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Abstract

This thesis is a computational study of circumstellar gas disks, with a special focus

on modeling techniques and on numerical methods not only as scientific tools but also as

a target of study. In particular, in-depth discussions are included on the main numerical

strategy used, namely the moving-mesh method for astrophysical hydrodynamics. In

this work, the moving-mesh approach is used to simulate circumstellar disks for the first

time.

The structure of the thesis follows a natural progression that begins by discussing

the role of computational methods in modern astrophysics, followed by a description of

the moving-mesh method as a general solver for gas dynamical problems, and concluding

with detailed modeling of circumstellar disks in two and three dimensions, both in

isolation and in pairs.

The thesis structure consists of two parts. Part I –second and third chapters–

focuses on moving-mesh hydrodynamics and Voronoi meshes in general, deriving the

discretized equations of the method from first principles and describing the time-stepping

technique in detail. This section also includes original work on numerical methods to

include di↵usion terms to the equations of hydrodynamics, such as physical viscosity.

In Part II of the thesis –fourth, fifth and sixth chapters– the attention is turned

to circumstellar disks. In the fourth chapter, two-dimensional disk simulations are
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carried out as a benchmarking stage, before more complex, three-dimensional models

can be pursued. Novel techniques for creating stable, three-dimensional models of

self-gravitating disks with finite radius are discussed in the fifth chapter. In this model,

the Voronoi discretization of the computational domain allows for a smooth transition

between the mesh that discretizes the disk and the mesh that discretized the background

space. Details are provided on how stationary models can be created a priori without

the need for relaxation procedures as done in previous work.

Finally, the sixth chapter includes a set of simulations that, owing to their

complexity, require a scheme that combines the features of the method discussed in

preceding chapter. Specifically, such a scheme must be capable of treating self-gravitating

systems that (1) lack an obvious symmetry, (2) include regions of high-Mach number

flow, (3) have a large dynamical range in density and (4) need an adaptive mesh

resolution to adequately capture strongly compressed/shocked regions and potentially

fragmentation. To this end, a suite of novel simulations of disk-disk interaction is carried

out, to conduct an initial study of the tidal e↵ects that massive disks have on the

evolution of their host stars’ orbits.
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1

Introduction

This introductory chapter of my doctoral thesis aims to introduce the reader to the role

of numerical modeling and simulation in astrophysics in general, and circumstellar disks

in particular.

Circumstellar disks are the gas and dust structures in which planets form.

Understanding the physical processes that give origin and dictate the evolution of

circumstellar disks is essential to understanding the initial conditions that can give rise

to planetary systems like our own Solar System, as well as the incredibly diverse range

of planetary configurations now known to exist throughout the Galaxy.

The basic concept of planet formation as a by-product of star formation, in which

planets form out of a flattened rotating cloud of gas and dust, can be traced back as

far as the works of Emanuel Swedenborg and Immanuel Kant (Swedenborg, 1734; Kant,

1755). This original “nebular hypothesis” was revised and reformulated several times

for over two centuries, before Victor Safronov (Safronov, 1972) developed the modern



CHAPTER 1. INTRODUCTION

framework from which most modern theories of planet formation are derived. Although

the precise process of planet formation is still an incomplete theory, there is unanimous

consensus that planets form while embedded in circumstellar disks, and that this process

must take less than 10 million years, which is the measured lifetime of primordial gas

disks around young stars (e.g. Haisch et al., 2001).

The observational evidence has conclusively shown that planets form in our Galaxy

outside our own Solar System1 . Similarly, we know circumstellar disks exist around

young stars. We know that these disks are common in star-forming regions and that

they rapidly dissipate as their host stars enter the main sequence. What happens in

between the gas disk phase and the planetary system end phase is still under debate.

The complex process that dictates planet formation can only be studied in detail through

direct numerical simulation. Computational research on this front will be especially

important during the time in which we have no direct evidence of a planet caught in

formation.

Idealized models of planet formation and planet-disk interaction have been studied

numerically for two decades now. Despite the enormous progress that can be achieved

by the quantitative approach of computational modeling, these studies are often still

based on very simplified models of the real systems. One simplification that might hide

important features of planet formation is the neglecting of multiplicity in star formation.

Stars often form in binaries, and sometimes in hierarchical multiples, creating a more

tumultuous and dynamically complex physical environment than isolated circumstellar

disk models can capture. A self-consistent, deterministic and general theory of planet

1As of May 22nd, 888 (confirmed) exoplanets have been identified: http://exoplanet.eu/catalog/

2
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formation will have to eventually explain the role that stellar multiplicity plays in

the evolution of planet-forming gas disks. Being essential for model building and

theory-testing, numerical simulation must move in this direction, making models as

realistic as theory and computational resources allow. This e↵ort must incorporate more

physics in our simulations at the fundamental level of equation-solving, as well as with

the inclusion of peripheral models or prescriptions. Numerical techniques themselves

will play a major role in improving the power, quality and reliability of our simulation

output. This thesis explores new techniques for circumstellar disk simulations in complex

environments.

1.1 Astrophysics in the Age of Supercomputers

The scientific method has witnessed a revolution for the past 50 years: the rise of

computer simulation. This method of research has changed the way scientist carry

out experiments, becoming indispensable in physics, engineering, chemistry, biology

and other disciplines. Astrophysics is not the exception to the “computer simulation

revolution”, and in some aspects, it has become a leading field in the search for bigger,

better and faster methods and numerical experiments.

The birth of computational methods – in particular, of computational physics –

goes back to Hungarian-born American mathematician and Manhattan Project scientist

John von Neumann, who foresaw the importance of programmable computers when

the first general-purpose machine (the Electronic Numerical Integrator And Computer,

ENIAC) first came online in 1947. ENIAC was originally intended for ballistic research,

but von Neumann became so involved with the development of this machine that its

3



CHAPTER 1. INTRODUCTION

first computations were on models for the hydrogen bomb, in which von Neumann had

been working at Los Alamos with physicist Edward Teller (a.k.a. “the father of the

hydrogen bomb”) 2 . Under Teller’s encouragement, von Neumann recruited Manhattan

Project members Stanislaw Ulam and Nicholas Metropolis to study problems of nuclear

reactions. One of the outcomes of this collaboration at Los Alamos was the internal

report titled “Statistical Methods in Neutron Di↵usion”, by Ulam and von Neumann in

addition to Robert D. Richtmyer, which records the first use of the Monte Carlo method

(Ulam et al., 1947). In 1950, von Neumann and Richtmyer would introduce the concept

of “artificial viscosity” for shock capture in finite-di↵erence methods for the Euler

equations (von Neumann & Richtmyer, 1950). This technique would prove indispensable

in keeping shocks and discontinuities reasonably well-resolved, while avoiding numerical

instabilities and non-monotonic oscillations that arise in strictly conservative schemes.

John von Neumann’s first developments for numerically solving the Euler equations

mark the beginning of the field of computational fluid dynamics (CFD), a discipline that

is essential nowadays for computational astrophysics and the main focus of this thesis.

The first use of computers in astrophysics per se did not come from gas dynamics

(that would have to wait until the late 1970s and early 1980s) but from the numerical

integration of the N -body problem. Unsurprisingly, the same phenomena that put the

“physics” in astrophysics in the 16th century –namely, the motion of celestial bodies

under gravitational forces– introduced computers to astrophysics. In the early 1960s,

Sebastian von Hoerner (von Hoerner, 1960, 1963) and Sverre Aarseth (Aarseth, 1963)

carried out direct N -body integrations of globular clusters (with about 100 particles).

2Teller and von Neumann were both veterans of the Manhattan Project.

4
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Around the same time, Cohen & Hubbard (1965) carried out the first long term

integration of the five outer planets of the Solar System using the Naval Ordnance

Research Calculator (the IBM NORC, the most powerful computer at the time of its

building in 1954), in a calculation that took ⇠ 80 CPU hours and that ran the Solar

System backward in time for 120000 years. Cohen et al. (1973) would extend the

integration time to 10000000 years. Before the work of Cohen and Hubbard, studies on

the long-term behavior of the Solar System was carried out using perturbation theory,

in most cases the low-order secular theory (e.g. Brouwer & Clemence, 1961; Murray

& Dermott, 2000). During the 1970s, the N -body calculations started focusing on

large scale structure and galaxy formation. The first cosmological simulations were

part of the famous Press & Schechter (1974) paper on hierarchical clustering and the

small-number simulations of Haggerty & Janin (1974) (see Bertschinger, 1998 and

references therein). The filamentary nature of the large-scale structure of the Universe

was first seen in simulations by Frenk et al. (1983) (with models that included only

1000 particles). The late 1980s and early 1990s saw a new breakthrough in N -body

calculations afters the introduction of tree codes to calculate gravitational forces (Barnes

& Hut, 1986; Hernquist, 1987), but these approximations would not reach their full

power until massively parallel machines became available in the late nineties for scientific

computing. This computational revolution meant a enormous increase in memory and

computing power that allowed for a quantum leap in the size of simulations (previously

limited to 106 particles for single-processor machines). New parallel gravity solvers

(e.g., Dubinski, 1996; Makino et al., 1997) were crucial for developments of codes like

GADGET-2 (Springel, 2005), which was used to cross the 10 billion particle mark for the

first time with the groundbreaking cosmological Millenium Simulation (Springel et al.,

5
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2005b).

While N -body method were being developed between the 1960s and the 1980s, CFD

was reaching its maturity thanks to the contributions of people like Sergei Godunov,

Peter Lax, Burton Wendro↵ and Bram van Leer among others, who cemented the bases

for the finite-volume method for hyperbolic conservation laws and the incorporation of

Riemann solvers (see Toro, 2009) to update hydrodynamic quantities in what is now

universally known as the Godunov method. However, before these grid-based method

became commonplace in computational astrophysics, a di↵erent scheme made its way

into the numerical study of gas dynamical problems in astrophysics: smoothed particle

hydrodynamics (SPH).

SPH was developed by Gingold & Monaghan (1977) and Lucy (1977) for simulations

of three-dimensional rotating stars. Since then, SPH has been a major resource to many

astrophysicists carrying out numerical simulations from cosmological to planetary scales.

After SPH was introduced, grid methods found their way into astrophysics after the

introduction of the piece-wise parabolic method (PPM) by Colella & Woodward (1984)

paving the way for grid-based schemes for astrophysics in subsequent years (e.g. Evans

& Hawley, 1988; Stone & Norman, 1992; Klein et al., 1994; Fryxell et al., 2000; Stone

et al., 2008; Mignone et al., 2012). However, SPH has remained a popular and important

method for astrophysical problems.

Some of the first global simulations of circumstellar disks were done using SPH.

(e.g. Artymowicz et al., 1991; Artymowicz & Lubow, 1994; Murray, 1996). The obvious

advantage of SPH for simulating boundary-free systems made it the tool of choice for

complicated systems. Before the work of Armitage (1998), most grid-based simulations of

6
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disks had concentrated on the shearing sheet/box approximation (e.g., Hawley & Balbus,

1991; Hawley et al., 1995; Stone et al., 1996; Gammie, 2001). Both SPH and grid-based

codes remain popular among simulationists for problems with di↵erent characteristics.

Just like with the collisionless N -body problem, the increment in computer power added

to parallel programming libraries such as the message passing interface (MPI) have

enabled an enormous increase in resolution over the past decade, with examples such as

the disk instability simulations of Meru & Bate (2011) with ⇠ 20 million particles and

the global MHD simulations for Sorathia et al. (2012) with ⇠ 120 million cells.

1.2 What is an Astrophysical Simulation?

The fast growth of simulation has prompted a debate among philosophers of science in

recent years in regards to what simulations are and where they lie in the methodology

map. In practice, simulations have elements of pure theory and elements of pure

experiment. This fact is used by some to argue there is “nothing new” about simulations

since they recycle the same old scientific methods but just using digital or “in silico”

laboratories. Conversely, others argue that the very hybrid nature of computational

research is what demands defining a new category for the way simulations generate new

knowledge (what philosophers like to call “the epistemology of simulation).

Regardless of what the “epistemic category” of simulation research is, it is

empirically true that computer simulations fill a gap where pure theory is not able

to explain the observed phenomena, and where experiment is not able to explore or

reach the physical conditions under study. This is especially true for the broad field

7
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of astrophysics3 . Among empirical sciences, astrophysics su↵ers from an unavoidable

scarcity of data, as it is inherently observational rather than experimental. Photons

observed through telescopes are the only available data on real systems. Thus, numerical

simulation plays an essential role in astrophysics as a form of ”laboratory” in which

experiments are controllable and repeatable.

The fact that astronomers cannot setup controlled experiments the way physicists

do puts Astronomy in a special place within the natural sciences, one which might not

satisfy all the “requirements” of a traditional “hard” science4 , and one which requires

sophisticated statistical techniques to sanction physical models for objects. The scarcity

of data (in the traditional, controlled-experiment sense) is the main motivator for

computational research in astrophysics. As such, it is the goal of the “simulationist” is to

use computer simulations as useful and valid generators of knowledge next to traditional

observational and theoretical astrophysics.

The term “simulation” is often used loosely, and sometimes researchers will not

agree on whether to call their computational models and results “numerical experiments”

3Some would argue here for the use of “Astronomy” as the general field, and that Astronomy is the
overall discipline encompassing astrophysics and other “astro-sciences”. Indeed, that is the definition
held by the Merriam-Webster dictionary:

astrophysics: a branch of astronomy dealing especially with the behavior, physical properties,
and dynamic processes of celestial objects and phenomena

However, this is a definition that I personally dislike, essentially for historical and etymological reasons,
given that -nomy comes from nomos (⌫óµo&), meaning “law” or “culture”, and thus Astronomy, in the
proper ancient Greece context, is the compilation of nomenclature or the categorization of celestial bodies,
and not the study of the physical process that explain their behavior and/or existence.

Perhaps a more precise terminology should include “logos” (�ó�o&), which was used by Heraclitus (ca.
535-475 BC) as a principle of order and knowledge, but I seriously doubt any self-respecting scientist
would choose to call her field of study “Astrology”.

4Under some definitions (e.g. Lemons, 1996, pp 99; Rose, 1997, § 1; Diamond, 1987), a “hard” (rig-
orous) scientific discipline is one that: (1) produces testable predictions; (2) performs physical controlled
experiments; (3) relies on quantifiable data and mathematical models; (4) possesses a high degree of
accuracy and objectivity; (5) and generally applies a purer form of the scientific method.

8
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or “numerical simulations”. Semantics is a trap that scientist will not fall into often,

leaving such metaphysical exercises to philosophers. However, I will allow myself the

indulgence of discussing the meaning of numerical simulations because computers

pervade every single aspect of modern astronomy and astrophysics, however, not every

use of a computer qualifies as a simulation (of a physical object of astronomical interest).

A common-place definition of simulation can be the following:

Definition 1. Simulation

A stand-in or mimic of a real-world system.

This is a definition that some philosophers of science adhere to. However, it is a

very general definition. For starters, it applies to any type of stand-in, or replacement,

regardless of it being carried out by a digital computer. In fact, this loose definition is

sometimes used by philosophers of science (like Eric Winsberg) who support the idea

that numerical research is an entirely new methodology of science. This definition allows

some experiments to be catalogued as analog simulations: laboratory experiments are

idealized, controlled settings that try to isolate some phenomenon that takes place in

nature, but they are not the actual target of study after all. Then, according to these

supporters, the fact that we can now simulate digitally instead of analogically is itself a

technological and scientific revolution.

Another very common definition, and perhaps a scientist favorite, is

Definition 2. Simulation

The use of a computer to solve an equation that we cannot solve analytically.

which is the one favored by philosophers of science who dismiss the idea that

9
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computer simulation presents an entirely new scientific method like Roman Frigg and

Julian Reiss (see Frigg & Reiss, 2009). However, this definition puts computer simulation

at the same level as any numerical computation like Gaussian quadrature to evaluate

integrals, the Newton-Raphson scheme to solve algebraic equations, the Runge-Kutta

method to solve di↵erential equations, etc (note that all the examples I gave predate,

some of them by centuries, the existence of digital computers). As Humphreys (2009)

said (see also Humphreys, 2004), computer simulation must be distinguished from the

numerical methods it uses and from numerical methods in general.

Let us try a combination of the definitions by Humphreys (2009), Winsberg (2010)

and Roache (2012) plus a few additions of my own:

Definition 3. Computer Simulation

The entire process of constructing, using and justifying a dynamical model that involves

analytically intractable mathematics (often involving partial di↵erential equations), as

well as ad-hoc and peripheral models, and that is evolved/integrated in time by using

numerical techniques programmed onto a digital computer.

Among other things, I have added the line “involving partial di↵erential equations”

because, although this is not a strict requirement of the definition, the complexity leap

of going from ordinary di↵erential equations (ODEs) to partial di↵erential equations

(PDEs) is essential in understanding that simulations use imperfect methods and

imperfect approximations, and the simulation research is always trading o↵ “rigor for

expediency” (Winsberg, 2010). More pragmatically, the explicit inclusion of PDEs

narrows down our concept of simulation to the approximate solution of continuous

physical systems, in particular problems of compressible fluid flow.

10
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It is my opinion that the two concepts of “numerical simulation” and “numerical

experiment”, albeit not synonymous, overlap greatly. However, they are completely

distinguishable (as I have tried to express above) from the concepts of “numerical

integration” or “numerical calculation.” To illustrate this point, I reproduce a

conversation that took place in my presence two years ago at the Harvard-Smithsonian

Center for Astrophysics:

Chris Hayward: I must say that the more I learn about simulations, the less I

trust them!

Matthew Holman: Really?! In my case, the more I learn about simulations, the

more I trust them.

Chris Hayward: Fair enough. I guess that your simulations are more trustable

then!

Computer simulations are neither truth nor fiction, they are model results. And

depending on the degree of approximation (either physically motivated or pragmatically

motivated) the results will have di↵erent degrees of reliability and connection to the real

world. This multi-stage, multi-component process can be represented in a simplified

diagram as the one shown in Figure 1.1 (see also Figure 2.1 in Winsberg, 2010).

Dr. Holman and Dr. Hayward are indeed talking about di↵erent types of

simulations. Dr. Holman’s research in Solar System dynamics and planetary systems

make use of high-accuracy integrators for N -body systems with exact (Newtonian)

gravity-force computations. In this case, the physical system is written directly from the

theory as a coupled system of ordinary di↵erential equations (ODEs). The approximation

11
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enters when discretizing the time variable in the ODE in order to evolve the system

forward in time. The time-evolution methods used are of extraordinary accuracy and are

physically motivated. Practical approximations to these calculations are, for example:

assuming planets and Solar System bodies are point masses, ignoring for example

General Relativity or the e↵ects of millions of minor bodies. All these approximations

are very good approximations, and consequently, the model is very close conceptually to

the underlying theoretical framework.

Dr. Haywayrd’s research is about the evolution of galaxies. Besides gravity, there

are additional physical components that make this system di↵er significantly from the

Solar System, and thus, the computational techniques to treat it will di↵er as well.

For starters, the underlying theory is self-gravitating hydrodynamics, which now deals

with coupled PDEs instead of ODEs, and which necessarily include a discretization

of space. In addition to resolution limitation, galaxy formation models often include

observationally-motivated, sub-resolution models for phenomena known to occur on

small spatial scales.

We can conclude that, within computational astrophysics, there is a large variation

between models conceptually close to the underlying theory and models that have a

large additional content that is motivated by the real world and therefore necessary to

accomplish an adequate mimicking of the target of study.

The use of computational techniques to perform calculations is not the same

as a full-blown numerical simulation. Quoting Winsberg again, there are at least

two characteristics that distinguish “true simulations” from brute-force numerical

computations:

13
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(1) Successful simulation studies do more than compute numbers; they

make use of a variety of techniques to draw inferences from these numbers.

(2) Simulations make creative use of calculational techniques that can only

be motivated extra-mathematically and extra-theoretically. As such, unlike

the results of simple computations[...], the results of simulations are not

automatically reliable (Winsberg, 2010, pp 32, emphasis added here)

This explains nicely the di↵erences between the di↵erent kinds numerical studies

presented in the Holman-Hayward example. A competitor of Holman might disagree

with Holman’s results based on the most fundamental of the approximations used (say,

ignoring GR or the presence of the most massive Kuiper Belt objects), but would rarely

challenge the “Treatment” step for integrating the equations of motion. On the other

hand, a competitor of Hayward might agree on all the subgrid physics models used

by him, but might distrust the reliability of his results solely because Hayward used

SPH instead of a grid-bases method, disagreeing with the treatment of the discretized

equations.

One can go further in this comparison, by comparing algorithmic structures, the

accuracy of the integrators, time-marching schemes, etc. The more populated the

diagram in Figure 1.1 is, the farther from pure theory our methods lie. Consequently,

it is only experimenting, validating, verifying and benchmarking that we can build

credentials for a simulation method.

In computer simulations, the code itself can be the object of study. This may come

to a surprise to some, but the intricate and highly degenerate process of code validation

and verification necessarily implies testing codes against each other, in di↵erent regimes,

14
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with di↵erent initial conditions, with di↵erent sub-grid prescriptions,etc. Thus, computer

simulation research often entails experimenting with the algorithmic tools we have

originally built to study a di↵erent target system. This abstraction from the natural

world has created some doubts amongst philosophers (and even scientists) and has spun

some debate over the last decade on whether or not a new philosophy of science (i.e. a

new epistemology) is required for computer simulations.

1.3 Circumstellar Disks on a Moving Mesh: Flexible

Approaches for Complex Geometries

Now, after discussing the context of my research – computer simulations in astrophysics

– I will explain in further detail the benefit and/or necessity of exploring novel numerical

techniques for the analysis of systems of astrophysical interest. Novel techniques

present an opportunity to remove degeneracies in the systematic errors intrinsic to the

computational methodology. New discretization and integration techniques allow us to

study systems that have aready been studied with other techniques, as well as systems

that are either too di�cult or impossible to be studied with preexisting approaches.

The experimental nature of simulation requires the reexamination of the same

problems with di↵erent tools. One very recent example of this approach producing

new knowledge about simulation techniques is the collective “Moving-Mesh Cosmology”

e↵ort being underway jointly at the Heidelberg Institute for Theoretical Studies and the

Harvard-Smithsonian Center for Astrophysics (see Vogelsberger et al., 2012; Kereš et al.,

2012; Sijacki et al., 2012; Torrey et al., 2012; Nelson et al., 2013). These studies found
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that the formation of flattened disks at the center of dark matter haloes (i.e. a “galaxy”)

in ab-initio cosmological simulations could be strictly explained by the hydrodynamical

solver being used – a moving-mesh technique versus an SPH technique – instead of by

the subresolution and ad-hoc physics included in the models such as thermal feedback

(see, for example, Governato et al., 2004; Guedes et al., 2011).

The “discretization” box in Figure 1.1 lies at the core of the research I present in

this dissertation. In the sections below, I explain why new methods for hydrodynamics

should be applied to circumstellar disk simulations, and how the moving-mesh approach

introduced by Springel (2010a) presents a unique opportunity to explore regions of the

parameter space that were not easily accessible to other existing numerical techniques.

1.3.1 Why Moving Mesh Methods?

Although the formation of a flattened, rotating structure around a young stellar object is

a natural consequence of angular momentum conservation during gravitational collapse

of a dense core, direct resolved imaging of such objects was not possible until the late

1980 and early 1990s. (Beckwith et al., 1986; O’dell et al., 1993; McCaughrean & O’dell,

1996; Mundy et al., 1996; Wilner et al., 1996). Before that, the existence of dusty disks

was inferred from the near-infrared excess in the T-Tauri star spectra (e.g. Mendoza

V., 1966). The evident challenges in spatially resolving these objects has begun to be

overcome in the last decade, particularly thanks to (sub-)millimeter interferometry,

which has allowed the mapping of the fainter sources, and the resolution of disk sizes

and inner cavities (e.g. Hughes et al., 2008, 2009) .

Up until recently, disk images have not had su�cient resolution to show fine
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structure (at sub-AU scales). As a consequence, the observed surface densities have

been successfully modeled in simple parametric form (e.g. Andrews et al., 2009, 2010b).

The level of complexity of these analytic models has varied little since the early

theory of accretion disks (e.g. Shakura & Sunyaev, 1973; Pringle, 1981), nevertheless

providing enough physical insight into the structure of protoplanetary disk. However,

recent observations in mid-IR scattered light (Muto et al., 2012; Grady et al., 2013)

and CO/HCO+ sub-millimeter emission (Casassus et al., 2013) indicate that the

finer structure of circumstellar disks can be quite rich and deviate significantly from

axisymmetry. The limitation of parametric models can be overcome by direct numerical

simulation, which enables us to capture the gas dynamical evolution of these systems

self-consistently and study complex configurations in detail.

Another major departure from the ideal axisymmetric disk model is that caused

by planet and stellar multiplicity. One of the most striking features of the Kepler

catalogs (e.g. Batalha et al., 2013) is the widespread presence of multi-planet systems.

Multi-planet systems add a significant degree of complexity to some of the physical

processes believed to be relevant for the formation and survival of planets, namely planet

migration and planet growth through the core and gas accretion phases.

Planet formation is not only plagued with the e↵ects planet multiplicity, but it

is also likely to be a↵ected to some extent by the environmental stellar multiplicity.

Multiplicity rates of pre-main sequence stars are known to be higher than those of

main sequence stars (Mathieu, 1994; Kraus et al., 2011), and this must have some

influence on the primordial circumstellar disks (e.g. Artymowicz & Lubow, 1994) and the

subsequent dynamical evolution of planets (e.g. Adams et al., 2006; Craig & Krumholz,

2013). Recent observations of young multiples in Taurus with both Spitzer observations
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(e.g. Kraus et al., 2012) and the Submillimeter Array (SMA) (e.g. Andrews et al.,

2010a; Harris et al., 2012) reveal increasingly diverse multiples and binaries bearing

circumstellar and circumbinary disks, evidencing that the idealized system consisting of

one star and one disk might not be representative of the Galactic-wide planet formation

process. Despite these increasingly complex configurations, hydrodynamical simulations

of planet-forming systems often focus on models of gas disks orbiting one isolated,

stationary star.

Circumstellar disks within star-forming environments (including, among other

conditions, stellar multiplicity and stellar bulk motion) can be extremely challenging for

some of the known numerical techniques. One of such challenges is how the geometry of

the system determines which set of coordinates is most appropriate for the formulation

of the hydrodynamic equations and their subsequent discretization. It is well known

that the performance of Eulerian hydrodynamical codes depends significantly on the

geometry of the mesh aligning with the direction of bulk flow 5 . Truncation error

analysis allows for the derivation of “model” or “modified” equations (see LeVeque,

2002, §8 and references therein) of which the discrete versions of the equations of motion

are exact solutions. These modified equations show that space and time discretization

introduces high-order di↵usive and dispersive di↵erential operators, the most common

of which (the result of first-order upwind schemes LeVeque, 2002; Toro, 2009) is the

so-called “false di↵usion” (or “numerical viscosity” or “advection error”). This di↵usion

depends on the fluid velocity and the grid spacing and it is also a function of the angle

between the flow direction and the coordinate axis used to discretize the domain (de

5One notable exception is that of higher-order finite-di↵erence schemes such as the PENCIL code
(sixth-order accurate in space), the performance of which is essentially independent of the geometry of
the mesh (Lyra et al., 2008)
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Vahl Davis & Mallinson, 1972; Patankar, 1980).

This property of Eulerian codes becomes especially relevant in astrophysical fluid

dynamics, where the evolution of the energy equations is often important. In particular,

in cosmological simulations with advection-dominated flows (e.g. in extremely supersonic

motion near the cosmological density peaks) in which the kinetic energy density is

much larger than the internal/thermal energy density, small fractional errors in the

velocity can translate into large fractional error in temperature, eventually distorting the

thermodynamic evolution of the gas. This has been referred to the “high Mach number

problem” (Ryu et al., 1993; Bryan et al., 1995; Feng et al., 2004; Trac & Pen, 2004).

The grid-dependent di↵usion of Eulerian codes explains why a cylindrical-coordinate

discretization of the domain is the preferred choice to study accretion and protoplanetary

disks, since the direction of the flow is almost purely azimuthal The high-Mach-number

problem can be alleviated in cylindrical coordinates by the use of the FARGO6 technique

(Masset, 2000), which removes the Keplerian speed at a given radius at the moment

of numerically solving the Euler equations, thus e↵ectively using a non-inertial moving

frame in which the velocity changes are small. However, thin accretion disks are not only

highly supersonic in the azimuthal direction (the orbital Mach number is M ⇠ 1/h ⇠ 50

for aspect ratios of 0.02), but they can also have supersonic bulk speeds. For young

stellar associations, pre-main sequence stars can move at relative speeds of 1-3 km s�1,

which is roughly ten times or more the sound speed of molecular gas at a temperature of

10 K.

6The most obvious benefit of implementing FARGO (Fast Advection in Rotating Gaseous Objects)
is the great increase in the allowed time-step size, but the underlying benefit is reducing the numerical
di↵usion by ignoring the bulk velocity of the flow and instead solving for the deviations from it.
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Evidently, if there is a strong deviation from a point mass potential (e.g. owing

to the presence of a large mass ratio binary), or if this point mass is allowed to move

across the computational domain, the flow is no longer one-directional in this coordinate

system, and the choice of a cylindrical geometry is no longer the most obvious one. In

cases where there is no obvious symmetry that can be exploited through a suitable choice

of a coordinate frame, numerical studies commonly use either adaptive mesh refinement

(AMR; Berger & Oliger, 1984; Berger & Colella, 1989) on a cartesian grid, or smoothed

particles hydrodynamics (SPH; Lucy, 1977; Gingold & Monaghan, 1977; Monaghan,

1992; Springel, 2010b). AMR codes used for star formation simulations such as ORION

(e.g. Truelove et al., 1998) have been used successfully to simulate circumstellar disk

formation over a few orbital timescales (Kratter et al., 2010). Thanks to mesh refinement,

these codes can achieve very high resolution, although the levels of refinement are usually

a fixed number, and the dynamical range in density that is achieved is smaller than that

of particle-based codes. Similarly, although the higher resolution minimizes the e↵ects

of the high-mach-number problem, the grid is still subject to such limitation. On the

other hand, SPH – a very popular tool for self-gravitating astrophysical fluid dynamics –

o↵ers low-order accuracy for the treatment of contact discontinuities and has poor shock

resolution. It also appears to suppress fluid instabilities under certain conditions (Agertz

et al., 2007) and su↵ers from subsonic velocity noise (Abel, 2011). Although SPH is

known to require at least a factor of two more resolution elements to achieve similar

levels of accuracy in simulations of quiet circumstellar disks (de Val-Borro et al., 2006),

it is an attractive tool for simulations of gravitational collapse in disks with radiative

cooling (e.g. Meru & Bate, 2010).

Once such alternative is the moving-mesh approach of (Springel, 2010a) (see also
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Borgers & Peskin, 1987; Trease, 1988; Dukowicz et al., 1989, for earlier approaches). In

this approach, the unstructured grid makes the geometry of the problem irrelevant for

the discretization of the equations of hydrodynamics. This moving-mesh method is a

finite-volume, Godunov, MUSCL-Hancock scheme with piece-wise linear reconstruction,

being thus second-order accurate in space and time. The non-linear step of the

MUSCL-Hancock technique (i.e. the solution of the Riemann problem) is carried out

in the moving-frame (the instantaneously-at-rest frame) of each cell interface. This

provides a method in which a gas disk around a young star can be modeled and evolved

independently of the motion of said star, whether it is at rest, moving in a straight line,

or orbiting another star: in each of these situations, the numerical scheme would be

unaltered and the mesh would evolve according to the motion of the gas.

1.3.2 Beyond Isolated Disks: Disk Evolution and Planet

Formation in Young Stellar Clusters

Multiplicity is phenomenon observed early on in stellar evolution (e.g., Mathieu, 1994),

suggesting that the primary mechanism for binary formation is tied to the fragmentation

of the primordial cloud (e.g., Bate, 2012) or of an early circumstellar disk (e.g., Kratter

et al., 2010), and not due to stellar capture at later times when the parent molecular

cloud has long dissipated.

Despite the di�culties that binary stars might impose on the dynamics of planets

and planet-forming material, planets do form in binary systems: they form around

single members of binary stars (e.g. the 55 Cancri system; Butler et al., 1997; Fischer

et al., 2008; Dawson & Fabrycky, 2010) as well as in circum-binary orbits (e.g. Doyle et
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al., 2011; Welsh et al., 2012; Orosz et al., 2012). Of the 720 confirmed planets in the

Exoplanet Data Explorer catalog7 , 79 are associated to a binary system ( 67 detected by

radial velocity measurements and 12 detected through transits). Although most planets

and planet candidates known to date orbit around single stars, this could be a selection

e↵ect. Statistical analysis suggest that, considering the di↵erences in sample sizes, the

fractions of planet-bearing systems among single and multiple stars are indistinguishable

(Raghavan et al., 2010), and therefore, binaries could potentially be as likely to host

planets as isolated stars (Eggenberger et al., 2004; Bonavita & Desidera, 2007; Mugrauer

& Neuhäuser, 2009).

The study of the e↵ects of binary stars on planetary systems has mostly focused on

the dynamics of the preexisting planets (Holman & Wiegert, 1999; David et al., 2003;

Mudryk & Wu, 2006; Takeda et al., 2008; Moeckel & Veras, 2012; Kratter & Perets,

2012) or of the planetesimals that will form them (e.g. Quintana et al., 2007; Xie et al.,

2011) These studies have mostly focused on the dynamics (of planets or planetesimals),

but little work has been done on the e↵ects of gas dynamics. Theoretical studies of the

gas dynamics of star-disk interaction date back to the seminal paper of Artymowicz &

Lubow (1994), which laid the foundations for subsequent studies of tidal truncation of

viscous disks and the formation of circumbinary cavities. Disk truncation can be the

main reason behind the systematically lower disk-bearing frequency in young low-mass

binary components with respect to that of single stars (Bouwman et al., 2006; Monin

et al., 2007; Cieza et al., 2009; Kraus et al., 2012). Thus, the presence of a binary outside

the disk not only alters the dynamics of disks and planetesimals but it also modifies

the gas content in the disk (e.g., Jang-Condell et al., 2008), therefore imposing a strict

7http://exoplanets.org
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constraint on planet growth and the formation of gas giants.

A Milky Way potentially filled with planets orbiting binaries or individual

components of binaries not only opens a series of new questions regarding the dynamical

stability of such systems, but it also presents a serious challenge to explaining how

these systems came to be in the first place. Furthermore, if planets in these systems

form in an analogous way to single-star systems –namely by core accretion in a

circumstellar/circumbinary disk– the formation of these primordial gas structures

must also be explained. For example, the extreme alignment between the orbit of

Kepler-16b and the orbit of the central binary suggests that the entire system formed

from the same rotating disk (Winn et al., 2011). However, little is known about the

origin of circumbinary disks and their relative frequency in young stellar clusters, as

high-resolution direct numerical simulations of star-forming regions are just beginning to

form disks self-consistently (Bate, 2012).

Circumbinary disks have been observed in star forming regions. In a detailed

census of circumstellar disks in multiple systems in the Taurus-Auriga star forming

region, Harris et al. (2012) found a small population of extremely bright sub-mm sources

associated to binaries of small separation. This sub-sample includes the disk around GG

Tau Aab, one of the most studied circumbinary disks, the most well-known circumbinary

disk, GG-Tau (e.g,. Kawabe et al., 1993; Dutrey et al., 1994; Roddier et al., 1996). The

existence of circumbinary disks is extremely relevant for the formation of circumbinary

planets, but it is also important for the role these disks might play in the evolution

of smaller, inner disks around the individual components of the binary by forcing

spin-alignment and/or synchronized accretion state (Daemgen et al., 2012).
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The characterization of the disks around individual stellar components in

binaries/multiples is still its early stages, although some conclusions have already

been drawn from studies of disk tidal truncation/stripping in binaries and close and

intermediate separations. Tidal disk truncation has been studied by Andrews et al.

(2010a) and Harris et al. (2012) in the submillimeter in Taurus and by (Daemgen et al.,

2012, 2013) in the NIR in Orion. The physical conditions for these two star formation

regions are entirely di↵erent; Taurus being low mass, and rather quiet, and Orion being

massive, dense and disruptive. While disk truncation can be dominated by the tidal

e↵ect of companions in Tarus, additional processes like photoevaporation (Mann &

Williams, 2009) or disruptive flybys (Olczak et al., 2006) can also be of importance

in shaping the sizes of young disks under more violent scenarios like Orion. Although

truncation and dispersal processes have been studied in detail in the past, even the

simple, long-time tidal truncation of Artymowicz & Lubow (1994) contains uncertainties

such as the e↵ective turbulence viscosity of the disk and the e↵ects of mutual inclinations.

Furthermore, simple setups like the N -body based truncation model of Pichardo et al.

(2005) cannot explain the truncation observed by Harris et al. (2012).

In this thesis, I address the need for more detailed physics and complex three-

dimensional geometries in the modeling of circumstellar disks. The additional

complexities that these new requirements entail make direct numerical simulation the

only alternative to study these systems dynamically well into the non-linear regime.

New numerical methods and new powerful supercomputers will play an important role

in unveiling the unknown details of how planet formation takes place in multiple stellar

systems. Novel methods like the AREPO code suit best for the computational challenges

presented by stellar and disk multiplicity.
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2

The Moving-Mesh Code Arepo

This brief chapter describes the basic equations and properties of the moving-mesh

method. Detailed derivations presented in the original AREPO paper are not repeated

here. Instead, I chose to emphasize on a few key features of the algorithm and some

di↵erences with respect to similar codes.

2.1 The Basics of Moving-Mesh Hydrodynamics

AREPO is built around the idea that one can change the discretization of the domain

at every time step. A natural choice of this time-adaptive discretization is to evolve

the control volumes or cells in a quasi-Lagrangian fashion, that is, cells move through

space as if they were Lagrangian parcels of fluid. To our knowledge, the only way to

achieve this, ensuring that cells cover all space and that they deform continuously, is by

identifying them as Voronoi tessellation elements.
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Besides the novel domain discretization, AREPO includes a second key element

which, although related to the moving-mesh concept, is not equivalent nor interdependent

with it. This additional element is the implementation of a boosted Riemann solver.

Without it, AREPO would be much more di↵usive. Furthermore, it would be unstable.

Before discussing in detail the properties of the boosted Riemann solver, we first derive

the discretized finite-volume equation from which AREPO is built.

In conservation-law form, the continuity and momentum equations of gas dynamics

are

@

@t
⇢+r · [⇢v] = 0 , (2.1a)

@

@t
⇢v +r ·

h
⇢v ⌦ v + P I

i
= 0 , (2.1b)

where ⇢ is the mass density, v is the velocity field and P is the pressure. The quantity

v ⌦ v denotes the outer product of the velocity with itself (i.e. a rank-2 tensor of

components T
ab

= v
a

v
b

) and I is the identity matrix.

Finite-volume methods (FVM) make use of these conservation laws in integral form,

i.e.

dm
i

dt
+

Z

V

i

r · [⇢v] dV = 0 ,

dp
i

dt
+

Z

V

i

r ·
h
⇢v ⌦ v + P I

i
dV = 0 ,

where m
i

and p
i

are the volume integrals of mass density ⇢ and linear momentum density

⇢v over some control volume V
i

(e.g. the i-th cell). Using the Green-Gauss theorem to
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convert the volume integral into an area integral we obtain,

dm
i

dt
= �

X

j 6=i

Z

@V=A

ij

[⇢v] dA , (2.3a)

dp
i

dt
= �

X

j 6=i

Z

@V=A

ij

h
⇢v ⌦ v + P I

i
dA , (2.3b)

where an area integral is performed over each of the interfaces that jointly define the

boundary of the volume V
i

.

In moving-mesh hydrodynamics, control volumes are allowed to vary in time.

Therefore, when integrating Equations 4.1 over V
i

= V
i

(t), the time-dependence of the

volume must be taken into account. In such case, we make use of Leibniz-Reynolds

transport theorem, which states that, the time-derivative of the volume-integral of any

vector quantity f is given by

d

dt

Z

V

i

(t)

f dV =

Z

V

i

(t)

@f

@t
dV +

Z

@V

i

(t)

f w · dA ,

where w is the velocity vector at the surface @V
i

of the moving/deforming control volume

V
i

. This additional term is a surface integral of the same type as those in the right hand

side of Equations 2.3, and thus, we can incorporate into the hydrodynamic fluxes of mass

and momentum. Therefore, the finite volume equations read instead (Springel, 2010a)

dm
i

dt
= �

X

j 6=i

Z

@V=A

ij

[⇢(v �w)] dA , (3a’)

dp
i

dt
= �

X

j 6=i

Z

@V=A

ij

h
⇢v ⌦ (v �w) + P I

i
dA . (3b’)

Up to this point, Equations 2.3 are still exact. In order to solve these ordinary

di↵erential equations, FVMs use a time-stepping scheme to integrate the time evolution,

as well as a spatial discretization scheme to approximate the area integral at each
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interface. In this work, we restrict ourselves to the MUSCL1 - Hancock technique

(van Leer, 1979; see also Quirk, 1994 and Toro, 2009), implemented in AREPO, which

uses a linear reconstruction followed by a half time-step time extrapolation to obtain

mid-time-step primitive variables at the cell faces. After discretization, the moving-mesh

numerical scheme finally takes the form

m
(n+1)
i

= m
(n+1)
i

��t
X

j 6=i

(F̃
m

)(n+1/2)
ij

· n̂
ij

A
ij

, (2.4a)

p(n+1)
i

= p(n+1)
i

��t
X

j 6=i

(F̃p)
(n+1/2)
ij

n̂
ij

A
ij

, (2.4b)

where the Godunov fluxes for mass (F̃
m

)(n+1/2)
ij

(a vector) and momentum (F̃p)
(n+1/2)
ij

(a matrix) are numerical estimates (surface averages over the i-j interface) of the real

fluxes in Equation 2.3. The details of the MUSCL-Hancock method used to estimate the

time-centered quantities (F̃
m

)(n+1/2)
ij

are described in Springel (2010a) and reproduced

again in Chapter 3 of this thesis (Muñoz et al., 2013), and we will not repeat them here.

Up to this point, the only di↵erence with conventional FVMs is the inclusion of the

interface velocity in the definition of the Godunov flux in Equation 2.4.

As explained in Springel (2010a) and analyzed in further detail by Pakmor et al.

(2011), the flux of a conserved quantity Q
i

through a moving interface can be separated

into a static-interface term, and an advection flux correction. From Equation 2.3:

dQ
i

dt
= �

X

j 6=i

Z

@V=A

ij

[⇢(v �w)] dA

= �
X

j 6=i

h
Fstatic

ij

� Fmoving
ij

i
.

(2.5)

1Monotonic Upstream Scheme for Conservation Laws
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where we have simplified the notation for the sake of argument.

At this point, the calculation of the rest frame Godunov flux Fstatic
ij

depends on

the numerical method of choice, since the quasi-Lagrangian feature of the scheme is

given by the additional advection flux Fmoving
ij

, which is a consequence of the moving

interfaces. For example, the tessellation code TESS (Du↵ell & MacFadyen, 2011) uses an

approximate state Riemann solver (HLLC) to obtain Fstatic
ij

. AREPO, on this other hand,

performs a more convoluted operation, with substantially di↵erent results. Instead of

solving the Riemann problem in the lab frame, AREPO “subtracts” the local bulk flow

by boosting onto the frame of the face, using an exact (iterative; Toro, 2009) Riemann

solver. The exact Riemann solver returns primitive variables in the boosted frame,

which can be easily boosted back to the lab frame, where the Godunov fluxes Fstatic
ij

are

evaluated using their analytic expressions (the terms in square brackets in Equation 2.3).

This operation is more than a mere subtlety, and it lies at the core of what Springel

(2010a) referred to as “Galilean invariance” of the code.

Although received with some criticism (see Robertson et al., 2010; McNally et al.,

2012a) the debate on the so-called Galilean invariance seems to be of a semantic nature.

Indeed, in Robertson et al. (2010) the authors frame the discussion around numerical

di↵usion, pointing out that –provided that a smooth solution exists– Eulerian codes

converge at the expected rate derived from truncation error analysis. The authors

conclude that errors can be beaten down with resolution and that, if the code output

does not show “Galilean invariance”, it is simply because the truncation error is too

large. This implies that, if AREPO produces results that are seemingly independent of

the magnitude of Galilean boosts, it is simply owing to smaller advection errors (i.e.,

it is the truncation error the one that is not Galilean invariant). Thus, the Galilean
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invariance of code output appears as a matter of degree, rather than kind.

In Springel (2010a, §3.4), a derivation of the invariance of the scheme is provided,

which shows that a consistent change of reference frames for both the state vectors and

the hydrodynamic fluxes produces invariant results in the updated state after a time

�t. This calculation assumes two things: that the Riemann solver produces consistent

results modulo a Galilean boost in both frames, and that the time step does not depend

on which frame is used. Clearly, said derivation can be strictly valid only if the Riemann

problem is solved in the frame of the moving face, and if the Courant time-step condition

is defined in terms of the signal velocity respect to the local flow, and with not respect to

the lab frame. Therefore, a boosted Riemann solver and a comoving time-step criterion

are essential in obtaining Galilean-invariant advection errors.

If the Godunov flux Fstatic
ij

in Equation 2.5 is computed in the lab frame, the velocity

field on the left and right states of the discontinuity will be large, and the result will

be significantly a↵ected by truncation error. In addition, the much shorter Courant

time-step imposed by high velocity flows will increase the number of integrations,

building up cumulative error quickly. In this case, an iterative solver can certainly

alleviate the consistency problem of solving the Riemann problem in di↵erent frames.

This is because this type of solver is “exact”, meaning that the (relative) error tolerance

is arbitrary. However, the strict di↵usive toll that is imposed by increasing the number

of time-steps is unavoidable.

Du↵ell & MacFadyen (2011) attribute the larger di↵usion of TESS to their use of

an approximate Riemann solver. Although the exact Riemann solver could improve

performance for the reason described above, the main cause of di↵usivity in TESS is
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simply owing to their use of approximate solve in the lab frame. To prove that the

approximate Riemann solver on its own is of secondary importance, I have implemented

an HLLC solver in AREPO. Unfortunately, I was not able to make the scheme stable in

lab frame coordinates. As discussed in detail by Pakmor et al. (2011), the fluxes Fstatic
ij

and Fmoving
ij

in Equation 2.5 nearly cancel each other out. Therefore, for pathological

cases –distorted, sheared or rapidly rotating cells– small errors can change the sign of

the net mass flux and violate upwinding, making the scheme unstable. However, a clever

algebraic manipulation by Pakmor et al. (2011) allows for the boosting of any Riemann

solver. Figure 2.1 shows a Kelvin-Helmholtz (KH) instability test problem with a smooth

initial condition, as described by McNally et al. (2012a). We run the test using the

default iterative Riemann solver in and the boosted HLLC solver. We boost the system

along the x-direction by Vboost = 0 and 10. The iterative and the HLLC solvers show

di↵erences on small scales, however, the results of a given solver are very consistent for

di↵erent boost velocities.

It is interesting, however, that AREPO is unstable when a lab frame Riemann solver

is used, since Du↵ell & MacFadyen (2011) did not report any problems in that regard.

One must note that TESS and AREPO use di↵erent algorithms to drift the mesh in time,

and this could have unexplored consequences for the performance of the scheme.

It is true that the role of the moving mesh as an additional “di↵usive agent” has not

been explored in detail. Although “grid noise” is seldom discussed in the computational

astrophysics literature, it could be of greater relevance for moving-mesh methods than

for structured grids. Grid noise originates from the finite precision with which cell

and face centers are known. This error should start at the round-o↵ level, but spatial

extrapolations and non-symmetric face sweeps can accumulate noise to a levels that
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Figure 2.1.— KH instability test for two di↵erent Riemann solvers. Top row: KH test as

described by McNally et al. (2012a) at a time of t = 3.0 using an iterative Riemann solver

(left) and an HLLC Riemann solver (right). Bottom row: same as top row but in after

boosting the initial condition by Vboost = 10. Both Riemann solvers are implemented in

the frame moving with the cell interfaces.
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eventually can a↵ect the code performance. In AREPO, grid noise is not only present,

but the mesh-generating points are drifted with a finite precision (normally a leapfrog

integrator is used to drift the mesh). Therefore, grid noise can be amplified to levels

comparable to the truncation error. Although we have not seen yet a simulation that

shows this type of pathological behavior, quantifying the level of grid noise and how it

a↵ects the convergence rate of AREPO is worth exploring further.
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Abstract

Numerous formulations of finite volume schemes for the Euler and Navier-Stokes

equations exist, but in the majority of cases they have been developed for structured

and stationary meshes. In many applications, more flexible mesh geometries that

can dynamically adjust to the problem at hand and move with the flow in a (quasi)

Lagrangian fashion would, however, be highly desirable, as this can allow a significant

reduction of advection errors and an accurate realization of curved and moving boundary

conditions. Here we describe a novel formulation of viscous continuum hydrodynamics
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that solves the equations of motion on a Voronoi mesh created by a set of mesh-generating

points. The points can move in an arbitrary manner, but the most natural motion is

that given by the fluid velocity itself, such that the mesh dynamically adjusts to the

flow. Owing to the mathematical properties of the Voronoi tessellation, pathological

mesh-twisting e↵ects are avoided. Our implementation considers the full Navier-Stokes

equations and has been realized in the AREPO code both in 2D and 3D. We propose a new

approach to compute accurate viscous fluxes for a dynamic Voronoi mesh, and use this

to formulate a finite volume solver of the Navier-Stokes equations. Through a number

of test problems, including circular Couette flow and flow past a cylindrical obstacle,

we show that our new scheme combines good accuracy with geometric flexibility, and

hence promises to be competitive with other highly refined Eulerian methods. This will

in particular allow astrophysical applications of the AREPO code where physical viscosity

is important, such as in the hot plasma in galaxy clusters, or for viscous accretion disk

models.

3.1 Introduction

The last two decades have seen remarkable advances in the numerical solution of the

compressible Navier-Stokes (NS) equations, which lies at the heart of computational fluid

dynamics (CFD) and computational aeroacoustics, but also as numerous applications in

astrophysics. In particular, important progress has been made in approaches based on

the finite volume method (FVM), both using structured as well as unstructured grids

(see Mavriplis, 1997, for a review). Other popular techniques include finite element

methods (FEM), discontinuous Galerkin schemes, and even mesh-free approaches such
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as smoothed particle hydrodynamics (Sijacki & Springel, 2006).

When unstructured grids have been employed, they were most most often in the form

of triangular grids in two dimensions, or tetrahedral grids in three dimensions. Indeed,

finite-volume implementations of the two-dimensional NS equations on triangular meshes

date back to work by Mavriplis & Jameson (1990), Frink (1994) and Coirier & Powell

(1996). Much recent work has also focused on developing optimum mesh-generating

algorithms that require minimal human input and yield e�cient representations of

geometrically complex simulation domains. However, little work has been done on

dynamically evolving meshes, such as those we shall consider here.

Because unstructured meshes have been demonstrated to be accurate and

e�cient for both steady-state and transient compressible inviscid flows (Barth, 1992;

Venkatakrishnan, 1996), they are now used regularly in engineering applications.

Moreover, the geometric flexibility of unstructured grids allows the use of simple

coordinate systems (in the laboratory frame) without the need to work with complex

coordinate transformations to describe curved surfaces (e.g. see Toro, 2009). Indeed, hard

boundaries can be tailored by carefully positioning a few cell faces or mesh generating

points along the surface, and creating the triangulation through Delaunay tessellation.

As a result, most NS applications on unstructured meshes for industrial design make use

of triangular grids, typically based on the finite element method, although finite volume

schemes have also been considered. Detailed reviews and stability analysis of explicit

FVM for the NS equations on Cartesian and Delaunay meshes can be found, e.g, in the

doctoral theses of Coirier (1994) and Munikrishna (2009).

In this work, we present a numerical scheme that solves the NS equations on a
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general unstructured moving mesh that is constructed as the Voronoi tessellation of

a distributed set of points that move with the local velocity field. Despite being, in

the general sense, an “unstructured” mesh, the Voronoi diagram has a mathematically

well-defined structure that makes the resulting schemes comparatively simple and robust

(e.g. Mishev, 1998). In fact, this type of mesh is commonly adapted for the construction

of finite volume methods for elliptic problems and has been in use in numerical studies

of solid state physics (Sukumar et al., 1998; Sukumar, 2009) such as simulations of

fractures and cracks (Sukumar & Bolander, 2009), as well as numerical simulations of

oil reservoirs. Some studies (Christov, 2009) have also examined how reconstructions

designed for unstructured triangulations can be extended to static Voronoi meshes.

However, Voronoi meshes have infrequently been applied to hyperbolic conservation

laws such as the Euler equations, let alone moving Voronoi meshes. To our knowledge,

the earliest attempts to use dynamically adaptive Voronoi tessellations for the NS

and Euler equations date back to Borgers & Peskin (1987) and Trease (1988). The

former, for very simplified, incompressible, two-dimensional problems, and the latter,

a finite-di↵erence method for inviscid three-dimensional flow. Around the same time,

Dukowicz et al. (1989) developed the General Topology Godunov Method. This method

– based on a mesh that is not quite a Voronoi tessellation, but similar in spirit – was

introduced as an alternative to the Lagrangian particle methods (see, for example

Brackbill & Monaghan, 1988) which gained increasing popularity in computational

plasma physics and astrophysics in the following years.

Recently, a complete three-dimensional implementation of the Euler equations on

a moving Voronoi mesh has been described and implemented in the AREPO code by

Springel (2010a) (see also Du↵ell & MacFadyen, 2011). The work we present here is an
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extension of the AREPO scheme to the NS equations, which we have realized in this code

as an optional module. AREPO can be classified as an arbitrary Lagrangian/Eulerian

(ALE; Hirt et al., 1974) code, in the sense that the mesh can be moved with the velocity

of the flow so that quasi-Lagrangian behavior results and the mass flux between cells is

minimized (although it is not strictly zero, in general). On the other hand, the mesh

may also be kept stationary if desired, e↵ectively yielding an Eulerian formulation. We

note that because the mesh-generating points may also be arranged on a regular lattice

and arbitrarily refined with time, the AREPO code naturally includes ordinary Eulerian

techniques on a Cartesian grid and adaptive mesh refinement (AMR) algorithms as

special cases.

Besides the work of Du↵ell & MacFadyen (2011), the new Voronoi-ALE method of

Norris et al. (2010), which includes viscous terms, is the approach most closely related

to that presented here, although it is restricted to the incompressible NS equations.

Also, Ata et al. (2009) have applied a Voronoi-based finite volume scheme to the

two-dimensional inviscid shallow water equations, in terms of an algorithm they referred

to as the ‘natural volume’ method.

Although primarily designed for astrophysical fluid dynamics where self-gravity

is an important ingredient (see for example Vogelsberger et al., 2012), the moving

Voronoi mesh approach of AREPO o↵ers a number of features than can be advantageous

for more general problems in fluid dynamics. First, the moving mesh geometry is

adaptive in a continuous manner and can naturally respond to the local flow, increasing

the resolution automatically and smoothly in regions where the flow converges. (In

contrast, AMR codes refine the grid discontinuously in time, which can introduce errors

that are potentially di�cult to assess.) Importantly, this Lagrangian character of the
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dynamics yields reduced advection errors and a very low numerical di↵usivity of the

scheme. Second, the moving mesh formulation retains the Galilean-invariance of the

fluid dynamics at the discretized level of the equations (Springel, 2010a). In other words,

the truncation error of the scheme does not depend on the bulk velocity of the system,

unlike for traditional Eulerian and AMR codes, and the quality of the solution does not

degrade when high-speed flows are present. While conventional fixed-mesh Eulerian

codes may, in principle, be able to suppress additional errors from large bulk velocities

by using a su�ciently fine mesh (see Robertson et al., 2010, for a study of Galilean

invariance in grid codes), this strategy can become computationally prohibitive, and it

also depends on the magnitude of the bulk velocity involved. It is therefore desirable to

construct e�cient methods that yield manifestly Galilean-invariant solutions (modulo

floating point round-o↵ errors). Third, the moving mesh approach allows much larger

timesteps in the case of rapidly moving flows, because it can avoid the �t < d/v stability

constraint (where d is the cell size and v the bulk velocity) that augments the Courant

condition in the Eulerian case.

From an astrophysical standpoint, compressible viscous flow remains a viable

approximation to more complex or computationally expensive momentum transport

mechanisms such as magneto-hydrodynamic turbulence or anisotropic plasma viscosity.

Global simulations of cold accretion disks around protostellar objects (e.g. see de

Val-Borro et al., 2006) still include shear viscosity coe�cients in the form of a

Shakura-Sunyaev eddy viscosity coe�cient (Shakura & Sunyaev, 1973).

An even clearer case for the need of a viscous treatement of astrophysical

gasdynamics is given by the interacluster medium of hot galaxy clusters. Here the

Spitzer-Braginskii viscosity (Braginskii, 1965) becomes quite significant, certainly in the
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unmagnetized case, which has been studied both using grid (Ruszkowski et al., 2004) and

SPH (Sijacki & Springel, 2006) codes. In this regime, the commonly adopted assumption

of inviscid behaviour with an e↵ectively infinite Reynolds number is in principle incorrect

and should in future simulation work be replaced with a full accounting of the correct

physical viscosity.

Additionally, physical viscosity can be implemented on turbulent cascades with

resolved inertial range (see Bauer & Springel, 2012, for an application of our viscosity

approach) in order to prescribe a well-specified Reynolds number and a physically correct

shape for the dissipation range, una↵ected by the details of the numerical viscosity of

the hydro scheme, which would otherwise induce the dissipation of turbulence on the

grid scale. This can in particular inform the ongoing debate whether artificial viscosity

e↵ects in SPH can a↵ect the turbulent cascade above the formal resolution length (Bauer

& Springel, 2012; Price, 2012).

This paper is organized as follows. In Section 2, we briefly review the basic NS

equations we want to solve, and the role and meaning of the di↵erent viscosity coe�cients.

In Section 3, we then introduce in detail our discretization and time integration schemes,

emphasizing a description of the calculation of suitable velocity gradient estimates at

face centers, and of second-order derivatives of the velocity field. We then move on to

discuss the performance of our new approach for a number of test problems in Section 3.

Finally, we summarize our results and present our conclusions in Section 4.
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3.2 The Navier-Stokes Equations

The compact form of the Euler equations, when written in terms of the vector of

conserved quantities U (Toro, 2009) is

@
t

U+r · Fadv (U) = 0, (3.1)

with

U =

0

BBBBB@

⇢
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1

CCCCCA
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and where
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0
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(⇢e+ P )u
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(⇢e+ P )w

1

CCCCCA

(3.3)

is the mass-momentum-energy flux density tensor (3 ⇥ 5). The operator r · ( ) in

Eq. (4.1) is a tensor divergence, i.e. in tensor notation we have {r · Fadv}a = @
b

Fadv
ba.

The momentum components in the conservative form of Equation (4.1) represent a

transfer of momentum, owing merely to the mechanical transport of di↵erent particles of

fluid from place to place and to the pressure forces acting on the fluid (e.g. Landau &

Lifshitz, 1959). In Eq. (4.1) we have made the advective character of the fluxes explicit

by denoting them Fadv.
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The internal friction present in any real fluid causes an irreversible transfer of

momentum from points where the velocity is large to those where it is small. The

momentum flux density tensor is thus altered from its ideal from in Eq. (3.3), where

it only contains an inertial and an isotropic component (described by a symmetric

stress tensor due to the local pressure P ), to a modified expression that accounts for an

irreversible viscous transfer of momentum

⇢vTv + P I �! ⇢vTv + P I�⇧, (3.4)

where P I �⇧ is the total stress tensor and ⇧ is called the viscous stress tensor. The

latter includes the e↵ects of isotropic compression and expansion forces (“bulk viscosity”)

as well as shearing forces (“shear viscosity”).

Similarly, the energy component of Eq. (3.3) is a↵ected by the inclusion of the

viscous stress tensor. Because of the dissipative nature of viscosity, a conservative

formulation of the NS equations must include a contribution of ⇧ to the energy budget,

i.e. the work per unit area per unit time,

(⇢e+ P )v �! (⇢e+ P )v �⇧v (3.5)

needs to explicitly account for the work done by viscous forces.

A general parametrization of the viscous stress tensor ⇧ is given by

⇧ = ⌘

⇢h
rv + (rv)T

i
� 2

3
I (r · v)

�
+ ⇣I (r · v) . (3.6)

Often, the viscous stress tensor is decomposed into a traceless part and a diagonal part,

such that the first corresponds to constant-volume shear deformations (often called

the rate-of-deformation tensor) and the second to isotropic expansions/contractions.
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Accordingly, ⌘ in Eq. (3.6) is commonly referred to as the shear viscosity and ⇣ as the

bulk viscosity. The degree of resistance to uniform contractions/expansions is intrinsic

to the molecular/chemical properties of the fluid in question, and can be understood

through kinetic theory. In this picture, bulk viscosity arises because kinetic energy of

molecules is transferred to internal degrees of freedom. Ideal monoatomic gases (modeled

as hard spheres interacting only through elastic collisions) have no internal degrees of

freedom, and are thus expected to have vanishing bulk viscosity. At one time Stokes

suggested that this might in general be true (the so-called Stokes’ hypothesis of ⇣ = 0)

but later wrote that he never put much faith in this relationship (Graebel, 2007). Indeed,

when deviations from the ideal gas equation of state are included in a hard-sphere,

Chapman-Enskog approach to kinetic theory, a non-zero value for the bulk viscosity is

obtained. In an extension of the hard sphere fluid model, the Longuet-Higgins-Pople

relation ⇣ = (5/3)⌘ results (March, 2002), motivating the hypothesis that both viscosities

are always related in a linear fashion (but see Meier et al., 2005). In general, we consider

⌘ and ⇣ as essentially arbitrary input properties to our simulations, which may also

depend on local physical parameters such as temperature or density. Although the e↵ects

of physical bulk viscosity are not harder to implement numerically than those of shear

viscosity, the physical origin of bulk viscosity is often less clear. Also, we note that many

numerical solvers for viscous flow focus on the incompressible regime (r · v = 0), where

the existence of a physical bulk viscosity is in any case not of importance. However, for

compressible flow, the value of ⇣ may still become important in certain situations.

When the e↵ects of viscosity are included, the formerly homogeneous di↵erential

equations of the Euler form (Eq. 4.1) become

@
t

U+r · Fadv (U) = S(U) (3.7)
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where S(U) is a viscous source term given by

S(U) ⌘ r ·

0

BB@0 , ⇧ , ⇧v

1

CCA . (3.8)

The solution of the Euler equations with source terms is often handled by

operator-splitting methods (e.g. Toro, 2009; LeVeque, 2002). That is, the numerical

scheme alternates between an advective step that solves the homogeneous part, and a

source-term step. Thus, the solution of Eq. (3.7) is split into a two stage problem:

PDE : @
t

U+r · Fadv (U) = 0

IC : U(x, t) = Un

9
>=

>;
) eUn+1 (3.9)

ODE : d

dt

U = S(U)

IC : eUn+1

9
>=

>;
) Un+1 . (3.10)

Typically, the source terms are more easily written in the primitive variable formulation

of the Euler equations. A common choice of the primitive-variable vector is

W = (⇢,v, P )T = (⇢, v
x

, v
y

, v
z

, P )T , which we also adopt here. For sources corresponding

to the NS viscous terms (Eq. 3.8), only the v component of W is a↵ected, thus

simplifying the solution method of the source-term step. The three-dimensional Euler

equations can be written in the primitive variable form as (Toro, 2009)

@
t

W +A1(W) @
x

W +A2(W) @
y

W +A3(W) @
z

W = 0. (3.11)
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For this choice of variables, the coe�cient matrices are given by (Toro, 2009)

A1(W) =
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which is exactly equivalent to the familiar equations
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In this formulation, the viscous terms of the NS equations, which a↵ect only the velocity,
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are (e.g. Landau & Lifshitz, 1959)

S(W) =
1
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BBBBB@
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An alternative to expressing the viscosity e↵ects as source terms is to absorb them

directly into the flux divergence,

@
t

U+r ·

2

664Fadv (U)� Fdi↵ (U)

3

775 = 0, (3.17)

which highlights the still conservative character of the NS equations. Here di↵usive

fluxes, defined by

Fdi↵(U) =

0

BB@0 , ⇧ , ⇧v

1

CCA , (3.18)

are responsible for the e↵ects of viscosity. An implementation of the di↵usive fluxes in

this conservation-law form is clearly the preferred choice for FVM schemes, which are

specifically designed for solving the integral form of these conservation laws. In fact, in

this case they exactly conserve all the involved quantities to machine precision. We will

therefore focus on this method in our study. The central aspect will be the numerical

scheme used for estimating the velocity gradients at the cell interfaces, and hence the

discretization of the di↵usive fluxes. In the next section, we describe our approach for

this in detail.
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3.3 A Finite Volume Scheme with Viscous Fluxes on

a Voronoi Mesh

3.3.1 Basic MUSCL-Hancock Finite Volume Scheme: Overview

Finite volume methods enforce the integral form of the conservation laws on discrete

meshes. This approach is manifestly conservative, since fluxes of quantities that leave a

cell simply enter the neighboring cell. The NS equations in finite-volume form are

dQ
i

dt
= �

X

j

A
ij

F
ij

, with Q
i

=

Z

V

i

U
i

dV , (3.19)

where, in general, the intercell fluxes contain both advective and di↵usive contributions,

F
ij

= Fadv,ij � Fdi↵,ij. (3.20)

The scheme used by AREPO is the finite volume MUSCL-Hancock approach,

consisting of a MUSCL (Monotone Upstream-centered Schemes for Conservation Laws)

linear reconstruction stage, and a Hancock two-stage time integration

Qn+1
i

= Qn

i

��t
X

j

A
ij

F̂n+1/2
ij

, (3.21)

where the numerical fluxes F̂n+1/2
ij

represent appropriately time-averaged approximations

to the true flux F
ij

across the interface shared by cells i and j. The time label n + 1/2

in Eq. (3.21) indicates that an intermediate-stage (a half time-step evolution) has been

performed to obtain the numerical estimate of F
ij

, meaning that the time-stepping in

Eq. (3.21) uses time-centered fluxes, giving it second-order accuracy. The Hancock part

of the scheme is a two-step approach (the familiar predictor-corrector algorithm) in

which the correction half-step is obtained from the solution of the 1-D Riemann problem
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across each face of the control volume. The general finite volume MUSCL-Hancock

scheme has hence the following three steps (Toro, 2009):

(I) Gradient Estimation, Linear Data Reconstruction and Boundary

Value Extrapolation Once a local gradient estimate for the conserved quantities

U
i

= (⇢, ⇢v, ⇢e)
i

of cell i is available, linear data reconstruction takes the form

UL

ij

= U
i

+rUn

i

(f
ij

� s
i

)

UR

ij

= U
j

+rUn

j

(f
ji

� s
j

)

(3.22)

where we denote by UL

ij

the estimated vector of conserved variables at the centroid of

the ij-interface, obtained by linearly extrapolating the cell-centered values U
i

of the

i-th cell (on the “left” side) from s
i

, the cell’s center position, to f
ij

. Similarly, UR

ij

corresponds to the estimates of the face-centroid values obtained by linear extrapolation

of the cell-centered values of the j-th cell (the “right” side), whose center position is s
j

.

In both cases, f
ij

= f
ji

is the position vector of the face centroid between the cells. The

Jacobian rUn

i

is explicitly labeled with superscript n to point out that it corresponds to

the estimate of spatial derivatives at the beginning of the time-step.

(II) Evolution of Boundary Extrapolated Values This is, strictly speaking, the

“predictor” half time-step. The conserved variables are evolved for �t/2 with flux

estimates obtained from the values at the beginning of the time-step:

bUL

ij

= UL

ij

� �t

2

1

V
i

X

j

A
ij

Fn

ij

bUR

ij

= UR

ij

� �t

2

1

V
j

X

j

A
ij

Fn

ji

(3.23)
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(III) Solution of 1-D Riemann Problems and Computation of Godunov

Fluxes This corresponds to the “corrector” half time-step in the two-stage Hancock

approach. Once the values to the right and left of the interface at time �t/2 are

known, the discontinuity is treated as a one-dimensional Riemann problem. An exact or

approximate Riemann solver is used to return values of ⇢, ⇢v and ⇢e at the interface, at

a time corresponding to n+ 1/2. From these values, the advective fluxes can be directly

computed (Eq. 3.3). These are time-centered fluxes Fn+1/2
ij

used to update the system

from the beginning of the time-step to its end,

Un+1
ij

= Un

ij

��t
1

V
i

X

j

A
ij

Fn+1/2
ij

. (3.24)

Figures 3.1 and 3.2 illustrate the mesh geometry and the basic steps of this inviscid

numerical scheme implemented in AREPO. One additional point we have not explicitly

discussed here for simplicity is the treatment of the mesh motion, as indicated in Fig. 3.2.

This is incorporated into the scheme by evaluating all fluxes in the rest frame of the

corresponding face, as described by Springel (2010a). This requires appropriate boosts

of the fluid states and the fluxes from the lab frame to the rest frame of each face, and

back. For a Voronoi mesh, the face velocities are fully specified by the velocities of all

the mesh generating points. The latter can be chosen freely in principle, but if they are

set equal to the fluid velocities of the corresponding cells, a Lagrangian behavior and a

manifestly Galilean-invariant discretization scheme is obtained in which the truncation

error does not depend on the bulk velocity of the system.
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i

j

i

a) b) c)

d) e) f)

Figure 3.1.— Schematic representation of the mesh geometry and the MUSCL-Hancock

integration scheme implemented in AREPO: a) TheVoronoi mesh is uniquely determined

by the location of the mesh-generating points. b) A gradient estimate for all primitive

variables is obtained from the immediate neighbors of a given cell. c) The gradient-

estimation process is repeated for each cell in the domain and thus a piece-wise linear

reconstruction is obtained for each primitive variable. d) The primitive variables are

extrapolated toward each interface and evolved for half a time-step. e) For each face, a

pair of extrapolated quantities for two neighboring cells i and j forms a local Riemann

problem. f) The Riemann problem is solved for each face of a cell, yielding time-centered

Godunov fluxes for the entire boundary of the control volume V
i

of cell i. These fluxes

are used for updating the conserved quantities of the cell through Eq. (3.21).
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x’

x’

i

j

x’ i x’ j

m
v x
v y
v z
p

evolve pr imit ive
var iables by
advect ion+
sources

6 t
 2

solve Riemann
problem

(1)extrapolate to interface
   and boost  to face frame

(2)

(3)

(4) Back to lab frame  
and compute advect ive
f luxes

Figure 3.2.— Detailed description of the flux calculation with a Riemann solver in step

e) of Fig. 3.1. For the case of a moving mesh, the standard MUSCL-Hancock method

needs to be augmented with Galilean-boosts, as described by Springel (2010a): (1) The

extrapolation towards each interface is followed by a Galilean boost of the velocities to

the rest frame of the face, and by a rotation of the coordinate axes. Each face is then

treated as a one-dimensional discontinuity. Thus, the axes are oriented in the rotated

frame such that the x0-axis coincides with the normal to the face (left panel). (2) The

primitive variables in the moving frame are evolved for half a time-step, including source

terms if present (e.g. gravity or viscosity). (3) A one dimensional Riemann problem is

solved at the interface. (4) The velocities are translated back to the lab frame and the

advective fluxes are computed.
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3.3.2 A MUSCL-Hancock Finite-Volume Scheme with Viscous

Terms

A cell-centered, finite-volume solution of the NS equation can be written as

Qn+1
i

= Qn

i

��t
X

j

A
ij

F̂n+1/2
adv,ij ��t

X

j

A
ij

F̂n+1/2
di↵,ij , (3.25)

where we have retained the distinction between advective and viscous fluxes. As in the

case of the Euler equations, the numerical method essentially consists of the problem

of finding accurate time-centered numerical fluxes across each of the interfaces of a cell.

How to do this in detail for the di↵usive part of the fluxes has been the focus of numerous

e�ciency and stability analyses (see Puigt et al., 2010, for a detailed description).

Eq. (3.25) uses time-centered fluxes, obtained here with the two-step Hancock

technique, as described above. Thus, for estimating both F̂n+1/2
adv,ij and F̂n+1/2

di↵,ij a half

time-step predictor stage is required. In the MUSCL-Hancock approach for inviscid flow,

this step is carried out by linear reconstruction from each cell center to the interface,

followed by solving a one-dimensional Riemann problem at the interface where the

extrapolations meet. The traditional formulation of the Riemann problem and its

solution are exclusive to hyperbolic di↵erential equations and thus do not provide exact

solutions for the NS equations. Since a general solution for the viscous Riemann problem

does not exist, we will treat the viscous fluxes in Eq. (3.25) as a correction to the solution

of an otherwise inviscid flow.

Our NS version of the MUSCL-Hancock scheme consists of the following three

di↵erent stages (in addition to those described in Section. 3.3.1):

(A) Correct the MUSCL linear extrapolation of primitive variables by applying a
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viscous kick.

(B) Extrapolate the cell-centered gradients linearly and evolve them for half a time-step.

(C) Average the extrapolated velocity gradients at the interface and use them to

estimate viscous fluxes.

To extrapolate the gradients from their cell-centered values to the interfaces,

information about the higher-order derivatives of the primitive variables is needed. If

gradients are assumed to vary linearly in space, an estimator for the Hessian matrix

for each of the five primitive variables is su�cient. Evidently, enough information is

contained in the cell-centered quantities to estimate both the local gradient r� and the

Hessian H� corresponding to a given scalar quantity �. However, estimating both of

these simultaneously is significantly more di�cult than estimating them one after the

other. Therefore, we will e↵ectively treat � and r� as two independent fields that vary

linearly in space, and this variation needs to be estimated from the mesh data through a

suitably discretized di↵erential operator.

As a simpler alternative to the gradient reconstruction approach, we briefly describe

how one can use the gradients already available from the linear reconstruction step.

In this approximation, a given quantity varies only linearly within the control volume,

such that consistently evaluated gradients are piece-wise constant. This means that each

interface represents a discontinuity in the gradient field r�. Naively, one may think that

the arithmetic average of both gradients that meet at a face is a good estimate for the

gradient at the interface itself. However, on second thought, one realizes that both cells

do no necessarily have the same weight if cells of di↵erent volume meet. Furthermore,

the unweighted average of the two cell-centered values really represents the value at
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the midpoint of the two mesh-generating points, which, for a Voronoi mesh, can be

substantially o↵set from the mid-point of the face. We therefore adopt the approach

of Loh (2007), which consists in choosing one of the two gradients that meet at the

interface, based on prior knowledge of the direction of the flow across the interface. Thus

the three-stage scheme introduced above could be alternatively replaced by the simpler

method:

(A’- C’) At the cell interface where two di↵erent gradients meet, choose the upwind

gradient.

In either method, once we have an estimate of both viscous and advective fluxes,

the time-step evolution of the conserved quantities Q
i

is carried out as in Eq. (3.25).

However, the approach (A-C) is preferable to the Loh (2007) scheme because it uses

time-centered estimates for both F̂n+1/2
adv,ij and F̂n+1/2

di↵,ij , hence preserving the order of

accuracy of the original inviscid scheme. We therefore now provide a more detailed

description of the individual steps in this three-stage approach.

(A) Viscosity Kicks

Although Eq. (3.25) is written in an unsplit form, the predictor step is indeed operator

split, evolving the advective and di↵usive terms separately (e.g. Coirier & Powell, 1996).

While our method for estimating the advective fluxes remains the MUSCL-Hancock

scheme, the technique for estimating the di↵usive fluxes is essentially contained in the

estimation of the velocity gradients at each interface (see Coirier, 1994; Puigt et al.,

2010, for a series of tests on di↵erent interface gradient estimates). Looking for better

accuracy, we have chosen to couple these two otherwise independent procedures by
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correcting/biasing the linear extrapolation of the velocity field (stage (I) in Section 3.3.1)

with a viscous source term.

The benefit of carrying out a linear extrapolation to cell interfaces in primitive

variables is the simplicity of the Galilean transformation needed to boost the quantities

to the frame of a moving interface. Since the Galilean boost does not a↵ect the mass

and pressure of a given cell, only the local velocity field is transformed. In addition,

adding force source terms to the equations of motion in primitive variable formulation is

simpler, since these only couple to the momentum equations. Thus, a “viscous kick” can

be applied to the velocity field in the half time-step evolution stage:

�vvisc =
�t

2


⌘

⇢
r2v +

⇣ + 1
3
⌘

⇢
r (r · v)

�
. (3.26)

In this way, the subsequent linear extrapolation of primitive variables will already include

viscosity e↵ects to first order in time.

While working with numerical fluxes across interfaces requires velocity gradients,

the use of cell-centered source terms in Eq. (3.26) calls for second order derivatives of

the velocity field. Thus, in addition to the cell-centered velocity gradients rv
x

, rv
y

and rv
z

, the cell-centered Hessian matrices Hv

x , Hv

x and Hv

x are now needed. As we

will see below, these matrices will be of use in more than one occasion, justifying the

computational cost incurred to calculate them.

(B) Linear Extrapolation of Gradients

The linear reconstruction implemented in our MUSCL-Hancock approach essentially

assumes that the gradient of a scalar quantity � does not vary significantly across the

spatial scale of a cell. For smooth flows, the gradients of two neighboring cells r�
���
i

and
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r�
���
j

will not di↵er significantly. Furthermore, in the presence of strong discontinuities,

gradients on each side will be slope-limited, and therefore will not di↵er by much either.

Hence, a first guess for the gradient at the interface between two cells is just the average

of the cell-centered estimates at each side of the face

fr�
���
ij

=
hr�i

i

+ hr�i
j

2
. (3.27)

However, as we pointed out earlier, the gradient average above is actually representative

of the midpoint between the two cell centers r
i

and r
j

, which in general does not lie

close to the center of the face in a Voronoi mesh, and may in fact lie within a third cell.

Unless gradients are assumed to vary within a cell, it will not be possible to assign the

estimate to the center of the interface with any confidence.

Let us assume that the scalar field �(r) is infinitely di↵erentiable and, consequently,

so is its first derivative. Thus, we can Taylor expand both quantities to arbitrary order

around a mesh generating point r0:

�(r) =�(r0) +r�
���
r0
(r� r0)

+
1

2
(r� r0)

TH�

���
r0
(r� r0) +O(d3)

(3.28)

r�(r) =r�
���
r0
+H�

���
r0
(r� r0)

+
1

2
(r� r0)

TD�

���
r0
(r� r0) +O(d3)

(3.29)

where H� is the Hessian matrix of the scalar quantity � and D� is a 3 ⇥ 3 ⇥ 3 tensor

containing the third-order derivatives of � (i.e. D
abc

= @3�/@x
a

@x
b

@x
c

). Truncating

both Taylor expansions to first-order in d = r � r0, we see that we can obtain linear

reconstructions for both the physical quantities and their gradients provided that we have

numerical estimates for both the gradients and the Hessians at each mesh generating

point.

57



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

q

ii - 1i - 2 i + 2i + 1x x x x x

6

SCALAR QUANTITIES GRADIENT 

... ... x
a) Standard linear reconstruction 

b) Piece-wise parabolic method 

c) Hybrid double linear reconstruction

x

q

ii - 1i - 2 i + 2i + 1 ...x x x x x...

x

q

ii - 1i - 2 i + 2i + 1 ...x x x x x...

0

x

q

ii - 1i - 2 i + 2i + 1 ...x x x x x...

q

ii - 1i - 2 i + 2i + 1x x x x x

6

... ... x

0

q

ii - 1i - 2 i + 2i + 1x x x x x

6

... ... x

0

Figure 3.3.— Schematic representation of the double linear reconstruction proposed in

this work compared to standard linear reconstruction and parabolic reconstruction.
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We emphasize that a Taylor expansion is not equivalent to a polynomial data

reconstruction. Indeed, it is desirable that reconstruction schemes are manifestly

conservative, in the sense that the average of the reconstruction over the cell should

be identical to the value of � at the geometric center of the cell. This property

of reconstruction schemes is sometimes referred to as K-exactness, meaning that

if a polynomial reconstruction is cell-averaged over the mesh, the reconstruction

procedure recovers the same polynomial. This condition is trivially satisfied for a linear

reconstruction of the form �(r) = �
i

+hr�i
i

(r�s0). However, higher-order reconstruction

schemes require the use of zero-mean polynomials, which, beyond first-order, di↵er from

the Taylor series (e.g. Colella & Woodward, 1984; Coirier & Powell, 1996).

The linear reconstruction of the scalar field � and of the vector field r�, treated

as if they were independent quantities, e↵ectively constitutes a hybrid method between

standard linear reconstruction and fully K-exact second-order reconstruction, as

illustrated in Figure 3.3. In this approximation, second derivatives are considered

negligible for the spatial reconstruction of the primitive quantities, but they are still

included for a more accurate estimate of the gradients near the cell interfaces. We also

note, that in this way our numerical scheme reduces to that originally in AREPO (which

is second-order-accurate) when the viscous fluxes are disabled.

Once an estimate for the Hessian matrix H�

���
r0

is available (Section 3.3.3), a linear

extrapolation of the gradients from the cell centers to the interfaces can be obtained from

fr�
���
ij

= hr�i
i

+ hH�i(f
ij

� r
i

), (3.30)

which is a better approximation than Eq. (3.27). However, the time evolution of the

gradients during a single step could be equally important as their spatial variation over
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the length scale of a cell, hence we also need to evolve them for half a time-step to obtain

a time integration scheme that is consistent with the second-order accurate two-stage

MUSCL-Hancock approach. In the latter, to extrapolate and evolve a scalar quantity �

we consider

�
���
ij

= �
i

+r�
���
r0
(f

ij

� s
i

)� �t

2

⌧
@�

@t

�

i

(3.31)

where the time derivative of the quantity � in the control volume of the i-th cell can

be obtained from the primitive variable formulation of the Euler equations in tensor

notation:

@
t

W
↵

+ A
↵�b

(W)@
b

W
�

= 0. (3.32)

Here sums over repeated indices are implied. Latin indices a, b, c, d... take the values

1, 2, 3 or x, y, z, while Greek indices ↵, �, �, ... take the values 1, 2, 3, 4, 5 and are used

to number the components of the primitive quantity vector (W
↵

= ⇢, v
x

, v
y

, v
z

, P for

↵ = 1, 2, 3, 4, 5, respectively). As with our previous notation, the indices i, j and k are

reserved for labeling the mesh generating points and their associated cells.

Eq. (3.32) is an advection equation for the primitive variables. Analogously, to

“advect” the gradients of the primitive variables from the cell center to the interface, we

can ignore the viscous terms and derive an equation of motion for the spatial derivatives

by di↵erentiating Eq. (3.32):

@
a

@
t

W
↵

+ (@
a

A
↵�b

) @
b

W
�

+ A
↵�b

@
a

@
b

W
�

= 0, (3.33)

where we can identify the Jacobian matrix of the primitive variables as J
↵a

⌘

@
a

W
↵

= W
↵,a

, and the Hessian tensor (5 ⇥ 3 ⇥ 3) of the primitive variables as

H
�ba

⌘ @
b

@
a

W
�

= W
�,b,a

. Therefore, the time derivative of each component of the
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primitive variable Jacobian matrix is

@
t

J
↵a

= B
↵�ba

J
�b

� A
↵�b

H
�ba

, (3.34)

where we introduced the rank-4 tensor B
↵�ba

⌘ @
a

A
↵�b

= A
↵�b,a

. Since A
↵�b

is a function

of the primitive variables W
↵

, the tensor B
↵�ba

can also be written as (see Appendix)

B
↵�ba

=
@A

↵�b

@W
�

@
a

W
�

, (3.35)

and therefore its numerical estimate is given by the product of the exact derivatives

@A
↵�b

/@W
�

(evaluated with values of the primitive variables at the center of the cell) and

the (already available) numerical estimates for the gradients @
a

W
�

= J
�a

. The second

term on the right hand side of Eq. (3.34) is the product of the known coe�cients A
↵�b

(evaluated at the center of the cell) and the numerical estimates of the Hessian tensor

H
�ba

.

Finally, with a numerical estimate of H
�ba

at hand (see Section 3.3.3), the

extrapolated and half time-step evolved gradients of the velocity are (in analogy to

Eq. 3.31):

rv
x

���
ij

= hrv
x

i
i

+ hHv

xi
i

(f
ij

� s
i

) +
�t

2

⌧
@rv

x

@t

�

i

, (3.36)

with analogous expressions for rv
y

|
ij

and rv
z

|
ij

. In Eq. (3.36), the term h@rv
x

/@ti
i

is

obtained from Eq. (3.34) with ↵ = 2 and a = 1, 2, 3.

In Fig. 3.4, we show a sketch of the di↵erent steps involved in obtaining time-centered

di↵usive fluxes. We point out that taking the Hessian matrices of the velocity field to be

identically zero is not equivalent to the alternative scheme (A0). The third term to the

right hand side of Eq. (3.36) is still di↵erent from zero even if H
�ba

= 0 (Eq. 3.34) since,

in general, B
↵�ba

J
�b

6= 0. By advecting the gradients according to Eq. (3.34) we gain
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additional accuracy at no additional computational expense because the terms B
↵�ba

J
�b

are known exactly (see Appendix), given the values of the primitive variables and their

respective gradients at the center of each cell.

(C) Viscous Flux Calculation

An accurate estimate of the viscous fluxes between two cells requires an accurate estimate

of the velocity gradients at the interface. The gradient extrapolation method described

above produces in general two di↵erent values of the velocity gradient that meet at

the interface. This defines a general Riemann problem for the di↵erential equation in

Eq. (3.34) which is no longer a homogeneous hyperbolic di↵erential equation. Therefore,

attempting to solve this new Riemann problem for the spatial derivatives of the scalar

quantities introduces a significant additional di�culty. For simplicity, we will assume

that the di↵erences between two gradient extrapolations meeting at an interface are small

enough such that a simple arithmetic mean can be used. This assumption, of course, is

valid only when the field of second derivatives is su�ciently smooth (see Section 3.3.3).

The time and area averaged flux across the face i-j that moves with speed w is

defined as

F̂
ij

=
1

�t

1

A
ij

Z

�t

Z

A

ij

h
Fadv(U)�UwT

�Fdi↵(W, @W/@r)
i
dA

ij

dt

⌘ F̂adv,ij � F̂di↵,ij .

(3.37)

The numerical or Godunov estimate of these fluxes is chosen so that the analytic

expressions for Fadv(U) and Fdi↵(W, @W/@r) are evaluated with numerical estimates of
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Figure 3.4.— Sketch illustrating the individual steps involved in the extrapolation and half

time-step evolution of the gradients, analogous to the advective flux calculation shown in

Fig. 3.2. The di↵erent steps are: (1) spatial extrapolation of the gradients, followed by (2)

a time advance by �t/2 according to Eq. (3.31), and (3) an approximate evaluation right

at the interface. In step (4), the viscous fluxes are determined by evaluating Eq. (3.18)

with the values of the primitive variables and the velocity gradients at the interface.
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U, W and @W/@r at the centroid of the interface. The advective Godunov fluxes are

F̂adv,ij =
⇥
Fadv(U

lab
Riem)�Ulab

Riemw
T

⇤
n̂
ij

, (3.38)

where Ulab
Riem is the conserved variable vector at the centroid of the interface, as seen

in the lab frame, obtained from the solution of a 1-D Riemann problem across the i-j

interface and along its normal. Multiplying by n̂
ij

is equivalent to projecting the flux

matrix Fadv (Eq. 3.3) along the normal of each face. The Godunov fluxes F̂adv,ij and

F̂di↵,ij are thus 5-component vectors. The di↵usive Godunov flux vector is obtained from

the di↵usive flux 5⇥ 3 matrix
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where ⇧
ab

are the components of the viscous stress tensor ⇧, which depend on the local

value of the velocity and the velocity gradients. These components are:
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Just like with the advective fluxes, the flux tensor (Eq. 3.39) must be projected onto the

normal n̂
ij

of each ij-interface to obtain the 5-component vector

F̂di↵,ij = Fdi↵

⇣
Wlab

Riem, (@W/@r)labapprox

⌘
n̂
ij

, (3.41)

where Wlab
Riem is the primitive variable vector at the centroid of the interface, as seen

in the lab frame (whose associated conserved variables are Ulab
Riem in Eq. 3.38). The

spatial derivatives (@W/@r)labapprox correspond to our extrapolate-and-average scheme for

linearly varying gradients. As with Wlab
Riem, we are interested in estimates of @W/@r

at the centroid of the face. For both these quantities, only the velocity and its spatial

derivatives are relevant when viscous fluxes are calculated.

65



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

3.3.3 Hessian Estimation

In analogy to the gradient calculation for Voronoi meshes discussed by Springel (2010a),

here we discuss the estimates of the cell-centered Hessian matrices for each of the

primitive variables W
↵

. To this end, let us consider a vector field u that varies

approximately linearly with distance as u ⇡ u
i

+ h (r� r
i

) near r
i

. Up to linear order,

the first derivative of u is simply h. The volume-average of the spatial derivatives of u

in the vicinity of r
i

is

V
i
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Z
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� r
i

r
ij

dA,

(3.42)

where we have assumed that the linear approximation is valid up to all the neighboring

mesh generating points r
j

. It is straightforward to verify that the average matrix

h@u/@ri
i

can be written as

⌧
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(3.43)

Writing the vector product (Au) ⌦ v in tensor form (where A is a n ⇥ n square

matrix and u and v are vectors of dimension n), it is easy to prove the identity

A
ac

u
c

v
b

= A
ac

v
c

u
b

+ "
bfc

"
fde

u
d

v
e

A
ac

, where "
abc

is the Levi-Civita symbol. Equivalently,

going back to vector notation, we have (Au)⌦ v = (Av)⌦ u+ (u⇥ v)⇥A, where, for

simplicity, we used vector notation to denote a “cross product” between a vector and a

matrix.
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Therefore, the second term on the right hand side of Eq. (3.43) can be written as
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Here, the second term on the right hand side vanishes identically, because
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On the other hand, the first term on the right hand side of Eq. (3.44) can be rewritten

by means of the replacement h r
ij

= �h (r
j

� r
i

) = u
i

� u
j

. Finally, identifying the

vector u
i

with the gradient hr�i
i

of a scalar quantity �, and the matrix h@u/@ri
i

with

the cell-averaged Hessian matrix hH�i
i

, Eq. (3.44) takes the form
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(3.46)

The most noteworthy characteristic of this expression is that it is purely algebraic and

explicit in nature. That is, the Hessian matrix of � is simply a linear combination of the

neighboring gradients in which the coe�cients are predetermined quantities that depend

only on the local mesh geometry. Each one of those neighboring gradients is, at the

same time, a linear combination of its immediate neighbors’ scalar quantities (see Eq. 21

of Springel, 2010a). Therefore, the Hessian estimate of Eq. (3.46) is a weighted linear

combination of scalars from its immediate neighbors and from its neighbors’ neighbors

and, as such, it implicitly employs a larger stencil than the one used for the gradients.
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3.3.4 Slope-Limiting the Hessians

It is well known that higher-order reconstruction schemes are prone to produce spurious

oscillations in the vicinity of steep gradients, unless this is prevented by appropriate

slope limiter methods (Toro, 2009). Similarly, potential irregularities in the second

derivative fields can lead to spurious oscillations and unphysical values of the viscous

stress tensor at the cell boundaries. These unphysical values would be self-regulated

by negative feedback, since large viscous fluxes di↵use angular momentum e�ciently,

thus eliminating spurious fluctuations as soon as these arise. However, we have found

in our experiments that the viscous kick predictor step (Equation 3.26) can be a↵ected

by noise values of the second derivatives, thus producing unphysical velocities before

the MUSCL-Hancock step is carried out. To alleviate this problem, we have included a

“safety mechanism” that consists of “limiting” the coe�cients of the Hessian matrix in a

way very much similar to the slope-limitation of the gradients. This is done by correcting

hH�i
i

= A
i

⌦
H�

↵
i

(3.47)

where A
i

is a diagonal matrix of slope-limiting coe�cients.

In general, the second derivatives of the velocity field should vary rather gently in

space. Indeed, for regions of smooth flow, the gradients will also be smooth and therefore

the Hessians will be small and smooth. For regions of shocked flow, the gradients will be

slope-limited and thus the Hessians should be small regardless. Therefore, the correction

proposed here should only a↵ect very pathological regions of the flow and thus behaves

more as a ”switch” rather than a technique for numerical stability. It is worth pointing

out that in almost all our tests (those with reasonably smooth initial conditions) we can

run without such switch, with unchanged results.
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3.3.5 Time integration and time-step criterion

Because of the more complex mathematical properties of the NS equations compared

with the Euler equations, obtaining a rigorous analytic expression analogous to the CFL

stability criterion for the allowed time step size is not possible. However, MacCormack

& Baldwin (1975) obtained an approximate semi-empirical stability criterion when

advective, viscous and heat di↵usion terms are considered. When there is no heat flux,

the time-step criterion can be written as (e.g. Kundu & Cohen, 2008)

�t  ��tCFL

1 + 2/{Re}
i

, (3.48)

where �tCFL is the standard CFL-criterion time-step except for the Courant-Friedrichs-

Levy coe�cient, which is absorbed into a “safety factor” � (usually ⇡ 0.9). In Eq. (3.48),

the cell Reynolds number {Re}
i

is

{Re}
i

=
⇢|v

i

|R
i

⌘
, (3.49)

where v
i

is the physical velocity of the flow evaluated at the i-th mesh point, and R
i

is

the e↵ective radius of the cell, calculated as R
i

= (3V
i

/4⇡)1/3 from the volume of a cell

(or as R
i

= (A
i

/⇡)1/2 from the area in 2D). Similar approaches to derive an appropriate

NS time-step have also been described by Mavriplis & Jameson (1990) and Coirier &

Powell (1996).

The numerical integration scheme we employ is time unsplit, that is, advective and

di↵usive fluxes are applied simultaneously during each hydrodynamic time-step and not

sequentially (Eq. 3.25). The prediction stage, on the other hand, is operator-split, since

the advective and di↵usive terms are computed almost independently of each other. This

is in part due to the nature of the standard one-dimensional Riemann problem, whose

69



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

solutions – strictly speaking – are only valid for the hyperbolic Euler problem, but are

not solutions to the full NS equations with their additional parabolic terms.

3.4 Numerical Test Results

To test the performance of AREPO when our new treatment of viscous fluxes is included,

we have carried out a number of test simulations for physical situations with known

analytic or quantitative solutions. Usually, the problems with known exact solutions are

either of self-similar type or have symmetries that make the non-linear term proportional

to (v · r)v vanish identically. Owing to these limitations, numerical simulations of

situations with experimentally well-established behavior, such as flow past a circular

cylinder, have become common-place in testing the performance of NS codes. We will

therefore also carry out such qualitative benchmarks, besides looking at a few simple

problems with analytic solutions.

3.4.1 Di↵usion of a Vortex Sheet

A simple problem of laminar flow in the presence of viscosity is given by the vortex sheet

di↵usion test. In this problem, the initial velocity field at t = 0 is given by v = (u, 0, 0)

with u = 1 for y > 0 and u = �1 for y < 0. Because of the symmetry of the problem,

the NS equations reduce to a 1D di↵usion equation

@u

@t
= ⌫

@2u

@2y
, (3.50)
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Figure 3.5.— Di↵usion of a vortex sheet. The two panels show the velocity u along the

x-axis (left panel), and the vorticity (right panel), at times t = 0, 0.1, 0.2, 0.4, 0.8, 1.6

and 3.2 (from black to red), for a dynamic viscosity coe�cient µ = ⌫⇢ = 0.005. The solid

lines are given by the analytic solution described by Eqs. (3.51), while the solid circles are

all 2500 cell-centered velocity and vorticity values of the initially Cartesian 50⇥ 50 mesh.

Note that the simulation is started with a sharp discontinuity in velocity and thus the �-

function vorticity field is initially unresolved. If the mesh would remain exactly Cartesian,

the di↵usion of vorticity would actually be suppressed in this case. Nevertheless, the small

asymmetries introduced by the moving mesh trigger the di↵usion regardless of the initially

unresolved setup, and the time-dependent numerical result closely follows the expected

exact solution.
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(a) t = 0.0 (b) t = 0.06

(c) t = 0.6 (d) t = 1.8

Figure 3.6.— Time evolution of the mesh geometry and the velocity field for a di↵using

vortex sheet test. As the vorticity spreads from the center of the domain to the upper and

lower boundaries, the mesh adapts to the continuous change in velocity until its original

Cartesian structure disappears entirely. The color table (from blue to red) corresponds

to the range between u = �1.0 and u = 1.0 in linear scale.
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with solution (e.g. Kundu & Cohen, 2008)

u = erf


y

2
p
⌫t

�
! =

@u

@y
=

e�y

2
/4⌫t

p
⇡⌫t

. (3.51)

In Figure 3.5, we show the time evolution we obtain for a two-dimensional simulation

domain with initially uniform pressure and density (⇢ = P = 1), and with a velocity field

given by v = (sgn(y), 0, 0). The mesh generating points were distributed regularly at the

initial time to produce a Cartesian mesh. As the system evolves, the velocity and the

vorticity fields as a function of time and vertical coordinate y follow the exact solution

remarkably well. It is worth pointing out that the initial singularity in the vorticity field

is unresolved numerically (and thus appears as being uniformly zero throughout the

domain), since the system is started with an exact sharp discontinuity. Static, perfectly

aligned meshes with slope limitation techniques will typically maintain this unresolved

vorticity and thus no di↵usion will proceed unless some numerical perturbations are

seeded that break the mesh alignment of the initial state (a common way to overcome

this di�culty is to start the system according to Eq. (3.51) at t > 0 such that there

is initial vorticity). However, the moving mesh of AREPO “sees” a non-zero velocity

gradient as soon as the upper and lower halves of the domain become unaligned with

respect to each other. This happens because, as soon as a cell shifts its position, the

number of its neighbors that have a drastically di↵erent velocity increases and so does

the “statistical weight” of the discontinuity. At this point, the slope-limiting technique,

which had ignored the discontinuity in the perfectly aligned mesh, now identifies the

local variation as “real” and the vorticity field is “detected”.

Fig. 3.6 shows the corresponding two-dimensional velocity field of the di↵using

vortex sheet test at four di↵erent times, together with the geometry of the underlying
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Voronoi mesh. The mesh geometry nicely shows how the cells transform from a Cartesian

configuration to an unstructured mesh, while the velocity field evolves from a piece-wise

constant state with a central discontinuity to a smoothly varying shear flow due to the

e↵ects of viscosity.

3.4.2 Di↵usion of a Viscous Vortex

The two-dimensional circular velocity distribution corresponding to an irrotational

vortex of circulation � is

v
✓

=
�

2⇡R
, (3.52)

where the vorticity ! = |r ⇥ v| = (1/R)@(Rv
✓

)/@R is zero everywhere except at the

origin (! = �(R), i.e. a vortex line). In a viscous fluid, this velocity profile has to be

sustained by a point source of vorticity at the origin (e.g. an infinitely thin rotating

cylinder) otherwise the vortex line will decay in a similar way as the vortex sheet in the

previous example. If the velocity at the origin is set impulsively to zero, the subsequent

evolution of the azimuthal velocity is given by

v
✓

(R, t) =
�

2⇡R

h
1� e�R

2
/4⌫t
i

, (3.53)

while the vorticity ! =
h
r⇥ (v

✓

✓̂)
i
· ẑ evolves as

! = � �

4⇡⌫t
e�R

2
/4⌫t (3.54)

and the Laplacian of the velocity field is

|r2v| = �

2⇡

R

(2⌫t)2
e�R

2
/4⌫t✓̂ . (3.55)

Because of its geometry, this problem is significantly more challenging than the vortex

sheet test considered above and cannot be impulsively started at precisely t = 0. Besides

74



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

the initial singularity in the vorticity field, the velocity field is divergent as we approach

the origin. In addition, it is not possible to capture the azimuthal velocity field when

the distance from the origin is comparable to the grid resolution. At the same time,

the azimuthal velocity field is challenging for the boundary conditions, because the

problem is self-similar in nature and therefore natural boundaries do not exist. These

problems did not exist for the vortex-sheet problem, which is of one-dimensional nature.

Nevertheless, evolving the system from an initial time t > 0 minimizes most of these

complications. In addition, we extend the computational domain far beyond the region

of interest, such that boundaries become essentially irrelevant during the timespan of the

numerical solution.

We setup a Cartesian mesh (100⇥ 100) with an imposed initial velocity profile of

v
✓,0 =

�

2⇡R


1� exp

✓
� R2

4⌫t0

◆�
with ⌫ =

µ

⇢
, (3.56)

corresponding to a Gaussian vortex that we center in the middle of the domain, which

extends over the range [0, 40]⇥ [0, 40], and thus accommodates a radial range from R = 0

to R = 20. The adopted physical parameters are t0 = 10, µ = 0.08, � = 1.0, and the

initial density field is constant with ⇢ = 1. The pressure field, however, is not uniform

because the fluid is not started from rest. We obtain the correct pressure profile from

the radial component of the equation of motion:

�v2
✓

R
= �1

⇢

dP

dR
,

and thus the initial pressure profile is

Pinit = P0 � �2⇢
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Figure 3.7.— Time evolution of a di↵using Gaussian vortex. For each time (as labeled),

we show the azimuthal velocity profile v
✓

(R), the vorticity profile !(R) and the Laplacian

profile r2v
✓

, as computed by AREPO (blue points; only a random 10% of the total shown)

and compare it to the corresponding analytic expressions (solid red lines).
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where P0 is an integration constant. The precise value of P0 is irrelevant for the similarity

solution presented here, because it is obtained for incompressible flow. In our numerical

experiments (which are compressible), we set P0 such that P = 1 at R = 0.

Fig. 3.7 shows the time evolution of the velocity field, the vorticity field and the

Laplacian field for a Gaussian vortex started on an initially Cartesian mesh. We find not

only that the velocity evolves as expected based on the similarity solution, but the first

and second derivatives also show excellent agreement with the analytic expectations.

These results validate both the space- and time-accuracy of our viscous integration

scheme, as well as the accuracy with which the second derivatives are estimated.

A similar test is the triangular vortex of Gresho & Chan (1990). This vortex is

described by the azimuthal velocity profile

v
�

(R) =

8
>>>>><

>>>>>:

5R 0  R < 0.2

2� 5R 0.2  R < 0.4

0 0.4  R

(3.57)

and corresponds to a steady-state solution of the Euler equations when a suitable

pressure profile is provided (Liska & Wendro↵, 2003; see also Springel, 2010a for an

implementation in AREPO). In the presence of explicit viscosity, the evolution of the

Gresho vortex becomes time-dependent, with the velocity field evolving in a qualitatively

similar way to the Gaussian vortex (see Figure 3.8).

We use this setup to measure the convergence rate of AREPO when viscous fluxes

are included. Contrary to the Gaussian vortex, this problem has no analytic solution

as a function of time, since a similarity solution cannot be obtained. We use a

high-resolution run (12802) as an “exact” or reference solution, and compare that to a set
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Figure 3.8.— Azimuthally averaged time evolution of a Gresho vortex with viscosity

coe�cient µ = 10�3 in a high-resolution run of 12802 cells.

78



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

Figure 3.9.— L1-error norm for the viscous Gresho vortex at time t = 3.0 (internal units).

Six di↵erent runs, of resolutions N⇥N with N = 10, 20, 40, 80, 160 and 320, show an error

decline proportional to N�2, indicative of second-order accuracy. The error residuals are

measured respect to a high-resolution run consisting of 12802 resolution elements.
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of low-resolution runs by means of the L1-error norm. The decline of the error residuals of

runs at 102, 202, 402, 802, 1602 and 3202 (see Figure 3.9) shows that the time-dependent

solution converges toward the high-resolution run at the expected second-order rate.

Note that Springel (2010a) finds a convergence rate shallower than second-order

for this same problem in the absence of explicit viscosity. The discrepancy with the

theoretical second-order accuracy is presumably attributable to the discontinuous

velocity gradient imposed by the setup. Since the inclusion of a di↵usive term smooths

out discontinuities in the velocity field, the viscous solution can achieve full second-order

accuracy.

3.4.3 Plane Poiseuille and Couette Flows

Next, we consider impulsively-started plane Poiseuille and Couette flows where a fluid

between two parallel plates is initially at rest, and then, suddenly, either pressure

gradients or plate motions are applied. The time-dependent solution has the form

v = (u(y, t), 0, 0), where the horizontal velocity can be decomposed into steady and

time-dependent parts, u(y, t) = u0(y)+ eu(y, t). In the presence of a pressure gradient and

an upper plate moving at constant speed U , the steady state solution is the well-known

expression

u0(y) =
yU

b
� y

2µ

dp

dx
(b� y) , (3.58)

for which the special cases U = 0 and dp/dx = 0 are commonly known as plane Poiseuille

flow and plane Couette flow, respectively.

The time dependent component eu(y, t) is a solution of Eq. (3.50), subject to the

initial condition eu(y, 0) = �u0(y) and the boundary conditions eu = 0 at y = 0 and y = b.
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By separation of variables, the general solution is (e.g Graebel, 2007)

eu(y, t) =
1X

n=1

A
n

e�n

2
⇡

2
⌫t/b

2
sin

n⇡y

b
, (3.59)

where the coe�cients A
n

are determined by the initial condition

A
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dy
R
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(3.60)

= �2U(�1)n

n⇡
� 2

bµ

dp

dx

✓
b

n⇡

◆3

[1� (�1)n] . (3.61)

The numerical setup for this problem is straightforward. We produce a Cartesian

mesh in the range [0, 1] ⇥ [0, 1] with a resolution of 50 ⇥ 50. The fluid is originally at

rest and its density and pressure are given by ⇢ = P = 1. The equation of state is that

of an ideal gas with adiabatic index 5/3. To represent the plates, the uppermost and

lowermost rows of cells are replaced by “solid boundaries“ at which the no-slip condition

is enforced, i.e. v
x

= v
y

= 0 (see Fig. 3.12). Moving solid boundaries are straightforward

to implement with a Voronoi tessellation mesh. A solid surface can be constructed

as a series of mesh-generating point pairs, one on each side of the surface, such that

the common interface – equidistant to both points – defines the boundary locally (see

Serrano & Español, 2001 and Springel, 2010a). The Voronoi cell on the side of the

“solid” object can regarded as “a ghost cell within the domain”. That is, this cell is

part of the domain discretization process and is tessellated/updated as any other normal

gas cell. However, when solving the Riemann problem at the local interface between

a “solid” cell and a real gas cell, boundary conditions are imposed in the same way as

boundary conditions on the outer box are imposed. For perfectly reflecting boundaries,

the normal component of the velocity is reflected in the “solid side” or “outside region”

of the interface. For non-slip boundaries, the entire velocity vector is reflected, such that
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(a) Plane Poiseuille flow (b) Plane Couette flow

Figure 3.10.— Impulsively started plane Poiseuille and Couette flows as a function of time.

a) Time evolution of the horizontal velocity profile versus vertical distance. Solid curves

represent the analytic solutions of Eqs. (3.58) to (3.60) for U = 0 and dp/dx = �0.05,

at ten di↵erent times (time increasing from black to red). The data points correspond to

all the cell-centered values of velocity along x for a 50⇥ 50 simulation started from rest.

b) Time evolution of the horizontal velocity profile versus vertical distance. Solid curves

represent the analytic solutions in Eqs. (3.58) to (3.60) for U = 0.1 and dp/dx = 0 at

eight di↵erent times (time increasing from black to red). The data points correspond to

all the cell-centered values of velocity along x for a 50⇥ 50 numerical simulation started

from rest.
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(a) t = 0.1 (b) t = 0.9

(c) t = 2.5 (d) t = 5.7

Figure 3.11.— Time evolution of the mesh geometry and the velocity for flow between

parallel plates. The horizontal velocity field u for plane Poiseuille flow is rendered at four

di↵erent times. The evolution of the velocity field (see Fig 3.10(a)) is accompanied by

the evolution of the mesh from an initially Cartesian set up (top-left panel) to a fully

unstructured grid by the time the flow has reached steady state (bottom-right panel).

The (linear ) color scale ranges from blue (u = 0) to red (u = 0.12).
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the velocity at the interface is zero (Figure 3.12).

We run two di↵erent test problems. For the first one, both plates remain at rest

and an external gradient of dp/dx = �0.05 is imposed. For the second test, the bottom

plate is at rest and the upper plate moves at a constant speed of U = 0.1. In both test

simulations, the dynamic viscosity coe�cient has been set to µ = 0.05. In Figure 3.10,

we show the time evolution of the horizontal velocity profile both for the plane Poiseuille

and Couette flows. In both cases, the numerical results match the analytic expectations

very well. In Figures3.11 we also show maps of the velocity profile and the mesh

geometry at di↵erent times for the Poiseuille case. The grid evolution shows how the

Cartesian structure is progressively lost, but that the dynamic Voronoi mesh of AREPO

successfully avoids any mesh-tangling e↵ects.

3.4.4 Time-Dependent Circular Couette Flow

We now turn to a more challenging problem, which highlights the ability of our scheme

to deal with geometrically complex boundary conditions. For purely azimuthal motion,

the NS equations in the radial and tangential directions are

�v2
✓

R
= �1

⇢

dP

dR
(3.62a)

⇢
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The exact solution of steady flow (i.e. @v
✓

/@t = 0) between concentric cylinders with

boundary conditions v
✓

= ⌦1R1 at R = R1, and v
✓

= ⌦2R2 at R = R2 is given by (e.g

Kundu & Cohen, 2008)
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Figure 3.12.— Schematic representation of (a) reflective and (b) non-slip boundaries

within the computational domain. After the spatial and temporal extrapolation steps

in the MUSCL-Hancock method (panel e) in Figure 3.1), the Riemann problem is solved

as elsewhere in the domain but with the boundary-side cell mimicking the gas side with

either one velocity component – the normal one – reversed (reflection) or all three (non-

slip).
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1�

1�

pe

R�

R�

Figure 3.13.— Geometry of the circular Couette flow. The left hand panel shows a

schematic view of the two-dimensional problem. The right hand panel displays the actual

initial mesh used in AREPO in a setup where we start the problem impulsively from rest.

Each cylindrical boundary (at radii R1 and R2) is generated by two layers of cells, one

side representing the solid cylinder and the other representing the fluid. These layers of

cells are positioned along circles. The remainder of the fluid cells, originally at rest, are

distributed like a Cartesian grid. The cells outside the outer cylinder are “auxiliary cells”

and are only included to fill the computational domain, but do not exert any influence on

the fluid inside the cylinders. The motion of the cylinders is prescribed to remain constant

(with angular velocities ⌦1 and ⌦2), and thus represents a source of kinetic energy. The

motion of the fluid in between the cylinders is induced by means of the no-slip boundary

condition at the contact surface, and the momentum that is transported in the radial

direction through the shear viscosity.
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where R
i

and ⌦
i

(i = 1, 2) are the radii and angular velocities of the respective cylinders.

The impulsively-started version of this problem can be solved analytically by

separation of variables (see Tranter, 1968; Graebel, 2007). The full solution can thus be

written as v
✓

(R, t) = v
✓,0 + ṽ

✓

(R, t), where the time-dependent part has the form

ṽ
✓

(R, t) =
X

{C2J1(nR) + C2Y1(nR)} e�⌫n

2
t,

and J1 and Y1 are Bessel functions of the first and second kind, respectively. This

time-dependent component is subject to the boundary conditions ṽ
✓

(R, t) = 0 at R1 and

R2, thus allowing us to eliminate C2:
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s

are the roots of the equation B1(nR) = 0 with B1(nR) ⌘ J1(nR)Y1(nR1)�

Y1(nR)J1(nR1). Finally, the coe�cients A
s

are determined by imposing the initial

condition ṽ
✓

= �v
✓,0 at t = 0. To solve for each coe�cient independently, the steady

state solution must be written in terms of a series expansion of v
✓,0 in the basis functions

B1(ns

R). After some algebraic manipulations, we obtain

v
✓,0(R) = ⇡⌦2R2

1X

s=1

J1(ns

R2)

J2
1 (ns

R1)� J2
1 (ns

R2)
B1(ns

R)

⇥

2

664J1(ns

R1)� J1(ns

R2)
⌦1

⌦2

R1

R2

3

775 ,

and therefore the time-dependent component is given by
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Figure 3.14.— A zoom showing the detailed mesh geometry around the inner boundary of

the circular Couette flow, at two di↵erent times. The left hand panel shows a close-up view

of the right panel of Fig. 3.13. The Voronoi faces that make up the cylindrical boundary

are created by close pairs of points, which either lie inside the solid cylinder (red) or on

the fluid side (black). The gray cells define the contact region of the fluid domain with

the cylinder; here the no-slip boundary conditions are imposed. An analogous geometry

applies for the outer cylinder. The panel on the right hand side shows the same region of

the computational domain at a slightly later time, when the mesh filling the fluid region

has started to react to the motion of the cylinder.
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Collecting these results, the complete expression for the time-dependent angular

velocity profile is

⌦(R, t) =
v
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R
� ⇡
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(3.64)

We realize the moving boundary conditions in the present case through special

Voronoi-cells with prescribed motion and boundary conditions, as described in Springel

(2010a). In the present case, we use two sets of mesh-generating points, each one

consisting of a series of outside-inside pairs located on either side of the boundary and

running parallel to it, so that two circular boundaries of radii R1 and R2 are defined

which can be made to rotate at angular frequencies ⌦1 and ⌦2, respectively. Note that

the only significant technical di↵erence between this problem and the preceding examples

is the way the boundary cells are prescribed to move; the rest of the numerical scheme

remains unaltered.

Figure 3.13 illustrates the geometry of the circular Couette flow, and our realization

of a suitable mesh in AREPO. Since the equations of motion are always solved in the

moving frame of the interfaces, there is no practical di↵erence between stationary and

moving boundaries when they are constructed as a part of the mesh. Figure 3.14 shows

an enlargement of the mesh at the boundary corresponding to the inner cylinder, which

is represented by a set of Voronoi faces that follow a circular path. Each one of these

Voronoi faces is defined by two mesh generating points located on either side of the face,

one of them outside the cylinder on the fluid side, the other inside the cylinder on the

side that does not contain fluid. The right-hand panel of Fig. 3.14 shows the same region

again, but at a slightly later time. This gives a sense of how the initial Cartesian mesh
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between the cylinders reacts to the fluid motion. Since the latter is azimuthal, the mesh

eventually develops an axial geometry, independent of the initially Cartesian setup.

Our numerical experiment for this setup has the following parameters. The initial

mesh as described in Figs. 3.13 and 3.14 contains 3,254 points, out of which 2,644 are

regular fluid cells, 250 are boundary fluid cells, 250 are solid boundary cells and 110 are

unused auxiliary cells that are only put in to fill up the total mesh area to an enclosing

rectangular shape, as presently required by AREPO. The radial distance between the

cylinders is spanned by 20 cells. The physical parameters of the Couette flow are

R1 = 1, R2 = 2.5, ⌦1 = 0.5, and ⌦2 = 0.1, with a dynamic viscosity coe�cient set to

µ = 0.005. In addition, since the flow is started from rest, the pressure and density are

taken to be uniform with values ⇢ = P = 1. Figure 3.15 shows the time evolution of the

angular velocity profile as it asymptotically converges to the steady state solution. The

agreement of the numerical data points with the exact analytic solution (Eq. 3.64) is

exceptional at all times.

Finally, we show in Fig. 3.16 the mesh geometry at the end of the calculation. Even

though we have started the calculation with an initially Cartesian mesh, the memory

of this geometry is lost during the calculation, and the mesh dynamically adapts to the

azimuthal flow structure present in this problem. The transition from a Cartesian grid

towards a cylindrical-like mesh can also be seen in the output sequence of the simulation

shown in Fig. 3.15, where the values of the radial position of the cells start to segregate

into a set of radial “bins”. The number of these radial clusters corresponds to the average

number of cells along the radial direction.

It is interesting to comment on the scatter of points – especially at the beginning of
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Figure 3.15.— Angular velocity profiles at di↵erent times for an impulsively started

Taylor-Couette flow. For seven snapshots at times t = 0.5, 20, 40, 60, 80, 100, and

120 we show the cell-centered values of ⌦, which are plotted as filled blue dots for all fluid

cells in the calculation. No binning or averaging has been performed. The clustering of

cell-center points as the system evolves is simply a consequence of the mesh adopting an

axial symmetry in an adaptive fashion. The dashed lines give the time-dependent ana-

lytic solution of Eq. (3.64) at the corresponding times. The numerical results are almost

indistinguishable from the exact solution. The red curve depicts the steady state solution

to which the time-dependent solution eventually converges.
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Figure 3.16.— Mesh geometry for the circular Couette flow towards the end of the numer-

ical integration. Even though we have started the calculation with an initially Cartesian

mesh, this structure is quickly lost in favor of an on average azimuthal mesh geometry.
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the simulation – as seen in the angular velocity profile of Figure 3.15. This is a reflection

of the challenging initial mesh geometry. Although high-order schemes – fifth or sixth

order – are not sensitive to the compliance of the mesh geometry with the flow, second

order schemes are. In this particular case, an axially symmetric mesh geometry would

be more suitable due to the characteristics of the flow. However, the main point of this

test is to show how the mesh responds to the evolution of the problem, achieving rough

axisymmetry despite the unfavorable initial setup.

As discussed by Springel (2010a), our moving Voronoi mesh technique needs a

“quality control” to keep cells su�ciently regular in order to avoid large errors in the

spatial reconstruction. However, this modification of the mesh motion comes at a price:

imagine a very strong compression along one direction (e.g. due to a very strong shock),

then the mesh cells will acquire locally a high aspect ratio, which our mesh-quality

control motions will try to eliminate, if needed by breaking the mesh symmetry (cell

shapes are made “round” through small transverse motions). This is what happens

when we start the Couette flow impulsively on a non-suitable mesh. The introduction

of asymmetries in the mesh can influence the flow, in particular in situations where

fluid instabilities develop (see the Kelvin Helmholtz instability test in Springel, 2010a),

where such asymmetric discretization errors can source growing perturbations. We note

however that also on regular Cartesian meshes similar “grid-sourcing” errors exists. It

appears unlikely that the poorer ability of the dynamic Voronoi mesh to maintain strict

mesh symmetry is particularly detrimental for physical applications.
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3.4.5 Flow Past a Circular Cylinder

We next consider the flow over a circular cylinder immersed in a wind tunnel. The

geometric setup of the problem is shown in Fig. 3.17. The flow comes from the left at a

fixed horizontal velocity U . The upper and lower boundaries are also kept at constant

velocity U . Far from the cylinder, at the right end of the computational domain, we

impose again an exit velocity U . The injection and exit regions are forced to have the

prescribed inflow and outflow mass fluxes at all times, something that we numerically

impose through small “bu↵er” regions as labeled in Fig. 3.17. For static Cartesian grids,

this bu↵er region does not need to extend more than one cell in the x-direction. However,

moving grids require not only the injection of momentum from the left, but also the

injection of new mesh-generating points, since the wind tunnel will otherwise produce a

depletion of cells at the left end as the mesh generating points drift to the right in the

direction of the flow. We address this issue by letting the mesh automatically generate

new cells through cell splitting, as already implemented in AREPO (see examples in

Springel, 2010a). In doing this, some attention must however be paid to guarantee that

the new cells reproduce the externally imposed inflow boundary conditions, which is

most easily achieved with a su�ciently broad bu↵er region on the left end of the wind

tunnel that covers the region where new cells are injected. Similarly, we employ the

ability of AREPO to automatically remove mesh cells to prevent them from piling up on

the right end of the wind tunnel. Altogether, we have created a wind tunnel that is filled

with a mesh that blows with constant velocity from left to right, in a quasi-stationary

state.
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Figure 3.17.— Geometry of our wind tunnel set-up with a circular obstacle.
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Figure 3.18.— Mesh near a circular cylinder inside a wind tunnel. The mesh contains

both stationary mesh-generating points (defining the solid cylinder and two layers of

cells used to create the cylindrical solid surface) and moving mesh-generating points (the

remainder of the grid). The upper panel shows the initial setup, which highlights the cells

representing the solid cylinder, and the two layers of fluid cells for which the equations of

hydrodynamics are solved as in a standard stationary mesh. The total number of cells in

the wind tunnel is 12, 478 (roughly 250⇥50). The perimeter of the cylinder is outlined by

30 cells, and its diameter is equivalent to eight cells across. The Voronoi faces in between

the red and grey cells define the boundary at which the no-slip condition is imposed. The

lower panel shows the same region at a later time. Whereas one layer of mesh-generating

points surrounding the cylinder has remained stationary, the rest of the background mesh

has moved downstream and transformed to a generic unstructured Voronoi mesh as it

moves along with the fluid.
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The other geometric parameters of the test problem we simulate here are the

diameter d of the cylindrical obstacle, the width W of the tunnel and its length L. We

have chosen W = 6.25 d and L = 5W = 31.25d , and have scaled all length units such

that W = 1.0. The flexibility of the Voronoi mesh allows us to easily embed a cylindrical

obstacle within the initially Cartesian background grid that fills the tunnel. Fig. 3.18

shows how we can tailor the mesh construction to reproduce the curved surface of the

cylinder, using techniques similar to those that we used for the circular Couette flow

problem.

The physical properties of the problem are primarily determined by the external

velocity of the flow, U , and the dynamic viscosity of the fluid µ. In our numerical

experiments we set the external flow velocity to U = 0.5, and combine this with constant

initial pressure and density (⇢ = P = 1). We take the fluid to be described by an ideal

gas equation of state with adiabatic index � = 5/3. The characteristic Reynolds number

of the problem can then be defined by

Re =
U d

⌫
=

U d ⇢

µ
(3.65)

where ⇢ might however vary in time and space since the flow is fully compressible.

We have performed several numerical experiments of this problem using the viscous

module added to AREPO. In each of these simulations, the Reynolds number is the only

relevant quantity being changed. This is accomplished by changing µ exclusively, while

keeping the other parameters fixed. Fig. 3.18 (upper panel) shows the initial setup for

all the runs, which consist of a circular cylinder plus a Cartesian background grid of

250⇥ 50 mesh generating points. The dynamic viscosity coe�cient µ takes five di↵erent

values: 2.5 ⇥ 10�2, 5 ⇥ 10�3, 2.5 ⇥ 10�3, 1.25 ⇥ 10�3 and 8.3 ⇥ 10�4. These values
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(a) Re = 2

(b) Re = 10

(c) Re = 20

(d) Re = 40

(e) Re = 60

Figure 3.19.— Streamlines for compressible gas flow around a cylinder at five di↵erent

Reynolds numbers, as labeled.
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correspond to Reynolds numbers of 2, 10, 20, 40 and 60.

For each one of the tests, we show the resulting streamlines at time t = 9.9 (or an

equivalent dimensionless time of t̄ = tU/d ⇡ 31.0) in Fig. 3.19. Below Re ⇠ 40, the

flow is steady and symmetric above and below the cylinder. As the Reynolds number

increases, the size of the wake behind the cylinder grows. Although in this example the

structure of the wake is poorly resolved, the increase in Re is accompanied by an increase

of vorticity confined within the wake.

Above Re ⇠ 40, the wake behind the cylinder starts to become unstable. This can

be clearly seen in the streamline pattern of the Re = 60 panel. As the wake becomes

unstable, the symmetry between the upper and lower portions of the domain is broken,

at which point the flow becomes unsteady, such that the streamlines are no longer a valid

representation of the Lagrangian trajectories of fluid parcels. This marks the onset of

the von Karman vortex street, and the eventual transition to fully developed turbulence.

To further illustrate the flexibility of the mesh construction in AREPO, we can repeat

this experiment with the mesh generating points set to remain static, thus recovering

an Eulerian grid code. In addition, we increase the resolution by a factor of four to

better resolve the wake behind the cylinder. In Fig. 3.20, we show the density contrast

for five di↵erent Reynolds numbers. For stationary flow, the density distribution traces

the streamline topology. At Re = 100, we can appreciate how the fully developed von

Karman vortex street looks for a compressible gas.
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Figure 3.20.— Density contrast of compressible flow past a cylinder at five di↵erent

Reynolds numbers, corresponding to Re = 2, 10, 20, 40, 100, from top to bottom. All five

numerical experiments were computed with a static Cartesian mesh at moderately high

resolution (1000⇥ 250), where the cell size is 1/32 of the cylinder’s diameter.
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3.4.6 Three Dimensions: Taylor-Couette Flow

Circular Couette flow is a stable, special case of the more complex and richer three-

dimensional Taylor-Couette flow (Taylor, 1923). Taylor found that when the angular

velocity of the inner cylinder is increased above a certain threshold, Couette flow becomes

unstable. After this transition, di↵erent states have been identified, the most famous of

which is the Taylor vortex flow, characterized by axisymmetric toroidal vortices. The

diversity of states for Taylor-Couette flow has been explored in the past, most notably

by Coles (1965) and Andereck et al. (1986). The latter work lists up to 18 di↵erent

flow regimes observed in flow between independently rotating cylinders. Its “Andereck

diagram”, which explores the stability of the Taylor-Couette problem for a variety of

Reynolds numbers, has become the standard benchmark for computational experiments

of flow between rotating cylinders.

Although the computational and experimental study of three-dimensional Couette

flow peaked during the 1980’s with the classical works of Andereck et al. (1986) and

Marcus (1984a,b), in recent years it has regained popularity (e.g. Dong, 2007; Avila et al.,

2008; Meseguer et al., 2009a,b) mainly driven by the experimental studies of magnetized

and unmagnetized rotating flows of Ji et al. (2001, 2006) and Sisan et al. (2004), which

have resulted in significant progress on the characterization of the magnetorotaional

instability (MRI; Balbus & Hawley, 1998) in the laboratory.

In this section, we briefly explore the evolution of Taylor-Couette flow on a moving

Voronoi mesh. Although the AREPO code is not specifically designed for problems with

symmetric geometries where static cylindrical meshes have proven to be more suitable,

we have included this test to emphasize that our method works in three dimensions in
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Figure 3.21.— Vertical slice of the three-dimensional Voronoi tessellation in Taylor-

Couette flow at the time Taylor vortices have developed. This same slice is used when

visualizing the v
x

,v
y

and v
z

fields (Fig. 3.22b and Fig. 3.23).
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an analogous way to the two-dimensional examples shown above. It is straightforward to

extend the two-dimensional Couette flow shown above to three dimensions using AREPO.

Since the mesh is obtained from a distribution of mesh-generating points, all that is

needed is to replicate the initial conditions shown in Figure 3.15 in the vertical direction

(about 80 times) to fill up a cubic box.

A standard validation for a Taylor-Couette simulation with azimuthal and axial

periodicity may include, for example (Avila, private communication): obtaining perfect

axial symmetry at low Reynolds number (i.e. circular Couette flow ), followed by

obtaining the first bifurcation to axially symmetric Taylor vortices, and by reaching the

second bifurcation to wavy vortices. These transitions occur sequentially as the angular

velocity of the inner cylinder is increased while keeping the outer cylinder stationary

(see the phase diagram of Andereck et al., 1986). However, it is not the purpose of this

section to explore these transitions exhaustively; we only want to show that the third

dimension works with our technique. We thus have focused on a particular configuration:

counter-rotating Taylor-Couette flow, for which it is easy to obtain axially symmetric

Taylor vortices (although these might relax back to Couette flow after several rotation

periods; e.g. Liao et al., 1999). Since a faithful comparison to the benchmark results

of Andereck et al. (1986), is out of the scope of this paper, we simply replicate the

geometry described in Fig. 3.13 in the vertical direction such that the computational

domain is now a cube of dimensions 6⇥ 6⇥ 6, with periodic boundary conditions in the

z-direction. The initially Cartesian mesh will eventually relax in all directions as the

flow evolves (Fig. 3.21). The cylinder is e↵ectively infinite, like in the two-dimensional

case, except that this time there is no imposed symmetry along the z-direction. We

choose the cylinder radii to be R1 = 1.0 and R2 = 2.5, just like in the 2D example, and
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1�

1�

(a) (b)

Figure 3.22.— a) Illustration of the three-dimensional flow between two independently

rotating cylinders. The figure shows a plane along the radial direction where the local

velocity field is evaluated. b) Velocity field in the y-direction between the cylinders for a

slice defined by y = 3 (i.e. along the diameter of both cylinders). For this particular plane,

v
y

is equivalent to the azimuthal velocity v
✓

. The color scale goes from v
y

= ⌦2R2 = �1.25

(blue) to v
y

= ⌦1R1 = 0.8 (red). This example shows that v
✓

is no longer independent of

z. Thus the two-dimensional solution of Eq. (3.64) is no longer valid.
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(a)

(b)

Figure 3.23.— Velocity structure of axisymmetric Taylor vortex flow at time t = 119 at

two di↵erent meridian planes separated by 90�. The poloidal velocity field (v
R

, v
z

) is color

mapped in the linear range [�0.08 (blue), +0.08 (red)], while the azimuthal field (v
✓

) is

color mapped in the linear range [�1.2 (blue), 0.6(red)]. The streamlines illustrate the

vector field in the poloidal plane, showing with clarity the nature of Taylor vortices.
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the respective angular velocities are ⌦1 = 0.8 ⌦2 = �0.5 (counterrotating). The dynamic

viscosity is µ = 0.005 and the fluid is started from rest with ⇢ = P = 1. The inner and

outer Reynolds numbers (Re
i

⌘ R
i

⌦
i

(R2 � R1)⇢/µ; e.g. Liao et al., 1999) are R1 = 240

and R2 = �375, respectively, where negative values indicate clockwise rotation.

The geometry of the problem is shown in Fig. 3.22a. A vertical slice is taken at a

time when the Taylor vortices have developed (the corresponding sliced mesh is shown in

Fig. 3.21). The azimuthal velocity on that slice shows deviations from the symmetry in z

present in the circular Couette regime (Fig. 3.22b). Looking at the poloidal velocity field

on that same slice (v
x

and v
z

in Fig. 3.23) one can appreciate, near the inner cylinder,

the circular vertical motion characteristic of the Taylor vortices. This type of flow starts

to develop at time t ⇠ 60 and remains essentially unaltered for several rotation periods.

At much longer time scales, the flow could presumably decay back to a two-dimensional

Couette flow as seen in the roughly similar test carried out by Liao et al. (1999), although

we restate that the physical parameters used here are not necessarily equivalent to those

in Liao et al. (1999) and Andereck et al. (1986).

In Figure 3.23, we show the velocity field of this Taylor-Couette experiment at time

t = 128 for two di↵erent slices of the volume: (a) along the x-axis, and (b) along the

y-axis (i.e. at 90� from the first slice). Except for the numerical noise, the two solutions

are nearly indistinguishable, evidence of a global axially symmetric Taylor vortex flow

(for a similar result, see Fig. 3 in Liao et al., 1999). Instead of taking velocity slices at

particular values of �, the axisymmetry can be tested further by directly averaging all

velocity components along the azimuthal direction. The averaging procedure retains

the flow morphology seen in Figure 3.23, without degrading it. We have measured

the variability of v
R

, v
�

and v
z

along the �-direction for di↵erent locations in the
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R-z plane. For each of these quantities, we find that the rms fluctuations represent

roughly ⇠ 10% � 15% of the average value in regions of velocity maxima/minima.

Most importantly, none of these fluctuations show systematic trends with the azimuthal

coordinate.

3.5 Concluding Remarks

We have presented a new numerical approach for solving the three-dimensional,

compressible NS equations on a dynamic mesh using the new astrophysical code AREPO.

This novel approach, an extension of the finite volume method, defines the computational

mesh as a Voronoi tessellation moving with the local flow. The advantages of using

a dynamic Voronoi mesh for transient and stationary flows under diverse boundary

conditions has been addressed. The implicit adaptivity of the quasi-Lagrangian

mesh elements, in addition to the well-behaved topological properties of the Voronoi

tessellation, ensure both geometric flexibility and low numerical di↵usivity. In addition,

the shock capturing, second-order-accurate finite-volume scheme implemented in the

rest-frame of each moving cell provides high accuracy.

We have described in detail the algorithm used to estimate the viscous di↵usion

of momentum across inter-cell boundaries. Our scheme produces smoothly varying

estimates of the viscous terms, resulting in accurate and stable solutions. The method

extends previously known finite-volume formulations of the NS equations with the

introduction of a new reconstruction scheme that represents a compromise between

the use of piece-wise constant gradients and fully consistent quadratic-reconstruction

schemes.
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For pure hydrodynamic flow, the CPU time consumption of our code per timestep

is typically quite a bit higher than for structured mesh codes or SPH codes, for the same

number of resolution elements (see Vogelsberger et al., 2012, for a detailed comparison

of CPU cost between AREPO and SPH). The additional computational time goes mostly

into the Voronoi mesh construction overhead, which is simply not needed by a structured

mesh code, and also into an enlarged computational cost for the flux computations.

The latter comes about because of a larger number of faces per cell (in 3D, there are 6

sides for a cubical cell, but for a 3D Voronoi mesh, we have of order ⇠ 12 sides for each

polyhedral cell). It is however important to note that other, problem-dependent factors

should be taken into account when assessing the performance in practice. For example,

if large bulk velocities are present, our method can take considerably larger timesteps

than a corresponding fixed mesh code. Also, because the advection errors are reduced

in our scheme, fewer cells are required to reach a given accuracy, so that our code can

then end up being computationally more e�cient. We also note that once self-gravity

is included (as in many of our primary target applications in astrophysics), the relative

speed di↵erence in the hydrodynamic part between the structured fixed mesh and our

moving Voronoi mesh becomes much less of an issue, because the cost of calculating

self-gravity su�ciently accurately for arbitrary geometries substantially reduces the

relative importance of the hydrodynamical cost.

As part of our study, we have verified the reliability of our new method through a

series of example calculations that range from simple flows with known analytic solutions

to traditional experiments of well-known quantitative behavior. The demonstrated

ability of the scheme to reproduce exact solutions as a function of time, even if the flow

is started impulsively from rest, is reassuring. These examples also show the flexibility
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of the scheme in the presence of di↵erent solid surfaces moving in diverse ways. In all

of these examples, the overall structure of the numerical scheme is identical, and the

boundary conditions are set solely by the prescribed motion of the surfaces, which consist

of controlled collections of Voronoi cells.

Although we have tested the performance of AREPO in configurations possessing a

high degree of symmetry, it is in complex asymmetric problems where the moving-mesh

approach would show all its power. The flexibility of the Lagrangian nature of the mesh

will allow us to simulate, for example, complex astrophysical objects where viscosity is

presumed to play a significant role. One such problem is the simulation of accretion

disks around young stars. Although angular momentum transport in accretion disks is

attributed to turbulence (most likely of magneto-hydrodynamic nature), this process

is usually modeled both analytically (e.g. Shakura & Sunyaev, 1973; Lynden-Bell &

Pringle, 1974; Pringle, 1981; Lin & Pringle, 1987) as well numerically (e.g. Kley & Lin,

1992; Masset, 2000; D’Angelo et al., 2002; de Val-Borro et al., 2006; Paardekooper &

Mellema, 2006; Mudryk & Murray, 2009, just to name a few) by laminar flow in the

presence of turbulent viscosity (Boussinesq approximation to eddy viscosity), due to

the computational cost of global models of magneto-hydrodynamic disks. This kind of

simulation would require further testing of the local and global conservation of angular

momentum in AREPO, specially when compared to schemes that solve for the evolution

of angular momentum directly (e.g. grid codes written in polar/cylindrical coordinates).

Such tests will be the subject of future work.

Another application of viscous flow is the plasma viscosity at galaxy cluster scales

(e.g. Sijacki & Springel, 2006). However, it is likely that in such systems viscosity, as

well as thermal conduction, is anisotropic (Braginskii, 1965; see Dong & Stone, 2009

109



CHAPTER 3. VISCOUS FLOW ON A MOVING VORONOI MESH

for an example). In such a case, the viscous stress tensor in Eq. (3.6) can be easily

generalized to include the up to seven independent viscosity coe�cients (Lifshitz &

Pitaevskii, 1981). It will be particularly exciting to couple the local anisotropy directly

to the magnetic field topology, with the latter calculated self-consistently using a recent

magnetohydrodynamics implementation in AREPO (Pakmor et al., 2011).

Its powerful flexibility will make AREPO an interesting code both for astrophysical

simulations of viscous flow, but potentially also in engineering applications where the

ability to cope with curved and moving boundaries is particularly attractive.

3.6 Appendix: Gradient Extrapolation Coe�cients

The extrapolation of the velocity gradients (e.g. Eq. 3.36) requires a numerical estimate

of the gradient matrix as well as an estimate for the time derivative of the gradient. For

the latter, the tensors A
↵�b

and B
↵�ba

are needed (Eq. 3.34). Both tensors depend on

the cell-centered scalar quantities as well as their gradients. The values of A
↵�b

are (e.g.

Toro, 2009)
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The tensor B
↵�ba

⌘ @
a

A
↵�b

= A
↵�b,a

(with a, b = x, y, z or 1, 2, 3 and ↵, � = 0, 1, 2, 3, 4)

has components:
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4

Planet-disk Interaction on a Freely

Moving Mesh

4.1 Introduction

Mesh-construction is a fundamental step in the process of solving sets of partial

di↵erential equations numerically. Although a mesh itself is an “extraneous” element to

the underlying equations of hydrodynamics (i.e., there is nothing in the theory that can

tell us which is the “correct” way to discretize space), a given choice of mesh can have a

significant impact on the results of a numerical experiment or numerical simulation. This

is of particular importance in astrophysics, where gas-dynamical flows are often far from

being entirely resolved and therefore sensitive to the physics at the resolution scale. In

practice, the choice of the mesh can have as much of an impact in the numerical result as

other elements of the computational methodology, such as the adequacy of the coordinate

frame used, the order-of-accuracy of the scheme, or even the additional sub-resolution



CHAPTER 4. PLANET-DISK INTERACTION ON A FREELY MOVING
MESH

models implemented. Given the degeneracy between the mesh and other “features” of a

numerical code, the choice of the optimal discretization approach (whether it is through

a grid-approach or a particle-based approach) tends to depend on the problem at hand.

Recently, moving-mesh methods for computational gas dynamics (Springel, 2010a;

Du↵ell & MacFadyen, 2011; but see also Borgers & Peskin, 1987; Trease, 1988; Dukowicz

et al., 1989), as well as novel mesh-less approaches like that of McNally et al. (2012b),

have been shown to be an interesting and powerful tool for studying high-mach-number,

large-dynamical-range astrophysical flows.

High-mach-number flows are computationally challenging for several reasons. The

most common complication is the so-called “high-Mach number problem” (Ryu et al.,

1993; Bryan et al., 1995; Feng et al., 2004; Trac & Pen, 2004). This problem manifests

itself when the kinetic energy density is much larger than the internal/thermal energy

density. Consequently a small fractional error in the velocity can translate into large

fractional error in temperature, eventually distorting the thermodynamic evolution of

the gas. Another problem is the strict limitation that the Courant time-step condition

imposes on high-velocity flows, which extends the computation time beyond practicality,

with the additional peril of excessive numerical noise accumulated over a large number

of integration time-steps.

One such system in which high-Mach number flows pose a serious computational

limitation is that of astrophysical accretion disks. In these systems, extremely small

Courant-limited time-steps are one of the greatest barriers to high-resolution simulations.

In addition, the physics of these systems usually evolves over many dynamical/orbital

times (hundreds, thousands or more), making simulation studies extremely expensive.
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The azimuthal Mach number of a disk is roughly the Keplerian speed divided by the

local sound speed M
�

⇠ v
K

/c
s

⇠ h, where the aspect ratio h of a thin disk is 0.01� 0.1 .

Thus, Mach numbers can reach values of several tens. The short time-steps implied by

these high-velocity azimuthal flows is one of the reasons that during the first decade of

modern computer simulations of accretions disks, most numerical experiments were run

in the “local” or “shearing sheet/box” (e.g., Hawley & Balbus, 1991; Hawley et al., 1995;

Stone et al., 1996) approximation of Goldreich & Lynden-Bell (1965) (see also Narayan

et al., 1987).

The importance and ubiquitousness of accretion disks in astrophysics has propelled

the development of several (magneto-) hydrodynamics codes specifically written for the

numerical evolution of global models of disks. Global disk simulations over hundreds of

orbits became feasible when the FARGO (Fast Advection in Rotating Gaseous Objects

Masset, 2000) algorithm was introduced. In this scheme, the logic of the shearing-sheet

approximations was applied to global simulations: i.e., the Euler equations are solved in

a non-inertial rotating frame. To first order, the disk is rotating at Keplerian speed, thus

the equations can be written in the local non-inertial frame and the Courant criterion

is thus based o↵ the deviation from the background velocity in this non-inertial frame,

and not o↵ the highly supersonic speed as measured from the inertial frame. Besides

the FARGO code, schemes like RH2D (Kley, 1989) RODEO (Paardekooper & Mellema,

2006), RAPID (Mudryk & Murray, 2009) and DISCO (Du↵ell & MacFadyen, 2013),

among others, have been tailored specifically for the solution of the Euler equations in

cylindrical/polar coordinates for supersonic Keplerian flow.

Some of these cylindrical-coordinate codes (e.g., RODEO) were specifically designed

to target the problem of planet-disk or satellite-disk interaction, namely, the tidal
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interaction between a disk and an embedded planet in Keplerian rotation. This

gravitational coupling between a planet and a gas disk has been studied in detail

theoretically Goldreich & Tremaine, 1979, 1980; Lin & Papaloizou, 1979, 1986a,b; Ward,

1986; Takeuchi et al., 1996; Ward, 1997; Tanaka et al., 2002 and more recently Rafikov

& Petrovich, 2012 and Petrovich & Rafikov, 2012) as well as computationally (e.g., Bate

et al., 2003; de Val-Borro et al., 2006; D’Angelo & Lubow, 2008, 2010; Dong et al.,

2011b,a; Du↵ell & MacFadyen, 2013).

Planet-disk interaction bears direct relevance to the early dynamical evolution of

protoplanets and proto-planetary systems, since it is the mechanism behind disk-induced

planet migration (e.g. Ward, 1986, 1997). The fully nonlinear integration of this problem

through numerical simulation is essential for understanding the gravitational coupling

between the planet and the surrounding disk, especially if the planet is to open a

gap. Gaps are not only important for the dynamics of planet migration, but they may

also provide morphological clues about the presence of young planets around stars in

observations of circumstellar disk. The existence of central cavities (Calvet et al., 2002;

Andrews et al., 2011) and even gaps (e.g., Espaillat et al., 2007) in gas disks, inferred

from both imaging and infrared spectroscopy, opens the tantalizing possibility that the

disk structure is being disturbed by an embedded planet. Observational e↵orts are

ongoing to directly detect the planets responsible for gaps and cavities (see, for example

Kraus & Ireland, 2012).

Although the process of gap-opening by a single planet in a circular orbit embedded

in a two-dimensional, isothermal disk is far too idealized to be a realistic model for

planet-disk interaction, it remains an important basic test for hydrodynamic codes. The

complexity of the non-linear interaction between a planet and a disk does not allow for
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traditional code verification (i.e. there is no known exact solution), but the number of

numerical experiments available in the literature allow for the very important task of

code benchmarking. Most notably, de Val-Borro et al. (2006) carried out an extensive

comparison of di↵erent grid-based and particle-based codes, identifying similarities and

disagreements between di↵erent numerical schemes of widespread use in computational

astrophysics. Along the lines of that code comparison project, we apply the moving-mesh

scheme to the problem of planet-disk interaction in the gap-opening regime.

In this work we use the code AREPO (Springel, 2010a) for the first time in numerical

experiments of planet-disk interaction. This problem has been studied in the low-planet

mass case by Du↵ell & MacFadyen (2012) using the structured moving-mesh code DISCO.

To our knowledge, an entirely freely moving mesh based on a Voronoi tessellation has

not been applied successfully before to the type of problem at hand.

Moving-mesh methods share some of the spirit of the FARGO scheme, which is to

solve the Euler equations in a frame moving with the local flow in order to bypass the

restrictions imposed by the Courant criterion. Of course, one important di↵erence is

that a code like AREPO does not assume a priori the geometry and magnitude of the

underlying density and velocity fields, and thus it becomes a quantity that varies from

cell to cell that needs to be updated at every time-step. The only robust way to enable

cells to move self-consistently and freely with the flow is to allow the distribution of

cells to determine the mesh-topology through an automated tessellation. Although the

Voronoi tessellation is not the only way to tessellate space (the Delaunay tessellation is

a popular approach in computational fluid dynamics) it is –to our knowledge– the only

one that changes continuously with the displacement of the generating points. This

allows for a quasi-Lagrangian interpretation of the tessellation: at high resolutions, each
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cell is a parcel of gas that follows the Lagrangian trajectories of the flow with a minimal

change of its gas content.

Code comparisons between di↵erent grid- and particle-based methods abound in

the astrophysics literature. Besides the aforementioned work of de Val-Borro et al.

(2006), many of these studies have been oriented toward the methods of computational

cosmology (e.g., Frenk et al., 1999; O’Shea et al., 2005; Heitmann et al., 2005; Agertz

et al., 2007). Recently, Vogelsberger et al. (2012), Sijacki et al. (2012) and Kereš et al.

(2012) carried out a comparison between smoothed particle hydrodynamics (SPH; using

the GADGET code, Springel, 2005) and the moving-mesh code AREPO for simplified

cosmological simulations as well as for idealized, isolated setups, isolating some of the

di↵erences and advantages moving-mesh codes have over the particle-based approach of

SPH.

Recently, some researchers have raised concerns and caveats about the negative

e↵ects of having a freely moving-mesh. Although there is important merit to

these concerns, we believe some of the limitations observed are exclusive to specific

hydrodynamical schemes of other tessellation codes and not inherent to moving-mesh

codes in general. In this work, we find that AREPO is qualitatively competitive with

polar grid codes in simulations of planet-disk interaction, and that there is no reason to

consider the moving-mesh approach as fundamentally ill-suited to capture di↵erentially

rotating flows accurately.
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Figure 4.1.— Evolution of a Voronoi mesh under di↵erential rotation supported by a

Keplerian potential (time increases left-to-right and top-to-bottom). The mesh-generating

points are initially positioned in a polar distribution (logarithmic spacing in radius), which

is roughly maintained. The color-filled cells correspond to set of cells tagged according

to ID number at time= 0(top left panel) and subsequently followed in time. The spatial

distribution of the tagged cells highlights the “quasi-Lagrangian” nature (Vogelsberger

et al., 2012) of the moving-mesh approach in the case of Keplerian shear.
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4.2 Numerical Experiments

4.2.1 Problem Setup

Hydrodynamic Equations. In this work we focus on the solution of the Euler

equations in two dimensions. In conservation-law form, these equations are:

@

@t
⌃+r · (⌃v) = 0 (4.1a)

@

@t
(⌃v) +r · (⌃v ⌦ v + P I) = �⌃

@�

@r
(4.1b)

Note that the gravitational potential on the right hand side of Equation 4.1b is included

as a source term. This is one of the di↵erences to some of the grid-based codes written

in cylindrical coordinates. In those coordinates, the Keplerian term can be included

directly into the conservation laws since the radial gradient can be written as a part

of the divergence term in the hyperbolic equations (see Kley, 1998; Paardekooper &

Mellema, 2006).

The fact that the gravity force is not included in a manifestly conservative

formulation into the Euler equations (however, see Springel, 2010a and Jiang et al., 2013

for alternative approaches to enforce a “flux-based” description of gravity) implies that a

gravitational time-step criterion must be considered in addition to the Courant-criterion

time step. This acceleration must be taken into account for cells to follow accurate

orbital trajectories (Figure 4.1). The bulk orbital motion of the cells is carried out by

a conventional kick-drift-kick (KDK) operator (e.g. Saha & Tremaine, 1992; Preto &

Tremaine, 1999) which “brackets” the hydrodynamical finite-volume operation (Springel,

2010a). Although the concept of symplectic integrators such as the KDK carries little

meaning when applied to non-reversible systems like compressible gas dynamics, it is
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nonetheless true that, in practice, time-symmetric integrators have superior performance

(in terms of energy and angular momentum conservation) than non-symmetric ones

even when integrating orbits of SPH particles (Springel, 2005). Note that Du↵ell

& MacFadyen (2011) use a Runge-Kutta (RK4) integration for the motion of the

mesh-generating points. Although the RK4 is more accurate than the KDK leapfrog,

it is well known to su↵er from severe secular e↵ects, while the leapfrog does not. If

the disk is going to be evolved for hundreds and thousands of orbits, the choice of the

mesh-drifting algorithm can be important.

Typically, the gravitational time-step will be shorter than the fluid frame Courant

time step for low resolution runs. For high resolution, the Courant-time step is expected

to dominate. This is because the orbital time-step should depend more weakly on

cell size than the signal-crossing time. For KDK integrators of particles in Keplerian

potential, about 50-100 time-steps should su�ce to capture the orbit accurately. The

acceleration time-step is always based on the local gravitational potential, such that it

adapts to the planet potential when close to it, and is modified if self-gravity is included.

As a result, AREPO could be more computationally expensive than the classic FARGO

scheme, because time-steps are allowed to become shorter than the fluid-frame Courant

time-step, and because the motion of the mesh needs to be solved for instead of being

prescribed. In addition, the mesh needs to be re-tessellated at every time-step. Note

that the concerns raised by Dong et al. (2011a) about the use of the fluid-frame Courant

time-step ignoring the gravitational influence of the planet in FARGO should not be an

issue in our case.
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Gravitational Potential. Following de Val-Borro et al. (2006), we represent the

star-planet system by an external, time varying potential:

�(r, t) = �GM⇤

|r| � GM
p

|r� r
p

(t)| +
GM

p

|r
p

(t)|3 r · rp(t) (4.2)

where the third term on the right hand side corresponds to the indirect term that results

from choosing the coordinate system to be fixed to the central star. The planet’s position

vector is

r
p

(t) = a
p

cos (2⇡ t/P
p

) x̂+ a
p

sin (2⇡ t/P
p

) ŷ , (4.3)

(with a
p

= P
p

= 1) i.e. the planet moves in a circular orbit around the star.

The direct term corresponding to the planet potential (second term on the RHS of

Equation 4.2) must be softened. We have chosen a spline-type gravitational softening for

the planet potential as is usually done in GADGET (Springel et al., 2001). The spline

softening ensures a smooth transition into the exact Newtonian potential at a finite

distance from the planet (2.8 times the gravitational softening parameter). In here, we

use a gravitational softening of ✏ = 0.03 (0.6 times the disk scaleheight at the planet’s

position) in agreement with the general setup proposed by de Val-Borro et al. (2006) (see

Dong et al., 2011a, for a discussion on the di↵erent types of softening and their e↵ects).

In the presence of the planetary potential, the evolution of the mesh deviates

from the nearly axially symmetric geometry of Figure 4.1 to one that adapts to the

density evolution of the disk under the tidal torquing of the planet. Figure 4.2 shows

the geometry of the mesh in our lowest resolution runs (see Section 4.2.2 below) for

two di↵erent mass ratios after 100 planetary orbits. In the small mass ratio run, the

distortion of the mesh is subtle but the characteristic spiral wake of the planet can be

identified in the mesh as an overdensity of Voronoi cells. The runs with larger mass
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ratios show a greater distruption to the original mesh; not only can one identify the

spiral wake, but also one can observe a cell concentration near the planet and a cell

under-density where the planet has cleared a gap. Outer concentrations produced by

vortex instabilities are also visible.

Boundary Conditions. One advantage of the moving-mesh approach is the extreme

flexibility for including moving boundaries within the computational domain (Springel,

2010a; Muñoz et al., 2013). The inner and outer boundaries of a circumstellar disc

can be constructed from collections of mesh-generating points describing concentric

cylinders/circles. These mesh-generating points move collectively, keeping the overall

shape of the boundary as the tessellation is updated. This type of concentric boundary

was already implemented in two- and three-dimensional simulations of a Couette flow

between concentric cylinders by Muñoz et al. (2013, Chapter 3 in this thesis).

At the inner (Rin = 0.25) and outer (Rout = 2.5) boundaries we impose reflective

boundary conditions (see Figure 4.3 for a detailed description). In this case, the primitive

variables in “outside” cell (e↵ectively treated as a ghost cell, although it exists within

the computational domain) are copied from the adjacent “inside” cell, except for the

velocity normal to the surface, which is reverted. The velocity gradients are kept the

same, thus the velocity normal to the surface goes continuously through zero at the face,

as required by reflective boundaries. The initial-value Riemann problem at this interface

is solved in the same way as in the rest of the domain. To minimize wave reflections o↵

the boundaries, we impose an absorbing layer or “wave-killing region de Val-Borro et al.

(2006) that extends from the inner radius up to R = 0.5 and from the outer radius down

to R = 2.1 thus reducing the self-consistent computational domain to the region between
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Figure 4.2.— Mesh geometry for two low resolution runs with mass ratios of µ = 10�4

(top panels) and µ = 10�3 (bottom panels). The insert in both rows shows a close-up to

the mesh in the region close to the planet. Black circles represent the Hill sphere in both

cases.
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those radii. The absorbing region is implemented by adding a relaxation-like source term

to the equations of motion, i.e.,

dX

dt
= �X �X0

⌧
⇥(R) (4.4)

where X represents each primitive or conservation variable, X0 is the reference value

(the initial condition) and ⇥(R) is a parabolic “ramp function” that vanishes at the edge

of the absorbing region.

This approach is similar in spirit to the perfectly matched layer (PML) of Berenger

(1994). In PMLs, the wave damping is obtained by modifying the equations of motions

with frequency-dependent terms. The evanescence of the waves is enforced by introducing

an artificial complex quantity into the dispersion relation of propagating waves, thus

causing exponential decay of their amplitude when needed.

Shear Viscosity. A novel approach to physical viscosity has been recently developed

by Muñoz et al. (2013, Chapter 3 in this thesis). This approach uses a new “hybrid

double-linear” reconstruction scheme to cope with the truncation errors of the complex

Voronoi cells while aiming to preserve the second order of the scheme in time and space.

This approach uses estimates for high-order derivates to capture the spatial variability

of the shear to overcome the di�culties that arise with a mesh where cells have irregular

shapes and arbitrary number of neighbours. With this approach, the time-centred

di↵usion fluxes can be estimated at each interface.

Equation of state Circumstellar discs are often assumed to have an irradiation-

dominated temperature structure (e.g. Chiang & Goldreich, 1997), and thus a non-

evolving temperature specified by T = T0(R/R0)�l. This is referred to as the “locally
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Figure 4.3.— Inner and outer boundaries (in red) for a two-dimensional circumstellar disk

simulation. The computationally active domain – contained within the two boundaries

– only represents a fraction of the disk, which is assumed to extend within the inner

boundary and beyond the outer boundary. A background Voronoi mesh is added beyond

the domain. The main purpose of these additional cells is to fill in the computational

box. However, in this example, the background cells are “dead” and are never updated.

A zoomed in portion of the mesh shows how each boundary is constructed using pairs

of mesh-generating points placed following two concentric circumferences. Locally, the

boundary is just one Voronoi interface and is, by definition, equidistant to both mesh-

generating points. This boundary separates the interior domain from the exterior domain.

The last interior cell and the first exterior cell are shown in gray. These cells are referred

to as “inside” cell and “outside” cell, respectively (see text). Boundary conditions are

imposed on the interface both at the moment of gradient estimation as well as after

quantity extrapolation (Springel, 2010a). The background cells (cross-hatched region),

although never updated, can be used as boundary values “at infinity” and used to solve for

the hydrodynamics quantities of the outside cells if these values cannot be fully determined

by the interior domain (see description of matching layer boundaries).
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isothermal” approximation, and l = 1 is a common choice (see Kratter & Murray-Clay

2011 for a discussion of the validity of this assumption). The disk aspect ratio varies

with radius as h = h
p

(R/R
p

)(1�l)/2, where R
p

is the radius of the planet’s orbit and h
p

is

the disk aspect ratio at that location. Thus, disks with l = 1 have constant aspect ratio

and disks with shallowed temperature profiles flare up with radius.

In shock-capturing Godunov schemes, this type of temperature structure requires

the use of an isothermal Riemann solver, (e.g. Balsara, 1994), although a common

shortcut is to run an adiabatic simulation with � = 1.001. In this work, we make use of

an iterative isothermal Riemann solver. For simplicity, we set the disk to have the same

temperature globally (i.e. l = 0). This approximation departs from the fiducial model of

de Val-Borro et al. (2006), which consisted of a locally isothermal disk of constant aspect

ratio.

4.2.2 Initial Conditions

All the simulations presented in this paper are carried out in units where G(M⇤ +M
p

) =

a
p

= 1 and thus P
p

= 2⇡, where M⇤ is the mass of the central object, M
p

, the planet mass,

a
p

the planet semi-major axis, and P
p

the planet’s orbital period. The planet-to-total

mass ratio is µ ⌘ M
p

/(M⇤ + M
p

). In addition, we choose G = 1, such that the star

and the planet masses are 1 � µ and µ respectively. This choice of units reduces the

relevant physical parameters of our simulations to two: the mass ratio µ and the shearing

viscosity ⌫.
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Surface Density Profile. Typically, the surface density in circumstellar discs

is modeled with a power-law profile (i.e. ⌃(R) = ⌃0(R/R0)�p ). Following de

Val-Borro et al. (2006) we choose our discs to have constant surface density (p = 0) of

⌃ = ⌃0 = 0.02M⇤/(⇡a2
p

), such that the enclosed mass at the planet position is ⇠ 2%

of the mass of the star (the disc is assumed to extend all the way to the star, beyond

the inner boundary). Note that real discs have steeper density profiles, �3/2 < p < �1

(Andrews et al., 2009).

Planet Mass. In the units used here, the planet and star masses are determined by a

single parameter µ. We have explored two values of µ: 10�3 and 10�4 (Table 6.1). For

a stellar mass of M�, these mass ratios correspond to the planet masses of Jupiter and

Saturn, respectively. Since simulations have been shown to develop numerical artifacts if

planets are added impulsively into the disc, we increase the planet mass from zero up to

M
p

slowly in time as (de Val-Borro et al., 2006):

M
p

(t) =

8
><

>:

M
p

sin2
⇣

⇡t

10P
p

⌘
t  5P

p

M
p

t > 5P
p

(4.5)

Temperature Structure. For simplicity, we use a globally isothermal equation of

state in all simulations unless stated otherwise. We use an exact (iterative) isothermal

Riemann solver (e.g, ) This implies that the disk aspect ratio (h ⇠ c
s

/v
k

) is not constant.

The

Orbital Velocity Profile. Our disc simulations are started from centrifugal

equilibrium and axial symmetry. From the Euler equations in cylindrical coordinates,
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the equilibrium and axisymmetry condition implies an azimuthal velocity that satisfies

v2
�

R
=

@�

@R
+

1

⌃

@P

@R
,

where the Keplerian term R(@�/@R) = v2
K

=
p
GM⇤/R is modified by a “pressure

bu↵er” term, resulting in an orbital velocity that is slightly sub-Keplerian (for c2
s

⌧ v2
K

)

v2
�

= v2
K

� c2
s

(l + p) , (4.6)

where the pressure bu↵er term comes from the initial temperature and density gradients:

@P/@R = (@P/@c2
s

)(dc2
s

/dR) + (@P/@⌃)(d⌃/dR). Since in this work we use an initially

constant surfance density and a globally isothermal equation of state, p = l = 0, so the

initial rotation curve is strictly Keplerian.

Initial Mesh. The setup of the initial mesh is entirely arbitrary, and can be chosen

according to the needs of the problem being simulated. Figure 4.4 shows a disk mesh

constructed from an initial polar distribution of mesh-generating points. After one

orbit, the mesh alignment has been removed, but the distribution of cells in the radial

direction is nearly preserved. Figure 4.5 shows a similar setup (the number of cells in

the innermost ring is the same as in Figure 4.4) but now the initial placement of the

mesh-generating points follows a cartesian grid. After one orbit, the mesh has relaxed,

and cells are roughly concentrated along di↵erent concentric rings. Polar-like meshes

have constant azimuthal resolution at all radii, which is useful for comparing to polar-grid

codes. However, cartesian like meshes preserve a near-constant cell size and cell aspect

ratio, which guarantees each cell to have a roughly constant number of neighbors and

not cell size asymmetry as in the polar-like case. Unfortunately, the cartesian grid with

linear reconstruction cannot capture well the axisymmetric motion of the fluid, and
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errors are seeded at the onset, regardless of the near axisymmetric distribution of cells

that can be reached at a later time. A third alternative, and the one we adopt as default

in our simulations, is to position the cells from the beginning as in the right panel of

Figure 4.4, i.e., to setup the initial distribution of mesh-generating points by creating a

set of concentric rings of constant separation in the radial direction. The same separation

is imposed between points in the azimuthal direction, thus keeping the aspect ratio and

cell size nearly constant throughout the computational domain.

4.3 Results

4.3.1 Surface Density Field

The perturbed surface density profile of the disc provides a qualitative means to asses

the relative performance of di↵erent numerical schemes. The key features on which we

base our comparison are the overall shape of the tidal wake launched by the planet, its

location with respect to the predictions of linear theory (Ogilvie & Lubow, 2002), and

how far from the planet the wake is damped. For the Jupiter-mass simulations, the

shape of the gap carved by the local deposition of angular momentum is an important

diagnostic for the accuracy and numerical di↵usivity of the code. In the code comparison

of de Val-Borro et al. (2006), the di↵erent numerical schemes di↵ered on the sharpness of

the gap, its degree of axisymmetry, its depth, the smoothness of the remaining material,

and the amount of gas retained around the orbit’s Lagrangian points after 100 or more

orbits.

Figure 4.6 shows the surface density field of the two inviscid fiducial simulations
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(a) (b)

Figure 4.4.— Low resolution example of a quasi-regular polar mesh. Left panel: polar

grid with logarithmic spacing in r and uniform spacing in � (128 azimuthal zones) that

guarantees a constant aspect ratio. The mesh is approximately polar, since all intercell

boundaries are straight lines and do not take any curvature into account. Right panel:

mesh topology at time t = 2⇡ (one orbit). In this case, the rough axisymmetry of the

mesh is preserved, due to the azimuthal motion of the gas, that does not disturb the

mesh-generating points in the radial direction. In this case, the mesh regularization

technique the cells per logarithmic interval in radius, maintaining the angular resolution

(128 azimuthal zones) at all radii.
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(a) (b)

Figure 4.5.— Similar to Figure 4.4 but with an initially cartesian distribution of mesh-

generating points. After the mesh has relaxed, the cells are roughly arranged along

concentric rings of similar width.
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Numerical experiment Physical parameters E↵ective azimuthal resolution

(label/radial zones) µ ⌫ N
�

(Rin) N
�

(R
p

) N
�

(Rout)

JUP 128 10�3 – ⇠ 90 ⇠ 360 ⇠ 890

JUP-VISC-A 128 10�3 10�4 ” ” ”

JUP-VISC-B 128 10�3 10�5 ” ” ”

JUP-VISC-C 128 10�3 10�6 ” ” ”

JUP 256 10�3 – ⇠ 180 ⇠ 720 ⇠ 1780

JUP-VISC-A 256 10�3 10�4 ” ” ”

JUP-VISC-B 256 10�3 10�5 ” ” ”

JUP-VISC-C 256 10�3 10�6 ” ” ”

JUP 512 10�3 – ⇠ 360 ⇠ 1440 ⇠ 3560

JUP-VISC-A 512 10�3 10�4 ” ” ”

JUP-VISC-B 512 10�3 10�5 ” ” ”

JUP-VISC-C 512 10�3 10�6 ” ” ”

NEP 128 10�4 – ⇠ 90 ⇠ 360 ⇠ 890

NEP-VISC-A 128 10�4 10�4 ” ” ”

NEP-VISC-B 128 10�4 10�5 ” ” ”

NEP-VISC-C 128 10�4 10�6 ” ” ”

NEP 256 10�4 – ⇠ 180 ⇠ 720 ⇠ 1780

NEP-VISC-A 256 10�4 10�4 ” ” ”

NEP-VISC-B 256 10�4 10�5 ” ” ”

NEP-VISC-C 256 10�4 10�6 ” ” ”

NEP 512 10�4 – ⇠ 360 ⇠ 1440 ⇠ 3560

NEP-VISC-A 512 10�4 10�4 ” ” ”

NEP-VISC-B 512 10�4 10�5 ” ” ”

NEP-VISC-C 512 10�4 10�6 ” ” ”

Table 4.1: Simulation parameters. For each planet mass (µ = 10�3 and µ = 10�4) we

vary resolution (in terms of the number of radial zones) and the viscosity coe�cient. The

di↵erent resolutions are N
R

= 128, 256 and 512 radial zones. The di↵erent viscosities are

⌫ = 10�4, 10�5 and 10�4 as well as runs not including explicit viscous terms. The bold

type-face denote the base of “fiducial” runs: an inviscid and a viscous (⌫ = 10�5) run for

each mass ratio at a resolution of N
R

= 128.
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(128 radial zones) for mass ratios of µ = 10�4 (Neptune-mass planet) and µ = 10�3

(Jupiter-mass planet) after 50 orbits. Although the disk is globally isothermal, and

therefore the precise locations in which the planet is torquing the gas distribution di↵er

from the case with a radial temperature gradient, qualitatively, we find agreement with

the known results in the literature. Roughly speaking, according to the gap-opening

criterion of Lin & Papaloizou (1993), Jupiter-mass planets are expected to clear gaps

in a few tens of orbits, Neptune-mass planets are not. According to Lin & Papaloizou

(1993), a planet of mass M
p

will open a gap in the disk if

M
p

> Mth ⌘ c3
s,p

⌦
p

G
. (4.7)

For the parameters used in the present work, the so-called thermal mass Mth is

⇠ 1.25 ⇥ 10�4, which is slightly above the Neptune-mass planet (M
p

= 10�4) and eight

times smaller than the Jupiter-mass planet (M
p

= 10�3). For further discussion of

gap-opening and its dependence on resolution and viscosity coe�cient, see Section 4.3.2

below.

For easier comparison with earlier work, we have applied a coordinate transformation

to the cell coordinates and converted the density field from the x-y plane into the R-�

plane. In Figure 4.8 we show the two fiducial inviscid simulations in polar coordinates,

with color scale limits matching those of de Val-Borro et al. (2006) and using a similar

color table. In addition, Figure 4.8 includes the shape of the planetary wake derived in
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the linear regime by Ogilvie & Lubow (2002) 1 .The tidal wake excited by a planet in

a disk is a result of sound waves excited by a perturber moving at supersonic speeds

and it arises as the superposition of all harmonics In the linear regime, the wake profile

asymptotically reaches a stationary profile (Narayan et al., 1987; Rafikov & Petrovich,

2012) as a result of and its is proportional to the planet mass (e.g. Dong et al., 2011b;

Rafikov & Petrovich, 2012). Like sound waves, these linear waves are non-dispersive.

However, as their amplitude grows, and unless di↵usion mechanisms (either physical or

numerical) damp them first, these wakes inevitably steepen and become double-valued

(Goodman & Rafikov, 2001; Rafikov, 2002). For large enough planets, the wake steepens

into a shock close to the planet, depositing angular momentum locally (Goodman &

Rafikov, 2001; Rafikov, 2002). This process is ultimately what causes the opening of

a gap in the vicinity of the planet (Lin & Papaloizou, 1986b). Once there is a gap

present, the gravitational coupling between the disk and the planet cannot be calculated

in the linear regime assuming a uniform background density, since this will lead to

erroneous estimates of the angular momentum flux (Petrovich & Rafikov, 2012). Not

only does the torque in gapped systems di↵er from the original calculation of Goldreich &

Tremaine (1979) but also the shape of the tidal wake di↵ers. While in the Neptune-mass

simulations the gap is not deep enough to significantly alter the shape of the wake

compared to the theoretical results in the linear regime (Figure 4.8, left panel), the

1The location of the planetary wake, for Rp = 1, is given by

�(R) =

8
>>>><

>>>>:

2⇡(t/Pp)�
2

3
h

�1

 
R

3/2 � 3

2
lnR� 1

!
+ ⇡ R < 1

2⇡(t/Pp) +
2

3
h

�1

 
R

3/2 � 3

2
lnR� 1

!
+ ⇡ R > 1 .

with h = hp(R/Rp)1/2, where hp = 0.05.
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Jupiter-mass runs (Figure 4.8, right panel) show an evident mismatch between the

theoretical wake position and the actual density maxima of the wake.

Note that in the globally isothermal case, the location of the Lindblad resonances

are di↵erent from those in a disk with a radial temperature gradient; in the present case,

the spiral wake is less tightly wound than in the setup of de Val-Borro et al. (2006),

which uses a T / R�1 temperature profile.

The surface density field in polar coordinates emphasizes the departure from axial

symmetry of the density gap cleared by the Jupiter-mass planet (Figure 4.8, right panel).

This is something to be aware of in moving-mesh codes, which are known to develop

morphological asymmetries faster than fixed grid codes (c.f. Springel, 2010a). The

early development of asymmetries during the growth of instabilities can be caused by

general features of grid codes, not exclusive to moving-mesh codes. The main known

cause of the numerical seeding of asymmetries in initially symmetric initial conditions

is the not-so-often-discussed “grid noise”. The location of cell centers as well as of face

centers are also subject to roundo↵ error, ultimately a↵ecting the evolution of the fluid

quantities. In moving-mesh codes, grid noise can have an even greater relevance, since it

is not only determined by round-o↵s, but also by truncation error in the mesh-drifting

algorithm, since the location of the mesh-generating points is evolved to finite accuracy.

AREPO updates the mesh-generating points using a leapfrog integrator, which should

amplify the noise in the grid compared to static grid codes. Sophisticated methods to

limit grid noise employ structured and symmetrized methods for evolving the di↵erent

dimensions in multi-dimensional flows. Codes than implement “symmetric sweeping” of

the grid faces to preserve the symmetries of the flow to greater accuracy (cf. the examples
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Figure 4.9.— Surface density field for the fiducial inviscid Neptune-mass simulation at

four di↵erent times: 20, 40, 60 and 80 orbits. The coordinate axes and color key (not

shown for clarity) are identical to those of Figure 4.8 (left panel). The black dashed line

corresponds to the theoretical position of the tidal wake in the linear regime and assuming

a uniform background density. The density field outside the planet’s coorbital region is

nearly stationary for several tens of orbits.

144



CHAPTER 4. PLANET-DISK INTERACTION ON A FREELY MOVING
MESH

Figure 4.10.— Similar to Figure 4.9, but for a Jupiter-mass planet. The coordinate axes

and color key (not shown for clarity) are identical to those of Figure 4.8 (right panel). The

black dashed line corresponds to the theoretical position of the tidal wake in the linear

regime and assuming a uniform background density. In contrast with the Neptune-mass

case (Figure 4.9), the density field shows variability over long (⇠ tens of orbits) and short

(. 1 orbit) timescales.
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of oblique 2-D shock tubes in ATHENA; see also Sijacki et al., 2012). For discussions on

symmetric sweeping we refer the reader to Aloy et al. (1999) and Sutherland (2010).

Minimizing grid noise by mechanisms analogous to symmetric sweeping does not seem

feasible for unstructured moving meshes, in which there is no ordered list of cell faces

nor a constant number thereof.

Although the amplification of asymmetries in the flow can be favored by a

moving-mesh, those are not generated by the mesh itself in our planet-disk interaction

simulations. To test this, we compare the density field in our fiducial inviscid simulations

(NEP 128 and JUP 128) at di↵erent times, looking for transients. In Figure 4.8, the

density field of the Neptune-mass simulations is shown for four di↵erent times (20, 40,

60 and 80 orbits). Aside from a gradually carved shallow gap, the background density

is nearly stationary over a period of 100 orbits, with no sign of instabilities or transient

over-densities. Figure 4.10 shows the density field at 20, 40, 60 and 80 orbits for a

Jupiter-mass planet In this case, the density field outside the gap shows variations

that can be of the order of the density peaks associated to the spiral wake.The nearly

stationary density field developed by the fiducial Neptune-mass run in the planet’s

rotating frame shows that the development of strong density bumps and vortices outside

the gap in the Jupiter-mass case is not a feature of AREPO but a consequence of the

large gap carved by the planet.

We conclude that the sensitivity to the development of asymmetries does not

arise spontaneously in AREPO, but only in hydrodynamicaly unstable regimes. The

importance of the preservation of symmetries (which do not occur in nature) well into the

non-linear regime in an unstable configuration is a matter of debate among researchers

(e.g., McNally et al., 2012a). Although we do not believe it is a critical component of
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a hydrodynamical scheme, future work should address pathological cases in which grid

noise might a↵ect the convergence rate in a code like AREPO.

The transient features observed in Figure 4.10 but entirely absent in Figure 4.9

correspond to the “edge instabilities” observed previously in numerical simulations by

Koller et al. (2003),Li et al. (2005) and de Val-Borro et al. (2006). These edge e↵ects are

usually associated with vortices right outside the gap (de Val-Borro et al., 2007; Lyra

et al., 2009) as can be corroborated by the absolute vorticity field shown in Figure 4.11

(right panel), which shows a local vorticity maxima with the greatest deviation from

axisymmetry at the gap edge (see Figure 4.8, right panel). In contrast, the perturbations

to the disk vorticity field exerted by a Neptune-mass planet at the fiducial resolution

are very small (Figure 4.11, left panel), which is consistent with the lack of transients

observed in the density field in the same simulation (Figure 4.9).

The formation of large vortices in disk simulations can have large e↵ects on the

evolution of planets. On one hand, the vortices themselves can exert bursty or oscillating

torques on the planet on timescales of order the orbital time. For example, in the

numerical study of Li et al. (2005), the authors argue that this oscillating nature of

torques can reverse the direction of planet migration. On the other hand, vortices

themselves favor the planet-forming process, since anticyclonic vortices in disks have

been found to favor the concentration of dust particles (e.g. Barge & Sommeria, 1995).

We will explore the vorticity structure of disks with gaps in Section 4.3.3.
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Figure 4.12.— Vorticity evolution for the Jupiter-mass simulations over short timescales.

149



CHAPTER 4. PLANET-DISK INTERACTION ON A FREELY MOVING
MESH

F
ig
u
re

4.
13
.—

T
op

p
an

el
:
az
im

u
th
al
ly

av
er
ag
ed

su
rf
ac
e
d
en
si
ty

p
ro
fi
le

fo
r
th
e
in
vi
sc
id

fi
d
u
ci
al

si
m
u
la
ti
on

w
it
h
µ
=

10
�
4
at

th
re
e
d
i↵
er
en
t
ti
m
es

(1
0,

50
an

d
10
0
or
b
it
s)
.
B
ot
to
m

p
an

el
:
sa
m
e
as

to
p
p
an

el
b
u
t
w
it
h
µ
=

10
�
3
.

150



CHAPTER 4. PLANET-DISK INTERACTION ON A FREELY MOVING
MESH

4.3.2 Surface Density Profile and Gap Opening

Figure 4.13 shows the evolution of the (azimuthally averaged) surface density profile

for the Neptune-mass (top panel) and Jupiter-mass (bottom panel) planets, showing

how a shallow gap is carved in the former case, and a deep gap in the latter. In the

Neptune-mass case, the density field shows a dip within the coorbital region of about

40% of its initial value. This deficit increases to over 90% in the Jupiter-mass case after

100 orbits. Outside the gap, the background flow in the Neptune-mass case is solely

disturbed by the spiral wake launched by the planet at the Lindblad resonances; the

averaged density field, however, is barely disturbed. The Jupiter-mass planet, on the

other hand, does alter the background mean flow significantly, in part owing to the

larger amplitude of the spiral wake (in the linear regime, the amplitude of the wake is

proportional to M
p

) and to the density bump caused by material being displaced from

the coorbital region. Indeed, a significant part of the mass in the coorbital region is

relocated right outside the gap edge. This density increase can be very important for the

development of vortices in the disk (e.g., Lovelace et al., 1999; see Section 4.3.3). This

flow of mass out of the coorbital region can, in principle, go into the wave absorbing

region, which will damp out the overdensity, which will violate mass conservation and

translate into a mass loss rate (see de Val-Borro et al., 2006). Since mass loss seems to

occur in our Jupiter-mass run, which shows a density bump both at the interior and

exterior edges of the gap at early times, but only a density bump at the exterior edge at

later times. Higher-resolution runs show that a density maximum should also form close

to the edge of the wave-absorbing region.

These results are in agreement with the “thermal criterion” of Equation 4.7, which
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state that our Jupiter-mass simulations should open a gap while the Neptune-mass runs

should not. However, the thermal criterion has been questioned by recent evidence of

planets with masses smaller than the thermal mass being able to open gaps (e.g. Dong

et al., 2011a; Du↵ell & MacFadyen, 2012; Zhu et al., 2013). An indication of this can be

seen in Figure 4.14, where upon increasing the resolution of the inviscid Neptune run

(top row, left-to-right), the gap carved by the planet is deeper and sharper at the edges.

The objections to the thermal criterion were raised by Goodman & Rafikov (2001)

(see also Rafikov, 2002), whose calculations showed that the local deposition of angular

momentum from the launched waves onto the disk that causes the clearing of the gap

happens more e�ciently if these waves shock at a finite distance from the planet xsh:

|xsh| ⇡ 0.93

✓
� + 1

12/5

M
p

Mth

◆�2/5

H
p

. (4.8)

Evidently, wave steepening depends on grid resolution, thus for inviscid simulations,

the gap shape and depth will depend on whether the angular momentum is injected into

the disk by shock dissipation or by a viscous-like dissipation onto the computational grid.

For the isothermal (� = 1) examples shown here, and recalling that the

planet mass in the Neptune case is M
p

= 4/5Mth, the shock distance given by

Equation 4.8 is |xsh| ⇡ 1.09H
p

⇠ 0.055. For the Jupiter case (M
p

= 8Mth), we have

|xsh| ⇡ 0.44H
p

⇠ 0.022. Note that, in the vicinity of the planet, the radial extent of a

Voronoi cell at t = 0 is 1.8 ⇥ 10�2, 9.0 ⇥ 10�3 and 4.5 ⇥ 10�3, for N
R

= 128, 256 and

512 respectively. Therefore, the shock distance is not resolved whatsoever for the lowest

resolution runs. Furthermore, the shock distance for the Jupiter-mass case is smaller

than the gravitational softening used in our simulations (as in those by de Val-Borro

et al., 2006), thus the precise gap-opening mechanism cannot be adequately captured
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in these simulations. We remind the reader that de Val-Borro et al. (2006) chose the

softening parameter of " = 0.06H
p

based on the mimicking of the saturation of the

torques in three dimensions that this choice provides.

Viscosity (or viscous-like numerical di↵usivity) not only a↵ects the mechanism by

which gaps form, but also a↵ects the long term balance between the tidal torque and the

viscous torque (Crida et al., 2006, 2007). Balancing the angular momentum flux of these

two competing e↵ects, Zhu et al. (2013) find a “viscous criterion” of the form

✓
M

p

M⇤

◆2

&
10⌫H3

p

R5
p

⌦
p

, (4.9)

which, for the disk parameters of this work, reduces to M
p

/M⇤ &
p
1.25⇥ 10�3⌫. This

inequality means that the critical mass ratio µ ⇡ M
p

/M⇤ should be above ⇠ 1.11⇥ 10�4

for a viscosity coe�cient of ⌫ = 10�5, i.e., the Neptune-mass case is again border-line

capable of opening a gap. For the other viscosity coe�cients we have experimented with

in this work, 10�4 and 10�6, we find that M
p

/M⇤ must be greater than 3.5 ⇥ 10�4 and

3.5 ⇥ 10�5 respectively. Therefore, with ⌫ = 10�4, gap formation should be suppressed

for the Neptune-mass planet and significantly a↵ected for the Jupiter-mass planet. With

⌫ = 10�6, both the Neptune-mass and the Jupiter-mass planets should be able to open

partial or full gaps, provided numerical di↵usion is less important than the physical

viscosity (Figure 4.14 and Figure 4.15).

Unless physical viscosity is included in this kind of problem, the result of numerical

simulations should be expected to converge slowly. If the clearing of a gap is indeed

determined by local deposition of angular momentum due to the shock dissipation

of waves, very high resolution is needed to properly capture the shape of the tidal

wake and its steepening(cf. Dong et al., 2011b,a). If the steepening of the wake is
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Figure 4.14.— Surface density fields for Neptune-mass (µ = 10�4)simulation with di↵erent

resolutions (for di↵erent columns) and physical viscosity coe�cients (for di↵erent rows).

First, second and third column have 128, 256 and 512 radial zones respectively. First row

corresponds to inviscid (i.e., no explicit viscosity terms) runs; second, third and fourth

row have viscosity coe�cients of ⌫ = 10�4, 10�5 and 10�6 respectively.
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Figure 4.15.— Same as Figure 4.14 but for a Jupiter-mass planet (µ = 10�3).
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not resolved, the deposition of angular momentum in the coorbital region is likely to

be dominated by di↵usion onto the grid, thus mimicking the linear damping of waves

described by Takeuchi et al. (1996). In Figures 4.14 and 4.15, the shape of the gap shows

a qualitatively rapid convergence for the viscous simulations. The inviscid simulations,

in contrast, show no converging trend. In addition, a small enough softening parameter

is needed, such that the shock takes place at a distance from the planet where the

gravitational potential due to it is truly Newtonian (Dong et al., 2011b,a).

Figure 4.16 shows the azimuthally-averaged surface density field for the inviscid

(top panel) and the viscous (bottom panel) Neptune simulations after 100 orbits for

three di↵erent resolutions: N
R

= 128, 256 and 512. The surface density profiles include

a 1-� contour to quantify the degree of axisymmetry in the disk. As suspected already

from the two-dimensional density contours (Figure 4.14), there is no convergence in the

inviscid simulations, while very good consistency is found in the viscous runs across the

di↵erent resolutions, in addition to uniformity in the azimuthal direction. Interestingly,

the greatest deviation in the inviscid runs comes from the region of the disk interior to

the planet, a possible indication that the azimuthal resolution of the fiducial simulations

in that region is too poor to capture the density evolution adequately (recall that our

runs have a varying number of azimuthal zones with radius).

Similarly, Figure 4.17 shows the azimuthally-averaged surface density profile for

the Jupiter-mass simulations. In the inviscid case, the edge instabilities cause much

wilder variations than in the Neptune analog. As in the inviscid Neptune-mass case, the

inviscid Jupiter-mass runs show greater variability in the inner region as resolution is

increased. In the viscous case, the flow is smoother and deviations from the azimuthal

mean are smaller, although the 1-� contours still show broader scatter than the Neptune
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case. In addition, convergence shows a slower trend than in the viscous Neptune case.

This is probably due to the fact that the edge instabilities are not entirely suppressed by

a viscosity of ⌫ = 10�5, and that the gap is deep enough to make the instability e↵ective.

By comparison, the very viscous runs (⌫ = 10�4) shown in Figure 4.15 (second row from

the top) show an even greater degree of smoothness, and no evident dependence on

resolution.

These results allow us to compare, at least qualitatively to the code comparison

project of de Val-Borro et al. (2006), even though our setup is not identical (we have

run globally isothermal simulations). Our results show broad consistency with the grid

code output, and bear no resemblance to SPH results. This is a natural consequence of

AREPO being a grid code, and that the quasi-Lagrangian nature of the moving-mesh

scheme implies by no means behavior similar to SPH. One di↵erence between our AREPO

runs and the grid code simulations of de Val-Borro et al. (2006) is the the large peak

in ⌃ at R = 1 in Figure 4.17 for both inviscid and viscous runs, which is due to the

very high density of gas at the planet position. This e↵ect appears to be enhanced

with increasing viscosity. Since high-viscosity runs (e.g. second row from the top in

Figure 4.15) suppress the formation of deep gaps, the gas supply onto the planet is not

halted and thus accretion can proceed sustainedly. This accretion of gas translates to a

high concentration of cells within the planet’s Hill sphere (Figure 4.18).

Interestingly, this property of moving-mesh schemes opens new possibilities to

overcome the strict resolution requirements imposed by the detailed hydrodynamics of

gap clearing. For example, Figure 4.18 shows a high concentration of cells close to the

planet, which allows for the study of circumplanetary disks within global circumstellar

disk simulations, combining a coarse large scale disk, with a very high resolution Hill
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sphere region, thus concentrating all the computational power in the regions of interest.

Similarly, Figure 4.18 shows how the spiral wakes also concentrate a larger number of

cells than the background flow. This property of moving-mesh methods can provide an

alternative to the extremely high resolution studies that have been carried out by Dong

et al. (2011b,a) and Du↵ell & MacFadyen (2012) concentrating the resolution elements

specifically where the wake is.

Although all the simulation presented in this work make use of global time-steps,

the possibility of studying circumplanetary disks in the future with AREPO will make

it necessary to separate the domain time-steps as described by Springel (2010a), thus

making calculations more e�cient as well as avoiding the accumulation of truncation

error by integrating at time-steps well below the Courant criterion. Indeed with global

time steps, unless derefinement is allowed within the Hill sphere (for example, imposing

a minimum cell volume), the small cells that can be seen at the planet location make

the computation unjustifiably expensive for the resolution of the global disk. In the

Jupiter-mass case, the Hill radius is (µ/3)1/3 ⇠ 0.07, corresponding to 4, 8 and 16 cells

across at t = 0 for the runs with N
R

= 128, 256 and 512 respectively. However, after 100

orbits, the Hill sphere can have up to 200 cells across in the viscous run with ⌫ = 10�5

and N
R

= 512. If the entire simulation had been run with a globally uniform cell size

like that obtained within the Hill sphere, the number of radial zones would have been

N
R

= 6500, a resolution comparable to the one used by Dong et al. (2011b,a) and Du↵ell

& MacFadyen (2012).
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4.3.3 Vortensity Field

Figure 4.11 shows the dramatic di↵erence in absolute vorticity (i.e., the vorticity

measured in the inertial frame) between a gapped and an non gapped disk. The local

maxima in vorticity in the Jupiter-mass simulation are found at the edge of the gap, and

are thus associated with peaks in the density and pressure profiles.

Pressure bumps are a known cause for a hydrodynamic instability in Keplerian

disks known as the Rossby wave instability (RWI; Lovelace et al., 1999; Li et al., 2000,

2001; Tagger, 2001), an e↵ect that eventually saturates into vortices. Thus, provided the

pressure bump associated with the presence of a gap is large enough (Li et al., 2000),

the presence of vortices at the edge of gaps is to be expected in low-viscosity planet-disk

interaction simulations (see de Val-Borro et al., 2007; Lyra et al., 2009). Thus, the

steeper the variation in density at the edge of the gap (see Figure 4.17, top panel) the

easier the formation of vortices.

Lovelace et al. (1999) and Li et al. (2000) found that a Keplerian disk is unstable to

azimuthal perturbations when the following quantity reaches a local extremum

L(R) ⌘ F(R)(P⌃��)2/� .

In a barotropic disk, F(R) = ⌃⌦�2, where ⌦ is the orbital angular velocity and

 = [R(d⌦2/dR) + 4⌦2]1/2 is the epicyclic frequency, which can be related to the

z-component of the vorticity for axisymmetric flow by !
z

= (1/R)@(R2⌦)/@R = 2/(2⌦).

Therefore, for the globally isothermal case (i.e., � = 1)

L(R) / ⌃

2!
z

=
1

2⇣
(4.10)

where ⇣ ⌘ !
z

/⌃ is the vortensity or “potential vorticity” of the disk. Equation 4.10
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implies that local extrema in the radial vortensity profile can trigger the RWI. A

saturated RWI should be very e�cient at destroying the extremum in vortensity (e.g.

Meheut et al., 2010), however, the presence of a massive planet can replenish the density

bump observed in Figure 4.17, enabling a sustained production of vortices (Lyra et al.,

2009).

Creation of vortices outside the density bump by virtue of a saturated RWI is not

the only mechanism to generate non-axisymmetric vortical structures. Let us recall

that barotropic Rossby waves conserve vortensity along Lagrangian trajectories of fluid.

Indeed, one can combine Equations 4.1a and 4.1b into a single equation for vortensity

@

@t

⇣!
z

⌃

⌘
+ v ·r

⇣!
z

⌃

⌘
=

r⌃⇥rP

⌃3
, (4.11)

which implies that D(⇣)/Dt = 0 for barotropic disks. However, a way to “produce”

vorticity directly is by means of oblique shocks, even in barotropic fluids (Truesdell, 1952;

Kevlahan, 1997). This mechanism is suggested by Lin & Papaloizou (2010) to produce

sharp vortensity rings caused by the spiral waves launched by the planet. According to

Lin & Papaloizou (2010), these vortensity rings are dynamically unstable, and saturate

into vortices within the coorbital region, which can scatter o↵ the planet, causing rapid

migration events in what is one version of the so-called runaway, or Type III migration

(see also Masset & Papaloizou, 2003; Artymowicz, 2004; Papaloizou, 2005)

Figure 4.19 shows the vortensity field of the fiducial (N
R

= 128) inviscid runs in

the frame rotating with the planet divided by the vortensity field at t = 0. The left

panel shows the vortensity for the Neptune-mass run while the right panel shows the

vortensity for the Jupiter-mass runs. Since our simulations are run using an inertial

reference frame, we obtain the absolute vorticity r ⇥ v directly from the interpolated
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velocity field. In order to obtain the relative vorticity (i.e., the vorticity as seen in the

frame rotating with the planet) we simply subtract 2⌦
p

, i.e., the vorticity associated

with the background flow:

⇣ 0 =
r⇥ v0

⌃
=

r⇥ v � 2⌦
p

k̂

⌃
. (4.12)

Since we are now measuring derivatives of the primitive quantities of the flow, it is

expected that the vorticity field will converge more slowly than the density field (AREPO

uses a linear reconstruction strategy).

Figure 4.19 shows some di↵erences with respect to the sharper vortensity results of

other cylindrical grid codes shown by de Val-Borro et al. (2006). Indeed, the vortensity

peaks near the edges of the partial gap present in the Neptune simulations are shallower

in our example. In addition, we see less structure within the gap. The Jupiter run,

on the other hand, does show a sharp transition in vortensity across the edge of the

gap, and succeeds in capturing the vortensity “islands” at the L4/L5 Lagrangian points,

which is not achieved by all codes. Also, the vortensity field is devoid of reflections

from the boundaries, which shows that our absorbing boundary condition is e↵ective at

eliminating such artifacts. Some di↵erences include the saturation of some of the contours

in de Val-Borro et al. (2006) at the lower end of the color range (log10(⇣
0/⇣ 00) = �0.5)

where vortices form outside the gap, an e↵ect that is more subtle in the right panel of

Figure 4.19. By contrast, the vortensity contours in our run saturate at the upper end of

the color range (log10(⇣
0/⇣ 00) = �0.5) close to the planet, an e↵ect that is not seen in the

results of de Val-Borro et al. (2006), and which we attribute to the increased resolution

close to the planet that the moving mesh allows.

To test how converged the results of Figure 4.19 are, we calculate the normalized
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vortensity field ⇣ 0/⇣ 00 for three di↵erent resolutions in the inviscid Neptune, the viscous

Neptune, the inviscid Jupiter and the viscous Jupiter cases. The normalized vortensity

fields are shown in Figure 4.20 for Neptune and Figure 4.21 for Jupiter. As discussed

in Section 4.3.2, the inviscid runs should be expected to converge slowly, since higher

resolution runs will be e↵ectively less di↵usive, and the appearance of vortices should

increase with increasing resolution, as a consequence of shaper gaps. Indeed, both

inviscid examples (top rows in Figures 4.20 and 4.21) show an increase in the number of

vortices every time resolution is augmented. The inviscid Neptune runs at N
R

= 256 and

N
R

= 512 show the vortensity rings described by Lin & Papaloizou (2010). The di↵erent

vortensity fields for the viscous runs are nearly indistishable from each other, confirming

that a viscosity of ⌫ = 10�5 is enough to suppress the shock-induced generation of

vortensity.

We do expect the viscous runs to show some degree of convergence. Interestingly,

there is consistency in between N
R

= 256 and N
R

= 512, for both the Neptune and

Jupiter cases, but the N
R

= 128 clearly stands out as unconverged. This confirms our

previous observation that 128 radial zones might not be enough to capture the global

flow properly, especially if vortices are expected to develop. As mentioned before,

the derivatives of the primitive variables are at best first-order accurate when linear

reconstruction is implemented.

The vortensity features in inviscid runs with N
r

= 256 (for both Neptune and

Jupiter examples) are significantly sharper and richer than the those of de Val-Borro

et al. (2006). Therefore, we believe that to achieve results comparable to the most robust

results of de Val-Borro et al. (2006), we need a number of radial zones lower than 256

but higher than 128. We also point out that some of the di↵erences between our AREPO
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runs and others might be caused by the varying azimuthal resolution with radius; or

simply the fact the the e↵ective azimuthal resolution at R = R
p

is ⇠ 360, still below the

N
�

= 384 used by the simulations of de Val-Borro et al. (2006); or by other numerical

e↵ects associated with the orbital evolution of the cells using a KDK integrator, which

might add noise to the velocity field.

4.3.4 Total Torque Evolution

Finally, we consider the measurement of the tidal torques. Ultimately, a successful

planet-migration simulation will be determined by the accurate calculation of the tidal

torques since these determine the rate of change of the planet’s angular momentum. The

tidal torque exerted by the disk onto the planet is

T =r
p

⇥
Z

disk

f ⌃(r) dA

=GM
p

r
p

⇥
Z

⌃(r)g1
⇣
|r0|
⌘
r0dA

�
,

(4.13)

where r0 = r � r
p

and g1(y) is the spline-softened gravitational force function (Springel

et al., 2001), which evaluates to the exact Keplerian value of 1/y3 for y � h = 2.8✏, with

✏ being the tradtional Plummer softening parameter. We discretize Equation 4.13 as

T = GM
p

r
p

⇥
"

NX

i=0

M
i

g1

⇣
|r0|
⌘
r0
#

, (4.14)

summing over all gas cells of masses M
i

, and using r0 = r
i

� r
p

, where ri is the cell

centroid. The cells within the planet’s Hill sphere –i.e., |r0| . (µ/3)1/3– are excluded

from the sum in Equation 4.14.

Figure 4.22 shows the torque evolution as computed from Equation 4.14 at each

snapshot. Separating between inner and outer torques (i.e. summing over cells inside
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Figure 4.22.— Evolution of the tidal torque for the fiducial inviscid Jupiter simulation (run

JUP 128).The figure includes the torques according to Equation 4.14 as a function of time

at a sampling rate of 1 orbit (dark lines) as well as a smoothed evolution with a smoothing

interval of 10 orbits using a Hanning window function (lighter curves). Black solid lines

represent the torque evolution from gas cells at within R = 1, blue lines represent the

torque evolution from cell outside R = 1, and the red curves represent to total torque.

The fluctuations in the density field (Section 4.3.1) are large enough to change the sign of

the outer torque and, therefore, the direction of migration. These oscillations are removed

by averaging over a 10-orbit period.
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and outside R = 1), it can be seen that the smoothed torque (lighter lines in the figure)

is slightly negative, thus enabling an inward migration of the planet. The raw torque

time series, however, tells a di↵erent story. The small scale asymmetric features observed

in the density field (Section 4.3.1) are large enough that they can alter significantly the

torque onto the planet, even to the point of changing its sign on timescales comparable

with the planet’s orbital period. These fluctuations, identified as vortices in our

simulations, are a phenomenon observed previously by Koller et al. (2003), Li et al.

(2005) and de Val-Borro et al. (2007). In some cases, the planet-disk torque can be

dominated by planet-vortex scattering (Lin & Papaloizou, 2010) triggering a runaway

migration sometimes referred to as type III migration (see also Masset & Papaloizou,

2003; Artymowicz & Lubow, 1994; Papaloizou, 2005). Since this type of migration

depends sensitively on the vortensity field within the coorbital region, the exclusion of

the Hill sphere from the torque calculation might produce drastically di↵erent results

than what would be obtained in a fully consistent, self-gravitating planet-disk interaction

(e.g. Crida et al., 2009).

Figure 4.23 shows that the tidal torque acting on a Neptune-mass planet is of

comparable magnitude to the fluctuations. These fluctuations do not show the periodicity

observed in the Jupiter counterpart and they are potentially due to numerical noise.

Since the perturbation on the background density field is proportional to the planet

mass, the torque resulting from this non-axisymmetric density field is fractionally noisier

than that caused by a planet mass ten times larger, as is in the Jupiter case.

In order to assess the reliability of the torque calculation, we measure T at three

di↵erent resolutions (N
R

= 128, 256 and 512; see Table 6.1). Since we do not expect

the inviscid runs to converge given the high sensitivity of this problem to di↵usion
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Figure 4.23.— Same as Figure 4.22 but for the fiducial inviscid Neptune-mass simulation

(run NEP 128). In this case, the inner and outer contributions to the total torque are

more symmetric than in the Jupiter-mass case. In addition, the fluctuations in the torque

calculation are of the same order as the di↵erence between the inner and outer torques,

and thus an accurate total torque calculation is di�cult at this resolution.
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(whether it is numerical or physical), we explore the convergence of the torque evolution

for the viscous runs with ⌫ = 10�5. Figure 4.24 shows the torque evolution for the

viscous Jupiter-mass runs at the three di↵erent resolutions listed in Table 6.1. Although

the qualitative torque evolution is very consistent across the di↵erent resolutions,

the transient period (t . 50 orbits) shows a non-converging behavior. Note that the

location and shape of this variability, which does not vanish after applying a time-series

smoothing, is not entirely inconsistent across the di↵erent panels. However, the amplitude

of these transients grows with resolution, indicating that a viscosity of ⌫ = 10�5 is not

high enough to suppress vorticity generation near the coorbital region that can generate

chaotic variations in the net torque. Note that the net torque at t = 100 orbits is very

consistent across all resolutions, showing a robust convergence of the planet’s migration

rate. In the near-stationary regime (t & 50 orbits), the individual components of the

torque (the inner and outer contributions) are independently consistent with each other

for the N
R

= 128 and N
R

= 256 runs. However, and despite a consistent net torque,

the individual components show a discrepancy at N
R

= 512. Higher resolution runs are

required to settle whether these simulations are converged on all accounts.

Figure 4.25 shows a more convincing convergence than Figure 4.24. As mentioned

above, the smaller perturbation exerted on the disk by a Neptune-mass planet implies

that the torque magnitude can be more easily “buried” by the noise than in the

Jupiter-mass case. Conversely, the qualitative quasi-stationarity of the Neptune case

(e.g. Figure 4.9) provides more reassurance that convergence can be reached. Indeed,

although a resolution of N
R

= 512 is needed to beat down the fluctuations, convergence

can be observed in Figure 4.25, showing that a slight asymmetry between the inner and

outer torques will cause an inward migration of the planet.
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4.4 Discussion and Final Remarks

Applying AREPO to an idealized problem of planet-disk interaction provides a very

important opportunity to benchmark the moving-mesh method in a setup which we

anticipate is challenging for this type of code.

We have observed results that are very consistent with simulation results in the

literature, contradicting recent claims that a code like AREPO has intrinsic limitations

for problems requiring a high-degree of symmetry, especially with a supersonic shearing

flow (Du↵ell & MacFadyen, 2012). We do acknowledge that when the flow is very close

to axisymmetric, AREPO can be at best competitive with static grid methods, owing to

the additional grid noise provided by the moving mesh. Such a code will naturally be less

e�cient, given the additional computational expense of retessellating at every time-step.

We have observed that even higher resolution will be needed in future work to

assess the convergence of the torque calculation for Neptune-mass planets, let alone

for Earth-mass planets. We attribute the noise component of the net torque evolution

observed in the Neptune case to fluctuations in mass and position of the cells. Future

work should explore new ways to drift the under a point-mass potential. An interesting

possibility is to drift the mesh generating points using a higher order integrator than a

leapfrog, but of similar conservative properties, such as the Wisdom-Holman mapping

used for planetary systems (Wisdom & Holman, 1991). In addition, new algorithms

to regularize the mesh should be explored. At this point, mesh regularization has

–unsurprisingly– degrees of freedom that do not necessarily depend on the flow evolution.

Moving toward parameter-free regularization techniques is highly desirable.
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A potential source of error in the torque calculation can originate from treating the

cells as particles. Let us recall that the mesh itself should be interpreted physically with

caution, since it is not a fluid quantity per se. However, when computing gravity in an

N -body fashion (as we have done to compute the tidal torque in Equation 4.13) we have

done precisely that. In addition, gravity is included as a source term, thus it unavoidably

increases the truncation error with respect to a flux-based gravity treatment.

In general, we identify three features intrinsic to this type of code that can present

a limitation to its e�cient performance in the problem of planet-disk interaction. The

first one is the inclusion of gravitational acceleration in the form of a source term

that is calculated in an N -body fashion, i.e., interpreting each cell as a particle of

(nearly) constant mass. The second one is the implementation of the moving mesh

itself. Since the mesh is evolved and not fixed in time, it introduces both grid noise

and truncation errors. This e↵ect, coupled to the first one, can lead to inaccuracies in

the torque calculation. Finally, the third property, and the most obvious one, is the

non-conservation of angular momentum in an unstructured mesh. This last feature is of

little concern on its own, since convergence has been reached to achieve its theoretical

value for rotationally supported flows (Springel, 2011).

We believe that the features listed above are common to all tessellation-based

approaches. Alternatives might include the flux-based gravity approach attempted by

Springel (2010a) for earlier versions of the AREPO code, which is similar to the one

presented by Jiang et al. (2013) or the di↵erent mesh-drifting scheme of Du↵ell &

MacFadyen (2011) for the two-dimensional TESS code. There are, however, algorithmic

di↵erences between di↵erent Voronoi-tessellation codes that can change entirely their

performance despite their similarities in moving-mesh approaches. One di↵erence

177



CHAPTER 4. PLANET-DISK INTERACTION ON A FREELY MOVING
MESH

between TESS and AREPO is, for example, that TESS does not use the MUSCL-Hancock

method to achieve second-order accuracy in space and time, but the method of lines,

which tightly couples the evolution of the mesh-generating points with the evolution of

the hydrodynamical state vector for the half-time-step predictor stage. This di↵erence,

in turn, forces TESS to re-tessellate at the middle of the time-step, which is not a

requirement for AREPO. However, the biggest di↵erence between these two approaches is

the critical interplay between the moving mesh and the Riemann solver, and how these

two elements of the numerical method define the numerical di↵usion of the code.

It is known that the so-called “false di↵usion” (or “numerical viscosity” or “advection

error”) on the grid/mesh arise four di↵erent ways. The most obvious one is the grid

spacing. The least obvious one is grid noise. The other two are the fluid velocity with

respect to the grid, and the angle between the flow direction and the coordinate axis used

to discretize the domain (de Vahl Davis & Mallinson, 1972; Patankar, 1980), i.e. the

alignment of the grid with the flow. Although these last two features are interrelated,

they are not quite equivalent. Below, we address them separately.

Alignment of the mesh in one direction might come at the expense of misalignment

in another direction. As discussed briefly by Du↵ell & MacFadyen (2012), a supersonic

shearing flow might not be ideal for a Voronoi mesh since contiguous cells at di↵erent

speeds will share a rapidly rotating interface that will not be parallel to the direction of

the flow at that point, thus eliminating the benefit that meshes that are aligned with

the flow have in reducing numerical di↵usivity. Indeed, the exchange of mass between

cells moving along the same axis in the direction of the bulk motion will be minimal.

However, two cells moving in the same direction but along two di↵erent axis at di↵erent

speed will experience some mutual shear. Since the Voronoi tessellation always puts the
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normal to the interface parallel to the line connecting the two cell centers, these two cells

will exchange mass since the bulk flow will not be perpendicular to the face normal, as it

would have been if the mesh had remained cartesian. Indeed, this amounts to additional

di↵usion. Although a symmemtric enough mesh will balance out the exchange of mass,

truncation error will prevent the Godunov fluxes from remaining close to the roundo↵

noise.

This misalignment is intrinsic to using a Voronoi tessellation, and is thus unavoidable

when using a freely moving mesh. As a result, Du↵ell & MacFadyen (2012) decided to

revert to a structured grid approach in which, although cells are indeed moving, their

motion is restricted to be along the azimuthal direction, in a technique highly reminiscent

of the original FARGO scheme. However, there is one subtlety to this problem. While it

is true that this shear-induced di↵usion cannot be minimized to the levels that would be

reached if the projected flux over a given face were identically zero (which is the case of

the interface between two contiguous radial zones in a polar grid), it can be minimized.

It is possible to reduce the advection error greatly if the motion of the rotated face is

subtracted. If the mesh were not moving, a static Voronoi mesh would combine the

worst of both worlds: a large bulk motion with respect to the cell interfaces, and a

randomized misalignment that would make the code’s performance poorer than that of

a fixed cartesian grid. However, if the bulk motion is taken into account, the problem

is greatly alleviated. This requires a boosted Riemann solver, which is not included by

Du↵ell & MacFadyen (2011) in the original version of TESS.

Now we turn to the second source of advection error: the bulk motion of the flow

with respect to the grid. In practice, AREPO takes into account the motion of the mesh

by adding the respective Godunov fluxes at each interface assuming the mesh is at rest at
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any given time, following with the subtraction of an advection flux that compensates the

fact that the face is moving. A crucial detail in the AREPO scheme is how the Godunov

fluxes are obtained in the first place. In AREPO, the Riemann problem is solved in a

boosted frame (i.e., the flow velocity to the left and right of the interface is always small),

and the resulting primitive variables are boosted back into the lab frame. Only then

are the Godunov fluxes are calculated and the quantities are updated. On the other

hand, TESS solves the Riemann problem directly in the lab frame, which means that the

velocity flow to the left and right of the interface can be very large. Even if the posterior

subtraction of the advection flux reduces the mass exchange between two contiguous

cell, the truncation error has already done its damage and the scheme will be di↵usive.

Note that Du↵ell & MacFadyen (2011) acknowledge this problem, but dismiss it as their

code is simply “not Galilean invariant”, a feature that they estimate desirable but not

necessary. However, the reason for the violation of the so-called Galilean invariance is

simply that a lab-frame Riemann solver is very di↵usive, even if the mesh is allowed to

move in order to better capture contact discontinuities. Du↵ell & MacFadyen (2011)

attribute the lack of Galilean invariance of their code to their choice of an approximate

Riemann solver. However, the use of an approximate Riemann solver has nothing to

do with “Galilean invariance”, as demonstrated by Pakmor et al. (2011), as long as the

Riemann problem is properly boosted to the face rest frame.

Let us recall that what Springel (2010a) (controversially) refers to as “Galilean

invariance” is really a reduction of the advection error thanks to the Galilean boost

of the Riemann problem plus an geometrically flexible moving mesh. As discussed by

Springel (2010a), even a boosted Riemann solver will stop producing Galiean-invariant

simulation output for extremely high-Mach number flows if the boosting operation itself
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(which changes the primitive variables from the lab frame to the face frame and back

into the lab frame) introduces significant errors to the evolved quantities, i.e., when

the roundo↵ error is as important as the truncation error that the boosting procedure

aims to minimize. This is a very important point, and an essential element to the

moving-mesh approach: if the Riemann solver is not boosted to the face frame, the fact

that the mesh is moving only reduces the advection error by adapting the alignment

of the face (therefore improving the capture of contact discontinuities with respect to

a fixed-grid approach) and thus only minimizing one of the two sources of advection

error we have discussed here. However, high-Mach number flow (like an accretion disk)

solved without boosting the Riemann solver will provide marginal benefits at a much

greater computational cost. Although no TESS results have been published for accretion

disk simulations, the perception that it does not perform adequately for accretion disks

simulations is related to the way the Riemann solver has been implemented, and not to

the geometry of the mesh.

Unfortunately, we have not been able to produce a successful simulation with a

lab-frame Riemann solver on a moving mesh. As described in detail by Pakmor et al.

(2011), such a scheme should be unstable since it can easily violate upwinding of the

fluid quantities. Since Du↵ell & MacFadyen (2011) did not report any errors of that

sort, we assume that their implementation of the method of lines with a mid-time-step

tessellation make their scheme more apt to he use of a lab-frame Riemann solver.
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4.5 Summary

We have presented results for low-resolution simulations of planet disk interaction using

the moving-mesh code AREPO for two di↵erent planet-to-star mass ratio exploring the

dependence of the result on resolution and viscosity.

1. We have shown that AREPO can work adequately with problems of high degree

of symmetry like that of planet disk interactions, even though this is not what

a code like this is intended to excel at. Although concerns about the numerical

noise associated with faces being misaligned with the flow is well-founded, they do

not a↵ect the overall performance of the code. We argue that lab-frame Riemann

solvers are inadequate for moving-mesh simulations, and that the Riemann solver

(exact or approximate) should always be boosted to the frame of the face.

2. Among the di↵erent sources of noise, we conjecture that grid noise is the main

concern in moving mesh simulations due to its sensitivity to the development of

instabilities.

3. We have found that proper convergence of the simulations is a function of planet

mass. This is not surprising since the perturbations exerted on the disk are

proportional to the planet mass (in the linar regime), and thus it is easier to

overcome numerical fluctuations with larger planetary masses

4. The quasi-Lagrangian nature of a code like AREPO opens new possibilities to the

high-resolution study of planet-disk interaction. The possibility of a very flexible

increment of resolution around areas of interest presents an e�cient alternative to
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uniformly increase the resolution globally, with the computational costs that this

entails.

5. Although the merit and success of FARGO and FARGO-like codes is undisputable for

this kind of problems, we believe there is room for moving-mesh codes, especially

for tackling the adaptive mesh refinement di�culties that arise in cylindrical

coordinates, but that are straightforward for AREPO
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5

Circumstellar Disk Models in

Isolation with Self-gravity

5.1 Introduction

Although the formation of a flattened, rotating structure around a young stellar object is

a natural consequence of angular momentum conservation during gravitational collapse of

a dense core, direct resolved imaging of such objects was not possible until 1990s. (O’dell

et al., 1993; McCaughrean & O’dell, 1996; Mundy et al., 1996; Wilner et al., 1996). The

evident challenges in spatially resolving these objects has begun to be overcome in the

last decade, particularly thanks to (sub-)millimeter interferometry, which has allowed

astronomers to map the fainter sources and to resolve disk sizes and inner cavities (e.g.

Hughes et al., 2008, 2009) .

Up until recently, disk images have not had su�cient resolution to show fine
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structure (at sub-AU scales). As a consequence, the observed surface densities have been

successfully modeled in simple parametric form. The level of complexity of these analytic

models has varied little since the early theory of accretion disks (e.g. Shakura & Sunyaev,

1973; Pringle, 1981), nevertheless providing enough physical insight into the structure of

protoplanetary disk, such as measurements of density profiles and temperature profiles

(e.g. Andrews et al., 2009, 2010b) and the disk-based dynamical determination of stellar

masses (Rosenfeld et al., 2012). However, recent observations in mid-IR scattered light

(Muto et al., 2012; Grady et al., 2013) and CO/HCO+ sub-millimeter emission (Casassus

et al., 2013) indicate that the finer structure of circumstellar disks can be quite rich

and deviate significantly from axisymmetry. The limitation of parametric models can be

overcome by direct numerical simulation, which enables us to capture the gas dynamical

evolution of these systems self-consistently and study complex configurations in detail.

Besides the deviations from axisymmetry, there are other reasons why hydrody-

namical modeling of these systems is necessary. One example is that of planet-disk

interaction (e.g. de Val-Borro et al., 2006), especially in the presence of more than one

planet. One of the most striking features of the Kepler catalogs (e.g. Batalha et al.,

2013) is the widespread presence of multi-planet systems. Multi-planet systems add a

significant degree of complexity to some of the physical processes believed to be relevant

for the formation and survival of planets, namely planet migration and planet growth

through the core and gas accretion phases. Planet formation is not only plagued with

the e↵ects planet multiplicity, but it is also likely to be a↵ected to some extent by the

environmental stellar multiplicity. Multiplicity rates of pre-main sequence stars are

known to be higher than those of main sequence stars (Mathieu, 1994; Kraus et al.,

2011), and this must have some influence on the primordial circumstellar disks and
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the subsequent dynamical evolution of planets. Recent observations of young multiples

in Taurus with both the Spitzer Infrared Spectrograph (IRS) (e.g. Kraus et al., 2012)

and the Submillimeter Array (SMA) (e.g. Andrews et al., 2010a; Harris et al., 2012)

reveal increasingly diverse multiples and binaries bearing circumstellar and circumbinary

disks, it becomes evident that the idealized system consisting of one star and one disk

might not be representative of the Galactic-wide planet formation process. Despite

these increasingly complex configurations, hydrodynamical simulations of planet-forming

systems often focus on models of gas disks orbiting one isolated, stationary star.

Even in light of their great flexibility and ability to capture time-evolving gas

dynamics consistently, numerical simulations are also subject to a series of limitations.

Circumstellar disks within star-forming environments (including, among other conditions,

stellar multiplicity and stellar bulk motion) can be extremely challenging to some of

the known numerical techniques. One of such challenges has to do with the way the

geometry of the system determines which set of coordinates is most appropriate for the

formulation of the hydrodynamic equations and their subsequent discretization. It is

well known that the performance of Eulerian hydrodynamical codes depend significantly

of the geometry of the mesh aligning with the direction of bulk flow 1 . Truncation

error analysis allows for the derivation of “model” or “modified” equations (see LeVeque,

2002, §8 and references therein) of which the discrete version of the equation of motion

are exact solutions, showing that space and time discretization introduces high-order

di↵usive and dispersive di↵erential operators, the most common of which (the result of

first-order upwind schemes LeVeque, 2002; Toro, 2009) is the so-called “false di↵usion”

1One notable exception is that of higher-order finite-di↵erence schemes such as the PENCIL code
(sixth-order accurate in space), the performance of which is essentially independent of the geometry of
the mesh (Lyra et al., 2008)
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(or “numerical viscosity” or “advection error”). This di↵usion depends on the fluid

velocity and the grid spacing and it is also a function of angle between the flow direction

and the coordinate axis used to discretize the domain (de Vahl Davis & Mallinson, 1972;

Patankar, 1980).

This property of Eulerian codes becomes specially relevant in astrophysical fluid

dynamics, where the evolution of the energy equations is often important. In particular,

cosmological simulations with advection-dominated flows (e.g. in extremely supersonic

motion near the cosmological density peaks) can be particularly sensitive to the numerical

scheme being used. In high-velocity flows, the kinetic energy density is much larger than

the internal/thermal energy, and thus small fractional errors in the velocity can translate

into large fractional error in temperature, eventually distorting the thermodynamic

evolution of the gas. This has been referred to as the “high Mach number problem” (Ryu

et al., 1993; Bryan et al., 1995; Feng et al., 2004; Trac & Pen, 2004). The grid-dependent

di↵usion of Eulerian codes explains why a cylindrical-coordinate discretization of the

domain is the preferred choice to study accretion and protoplanetary disks, since the

direction of the flow is almost purely azimuthal The high-Mach-number problem can be

alleviated in cylindrical coordinates by the use of the FARGO2 technique (Masset, 2000),

which removes the Keplerian speed at a given radius at the moment of numerically

solving the Euler equations, thus e↵ectively using a non-inertial moving frame in which

the velocity changes are small. However, thin accretion disks are not highly supersonic

in the azimuthal direction (the orbital Mach number is M ⇠ 1/h ⇠ 50 for aspect ratios

of 0.02), but they can also have supersonic bulk speeds. For young stellar associations,

2The most obvious benefit of implementing FARGO () is the great increase in the allowed time-step
size, but the underlying benefit is reducing the numerical di↵usion by ignoring the bulk velocity of the
flow and instead solving for the deviations from it.
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pre-main sequence stars can move at relative speeds of 1-3 km s�1, which is roughly ten

times or more the sound speed of molecular gas at a temperature of 10 K.

If there is a strong deviation from a point mass potential (e.g. owing to the

presence of a large mass ratio binary) or if this point mass is allowed to move across the

computational domain, the flow is no longer one-directional in this coordinate system,

and the choice of a cylindrical geometry is no longer the most obvious one. In cases

where there is no obvious symmetry that can be exploited through a suitable choice of

a coordinate frame, numerical studies commonly use either adaptive mesh refinement

(AMR; Berger & Oliger, 1984; Berger & Colella, 1989) on a cartesian grid, or smoothed

particles hydrodynamics (SPH; Lucy, 1977; Gingold & Monaghan, 1977; Monaghan,

1992; Springel, 2010b). AMR codes used for star formation simulations such as ORION

(e.g. Truelove et al., 1998) have been used successfully to simulate circumstellar disk

formation over a several orbital timescales (Kratter et al., 2010). Thanks to mesh

refinement, these codes can achieve very high resolution, although the levels of refinement

are usually a fixed number, and the dynamical range in density that is achieved is smaller

than that of particle-based codes. Similarly, although the higher resolution minimizes

the e↵ects of the high-mach-number problem, the grid is still subject to such limitation.

On the other hand, SPH – a very popular tool for self-gravitating astrophysical fluid

dynamics – o↵ers low-order accuracy for the treatment of contact discontinuities and has

poor shock resolution. In addition, SPH appears to suppress fluid instabilities under

certain conditions (Agertz et al., 2007), su↵er from subsonic velocity noise (Abel, 2011),

and is known to require at least a factor of two more resolution elements to achieve

similar levels of accuracy in simulations of quiet circumstellar disks (de Val-Borro et al.,

2006).
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One alternative is the moving-mesh approach of (Springel, 2010a) (see also Borgers

& Peskin, 1987; Trease, 1988; Dukowicz et al., 1989, for earlier approaches). In this

approach, the unstructured grid makes the geometry of the problem irrelevant for

the discretization of the equations of hydrodynamics. This moving-mesh method is a

finite-volume, Godunov, MUSCL-Hancock scheme with piece-wise linear reconstruction,

thus being second-order accurate in space and time. The non-linear step of the

MUSCL-Hancock technique (i.e. the solution of the Riemann problem) is carried out

in the moving-frame (the instantaneously-at-rest frame) of each cell interface. This

provides a method in which a gas disk around a young star can be modeled and evolved

independently of the motion of said star, whether it is at rest, moving in a straight line,

or orbiting another star: in each of these situations, the numerical scheme would be

unaltered and the mesh would evolve according to the motion of the gas.

5.2 Numerical Method

AREPO is a second-order Godunov, finite-volume, moving-mesh scheme. The mesh is

constructed from the Voronoi tessellation of a set of generating points that move with

the local velocity of the flow. The primitive variables are reconstructed to linear order

using slope-limited gradients (MUSCL reconstruction), which are obtained from all

neighboring cell-centered primitive variables by means of the Green-Gauss theorem.

The time-marching scheme consists of a predictor-corrector method which uses a linear

spatial extrapolation to the center of each interface, followed by the time evolution of the

primitive variables for a half time-step (MUSCL-Hancock method). The time-centered

Godunov fluxes are obtained by solving a local 1-D Riemann problem in the rest frame of
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the moving interface. If an exact Riemann solver is used, the sampled solution provides

time-centered primitive variables at the center of the face; the velocity is boosted back to

the lab frame; finally, the Godunov fluxes are obtained from the analytic form of the flux

using the numerically obtained primitive variables. If an approximate-state solver is used

for the Riemann problem, this is implemented in lab-frame coordinates (but with axes

aligned with the local face); the Godunov fluxes result directly from the approximate

solver, and an advection-flux term needs to be subtracted from these in order to take the

motion of the mesh into account.

Gravitational potentials and gas self-gravity are computed using an N -body gravity

tree (Barnes & Hut, 1986), where the tree leaves are the gas cells, whose contribution to

the gravitational potential uses an adaptive softening length that is proportional to the

cell radius (Springel, 2010a).

5.3 Isolated Thin Disk Models

In this work, we model circumstellar thin disks in equilibrium by using direct numerical

simulation. Stationary, axisymmetric models must satisfy the equilibrium equations
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(i.e. the equations of radial centrifugal equilibrium and vertical hydrostatic equilibrium

respectively) where �0(R, z) is the potential due to the central star and �
g

(R, z) is the

potential due to gas self-gravity. Equation 5.1 will help us determine the azimuthal

velocity field v2
�

(R, z) while Equation 5.2 will help us solve for the vertical structure of

190



CHAPTER 5. CIRCUMSTELLAR DISK MODELS IN ISOLATION
WITH SELF-GRAVITY

the disk at all radii.

5.3.1 Model Characteristics

In the models presented here, we make use of the Lynden-Bell-Pringle density profile

(Lynden-Bell & Pringle, 1974):
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where M
d

is the total disk mass, R
c

is the disk’s characteristic radius and p is a

surface density power-law index. Such a surface density profile is not just theoretically

motivated, but also consistent with observations (Hughes et al., 2008; Andrews et al.,

2009). In addition, it is a computationally convenient setup, since smoothly tapered

disks are quieter/more stable ICs than truncated power-law disks, that show impulsively

started rarefaction “shocks” in the outskirts due to discontinuous pressure gradients that

fall sharply to zero.

We also impose a fixed temperature profile of the form:

T (R) = T
c

✓
R

R
c

◆�l

(5.4)

with the density and temperature power-law indices fixed to p = 1.0 and l = 0.5,

respectively, in consistency with circumstellar disk structre derived from dust-continuum

observations (Andrews et al., 2009). In addition, we fix the disk characteristic radius to

R
c

= 20 AU and the total mass of the system (star plus disk) to 0.5 M�. The disk-to-star

mass ratio is varied from M
d

/M⇤ = 0.02 up to 0.67, always keeping M⇤ +M
d

= 0.5 M�.

The normalization of the temperature profile in Equation 5.4 is chosen according to a
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specified aspect ratio at R
c

. The nominal aspect ratio of the disk is
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i.e., that of a flared disk. The normalization factor h
c

was chosen from the values 0.04,

0.06, 0.08 and 0.1. A very thin disk of h
c

= 0.02 (which implies h of less than 0.01 at

1 AU) is challenging for a proper three-dimensional description unless high-resolution

(Ngas & 106) models are used.

All singular terms in Equations 6.1 - 5.5 are regularized using a spline softening

with softening parameter h of the same kind to the one used for the gravitational

potential of the central stars and of individual gas cells (Springel et al., 2001). In this

case, the central gravitational potential �0 reaches a finite value at R = 0 (the position

of the star) and recovers its exact Keplerian value at R = 2.8h. This means that the

Keplerian angular speed ⌦2
K

= (@�0/@R)/R is small at R = 0. The resulting surface

density profiles is as shown in Figure 5.1, where we have varied the total disk mass (M
d

in Equation 6.1). Figure 5.2 shows the Toomre Q parameter as a function of radius for

disks with di↵erent masses and temperature scalings.

The one-dimensional parametrization of Equation 6.1 of an axisymmetric disk

is su�cient to numerically determine a three-dimensional disk in hydrostatic and

centrifugal equilibrium. The generation of such initial conditions discretized into a

Voronoi-tessellation mesh is described below.
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Figure 5.1.— Lynden-Bell-Pringle surface density profiles (Equation 6.1) for di↵erent

combinations of star and disk masses while keeping the system mass constant (M⇤+M
d

=

0.5M�).
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Figure 5.2.— Toomre’s Q-parameter as a function of radius for di↵erent model setups.

Solid lines correspond to disks with a fixed h
c

(Equation 5.5) of 0.04 (i.e., colder disks),

while dashed lines correspond to profiles with h
c

= 0.06 (warmer disks). The di↵erent

colors correspond to the di↵erent disk masses as described in Figure 5.1. Solid lines (from

top to bottom): Qmin = 14.5, 7.1, 2.7, 1.2, 0.7 and 0.4. Dashed lines (from top to bottom):

Qmin = 24.2, 11.0, 4.4, 2.0, 1.2 and 0.7.
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5.3.2 Initial Conditions

Mesh Generation

Structured-grid codes commonly do this following a space-based criterion, in which cells

have a constant volume (or a hierarchy of fixed volumes in AMR) and the mass of

each cell varies according to conservation of mass and momentum. Pseduo-Lagrangian

approaches like SPH, discretize the computational domain following a mass-based

approach, in which fluid particles represent (usually constant-mass) parcels of fluid that

have variable e↵ective volumes (softening kernels). As a quasi-Lagrangian mesh code,

AREPO can discretize the domain initially following either space-based or mass-based

approaches, or a combination of both. In this work, we create circumstellar disk models

with nearly constant mass cells (i.e. with variable volume) immersed in a background

computational box that is discretized by nearly constant-volume cells (Springel, 2010a).

In a tessellation-based code, the structure of the mesh is entirely and uniquely

determined by the positions of the mesh-generating points (which are, in turn, proxies

to gas “particles”). In the present work, we choose to to aim for a given mass resolution

instead of a spatially-based discretization of the domain. This is accomplished in a

similar manner to pseudo-Lagrangian, particle-based codes, in which the domain is

discretized by a Monte-Carlo sample of an underlying density field.

Given a number of mesh-generating points Ngas, a gas disk of total mass M
d

is discretized into cells of nearly equal mass mgas = M
d

/Ngas. A three-dimensional

axisymmetric model requires the specification of the cell coordinates x, y and z, or

equivalently, of R, z and �, the last of which is drawn from a uniform distribution in
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[0, 2⇡) while the former two must reproduce the continuous density field ⇢gas(R, z).

In its simplest form, Monte-Carlo sampling entails inverting some 1-D cumulative

mass function to solve for the position of a gas element in coordinate space given

a randomly sampled mass fraction [0, 1) ⇥ Mtotal. If some 3-D system (that is not

spherically symmetric) cannot be separated into three independent cumulative mass

functions along the three coordinate axis, the Monte-Carlo sampling of the density field

can be technically di�cult. In the case of circumstellar disks, we assume an axisymmetric

3-D density field of the form ⇢(R, z) = ⌃(R)⇣(R, z), where
R +1
�1 ⇣(R, z)dz = 1. In this

case, where the density field is not separable into R and z components.

The single variable function ⌃(R) is our arbitrary surface-density model of

Equation 6.1. This surface density can be sampled directly using the procedure described

above, producing a list of Ngas radial positions {Ri

}.Then, assuming the variability in

R is slower than that in z, we group the di↵erent {R
i

} into radial bins and proceed to

Monte-Carlo sample the 1-D function ⇣(z|R) to obtain values for the z-coordinate. For

this, we need to have a solution for the vertical profile ⇣(z|R) first, which, unless disk

self-gravity is entirely ignored, can only be obtained numerically.

Vertical density structure

Specifying the surface density profile is only the first step in constructing stationary ICs.

In three dimensions, one has to solve for the vertical structure of the disk self-consistently

if gas self-gravity is of any importance.

For the vertical structure, we use the potential method described in detail in Wang

et al. (2010a). This techniques consists of iterating the between vertical hydrostatic
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equilibrium equation – for a fixed vertical potential – and the vertical Poisson equation

– for a fixed vertical density profile – until convergence is achieved to within a tolerance

parameter (typically anywhere between 10�8 and 10�12).

The geometrically thin disk approximation simplifies calculations significantly, since

it allows us to solve for two coupled ordinary di↵erential equations instead of a set of

partial di↵erential equations. The first approximation involves forcing a separability of

the potential of a very flattened system into a mid-plane component and a local vertical

component (Binney & Tremaine, 2008)
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such that the Poisson equation for a given R can be written
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The second approximation is to assume that the sound speed only depends on the

radial coordinate R. Therefore, if p = c2
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(R)⇢ at a given R, Equation 5.2 is simply
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where �0,z ⌘ �0(R, z)��0(0, z) is the z-dependent part of the Keplerian potential �0 of

the central star.

Thus, provided we know the mid-plane density ⇢(R, 0) ⌘ ⇢0(R) , we can always

solve for the vertical density profile

⇢(R, z) = ⇢0(R) exp

✓
��0,z + �

g,z

c2
s
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◆
. (5.7)

Given an initial mid-plane guess ⇢(0)0 (R), we solve for an initial vertical profile ⇢(k)(z)

(Equation 5.7), and then update successively the quantity ⇢
(k)
0 (R) until a satisfactory
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solution for ⇢(R, z) = ⌃(R)⇣(z|R) is obtained. The iteration steps are (for fixed R):

(I) ⇢
(k+1)
0 =

⌃(R)

1R
�1

⇢(k)(z) dz

(5.8a)

(II) solve numerically for �(k+1)
g,z

d

dz

0

BBBBB@

�(k+1)0
g,z

�(k+1)
g,z

1

CCCCCA
=

0

BBBBB@

4⇡G⇢(k)(z)

�(k+1)0
g,z

1

CCCCCA

(5.8b)

(III) ⇢(k+1)(z) = ⇢
(k+1)
0 exp

 
��0,z + �(k+1)

g,z

c2
s

!
, (5.8c)

where the initial guess for the disk self-potential �(0)
g,z

is zero.

Once a numerically obtained vertical profile for fixed R is available for a list of

values of z, we proceed to assign z-coordinates to all the sampled points that fall into the

bin of radius R. This is done in analogous manner to the sampling of the R-coordinate

given ⌃(R), using Monte Carlo sampling.

The convergence speed depends in great part on how good the initial guess is. For

low mass circumstellar disks (M
d

. 0.05M⇤) convergence can be achieved within at most

5-6 iterations if an initial mid-plane density corresponds to that of a Gaussian-profle

disk (the exact profile for non-self-gravitating disks). If disks are massive (M&0.1M⇤),

convergence can take up to ⇠ 300 iterations if the initially Gaussian profile is used.

Instead, the self-gravitating slab (Ledoux, 1951) is a much better initial guess (although

it neglects the presence of the star’s Keplerian potential). In this case, convergence can

be reached with at most ⇠ 30 iterations. For disks masses of M
d

& 0.2M⇤, the latter

approach needs at most ⇠ 9 iterations for convergence.
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Figure 5.3.— Density field ⇢(R, z) obtained by numerical solution of the vertical disk struc-

ture for six di↵erent disk masses M
d

= 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2M�. All surface

density profiles follow the parametric form of Equation 6.1 with fixed power-law index p =

1 and identical temperature profiles (l = 0.5). The three solid black lines represent 1, 3 and

5 times the disk scale height, which is defined as H(R) ⌘ [
R
⇢(R, z)z2 dz/

R
⇢(R, z) dz]1/2
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This process gives a solution for ⇢(R, z) within an arbitrary error tolerance. The

two-dimensional density field is shown in Figure 5.3 for di↵erent disk-to-star mass ratios,

showing how the vertical structure is modified as more mass is added to the disk. The

evaluation of the density field is complete in the vertical direction up to 3 scale-heights,

where it is truncated due to the finite number of cells drawn from the underlying density

distribution for which we have solved. The larger Ngas (i.e. the smaller mgas) the further

the density field is sampled into the z-direction. At the “last-cell-limit”, one must

transition into a quasi-regularly spaced mesh that can make the transition into the

background mesh that fills the computational domain (see Springel, 2010a for a detailed

description). Obtaining a smooth transition is di�cult to accomplish, in particular for

circumstellar disks. Owing to disk flaring, the transition into the background mesh at

small distances from the star happens at values of z much smaller than at large distances

from the star. Iterative relaxation steps such as the Lloyd algorithm (Springel, 2010a)

can be used to smooth out distorted cells located in this transition. Figure 5.4 shows

the same solutions to the density field as Figure 5.3, but in this case the density field

has been evaluated further into the vertical direction (beyond the limit imposed by the

finite-size random sample), where low-mass cells have been added to allow for a transition

into the very dilute background. Figure 5.7 shows a slice through the mesh for one if the

isolated disk models. The dense region of the mesh maps the disk at nearly constant

mass per cell, while the low resolution background discretized the computational domain

at nearly constant volume per cell.

Figures 5.4 and 5.3 show how the disk self-gravity a↵ects the shape of the disk in the

vertical direction. For low mass disks – where the vertical profile is very close to Gaussian

– the di↵erent scale-height levels show constant slopes in logarithmic coordinates. The
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Figure 5.4.— Same as Figure 5.4 but including the density field assigned to the additional

transition mesh above the region of the disk sampled by the Monte-Carlo technique.

Before a density floor is reached, the disk density field is completely sampled up to five

scaleheights.
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Figure 5.5.— Numerically computed scale-height profiles for the six di↵erent surface den-

sity profiles. Line color and line thickness are the same as in Figures 5.1 and 5.2
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slopes of these curves is given by H(R) ⇠ c
s

/⌦
K

/ R(3�l)/2 / R. At larger masses,

however, the scale-height, defined at each R as H(R) ⌘ [
R
⇢(R, z)z2 dz/

R
⇢(R, z) dz]1/2

is no longer described by a power-law. This e↵ect is better illustrated by the aspect ratio

profiles shown in Figure 5.5. The aspect ratio h = H/R is greatly a↵ected by self-gravity,

becoming even non-monotonic for large disk masses. This mid-plane concentration

disappears rapidly at ⇠ 60 AU ⇠ 3R
c

, where the most massive disks flare up to

match the aspect ratio of the low mass disk. This e↵ect is a direct consequence of the

thin-disk approximation and the locality of the vertical Poisson equation (Equation 5.6);

once the local surface density is low enough, the disk vertical structure responds to

the gravitational potential of the enclosed mass (⇠ M⇤ + M
d

(< R) ⇠ 0.5 M�), thus

approaching non-self-gravitating limit in the outer regions regardless of the total disk

mass. Since in our models M⇤ +M
d

= 0.5M� for all disk-to-star mass ratios, the aspect

ratio in the outer regions is nearly the same regardless of the scaling parameter h
c

, since

far away from the central star, gas temperature is not allowed to fall below 10 K.

The Monte-Carlo process is intrinsically stochastic, and one of its known

consequences is the Poisson fluctuations in the resulting density field. Such a “noise” can

only be overcome by increasing the number of particles that represent the underlying

continuum field. However, to minimize the Poisson noise in AREPO, we take advantage of

its Eulerian nature by imposing the exact value of the density field at the mesh-generating

points, instead of forcing each cell mass to have the same value. The location of those

points, nevertheless, is still specified by the Monte-Carlo sampling of the density field.

This additional step – only possible in AREPO – produces very smooth density fields,

at the expense of a variation in cell mass. However, this choice relies on the accuracy

of the linear density reconstruction within each cell (which allows for the conversion
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⇢cell = mcell/Vcell). In regions of steep density gradients, linear reconstruction will

be a too rough of an approximation, and errors in the total mass of the cell will be

introduced. In practice, the distribution of cell mass will have some spread around the

desired cell mass mtarget = mgas. Therefore, this method represents a trade-o↵ between

Poisson noise in the density field, and a spread in the mass-per-cell distribution. This

spread is of little concern because (a) the very nature of the Godunov scheme will make

strict mass constancy impossible at later times, and (b) refinement/derefinement will

immediately correct those pathological cases where a few cells have highly discrepant

masses. Figure 5.6 shows the distribution of cell masses as generated by the IC algorithm

and how the spread in cell masses can be corrected by a series of refinement and

derefinement steps (Springel, 2010a).

Figure 5.6 also shows the distribution of “background cells”, which are very low

mass cells or large volume that fill in the computational box. These cells which are not

subject to the refinment/derefinement regularization of the main part of the mesh, and

thus are allowed to have masses much below the reference mass mtarget. Ideally, these

two cell distributions should smoothly transition into each other. Figure 5.7 show such

transition between the dense concentration of cells of nearly constant mass where the

disk lies and a di↵use background of large cells.

Finally, we confirm that the prescribed surface density ⌃(R) is recovered from the

3D models by integrating the density field along the vertical direction. We generate

images (Figure 5.8) for an M
d

= 0.05 M
d

disk on the x-y and x-z planes for four di↵erent

temperature normalizations or reference aspect ratios: h
R

d

= 0.02, 0.04, 0.06 and 0.1.
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(a) (b)

(c) (d)

Figure 5.8.— Di↵erent initial conditions for disk with M
d

= 0.02M� orbiting around a

star of of mass 0.48M�. From left to right, the temperature of the disk is increased such

that the scale-height at R = R
c

equals (a) 0.02, (b) 0.04, (c) 0.06 and (d) 0.1 .
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(a) (b)

(c) (d)

Figure 5.9.— Di↵erent initial conditions for disk with M
d

= 0.02M� orbiting around

a star of of mass 0.48M�. From left to right, and top to bottom, the temperature of

the disk is increased such that the scale-height at R = R
c

equals 0.02, 0.04, 0.06 and 0.1

respectively.
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Velocity structure

The velocity field of a stationary, axisymmetric system is given by the solution for v
�

in Equation 5.1. To first order, the velocity profile of a low mass disk will be that of

a Keplerian orbit. Secondary corrections are the negative contribution of the pressure

gradient and disk self-gravity. In addition, three-dimensional disks will have a small

vertical gradient in orbital speed due to which the upper layers rotate more slowly than

the mid-plane (actually, the sign of this gradient depends on the sign of the radial

temperature gradient; see below).

For low mass disks (M
d

/M⇤ < 0.01) the pressure term is the most (and essentially

only) modification to the Keplerian speed, amounting to a few percent of total speed. In

the present work, we consider circumstellar disk models for which self-gravity is of some

significance. In these models, (M
d

/M⇤ > 0.02), the self-gravity term is comparable to, or

greater than the pressure term, although it only starts to cause a significant deviation

from Keplerian rotation for M
d

/M⇤ & 0.3.

Quantitatively, the full velocity field in three dimensions, for locally isothermal

disks, is (see Wang et al., 2010a)

v2
�

R
=

v2
c

R
� 1

⇢

@p

@R

����
z=0

� @c2
s

@R
ln

✓
⇢(R, z)

⇢0(R)

◆
, (5.9)

where v2
c

= v2
K

(z = 0) + v2
c,d

is the circular speed due to gravity (from both the central

star and the disk). Thus, vertically-layered rotation curve can be obtained by first

calculating the two-dimensional rotation curve corresponding to a highly-flattened disk

(Binney & Tremaine, 2008) and then adding a correction owed to the vertical structure

(Wang et al., 2010a).
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The di↵erent contributions to the velocity field can be written analytically if we

ignore the e↵ect of self-gravity on the vertical structure (i.e. the disk vertical aspect

ratio is h(R) = c
s

/v
K

/ R(1�l)/2, Equation 5.5) as well as the singularity implied by the

power-law forms of the temperature (Equations 5.4) and surface density (Equation 6.1).

The velocity field is, to second order in z/R:

v2
�

=v2
K

⇢
1� h2


3

2
+ p+

l

2

✓
z2

h2R2
+ 1

◆
+

(2� p)(R/R
c

)2�p

3

775

9
>>=

>>;
+ v2

c,d

,

(5.10)

where the only di↵erence from the expression in Tanaka et al. (2002, Eq. 4) is the extra

term due to the exponential tapering of the Lynden-Bell-Pringle surface density profile

and the addition of the “circular speed” term due to disk self-gravity v2
c,d

.

The component of the circular speed do to self-gravity has many possible functional

forms (see Binney & Tremaine, 2008). For numerical computations, we have found that

a formula due to Mestel (1963) is particularly useful:

v2
c,d

(R) = G
M

d

(< R)

R
+

2G
1X

k=1

↵
k


(2k + 1)

R2k+1

Z
R

0

dR0 ⌃(R0)R02k+1

� 2kR2k

Z 1

R

dR0 ⌃(R
0)

R02k

�
(5.11)

Although the summation in Equation 5.11 does not converge particularly fast, it is‘

a convenient representation of v2
c,d

for numerical computation, since it involves only

well behaved integrals and simple sums. If a tolerance parameter magnitude of 10�6 is

introduced relative to the zeroth order term (GM
d

(< R)/R), only the first ⇠ 10 terms

in the sum are necessary. In pathological cases where more terms are needed, the sum is

210



CHAPTER 5. CIRCUMSTELLAR DISK MODELS IN ISOLATION
WITH SELF-GRAVITY

extended to ⇠ 20. This typically happens for small R, where often times the inaccuracy

in v2
c,d

is negligible relative to the dominant Keplerian term v2
K

.

For a density profile index of p = 1, the self-gravity contribution to the disk’s rotation

curve can be calculated exactly (see Appendix 5.5). Although the analytic solution to

v2
c,d

(R) is too complicated to be useful in practice (it involves Meijer functions), it can be

used for debugging purposes and to compare to the numerical output of the truncated

series in Equation 5.9. This solution can be written

v2
c,d

(R) =
GM

d

R
c

f
⇣

R

R

c

⌘
(5.12)

where f(x) is a dimensionless function3 of order unity which involve Meijer-G functions

(Appendix 5.5) and that equals 1 at R = 0 and approaches R
c

/R as R ! 1 (i.e. the

disk potential approaches a Keplerian form at large distances). This is the velocity

profile shown in Figure 5.11 next to the Keplerian and pressure terms.

However, the limitations of the analytic expression for v2
c,d

are not only practical.

Since ⌃(R) in Equation 6.1 diverges at the origin, the surface density there is infinite.

The derivative of the gravitational field due to this mass distribution (Binney &

Tremaine, 2008, Eq. 2.188) takes a finite value of GM
d

/R
c

at the origin, which is an

unphysical value for the circular speed. Any continuous distribution of matter should

have a vanishing circular speed at the origin, and this can be obtained by smoothing out

the singular term in ⌃(R) as explained above. This produces a circular speed profile

that is zero at the origin, but rapidly converges to the exact profile far from R = 0.

3The functional form of this dimensionles function is

f(x) =
x

2
p
⇡

G

21
13

✓
x

2

4

����
0

� 1
2 ,

1
2 , � 1

2

◆
.

(5.13)
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Figure 5.10.— Di↵erent components of the mid-plane velocity profile for a self-gravitating

Lynden-Bell-Pringle disk.
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This is shown in Figure 5.11, where the numerically obtained form of the circular speed

(Equation 5.11) changes continuously from zero to the profile given by Equation 5.12.

In practice, all components of the velocity field are computed numerically to generate

our disk models (for general p). The velocity components of all disk models listed in

Figure 5.1 are shown in Figure 5.12. The model M0 (with M
d

= 0.01 and M⇤ = 0.49)

is qualitatively consistent, except for the smoothing features near the origin, with the

analytic expressions of Figure 5.10.

5.3.3 Equation of state

A widely used approximation for the thermal structure of circumstellar disks is the

so-called locally isothermal approximation. This approximation, arguably unphysical in

the presence of shocks and rarefactions, aims to replicate a rather complicated radiative

equilibrium of the gas with the radiation field of the star. Thin disks are di�cult to treat

with simplistic prescriptions for radiative transfer such as flux-limited di↵usion. This is

because the disk is very optically thick disk at the mid plane, while optically thin only

a few scale heights above the plane, where its temperature is set by direct irradiation

from the central star. For this set of runs we implement a quasi- locally isothermal

approximation, in which the gas is assumed to be adiabatic, with an adiabatic index

of � = 1.001 (i.e. e↵ectively isothermal) and cooled/heated at every time step in order

to preserve the prescribed thermal energy u(r, r⇤,1, r⇤,2), which is a function of position

and the location of the stars. In practice, we limit ourselves to calculating the distance

to the host star, and determine which sound speed to use based on that distance. The

temperature profile is taken to be of the form T / R�1/2 ⇡ r�1/2, where R is the
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Figure 5.11.— Contribution to the circular speed profile of a Lynden-Bell-Pringle disk

due to self-gravity. The blue line depicts the exact computation of v2
c,d

(Equation 5.12)

for the singular profile ⌃(R) of Equation 6.1 for a power-law index p = 1 normalized by

GM
d

/R
c

. The green line shows the self-gravity contribution to v
�

we actually use in our

models (calculated through a truncated version of Equation 5.11 by numerical integration

using a version of ⌃(R) softened at the origin.
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Figure 5.12.— Mid-plane velocity component profiles for the six disk profiles shown in

Figure 5.1 in order of increasing disk mass. The panels include the total azimuthal velocity

v
�

(blue curves), the Keplerian component v
K

(green curves), the self-gravity component

v
c,d

(cyan curves) and the pressure bu↵er term vpress (red curves). The solid red curves

represent the thermal pressure contribution for a model with h
R

d

= 0.06, while the dashed

red curves represent models with h
R

d

= 0.1.
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cylindrical distance from the star and r is the spherical distance. Using the spherical

distance, although unphysical, makes the calculation of the temperature much simpler.

This is the method used by Shen et al. (2010).

5.3.4 Stellar accretion

Sink particles are a very important and necessary approximation in computational

astrophysics. Sink particles allow for the removal of very high-density, gravitationally

concentrated gas from the computational domain, while retaining the gravitational

potential of the removed material by replacing it with a point-like particle. This

procedure corresponds to e↵ectively limiting the spatial resolution of the simulation,

while adding a sub-resolution prescription that obeys some accretion formula, and that

is designed to extend the calculation to scales below the spatially resolved regions of the

flow.

Sink particles were introduced by Bate et al. (1995) for SPH. Since then, sink particle

methods have been implemented for every major gas dynamics code for astrophysics,

including ORION (Krumholz et al., 2004), GADGET (Springel et al., 2005a; Jappsen et al.,

2005), FLASH (Federrath et al., 2010), ENZO (Wang et al., 2010b), RAMSES (Teyssier

et al., 2011) and ATHENA (Gong & Ostriker, 2013).

The fact that this issue is revisited periodically shows that there is no universally

correct way of implementing sink particles, and that a successful approximation will

depend strongly on the numerical scheme for which it is implemented. Given the

relative youth of moving-mesh methods in computational astrophysics, it is not clear

yet which approach is the most appropriate for a code like AREPO. In principle, the
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quasi-Langrangian nature of the code allows cells to be treated as SPH particles and,

as such, they can be entirely “swallowed” by the sink if they satisfy some accretion

criterion. In the primordial star formation simulations of Greif et al. (2011) cells within

a certain accretion radius are swallowed if they are gravitationally bound to the sink. In

the test-case cosmological simulations of Vogelsberger et al. (2012), cells are swallowed

following the stochastic sampling of the black hole vicinity developed by Springel et al.

(2005a) for the GADGET code. More recently, Vogelsberger et al. (2013) implemented a

“draining” routine for cosmological simulations that makes direct use of the mesh-based

discretization of AREPO. In this later case, black holes subtract mass from the cell within

which they are located.

In this work we are interested in allowing the central star to accrete from its

surrounding gas disks. It is desirable to allow the central gas to accrete any material

that gets closer than some specified distance, while minimizing the e↵ect of that this

accretion might have on the rest of the computational domain. In standard accretion

disk theory, the inner boundary condition determines the overall properties of the disk;

since sink particles act as an innermost accretion boundary, how the flow is treated near

this region can have a significant impact in the rest of the domain. For example, any

aggressive removal of gas from the computational domain (for example mimicking a

vacuum boundary condition around the star) can deplete the inner region of the disk.

On the other hand, suppressing the removal of this material can cause, besides the

previously mentioned small time steps, a pile up of gas that can cause reflections back

into the rest of the disk.

Moving-mesh schemes can contain additional complications that are not present in

either AMR or SPH. The quasi-Lagrangian nature of this method does not impose a
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spatial resolution floor as AMR does. This implies that cells can spiral in arbitrarily close

to the central star and pile-up at the bottom of the (softened potential), accumulating

cells of nearly constant mass but ever decreasing volume, potentially generating a

runaway growth of computing time. The first step we must take is to impose such a

resolution floor and do not allow cells to become smaller than a certain reference volume

within some distance from the star. By breaking the near mass constancy in this region,

cells will increase in mass as numerical di↵usion funnels gas onto the center of the disk.

We then “shave o↵” the excess mass in these cells, and assign the corresponding fraction

of mass and momentum to the central star.

5.4 More examples

5.4.1 Disk evolution with bulk motion

One of the main advantages of using a code like AREPO for circumstellar disk simulations

is the minimization of the high Mach number problem. When solving the Euler equation

in the rest frame of a moving cell, the local velocity of the flow is irrelevant for the

outcome of the calculation. This can be a great advantage when simulating moving disks

in binary or multiple stellar systems.

As an example we consider one of the examples of ICs shown in Figure 5.8

(M
d

= 0.05, M⇤ = 0.45 and h
R

c

= 0.06) and evolve it in isolation for ⇠ 1200 years. In

addition, we take a copy of the same disk and give it a velocity of 6 km s�1 along the

x-axis (i.e. perpendicular to the disk’s symmetry axis). Within 1200 yrs, the boosted

disk will cross the entire computational domain of length 2000 AU.
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Figure 5.13 shows projections of the x-y plane for both the stationary disks and its

moving copy at four di↵erent times. Although some axisymmetric structure develops

with time, this is present in both the stationary and moving disks, showing that there is

no noticeable e↵ect on the structure of the disk (nor in the computing time) that can be

attributable to bulk motion.

Similarly, Figure 5.14 shows the structure of the stationary and moving disks at the

same points in time, but now projected onto the x-z plane. Again, the vertical structure

of the disks shows little to no variability in time and no di↵erence between the stationary

and the moving cases.

We have also experimented with boosting the disk along the direction of its

symmetry axis. Figure 5.15 shows the displacement of the disk along the x-direction,

at a velocity of 6 km s�1 like before, but now the disk has been rotated. Again, the

disk does not appear to be disturbed, and its thin-disk structure seems unaltered during

the entire simulation. Note that in this case as the previous one, only the disk and its

immediately surrounding mesh are moving with the central star; the background mesh,

on the other hand, is initialized at rest. Presumably, at the extremely low densities of

the background mesh, the e↵ects of shocks and ram pressure take place when static cells

meet stationary ones. However, given the low mass of those regions, the outcomes of

such interactions are entirely negligible.
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5.5 Appendix: Exact Rotation Curve for a Massive

Lynden-Bell–Pringle Disk with p = 1

In the special case of p = 1, the Lynden-Bell–Pringle surface density profile takes the

form

⌃(R) =
M

d

2⇡R2
c

✓
R

R
c

◆�1

exp


� R

R
c

�
. (5.14)

With this profile, the integrals in Equation 5.11 can be solved involving incomplete

gamma functions:

v2
c,d

(R) = G
M

d

(< R)

R
+

GM
d

⇡R
c

1X

k=1

↵
k
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R2k+1
c

R2k+1
�(2k + 1, R/R

c

)

� 2k
R2k

R2k
c

�(�2k,R/R
c

)] .

However, a more e�cient way of computing the exact rotation curve for the p = 1

case is to write the circular speed in terms of Bessel functions (Binney & Tremaine, 2008)

v2
c,d

(R) = 2⇡GR

Z 1

0

dk kJ1(kR)

Z 1

0

dR0R0⌃(R0)J0(kR
0) . (5.15)

For the case of ⌃(R) with p = 1, the innermost integral in Equation 5.15 can be

computed with the aid of the identity

Z 1

0

e�↵xJ
⌫

(�x)dx =
��⌫

hp
↵2 + �2 � ↵

i
⌫

p
↵2 + �2

(Gradshteyn & Ryzhik, 2000, §6.611), with ↵ = 1/R
c

, � = k and ⌫ = 0. This leaves

v2
c,d

(R) = GM
d

R

R
c

Z 1

0

dk k
J1(kR)p
R�2

c

+ k2
.
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which can be computed easily if we reformulate the integrand in terms of Meijer-G

functions. Using

J
⌫

(�x) = G10
02

0

B@
�2x2
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�������

�
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2
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(Gradshteyn & Ryzhik, 2000, §9.34), and
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(Gradshteyn & Ryzhik, 2000, §7.811), we obtain
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Note that

v2
c,d

(R) ���!
R!0

GM
d

R
c

,

i.e., the rotation curve has a non-zero value at the origin. This is due to the divergent

surface density at R = 0 in Equation 5.14, therefore, a softened surface density profiles is

needed to reproduce a physically plausible self-gravitating rotation curve that increases

from zero at the origin. This explains why the surface density softening cannot be

independent from the gravitational softening of the central star, since it must be

guaranteed that near R = 0 the rotation curve of the disk is entirely dominated by the

point mass.
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6

Orbital Evolution during

Circumstellar Disk Encounters

6.1 Introduction

The complexity and diversity of exo-planetary system configurations revealed by Kepler

data (e.g. Batalha et al., 2013) has exposed our limited theoretical understanding of

the apparently very e�./chapter5/figures/cient process of planet formation throughout

the Galaxy. One such exotic configuration that poses a challenge for the Solar nebula

hypothesis of Safronov (1972) is that of planets orbiting both members of a binary

system (circumbinary planetary systems, hereafter CPBs). At present, the occurrence

rate of these systems is unconstrained, with 7 planets detected in 6 main-sequence

systems Doyle et al. (2011); Welsh et al. (2012); Orosz et al. (2012). Planets have also

been detected orbiting a single stellar member of a multiple system. Current detection

statistics indicate a remarkably robust planet formation process in this configuration,
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with statistical evidence showing an occurrence rate that is a significant fraction of

that of isolated stars (Eggenberger et al., 2004; Bonavita & Desidera, 2007; Mugrauer

& Neuhäuser, 2009). While these systems are more easily explained from a theoretical

perspective , they nevertheless require an intimate connection between the star and

planet formation processes.

When going from single star systems to binary systems, the planet formation process

can be modified during at least three di↵erent stages (e.g. Zhou et al., 2012): (1) at the

early circumstellar gas disk phase; (2) during the planetesimal formation stage; and (3)

by altering the dynamics of already formed planetary systems at later stages. In this

work, we focus on the first case by exploring the e↵ects of primordial gas disk on the

orbital evolution of their host protostars during close stellar encounters.

The morphology of circumstellar gas at early times can leave an imprint on the

planet formation process by, for example, limiting the reservoir of gas available for

formation, and by modifying the semi-major axis, inclination and eccentricity of the

eventual planetary orbits. In binary systems, circumstellar material (dust and gas) can

su↵er large perturbations due to tidal truncation (e.g., Artymowicz & Lubow, 1994) or

warping/bending (e.g., Larwood et al., 1996; Ogilvie & Dubus, 2001) or hastened disk

dispersal (e.g., Alexander, 2012; Kraus & Ireland, 2012; Harris et al., 2012).

Understanding how planet formation proceeds in cluster environments is crucial

for the development of a general theory that can connect the birth of stellar clusters in

molecular clouds down to the small scale circumstellar environments that host planetary

systems. Ultimately, to unveil the details of planet formation under these environmental

conditions, we must understand the fate of the gas that remains in disks once the stars
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have accreted most of their mass. (see Laughlin & Adams, 1998; Armitage, 2000; Bonnell

et al., 2001; Adams et al., 2004, 2006; Fregeau et al., 2006; Fatuzzo & Adams, 2008;

Gorti & Hollenbach, 2009; Gorti et al., 2009; Proszkow & Adams, 2009; Spurzem et al.,

2009; Holden et al., 2011; Olczak et al., 2012; Pfalzner, 2013; Craig & Krumholz, 2013).

In the context of star clusters, star-star interactions are not limited to bound

multiple systems, but may also include pairs (or higher order configurations) with zero or

positive energy. Although hyperbolic (unbound) encounters between stars are essential

for the dynamical relaxation of a cluster, their influence on spatial scales down to the

circumstellar disk scales (. 100 AU) is expected to be a very small one; the probability

of encounters with impact parameter b is proportional to b. Over the finite lifetime of

(open) clusters, which is typically a few crossing times or ⇠ 1 to 3 Myr (Reggiani et al.,

2011; Je↵ries et al., 2011) with a small fraction reaching up to 10 Myr, interactions at

distance of less than 200 AU are quite rare. As a consequence, planetary orbits within

30 AU of their host star should be essentially una↵ected (Bonnell et al., 2001; Adams

et al., 2006; Dukes & Krumholz, 2012), although some statistical evidence points toward

the truncation of disks in more extreme clusters such as the Orion nebular cluster (ONC;

see de Juan Ovelar et al., 2012).

Despite the rareness of events like direct star-disk and disk-disk interactions, such

encounters have received significant attention in the literature, either focusing on their

role in the tidal evolution of a binary and orbital capture (Clarke & Pringle, 1991a,b;

Ostriker, 1994), or by studying the possible triggering of spiral arms, gravitational

instability (GI) and fragmentation (Bo�n et al., 1998; Lin et al., 1998; Pfalzner, 2003;

Pfalzner et al., 2005; Pfalzner & Olczak, 2007; Forgan & Rice, 2009; Shen et al., 2010).

There are several reasons to analyze these systems in detail. First, the evolution of
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N -body simulations of clusters generated from semi-parametric models and not from

ab initio simulations of star formation has been shown to be very sensitive to variables

other than the mean stellar number density. For example, a dissolving cluster imposes a

maximum timescale after which encounters cannot take place (Bonnell et al., 2001; Dukes

& Krumholz, 2012; Craig & Krumholz, 2013). Also, sub-virial (Dukes & Krumholz,

2012) and structure-rich clusters (Craig & Krumholz, 2013) have produced significantly

di↵erent results from idealized cluster models of Laughlin & Adams (1998); Adams &

Laughlin (2001). Similarly, young cluster simulations with gas remain a challenging and

expensive problem numerically (although see Hubber et al., 2013), and thus it is not

truly known to what extent the presence of gas a↵ects the encounter rate at times where

the gas content of the cluster is a significant fraction of the total mass. Moreover, since

stars form along filaments, they might begin their lives clumped relative to the average

stellar density following dispersal (e.g. O↵ner et al., 2010). Secondly, as observations

reach higher sensitivities and higher angular resolution, sample completeness makes rare

examples accessible. Extreme environments like dense star clusters (e.g. the ONC),

long-lived ones, or simply the much denser and permanently bound globular clusters are

much more likely to host systems which have experienced close encounters. Third, small

scale secular dynamics can alter the eccentricity of binaries and hierarchical multiples

on timescales shorter than the lifetime of the disk but longer than the relaxation or

evaporation time of the cluster. Circumstellar disks are observed in hierarchical multiple

T Tauri stars (e.g. Andrews et al., 2010a), and processes like Kozai cycles (Kozai, 1962)

could trigger close, eccentric encounters (e.g. Naoz et al., 2011; Lithwick & Naoz, 2011).

Furthermore, even at late stages of stellar evolution in bound binaries, stellar mass loss

could cause both the formation of “second generation” circumstellar disks (Perets &
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Kenyon, 2013) and variation in the orbital elements that could excite the eccentricity

(e.g., Perets & Kratter, 2012).

Even if star-disk and disk-disk encounters do take place in young clusters, they are

nearly impossible to resolve adequately in the context of a full cluster hydrodynamical

plus N -body simulation. Despite the increased sophistication of cluster models (Adams

et al., 2006; Parker & Quanz, 2012; Bate, 2012; Craig & Krumholz, 2013),the dynamical

range in timescales of N -body systems of stars with their respective planetary systems

makes direct simulation of such systems prohibitive computationally. The limitations

are not only owing to current hardware capabilities, but are also algorithmic in nature.

For example, accurate N -body integrations of stellar clusters usually require direct force

computations via, for example, Hermite integrators. However, these integrators can run

into trouble after too many time steps, which would be the case if the spatial scales

resolved went from the cluster scales (⇠ 1pc and crossing times of ⇠ 1Myr) down to

planetary orbit scales (⇠ 1pc and orbital perios of ⇠ 1yr), implying a total integration

time-to-time step ratio of at least 7 orders of magnitude, a dynamical range that can

make the simulation computationally impractical. In addition, Hermite integrators are

not symplectic, and thus su↵er from cumulative errors (e.g. Aarseth, 2003) that can

render the planetary orbits useless after hundreds of thousands to a few million orbits,

which are the relevant timescales for cluster relaxation. Furthermore, accurate gravity

solvers for clusters including gas as well as stars have only been recently begun to be

explored (see the hybrid integrator of Hubber et al., 2013), in hopes to bridge the gap

between gas-dominated star-formation simulations (e.g. Bate, 2012) and pure N -body

simulations of young clusters. Therefore, a single full-blown direct N -body integration

of a stellar cluster with planetary systems and circumstellar disks remains an extremely
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challenging problem.

6.2 Numerical experiments on disk-disk interaction

6.2.1 Previous work

Numerical experiments on isolated configurations of star-disk and disk-disk interaction

on spatial scales of ⇠ 100 AU enable the detailed study of the smallest spatial scales of

clustered star formation at high resolution, accessing regions that are usually unresolved

in self-consistent, ab initio simulations of star forming clouds with spatial scales of

⇠ 105 AU. Note that even the state-of-the-art star formation simulations of Bate

(2012) –which produce hints of disks around protostars– have a mass resolution of

1.43 ⇥ 10�5M�, implying that a 0.01M� disk is composed of barely 700 resolution

elements.

Studies of disk-disk collisions by direct numerical simulation date back to Lin

et al. (1998) and Watkins et al. (1998a,b) (see also Bo�n et al., 1998), when authors

hypothesizes that condensation of material in tidally induced tails could produce a

population of brown dwarfs. Later on, others authors have revisited the problem with

both pure N -body approaches (Pfalzner, 2003; Pfalzner et al., 2005; Thies et al., 2005;

Pfalzner & Olczak, 2007) and including with gas dynamics (Forgan & Rice, 2009;

Sheppard & Trujillo, 2006; Shen et al., 2010; Thies et al., 2010). All the gas dynamical

studies included self-gravity, although some of the N -body ones used test particles (e.g.

Pfalzner et al., 2005), only focusing in the passive response of the disk to an external

perturber. These studies have concentrated on the tidal generation of spiral arms (e.g.
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Pfalzner, 2003); on disk fragmentation and formation of substellar mass objects (e.g. Lin

et al., 1998; Sheppard & Trujillo, 2006; Shen et al., 2010; Thies et al., 2010) and disk

truncation (e.g. Forgan & Rice, 2009). Those studies that include gas dynamics were

all carried out using smoothed particle hydrodynamics (SPH; Lucy, 1977; Gingold &

Monaghan, 1977; Monaghan, 1992; Springel, 2010b).

The fact that the numerical scheme of choice for disk-disk interaction has been

almost exclusively SPH responds to a necessity of having a very adaptable scheme. On

one hand, isolated circumstellar disks are axisymmetric to first order and, globally,

nearly stationary structures. Therefore, they benefit from the use of structured grids

in cylindrical coordinates, since such grid configurations favor low numerical di↵usivity

for azimuthal flow. On the other hand, as soon as this symmetry is broken (e.g., by

combining two circumstellar disks moving at supersonic speeds toward each other),

the benefit of structured grids becomes less clear. The meshless nature of SPH

makes its performance independent of the geometry of the problem. In addition, its

pseudo-Lagrangian adaptivity o↵ers a robust and continuous resolution increase in

regions of high density. These same reasons make this problem a tractable one for

quasi-Lagrangian Eulerian codes like AREPO (Springel, 2010a), in which the control

volumes evolve and move in a similar way SPH particles do, i.e., by following the local

velocity field. By being locally a grid code, AREPO does not su↵er from some of the

numerical artifacts SPH is known to develop, such as clumping instabilities, suppression

of hydrodynamic instabilities, artificial surface tension, zeroth order error terms, etc (see

Vogelsberger et al., 2012; Sijacki et al., 2012; Bauer & Springel, 2012; Dehnen & Aly,

2012).

The study closest to our work is Shen et al. (2010), where the authors performed
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fully self-gravitating simulations of gas disks encounters using SPH. Similarly to Lin

et al. (1998), Shen et al. (2010) focused on the formation of self-gravitating objects (int

the brown dwarf range) in tidal tails (reminiscent of the work of Barth, 1992) and in

compression shocks during encounters of very massive disks (the values of star mass,

disk mass and disk radius used area M⇤ = 0.6M�, Md

= 0.4M� and R
d

= 250 AU in Lin

et al., 1998, and M⇤ = 0.5M�, Md

= 0.6M� and R
d

⇠ 1000 AU in Shen et al., 2010). In

this work, we model disks of more moderate –and more plausible– masses (10% of the

mass of the star), focusing on the role of the tidal forces on the orbital evolution of the

host stars, and exploring how small the impact parameter must be in order to cause a

significant change to the original orbits.

6.2.2 Circumstellar disk models

Individual disk models are discussed in detail in Chapter 5. In this chapter, we use the

same basic model, which consists of a self-consistent, self-gravitating solution for a disk

with a surface density distribution that satisfies the Lynden-Bell–Pringle (Lynden-Bell

& Pringle, 1974):

⌃(R) = (2� p)
M

d

2⇡R2
c

✓
R

R
c

◆�p

exp

"
�
✓

R

R
c

◆2�p

#
. (6.1)

where M
d

= 0.05M�, p = 1, R
c

= 20 AU and stellar mass of M⇤ = 0.45 is used.

Our numerical scheme calculates full gas self-gravity and thus is able to capture disk

fragmentation and object formation. However, the disk masses involved in our study

make fragmentation much less likely than for the models of Shen et al. (2010). In order

to avoid an excess of computer time dedicated to the high density regions undergoing

gravitational collapse, we have used a temperature scaling high enough to minimize the
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risks of disk fragmentation. None of the simulations performed for this work produce

long-lived fragments. Still, the disk scale heights remain reasonable small (H/R = 0.1 at

the disk characteristic radius) and the temperatures only reach a maximum of ⇠ 300 K

when within 0.8 AU (⇡ the softening length of the stellar potential) and reach a floor

temperature of 10 K at around 100 AU from the central star.

Besides computational convenience, there are two additional reason of why we have

chosen to avoid fragment formation. First, our main focus is the orbital evolution of

the stars following an encounter. Since the torque exerted on the stars by the disk gas

depends on the mass distribution and not on the gas temperature, the results should

not depend on whether or not a disk forms objects, unless of course that owing to low

temperature (low Toomre Q) the fragmentation is so violent that the entire disk is

turned into a few small objects such that the mass distribution is changed and, as a

consequence, so is the torque. Second, realistic disk initial conditions for low mass stars

are unlikely to spawn fragments over most of their lifetimes (Kratter et al., 2008, 2010).

Two relations are essential for determining the importance of tidal e↵ects in

disk-disk interactions. The first is the ratio between the disk size R
d

and the pericenter

distance between the two stars q. The second is the ratio between the disk’s internal

angular momentum Ldisk and the binary system’s orbital angular momentum Lorb. If

q � R
d

and Lorb � Ldisk, tidal e↵ects should be negligible and the stellar orbits should

approximately evolve as those of point particles with mass equal to M⇤ +M
d

. Although

the disk’s characteristic radius R
c

(Equation 6.1) defines the scale at which the disk

surface density profile transitions from power-law form to an exponential cuto↵, it does

not define a specific disk size. We define R
d

as simply the radius that encloses 95% of

the disk mass. For a surface density profile given by Equation 6.1, it can be shown that
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the enclosed mass at radius R is

M
d

(< R) = M
d

(
1� exp

"
�
✓

R

R
c

◆2�p

#)
. (6.2)

For p = 1, R
d

⇡ 3R
c

, i.e. the disk size is approximately 60 AU in our models.

The disk internal angular momentum (measured respect to the center of mass of

the star+disk system) Ldisk can be computed analytically assuming that the azimuthal

velocity field v
�

is well approximated by the Keplerian value v
K

. For p = 1,

Lorb ⇡ 2⇡

Z 1

0

v
K

(R)⌃(R)R2dR

=

p
⇡

2
M

d

p
GM⇤Rc

(6.3)

which is approximately 0.835 M� AU2 yr�1.. Computing Lorb from our 3D numerical

modeles by directly summing over all cells gives a value of Lorb ⇡ 0.85 M� AU2 yr�1.

Another quantity of interest is the disk’s total energy Edisk (consisting of the disk’s

total kinetic energy, the total gravitational binding energy, and the total thermal energy).

Since our simulations are initialized with the stars on parabolic orbits (see Section 6.2.3

below), the orbital energy of the system should be strictly zero in the limit of zero tidal

e↵ects, i.e., when the star+disk trajectories can be accurately represented by those

of point particles. Therefore, any discrepancy between the total energy of the binary

system at t = 0 and twice the value of Edisk ⇡ 0.24 M� AU2 yr�2 provides an indication

of the tidal forces at startup and the validity of assigning point-mass trajectories to the

disk-gas as initial conditions.
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Figure 6.1.— Orbital configurations explored in this work (for clarity, only one compo-

nent of the binary is shown). Five di↵erent parabolic orbits are setup with five di↵erent

pericenter separations, which take values q = 6.2, 24.2, 89.4, 180.0 and 282.8 AU. Initial

conditions star from the right of the figure at x = �200 AU for all modeled orbits (con-

versely, the binary component not shown here is started at x = 200 AU) with velocity

along the x-axis. Orbital properties at t = 0 are calculated assuming each disk is a point

particle of mass 0.5M�. The magnitude of the velocity –chosen such that the orbit is

parabolic for given an initial disk separation– ranges from ⇠ 1.7 km s�1 to ⇠ 2.1 km s�1.

The filled circles depict the locations for each trajectory in 200-year intervals.
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6.2.3 Orbital configuration

Two identical copies of the fiducial disk model presented in Section 6.2.2 are used to

setup a parabolic encounter. Consequently, the orbital energy of the binary is Eorb = 0.

All orbits live on the x-y plane and are initialized with the same x-coordinate. The

initial velocity is directed along the x-axis (the disks directed toward each other).

Therefore, the only free parameter is the pericenter separation q. Figure 6.1 shows the

initial trajectories of one of the disks for five di↵erent values of q: 6.2, 24.2, 89.4, 180.0

and 282.8 AU. We call these di↵erent parabolic orbit configurations ‘PARA1’, ‘PARA2’,

‘PARA3’, ‘PARA4’ and ‘PARA5’ respectively. In addition, we vary the orientation of

the disks respect to the orbital angular momentum vector (angles ✓1 and ✓2). We vary

the disk orientations in seven di↵erent configurations, which are labeled accordingly by

appending a number to the orbital label, e.g., ‘PARA1-1’, ‘PARA1-2’, etc. Table 6.1

shows the the main set of simulations and their respective orbital and orientation

parameters. Each orbital configuration (set by the value of q) contains seven variants,

which correspond to di↵erent combinations of the angles ✓1 and ✓2 (same notation as

Shen et al., 2010). The azimuthal orientation of the disks (angles �1 and �2) is not

changed.

The orbital angular momentum in the two body problem is Lorb = m
p

µq(1 + e)

where m = M1M2/(M1 +M2) = 0.25M� is the reduced mass and µ = GMtot where the

total mass Mtot = 1M�. The seventh column in Table 6.1 shows the orbital angular

momentum of each simulation according to the chosen value of q. The eighth column

shows the expected value of the z-component of the total angular momentum Ltot,z,
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taking into account the contribution from the disk internal angular momentum, i.e.,

L
z

= Lorb + Ldisk,1 cos ✓1 ++Ldisk,2 cos ✓2 , (6.4)

where Ldisk,1 = Ldisk,2 ⇡ 0.85 (Section 6.2.2). A comparison between Lorb and Ltot,z

shows the whether the total angular momentum can be changed significantly by simply

changing the orientation of the disks. From these quantities, we can estimate that the

simulation subsets ‘PARA1’ and ‘PARA2’ should show a greater degree redistribution of

angular momentum between the gas and the stars (and produce capture) as well as a

significant dependence of the simulation outcome on the orientation of the disks. Our

initial conditions satisfy Equation 6.4 within less than a few percent, indicating that the

superposition of two stationary, isolated disk models into a self-interacting binary system

is reasonably adequate at the values of the initial separation D that we have chosen. We

have noticed that the angular momentum error seeded on startup is slightly larger for

the larger pericenter simulations. Although the disks in these simulations were started

far apart (Figure 6.1) precisely to avoid these problems, it is worth pointing out that the

angular momentum of the system grows faster with q than with D. For example, the

ratio in D for the orbital configurations ‘PARA5’ (q = 282.8) and ‘PARA1’ (q = 6.2) is

⇠ 1.4, while the ratio in Lorb for the same configurations is ⇠ 6.8. As a consequence,

the errors in setting up the orbit are fractionally larger, albeit still small, for our wider

orbits. Although the impulsive forces implied by this fractional error are still negligible

for the dynamics of the encounter, we foresee some complications arising from not setting

up a configuration that is not “asymptotic enough”.

Similarly, the consistency between the measured energy at the zeroth snapshot and

the expected energy derived from the superposition of two isolated disk models provides
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Figure 6.2.— Simulation output for the orbital set ‘PARA1’ (q = 6.2)a short time after

pericenter passage (t� ⌧0 = 79 yr), which corresponds to a simulation time of 700 yr. Six

out of these seven simulations show orbital capture before the end of the integration (5000

years), meaning that the stars came back for at least one more pericenter passage (see

text). Each frame shows the projected density in units of M� AU�2 (the conversion factor

to g cm�2 is ⇡ 8.9⇥ 106). All images are generated by integrating the three-dimensional

density field along one direction following the full Voronoi mesh.
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Figure 6.3.— Simulation output for the orbital set ‘PARA2’ a short time after pericenter

passage (t�⌧0 = 119 yr), which corresponds to a simulation time of 800 yr. See description

of Figure 6.2.
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Figure 6.4.— Simulation output for the orbital set ‘PARA3’ a short time after pericenter

passage (t � ⌧0 = 111 yr), which corresponds to a simulation time of 1000 yr. See

description of Figure 6.2.
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Figure 6.5.— Simulation output for the orbital set ‘PARA4’ a short time after pericenter

passage (t � ⌧0 = 146 yr), which corresponds to a simulation time of 1300 yr. See

description of Figure 6.2.
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Figure 6.6.— Simulation output for the orbital set ‘PARA5’ a short time after pericenter

passage (t � ⌧0 = 172 yr), which corresponds to a simulation time of 1600 yr. See

description of Figure 6.2.
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another measure of whether the initial conditions are quiet, or if the disks are so close

that the tidal forces are imparted impulsively at the beginning of the simulation. The

total energy of the system is Etot = 2Edisk + Korb + Vorb, but as we have mentioned

above, Korb + Vorb = Eorb ⇡ 0. Therefore, the total energy of the system, regardless of

the pericenter distance, should be just twice the energy of the individual disk model:

Etot ⇡ �0.48. Just as with Ltot, we find deviations of the order of 1 � 2%, indicating

that some tidal forces are acting on the disks at t = 0.

6.3 Results

6.3.1 Encounter morphology

Figures 6.2-6.6 show projected density images of all 35 simulations listed in Table 6.1.

Each of these figures shows a simulation subset ‘PARA1’ to ‘PARA5’ (Table 6.1) at some

time after pericenter.

Simulation sets ‘PARA1’ and ‘PARA2’ have pericenter distances of q = 6.2 and 24.2

respectively, and therefore we expect the greatest disruption to the gas disks in these

simulation sets due to tidal e↵ects but also due to direct shock-induced truncation. The

disk models have characteristic radii of R
c

= 20 AU and outer radii of R
d

= 60 AU

(Section 6.2.2), and thus the disks are expected to collide directly (i.e., q/2 < R
d

) for

configurations ‘PARA1’, ‘PARA2’ and ‘PARA3’. However, for ‘PARA3’, the enclosed

mass at R = q/2 = 44.7 is 89% of the disk total mass, and thus, despite the evident

disk truncation seen in Figure 6.4 (note that the projected density range spans nearly 5

orders of magnitude), this encounter should have little e↵ect on the stellar orbits.
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Indeed, two di↵erent regimes can be clearly distinguished if the orbits of the stars

are considered. Figures 6.2 -6.3 show significant disruption of the gas distribution,

but also to the orbital evolution of the stars. Figure 6.4 shows some truncation of the

disks and strong tidal features, but the disk centers (approximately the position of the

stars) shows no distinguishable variation from frame to frame, i.e., the orientation of the

disks bears little importance, an indication that the response of the disk orbits depends

weakly on the extended mass distribution and that it can be reasonable approximated to

those of two point masses. Figures 6.5 and 6.6 show little to no modification in the disk

surface density besides the excitation of m = 2 spiral arms, which are characteristic of

tidal encounters (e.g. Binney & Tremaine, 2008; D’Onghia et al., 2010). Evidently, the

steepness of the tidal force with distance can explain the rapid change in output with

q (Ostriker, 1994 calculations show an exponential dependence of the energy change in

(q/R
d

)3/2).

Another indication of the rapidly decreasing influence of the disk is the ubiquitousness

of some tidal features. Recalling from Table 6.1 that simulations ‘PARA -1’- ‘PARA -5’

di↵er only in the orientation of disk #2 while keeping the symmetry axis of the disk

#1 aligned with the z-axis, we can see the same tidal features in disk #1 in all first

five panels of Figure 6.4-Figure 6.6 and to a significant extent in Figure 6.3 (these

morphological similarities are harder to find in Figure 6.2), regardless of the orientation

and shape of disk #2, an indication that to first order the tidal features depend on the

monopole component of the companion’s potential (strongly dominated by the central

star), even as significant mass stripping has taken place due to the physical collision of

the disks.
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6.3.2 Stellar orbits

Figure 6.7 shows the inter-star separation for the most disruptive set of orbits (‘PARA1’).

At pericenter passage, all orbits su↵er a significant energy loss that shrinks the

semi-major axis compared to the initial parabolic trajectory. Before pericenter (i.e.,

t <621 yrs) all runs follow the analytic trajectory closely, and reach pericenter at the

same time. After pericenter, the orbital evolution varies dramatically among these

configurations. In six of the runs, there are at least three additional close pericenter

passages and over ⇠ 50 additional ones in the most disruptive configuration. Based

on these additional separation minima we categorize these systems as “captured.”

The seventh configuration (‘PARA1-1’) hints that the stellar separation has reached

apocenter at the end of the simulation, and that it should go back for a second passage

at around t = 7000 yr. Consequently, all simulations in the set ‘PARA1’ show su�cient

energy loss to be considered bound after first passage.

The di↵erent outcomes of the ‘PARA1’ simulations is determined by the relative

orientation of the disks. Each curve in Figure 6.7 is labeled according to a normalized

z-spin value S
z

⌘ cos ✓1 + cos ✓2. Prograde-prograde encounters like ‘PARA1-1’,

‘PARA1-2’ and ‘PARA1-3’ contain a larger amount of angular momentum than the

prograde-retrograde and the retrograde-retrograde encounters. Configurations that

include one or two disks in retrograde orientation will result in di↵erent torques on to

the stars since the initial response of the gas to first passage will be di↵erent. Retrograde

orientations do not contain orbital resonances (e.g. Toomre & Toomre, 1972; D’Onghia

et al., 2010), and extended spiral arms are not formed as a result.

Interestingly, the orbital decay is almost entirely determined by the energy loss at
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Figure 6.7.— Time evolution of the stellar separation for all simulations in the ‘PARA1’

orbital configuration. Lines are labeled according to “normalized total disk spin” in the

z-direction, simply defined as S
z

= cos ✓1 + cos ✓2, and change in color and thickness

according to the value of S
z

. A total spin value of 2 implies that both disks are have

angular momentum exactly aligned with the orbital angular momentum vector. A value

of �2 implies that both spins are antiparallel with the orbital angular momentum vector.

The thin red line represents the exact solution of the initial two-body problem assuming

the disks are point masses. The simulation results show the red line is followed very

closely by the stars until pericenter passage.
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first passage. Although the amplitude of the separation curve is observed to decay slowly

in time, most of the dissipation happens at once when the disks first meet. This is not

surprising given that configuration ‘PARA1’ has a pericenter distance (q = 6.2) that is

significantly smaller than the sum of the disk radii (2 ⇥ R
d

= 120 AU). Thus, the first

encounter violently truncated the disk on very short timescales, potentially reducing the

mass of the disk by a factor of ⇠ 4 (from Equation 6.2, M
d

(< 6.2AU) ⇡ M
d

/4), after

which the tidal interaction goes back into a linear regime and the orbit evolves more

slowly.

Figure 6.8 shows the evolution of stellar separation for the rest of the simulations in

our study, grouped by orbital configuration. The likelihood of capture decreases very

rapidly with pericenter separation. Only three out of seven simulations in the ‘PARA2’

show additional pericenter passages (although all of them show substantial orbital energy

loss). The runs in set ‘PARA3’ show a much weaker e↵ect; although, as before, the

change in separation increases when S
z

is decreased. The stars should not be expected

to interact again for another few 10,000 yrs, and after reaching separations of a few to

several thousand AU, meaning that these systems are not true “binaries”. In the case of

‘PARA4’ and ‘PARA5’, the interaction appears extremely weak, since stellar separations

remain on their original parabolic trajectories with variations of the order of 1% toward

the end of the simulation. These variations are attributable to other e↵ects besides

tidal interactions (e.g., numerical accuracy, no strict conservation of angular momentum,

torque onto the stars by gas accretion, etc). Although the tidal response of the disk

is clear in these last two examples, the long term e↵ect on the orbits of the stars is

negligible.
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Figure 6.8.— Same as Figure 6.7, but now for the ‘PARA2’, ‘PARA3’, ‘PARA4’ and

‘PARA5’ configurations. As before, the color of the curves is chosen according to the

combined disk spin in each configuration
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6.3.3 Orbital evolution

Although the stellar separation is informative, it does not necessarily describe completely

the orbital evolution of these star+disk systems. In order to analyze the orbital evolution

of each star+disk system, we need to assign them meaningful osculating elements.

However, identifying what gas belongs to a disk and which is simply is surrounding

material is not a trivial task. Although group finding algorithms abound in the literature,

these rely on heavily clustered distributions in space (this is the basis for halo-finding

algorithms in cosmology; e.g., Davis et al., 1985). Although spatial density-based

clustering algorithms might have little trouble identifying disks in configurations like that

of Figure 6.6, disordered gas distributions like that of Figure 6.2 might present a great

challenge for automized searches. For simplicity, we will consider to be disk material

any cells lying within each star Roche lobe (in this equal-mass example, delimited

roughly by the midpoint between the two stars). Then, we proceed to identify all the

mass within the chosen region, calculating its center of mass and the center of mass

velocity. With these quantities, we define a classical two-body problem and calculate the

orbital elements for each snapshot. Since over short timescales the dynamics should be

dominated by the two stars (they contain 90% of the mass of the system), we expect this

approximation to be a good first order indicator of the orbital evolution of the system.

Figure 6.9 shows the orbital elements calculated in the way described above for

all 35 simulations. The pericenter time series show a markedly di↵erent behavior

between simulation sets ‘PARA1’ and ‘PARA2’ with respect to sets ‘PARA3’, ‘PARA4’

and ‘PARA5’. The former group shows substantial changes in q after pericenter (up

to 50% in the case of ‘PARA1’), while the latter group shows a variability that could
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be consistent with a random walk behavior. Smoother over timescales of ⇠ 1000, sets

‘PARA3’, ‘PARA4’ and ‘PARA5’ show little to no consistent trend in q as a function of

time. The total �q ranges from 1%� 2% in the case of ‘PARA3’, to ⇠ 0.1% in the case

of ‘PARA5’. The seemingly stochastic behavior of q in this regimes leads us to conclude

that the evolution is dominated by numerical noise or stochastic accretion due to our

sink particle scheme and that the “true” small variability of q is buried (‘PARA4’ and

‘PARA5’) or partially buried (‘PARA3’) under said noise.

The evolution of eccentricity shows a significant deviation from unity for sets

‘PARA1’ (up to 30%), ‘PARA=2’ (up to 30%) and ‘PARA3’ (up to 6%). Even ‘PARA4’

and ‘PARA5’, although again with a noticeable component of stochasticity, show a clear

overall trend of decreasing eccentricity that flattens out toward the end of the simulation.

The fact that the eccentricity reaches a finite value toward the end proves that, despite

the evident noise contamination, this loss of energy is real; furthermore, ‘PARA5’ flattens

out later than ‘PARA4’, consistently with the fact that the pericenter timescale of

‘PARA5’ is longer and therefore the tidal interaction is expected to be spread over a

longer period of time.

An interesting outcome of the pericenter evolution of ‘PARA1’ is that q grows

after pericenter for positive values of S
z

but decreases for S
z

 0. Therefore, although

Figure 6.7 already hints at loss of orbital energy (confirmed by the drop in e below

1 right after pericenter) the pericenter does not necessarily shrink. In principle, this

e↵ect can shield the disks from undergoing a second disruptive pericenter passage of

similar proximity to the first, now that the minimum distance has been increased.

Conversely, those simulations with the most negative values of S
z

show a decrease in the

magnitude of pericenter distance after the first passage. These simulations (‘PARA1-6’
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and ‘PARA1-7’) show several subsequent encounters, as if undergoing a runaway process

in which each encounter facilitates the following one at an even smaller separation. This

process could only stop once the gravitational softening lengths of the stars overlap (thus

introducing an artificial “pressure”), or if the dispersal of the disk –via truncation or

accretion– has made the tidal e↵ects insignificant. Indeed all negative spin simulations

in ‘PARA1’ end up stabilizing in q, although they do so at a time considerably longer

than the timescale associated with pericenter passage.

Another feature observed in the first three orbital configurations and absent in

‘PARA4’ and ‘PARA5’ is the sharp increase in eccentricity right before pericenter. Note

that for those orbits that were classified under “orbital capture” (Table 6.1),every

subsequent pericenter passage is preceded by smaller glitches in eccentricity. Technically,

this means that right before the orbit becomes elliptical it actually behaves briefly as

a hyperbolic orbit. One must bear in mind that these orbital elements are proxies for

what is actually happening with the (at time ill-defined) disks during the encounter, and

that these values of q and e might not have much physical meaning when the gas is

being entirely dispersed by a very violent interaction. Indeed, an important transition

when going from ‘PARA3’ to ‘PARA4’ is that in the former case the disks actually come

into contact, while in the latter there is no direct gas collision. Therefore, glitches in

eccentricity observed right before a close encounter might be an exclusive outcome of

disk-disk interactions mediated by shocks. Alternatively, the glitch in eccentricity for

‘PARA4’ and ‘PARA5’ is either too mild to be detected above the noise fluctuations or

it simply should have taken place before the start of the simulation (see Section 6.3.4),

which would explain why as opposed to the other orbital configurations, eccentricity in

‘PARA4’ and ‘PARA5’ is decreasing roughly monotonically in time since the beginning of
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the runs.

6.3.4 Orbital energy and angular momentum

Directly from the orbital elements q and e and the time-dependent star+disk masses

M1 and M2 one can obtain the orbital energy Eorb = �GM1M2(1� e)/(2q) and orbital

angular momentum Lorb = M1M2

p
Gq(1 + e)/(M1 +M2). Figure 6.10 shows the time

evolution of Eorb normalized by GM1M2/q (left column) and the evolution of Lorb

normalized by its value at t = 0. These figures share the same axes range to highlight

the dramatic di↵erences in energy and angular momentum change in the orbits, and

how simulation sets ‘PARA4’ and ‘PARA5’ change their orbital properties by very small

amounts. The shaded region in Figure 6.10 defines the “interaction period” outside of

which the tidal forces are expected to have very little e↵ect. This window is defined

as proportional to the pericenter timescale tperi ⌘ q/vperi = q/
p

µ/q, where we use

µ = G⇥ 1M�. Empirically, we find that a window of half-width equal to 6⇥ tperi encloses

most of the energy and angular momentum change centered around pericenter time

⌧0. In practice, the interaction window has a width of ⇠ 40 yrs for the ‘PARA1’ (i.e.,

consisting of only a handful of snapshots) and of ⇠ 4600 yrs for ‘PARA5’, which covers

nearly the full integration. Most importantly, the asymmetry of the total integration

time with respect to pericenter time ⌧0 implies that for very long interaction periods

with half-lengths & ⌧0, the tidal interaction preceding proper pericenter is not entirely

captured by the simulation. This is the case of ‘PARA4’ and ‘PARA5’, for which the tidal

interaction is expected to commence at wider separations than the ones included in our

initial conditions (see discussion on the fractional error in orbital angular momentum in
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Figure 6.9.— Time evolution of the orbital elements (pericenter separation q and eccentric-

ity e) for the 35 simulations of Table 6.1 using the same color scheme as in Figure 6.8. The

vertical gray lines mark the expected time of pericenter ⌧0 based on the initial parabolic

orbit for any given orbital configuration. The horizontal dotted line represents the initial

value of q (Table 6.1) and eccentricity e (=1 for all orbits).
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Figure 6.10.— Orbital energy Eorb (left column) normalized by the reference value

GM1M2/q and orbital angular momentum Lorb normalized by its initial value Lorb,0 for all

simulations of Table 6.1. The inset in the last row (orbital configuration ‘PARA5’)contains

a zoomed in region showing that the change in Eorb and Lorb is less than 1%. The shaded

region covers the “interaction period” (see text) within which most of the energy and

angular momentum exchange between the two disks takes place.
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Section 6.2.3). Although it is not possible to say without running simulations with much

wider initial separations D, it is possible that some of the notable di↵erences between

‘PARA4’ and ‘PARA5’ with respect to the other orbital tests (for example, that there

is no steep jump in eccentricity right before pericenter in Figure 6.10) could be due to

an extremely wide tidal interaction window and that ‘PARA4’ and ‘PARA5’ are simply

“incompletete”, that is, their integration should have begun at greater separations in

order to cover the asymptotic interaction in greater extent.

Figure 6.11 summarizes the energy change during first pericenter passage (i.e.,

restricted only to the shaded region in Figure 6.10) for all 35 simulations. Note that

the energy change in the ‘PARA1’ and ‘PARA2’ is similar. However, these data include

only first passage. As it can be seen from Figure 6.10, the orbital energy in the ‘PARA1’

simulations keeps chaining repeatedly as the stars go through pericenter over and over.

On the other hand, In the ‘PARA2’ examples, repeated pericenter passages are more

rare, since runaway decay of the binary orbit is not taking place.

6.4 Discussion and Summary

We have carried out simulations for disk-disk interaction focusing on the e↵ects of tidal

forces on the orbital evolution of a stellar pair in an initially parabolic orbit.

We have found a steep dependence of the orbital energy and orbital angular

momentum change with separation at pericenter, which is qualitatively consistent with

tidal torque calculations of star-disk interactions for parabolic and hyperbolic orbits

(Ostriker, 1994). One surprising result, however, is the outcome of “runaway orbital
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Figure 6.11.— Energy change for during first pericenter passage for all simulations. Colors

represent the orbital configurations ‘PARA1’ (blue) , ‘PARA2’ (green), ‘PARA3’ (orange),

‘PARA4’ (cyan) and ‘PARA5’ (magenta), while symbols represent the di↵erent disk ori-

entations: ‘PARA -1’ or S
z

= 2 (diamond), ‘PARA -2’ or S
z

= 1.7 (square), ‘PARA -3’

or S
z

= 1 (upright triangle), ‘PARA -4’ or S
z

= 0.3 (circle), ‘PARA -5’ or S
z

= 0 (pen-

tagon), ‘PARA -6’ or S
z

= �2 (sideways triangle) and ‘PARA -7’ or S
z

= �1.7 (bowtie).
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decay” in those simulations with small pericenter separations and retrograde disks,

which show orbital capture with subsequent energy losses at each pericenter encounter,

eventually forming close binaries with di↵use circumbinary disks.

The tidal interaction between a star+disk system and another stellar flyby was

studied in detail by Ostriker (1994). Although that work focused on a simpler system

containing only one disk, comparison should be meaningful for our wide-separation

simulations.

Assuming only one disk changes orientation (in our simulations, the first five runs

of each subset only di↵er in the value of ✓2) the angular momentum loss su↵ered by the

victim disk is, in the linear regime (Eq. 3.1 in Ostriker, 1994),

�Ldisk,2 = �C
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2
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2

�4


2
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is a rapidly decreasing function of the ratio q/R
d

. Equation 6.5 is only valid when

q > R
d

, which is satisfied by our simulations sets ‘PARA3’, ‘PARA4’ and ‘PARA5’,

with ‘PARA3’ being only a marginal case, since the two disks overlap near pericenter.

Figure 6.12 shows the fractional change in disk angular momentum (Equation 6.5

normalized by Ldisk) evaluated for our disk model with M⇤ = 0.45M�, Md

= 0.05M� and

R
d

= 60.0 AU. For ‘PARA4’ and ‘PARA5’, the victim disk experiences changes in angular

momentum that are at the level of 1% and below. Since Ldisk/Lorb ⇠ 0.03 and 0.02 for
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‘PARA4’ and ‘PARA5’ respectively, the angular momentum exchange between the disk

and the orbit is of the order of 10�4 times smaller than Lorb which more than an order

of magnitude smaller than the change we observe in Figure 6.10. This suggests that the

orbital evolution of ‘PARA4’ and ‘PARA5’ is either dominated by accretion, noise or

perhaps amplified by the presence of a second disk. On the other hand, ‘PARA3’ shows a

loss in inner angular momentum of 40% for nearly prograde encounters and a negligible

gain during retrograde encounters. Since in ‘PARA3’ iLdisk/Lorb ⇠ 0.04, the victim disk

is expected to loose angular momentum to the binary orbit by an amount of the order

of 2% of Lorb. Although this is the correct order of magnitude for the change in Lorb

observed for ‘PARA3’ (Figure 6.10), this change in orbital angular momentum comes in

the form of a loss and not a gain. Again, this suggests other mechanisms are at play

in addition of tidal forces, and that the simulation set ‘PARA3’ is outside the regime

represented by the work of Ostriker (1994). Interestingly, only ‘PARA1’ and ‘PARA2’

show statistically significant gains in angular momentum in some of their examples.

However, since at such close encounters the disks collide violently, the departure from

the linear regime is to great for us to make a meaningful connection.

According to Equation 6.5, doubling the mass of the disk while keeping M⇤ +M
d

constant produces only an increase by ⇠ 20% in �Ldisk, thus requiring very massive

disks in order for tidal e↵ect to have a significant impact. We have tested the e↵ect of

doubling the disk mass while keeping the sum M⇤ +M
d

= 0.5M� constant and run the

set of orbits ‘PARA4’ at these higher masses. Figure 6.13 shows a comparison of the run

‘PARA4-1’ with masses M⇤ = 0.45M� and M� = 0.05M� and the same configuration

but with more massive disks M⇤ = 0.4M� and M� = 0.1M�. Although the more

massive disks show hints for richer inner structure presumably triggered by the lower
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value of the Toomre Q parameter, the orbital evolution seems to be mildly altered by

the change in mass. In addition, a simulation with self-gravity artificially set o↵ is shown

for comparison purposes.

The e↵ect of increased mass, however, dramatically changes when changing the

disk orientations. Figure 6.13 shows the same setup as Figure 6.13 but now with the

orientations corresponding to ‘PARA4-4’. In this case, the stellar orbits are rapidly be

captured after pericenter, in a result that is rather surprising given that we expected the

scaling with mass to be weak regardless of disk orientations.

This work thus opens interesting possibilities for the outcome of disk-disk interactions

well into the non-linear regime. Future work should explore the role of energetics in more

detail, studying the interplay between mechanical and thermal energy in the disks, and

how realistic cooling prescriptions within the violent compression shocks can a↵ect the

results found in this work.

In summary, we have found that direct collisions produce significant orbital

perturbations if the pericenter separation is comparable or smaller than the disk

size. In some particular examples the first encounter triggers enough loss in orbital

energy to trigger a chain reaction of subsequent encounters with shrinking pericenter

separations, hastening disk dispersal and forming close binaries surrounded by tenuous

circumbinary disks. Unsurprisingly, our results show little correspondence with linear

regime calculations, mainly because our simulations include two disks, the disk masses

are low, the pericenter separations are small, and secondary e↵ects like gas accretion and

numerical noise can act as source of tidal torques at levels that dominate over the linear

regime calculations.
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Figure 6.12.— Change in a disk’s internal angular momentum according to Equation 6.5

(Ostriker, 1994) evaluating the physical and orbital parameters of simulation sets ‘PARA3’,

‘PARA4’ and ‘PARA5’.
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Figure 6.13.— Encounter with configuration ‘PARA4-1’ (q = 180.0, ✓1 = 0, ✓2 = 0) at

four di↵erent times for three di↵erent mass scalings. Left panel: encounter with mass ratio

of M
d

/M⇤ = 0.05/0.45 (one of the main set of simulations listed in Table 6.1). Middle

panel: simulation ‘PARA4-1’ but with self-gravity turned o↵, i.e., e↵ectively a mass ratio

of M
d

/M⇤ = 0. Right panel: encounter M
d

/M⇤ = 0.1/0.4. M
d

/M⇤ = 0.05/0.45 (left

panel), M
d

= 0 (middle panel)

263



CHAPTER 6. ORBITAL EVOLUTION DURING CIRCUMSTELLAR
DISK ENCOUNTERS

Figure 6.14.— Same as Figure 6.13 but with disk orientations as those of simulation

‘PARA4-4’ (q = 180.0, ✓1 = 0, ✓2 = 135).
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7

Conclusions and Future Directions

The discovery of planetary systems outside the Solar System has meant a major data

revolution for planetary exploration: the Solar System is now one data point among a

wide and diverse collection of planetary systems around other stars in the Galaxy. The

philosophical and scientific ramifications of such discovery are enormous, and they take

us one step closer to answering the ultimate questions: how did life originate on Earth

and where else in the Universe can it be found?

The exoplanet and planet formation revolution comes accompanied by two other

phenomena that are changing our world from science to business: the big data revolution

and the simulation revolution. On one hand, thanks to advanced software and hardware

we can store and manipulate unprecedented amounts of astronomical data. On the other

hand, theoretical developments in astrophysics must keep up with the large quantities

and the high quality of observations, which makes detailed modeling of physical processes

and astrophysical systems a necessity. To this end, direct numerical simulation of

complex gas and dust systems o↵ers the possibility of modeling complex astrophysical



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

configurations with more self-consistency than simple parametric models.

In this context, the work presented here provides a first approach to the direct

modeling of circumstellar disks using a novel simulation technique known as the

moving-mesh method, which was first implemented in astrophysical gas dynamics with

the development of the AREPO code in the context of cosmological simulations.

In Chapters 2 and 3, I have reviewed the basics of the moving-mesh method,

presenting its main features and known limitations, as well as rebutting some myths

about its numerical deficiencies. I presented my own work on basic physical processes

like the viscous stress tensor and its proper discretization on a moving Voronoi mesh as

well as developments on moving boundaries. These two features are essential for the

following work on gas dynamics of circumstellar disks.

In Chapter 4, I benchmarked the code against results available in the literature

for the well-known problem of two-dimensional planet-disk interaction. This type

of simulation requires robust absorbing boundary conditions at the inner and outer

radii, for which the developments of Chapter 3 were essential. In addition, I carried

out viscous disk simulations, which made use of the Navier-Stokes module I wrote for

AREPO. Although we have identified some potential problems and features intrinsic

to the moving-mesh method (such as the amplification of grid noise), I found that in

general, this hydrodynamic scheme is reliable to model two-dimensional disks accurately.

I also found hydrodynamic behavior previously associated to high resolution or very low

viscosity simulations, disproving claims that the moving-mesh method is anomalously

di↵usive for thin disk simulations.

Chapters 5 and 6 aim to explore the full potential of the AREPO code by modeling
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non-isolated, three-dimensional, self-gravitating thin disks moving at supersonic speeds.

In Chapter 5, I described in detail the generation of stationary, three-dimensional disk

models for self-gravitating circumstellar disks using the Voronoi tessellation mesh. In

Chapter 6 I made use of these models in the simulation of circumstellar disk encounters

that can take place randomly in dense young clusters or through secular dynamics in

hierarchical multiple systems. These simulations show the dramatic disk truncation

process for high-velocity encounters with small pericenter separation. Furthermore,

disk-disk interactions not only a↵ect the gas mass distribution, but also the stellar orbital

evolution, including extreme cases in which a runaway orbital decay is triggered, which

can even lead to close binaries surrounded by circumbinary disks.

Direct simulation of circumstellar disks in complex configurations such as stellar

binaries and non-coplanar multiples presents an ideal target experiment for the AREPO

code, while being a very challenging one for conventional computational approaches. I

have shown in this work the results of this scheme under complex configurations like

high-velocity, non-coplanar disk encounters, paving the way for related studies that

will focus on the e↵ects of inclined companions on circumstellar disks such as warping,

precession and even the modification of eccentric Kozai cycles when disks are present.

In particular, disk distortion by virtue of an inclined companion can play a role in

planet growth. For example, massive-enough planetary bodies that are not forced to

follow the gas can evolve into misalignment from their placental gas disk when the

latter is warped or forced to precess, and thus a planetary orbit can have its access to

a gas reservoir terminated. Therefore, inclined stellar companions not only a↵ect the

stirring of planetesimals and hence the formation of planetary cores, but also a↵ect the

subsequent planetary growth via gas accretion. This avenue of research fits perfectly
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with the capabilities of our scheme.

Despite the great advantages AREPO provides for circumstellar disk simulations, gas

dynamical simulation is only the first step in approaching the actual physical system and

its astronomical observables. Clearly, to truly simulate the astronomical data rather that

the astrophysical target one needs to calculate the emergent radiation from the source

system. Post-processing radiative transfer calculations are essential for a meaningful

comparison between circumstellar disk simulations and, for example, SMA and ALMA

submillimeter data. Both dust continuum imaging and molecular line imaging are

essential for studying dust growth and settling in the former case, and the temperature

and velocity structure of the gas in the latter case. Of course, a direct correspondence

between the simulated gas density (mostly molecular hydrogen) and the distribution of

dust or other molecular species is far from trivial. On one hand, since dust continuum

emission is optically thin at submillimeter wavelengths, a dust image is conceptually very

similar to the projected density visualizations presented throughout this thesis. However,

the dynamical coupling of dust and gas depends on dust grain size, and assuming that

the mass fraction of dust is homogenous throughout the disk is an oversimplification.

On the other hand, molecular-line imaging can provide great amounts of information on

the dynamical structure of the gas through the generation of velocity maps. Although

the fractional abundance of molecules is expected to be more uniform than that of

dust (there are still chemical processes that should create abundance gradients, snow

lines, dust grain-molecule interactions, etc) the radiative transfer calculations are more

computationally intensive, since some of these molecular lines are optically thick in

the submillimeter (e.g., 12CO). Future work should aim in the direction of a closer

comparison to observations, first by adding radiative transfer in post-processing, the
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incorporation of dust dynamics with self-consistent coupling to the gas and, eventually,

with chemical networks.

The current era, in which exoplanets are discovered at a lightning pace and ALMA

is beginning to o↵er an unprecedented view of circumstellar disks, is a crucial time for

advancing the theory of planetary system formation. To achieve this goal, detailed,

direct numerical simulations of circumstellar disks will be instrumental in deciphering

the initial conditions from which planets form.
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Xie, J.-W., Payne, M. J., Thébault, P., Zhou, J.-L., & Ge, J. 2011, ApJ, 735, 10

Zhou, J.-L., Xie, J.-W., Liu, H.-G., Zhang, H., & Sun, Y.-S. 2012, Research in

Astronomy and Astrophysics, 12, 1081

Zhu, Z., Stone, J. M., & Rafikov, R. R. 2013, ApJ, 768, 143

286


