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Abstract

This paper shows that in the class of variational preferences the

notion of probabilistic sophistication is equivalent to expected utility

as long as there exists at least one event such that the independence

axiom holds for bets on that event. This extends a result of Marinacci

[13] and provides a novel interpretation of his result.
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1 Introduction

This paper studies two well known classes of preferences: the variational

preferences of Maccheroni, Marinacci, and Rustichini [11] and the proba-

bilistically sophisticated preferences of Machina and Schmeidler [12].

Variational preferences are a very broad class of preferences that allow

for modeling choices consistent with the Ellsberg [5] paradox. This class

of preferences includes the maxmin expected utility (MEU) preferences of

Gilboa and Schmeidler [6], where the decision maker has a set of priors,

rather than a unique probability, as well as many other classes of preferences

that violate separability across states.

The notion of probabilistic sophistication means that the decision maker

bases his choices on probabilistic beliefs. This class includes expected utility,

as well as many nonexpected utility criteria that allow for modeling the Allais

[1] paradox and related violations of linearity in probabilities.

In many situations involving ambiguity and ambiguity aversion, such as

in the Ellsberg paradox, there exist events to which the decision maker at-

taches unambiguous probabilities. In principle, a decision maker could be

probabilistically sophisticated but nonexpected utility over such events. The

question that this paper studies is to what extent it is possible to model such

attitude using variational preferences.

Marinacci [13] studied this question for the MEU preferences and showed

that under an assumption that all the probabilities in the set of priors agree

on some event, probabilistic sophistication is equivalent to expected utility.

The contribution of this paper is twofold. First it characterizes Marinacci’s

assumption axiomatically: it shows that it is equivalent to the existence of

an event A such that the independence axiom holds for bets on A. In light of

this theorem, Marinacci’s result can be interpreted as pointing to the inabil-

ity of MEU preferences to accommodate expected utility and nonexpected

utility within the same model. The second contribution of this paper is an

extension (using di↵erent proof techniques) of Marinacci’s result to the class
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of variational preferences: they too are unable to accommodate expected

utility and nonexpected utility within the same model.

2 Preliminaries

2.1 Setting

Let S be the set of states of the world with a sigma algebra ⌃ of subsets of S.

Let �(S) denote the set of all finitely additive probability distributions on

(S,⌃) and let ��(S) denote the set of all countably additive probabilities.

Let X be the set of consequences, assumed to be a convex subset of a vector

space. An act is a ⌃-measurable and finite-valued mapping f : S ! X that

attaches a consequence to each possible state. Let F denote the set of all

acts. The preferences % are defined on F . If f, g 2 F and A ✓ S, then

f
A

g denotes an act with f
A

g(s) = f(s) if s 2 A and f
A

g(s) = g(s) if s /2 A.

For any algebra of events A ✓ ⌃ let FA denote the set of acts in F that are

measurable with respect to A. In particular, if A = {;, A,Ac, S} for some

A 2 ⌃, then FA is denoted simply by F
A

.

2.2 Probabilistic sophistication

The notion of probabilistic sophistication means that the decision maker

treats subjective uncertainty as if it was objective risk; he cares only about

the probabilities of events, not the events themselves.1 Such decision maker

formulates a subjective probability measure on the state space. Any two acts

that imply the same distribution over outcomes are being treated in the same

way. More formally, a preference is probabilistically sophisticated if there ex-

ists a nonatomic probability measure q 2 �(S) such that for any two acts f

1This notion was introduced by Machina and Schmeidler [12] and subsequently ex-
tended by Grant [7] and Chew and Sagi [4]; the latter approach is being adopted here.
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and g

q
�
s 2 S | f(s) = x

�
= q

�
s 2 S | g(s) = x

�
for all x 2 X ) f ⇠ g.

2.3 Variational Preferences

The variational preferences, introduced and axiomatized by Maccheroni et al.

[11], are represented by

V (f) = min
p2�S

Z

S

u(f) dp+ c(p), (1)

where the function c : �(S) ! [0,1] is convex, weak⇤ lower semicontinuous,

and grounded (takes value zero for some p 2 �(S)); and u : X ! R is a

nonconstant and a�ne utility function. For the purpose of this paper it will

be also assumed that u is unbounded. An important subclass of variational

preferences are those where the minimization is over the set of countably

additive probabilities. Such preferences are called continuous variational

preferences.

A classic example of variational preferences are maxmin expected utility

preferences of Gilboa and Schmeidler [6] with representation

V (f) = min
p2P

Z

S

u(f) dp, (2)

where P is a nonempty, convex, and weak⇤ compact set of probabilities in

�(S). Formula (2) is a special case of (1) for

cMEU(p) =

8
<

:
0 for p 2 P

1 for p /2 P.

A special case of both of those classes are Anscombe–Aumann expected util-
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ity preferences represented by

V (f) =

Z

S

u(f) dp;

in this case the set P is a singleton composed of p.

3 Results

3.1 Binary Independence

Definition 1. (Nontrivial event) An event A 2 ⌃ is nontrivial if and only if

there exists x, y 2 X with x � x
A

y � y.

Axiom A1 postulates the existence of a nontrivial event A such that the

independence axiom holds for bets on A.

Axiom A1 (Binary Independence). There exists a nontrivial event A 2 ⌃

such that

f ⇠ g ) 1

2
f +

1

2
h ⇠ 1

2
g +

1

2
h for all f, g, h 2 F

A

.

Recall that acts in F
A

have the form xAy, that is, they are bets based

on A. More generally, an algebra A ✓ ⌃ is nontrivial if and only if it contains

a nontrivial event. For example, if A is a nontrivial event, then the algebra

{;, A,Ac, S} is nontrivial. It is easily seen that the Binary Independence

axiom can be equivalently formulated in terms of the existence of a nontrivial

subagebra A of ⌃ such that independence holds on FA.

3.2 Maxmin Expected Utility

The main result of this paper determines the extent to which the variational

preferences can be used for modeling the Allais paradox. Marinacci [13]

showed that for the subclass of maxmin expected utility preferences this
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extent is limited. They collapse to expected utility preferences under an

assumption of agreement of probabilities

Assumption 1. There exists an event A 2 ⌃ such 0 < p(A) = p0(A) < 1 for

all p, p0 2 P .

This assumption means that there exists an event A such that any two

measures belonging to the set of priors P agree on A. This assumption

is expressed in terms of the representation; the following result provides a

behavioral characterization of Assumption 1.

Theorem 1. Suppose that % is a maxmin expected utility preference. As-

sumption 1 holds if and only if Axiom A1 holds.

The main result of this paper, Theorem 3 below, extends the result of

Marinacci [13] to the whole class of variational preferences under an appro-

priately extended notion of agreement of probabilities.

3.3 Variational Preferences

In principle, there are two possible extensions of this assumption to cost

functions taking values other than zero and infinity, i.e., to the whole class

of variational preferences. They both reduce to the assumption of Marinacci

[13] for the subclass of maxmin expected utility preferences.

Assumption 2. There exists an event A 2 ⌃ such that if c(p), c(p0) < 1,

then 0<p(A) = p0(A)<1.

This assumption means that there exists an event A such that any two

measures that the decision maker considers to be at all plausible (i.e., having

finite cost) attach the same probability to A. Similarly to maxmin expected

utility preferences, Axiom A1 provides a characterization of this assumption.

Theorem 2. Suppose that % is an unbounded variational preference. As-

sumption 2 holds if and only if Axiom A1 is satisfied.
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Assumption 2 is relatively strong, especially in cases where the set of

plausible measures is large. A further generalization of Assumption 1 is the

following.

Assumption 3. For any r � 0 there exists an event A
r

2 ⌃ such that if

c(p) = c(p0) = r, then 0 < p(A
r

) = p0(A
r

) < 1.

This assumption requires that any two measures with the same cost agree

on some event. This assumption is weaker than Assumption 2 because the

event on which the measures have to agree can vary with the cost level.

This requirement is more in the spirit of variational preferences where the

decision maker considers various classes of probability distributions, each

with a di↵erent cost. The agreement event can be di↵erent for each such

class, rather than being uniform. This assumption is easier to verify given

the specific functional from of c, which may be helpful in some cases, for

example in applications, where a subclass of variational preferences is being

studied.2

The main result of this paper, Theorem 3 shows that even the weaker As-

sumption 3 is su�cient. The proof does not follow from Marinacci [13], but

uses di↵erent techniques: it builds on the elegant characterization of proba-

bilistically sophisticated variational preferences obtained by Maccheroni et al.

[11].3

Theorem 3. Suppose that % is a continuous and unbounded variational

preference. The following three statements are equivalent

(i) % is probabilistically sophisticated and Assumption 3 holds

(ii) % is probabilistically sophisticated and Axiom A1 holds

2The axiomatic characterization of Assumption 3 within the class of general variational
preferences is an open question. For probabilistically sophisticated variational preferences,
however, Theorem 3 establishes the equivalence between Axiom A1 and Assumption 3.

3I would like to thank Simone Cerreia-Vioglio for pointing out that an alternative
proof could be obtained using a rearrangement invariance approach of Luxemburg [10].
The proof presented in this paper is elementary and does not rely on those results.
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(iii) % is an Anscombe–Aumann expected utility preference.

Remark 1. Strictly speaking, Theorem 3 is not a generalization of the result

of Marinacci [13]; his theorem holds also for ↵-MEU preferences, which—not

being uncertainty averse—do not belong to the class of variational prefer-

ences. Moreover, his results for maxmin expected utility preferences do not

rely on countable additivity.

Remark 2. Marinacci [13] shows that Assumption 1 cannot be weakened.

His Proposition 2 exhibits an example of MEU preferences that are proba-

bilistically sophisticated, yet not expected utility. Similarly, rank-dependent

expected utility preferences with a concave probability transformation func-

tion, see, e.g., Quiggin [14], Yaari [17], as well as many other probabilistically

sophisticated MEU preferences have this property.4 The existence of such

preferences is possible because they do not satisfy Axiom A1 (there are no

nontrivial events on which those preferences satisfy the independence axiom).

Such examples are inherited by Theorem 3; the class of such examples is even

larger, as it includes some variational but non-MEU preferences, notably the

multiplier preferences of Hansen and Sargent [9].5

Remark 3. In a recent paper Cerreia-Vioglio, Maccheroni, Marinacci, and

Montrucchio [3] independently obtain similar results for the general class of

uncertainty averse preferences characterized by Cerreia-Vioglio, Maccheroni,

Marinacci, and Montrucchio [2]. They work in terms of the analog of Assump-

tion 2 of this paper and do not consider weaker conditions like Assumption 3

in this paper. They also provide an axiomatic characterization of the analog

of Assumption 2. However, their characterization is di↵erent than the one

obtained in this paper: they first derive an auxiliary incomplete ordering %⇤

4Grant and Kajii [8] characterize the class of probabilistically sophisticated MEU pref-
erences.

5Multiplier preferences, and more broadly divergence preferences with respect to a
nonatomic q 2 ��(S), are probabilistically sophisticated, but not expected utility, see
Maccheroni et al. [11].
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(the revealed unambiguous preference) and then uncover the unambiguous

event from that ordering. By contrast, Axiom A1 uncovers the unambiguous

event directly from the observable preference %.

Appendix: Proofs

Let B0(⌃) denote the set of all real-valued ⌃-measurable simple functions

and let B0(⌃, K) be the set of all functions in B0(⌃) that take values in a

convex set K ✓ R.

A Proof of Theorem 2

Verifying that Assumption 2 implies Axiom A1 is routine. Turn to su�ciency

and define �2 := {⇡ 2 R2 | ⇡1 � 0, ⇡2 � 0, and ⇡1+⇡2 = 1}. For any P ✓ �2

let �
P

: �2 ! [0,1] be defined as �
P

(⇡) = 0 if ⇡ 2 P and 1 otherwise.

Since A is notrivial, there exists a nontrivial A 2 A. Let F
A

denote the set

of acts measurable with respect to {;, A,Ac, S}.
Step 1: The restriction of % to F

A

satisfies Order, Mixture Continuity,

Monotonicity, and Independence, hence by the Anscombe–Aumann repre-

sentation theorem, it has a representation f 7! ⇡1v(f(A)) + ⇡2v(f(Ac)) for

all f 2 F
A

where v : X ! R is an a�ne function and ⇡ 2 �2. Since constant

acts belong to F
A

, the functions u and v are identical up to a positive a�ne

transformation; choose v to coincide with u. Hence, the preference on the

set B
A

:= {(a
A

b) 2 B0(⌃, u(X)) | a, b 2 R} induced by % is represented by

(a
A

b) 7! ⇡1a+ ⇡2b. There is a natural isomorphism between the set B
A

and

the set (u(X))2. Let %2 denote the induced preferences on (u(X))2. By the

above, the preference %2 has a representation Ī(a, b) = a⇡1 + b⇡2.

Step 2: Define the function ⇧ : �(S) ! �2 by ⇧(p) = (p(A), 1� p(A)) and

observe that ⇧ is continuous because if a net p
↵

!w

⇤
p, then in particular

p
↵

(A) ! p(A), so (p
↵

(A), 1 � p
↵

(A)) ! (p(A), 1 � p(A)); hence, ⇧(p
↵

) !
⇧(p). Observe that for any ⇡ 2 �2 the set ⇧�1(⇡) is a nonempty, convex, and
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weak⇤ closed subset of �(S), hence it is weak⇤ compact. Define the function

ĉ : �2 ! [0,1] by ĉ(⇡) := min
p2⇧�1(⇡) c(p). Clearly, ĉ is grounded, since c

is. Also, it is convex: fix any ⇡, ⇡0 2 �2 and any ↵ 2 [0, 1]. Let p 2 ⇧�1(⇡)

and p0 2 ⇧�1(⇡0) be such that ĉ(⇡) = c(p) and ĉ(⇡0) = c(p0). From convexity

of c it follows that c(↵p + (1 � ↵)p0)  ↵c(p) + (1 � ↵)c(p0)  k. On the

other hand, ⇧(↵p + (1 � ↵)p0) = ↵⇡ + (1 � ↵)⇡0, so ĉ(↵⇡ + (1 � ↵)⇡0) 
c(↵p + (1 � ↵)p0). The function ĉ is also lower semicontinuous; to see that

it is necessary to prove that the set Ĉ
k

:= {⇡ 2 �2 | ĉ(⇡)  k} is closed for

any k 2 [0,1]. Since the function c is weak⇤ lower semicontinuous, the set

C
k

:= {p 2 �(S) | c(p)  k} is weak⇤ closed and therefore weak⇤ compact

for any k 2 [0,1]. Since continuous functions carry compact sets to compact

sets the set ⇧(C
k

) is compact for any k 2 [0,1] and therefore closed Finally,

observe that ⇧(C
k

) = Ĉ
k

for all k 2 [0,1]. For any ⇡ 2 ⇧(C
k

) there exists

p 2 C
k

such that ⇧(p) = ⇡. By definition, this means that c(p)  k and

p 2 ⇧�1(⇡). Hence, ĉ(⇡)  c(p)  k. Conversely, for any ⇡ 2 Ĉ
k

, by

definition ĉ(⇡)  k. Choose p 2 ⇧�1(⇡) such that ĉ(⇡) = c(p). This means

that c(p)  k, i.e., p 2 C
k

, and ⇧(p) = ⇡; it follows that ⇡ 2 ⇧(C
k

). This

establishes the weak⇤ lower semicontinuity of ĉ. Together with convexity and

groundedness establishes that ĉ is a cost function in the sense of Maccheroni

et al. [11].

Step 3: Define I : B0(⌃, u(X)) ! R by I(⇠) := min
p2�(S)

R
⇠ dp+ c(p). De-

fine Î : (u(X))2 ! R by Î(a, b) := I(a
A

b). Hence, Î represents %2. Observe

that Î(a, b) = min
p2�(S) ap(A) + bp(Ac) + c(p) = min

⇡2�2 min
p2⇧�1(⇡) a⇡1 +

b⇡2+c(p) = min
⇡2�2 a⇡1+b⇡2+ ĉ(⇡). Thus, Ī and Î there are two variational

representations of %2. By Proposition 6 of Maccheroni et al. [11], ĉ = �{⇡}

for some ⇡ 2 �2. Suppose there exist p, q 2 �(S) such that c(p), c(q) < 1
and p(A) 6= q(A). Define ⇡p := ⇧(p) and ⇡q := ⇧(q) and observe that

ĉ(⇡p) = min
p

02⇧�1(⇡p) c(p0)  c(p) < 1 and ĉ(⇡q) = min
p

02⇧�1(⇡q) c(p0) 
c(q) < 1. Contradiction with ⇡p 6= ⇡q and ĉ = �{⇡} for some ⇡ 2 �2. Thus,

p(A) = q(A) for all p, q 2 �(S) such that c(p), c(q) < 1. The nontriviality
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of A implies that this common value is strictly between zero and one.

B Proof of Theorem 1

Let I : B0(S, u(X)) ! R be equal to I(⇠) = min
p2P

R
⇠ dp for some nonempty

convex and weak⇤ compact subset of �(S). Proceed with Steps 1 and 2 as

in the proof of Theorem 2. Observe that ĉ obtained in Step 2 is equal to �
P

2

for some nonempty, compact and convex set P 2 ✓ �2. Proceed with Step 3

as in the proof of Theorem 2 except that instead of relying on Proposition

6 of Maccheroni et al. [11], rely instead on Theorem 1 (b) of Gilboa and

Schmeidler [6] to conclude that P 2 = {⇡}.

C Proof of Theorem 3

Let S be a set and let ⌃ be a sigma algebra of its events. Let��(S) denote the

set of all countably additive probability measures on (S,⌃). Let q 2 ��(S)

and let L1(S,⌃, q) denote the set of all nonnegative ⌃-measurable functions

on S with
R
S

f dq = 1. For f, g 2 L1(S,⌃, q) define f ⇠
cx

g i↵

q(s 2 S | f(s)  t) = q(s 2 S | g(s)  t)

for any t � 0. Similarly, for any measures p, p0 2 ��(S) define p ⇠
cx

p0 i↵
dp
dq ⇠

cx

dp0

dq . For p 2 ��(S), the set O(p) = {p0 2 ��(S,⌃) | p0 ⇠
cx

p} is

called the orbit of p. A set of measures � ✓ ��(q) is called orbit-closed i↵

p 2 � ) O(p) ✓ �.

Lemma 1. Let f 2 L1(S,⌃, q) and let F,G 2 ⌃ be disjoint events, with

q(F ) = q(G). Then, there exists g 2 L1(S,⌃, q) such that f = g on (F [G)c,
R
F

f dq =
R
G

g dq, and f ⇠
cx

g.
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Proof. For each n 2 N and for 1  k  n2n define sets

n

F 0 = {s 2 F | f(s) � n},
n

F
k

=

⇢
s 2 F

����
k � 1

2n
 f(s)  k

2n

�
,

n

G0 = {s 2 G | f(s) � n},
n

G
k

=

⇢
s 2 G

����
k � 1

2n
 f(s)  k

2n

�
.

Because q is nonatomic, it is also convex-ranged, see, e.g., Villegas [16]. Thus,

for each n, partitions {
n

F 0
k

}n2n
k=0 of F and {

n

G0
k

}n2n
k=0 of G can be constructed

such that

q(F 0
n,k

) = q(G
n,k

) and q(G0
n,k

) = q(F
n,k

)

for all 0  k  n2n and

(n+1)G
0
(2k) ✓ (n+1)G

0
(k) and (n+1)G

0
(2k+1) ✓ (n+1)G

0
(k)

for all 0  k  n2n and n 2 N.
Define functions

f
n

=
n2nX

k=1

✓
k � 1

2n
1nFk

◆
+ n1nFk

+ f|(E[G)c
+

n2nX

k=1

✓
k � 1

2n
1nGk

◆
+ n1nGk

,

g
n

=
n2nX

k=1

✓
k � 1

2n
1nF

0
k

◆
+ n1nF

0
k
+ f|(E[G)c

+
n2nX

k=1

✓
k � 1

2n
1nG

0
k

◆
+ n1nG

0
k
.

Observe, that functions f
n

satisfy 0  f
n

 f
n+1, and converge pointwise

to f . Similarly, functions g
n

satisfy 0  g
n

 g
n+1. Define g = lim

n!1 g
n

.

Observe that f = g on (E [ G)c. Moreover,
R
S

f
n

dq =
R
S

g
n

dq, so by the

Monotone Convergence Theorem
R
S

f dq =
R
S

g dq.
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To see that f ⇠
cx

g, let t � 0 and define sets

A
n

= {s 2 S | f
n

(s)  t}, A = {s 2 S | f(s)  t},

B
n

= {s 2 S | g
n

(s)  t}, B = {s 2 S | g(s)  t},

Verify, that by construction of f
n

and g
n

A
n

# A, B
n

# B, and q(A
n

) =

q(B
n

) for all n. By countable additivity of q, lim
n!1 q(A

n

) = q(A) and

lim
n!1 q(B

n

) = q(B).

Lemma 2. Suppose that � ✓ ��(q) is an orbit-closed set of measures. Sup-

pose also that there exists A 2 ⌃ such that 0 < p(A) = p0(A) < 1 for all

p, p0 2 �. Then � = {q}.

Proof. Let ↵ = q(A). Observe, that wlog ↵  1
2 , because if all measures in

� agree on A, then they also agree on Ac. Also, if ↵ = 0, then for any p 2 �

q(A) = 0 ) p(A) = 0, contradicting the assumption. Thus, ↵ 2 (0, 12 ].

Step 1: p(E) = p(A) for all p 2 � and for all events E 2 ⌃ with q(E) = ↵.

Let E 2 ⌃ be such that q(E) = ↵ and observe that q(A � E) = q(E �
A). Let p 2 � and define f = dp

dq . By Lemma 1 applied to (E � A) and

(A�E), there exists g 2 L1(S,⌃, q) such that f = g on (A[E)c [ (A\E),
R
(E�A) f dq =

R
(A�E) g dq, and f ⇠

cx

g. Define measure p0 2 ��(S,⌃) by

p0(F ) =
R
F

g dq and observe that p0 ⇠
cx

p. Moreover, p(E � A) = p0(A� E)

and p(A\E) = p0(A\E). Thus, p(E) = p(E�A)+p(A\E) = p0(A�E)+

p0(A \ E) = p0(A) = p(A), where the last equality holds by orbit-closedness

of �.

Step 2: p(F ) = p(F 0) for all p 2 � and for all disjoint events F, F 0 2 ⌃ with

q(F ) = q(F 0) = � < ↵.

Observe that � < 1
2 , so ↵ � � < 1 � 2�. Thus, by range-convexity of

q, there exists H ✓ (F [ F 0)c with q(H) = ↵ � �. By Step 1 applied to

sets F [H and F 0 [H, it follows that p(F ) + p(H) = p(F [H) = p(A) =

p(F 0 [H) = p(F 0) + p(H); hence, p(F ) = p(F 0).

Step 3: p(G) = q(G) for all p 2 � and for G 2 ⌃.

13



Let � = q(G) and for each n 2 N define k
n

= sup{k | k

n

 �}. Observe,

that lim
n!1

kn
n

= �. For each n 2 N, by range-convexity of q, there exists

a partition {F1, . . . , Fn

} of F such that q(F
k

) = 1
n

for k = 1, . . . , n, sets

F1, . . . , Fkn ✓ G, and sets F
kn+2, . . . , Fn

✓ Gc. By Step 2, p(F
k

) = 1
n

for

k = 1, . . . n, so kn
n

 p(G)  kn+1
n

. By letting n to infinity, p(G) = �.

Proof of Theorem 3. To see (i) ) (ii), observe that for any r 2 R+ let

C
r

= {p 2 �(S,⌃) | c(p) = r} denote the level set of the cost function c.

Observe that

V (f) = min
p2�(S)

Z

S

(u � f) dp+ c(p) = min
r2R+

min
p2Cr

Z

S

(u � f) dp+ r.

By weak monotone continuity and the proof of Corollary 4 in Sarin and

Wakker [15] it follows that % is probabilistically sophisticated with respect

to some q 2 ��(S). By Theorem 14 of Maccheroni et al. [11], if % is proba-

bilistically sophisticated with respect to q 2 ��(S), then c is rearrangement

invariant, i.e., p ⇠
cx

p0 ) c(p) = c(p0) for all p, p0 2 �(S). Thus, each C
r

is orbit-closed. Therefore, by Assumption 3 and Lemma 2, C
r

= {q} for all

r 2 R+. Thus,

V (f) = min
r2R+

Z

S

(u � f) dq + r =

Z

S

(u � f) dq.

The direction (ii) ) (iii) is trivial. To see (iii) ) (i), observe that by

Theorem 2 Axiom A1 implies Assumption 2, which in turn implies Assump-

tion 3.
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