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Abstract

The majority of patients with coronary artery disease do
not fall into the well defined populations from randomized
clinical trials. Observational databases contain a rich
source of information that could be used by practicing
physicians to evaluate treatment alternatives for their
patients. We describe a computer system, the CABG
Kibitzer, which uses an integrated approach to evaluate the
treatment alternatives for CAD patients. We combine a
statistical multivariate model for calculating survival
advantages with DA techniques for assessing patient
preferences and sensitivity analysis, to create one tool that
physicians find easy to use in daily clinical practice. The
development of tools of this kind is a necessary step in
making the data of outcome studies accessible to practicing
physicians.

1. Introduction

The optimal treatment choice for patients with coronary
artery disease (CAD) is highly dependent on individual patient
characteristics. Randomized clinical trials of carefully selected
patient groups suggest that, for younger patients with stenosis
of the left main coronary artery or three-vessel disease
combined with left-ventricular dysfunction, coronary artery
bypass graft (CABG) surgery increases life expectancy over
medical therapy. Further, in cases of moderate to severe angina
pectoris, surgery improves quality of life through symptom
relief [1]. Application of these results in the form of guidelines
for management of patients with comparable characteristics is a
relatively straightforward process.

Patients not directly comparable with populations used
in randomized trials present difficulty. Conducting additional
trials might be considered the optimal solution; however, the
delay in obtaining results and the speed with which results
become outdated often preclude using this approach. In the
absence of relevant data for these patients, physicians rely on
personal experience and observational studies to guide their
clinical judgment. If not carefully controlled, however,
personal experience and observational studies can trigger faulty
decision making through selection or availability biases, lack of
randomization, and anchoring or adjustment difficulties [2].

Several observational databases have been developed
that provide a rich source of nonrandomized data on CAD
patients. The Duke Cardiovascular Disease Databank, in
existence since 1971, prospectively collects data on all CAD
patients seen in Duke clinics [3]. Information on medical
history, physical findings, and cardiac-catherization results are
included. A Cox proportional hazards model is used to
estimate the 1 - , 3 -, and 5 - year survival rates for medical and
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surgical patients. Several studies using this model and the
Duke database have shown that the model is able to predict
accurately the outcomes of patients from major randomized
clinical trials and to perform with more discrimination than do
human experts [3-5]. These studies indicate that with proper
statistical procedures, observational data can be used to predict
individual patient prognosis reliably [3-5].

Multivariate statistical models, such as the Cox model,
are necessary to reduce the effect of selection bias inherent in
the nonrandomized approach. These models cancel out the
effects of known confounding prognostic factors, isolate the
effects of therapy alternatives, and calculate survival advantages
for individual patients [6].

Decision-analytic (DA) techniques have also been
applied to the evaluation of patient candidacy for bypass
surgery. These techniques provide a normative method for
including individual patient preferences and lifestyles in the
therapy decision. Sensitivity analysis allows the physician to
explore how each prognostic factor influences the overall
decision. A major problem with using DA techniques in
clinical practice has been that performing probability
assessments is difficult. For instance, given that a patient will
have surgery at the age of 68 years and has a history of
diabetes, what is the chance that this patient will develop angina
or die after 1, 2, or 3 years? These types of assessments are
very impractical to estimate based on subjective experience
alone.

This paper describes a computer system, the CABG
Kibitzer, which uses an integrated approach to evaluate the
treatment alternatives for CAD patients. We combine a
statistical multivariate model for calculating survival advantages
with DA techniques for assessing patient preferences and
sensitivity analysis, to create one tool that physicians find easy
to use in daily clinical practice. The development of tools of
this kind is a necessary step in making the data of outcome
studies accessible to practicing physicians.

2. Background

Early work done by Pliskin and associates illustrates the
difficulties of performing individual therapy evaluation in the
absence of population based data -- that is, without knowledge
of the results of randomized clinical trials and before any large
observational databases had been tested [7]. Pliskin modeled
the decision problem using a decision tree. To apply the tree to
a particular patient, physicians first were required to estimate
the probability of eight different events, many with multiple
conditional dependencies. The probability of any event in the
model depended on patient factors such as age, gender, the
presence of other diseases (hypertension, diabetes, or
congestive heart failure), the extent of CAD demonstrated on
angiography, and the severity of the patient's angina. Second,
physicians estimated probabilities that were conditionally



dependent on other events. In addition to the difficulties with
probability assessment, wide variations were seen among
physician estimates for the same patient cases. This method for
deriving patient-specific probabilities was clearly not feasible
for clinical use.

In the years since Pliskin's analysis, data from
randomized clinical trials and nonrandomized observational
databases have become available for simplifying the task of
probability assessment. Two CAD databases, the Duke
Databank and the Coronary Artery Surgical Study (CASS)
Registry, have been used in conjunction with multivariate
statistical models to create an improved methodology for
calculating individual prognosis.

CASS was a randomized clinical trial designed to study
the efficacy of surgical intervention in selected subgroups of
CAD patients [6]. Concurrent with this study, nonrandomized
patients not meeting the subgroup criteria under study were
entered into an observational database, the CASS Registry.
Careful recording of symptoms and events over a 5 - to 8 - year
period provided observational data on the outcomes of medical
and surgical therapy for these nonrandomized patients. This
data has been used in several outcome studies [Gersh, 85].

We have developed a statistical model that replaces the
decision-tree approach for a subset of patients who must decide
whether to undergo CABG surgery. Our model calculates the
probability of individual survival given surgery or medical
therapy for geriatric patients over a user-specified number of
years. This estimate of the patient's course replaces the
decision-tree model. No estimation of probabilities is required;
only patient data for prognostic factors -- such as age, gender,
and extent of coronary artery disease -- are needed. The
advantage of this approach is a rapid and consistent
approximate solution to the difficult problem of estimating
patient-specific probabilities. The approach is unique in the
design of combining statistical models with DA techniques into
a package that any physician can feasibly use in clinical
practice.

3. Design Considerations

Two goals motivated us to develop the CABG Kibitzer.
The first was to create a computer-based tool that assists
physicians in evaluating the relative benefits of CABG surgery
versus. other treatment alternatives (for example, medical
management or angioplasty) in CAD patients. The second was
to develop an approach for combining decision-analytic
techniques with statistical models for estimating individual
outcomes.

4. System Description

The CABG Kibitzer was developed on a MacIntosh II
computer; it requires 2 megabytes ofRAM and Multifinder to
run. The main portion of the CABG Kibitzer is a HyperCard
stack; the mathematical model was written in LightSpeed
Pascal. The entire system fits on one 800 kilobyte disk. We
chose HyperCard because it allows rapid prototyping and is
easy to maintain.

Decision analysis has been described as a cyclical
process with three stages [8]. In the initial cycle, a decision
model is formulated, evaluated, and interpreted. If the result of
the first cycle fails to convince the decision maker that a specific
course of action is appropriate, the cycle is repeated. The
model is expanded and reevaluated, and the results are
reinterpreted. Cycling continues until the decision maker feels
confident of the decision.

The CABG Kibitzer implements two cycles of the
decision-analytic process. In the first cycle, a statistical model
calculates the relative advantage of surgical or medical therapy
using patient-specific prognostic data and two simplifying

assumptions -- smoothing of operative mortality and use of
population-based values for the quality of life with angina.
These simplifications allow rapid performance of the initial
consultation. After the frt cycle has been completed, the
patient and counseling physician discuss complicating factors
and decide whether the advantages seen with the selected
therapy hold when risks not represented in the model are
considered.

A second cycle is initiated if the physician and patient
remain unconvinced. In this cycle, the decision model is
expanded to include additional treatment alternatives such as
angioplasty, estimation of the effect of living with angina on the
patient's quality of life, risk aversion to surgical mortality, and
pain and suffering associated with surgery. Probabilities for
outcomes are adjusted on an individual basis using the survival
and angina-recurrence data from the first cycle. Figure 1
illustrates the decision-analytic cycle and shows how
components of the CABG Kibitzer correspond to each stage.
We shall discuss each component in detail.
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Figure 1. Correspondence between the CABG Kibitzer and the
decision-analytic cycle. Double sided arrows indicate components of the
CABG Kibitzer, single sided arrows indicate DA cycle components.
Input to the DA cycle is a decision problem; output is a commitment to
some course of action.

Regardless of the structure used, the decision model
must represent survival rate and symptom characteristics of the
patient over time. In Pliskin's model, the probability of
survival, postoperative survival, and survival to years 1
through 5 with and without angina were represented by
probabilities assessed directly by physicians. The CABG
Kibitzer replaces this approach with a statistical Markov
process model.

The Markov process is a standard model for the
dynamic behavior of probabilistic processes [9-11]. Markov
models predict state probabilities -- that is, the likelihood that an
individual or process will be in a particular state at a given time.
Our model includes three mutually exclusive states of health:
alive without angina, alive with angina, and death.

The analysis estimates the probability that a patient will
be in each of the three states for each month over a user-
specified number of months. The expected duration of survival
without angina and of survival with angina is calculated from
the resulting estimates. The model can predict the likelihood
that a patient will be in a given state, as well as the duration of
the state, by treating the changes in health states as a Markov
process.

We performed a multinomial logit regression on an
observational database to determine the contribution of known
prognostic variables. We combined these regression
parameters with patient-specific variables using a logit function.
For each patient consult, estimates of transition probabilities for
the Markov process model are calculated for variables such as
age, sex, and extent of disease. We combine transition
probabilities into a Markov transition matrix. One matrix is
calculated for each year in the simulation. The expected
probability of survival and of having angina for each year is
calculated via multiplication of the matrix generated for a given
year by the previous year. These probabilities are compared
and expected differences in survival are calculated for the two
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alternatives. Two additional calculations are then performed
using nominal and extreme values for level of patient activity:

1. Differences in expected quality-adjusted life years
(QALYs) with class m or IV angina

2. Joint effect ofQALY and time discount

Once the calculations are completed, a set of rules is
invoked to analyze the results. The differences among the area
under the curve of the unadjusted survival curves, the quality-
adjusted survival curves, the time-discounted survival curves,
and the joint survival curves are used to select
recommendations for therapy and to perform more detailed
modeling.

The CABG Kibitzer provides two features that allow
the user to review the results : a plotting tool and graph-
comparison tool. The plotting tool reads in the data from a text
file created by the math model and plots the values using a
standard survival-curve format (probability of survival versus
years of life lived). The graph-comparison tool superimposes
graphs that have been created. This feature allows the user
immediately to detect stochastic dominance of one altemative if
it exists. Figure 2 illustrates these features. The upper panel of
this figure shows the plotted medical and surgical survival
curves for a 75-year-old female with a moderate degree of CAD
and severe angina. The two curves are superimposed in the
lower panel; they clearly indicate the overwhelming survival
advantage for the surgical outcome.
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Figure 3. Sensitivity analysis for the number of involved segments.
For this patient, no matter how many segments are diseased, medical
therapy is the preferred alternative.

If reviewing the population data does not allow the
patient and physician to reach a clear decision regarding
treatment, a second cycle of decision analysis is performed. In
the second cycle, the decision model is refined and expanded to
fit that particular patient's clinical scenario and personal
preferences.
The physician chooses which therapeutic alternatives to
consider in the model by menu selection (surgery, angioplasty,
or medical treatment). If angioplasty is considered as an
altemative, the physician estimates for each year the probability
of survival and of continued angina. Previous model estimates
of survival and occurrence of angina are displayed to help
anchor physician estimates. Modifications of the model-
generated estimates for medical and surgical alternatives can
also be made at this time if necessary.

Value-model components are selected by the physician
through consultation with the patient. The CABG Kibitzer
predefmes a set ofrecommended components based on analysis
from cycle 1. For example, if an advantage for one alternative
only becomes apparent after several years, consideration of
time discount is included. Careful and frank discussion
between physician and patient is needed to identify which
components are significant. Value-model components are
chosen from a menu and include items such as "surgical pain
and suffering," and "risk aversion to operative mortality," as
well as "effect of pain" and "activity loss due to angina."
Value-model components are combined to form a patient-
specific utility function. The time-tradeoff approach is used to
express the utility of different events.

Because probability and utility assessment of outcomes
is one of the most difficult parts of a decision analysis, we have
explored designs to facilitate their assessment. Examples of
graphical tools to aid in assessments are shown in Figure 4.
Once outcome probabilities and time trade-offs have been
specified, the model is assessed in the usual manner.

Figure 2. Example of the plotting and graph-comparison tools. The
upper panel of the figure shows the graphs for the survival rate for a 75-
year-old female with a moderate degree of CAD and severe angina. The
bottom panel shows the graph-comparison tool which superimposes the
graphs. The top line is the rate for surgery.

Once the graphs have been evaluated, the physician has
the option of ending the CABG Kibitzer session or continuing
with further model refinement. Sensitivity analysis can be
performed on any of the prognostic variables included in the
model. Analysis involves repeated calls to the statistical model
using incremental values of the chosen variable while holding
constant the values of all other variables. Plotting tools similar
to the tools described previously are then used to examine the
results. An example of the results of sensitivity analysis
performed on the number of involved segments is shown in
Figure 3. For this patient, no matter how many segments are
involved in disease, the decision favors surgery over medical
therapy by a comfortable margin.
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Figure 4. Example of tools for eliciting patient preferences. The left
side of the figure is used to assess the effect of pain related to treatment
on the decision. The right side ofthe figure is used to assess the aeffect
of pain on the quality of life.

5. System Status

The current version of the CABG Kibitzer includes an
entry form for patient data, a statistical model for calculating
patient prognosis and sensitivity analysis, and plotting and
graph-comparison tools. Several help features have been
designed to assist the user with data entry. Figure 5 shows the
help screen developed for entering the number of involved
coronary-artery segments. When the.user clicks dn the location
of diseased segments in the diagram, the program automatically
tallies the total and stores the information in the proper space on
the patient-data entry form.

Verification of the statistical model and evaluation of the
system are underway. Verification will be performed using a
patient data set that is independent of the observational database
used for initial system construction.

Clickon gnrmenta with gmrter than o50 rtanole

c--_b- S*numberof
segments

Figure 5. Help screen for the number of involved segments. The user
clicks on portions of the diagram corresponding to stenosed segments.
The running total is displayed in the box on the right.

6. Discussion

In the CABG Kibitzer, we replace subjective probability
estimates for decision models with statistically based estimates.
A significant factor in the lack of acceptance of decision
analysis in the medical community is this method's reliance on
subjective probabilities. Obtaining subjective probability
estimates for medical decision models is difficult and time

consuming. The variability among different physicians'
estimates of outcome probabilities raises doubts for many
people about the validity of decision analysis. Believers counter
that although decision analysis does not guarantee a good
outcome, it does ensure a good decision based on normative
application of the information available. To unbelievers, the
distinction between decisions and outcomes is artificial. To be
tractable, decision models contain significant simplifications. A
"good" decision based on seriously flawed probability
estimates in a simplified model is not really a good decision. If
the probabilities and simplifications in a decision model could
be validated objectively, then perhaps the unbelievers could be
brought to belief.

In some sense, all probabilities are subjective. Even
with frequency data from controlled experiments, a person who
uses the data as the basis for a decision must believe that the
conditions under which the frequencies were observed still
hold. Nonetheless, some probabilities are more subjective than
are others. We believe that a sound basis of outcome
probability in frequency data and validation in the prediction of
independent observations make these probabilities less
"subjective".

Disregarding the issues of subjectivity, observational
data are particularly well suited for use in estimation of
outcomes for decision-analytic models. Observational
databases are available on a wide range of patients with varying
severity of disease and other concomitant illnesses. RCT's are
typically performed on highly similarly patients with
uncomplicated disease. Because of the patient diversity in
observational databases, less extrapolation is needed to map
from observed results to the medical problems of a particular
patient. Further, observational studies are based on outcomes
of therapeutic decisions. Because the data generated are the
products of therapeutic decisions, with proper analysis,
models based on this data may be more predictive of outcomes
of decisions than data from RCT's. In contrast, data from
RCT's are generated in a unique decision-free context.

Even if the reader remains skeptical of the value of
decision-theory, implementing the results of the analysis of
outcome studies in graphical computer programs makes sense.
The multivariate statistical models used to analyze observational
data have much more information than is easily expressed in
rules for clinical care. Scores of rules such as "CABG extends
survival for patients who have three-vessel coronary artery
disease and reduced left-ventricular function" are needed to
express the relationships present between model parameters.
However, when the statistical models are coupled with
graphical tools such as HyperCard, vivid and patient-specific
predictions of the consequences of a decision can be generated.
The rules can be set aside and the data can speak to the problem
at hand.
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