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Abstract

Tournaments are widely used in the economy to organize production and innovation.
We study individual contestant-level data on 2796 contestants in 774 software algorithm
design contests with random assignment. Precisely conforming to theory predictions,
the performance response to added contestants varies non-monotonically across con-
testants of different abilities; most respond negatively to competition; highest-skilled
contestants respond positively. In counterfactual simulations, we interpret a number
of tournament design policies (number of competitors, prize allocation and structure,
divisionalization, open entry) as a means of reconciling non-monotonic incentive re-
sponses to competition, effectively manipulating the number and skills distribution of
contestants facing one another.

JEL Codes: D02, J4, L2, M5

* Boudreau: London Business School, Strategy Department (email: kboudreau@london.edu); Helfat:
Dartmouth University, Strategy Department (email: constance.e.helfat@tuck.dartmouth.edu); Lakhani:
Harvard Business School: Department of Technology and Operations Management (email: klakhani@hbs.edu);
Menietti: Harvard-NASA Tournament Laboratory (email: mmenietti@fas.harvard.edu). We are
grateful to members of the TopCoder executive team for considerable attention, support, and re-
sources in the carrying out of this project, including Jack Hughes, Rob Hughes, Mike Lydon, and
Ira Heffan. For helpful comments, we thank seminar participants at Duke University, Georgia
Tech and London Business School. The authors would like to acknowledge financial support from
London Business School Research and Materials Development Grant and the NASA-Tournament
Laboratory. All errors are our own.

1



1 Introduction

Tournaments and other rank-order incentive mechanisms have been used to model a wide

range of settings: executive placement, elections, research and development and innovation

contests, sports tournaments, and variable sales compensation–situations in which placing

at the top of the performance rank-order leads to out-sized payoffs. Tournaments and con-

tests have a long history as a means of achieving technological advances in industry (Brunt

et al., 2011) and recently have been witnessed in conspicuous cases such as the X-prize for

private space flight, DARPA challenges to develop automomonous vehicle technologies, and

the Netflix contest to improve the company’s algorithm to match users with preferred movies

(Murray et al., 2012). Also in recent times, companies such as TopCoder and Innocentive

have established fixed platforms and sets of regular contestants as “members” of those plat-

forms to make it possible to carry out a regular and on-going stream of contests. Further,

the US government recently passed legislation giving prize-based procurement authority to

all federal agencies (Bershteyn and Roekel, 2011). Thus, rank order tournaments play an

important role in organizing production, efforts and creative activity in the economy (Lazear

and Rosen, 1981; Wright, 1983; Kremer and Williams 2010).

A number of core design questions around contests have been examined in the theo-

retical literature, including when they are efficient relative to alternative incentive schemes

(e.g., Lazear and Rosen, 1981), and questions around the number and abilities of contestants

(e.g., Fullerton and McAfee, 1999) and prize size and structure (e.g., Moldovanu and Sela,

2001, 2006).1 The empirical literature examining these core questions of design remains

somewhat less developed in large part because of data limitations: theoretical models typ-

ically make econometric demands that are rarely satisfied by existing data sources and it
1Szymanski (2003) evokes the core issues of contest and tournament design with these vivid examples from

sports: “What is the optimal number of entrants in a race, or the optimal number of teams in a basketball
league? What is the optimal structure of prizes for a golf tournament, or degree of revenue sharing for a
football championship? How evenly balanced should the competing teams be in the NASCAR or Formula
One championships? What is the maximum number of entrants per nation to the Olympic Games that
should be permitted? What quota of qualifying teams to the soccer World Cup should be allocated to the
developing nations?”
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is in the relatively rare instances in which a regular stream of repeated contests have been

carried out (rather than ad hoc events) where meaningful econometric comparisons might

best be derived. Empirical work to date has nonetheless made considerable progress in es-

tablishing cornerstone findings such as higher prizes lead to higher performance (Ehrenberg

and Bognanno, 1990a,b; Orszag, 1994) and competing with markedly superior opponents

or “super-stars” decreases performance (Brown, 2011; Tanaka and Ishino, 2012). A range of

experimental studies also provides evidence that our theoretical characterizations of strategic

interactions in tournaments as incentive-providing mechanisms are to a considerable degree

borne out under laboratory conditions (Dechenaux, et al., 2012).2

Among the most basic and important questions that have been addressed are those that

concern how large and competitive a contest should be. How many contestants should be

allowed, enabled, or facilitated to enter? The theoretical literature on innovation contests

generally points to smaller contests as producing higher incentives,3 where even just two

contestants have been argued to produce the highest incentives (Fullerton and McAfee, 1999;

Che and Gale, 2003). Absent any form of competition, contestants will have little incentive

to exert effort to improve their work, but, beyond a minimum level of competition, the

marginal return to added effort may diminish with a lower chance of winning. The broader

theoretical literature on contests and tournaments has considered how the related issue of

composition of contestants impacts contest performance. Roughly speaking, this research

has shown that an increase in homogeneity among contestants increases aggregate effort

(Konrad, 2009). Moldovanu and Sela (2006) establish a number of results on the preferred

structure of competition for designers interested in maximizing aggregate effort or simply

the highest effort. Within their model, they establish that if contestant costs are convex the

optimal design depends on the particular cost function and distribution of abilities. Hence,
2A range of extensions beyond core questions of design have also been studied with both theory and

experimental results, including the design of multi-stage tournaments (Fu and Lu 2009), implications of
sabotage and “office politics” among contestants (e.g., Carpenter, et al. 2010) and implications of self-
selection into open tournaments (Dohmen and Falk, 2011).

3See, for example, Glazer and Hassin, 1988; Lazear and Rosen, 1981; Taylor, 1995; Fullerton and McAfee,
1999; Che and Gale, 2003; Terwiesch and Xu, 2008.
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optimal design is a “hard” problem in that no solution works over all environments, but the

particular context needs to be considered.

Several field studies make important progress towards testing the empirical relationship

between numbers of contestants and performance outcomes and have generally found a nega-

tive aggregate or average relationship at the contest level in areas such as sales compensation

(Casas-Arce and Martínez-Jerez 2009), test-taking (Garcia and Tor 2009) and software algo-

rithm development4 (Boudreau et al., 2011).We have yet to observe fine-grained individual

causal responses to better discern more nuanced patterns. Casual observation of contests

and tournaments in the economy, however, readily reveals contests ranging from just a few to

many (dozens or even hundreds) of contestants freely entering–and thus the possibility that

a more nuanced view of incentive responses to competitive interactions may be warranted.

In this article, we clarify theoretical arguments for non-monotonic incentive and perfor-

mance responses to competition across contestants of different skills or ability levels. To see

the intuition of the model and arguments, it is useful to begin with the longstanding intu-

ition of why two contestants in a tournament are better than one for producing high-quality

outcomes. In winner-takes-all contests with only one participant, contestants will have little

incentive to exert effort to improve their work because there are no parties against whom

they will be evaluated. Thus, by adding some minimum level of competition and rivalry,

probability of loss that can be lessened should lead to greater effort (Harris and Vickers,

1987). This is caused by effort-inducing rivalry or racing. While adding contestants be-

yond this point can dilute incentives by making tournaments less likely to win, following

usual arguments, we clarify that for the strongest contestants, adding more contestants can

produce effort-inducing rivalry. In contests with contestants of heterogeneous skills, the

strongest contestants may gradually sense stimulating rivalry only with higher levels of com-

petition. We illustrate the argument by building on the theoretical framework of Moldovanu

and Sela (2001), which features a one-shot tournament with multiple prizes, contestants of
4Here we analyze similar data from the same empirical context, but studying variation in individual

contestants’ performance.
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heterogeneous abilities, and flexible cost functions–a simple and basic set of features that

are relatively general and common to real tournaments in a range of contexts including that

studied here. The model’s precise prediction is that there should be a sort of asymmet-

ric, U-shaped incentive response to competition across the skills level distribution, with the

lowest-skilled contestants negligibly responding to competition, the bulk of contestants at

intermediate levels experiencing a negative response to competition, and the highest-ability

contestants experiencing a more positive (less negative) response to competition. Where

the earlier-mentioned stimulating effect of rivalry outweighs the profit- and effort-quashing

effects of competition, added competition will in fact stimulate effort and performance.

Our main contribution is to estimate relationships between performance in these contests

and competition levels across the full distribution of skill levels. We do this by studying

data on software algorithm programming contests by TopCoder, a context in which fine-

grained data are available on contestant ability levels and performance over a large number of

comparable contests and where natural experimental variation created by random assignment

can be exploited. We study data on 774 cash prize-based contests between 2005 and 2007,

in which varying numbers of randomly-assigned individuals (roughly numbering between 15

and 20) competed to solve software algorithm problems over a 75 minute period; skill levels

ranged widely, but skills distributions in each room were roughly constant. Our core analysis

consists of precisely estimating the causal response to varying numbers of contestants across

the skills distribution using an unconstrained, flexible nonparametric procedure. We find

the specific single-valleyed non-monotonic relationship predicted by theory. We proceed to

then estimate a structural model to consider counterfactual experiments and to more deeply

interpret design policies of these contests. We find that a range of key contest design policies

in this case (capping contest size at 20, allocating a fixed prize pool, creating two prizes

per independent prize room, creating separate divisions and allowing open entry) serve to

reconcile the non-monotonic incentive responses to competition documented here, serving to

manipulate both the number and skills distribution of competitors who faces one another.
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This article therefore most directly builds on the stream of field studies testing proposi-

tions of theoretical models of tournaments and particularly those examining effects of vary-

ing levels of competition in contexts of production contexts (Casas-Arce and Martínez-Jerez

2009; Garcia and Tor 2009; Brown, 2011; Boudreau et al., 2011; Brunt et al., 2011; Tanaka

and Ishino, 2012). To this growing body of work we add fine-grained causal evidence demon-

strating a non-monotonic response to competition across contestants at different skill levels,

while also offering evidence outside the context of sports evidence. The theory and empirical

findings presented here clarify that adding competition can stimulate effort and performance

among highest-skilled contestants while depressing effort and performance over the larger

bulk of contestants at lower skill levels. Where a contest organizer wishes to maximize per-

formance and engagement across a wider cross-section of contestants (e.g., a sales contest,

sports tournaments, executive compensation, contests geared to promoting many solutions,

contests geared to promoting learning or engagement, etc.), the results illustrate that the non-

monotonic responses to competition may create tradeoffs whereby nuanced approaches to

managing numbers and skills distributions of contestants may be beneficial (i.e., the capping

of entry, creating of divisions, etc.) The results contrast those of models with homogenous

contestants in particular. These results also provide an explanation based on the strategic

incentives for why contest organizers who are most interested in maximum outcomes, often

choose to design and implement large “grand challenges” with open entry to large number of

contestants despite the potential incentive-quashing effects of high levels of competition on

many contestants. In this sense, these results clarify theories based on strategic incentives

for holding large contests, complementing theories of large contests based on an interest of

promoting large-scale “parallel” experimentation across many distinct technical approaches

to a given problem by deploying large numbers of heterogeneous solvers (e.g., Terwiesch and

Xu, 2008; Boudreau, et al., 2011). Likewise, a contest design might also consider these non-

monotonic responses across skill levels to determine more nuanced attempts of minimizing

costly effort while achieving some performance goal, particularly when efforts are costly or
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even wasteful (Tullock, 1980). It should also be noted that within these fine-grained data,

our results illustrate the strong predictive power of economic models of strategic interac-

tions and incentives, and particularly that of the framework developed by Moldovanu and

Sela (2001). This possibility of a stimulating effect of competition on strategic investment

incentives is analogous to, although based on distinct mechanisms and within a different in-

stitutional context, findings of the potentially stimulating effects of competition in dynamic

industrial market competition on a vertical innovation quality ladder (Harris and Vickers,

1987; Aghion et al., 2005) and in models of patent races (Reinganum, 1989).

The article proceeds as follows. In Section 2 we develop our theory and empirical pre-

dictions. Section 3 describes the empirical context and data set. Section 4 presents results.

Section 5 concludes.

2 Theory and Hypotheses Development

Anticipating key features of our empirical context, here we develop hypotheses of effects of

competition on incentives and performance in a contest in relation to a one-shot tournament,

with multiple prizes, with contestants of heterogeneous abilities. We build on a simple and

tractable analytical framework fitting this description developed by Moldovanu and Sela

(2001).5

Consider n-contestants competing in a simultaneous tournament for p < n prizes. Prizes

are strictly decreasing in value V1 > V2 > . . . > V

p

. Each player draws on an “ability” or skill

level from zero up to some highest possible level, a
i

2 [0,m]. Let skill be bounded at some

m < 1. Ability is distributed randomly according to some cumulative distribution F

A

. The

distribution has continuous support and is differentiable; the density function is denoted

f

A

. Assume the distribution F

A

is common knowledge, whereas a player’s own ability is

private information. Ability determines a player’s marginal cost of submitting a solution of
5Moldovanu and Sela’s further work in Moldovanu and Sela (2006) somewhat overlaps with the results

here. They investigate a broader tournament framework allowing for two-stage elimination tournaments and
consider the optimality of many aspects of design.
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incrementally higher quality.

The quality of a player’s solution submission or performance “score” is determined by

the player’s ability and his choice of effort level. Rather than consider the effort choice,

it is useful to simply consider a player’s choice of quality directly (based on both privately

known ability and the choice of effort). This choice of solution quality is effectively a player’s

chosen “bid” in the contest. Henceforth, we refer to “bid” and the expected solution quality

interchangeably as is customary.

Player i chooses a costly bid quality level, b

i

2 <+. The cost of bidding, c(b
i,

a

i

), is

increasing in the size of bid according to some function �(b
i

), where �

0
> 0 and a multiplier

(1 � a

i

) associated with the ability of the player or c(b
i,

a

i

) = (1 � a

i

)�(b
i

). Higher skilled

players have lower costs of supplying higher quality bids. Where players are risk-neutral and

r

i

(b
i

) is the rank of a player’s bid b

i

, the expected payoff to player i is as in the following

expression: ⇡

i

(b
i

; a
i

) =
P

p

j=1 Pr {r
i

(b
i

) = j}V
j

� (1� a

i

)�(b
i

). This simple characterization

of the contest implies an expected payoff that is simply the sum of prize values at different

ranks, weighted by the probability of a bid placing at these ranks, less the cost of developing

a bid of that quality level.

⌅ Equilibrium. Moldovanu and Sela (2001) find the symmetric equilibrium mapping abil-

ities to bid quality levels b : [0,m] ! <+. A symmetric, strictly increasing bid function is

assumed to exist, allowing the probability term in the expected payoffs to be substituted

with a probability in terms of the distribution F

A

. Then first-order conditions yield a differ-

ential equation with a closed-form solution: the (proposed) equilibrium bid function, as in

the following Proposition. (Refer to Moldovanu and Sela (2001) for the proof.)

Proposition I (Equilibrium “Bid” Quality). Let X = {F
A

, �,V, n} be a tournament.

Then the unique symmetric equilibrium bid function, where P

j,n

is the probability of ranking

jth in ability among n contestants, is as follows:
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b (a) = �

�1

 
pX

j=1

V

j

ˆ
a

0

1

1� z

@P

j,n

@a

(z) dz

!
. (1)

Therefore, the bid quality generated, conditional on ability, relates quite intuitively to

prize sizes, the marginal effect of varying ability levels of probabilities of placing, and the

inverse of cost.6

⌅ Comparative Statics. Our chief interest and where we depart from past work is in

examining comparative static implications of the theory. From the equilibrium bid expression

(1), we develop predictions regarding the relationship between numbers of contestants and

bidding behavior (effort and level of performance) across the ability distribution.

In our comparative static analysis, we begin by stressing effects of the heterogeneity of

abilities and costs, rather than the particular shape of the cost function. Therefore, we

simply presume the simple case of linear costs, i.e., �(x) = x. This also has the benefit of

allowing for simpler, more tractable analytical solutions, allowing us to establish a greater

number of precise properties of outcomes.7 (We clarify the implications of this assumption

by also solving for the general case of convex costs.)

Proposition II (Responses to Competition by Ability). Let X

n

= {F
A

, �,V, n}

and X

n+1 = {F
A

, �,V, n+ 1} be tournaments differing in their number of contestants by

one, with bid functions b

n

and b

n+1. Let �b

n

= b

n+1 � b

n

be the difference in bid quality

level response to an added competitor. Where bid costs are linear and heterogeneous across

contestants, � (x; a) = (1� a)x > 0,, then �b

n

is “single-valleyed”: @bn
@a

(a) < 0 for all ability

levels up to some level � and @bn
@a

(a) > 0 for all a � �. Hence �b

n

is strictly quasi-convex

in its shape. Further, �b

n

varies in its absolute level according to: �b

n

(0) = 0, �b

n

(a) < 0

for all 0  a < ↵ and �b

n

(a) > 0 for all ↵ < a  m.
6Although the probability of attaining a given rank is, in principle, determined by a number of complex

structural features of the environment and strategic interactions, within the empirical analysis we can simply
estimate this probability directly from the data.

7Proposition 2 is most directly related to lemma 2 in Moldovanu and Sela (2006). That establishes the
results on the sign of the effect of competition, but not the quasi-convexity.
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Proof. See Appendix.

Therefore, provided there are linear and heterogeneous costs of improving the bid quality

level by contestants, we predict the response to competition across different ability levels

should vary in a rather precise and particular way, as illustrated in Figure 1. The empirical

predictions are as follows:

(i) The response to competition is zero at the origin among lowest-skilled contestants.

(ii) The response to competition decreases and becomes negative at higher levels of ability,

up to a unique minimum at a point, �.

(iii) The response to competition then becomes more positive (less negative) at ability levels

above, �, and continues to increase with ability level.

(iv) The response to competition finally increases to the point of becoming absolutely pos-

itive at a point ↵ > �.

(v) The response continues to increase with higher levels of ability until reaching the upper

bound of ability, m.

<Figure 1>

The case of general convex and heterogeneous costs, i.e., � > 0, �0
> 0, and �

00
> 0 (and

following all earlier characterizations of the environment) is quite similar. The non-monotonic

sign of the response to added contestants matches that of the linear case. The response to

added contestants begins negative and stays negative until some level, ↵; then, the response

to added contestants becomes positive and stays positive until the upper bound of abilities,

m. However, less can be said about the “single-valley” property. Instead of decreasing

monotonically until some ability level, �, the response to competition could plausibly increase

and decrease over subregions, but remain negative. Similarly, after the skill level at which the

response to added contestants turns positive, ↵, the response need not necessarily increase
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monotonically, but instead could decrease over sub-regions, but remain positive. See the

Appendix for a proof.

3 Empirical Context and Data

⌅ TopCoder Software Algorithm Contests. Data for our study comes from TopCoder,

Inc., a web-based platform that delivers outsourced software and algorithmic solutions for

firms, non-profit organizations, and government entities. It is the leading contest platform

for delivering custom enterprise-scale software solutions through a contest format, regularly

delivering sophisticated outsourced software projects for Fortune 1000 companies and gov-

ernment agencies since 2001. Roughly half a million solvers have signed up as members to

the platform and tens of thousands regularly participate. The contests and work in each

case is carried out online, allowing participation from most countries around the world.

TopCoder runs contests of a number of types. Here we study data from its regular weekly

“Algorithm” contests, in which contestants provide computer program solutions to computer

science algorithm problems over the course of 75 minutes. These problems are designed by

TopCoder as a means of engaging and sustaining interest in its population of members with

interesting and challenging problems. These contests also allow skill levels of contestants to

be determined, as contestants typically participate in dozens of such contests over the course

of many months or years. TopCoder uses an Elo-based system of measuring skills (Maas

and Wagenmakers, 2005) as is standard in a range of contexts from chess grandmaster

tournaments to US College Bowl systems to the National Scrabble Association and the

European Go Federation. The system essentially predicts future rank based on history of

ranks in past contests to that point. Typical contestants participate in dozens of individual

contests.

Within the contests, participants are to provide solutions to three problems over the

course of each 75 minute contest. Precise quantitative scores are generated automatically
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by the platform according to the correctness and speed with which individual solutions are

completed after a problem is “opened” by a contestant. The most common distribution of

point values is roughly 250, 500, and 1000 for the three problems, distinguishing the problems

as “easy”, “medium”, and “hard”. The points received in a contest are the sum points received

for each problem. In each event, registered contestants, typically numbering several hundred,

are assigned to virtual contest “rooms,” not exceeding 20 contestants and typically ranging

from 16 to 20 contestants, leading to roughly 51 (10.8) independent contests held at a time,

each week.

Prior to the start of a given event, a coder does not know the identity or number of other

contestants, the precise number of independent rooms into which it will be divided, or the

problems they will encounter. For those events featuring cash prizes, this is known prior to

registering for the event. The prize pool per contest is roughly $5,000 ($5,000.36 on average,

ranging from $4,969.00 to $5,032.00). The cash prize pool is divided up evenly across the

individual independent contest rooms. First and second place contests both receive prizes in

each independent contest room. First place receives a higher prize than second place, with

precise levels varying across events.

⌅ Sample. Given our econometric approach (Section 4), our interest here is to study a

short panel within a most stable period of TopCoder’s history during which the assignment

of contests to rooms was based on a randomized assignment procedure. Here we study data

from Algorithm contests offering cash prizes between 2005 and 2007. This period represents

a period of stable commercial growth of the platform, after its initial establishment and

period of experimentation with its business model. This period also precedes a period of

expansion into new business (and contest) lines and the financial crisis of 2008. We also focus

on just the top division of contests, where each competitor has a skill rating. (TopCoder

divides participation of developer members into two divisions according to skill rating. When

individuals initially join and do not have a skill rating, they join the lower division.) This
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implies a total of 774 independent contests (rooms) across 33 dates in our sample, in which

2,796 individual contestants participated–forming an unbalanced panel of 14,391observations

of contestants within particular contests.

⌅ Data and Variables. Our analysis exploits observational data drawn directly from

TopCoder’s database over the sample of interest. Summary statistics of these variables

appear in Table 1 below. Related to the bid or expected performance of individuals (b),

we observe the precise quantitative measure of performance, total points received (Score).

Related to individual ability (a), we observe TopCoder’s Elo-based skill rating (SkillRating).

For simplicity, we re-scale TopCoder’s skill rating on a unit scale from minimum to maximum

skilled. Of course, we are also interested in the number of contestants (n) and distribution

of skills in a given contest (F
A

). Here we directly observe the actual number of contestants

(N ). As regards the distribution of abilities, we observe all ability levels in the room and can

thus construct summary statistics reflecting the skills distribution.

<Table 1>

⌅ Random Assignment and Sources of Variation of Key Variables The details

of models estimated in the analysis are provided within the analysis section itself (Section

4). However here we wish to simply review essential features of the data that are central

to our estimation approaches, particularly as regards the number of contestants and skills

distributions. As a starting point, it should be stressed that features of the institutional

context–including the “rules of the game,” the technical platform, and the nature of tasks–

are unchanging across the sample.

Our two primary variables for which we require exogenous variation in order to estimate

relationships are the number of contestants in a given contest room and the skills of the in-

dividual contestant. As regards skills, we directly observe individuals’ skills and can directly

exploit random assignments to different rooms (inasmuch as we have dealt with any possible
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variation in skills distributions across rooms, as above). Variation in numbers of competitors

also comes from exogenous sources. TopCoder pursues a policy of capping the number of

contestants in each independent room contest at 20. This means creating some number of

independent conference rooms and then randomly assigning participants to those separate

conference rooms. The mean number of total registrants in these data is 949 with consid-

erable variation – a standard deviation of 194 about this mean. As such, a first source of

variation in numbers of contestants in each room is first determined simply by the imperfect

divisibility of the total integer number of contestants into a fixed integer number of rooms.

Therefore, while overall numbers of participants on a given day may be subject to trending

and differences over certain days, the question of imperfect integer divisibility should be less

subject to any such trending.8 Another source of variation in numbers of contestants is cre-

ated by dropouts. Between the time that a contest is announced and registration takes place

(and before details of the contest are revealed), contests typically experience some degree of

drop out. Random assignment becomes relevant here too, as this leads drop outs to also be

distributed randomly across rooms.

4 Analysis

Our analysis proceeds first with flexible non-parametric estimates to test our theoretical

predictions (Section 2). We then shift to estimating the structural model, allowing us to

compare the constrained structural interpretation with the flexible empirical analysis, pro-

viding deeper insight on the basis of estimated structural parameters and allowing us to

consider counterfactual simulations of alternative contest design policies.
8The remainder values when dividing total number of participants on a given day by 20 is almost perfectly

uniform in distribution on {0, . . . , 19} providing there is no indication of non-random features of the data
generation process, including systematic links to contest characteristics.
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⌅ Flexible Nonparametric Estimates

Following our earlier characterization (Section 2), the bid function or expected performance

of competitor i in contest t, b
it

, is a function of: the number of competing contestants, n
it

,

competitor ability, a
it

, and the distribution of abilities in the field of contestants, F
A(it). Here

we measure {b, n, a, F
A

} with empirical variables
�
Score,N, SkillRating, SkillRating

 
. We

refer to the empirical expected performance function as g(Score,N, SkillRating), the em-

pirical counterpart to the theoretical expression, b (n, a, F
A

).

In regards to the distribution of abilities
�
F

A(it)

�
, in principle we can largely rely on

this variable to remain relatively constant across contests given the random assignment

procedure. However, to the extent there is variation to control for, we introduce a measure

of mean skill rating within a contest, SkillRating as a control variable.9 and panel controls

for time periods and trending as controls to provide greater assurance. (See discussion in

Section 3.) Therefore, an unconstrained flexible empirical estimate of the bid function, or, in

empirical terms,the conditional mean Score can be summarized in the following expression,

where again g(�) is the empirical function summarizing the relationship among key variables

and ✏

it

is an additive zero-mean error term: Score
it

= g(N
it

, SkillRating

it

,⇥
it

) + ✏

it

.

Note, however, that our interest is not so much in the conditional mean performance,

Score, but rather in the way in which contestants’ performance responses to added numbers

of contestants vary with ability level. In terms of the earlier theoretical discussion, this

means an interest in estimating �b

n

(a) rather than just the bid function, b. In terms of

our empirical function, this is �g

N

(Skill) rather than just g (�). An added consideration

is that the earlier theory suggests the expected performance function should be nonlinear

(Section 2) and therefore so should �g

N

(Skill) be nonlinear. To estimate �g

N

(Skill) in a

most flexible and revealing way, we execute two steps: we first estimate the conditional mean
9Results do not substantially change when including this variable, nor when including higher moments of

the skills distribution. Also note, the empirical skills distribution is similar to an exponential distribution for
which the mean is a sufficient statistic. Results presented here are also robust to time trends, year dummies,
month dummies and day-of-the-week dummies.
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performance (bid) function g (�) for different numbers of contestants using a nonparametric

estimator; and then difference in estimated bid functions and divide by the change in numbers

of contestants, as the response to varying competition at different ability levels (evaluated

with control variables set to their mean), as in the following expression, redefining the error

term appropriately as �:

�g

N

(SkillRating

it

| ⇥̄
it

) =

g(m+�, SkillRating

it

, SkillRating

it

)� g(m,SkillRating

it

, SkillRating

it

)

�
+ �

it

, (2)

where m is some baseline number of contestants and � is an incremental addition to

the number of contestants. To estimate conditional mean performance functions for each

value of the discrete variable, N , we estimate the function g(SkillRating, SkillRating | N)

with a Nadarya-Watson estimator using an Epanechnikov kernel and adaptive bandwidth

(Pagan and Ullah, 1999). (The approach assumes a degree of smoothness and regularity in

the estimated function, in the sense of being Lipschitz continuous in contestant ability and

in the distribution of abilities of all contestants.) A “nearest-neighbor” adaptive algorithm

was used in these estimates in which the bandwidth of the kernel adjusts at each estimation

point to ensure 250 data points are included in the kernel. The number of data points was

selected through cross-validation to minimize the integrated square error of the estimate.

Our estimates iterate through different numbers of contestants in the room, estimating at

plus and minus one standard deviation of the mean in numbers of contestants, i.e., N = 17

and N = 19. (This implies m = 17 and � = 2 in expression (2)). The second step in

estimating the response to competition across the skills distribution is to take the difference

in estimates at different levels of N . The slope is estimated here by differencing estimates

at N = 19 and N = 17 and dividing by two. Confidence intervals for the bid function
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are generated by bootstrapping repeated estimates on subsets of the data over the two-step

procedure.

Figure 2 graphically presents our mean estimates of the slope response of Score with N

over varying levels of SkillRating, along with 95% confidence intervals. Despite the estimate

being produced in a flexible manner with a minimum of constraints, the patterns summarized

below in observations 1, 2, 3, 4, and 5 conform precisely to the earlier theorized hypotheses

of Section 2 (i, ii, iii, iv, v):

1. The response of the lowest-skilled contestants is indistinguishable from zero.

2. Proceeding rightward to those of intermediate levels of skill, the response to competi-

tion becomes increasingly negative.

3. Increasing beyond some intermediate level of skill, the response to competition increases

(becomes less negative).

4. The increase continues until a skill level is reached where the response to competition

becomes positive.

5. The response continues to increase with added skill and the response is most positive

at the maximum ability level.

<Figure 2>

Apart from precisely conforming with theoretical predictions, the fitted model also ex-

plains a large fraction of variation. For example, in estimating the mean performance or

bid functions, our nonparametric estimates reduce the sum of squared errors over a constant

model by about 46%. Also note that these results conform with usual notions of a negative

aggregate response to added numbers of contestants, as far and away the bulk of contestants

appear in the part of the ability domain for which the response to competition is negative.

Fewer than 5% of observations occur in the part of the SkillRating domain in which the

response is positive.
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⌅ Structural Maximum-Likelihood Estimates

In order to analyze more precise predictions of the theory, we fit a fully parameterized version

of the model of Section 2 to the dataset, using maximum likelihood. Recall, from Section 2

equation (1) the expected performance or bid function takes the following form:

b(a) = �

�1

 
pX

j=1

V

j

ˆ
a

0

1

1� z

@P

j,n

@a

(z)dz

!
,

In estimating this function, a contestant’s ability (a), the number of contestants (n),

and the bid (b(a)) are modeled by the same variables as in the preceding subsection. The

probability of ranking j

th in a room, P

j,n

, is estimated directly from the actual patterns

in the data set. The distribution of abilities is estimated by a kernel density estimate

F (z; a) = K(z; a) where a is the vector of abilities in a competition room. Then @Pj,n

@a

(z)

is directly calculated for each individual and contest in the dataset. The number of prizes

is fixed at 2, p = 2, as this is constant in our data. The remaining model components (V

and c) need to be estimated from maximum likelihood estimates from the data. We allow

costs to take the form (1 � a)�(x;↵, c) = (1 � a)xc.10 Additionally, we diverge from the

theoretical model to allow a non-zero intercept of ↵. Therefore, given V, c, and ↵, the

structural equation is:

b

i

=

 
2X

j=1

V

j

ˆ
ai

0

1

1� z

@P

j,n

@a

(z)dz

! 1
c

+ ↵ + ✏

i

, (3)

where we assume that ✏

i

⇠ N(0, �2).

The maximum likelihood estimates of V, c and ↵ solve the problem:

argmax

V,c,↵

Pr

(
b

i

�
 

pX

j=1

V

j

ˆ
ai

0

1

1� z

@P

j,n

@a

(z)dz

!
� ↵

)

10Note that estimating �(x, c) = x

c is equivalent to also estimating �(x, d, c) = dx

c in our setup as d

merely scales the V , which we also estimate.
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s.t. V1 � V2 and c � 1

This problem is equivalent to the problem of minimizing the sum of squared errors over

the same parameter space. The maximum likelihood estimates for the cost parameters are

as follows:

c = 3.37, ↵ = 178.74.

The maximum likelihood estimates for the first and second prize values are as follows:

✓
V1 V2

◆
=

✓
223.66 9.17

◆
⇥ 107.

(Note: Though the values for the prizes may seem large, the scale is determined by the

scale of scores awarded in the contest and the choice of cost function, �, so the absolute

level has little meaning.) The estimated model explains about 29% more of the absolute

variation than a constant model. (Recall, the fully flexible nonparametric estimate reduces

the sum of squared errors by 46%.) Figure 3 depicts the bid function and estimated ability

distribution for these typical values. We then estimate the marginal response to competition

across skill levels by averaging the change from 17 to 18 and from 18 to 19 contestants, in

order to provide a direct comparison with the earlier non-parametric estimates.

<Figure 3>

In order to evaluate the maximum likelihood structural estimate in comparison to the

nonparametric bid function, Figure 3 also shows both the estimates superimposed on one

another, along with confidence intervals for the non-parametric estimate. The nonparametric

estimate falls within the 95% confidence interval over 93% of the domain. In other words,

the theoretical prediction of the response to competition is not significantly different from

the best case smooth and unconstrained fit of the actual response to competition.
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⌅ Interpretation of Policies and Counterfactuals

The high fidelity of the structural model with unconstrained nonparametric estimates sug-

gests this model and its structural parameters can interpret policies and contest design in

these data. As noted earlier, Moldovanu and Sela (2006) demonstrates that even considering

only the strategic incentives of contestants (ignoring any psychological or other non-economic

influences), optimal design does not have a simple solution when costs are convex. Given

the particular success of TopCoder in designing contests–attracting roughly half a million

contestants and servicing a large roster of clients with technology developed in a regular

stream of contests with high participation and performance–the policies of TopCoder might

be judged of particular interest. Here we consider key contest design policies they have

implemented by examining counterfactual experiments.

⇤ Capping Contest Size The number of contestants in each contest in the data set varies

in the high teens and does not exceed 20. This follows TopCoder’s policy of creating new

contest “rooms” when there are sufficient contestants registering, rather than 20 contestants

per room. Structural estimates of our theoretical model allows us to easily simulate the

impact of deviating from this policy–simply by varying the n parameter in structural model.

Figure 4 plots the difference in bid functions from n = 19 and n = 24, reflecting both a

current typical scenario (19), as well as heightened competition. Increasing the number of

competitors in the room to 24 is projected to increase the scores of the highest ability con-

testants significantly– up to 189 points. While the scores of moderate ability contestants fall

up to 110 points. (Simulating with lower levels of competition produces opposite patterns.)

<Figure 4>

Given these results, if the goal were simply to maximize the highest overall score in these

periodic contests, adding a greater number of contestants should better achieve this goal.

TopCoder virtually achieves this goal with its annual “TopCoder Open” tournament, in which
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a large number of the strongest contestants are invited to compete. Further, in TopCoder’s

contests geared at solving software and algorithmic challenges to general commercial products

for paying customers (outside of our data set), the company has a very different policy

where it places no constraints whatsoever on the number of contestants who might enter and

compete for a given project. A different way of interpreting the results of the simulation with

an artificially high (24) number of contestants, however, is that while the peak score might

be boosted on account of strategic incentives by 189 points and lower scores might appear to

fall by a lower amount of 110, in fact the weighted average effect is highly negative, simply

because far and away the greatest mass of contestants resides within the part of the curve

that is negatively affected by added competition. Thus, if there is some interest in the wider

cross-section performing with high effort, an added boost in competition may be undesirable

in dampening incentives for a great many contestants. In fact, the true objective of these

conferences is to stimulate and maintain the interest of a large fraction of the roughly half a

million members who have signed up to the TopCoder platform. Therefore, the policy of not

exceeding 20 contestants would appear to support some kind of tradeoff between stimulating

high effort and high-flying performance among right-tail contestants, while attempting to

avoid dampening the incentives of lower-ranked contestants (who constitute the vast majority

of the TopCoder membership).

⇤ Prize Allocation and Structure An implication of capping the size of independent

contest rooms, as discussed above, is that this might also imply the magnitude of the prize.

For example, larger rooms might imply fewer rooms and greater allocation of cash prizes to

each room, if in fact the prize pool is fixed. We can simulate this added effect of capping

contest size by repeating the comparison of 19 versus 24 contestants, as in the earlier anal-

ysis. However, here we consider the effects of proportionally increasing the amount of the

prize (i.e., increasing independent contest room size by 26%, as in this comparison, could

imply 1
/(1+26%) fewer rooms and 1 + 26% times the allocation of a fixed prize per room). As
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can be seen in Figure 5, this adds a disproportionate effect in boosting the highest-skilled

contestants, further accentuating the earlier findings that a larger contest favors the perfor-

mance of the highest-skilled contestants. The boost to performance created by a higher prize

does not outweigh the reduced incentives from higher competition for contestants below the

top tier.

<Figure 5>

Another regular policy of prize allocation policy pursued by TopCoder is the allocation

of two prizes per independent contest room–i.e., not only does the top winner receive a

prize, but so does the competitor submitting the second-best solution. If we approximate

TopCoder’s goal as seeking to maximize overall performance in terms of the total sum of

scores, the contest design goal is as follows:

max

V 2<p
+

ˆ
m

0

b

n

(z;V)f(z)dz.

Moldovanu and Sela (2001) show that distributing the prize pool across two or more

prizes can only be optimal where costs are convex, and two prizes will be preferred to a

single prize if and only if

ˆ
m

0

(B(a)� A(a))
@�

�1

@x

A(a)f(a)da > 0, (4)

where A(a) =
´
a

0
1

1�z

@P1,n

@a

(z)dz and B(a) =
´
a

0
1

1�z

@P2,n

@a

(z)dz are the weights on the first

and second prizes in the linear cost bid function. Note that equation (4) only depends on

the distribution of abilities and cost structure and, therefore, we can determine whether the

condition for optimal allocation of prizes is maintained even despite our estimates being

drawn from data in which only two prizes are used. Evaluating equation (4) based on our

maximum likelihood estimates for n = 19, �(x) = x

c, and F (a) = K(a; a) and using the

pooled distribution of abilities, the left-hand side has a value of 0.1683. Hence, TopCoder is

correct in splitting prize money over two prizes, if the goal is maximizing overall output.
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⇤ Distinct High- and Low- Ability Contest Divisions One further design variable

available for manipulation is segmentation of tournaments by ability. TopCoder’s policy is to

divide its body of contestants into two roughly equally sized pools of contestants according

to a cutoff ability level. (Our analysis here focused only on the high-skilled division.)

To consider the effect of the segmentation policy, here we simulate the implications of

further segmenting those within our data set (in the high-skilled division) into two addi-

tionally segmented divisions, according to skills above or below the level of 0.5. Figure 6

illustrates how each half of the ability distribution would react to such a split. The lower half

of the ability distribution shows a universal improvement in performance up to 366 points,

as a result of removing competition for extremely able contestants. In effect, intermediately-

skilled contestants would acutely feel the dampening effects of competition within the wider

division and experience a drop in competitive intensity and a greater likelihood of winning

where competition is more likely to produce a stimulating rivalry effect.

<Figure 6>

The upper half of the ability distribution shows a mix of reactions: some abilities show

decreased performance, others increased performance. The performances of those with abil-

ities from 0.5-0.7 show a large drop – up to 1430 points. Without this divisional split these

contestants were in the 90th percentile and there was a large likelihood that any added

contestants would be drawn from below them in the skills distribution. However, in this

revised division they are closer to the bottom of the division and adding contestants from

only among higher skilled contestants makes them now more acutely sense the dampening

effects of competition. As they have little chance of winning a prize, they put in little effort.

By contrast, higher ability contestants show a very large increase in performance– up to 789

points.11 The increase in quality of contestants forces them to compete harder to win. Thus,

consistent with TopCoder’s active advertising of the virtues of competition in stimulating
11This value should be seen as only indicative of the large potential for performance increases, as Top-

Coder’s scoring system has fixed maximal scores that, in fact, make this extrapolation not feasibly attainable.
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high quality solutions, within this context it in fact appears that the very top contestants

sense particularly heightened strategic incentives to supply higher levels of effort with higher

competition–but particularly with higher competition among comparable rivals. This again

corroborates the use of the TopCoder Open invitational tournament among the very highest

skilled contestants as a stage for the most competitive rivalries. More broadly, given the

objectives of engaging a wide cross section of its membership with these contests, it can be

understood why the company avoids too finely-grained divisions so as not to disincentive its

90th percentile contestants.

⇤ “Open” Membership to the Platform A direct extension of the earlier two issues is

to consider TopCoder’s policy of open admissions to its platform–irrespective of preparation,

skill, or background. While there many be any number of reasons for the company to pursue

this inclusive approach, what is clear from the results and earlier points is that there is

little downside to open admissions. First, the sheer number of possible contestants is made

irrelevant by capping the number of participants in any one independent contest room.

This represents a qualitative departure from most contests we have seen in history where

contestants are not cordoned into separate independent contests. With this question of

number having been dealt with, there is then only the question of skills distribution. A

possible worry, of course, is that the platform becomes flooded with low quality participants

and this could alter the distribution of abilities of participants in ways that might lessen

rivalry among the most able contestants, in addition to other possible problems. However,

to the extent this could plausibly become a problem (we found no suggestion it was in our

interactions with the company and its trade partners), the divisionalization policy would

likely deal with this contingency in a simple fashion. The creation of an upper skill division

with a minimum threshold skill effectively fixes the distribution of abilities, F

A

, in that

division, a virtual form of certification. This limits any effects of low quality entrants to the

lower division.
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5 Conclusions

This article analyzes how the level of competition and size of a tournament affects perfor-

mance as a result of how strategic interactions affect contestants’ incentives to exert high

levels of effort. We argue that, under relatively general conditions describing a one-shot

tournament, the incentive response and performance of contestants should be a nonlinear

function of the ability and skill level of contestants. The response to increased competition

across increasing ability levels should initially decrease at greater skill levels and eventually

become more positive (less negative) and possibly even turn positive at highest skill levels.

Therefore, while aggregate and average patterns of performance and effort may decline with

increased competition, performance and effort may in fact increase among the highest-skilled

contestants.

The sometimes stimulating effect of competition is analogous to the longtime usual in-

tuition that it is better to have two contestants rather than one in a tournament, as the

presence of at least one more competitor of sufficient skill can generate a need to exert more

effort at the margin to maximize one’s expected payoff (Harris and Vickers, 1987). However,

whereas much of the literature–both theoretical and empirical–has stressed that increased

competition beyond a minimum level may reduce the probability of winning to a level where

incentives become depressed, here we clarify this stimulating effect of rivalry may persist at

least for the highest-skilled contestants. This is because the addition of greater numbers of

contestants increases the likelihood that “right-tailed” contestants sense some level of suffi-

ciently skilled contestants to experience the stimulating effect of rivalry and it is possible this

stimulating effect of rivalry may outweigh the incentive dampening effects of competition.

We illustrate these arguments within the analytical framework developed by Moldovanu and

Sela (2001), which features a one-shot n-player tournament with the possibility of multi-

ple prizes and contestants of heterogeneous abilities. Our arguments depend principally on

examining comparative statics in relation to varying levels of competition and varying skill

levels.
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Our main contribution is in studying fine-grained evidence on individual competitor out-

comes from 774 software algorithm development contests, where it is possible to identify

causal effects by exploiting quasi-experimental variation due to the random assignment pro-

cedure employed by the contest sponsor, TopCoder. Equally important, this context offers a

rare opportunity to observe precise measures of individual competitor skill and performance

outcomes, based on objective observational measures. The performance response to compe-

tition by skill level is first estimated with a nonparametric kernel estimator, providing the

best-fit relationship with a minimum of constraints imposed. The estimate agrees with the

theoretical predictions, showing that least skilled contestants are negligibly affected by rising

competition.In addition, with higher levels of skill, the response becomes progressively more

negative until, towards the range of highest-skilled contestants, the relationship becomes

more positive (less negative) and the response to competition finally turns positive for the

very highest skilled contestants–in a sort of asymmetric-U shape (with the right hand side

higher than the left). Therefore, the flexibly-estimated relationship conforms to the quite

particular predictions of the shape following the theory and arguments. We also find that

our maximum likelihood estimate of the structural model produces a very similar estimated

response to competition across the skills distribution, further affirming our analysis and

conclusions.

We use the structurally estimated model to interpret the design of the contests within

our data set and to simulate counterfactuals related to several key contest design policies.

These include the capping the number of entrants, the dividing of a fixed prize pool among

multiple independent contests held simultaneously, the prize structure in each contest, the

creation of distinct divisions of contestants divided by skill level and the policy of allowing

open entry to all comers on the platform. What becomes clear in this discussion is that this

wide range of instruments can, at least in part, be interpreted as a means of managing both

the level of competition and the skills distribution in a way as to manage tradeoffs created

by non-monotonic responses to competition.

26



REFERENCES 

Aghion, P., Bloom, N., Blundell, R., Griffith, R., Howitt, P. “Competition and 
innovation: An inverted-u relationship.” Quarterly Journal of Economics. Vol. 120 
(2005), pp. 70-728. 

Bershteyn, B., Roekel, S. V., eds. Memorandum for General Counsels and Chief 
Information Officers for Executive Departments and Agencies. Executive Office of the 
President, 2011.  URL https://cio.gov/wp-content/uploads/downloads/2012/09/Prize_ 
Authority_in_the_America_COMPETES_Reauthorization_Act.pdf 

Boudreau, K., Lacetera, N., Lakhani, K. “Incentives and Problem Uncertainty in 
Innovation Contests: An Empirical Analysis.” Management Science. Vol. 57 (2011), pp. 
843-863. 

Brown, J. “Quitters never win: The (adverse) incentive effect of competing with 
superstars.” Journal of Political Economy. Vol. 119 (2011), pp. 982--1013. 

Brunt, L., Lerner, J., Nicholas, T. “Inducement prizes and innovation.” Discussion paper 
SAM 25 2011, Norwegian School of Economics, 2011. 

Carpenter, J., Matthews, P., Schirm, J. “Tournaments and Office Politics.” American 
Economic Review, Vol. 100 (2010), pp. 504-17. 

Che, Y.-K., Gale, I. “Optimal design of research contests.” American Economic Review. 
Vol. 93 (2003), pp. 646-671. 
Ehrenberg, R. G., Bognanno, M. L., 1990a. “Do tournaments have incentive effects?” 
Journal of Political Economy. Vol. 98 (1990a), pp. 1307-1324. 

Dechenaux, E., Kovenock, D., & Sheremeta, R. A survey of experimental research on 
contests, all-pay auctions and tournaments. All-Pay Auctions and Tournaments.” (2012) 
Available at SSRN: http://ssrn.com/abstract=2154022. 

Dohmen, T., Falk, A. Performance pay and multidimensional sorting: Productivity, 
preferences, and gender. The American Economic Review. Vol. 101 (2011), pp. 556-590. 

Ehrenberg, R. G., Bognanno, M. L., 1990b. “The incentive effects of tournaments 
revisited: Evidence from the european PGA tour.” Industrial and Labor Relations 
Review. Vol. 43 1990b, pp. 74-88. 

Fu, Q., Lu, J. “The optimal multi-stage contest.” Economic Theory.  

Eriksson, T. “Executive compensation and tournament theory: Empirical tests on Danish 
data.” Journal of Labor Economics. Vol. 17 (1999), pp. 262-280. 

Fullerton, R. L., Linster, B. G., McKee, M., Slate, S. “Using auctions to reward 
tournament winners: Theory and experimental investigations.” The RAND Journal of 
Economics Vol. 33 (2002), pp. 62-84. 



Fullerton, R. L., McAfee, R. P. “Auctioning entry into tournaments.” Journal of Political 
Economy. Vol. 107 (1999), pp. 573-605. 

Harris, C., Vickers, J. “Racing with uncertainty.” The Review of Economic Studies. Vol. 
54 (1987), pp. 1-21. 

Knoeber, C. R., Thurman, W. N. “Testing the theory of tournaments: An empirical 
analysis of broiler production.” Journal of Labor Economics. Vol. 12 (1994), pp. 155-
179. 

Konrad, K. A. Strategy and Dynamics in Contests. Oxford, UK: Oxford University Press, 
2009. 

Kremer, M., Williams, H. Incentivizing innovation: Adding to the tool kit. In: Innovation 
Policy and the Economy. University of Chicago Press, pp. 1-17, 2010. 

Lazear, E., Rosen, S. “Rank-order tournaments as optimum labor contracts.” Journal of 
Political Economy. Vol. 89 (1981), pp. 841-864. 

Moldovanu, B., Sela, A. “The optimal allocation of prizes in contests.” American 
Economic Review. Vol. 91 (2001), pp. 542-558. 

Moldovanu, B., Sela, A., 2006. “Contest architecture.” Journal of Economic Theory Vol. 
126 (2001), pp. 70-96. 

Murray, F., Stern, S., Campbell, G., MacCormack, A. “Grand innovation prizes: A 
theoretical, normative, and empirical evaluation.” Research Policy. Vol. 41 (2012), pp. 
1779-1792. 

Orszag, J. “A new look at incentive effects and golf tournaments.” Economics Letters. 46 
(1994), pp. 77-88. 

Pagan, A., Ullah, A. Nonparametric Econometrics. Cambridge University Press, 1999. 

Reinganum, J., "Chapter 14 The timing of innovation: Research, development, and 
diffusion", In: Richard Schmalensee and Robert Willig, Editor(s), Handbook of Industrial 
Organization, Elsevier, Vol. (1989), Pages 849-908 

Scholz, F., Stephens, M. “K-sample anderson-darling tests.” Journal of the American 
Statistical Association. Vol. 82 (1987), pp. 918-924. 

Szymanski, S. “The economic design of sporting contests.” Journal of Economic 
literature, Vol. 41 (2003), pp. 1137–1187. 

Tanaka, R., Ishino, K. “Testing the incentive effects in tournaments with a superstar.” 
Journal of The Japanese and International Economies, in press. 

Taylor, C.. “Digging for golden carrots: An analysis of research tournaments.” American 



Economic Review. Vol. 85 (1995), pp. 872-890. 

Terwiesch, C., Xu, Y. “Innovation contests, open innovation, and multiagent problem 
solving.” Management Science. Vol. 54 (2008), pp. 1529-1543. 

Tullock, G. “Efficient rent seeking”, in Buchanan, J.M., Tullock, R., and G. Tullock 
(eds.) Toward a theory of rent seeking society, Texas A&M University Press, College 
Station (1980). 

Wright, B., “The economics of invention incentives: Patents, prizes, and research 
contracts.” The American Economic Review. Vol. 73 (1983), 691-707. 



FIGURES 
 
 
FIGURE 1 
Predicted ``Single-Valleyed'' Non-Monotonic Response to Competition

 
Note: Illustration of the response to competition implied by proposition 2. The change 
in bid quality and expected performance caused by a change in the number of 
contestants from n to n+1 plotted by ability. The level of ability β indicates the point 
at which increases in ability begin to result in more positive (less negative) responses 
to competition. The level of ability α indicates the point at which increases in ability 
begin to result in absolutely positive responses. 
 
  



FIGURE 2 
Flexible Nonparametric Estimation of Performance Response to Added Contestants 
 

 
Note: The figure presents estimated effect of increasing number of contestants from 
N=17 to N=19, across varying SkillRating, based on a Nadarya-Watson estimator 
using Epanechnikov kernel of 250 nearest-neighbour data points; bootstrapped 
confidence intervals. Over 95% of data points are to the left of the point at which the 
line crosses zero. The patterns conform to theorised hypotheses i, ii, iii, iv and v of 
Section 2. 

 
 
 

  



FIGURE 3 
Structural Estimation of Performance Response to Added Contestants 

 

Note: The figure presents a maximum likelihood structural estimate of the effect of 
increasing number of contestants from N=17 to N=19, across varying SkillRating, 
based on the model presented in Section 2. Results are plotted along with the earlier 
nonparametric estimate from in Figure 2. 

 
  



 
FIGURE 4 
Simulated Magnitude of Impact from Capping Participation 

 
Note: Projection of performance response to large changes in the number of 
contestants using the structural estimate in order to assess the current policy of 
TopCoder to cap the number of contests at 20. 

 
 
FIGURE 5 
Simulated Magnitude of Impact from Capping Participation and with a Fixed Prize 
Pool 

 
Note: Projection of performance response to large changes in the number of 
contestants using the structural estimate in order to assess the current policy of 
TopCoder to cap the number of contests at 20. The indirect impact of a proportionally 
changed prize pool is included in the response. 

  



 
 
FIGURE 6 
Simulated Magnitude of Impact from Creating Separate Divisions 
 

 
Note: Bidding projections using the structural estimate. The predicted change in bid 
function resulting from splitting the current competitor pool into two divisions. A low 
ability division composed of those with abilities below 0.5 and a high ability division 
composed of those above 0.5. 
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