 23,
pp. 3311–3326, 1997.

[17] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2.
IEEE, 2005, pp. 994–1000.

[18] M. J. Gans, N. Amitay, Y. Yeh, T. Damen, R. A. Valenzuela, C. Cheon,
and J. Lee, “Propagation measurements for fixed wireless loops (FWL)
in a suburban region with foliage and terrain blockages,” Wireless
Communications, IEEE Transactions on, vol. 1, no. 2, pp. 302–310,
2002.

[19] N. Pinto and D. D. Cox, “Beyond Simple Features: A Large-Scale
Feature Search Approach to Unconstrained Face Recognition,” in IEEE
Automatic Face and Gesture Recognition, 2011.

[20] M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional restricted
boltzmann machines for shift-invariant feature learning,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009, pp. 2735–2742.

[21] M. Steyvers and T. Griffiths, “Probabilistic topic models,” Handbook of
latent semantic analysis, vol. 427, no. 7, pp. 424–440, 2007.

[22] N. Pinto, D. D. Cox, and J. J. DiCarlo, “Why is real-world visual object
recognition hard?” PLoS computational biology, vol. 4, no. 1, p. e27,
2008.

[23] C.-K. Lin, H.-T. Kung, T.-H. Lin, S. J. Tarsa, and D. Vlah, “Achieving
high throughput ground-to-uav transport via parallel links,” in Computer
Communications and Networks, 2011 Proceedings of 20th International
Conference on. IEEE, 2011, pp. 1–7.

[24] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
comparison of mechanisms for improving tcp performance over wireless
links,” Networking, IEEE/ACM Transactions on, vol. 5, no. 6, pp. 756–
769, 1997.

[25] C.-M. Cheng, P.-H. Hsiao, H.-T. Kung, and D. Vlah, “Maximizing
throughput of uav-relaying networks with the load-carry-and-deliver
paradigm,” in Wireless Communications and Networking Conference,
2007. WCNC 2007. IEEE. IEEE, 2007, pp. 4417–4424.

