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Geostationary satellite observations of ozone air quality 

Abstract 

 Ozone in surface air is the primary cause of polluted air in the United States. The current 

ozone observing network is insufficient either to assess air quality or to fully inform our 

understanding of the factors controlling tropospheric ozone. This thesis investigates the benefit of an 

instrument in geostationary orbit for observing near surface ozone using Observing System Simulation 

Experiments (OSSEs). 

 An OSSE was performed to define the measurement requirements for geostationary 

observations of ozone air quality. Hourly observations of ozone from geostationary orbit 

improve the assimilation considerably relative to daily observation from low earth orbit. There is 

little propagation of ozone information from the free troposphere to the surface, making 

instrument sensitivity in the boundary layer is essential. Assimilation of data from a best-case 

multispectral instrument reduces model error for surface ozone by a factor of two. 

 A joint assimilation framework was developed to use observations of carbon monoxide as 

an additional constraint on surface ozone concentrations through exploitation of model error 

correlations. Ozone-CO error correlations are positive in continental outflow but negative over 

land on a regional scale. Joint ozone-CO data assimilation provides substantial benefit for 

informing US ozone air quality if the instrument sensitivity for CO in the boundary layer is 

greater than that for ozone. 

 Planned geostationary TEMPO satellite observations of ozone were used in conjunction 

with complementary surface and low-elevation orbit observations to demonstrate the capability 

of a future observing system to monitor and attribute air quality exceedances in the 
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Intermountain West. Assimilation of surface measurements alone does not capture elevated 

ozone levels. Assimilation of TEMPO geostationary observations greatly improves the 

assimilated model’s ability to reproduce ozone exceedances and attribute them to background 

influence. 

  



v 
 

Table of Contents 

 

Abstract _____________________________________________________________________ iii 

Table of contents _______________________________________________________________v 

List of Figures _______________________________________________________________ vii 

Acknowledgements ____________________________________________________________ ix 

 

Chapter 1: Overview 

1.1   Ozone pollution over the United States  _________________________________1 

1.2  Satellite observations of tropospheric composition ________________________2 

1.3  Research objectives and approach _____________________________________3 

1.4  Summary of results _________________________________________________4 

References ______________________________________________________________6 

 

Chapter 2: Ozone air quality measurement requirements for a geostationary satellite 
mission 
 Abstract ________________________________________________________________9 

 2.1  Introduction ______________________________________________________10 

 2.2  Ozone air quality measurements from GEO-CAPE _______________________13 

 2.3 OSSE framework _________________________________________________17 

 2.4  Performance of different instrument configurations _______________________23 

 2.5  Summary ________________________________________________________29 

 References _____________________________________________________________32 

 

Chapter 3: Improved monitoring of surface ozone air quality by joint assimilation of 
geostationary satellite observations of ozone and CO 

 Abstract _______________________________________________________________36 

 3.1  Introduction ______________________________________________________37 



vi 
 

 3.2  Joint ozone-CO data assimilation _____________________________________41 

 3.3  Characterizing ozone-CO error covariances ________________________________ 43 

 3.4  OSSE Design ____________________________________________________50 

 3.5  Error reduction from ozone-CO joint assimilation ________________________52 

  3.6  Conclusions ______________________________________________________55 

 References _____________________________________________________________58 

 

Chapter 4: Monitoring high-ozone events in the US Intermountain West using TEMPO 
geostationary satellite observations 

 Abstract _______________________________________________________________64 

 4.1 Introduction ______________________________________________________65 

 4.2  Observing System Simulation Experiment (OSSE) _______________________68 

  4.2.1  Simulation models __________________________________________69 

  4.2.2  Observing system and synthetic observations _____________________71 

  4.2.3  Assimilation of surface and satellite measurements _________________73 

  4.2.4 Error correlation length scales _________________________________75 

 4.3 TEMPO observation of high-ozone events in the Intermountain West ________77 

 4.4 Attribution of exceptional events using TEMPO observations ______________80 

 4.5 Summary ________________________________________________________83 

 References _____________________________________________________________85 

  



vii 
 

List of Figures 

Figure 2.1: Rows of typical averaging kernel matrices for theoretical retrievals of ozone vertical 
profiles from geostationary ozone instruments in different spectral combinations ________________ 15 

Figure 2.2: Sensitivity of surface ozone over eastern Massachusetts and southern California to 
integrated ozone production at different altitudes _________________________________________ 17 

Figure 2.3: Mean 8-hour daily maximum ozone concentrations for July 2001 at 700 hPa and in surface 
air from the MOZART CTM and the GEOS-Chem CTM __________________________________ 19 

Figure 2.4: Temporal evolution of the ozone concentration error in GEOS-Chem relative to  
MOZART _______________________________________________________________________ 22 

Figure 2.5: Mean bias for July 2001 in MDA8 surface ozone concentrations the MOZART model and 
the a priori GEOS-Chem concentrations as well as the the model biases after assimilation of data from 
a LEO instrument and a geostationary instrument ________________________________________ 24 

Figure 2.6: Ability of geostationary ozone measurements in different spectral combinations to 
constrain the ozone surface air concentration over the US __________________________________ 26 

Figure 2.7: Timeseries of MDA8 surface ozone at Pittsburgh (40oN, 80oW) in July 2001 for the 
“true” state, the model a priori, and the model a posteriori _____________________________27 

Figure 2.8: Ability of geostationary ozone measurements in different spectral combinations to 
constrain the vertical profile of tropospheric ozone _______________________________________ 28 

Figure 3.1: Mean values of the maximum 8-hour daily average (MDA8) ozone concentrations (left) 
and afternoon (1200-1700 local time) CO concentrations (right) for August 2006 in surface air in the 
GEOS-4 and GEOS-5 models ________________________________________________________ 44 

Figure 3.2: Ozone-CO concentration correlations in the afternoon boundary layer in GEOS-4 and 
corresponding error correlations for GEOS-4 compared to GEOS-5 ______________________45 

Figure 3.3: Correlations between ozone and CO concentrations, and corresponding model error 
correlations, for afternoon boundary layer data ___________________________________ 48-49 

Figure 3.4: Averaging kernel matrices for clear-sky satellite retrievals of ozone and CO _________ 51 

Figure 3.5: Error reduction in model simulation of surface ozone air quality from assimilation of 
geostationary satellite observations of ozone and CO ______________________________________ 53 

Figure 4.1: Mean values of the maximum daily 8-hour average (MDA8) ozone concentrations for 
April-June 2010 in surface air in the AM3-Chem and GEOS-Chem models________________70 



viii 
 

Figure 4.2: Averaging kernel matrices for clear-sky retrievals of tropospheric ozone from space 
in the UV+Vis and the TIR ______________________________________________________72 

Figure 4.3: Error correlation length scales for the GEOS-Chem model simulation of tropospheric 
ozone in the US Intermountain West ______________________________________________76 

Figure 4.4: Improved monitoring of surface ozone across the Intermountain West from data 
assimilation __________________________________________________________________78 

Figure 4.5: Improved detection of high-ozone events in the Intermountain West from data 
assimilation __________________________________________________________________80 

Figure 4.6: June 2010 time series of max daily 8-h (MDA8) ozone concentrations at (107oW, 
36oN) in the Intermountain West showing a stratospheric instrusion______________________81 

Figure 4.7: Visualization of a stratospheric intrusion through assimilation of TEMPO 
observations _________________________________________________________________82 

  



ix 
 

Acknowledgements: 

 I am grateful to my advisor, Daniel Jacob, for his guidance and support through my 

graduate school journey. It was Daniel who introduced me to the field of atmospheric chemistry 

and who inspired me to make that field my own. It was a privilege being taught by Daniel; my 

depth of understanding and inquiry would be less otherwise.  Without Daniel I would not be the 

scientist I am today and this thesis be would be less than it is. 

 I am indebted to Kelly Chance for his advice and expertise. Most of all, we are all 

indebted to Kelly for making all our geostationary dreams a reality, and I am excited that he is 

including me in that reality. Thanks also to Eli Tziperman for being an anchor of my thesis 

committee and doing it with a smile. 

 I feel particularly fortunate to have pursued my Ph.D. while a member of the 

Atmospheric Chemistry Modeling Group at Harvard University. To be part of such a vibrant, 

intelligent, and collaborative group of scientists has been a tremendous boon. I especially cherish 

the five years I spent as officemates with Justin Parella for his ideas and his sense of humor. 

Thanks also go to officemates Moeko Yoshitomi, Patrick Kim, and Shannon Koplitz for their 

company and support. My appreciation includes many group members past and present, 

including: Helen Amos, Jenny Fisher, Monika Kopacz, Chris Holmes, Eloise Marias, Chris 

Miller, Lee Murray, Eric Leibensperger, Philippe Le Sager, Rokjin Park, Bess Sturges-Corbitt, 

Kevin Wecht, Bob Yantosca, and Lin Zhang. Thank you all (and everyone else) for your 

assistance, your ideas, and your volleyball. 

 I have to wholeheartedly thank Chenoweth Moffatt and Sarah Colgan in the EPS 

department for their time, support, and help in navigating graduate school. They are tremendous 

assets to the department. Thanks also go to Brenda Mathieu for her time and for keeping our 

group running.   

 My work would not have been possible without collaboration with the GEO-CAPE and 

TEMPO science teams. I gratefully acknowledge the NASA Earth System Science Fellowship 

for funding my research. 

 I would like to acknowledge all the support I have been given by my family and friends. 

Thank you so much to my parents, Carla and Nick, and my sister, Sarah, for your love and for 

always being there for me. Thank you to my best friends Yves, Shep, Clayton, and Ed for the 

conversations, meals, and good times that have kept me going. And many thanks to Marianna, 

for everything. 



x 
 

 

 

 

 

 

 

 

 

 

 

Ð dὲ ἀnexέtastoς bίoς oὐ biwtÕς ἀnqrώpJ 

“The unexamined life is not worth living” 

     -Socrates 

 

 

 

 



1 
 

Chapter 1. Overview 

 

Ozone in the troposphere is of importance as a surface air pollutant, as a greenhouse gas, and as 

a control of the troposphere’s oxidative capacity. It is produced by photochemical oxidation of carbon 

monoxide (CO) and volatile organic compounds (VOCs) in the presence of nitrogen oxide radicals 

(NOx≡NO+NO2 ). These precursors have both natural and anthropogenic sources. Our limited 

understanding of the factors controlling tropospheric ozone is reflected by the inability of current 

models to reproduce observed ozone trends over the past century (Mickley et al., 2001; Shindell and 

Faluvegi, 2002), including the past few decades (Fusco and Logan, 2003).  

 

1.1 Ozone pollution over the United States 

Ozone in surface air is harmful to humans and vegetation. Human exposure to ozone causes 

inflammation in the lower respiratory tract and is associated with increased mortality. 129 million 

people in the United States breathe hazardous levels of ozone as measured by the National Ambient Air 

Quality Standard (NAAQS) of 75 ppbv (maximum daily 8-hour average not to be exceeded more than 

3 times per year) (EPA, 2012). The US Environmental Protection Agency (EPA) is considering 

lowering this standard to a value between 60 and 70 ppbv. Although ozone levels are presently 

decreasing over the eastern US due to emissions controls, ozone has been increasing over the 

western US. This increase may be attributed to rising background ozone, as evidenced by an 

increase of free tropospheric ozone over the western US of 0.41 ppbv/year during the past two 

decades (Cooper et al., 2012). 
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1.2 Satellite observations of tropospheric composition 

Over the past decade, observation of tropospheric ozone and its precursors from space has become 

an increasingly powerful tool for constraining the ozone budget (Martin et al. 2008). The global 

continuous observation capability from satellites offers unique insight into the variability of ozone in 

relation to sources. Current satellite instruments provide reliable measurements of ozone, CO, NO2, and 

formaldehyde (Fishman et al. 2008). Assimilation of current satellite ozone measurements has been 

found to significantly improve modeled ozone concentrations in the free troposphere over North 

America (Parrington et al. 2008).  

 All satellite observations of tropospheric ozone and its precursors to date have been from 

sunsynchronous low-elevation orbit (LEO). These provide a global view, but the return time over a 

given location is too long to track the low-altitude (boundary layer) variability relevant to ozone air 

quality (Fishman et al. 2008).  Furthermore, current satellite observations have poor sensitivity in the 

boundary layer, in the UV because of molecular scattering and in the TIR because of lack of thermal 

contrast.  

 An instrument in geostationary orbit could provide hourly data covering a continental scale 

(Fishman et al., 2012), representing a transformative development for observing air quality from space. 

The GEO-CAPE (Geostationary Coastal And Pollution Events) mission was recommended to NASA 

in the Decadal Survey (National Research Council, 2007). This thesis evolved from the need to 

demonstrate the benefit of geostationary observations and determine measurement requirements and 

observation strategies for GEO-CAPE and other future geostationary missions. Informed by this thesis, 

a global constellation of geostationary satellite missions targeted at air quality is planned to launch in 

2018-2019 including TEMPO (Tropospheric Emissions: Monitoring of Pollution) over North America 
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(Chance et al., 2012), SENTINEL-4 over Europe (Ingmann et al., 2012), and GEMS over East Asia 

(Bak et al., 2013).  

 

1.3 Research objectives and approach 

 This thesis aims to determine the potential of geostationary satellite instruments to observe and 

constrain ozone air quality through data assimilation, and in this manner to contribute to the design of 

future geostationary missions and enable exploitation of their data. I address the following specific 

questions: 

• What measurement requirements must be met for geostationary observations to 

accurately constrain ozone in the boundary layer? 

• Can concurrent geostationary measurements of CO improve monitoring of surface 

ozone air quality through a joint assimilation? 

• What will be the ability of geostationary observations to monitor and attribute 

air quality exceedances in the Intermountain West and thus guide future air 

quality policy? 

• What is the additional benefit of these observations in the context of the 

existing ozone monitoring network of surface sites? 

To address these questions I conduct Observing System Simulation Experiments 

(OSSEs). In the OSSE framework, I generate synthetic ozone data from a chemical transport model 

(CTM) to represent the “true” atmosphere. I then examine the capability of proposed instruments and 

observing strategies to deliver on scientific objectives through formal data assimilation into an 

independent CTM taken as forward model. OSSEs are the standard approach to quantify the potential 

benefit of a proposed observation platform toward a scientific goal (Lord et al. 1997).  I use the GEOS-
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Chem CTM (Bey et al., 2001) as the forward model. CTMs used to provide the “true” atmosphere 

include MOZART (Fiore et al., 2011), AM3-Chem (Lin et al., 2012), and a version of GEOS-Chem 

with independent meteorological data. 

To perform the data assimilation, I implement a Kalman filter in the GEOS-Chem CTM. A 

Kalman filter provides the best estimate of the state at a given time step using measurements at that 

time step and information from previous time steps (Rodgers 2000). The optimization depends on the 

error covariance matrices in the observations and the model as well as the averaging kernel matrix of 

the observations. The inclusion of spatial and cross-species model error correlations is a critical 

advancement of my data assimilation system. Model errors are quantified by comparison to in situ 

measurements from the Clean Air Status and Trends Network (CASTNet; www.epa.gov/castnet) 

ground stations, the ICARTT (Singh et al., 2006; Fehsenfeld et al., 2006) aircraft campaign, and the 

IONS (Cooper et al. 2011) ozonesonde network. 

 

1.4 Summary of results 

 Chapter 2 describes an Observing System Simulation Experiment (OSSE) to test the 

ability of geostationary satellite measurements of ozone in different spectral regions to constrain 

surface ozone concentrations through data assimilation. This was done to define the 

measurement requirements for geostationary observations of ozone air quality. Instruments using 

different spectral combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 

9.6 μm) are analyzed. Hourly observations of ozone from geostationary orbit improve the 

assimilation considerably relative to daily observation from low earth orbit. UV+Vis and 

UV+TIR spectral combinations improve greatly the information on surface ozone relative to UV 
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alone. Assimilation of data from a UV+Vis+TIR instrument reduces the GEOS-Chem error for 

surface ozone by a factor of two. 

 Chapter 3 presents an innovative approach to assimilating ozone air quality from space 

using observations of carbon monoxide as an additional error correlation constraint in a joint 

ozone-CO assimilation. Boundary layer sensitivity is easier to achieve for satellite observations 

of CO than for satellite observations of ozone. A paired-model analysis of ozone-CO error 

correlations in the boundary layer over North America in summer indicates positive error 

correlations in continental outflow but negative regional-scale error correlations over land, the 

latter reflecting opposite sensitivities of ozone and CO to boundary layer depth. There is 

substantial benefit from joint ozone-CO data assimilation in informing US ozone air quality if 

the instrument sensitivity for CO in the boundary layer is greater than that for ozone. A high-

quality geostationary measurement of CO could potentially relax the requirements for boundary 

layer sensitivity of the ozone measurement. Successful implementation of a joint assimilation 

depends on accurate characterization of ozone-CO error correlations. 

 Chapter 4 examines the ability of the future geostationary satellite TEMPO (Tropospheric 

Emissions: Monitoring of Pollution) to monitor and attribute air quality exceedances in the 

Intermountain West. TEMPO observations were considered in the context of complementary 

ozone measurements provided by surface stations and currently planned low-elevation (LEO) 

orbit instruments. We show that assimilation of surface measurements improves modeled surface 

ozone in the Intermountain West but does not capture elevated levels due to lack of information 

in the free troposphere and sparse spatial coverage. Assimilation of TEMPO geostationary 

observations greatly improves the assimilated model’s ability to reproduce ozone exceedances 

and attribute them to background influence. 
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Chapter 2. Ozone air quality measurement requirements for a 

geostationary satellite mission 

 

[Zoogman, P., Jacob, D.J., Chance, K., Zhang, L., Le Sager, P., Fiore, A.M., Eldering, A., 

Liu, X., Natraj, V., Kulawik, S.S., 2011. Ozone air quality measurement requirements for 

a geostationary satellite mission. Atmospheric Environment 45, 7143-7150. Copyright 

2011 Atmospheric Environment] 

 

Abstract 

We conduct an Observing System Simulation Experiment (OSSE) to test the 

ability of geostationary satellite measurements of ozone in different spectral regions to 

constrain surface ozone concentrations through data assimilation. Our purpose is to 

define instrument requirements for the NASA GEO-CAPE geostationary air quality 

mission over North America. We consider instruments using different spectral 

combinations of UV (290-340 nm), Vis (560-620 nm), and thermal IR (TIR, 9.6 μm). 

Hourly ozone data from the MOZART global 3-D chemical transport model (CTM) are 

taken as the “true” atmosphere to be sampled by the instruments for July 2001. The 

resulting synthetic data are assimilated in the GEOS-Chem CTM using a Kalman filter. 

The MOZART and GEOS-Chem CTMs have independent heritages and use different 

assimilated meteorological data sets for the same period, making for an objective OSSE. 

We show that hourly observations of ozone from geostationary orbit improve the 

assimilation considerably relative to daily observation from low earth orbit, and that 



 10 

broad observation over the ocean is unnecessary if the objective is to constrain surface 

ozone distribution over land.  We also show that there is little propagation of ozone 

information from the free troposphere to the surface, so that instrument sensitivity in the 

boundary layer is essential. UV+Vis and UV+TIR spectral combinations improve greatly 

the information on surface ozone relative to UV alone. UV+TIR is preferable under high-

sensitivity conditions with strong thermal contrast at the surface, but UV+Vis is 

preferable under low-sensitivity conditions. Assimilation of data from a UV+Vis+TIR 

instrument reduces the GEOS-Chem error for surface ozone by a factor of two.  

Observation in the TIR is critical to obtain ozone information in the upper troposphere relevant 

to climate forcing. 

 

2.1 Introduction 

Ozone in the troposphere is of importance as a surface air pollutant, as a greenhouse 

gas, and as the precursor of OH, the main atmospheric oxidant.  It is produced by 

photochemical oxidation of carbon monoxide (CO) and volatile organic compounds (VOCs) in 

the presence of nitrogen oxide radicals (NOx≡NO+NO2 ). These precursors have both natural 

and anthropogenic sources. The dependence of ozone production on its precursors is complex 

and highly non-linear, and involves a continuum of time scales ranging from milliseconds to 

years. Our limited understanding of the factors controlling tropospheric ozone is reflected by 

the inability of current models to reproduce observed ozone trends over the past century 

(Mickley et al., 2001; Shindell and Faluvegi, 2002), including the past few decades (Fusco and 

Logan, 2003).  

Over the past decade, observation of tropospheric ozone and its precursors from space 
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has become an increasingly powerful tool for understanding the ozone budget (Martin 2008). 

Current satellite instruments provide reliable measurements of ozone, CO, NO2, and 

formaldehyde (HCHO) (Fishman et al. 2008). The Aura satellite includes direct measurements 

of tropospheric ozone by two instruments measuring in different spectral regions: the 

Tropospheric Emission Spectrometer (TES) in the thermal infrared (TIR) (Beer 2006) and the 

Ozone Monitoring Instrument (OMI) in the UV (Levelt et al. 2006, Liu et al., 2009). 

Consistency between TES and OMI measurements has been demonstrated (Zhang et al. 2010). 

These data have been used to constrain models of tropospheric ozone, including the source 

from biomass burning (Jones et al. 2006), intercontinental transport (Zhang et al. 2006), and 

greenhouse radiative forcing (H. Worden et al. 2008).  Assimilation of TES ozone has been 

found to significantly improve modeled ozone concentrations in the free troposphere over 

North America (Parrington et al. 2008).  

 All satellite observations of tropospheric ozone and its precursors so far have been from 

sunsynchronous low earth orbit (LEO). They provide a global view but the return time over a 

given location is too long to track the low-altitude (boundary layer) variability relevant to ozone 

air quality (Fishman et al. 2008). An instrument in geostationary orbit could provide hourly 

data covering a continental scale (Campbell and Fishman 2008), allowing monitoring of the 

progression of pollution events and the diurnal evolution of sources and chemistry. This would 

represent a transformative development for observing air quality from space. GEO-CAPE 

(Geostationary Coastal And Pollution Events), a NASA satellite mission planned for launch in 

the next decade, holds much promise in this regard (National Research Council (NRC), 2007). 

Parallel plans for geostationary missions directed at air quality are presently underway in 

Europe (Committee on Earth Observation Satellites, 2009) and in Korea (Lee et al. 2010). 
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 Design of GEO-CAPE is at an early stage. The specific measurement requirements and 

observation strategy have not yet been determined.   An Observing System Simulation 

Experiment (OSSE) framework is useful for this purpose. GEO-CAPE observations are 

intended to be assimilated into models to improve understanding of air quality and aid in its 

forecasting; an OSSE can address the question of how much information these observations 

will actually provide.  In the OSSE framework, we generate synthetic ozone data from a 

chemical transport model (CTM) to represent the “true” atmosphere. We then examine the 

capability of different possible instrument configurations and observing strategies to deliver on 

the proposed scientific objectives through formal data assimilation into an independent CTM 

taken as forward model. OSSEs are the standard approach to quantify the potential benefit of a 

proposed observation platform toward a scientific goal (Lord et al. 1996).  An OSSE study by 

Edwards et al. (2009) previously showed that geostationary CO observations would be 

significantly more effective than LEO observations in improving the ability of models to 

describe pollution events on a synoptic scale. 

 Here we present an OSSE for ozone air quality observations from geostationary orbit 

over North America, focusing on the potential capability of instruments measuring in different 

combinations of spectral ranges: UV+Visible (Vis), UV+TIR, and UV+Vis+TIR. We generate 

synthetic observations for July 2001 by having these different instruments “observe” 3-D 

ozone fields from the MOZART CTM (Fiore et al. 2011).  These synthetic observations are 

then assimilated into the GEOS-Chem CTM (Park et al. 2006, Wang et al. 2009) and we 

quantify how much information each instrument configuration provides to reduce the 

difference between GEOS-Chem and the “true” MOZART atmosphere. The MOZART 

and GEOS-Chem CTMs have different heritages and use different assimilated 
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meteorological fields for the same period, thus providing an OSSE with realistic error. 

Both are global CTMs, which is necessary because smoothing errors from satellite 

observations result in upper tropospheric information (transported on a global scale) 

influencing the lower tropospheric retrievals.   They still have sufficient horizontal resolution to 

describe transport on synoptic scales, and sufficient vertical resolution to describe mass 

exchange between the free troposphere and the surface. 

 

2.2  Ozone air quality measurements from GEO-CAPE  

The NASA GEO-CAPE geostationary mission over North America was recommended 

by the 2007 NRC Earth Science Decadal Survey (NRC 2007) as one of 14 top-priority 

satellite missions for NASA in the coming decade.  GEO-CAPE has both an air quality and 

a coastal ecosystems component. Primary objectives of the air quality component include the 

mapping of emissions for ozone and aerosol precursors, the observation of ozone and aerosols 

with sensitivity near the surface, and the quantification of ozone and aerosol radiative forcing.  

A major challenge for GEO-CAPE is the measurement of ozone with sensitivity near 

the surface. Direct satellite retrievals of tropospheric ozone have been made from solar 

backscattered UV spectra in the Hartley-Huggins bands (290-340 nm) (Liu et al. 2005, 2010) 

and from TIR emission in the 9.6 μm ν3 band (Beer et al. 2006).  These have poor sensitivity in 

the boundary layer, in the UV because of molecular scattering and in the TIR because of lack of 

thermal contrast. UV and TIR instruments have similar vertical sensitivities for tropospheric 

ozone as indicated by their averaging kernel matrices (Zhang et al. 2010).  Theoretical studies 

have suggested that boundary layer sensitivity to  ozone could be improved by using multi-

spectral approaches involving  UV+TIR (J. Worden et al. 2007, Landgraf and Hasekamp 2007) 



 14 

or UV plus the weak Vis Chappuis band (560-620 nm) (Chance et al., 1997; Liu et al. 2005). 

The retrieval sensitivity of vertical concentration profiles retrieved from satellite 

spectra can be expressed as an averaging kernel matrix A relating the retrieved profile 

 

x' 

to the true profile x and an a priori profile xa:  

 

x'= xa + A(x − xa ) + ε     (2.1) 

where ε is the random spectral measurement error (Rodgers, 2000). Averaging kernel matrices 

for tropospheric ozone profile retrievals in the different spectral combinations described above 

have been produced by the GEO-CAPE Simulation Team (Natraj et al. 2011).  We consider 

here clear-sky averaging kernel matrices from four spectral combinations: UV, UV+Vis, 

UV+TIR, and UV+Vis+TIR.  The UV (290-340 nm) and Vis (560-620 nm) candidate sensors 

each have a spectral resolution of 0.4 nm and a signal to noise ratio three times that of OMI.  

The TIR (980-1070 cm-1) sensor has a spectral resolution of 0.1 cm-1 and a signal to noise ratio 

three times that of TES. The averaging kernel matrices used in this analysis do not include the 

impacts of clouds and aerosols. Clouds and aerosols are expected to negatively impact Vis 

channels most strongly, as well as having some impact in the UV and TIR.  Natraj et al. (2011) 

report multiple cases for each instrument, based on assumed atmospheric conditions.  We select 

from their work a high sensitivity case and a low sensitivity case to characterize the range of 

instrument performance and provide upper and lower bounds on the information obtainable 

from geostationary observation.  Sensitivity increases with higher thermal contrast between the 

surface and the atmosphere, higher boundary layer ozone concentration, higher surface albedo, 

and lower effective solar zenith angle. 

Figure 2.1 shows the rows of the averaging kernel matrices for the high sensitivity and 

low-sensitivity cases weighted by level thickness. Also shown are the degrees of freedom for 
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Figure 2.1: Rows of typical averaging kernel matrices for theoretical retrievals of ozone 
vertical profiles from geostationary ozone instruments in different spectral combinations: UV, 
UV+Vis, UV+TIR, and UV+Vis+TIR (Natraj et al., 2011). The color gradient from red to blue 
corresponds to retrievals at different levels from surface air (red) to 200 hPa (blue). Results 
from a high-sensitivity case (left) and a low-sensitivity case (right) are shown. Inset are the 
degrees of freedom for signal (DOFS) for the atmospheric columns below 200, 800, and 900 
hPa.
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signal (DOFS) below given pressure levels. These are as given by Natraj et al. (2011). Each 

line (row) gives the vertical sensitivity of the ozone retrieval at a given level to the “true” 

profile.  The DOFS are the number of independent pieces of information in the vertical 

provided by the retrieval, as determined from the trace of the averaging kernel matrix. 

Sensitivity of UV retrievals in the boundary layer is limited by air molecular scattering (0.27-

0.54 DOFS below 800 hPa). When combined with UV, the Chappuis band adds information 

near the surface (0.64-0.77 DOFS below 800 hPa).   In the Chappuis band there is reduced 

molecular scattering and ozone absorption is optically thin, resulting in better transmission and 

an increased signal from the boundary layer.   Both the UV and the UV+Vis retrievals provide 

more information in the high sensitivity case than in the low sensitivity case due to greater 

ozone concentrations in the boundary layer, higher surface albedo, and better viewing 

geometry.  Retrievals in the TIR depend on the temperature contrast between the atmosphere 

and the surface as well as ozone concentration.  Temperature contrast gives profile information 

in the upper troposphere, reflected in the peaks in the rows of the averaging kernels above 500 

hPa for combinations including the TIR.  In the high sensitivity case there is a strong thermal 

contrast between the surface radiant (skin) temperature and the air temperature,  resulting in 

increased boundary layer  information from including the TIR (0.89 DOFS below 800 hPa).  

This enhancement is not as strong in the low sensitivity case (0.52 DOFS below 800 hPa).  For 

both cases the full UV+Vis+TIR combination provides the maximum information (0.75-0.95 

DOFS below 800 hPa).   

We used the adjoint of the GEOS-Chem ozone simulation (Henze et al., 2007; Zhang et 

al., 2009) to examine whether satellite information on ozone in the free troposphere would help 

constrain surface ozone through the forward propagation of information in the model by 
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atmospheric transport. Figure 2.2 illustrates the average sensitivity of surface ozone in eastern 

Massachusetts and southern California to ozone production at different altitudes for two weeks 

in July 2006. Most of the ozone in surface air is produced below 2 km altitude, although the

sensitivity to the free troposphere is stronger over southern California.

Figure 2.2: Sensitivity of surface ozone over eastern Massachusetts (42o N, 72o W, solid) and 
southern California (34o N, 118o W, dashed) to integrated ozone production at different 
altitudes, as computed from the GEOS-Chem adjoint model for 1-14 July 2006.

We conclude that the GEO-CAPE instrument requires direct boundary layer sensitivity to 

constrain surface ozone. Our result is consistent with a CTM tracer study in support of the 

Infrared Atmospheric Sounding Interferometer (IASI) by Foret et al. (2009) which showed that 

on average only 7% of ozone at 800 – 700 hPa over Europe reaches the surface.  Parrington et 

al. (2009) found that assimilation of TES free tropospheric ozone into GEOS-Chem affected 

the simulation of boundary layer ozone by 0-9 ppbv but did not systematically improve it.

2.3 OSSE Framework

Our OSSE uses the MOZART CTM to represent the “true” atmosphere and the 
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GEOS-Chem CTM as the forward model, both simulating the month of July 2001. 

Synthetic observations of the “true” atmosphere are made for different instrument 

configurations using the clear sky averaging kernel matrices of Figure 2.1. Comparing 

the model states without assimilation (a priori) and with assimilation (a posteriori) to the 

concentrations from the “true” atmosphere measures the information retrieved from the 

instrument configuration. 

  The GEOS-Chem simulation (v8-01-01) was previously described by Wang et al. 

(2009) in a study of Canadian and Mexican influences on US ozone air quality. It is 

driven by GEOS-3 assimilated meteorological data from the NASA Global Modeling and 

Assimilation Office (GMAO) with 6-hour temporal resolution. It includes a full 

representation of tropospheric ozone-NOx-VOC-aerosol chemistry over a nested North 

America domain with 1ox1o horizontal resolution (10oN – 60oN, 140oW – 40oW), nested 

within a global domain with 4ox5o horizontal resolution. It has 47 vertical levels, 

including 14 levels below 2 km and 29 levels below 10 km. It uses the Synoz flux 

boundary condition for the ozone source from the stratosphere (McLinden et al. 2000) 

For the purpose of the OSSE, ozone concentrations above the tropopause are replaced 

with MOZART values as described below.  

For our “true” state we use hourly archived data from the MOZART-2 CTM (Fiore et 

al., 2011) driven by assimilated meteorological data from the National Center for 

Environmental Prediction (NCEP) with 1.8ox1.8o horizontal resolution and 28 vertical levels (8 

below 2 km, 17 below 10 km). This version of MOZART uses a modified version of the 

Synoz flux boundary condition for the ozone source from the stratosphere. The data are 

horizontally averaged on the 1ox1o GEOS-Chem model grid.  MOZART has a separate 
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development heritage from GEOS-Chem and uses different driving meteorological fields, 

chemical mechanisms, and emission inventories. There is little commonality in any aspect of 

the tropospheric models, which is an important attribute for our OSSE study. The coarse 

horizontal resolution of MOZART means that our OSSE cannot test the ability of GEO-CAPE 

to constrain urban-scale features and mesoscale transport of ozone. However, our focus here is 

on vertical sensitivity. 

Figure 2.3: Mean 8-hour daily maximum ozone concentrations for July 2001 at 700 hPa and in 
surface air.  Left panels show values from the MOZART CTM used as the “true” atmosphere in 
our OSSE. Right panels show the a priori values from the GEOS-Chem CTM.

Figure 2.3 shows the maximum daily 8-hour average (MDA8) ozone concentrations

in the lower free troposphere (700 hPa) and in surface air for each model for July 2001.  

GEOS-Chem is higher than MOZART in the free troposphere over most of the domain.  

At the surface the patterns tends to reverse, with MOZART higher than GEOS-Chem 

over much of the US Northeast and Midwest.  Thus the vertical gradients of ozone differ 
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greatly between the two models, presenting the OSSE with a challenging test. Gradient 

reversals between the free troposphere and the surface are consistent with our results in 

Figure 2 showing boundary layer ozone to be primarily constrained by production below 

2 km. 

 We generate synthetic geostationary observations from the MOZART “true” 

atmosphere by sampling the hourly daytime vertical profiles over the whole domain with the 

averaging kernel matrices given in Figure 2.1. We do not sample at night, as UV+Vis 

observations are not available and TIR observations have less information than in daytime.  We 

also omit scenes with cloud fraction > 0.3 (as given by the GEOS-3 meteorology). Gaussian 

random error is added to the synthetic observations to simulate spectral measurement error 

(instrument noise ε in eq. (1)) as given by Natraj et al. (2011).  As the GEO-CAPE footprint (~8 

km) is much finer than the GEOS-Chem resolution (~100 km), the instrument error is reduced 

by the square root of the number of observations available for the corresponding GEOS-Chem 

grid square.  In the OSSE framework we assimilate the synthetic observations of the 

“true” state into the forward model, as we would do with actual data, to correct the 

mismatch between the “true” and a priori states.  We do this sequentially by using a 

Kalman filter following Khattatov et al. (2000).  A Kalman filter provides the best 

estimate of the state at a given time step using measurements at that time step and a 

priori information from previous time steps of the model (Rodgers 2000). We apply the 

filter iteratively at successive observation time steps to update the model state. 

At an observation time step t we combine the local synthetic observed ozone 

profile x’t (from eq. 1) with the model ozone profile xat to find the a posteriori ozone 

concentration 

 

ˆ x t: 
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ˆ x t = xat + G t (x't −K txat )                (2.2) 

where Kt is the observation operator at time step t which maps the true state to the 

observed state.  This represents the measurement process and in our case is the instrument 

averaging kernel matrix, assumed to be invariant (Kt = A).  Gt is the Kalman gain matrix 

given by: 

    (2.3) 

The gain matrix determines the relative weight given to the observations and the model.  

It depends on the error covariance matrices for the observations Sε = [εεT] and for the 

model Sat . Above the tropopause we replace the GEOS-Chem simulated profiles with the 

synthetic retrievals so that the innovation term 't t at−x K x is solely determined by the 

tropospheric simulation. We used this method in the past to avoid having stratospheric 

errors in GEOS-Chem affect model comparisons with satellite data for tropospheric 

ozone (Zhang et al., 2006).   

The model error Sa0  is initialized using the Relative Residual Error (RRE) method 

(Palmer et al. 2003, Heald et al. 2004) by comparing GEOS-Chem ozone profiles to 

colocated ozonesonde measurements for 2006 (Zhang et al., 2010).  We find that the RRE of 

GEOS-Chem ozone is 25% on an annual global basis and 29% for North America in summer, 

with no significant vertical dependence. We use 29% to specify the initial model error 

variances.  The spatial model error covariance is parameterized by an exponential length 

scale as in Khattatov et al. (2000), with a length scale of 1 km in the vertical and 100 km 

in the horizontal. 

The model error covariance is reduced by the data assimilation at each observation time 

step: 

 

Gt = SatK
T (KSatK

T + Sε )−1
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atttt SKGIS )( −=


                    (2.4)

where tS


is the updated model error covariance matrix.  The diagonal terms of tS


are 

transported as tracers in GEOS-Chem to the next time step and are augmented by a model error 

variance reflecting the time-dependent divergence of the model from the true state. We 

quantified this time-dependent error growth in a separate test comparing MOZART and GEOS-

Chem evolution of ozone concentrations, starting from identical initial tropospheric ozone 

fields at 0 GMT on 1 July, 2001.  

Figure 2.4: Temporal evolution of the ozone concentration error in GEOS-Chem relative to 
MOZART, as determined by comparing GEOS-Chem and MOZART fields in simulations with 
a common initialization at 0 GMT on July 1, 2001. The error statistics are measured by the 
relative root-mean-square error (RRMSE) for the concentration fields sampled over the North 
America domain. Results (solid) are fitted to an exponential function (dashed) for application to 
model error growth in our Kalman filter. The exponential fit gives an asymptotic error of 24% 
approached on a time scale of 12 hours.

Results in Figure 2.4 show an exponential relaxation of the model relative root-mean-square 

error (RRMSE) with time for the simulation of ozone concentrations in the ensemble of 

tropospheric model grid-boxes over North America. The asymptotic RRMSE (24%) is 

approached on a time scale of 12 hours following initialization. The agreement between this 
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asymptotic value and the GEOS-Chem RRE in comparison to ozonesonde data indicates that 

differences between GEOS-Chem and MOZART are consistent with expected model errors 

relative to observations. This is an important check on the quality of the OSSE. 

We checked the good behavior of our Kalman filter by comparing the mean and 

variance of our calculated innovation terms 

 

x't −Ktxat  to theoretical statistical predictions 

following Rodgers (2000).  Theoretically, the innovation should be a normally distributed 

random variable with a mean equal to the model bias (here GEOS-Chem vs. MOZART) and a 

covariance equal to

 

KSatK
T + Sε .  We find that this is indeed the case. 

   

2.4  Performance of Different Instrument Configurations 

Here we examine the ability of different instrument configurations and observing 

modes to constrain surface ozone over the US domain (25oN – 50oN, 125oW – 65oW, land 

only).  We use as our comparison metric the Root Mean Square Error (RMSE) of MDA8 

ozone.  The RMSE is computed only over the US, but observations are assimilated over the 

entire North America nested domain (10oN – 60oN, 140oW – 40oW) unless otherwise 

specified. 

We first examine the value of making observations from geostationary vs. LEO.  This 

is done using two simulations.  In the first, we assimilate observations once daily at 1300 local 

time (LEO). In the second, we assimilate observations once per hour during the daytime 

(geostationary orbit).  Both simulations use the same averaging kernel matrix from the high 

sensitivity case for the UV+Vis+TIR instrument (Figure 2.1).  Both are initialized on July 1 

with the a priori GEOS-Chem ozone fields.  Figure 2.5 shows the a priori bias and a 

posteriori bias in MDA8 ozone averaged over July 2001 for each 1ox1o grid square.  The a 



24

priori RMSE is 8.0 ppbv ozone.  The hourly observations reduce the RMSE by 54% as 

compared to a 19% reduction by the daily observations.  We see that the hourly observations 

enabled by geostationary orbit allow the model to much better capture the magnitude and 

spatial distribution of surface ozone.  

Figure 2.5: Mean bias for July 2001 in MDA8 surface ozone concentrations between the 
GEOS-Chem model and the MOZART model taken as the “true” atmosphere. The top panel 
shows the a priori bias before assimilation. The bottom panels show the model biases after 
assimilation of synthetic observations from the “true” atmosphere on a daily basis simulating a 
LEO instrument (left) and on a hourly basis simulating a geostationary instrument (right). The 
synthetic observations are for daytime only and assume a UV+Vis+TIR instrument under high-
sensitivity conditions (Figure 2.1). Error statistics for the contiguous US are given as the root-
mean-square error (RMSE).

One question in GEO-CAPE design is whether observing over the ocean would 

improve information on US air quality.  In a separate simulation, we assimilate hourly 
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UV+Vis+TIR ozone observations as above, except with observations only over land scenes.  

We find that removing ocean scenes from the observing domain does not significantly impact 

the general ability to constrain surface ozone over the US domain (2% increase of ozone 

RMSE). Although there is clearly a need to extend geostationary observations some distance 

offshore to improve information for coastal areas (an issue that we cannot investigate at the 

horizontal resolution of our OSSE), we do not find a broader benefit of ocean observations for 

constraining US ozone air quality. Synoptic-scale recirculation of continental air masses 

transported offshore has occasionally been found to contribute to regional pollution episodes in 

the eastern US, but once these air masses are advected back over land domain they would be 

observed and assimilated into the model.   

 We now investigate the effectiveness of various spectral combinations.  We simulate 

daytime hourly observations in the UV, UV+Vis, UV+TIR, and UV+Vis+TIR, for both the 

high sensitivity and low sensitivity cases.   These two cases can be viewed as representing 

upper and lower bounds respectively for the information achievable from the observations. The 

spatial pattern of the correction is similar in each case to that in Figure 2.5, so that we use the 

RMSE as a single comparison statistic as described above.  Figure 2.6 shows the RMSE of 

MDA8 ozone over the US for all of the spectral combinations and cases simulated. In the low 

sensitivity case, the UV only observations (with an improved OMI-like instrument) provide a 

small correction, reducing the RMSE by 12% relative to the a priori.  The full UV+Vis+TIR 

observations, on the other hand, remove half the a priori RMSE. In this low sensitivity case, 

adding the TIR to the UV provides less corrective power (34% reduction in RMSE) than 

adding the Vis (41% reduction).  The relative benefit of the different combinations is different 

in the high sensitivity case, where thermal contrast is stronger.  While the effectiveness of the 
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UV+Vis instrument changes little, the TIR adds much more information near the surface than it 

did in the low sensitivity case, reducing the RMSE by an additional 17%.  In this scenario, the 

UV+TIR instrument is almost as successful as the UV+Vis+TIR instrument in correcting the a

priori error.

Figure 2.6: Ability of geostationary ozone measurements in different spectral combinations to 
constrain the ozone surface air concentration over the US. The figure shows the root-mean-
square error (RMSE) of 8-hour maximum daily average (MDA8) ozone over the continental 
US in July 2001 relative to the “true” state defined by the MOZART model. The a priori error 
from the GEOS-Chem simulation is compared to the a posteriori errors after assimilation of 
observations from instruments in the different spectral combinations, for the high sensitivity 
(red) and low sensitivity (blue) cases of Figure 2.1.

A goal for the GEO-CAPE mission is to improve air quality mapping and 

forecasts on daily timescales.  Figure 2.7 shows a typical July timeseries of MDA8 

surface ozone at Pittsburgh for the “true” state, the model a priori, and the model a

posteriori with assimilated UV+Vis+IR observations from the high sensitivity case. The 

assimilation greatly improves the ability of the model to reproduce the daily variability in 

MDA8 surface ozone (a posteriori R2=0.84 versus a priori R2=0.52).  Of particular 

interest is the ability of the assimilation to capture ozone exceedances of the current US 

air quality standard of 75 ppbv.  During July, the “true” state for Pittsburgh experiences 
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19 days with MDA8 ozone greater than 75 ppbv.  In comparison, the model a priori 

model only has 7 exceedances, while the model a posteriori has 13 exceedances. There 

are no false positives.  Over the US the “true” state experiences 4,250 MDA8 ozone 

exceedances during July.  The model a priori has 3,513 false negatives and 288 false 

positives, while the model a posteriori has 2,221 false negatives (37% fewer) and 49 

false positives (83% fewer).

Figure 2.7: Timeseries of MDA8 surface ozone at Pittsburgh (40oN, 80oW) in July 2001 for 
the “true” state, the model a priori, and the model a posteriori with assimilated 
UV+Vis+IR observations.

Better quantifying ozone climate forcing and its relationship to sources is also a GEO-

CAPE objective. This requires sensitivity to the middle and upper troposphere where ozone 

climate forcing is most efficient.  Figure 2.8 shows the vertical profiles of the ozone RMSE for 

each spectral combination, averaged over the US domain. The influence of stratospheric air is 

minimized by design of the OSSE (Section 3). Results are shown for the high sensitivity case: 
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the vertical information content is similar in the low-sensitivity case except near the surface 

(Figure 2.1). Observing in the UV alone reduces model error most efficiently in the middle 

troposphere between 2 and 5 km, least efficiently in the upper troposphere and near the surface.  

Adding Vis coverage significantly reduces the error near the surface but not at higher altitudes.

Adding TIR coverage reduces the error both near the surface and in the upper troposphere, 

though it has little effect between 2 and 5 km. UV+Vis+TIR does not add significant 

information relative to UV+TIR, though we have seen previously that Vis is effective in 

reducing error at the surface for the low-sensitivity case. 

Figure 2.8: Ability of geostationary ozone measurements in different spectral combinations to 
constrain the vertical profile of tropospheric ozone. The figure shows the root-mean-square 
error (RMSE) of ozone concentrations over the continental US versus altitude in July 2001 
relative to the “true” atmosphere defined by the MOZART model. The a priori error from the 
GEOS-Chem simulation is compared to the a posteriori errors after assimilation of 
observations from instruments in the different spectral combinations. Results are for the high-
sensitivity case of Figure 2.1.

a priori
UV
UV+VIS
UV+IR
UV+VIS+IR

0 2 4 6 8 10 12
Ozone RMSE (ppbv)

0

2

4

6

8

A
lti

tu
de

 (k
m

)



 29 

2.5  Summary 

We conducted an observation system simulation experiment (OSSE) to determine the 

instrument requirements for geostationary satellite observations of ozone air quality in the US.  

Our aim was to inform the design of the NASA GEO-CAPE mission planned for launch by 

NASA in the 2020 time frame. We considered combinations of UV (Hartley-Huggins bands), 

Vis (Chappuis band), and TIR (9.6 μm ν3 band) spectral regions for the candidate ozone 

instruments. While UV and TIR retrievals have been used before for ozone measurements from 

LEO, they lack sensitivity in the boundary layer which is important for air quality. The 

Chappuis band can provide this sensitivity. A sensitivity simulation with the adjoint of the 

GEOS-Chem model shows that most of the ozone in polluted areas of the US in summer is 

produced within the boundary layer, emphasizing the importance of sensitivity in that region. 

 Our OSSE framework uses 3-D hourly archives of ozone concentrations from the 

MOZART chemical transport model (CTM) for July 2001 as a “true” atmosphere to be 

sampled by the candidate instruments. We assimilate these pseudo-observations into the 

GEOS-Chem CTM for that month using a Kalman filter. The MOZART and GEOS-Chem 

CTMs have very different heritages and use different assimilated meteorological data 

sets, making for an objective OSSE. The error statistics between GEOS-Chem and 

MOZART are similar to those between GEOS-Chem and ozonesonde observations, 

further confirming the quality of this OSSE framework.  

Our OSSE results indicate that hourly daytime observations of ozone achievable from 

geostationary orbit provide much better constraints on surface ozone than LEO daily 

observations. We also find that the geostationary observing domain can be limited to the North 

American continent if the measurement objective is to constrain US ozone air quality, as 
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observations over adjacent oceans provide little additional information.  We find that 

multispectral observations provide much more information for surface ozone air quality than 

UV only.  A UV+TIR combination is successful for high sensitivity conditions with strong 

thermal contrast at the surface, but a UV+Vis combination performs better under low 

sensitivity conditions.  A UV+Vis+TIR combination corrects half of the a priori error in surface 

ozone. Observation in the TIR is critical to obtain ozone information in the upper troposphere 

relevant to climate forcing. 

As part of calculating error covariance matrices for ozone data assimilation, we 

examined the time-dependent growth of the difference in surface air ozone concentrations 

simulated by GEOS-Chem and MOZART following common initialization. We find that the 

root-mean-square error (RMSE) between the two models reaches its asymptotic value (24%) 

on a time scale of only 12 hours. This means that ozone data assimilation in our OSSE 

environment would not enable useful air quality forecasts.  

Our OSSE framework provides a general facility for addressing measurement 

requirements for GEO-CAPE. A limitation of the present study is the use of invariant averaging 

kernel matrices for the different instrument configurations. Our high sensitivity and low 

sensitivity cases can be viewed as providing upper and lower bounds for the information 

achievable from geostationary observation. We will improve in future work by using variable 

averaging kernel matrices responding to changes in environmental conditions. Shortcomings 

from using a coarse-scale “truth” model will be addressed in future work by using a regional 

CTM as the “truth” state.  We will also examine the usefulness of complementary satellite 

measurements of other species (CO, NO2, HCHO) for constraining surface ozone.  
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Chapter 3. Improved monitoring of surface ozone air quality by 

joint assimilation of geostationary satellite observations of ozone 

and CO 

 

[Zoogman, P., Jacob, D.J., Chance, K., Worden, H.M., Edwards, D.P., Zhang, L., Improved 

monitoring of surface ozone air quality by joint assimilation of geostationary satellite 

observations of ozone and CO, submitted to Atmospheric Environment] 

 

Abstract 

 Future geostationary satellite observations of tropospheric ozone aim to improve 

monitoring of surface ozone air quality. However, ozone retrievals from space have limited 

sensitivity in the lower troposphere (boundary layer). Data assimilation in a chemical transport 

model can propagate the information from the satellite observations to provide useful constraints 

on surface ozone. This may be aided by correlated satellite observations of carbon monoxide 

(CO), for which boundary layer sensitivity is easier to achieve. We examine the potential of 

concurrent geostationary observations of ozone and CO to improve constraints on surface ozone 

air quality through exploitation of ozone-CO model error correlations in a joint data assimilation 

framework. The hypothesis is that model transport errors diagnosed for CO provide information 

on corresponding errors in ozone. A paired-model analysis of ozone-CO error correlations in the 

boundary layer over North America in summer indicates positive error correlations in continental 

outflow but negative regional-scale error correlations over land, the latter reflecting opposite 
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sensitivities of ozone and CO to boundary layer depth. Aircraft observations from the ICARTT 

campaign are consistent with this pattern but also indicate strong positive error correlations in 

fine-scale pollution plumes, We develop a joint ozone-CO data assimilation system and apply it 

to  a regional-scale  Observing System Simulation Experiment (OSSE) of the planned NASA 

GEO-CAPE geostationary mission over North America. We find substantial benefit from joint 

ozone-CO data assimilation in informing US ozone air quality if the instrument sensitivity for 

CO in the boundary layer is greater than that for ozone. A high-quality geostationary 

measurement of CO could potentially relax the requirements for boundary layer sensitivity of the 

ozone measurement. This is contingent on accurate characterization of ozone-CO error 

correlations. 

 

3.1 Introduction 

 Ozone in surface air is harmful to humans and vegetation. 129 million people in the United 

States (US) breathe hazardous levels of ozone as measured by the National Ambient Air Quality 

Standard (NAAQS) of 75 ppb (maximum daily 8-hour average not to be exceeded more than 3 times 

per year) (US Environmental Protection Agency (EPA), 2012). Ozone is produced by photochemical 

oxidation of carbon monoxide (CO) and volatile organic compounds (VOCs) in the presence of 

nitrogen oxide radicals (NOx≡NO+NO2). The chemistry is complex and non-linear, making it difficult 

to relate ozone exceedances to precursor emissions. Satellite observations of ozone and its precursors 

show considerable promise for monitoring emissions and transport, as well as chemical regime (Martin 

2008), but direct observation of ozone air quality from space has been limited by poor sensitivity in the 

boundary layer. Here we show that combined ozone and CO measurements from a geostationary 

satellite platform can significantly increase the observational capability for ozone through data 
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assimilation as compared to ozone measurements alone. 

 Ozone has major absorption features in the ultraviolet (UV) and the thermal infrared (TIR). 

These have provided the foundation for high-quality satellite retrievals of tropospheric ozone by the 

GOME and OMI instruments using UV solar backscatter (Liu et al., 2006, 2010)  and by the TES and 

IASI instruments using TIR terrestrial emission (Beer, 2006; Clerbaux et al., 2009). These instruments 

show good consistency between themselves and with ozonesondes (Zhang et al., 2010). However, they 

have poor sensitivity in the lower troposphere (boundary layer), in the UV because of molecular 

scattering and in the TIR because of lack of thermal contrast between the surface and lowermost 

atmospheric air temperatures. Multispectral observation in the UV, TIR, and in the weak visible (Vis) 

Chappuis bands may improve sensitivity in the boundary layer in the future (Natraj et al., 2012; Fu et 

al., 2013; Cuesta et al., 2013). In contrast to ozone, mature CO column observations from space with 

boundary layer sensitivity are available from solar backscatter in the near IR (NIR), as from the 

SCIAMACHY instrument (Bovensmann et al., 1999). The MOPITT satellite instrument has both NIR 

and TIR channels, enabling separation of boundary layer and free tropospheric CO (Worden et al., 

2010). 

CO is a product of incomplete combustion, with an atmospheric lifetime of about two months. 

It is a precursor of ozone, but more importantly it is a long-lived tracer of anthropogenic influence 

with a mean atmospheric lifetime of about two months. Surface and aircraft observations in 

pollution plumes and continental outflow in summer show strong ozone-CO correlations and 

these have been used  to test models of ozone production (Parrish et al., 1993; Chin et al., 1994;  Parrish 

et al., 1998; Hudman et al., 2009).  Concurrent TIR observations of ozone and CO from TES in the free 

troposphere show strong summertime correlations at northern mid-latitudes, reflecting continental 

outflow of ozone and intercontinental transport (Zhang et al., 2006, 2009; Hegarty et al. 2009, 2010; 
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Voulgarakis et al., 2011). Kim et al. (2013) combined high-density satellite data of ozone from OMI 

(UV) and CO from AIRS (TIR) to show patterns of strong ozone-CO correlations (positive or negative) 

in the free troposphere over much of the world. Negative correlations are associated with air very 

remote from human influence or stratospheric intrusions. 

 Geostationary satellite measurements of atmospheric composition promise to revolutionize our 

observing system for air quality over the next decade (Fishman et al., 2012). They will provide 

continuous hourly data with ~5 km spatial resolution over continental scales, in contrast to the current 

fleet of low-elevation orbit satellites that have a return time of at most once per day. We anticipate a 

constellation of geostationary satellites from planned launches in the 2018-2020 time frame including 

TEMPO over North America (http://science1.nasa.gov/missions/tempo/), SENTINEL-4 over 

Europe (Ingmann et al., 2012), and GEMS over East Asia (Bak et al., 2013). They will include 

observation of ozone in the UV (SENTINEL-4, GEMS) and UV+Vis (TEMPO).  Concurrent NIR and 

TIR measurements of CO and ozone from co-located satellites are presently under consideration, and in 

the case of North America these would largely complete the atmospheric component of GEO-CAPE 

(Geostationary Coastal And Pollution Events) (Fishman et al., 2012), a priority strategic mission for 

NASA recommended by the US National Research Council Decadal Survey (2007).   

Observation System Simulation Experiments (OSSEs) in support of GEO-CAPE planning 

have demonstrated the theoretical capability of the mission for improved observation of surface ozone 

(Zoogman et al, 2011) and CO (Edwards et al, 2009) through data assimilation in a chemical transport 

model (CTM). In data assimilation, information from the observations is used to correct the CTM 

(referred to as the “forward model”) on the fly and with appropriate weighting of model and 

measurement information based on their respective uncertainties. Even though the satellite instrument 

does not directly measure surface air concentrations, the CTM propagates the information from the 
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observations to obtain an improved estimate of the 3-D concentration fields including surface values.   

Zoogman et al. (2011) showed that direct instrument sensitivity to the boundary layer (UV+Vis or 

UV+TIR channels) was necessary for GEO-CAPE to constrain surface ozone and then only with 

moderate success. 

Here we examine whether improved estimates of surface ozone can be obtained from 

geostationary satellite observations through the constraint from ozone-CO error correlations in a joint 

assimilation of ozone and CO data. This may be particularly effective if satellite observations have 

more boundary layer sensitivity for CO than for ozone, as is currently the case. Diagnosed model error 

in simulating CO provides information on the coincident model error in simulating ozone. A similar 

idea has been used previously to improve CO2 surface flux estimates through the use of combined CO2 

and CO observations together with CO2-CO error correlations (Palmer et al., 2006; Wang et al., 2009).  

Statistics on ozone-CO error correlations are required, which may be different from the correlations in 

the concentrations themselves as pointed out by Wang et al. (2009).  

Our OSSE framework involves the generation of synthetic ozone and CO data from a CTM to 

represent the “true” atmosphere. We use for that purpose the GEOS-Chem CTM v8-02-03 (Bey et al., 

2001; http://www.geos-chem.org) driven by GEOS-5 assimilated meteorological data from the NASA 

Global Modeling and Assimilation Office (GMAO). We sample this 3-D field of ozone and CO “true” 

concentrations following the GEO-CAPE experimental design, with expected instrument errors, to 

mimic the observations that GEO-CAPE will provide. We then assimilate the resulting concentrations 

into a different GEOS-Chem CTM simulation driven by GEOS-4 meteorological data for the same 

period and taken as the forward model. From there we can assess the effectiveness of the GEO-CAPE 

observations to correct the forward model and reproduce the “true” concentration fields through data 

assimilation. The GEOS-4 and GEOS-5 meteorological data differ in the underlying general 
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circulation model, the methodology for data assimilation, and the data assimilated (Bloom et al., 

2005; Rienecker et al., 2008; Ott et al., 2009). GEOS-Chem simulations of ozone and CO driven 

by GEOS-4 and GEOS-5 show large differences (Liu et al., 2010, 2013; Mitovski et al., 2012), 

and we will illustrate this below.  

 

3.2 Joint ozone-CO data assimilation 

A CTM generates a forecast of 3-D concentration fields at a given timestep by numerical 

integration from the previous timestep. We can reduce the forecast error by assimilating satellite 

observations over that timestep. The resulting optimized 3-D field of concentrations is called the 

a posteriori state. This a posteriori state can then be evolved forward in time by the CTM until 

the next timestep, when we again assimilate observations. Data assimilation not only enables 

improved forecasts of concentrations by correcting the successive initial conditions but also 

provides an optimal estimate of the state at any given time. We use here a Kalman filter where 

observations at discrete timesteps are used to optimize concentrations for the corresponding 

times, but our error correlation method is applicable to any Bayesian data assimilation technique. 

Previous applications of Kalman filters for assimilating ozone in a CTM have been presented by 

Khattatov et al. (2000) for the stratosphere and Parrington et al. (2008) for the troposphere. 

Consider a nadir satellite instrument where retrieval of vertical concentration profiles 

from the radiance spectra is done by optimal estimation (Rodgers, 2000). Let x be the true 

vertical profile, i.e., the vector of true concentrations on a vertical grid. The retrieved profile x' is 

related to the true state x by the instrument averaging kernel matrix A, which gives the 

sensitivity of x' to x ( xxA ∂∂= /' ):  
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εxxAxx +−+= )(' SS     (3.1) 

where ε  is the instrument noise  vector and Sx  is an independent a priori ozone profile used in the 

satellite retrieval process to constrain the solution. 

In a single-species ozone assimilation we calculate an optimal a posteriori estimate x̂  of the 

ozone concentration at each observation time step as an error-weighted average of the CTM forecast 

ax  (with error vector εa  relative to the true profile ) and the observations x'. The errors are 

characterized by error covariance matrices Sa = E[εaεa
T] and  Sε = E[εεT], where E[ ] is the 

expected-value operator. Assuming unbiased Gaussian distributions for εa and ε yields an analytical 

least-squares solution (Rodgers, 2000) 

)'(ˆ aa KxxGxx −+= .         (3.2) 

where K is the observation operator that maps the state vector to the observation vector, including the 

vertical smoothing from the satellite retrieval and the interpolation from the model grid to the 

observation locations. The gain matrix G is given by 

( ) 1−
+= εSKKSKSG T

a
T

a .     (3.3) 

and determines the relative weight given to the observations and the model. The Kalman filter 

correction to the forecast concentrations is based on two terms: the gain matrix, which depends 

on the relative error in the model and the observations; and the innovation vector aKxx −' , which 

describes the mismatch between the observations and the model state.  

In a joint ozone-CO assimilation we optimize ozone and CO concentrations 

simultaneously; the state vector is the concatenation of ozone and CO vertical profiles. The 
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additional information from CO observations for optimizing the ozone concentrations is 

incorporated as covariance between model errors in ozone and CO concentrations. This 

covariance is described by off-diagonal terms in the model error covariance matrix Sa, coupling 

the optimization of both species: 
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where the subscripts O3 and CO refer to the single-species errors, and ][ ,3,
T

COaOaE εε  =

][ 3,,
T

OaCOaE εε is the covariance of the model errors. This covariance reflects the commonality of 

processes driving model error in both species; we will discuss in section 3.3 its physical basis 

and its computation. These coupled ozone-CO terms in the model error covariance matrix lead to 

corresponding terms in the gain matrix, which is then applied to the combined ozone-CO 

innovation vector. The optimal estimate of the ozone concentrations thus depends on the 

observation-model mismatch in both ozone and CO. 

  

3.3 Characterizing ozone-CO error covariances  

To perform a joint ozone-CO assimilation we must first derive the model error covariance 

matrix terms ][ ,3,
T

COaOaE εε for use in (3.4). The model error includes contributions from errors in 

emissions, chemistry, and transport. Relevant emission errors mainly involve NOx (for ozone) and CO. 

Errors in NOx and CO emissions are in general not correlated. Errors in chemistry are also not expected 

to be correlated, at least on the scale of polluted source regions where CO (with a chemical lifetime of 

months) can be considered inert. We therefore focus our attention on the correlation of transport errors. 
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To characterize the ozone-CO transport error correlation and its geographical distribution 

over North America we use the “paired-model” method (Wang et al., 2009) for August 2006. In 

the paired-model method we conduct GEOS-Chem CTM simulations of ozone and CO (2ox2.5o 

horizontal resolution) driven by different assimilated meteorological data sets, GEOS-4 and 

GEOS-5, for the same period. Since the GEOS-Chem CTM simulations are otherwise the same, the 

pair of models produce 3-D concentration fields of ozone and CO that differ only due to 

meteorology. The differences in concentrations are substantial, as illustrated by the monthly 

mean surface values in Figure 3.1, demonstrating the large differences between the GEOS-4 and 

GEOS-5 meteorological data sets. The differences in CO concentrations are 10-20%, typical of 

residual errors found when comparing model to observations after having optimized emissions 

(Heald et al., 2004; Kopacz et al., 2009).

Figure 3.1: Mean values of the maximum 8-hour daily average (MDA8) ozone concentrations (left) 
and afternoon (1200-1700 local time) CO concentrations (right) for August 2006 in surface air.  Top 
panels show values from the GEOS-5 model used as the “true” atmosphere in our OSSE. Bottom 
panels show values from the GEOS-4 model used as a priori.
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Figure 3.2 (top) shows the ozone-CO concentration correlations in the afternoon 

boundary layer (0-2 km, 1200-1700 local time) in GEOS-4 for August 2006. We find a positive 

correlation in both GEOS-4 and GEOS-5 over most of North America and the western North 

Atlantic, consistent with observations (Parrish et al., 1993; Chin et al., 1994; Hudman et al., 

2009). The correlation is strongest over the western North Atlantic, reflecting the contrast 

between North American outflow (high ozone, high CO) and clean marine air (low ozone, low 

CO). 

Figure 3.2: Ozone-CO concentration correlations in the afternoon boundary layer in GEOS-4
(top) and corresponding error correlations for GEOS-4 compared to GEOS-5 (bottom). Values 
are 0-2 km column concentrations sampled hourly at 1200-1700 local time for August 2006.
Flight tracks for the ICARTT aircraft campaign are overlain (dashed green line) for comparison 
with Figure 3.3.
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Comparison of model results for the GEOS-4 and GEOS-5 simulations in each grid 

square generates time series of concentration differences, Δozone and ΔCO, where ∆ means 

“difference between GEOS-4 and GEOS-5”.  Figure 3.2 (bottom) shows the correlations 

between Δozone and ΔCO, the ozone-CO model error correlations.  The Atlantic coastline marks 

a sharp boundary between negative and positive error correlations. We see that the error 

correlations are very different from the correlations between the concentrations themselves, as 

previously noted by Wang et al. (2009) for CO2-CO. Error correlations are positive over 

continental outflow regions and the West but negative over the East and South.  We find no 

significant model error correlations in the free troposphere (not shown) even though there are 

significant correlations in concentrations (Kim et al., 2013).  

The negative ozone-CO error correlations over the East and South in Figure 3.2 are due 

to differences in daytime boundary layer depths between GEOS-4 and GEOS-5. A deeper 

boundary layer results in more entrainment from the free troposphere, which tends to have higher 

ozone and lower CO concentrations than surface air (Dawson et al., 2007). Model error in 

boundary layer depth thus leads to anti-correlated errors in ozone and CO concentrations. In 

outflow regions we find a positive error correlation due to the dominant effect of horizontal 

transport from source regions for both ozone and CO.  

Measurements from the ICARTT aircraft campaign over the eastern US and the western North 

Atlantic in July-August 2004 offer a test of  these paired-model correlation patterns. Ozone and CO 

concentrations were measured from two aircraft, the NASA DC-8 and the NOAA WP-3D (Singh et al., 

2006; Fehsenfeld et al., 2006). A major objective of ICARTT was to better understand ozone 

production in the US boundary layer and the resulting outflow (Singh et al., 2006). Hudman et al. 

(2009) presented a detailed analysis of ozone-CO correlations in ICARTT to address this objective. 
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Here we simulate the ICARTT observations using a nested continental-scale version of GEOS-Chem 

using GEOS-5 meteorological data with 1/2ox2/3o horizontal resolution (~50x50 km2) in order to 

examine the correlations over different scales. The nested GEOS-Chem model is as described by 

Zhang et al. (2012). In all cases we sample the model along the flight tracks and at the flight times 

(restricted to 0-2 km, 1200-1700 local time).  

Figure 3.3 (top) shows simulated and observed correlations of concentrations. 

Correlations are strongly positive, with consistent regression slopes (dO3/dCO), as previously 

noted by Hudman et al. (2009). The model fails to reproduce concentrated pollution plumes with 

very high CO as these plumes are not resolved on the 50 km model scale. 

The middle panel of Figure 3.3 shows the model error (simulated – observed) in ozone 

concentration plotted against the corresponding model error in CO concentration for the 

afternoon boundary layer data.  Strong positive error correlations are found in the pollution 

plumes (we diagnose “plumes” in the ICARTT data following Mao et al. (2013)) but the model 

does not resolve those as noted above. After excluding plumes, we examined the error 

correlations separately in the land data west of 80oW and in the ocean data offshore from the 

eastern US, as the paired-model analysis indicates opposite correlations in these two regions 

(Figure 3.2). We see that the model error correlations relative to the ICARTT data are similar to 

those in the paired model analysis, with positive correlations over the ocean (continental 

outflow) and negative correlations over land (boundary layer depth). Land points east of 80oW 

(black symbols) show positive error correlations that likely reflect a dominant influence from 

continental outflow. Averaging the model and observations over a 2ox2.5o grid (Figure 3.3, 

bottom panel) does not change the correlation statistics relative to the 1/2ox2/3o resolution. 
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Figure 3.3: Correlations between ozone and CO concentrations, and corresponding model error 
correlations, for afternoon boundary layer data (0-2 km, 12-17 local time) from the ICARTT 
aircraft campaign over the eastern US and western North Atlantic during July-August 2004 
(Fehsenfeld et al., 2006; Singh et al., 2006). ICARTT flight tracks are in Figure 2. The top panel 
shows the correlation between concentrations in the observations and in the nested GEOS-Chem 
model with 1/2ox2/3o horizontal resolution as described in the text. The observations for 
individual flights are averaged over the model grid and the model is sampled at the time and 
location of the observations. The middle panel shows the error correlation for the difference ∆ 
between GEOS-Chem values and ICARTT observations. The bottom panel again shows the error 
correlation, now averaged over a 2ox2.5o grid. “Land” points used in correlative analyses in the 
middle and bottom panels are for the longitude range 100o-80oW sampled by ICARTT (Figure 
2). Other land points sampled by ICARTT (mainly in New England) are shown in black in the 
middle panel and are not used in correlative analyses. Correlation coefficients (R) and slopes of 
the reduced major-axis regression lines (s) are shown inset.  
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Figure 3.3 (Continued)
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The switch in sign in the ozone-CO error correlation over land between pollution plumes 

and the 50-km model resolution has important implications.  Because GEOS-Chem cannot 

resolve fine-scale pollution plumes, these must be excluded from the data assimilation. Such 

exclusion (justified by large model representation error) is standard when using atmospheric 

concentration data for source inversions (Palmer et al., 2003; Heald et al., 2004). Data 

assimilation with a finer-resolution model accounting for ozone plumes would need to use 

different error correlations statistics in fine-scale plumes and in regional air. The negative error 

correlation driven by boundary layer depth can dominate for regional air but is a minor effect for 

plumes relative to the positive error correlation generated by mixing the plume air (high ozone, 

high CO) with the cleaner background.     

 

3.4 OSSE Design 

We explore the benefit of using ozone-CO error correlations to improve data assimilation 

for surface ozone by performing a paired-model OSSE with GEOS-5 as the “true” atmosphere 

and GEOS-4 as the forward model for data assimilation, as described in Section 3.  Averaging 

kernel matrices for the satellite instruments (Figure 3.4) are taken from the Natraj et al. (2011) 

theoretical study for GEO-CAPE ozone and from a sample NIR+TIR retrieval  for MOPITT CO 

(Worden et al., 2010).  
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Figure 3.4: Averaging kernel matrices for clear-sky satellite retrievals of ozone and CO assumed in this 
study. The averaging kernel matrices are from a GEO-CAPE theoretical study by Natraj et al. [2011] 
for ozone in the UV and in the UV+Vis+TIR, and from a sample retrieval of CO over land by 
MOPITT in the NIR+TIR [Worden et al 2010]. Individual lines are the matrix rows corresponding to 
retrievals for individual vertical levels. The color gradient from red to blue corresponds to vertical 
levels ranging from the surface (red) to 200 hPa (blue). Inset are the degrees of freedom for signal 
(DOFS) for the atmospheric columns below 200, 800, and 900 hPa., estimated as the traces of the 
corresponding portions of the averaging kernel matrix.

We assume fixed averaging kernel matrices for the whole continental domain, acknowledging

that there is in fact significant variability due to different surface albedos, temperatures and 

concentrations (Worden et al., 2013). Also shown in Figure 3.4 are the degrees of freedom for signal 

(DOFS) below given pressure levels, estimated as the corresponding trace of the averaging kernel 

matrix and measuring the number of independent pieces of information in the retrieval (Rodgers, 

2000). Sensitivity of UV ozone retrievals in the boundary layer is limited by air molecular scattering 

(0.27 DOFS below 800 hPa). If combined with UV, the visible and IR bands add information for near 

surface ozone (0.75 DOFS below 800 hPa). The multispectral NIR+TIR CO retrieval shows sensitivity 

to CO both near the surface (0.52 DOFS below 800 hPa) and in the free troposphere. The CO 

averaging kernel matrix in Figure 5 represents particularly favorable observing conditions for 

MOPITT, whose retrieval quality is often limited by large pixel size noise introduced by the changing 

view of the surface due to spacecraft motion during data scans (Deeter et al 2011). It is however 
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representative of the expected performance of GEO-CAPE, which will have a stationary field of regard 

(Fishman et al., 2012). 

We generate synthetic geostationary observations from the “true” atmosphere for August 2006 

by sampling the hourly daytime vertical profiles over land scenes in the North American domain with 

the averaging kernel matrices given in Figure 3.4. We omit scenes with cloud fraction > 0.3 (as given 

by the GEOS-5 meteorology). Gaussian random error is added to the synthetic observations to simulate 

spectral measurement error (instrument noise ε in eq. (3.1)) as given by Natraj et al. (2011) and Worden 

et al. (2010).  As the GEO-CAPE footprint (~4 km) is much finer than the GEOS-Chem resolution 

used (~200 km), the instrument error is reduced by the square root of the number of observations 

available for the corresponding GEOS-Chem grid square.   

We assimilate the synthetic observations of the “true” state into the forward model, as we 

would do with actual data, to correct the mismatch between the “true” and a priori states.  We do 

this sequentially by using a Kalman filter as described in section 3.2, applying the filter 

iteratively at successive observation time steps to update the model state. The model error 

covariance matrix for each species (Sa,O3 and Sa,CO in (3.4))  is assumed diagonal, and the diagonal 

terms are assumed constant and estimated from the Relative Residual Error (RRE) method (Palmer 

et al. 2003, Heald et al. 2004). This yields an altitude-independent error of 29% for ozone 

(Zoogman et al. 2011) and 15% for CO (Heald et al. 2004). 

 

3.5 Error Reduction from ozone-CO Joint Assimilation 

From the OSSE design in Section 3.4, we analyze the benefit of using ozone-CO model 

error correlations in a joint ozone-CO data assimilation system to constrain surface ozone 
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concentrations over the contiguous US, as compared to an ozone-only data assimilation system.  We 

focus on the maximum daily 8-hour average (MDA8) ozone, which is the form of the national air 

quality standard in the US. We use two metrics to evaluate the assimilation results: (1) the Root Mean

Square Error (RMSE) of MDA8 ozone relative to the “true” state,  and (2) the number of 

incorrectly diagnosed NAAQS exceedances (MDA8 ozone >75 ppbv).  These metrics are 

computed only over the US (25oN – 50oN, 125oW – 65oW, land only), but observations are assimilated 

over the entire North American domain (10oN – 60oN, 140oW – 40oW, land only). We conduct 

separate OSSEs for a UV-only and a UV+Vis+TIR ozone instrument, each with and without 

joint assimilation of CO, for a total of four OSSEs. Metrics (1) and (2) in the OSSE results are 

compared to the a priori model simulation without data assimilation. 

 

Figure 3.5: Error reduction in model simulation of surface ozone air quality from assimilation of 
geostationary satellite observations of ozone and CO. Results are from  OSSEs for August 2006 
examining two error metrics: (1)  the root mean square error (RMSE)  of maximum daily 8-h average 
(MDA8) ozone over the contiguous US relative to the “true” state defined by the GEOS-5 simulation, 
and (2) the number of surface gridsquare-days where the model incorrectly diagnoses  a NAAQS 
exceedance (MDA8 ozone >75 ppbv), either as a false positive or as a false negative. The error metrics 
from the GEOS-4 simulation without data assimilation (a priori) are compared to results from the 
assimilation of observations from a UV-only ozone instrument (UV) and a multispectral ozone 
instrument (UV+Vis+TIR), without and with joint assimilation of CO using ozone-CO error 
correlations (+CO).
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Figure 3.5 shows the data assimilation results. The RMSE for ozone without assimilation is 7.0 

ppbv.  For a UV-only ozone instrument, the joint ozone-CO assimilation reduces the RMSE by 33% as 

compared to a 16% reduction by the ozone-only assimilation.  For a UV+Vis+TIR ozone instrument, 

the joint ozone-CO assimilation reduces the RMSE by 41% compared to a 39% reduction by the 

ozone-only assimilation. The CO assimilation has a major impact when the ozone instrument is UV-

only, because the supplemental boundary information provided by the CO instrument is then important. 

The UV+Vis+TIR ozone instrument has better sensitivity to the boundary layer than the CO instrument 

in Figure 4, so that CO assimilation is of negligible benefit in that case. We see that joint assimilation of 

CO with a UV-only ozone instrument improves the representation of surface ozone concentrations in a 

manner that approaches the performance of the UV+Vis+TIR ozone instrument.  

A goal for the GEO-CAPE mission is to improve the diagnosis and forecasting of 

exceedances of the ozone air quality standard. Over the US the “true” state experiences 422 

gridsquare-days where MDA8 ozone exceeds 75 ppbv during August 2006.  We see from Figure 

3.5 that the model a priori without data assimilation incurs 722 errors in diagnosing  

exceedances for that domain (either false positive or false negative). For a UV-only ozone 

instrument, the joint ozone-CO assimilation reduces the number of exceedance errors by 39%, as 

compared to a 15% reduction by the ozone-only assimilation. For the UV+Vis+TIR instrument, 

the ozone-only assimilation reduces the number of exceedance errors by 48% and the added CO 

assimilation has no significant benefit.  These statistics and their interpretation are similar to the 

RMSE results. 
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3.6 Conclusions 

 We explored the value of combining geostationary satellite data for ozone and CO in a 

joint ozone-CO data assimilation system to inform ozone air quality. The idea is that a 

multispectral (NIR+TIR) CO instrument with sensitivity in the boundary layer can help to 

constrain surface ozone through correlation of ozone and CO errors in the chemical transport 

model (CTM) used for data assimilation. We implemented the joint assimilation in an Observing 

System Simulation Experiment (OSSE) of the planned NASA GEO-CAPE geostationary mission 

over North America.  We considered two possibilities for the ozone instrument, UV-only or 

multispectral (UV+Vis+TIR). 

Proper characterization of model error correlations between ozone and CO in the 

boundary layer is critical for the joint assimilation. These error correlations can be very different 

from the correlations between the concentrations themselves.  We generated them by a paired-

model method using GEOS-Chem CTM simulations with 2ox2.5o horizontal resolution driven by 

different assimilated meteorological data sets (GEOS-4 and GEOS-5) for the same August 2006 

period. Results indicate positive ozone-CO error correlations in continental outflow regions, 

reflecting common horizontal transport. However, we found negative error correlations over 

much of the US, particularly in the Midwest (80o – 100o W), even though the concentrations 

themselves are positively correlated.  These negative error correlations reflect opposite 

sensitivities of ozone and CO to model error in boundary layer depth. 

We tested the ozone-CO error correlation patterns from the paired-model method by using 

ICARTT aircraft observations in the boundary layer over the eastern US and western North Atlantic 

during July-August 2004. Strong and consistent positive correlations are found between ozone and CO 
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concentrations in the observations and in a nested GEOS-Chem simulation (1/2ox 2/3o horizontal 

resolution). Error correlations between the nested GEOS-Chem simulation and the ICARTT 

observations are strongly positive in subgrid urban plumes and in continental outflow over the ocean, 

but negative over land, consistent with the paired-model statistics. GEOS-Chem is too coarse to resolve 

urban plumes. A fine-scale data assimilation system to resolve these plumes would need to account for 

the difference in error correlation between the concentrated plumes (with positive error correlation 

determined by common dilution of ozone and CO) and regional air (where boundary layer depth can 

drive a negative error correlation).   

Our OSSE results indicate that adding multispectral CO measurements in a joint 

assimilation with UV ozone observations from geostationary orbit could provide significant 

improvement to constraints on surface ozone air quality.  However, we find no significant benefit 

in the case of a multispectral UV+Vis+TIR ozone instrument with higher boundary layer 

sensitivity. Adding a CO measurement capability to a UV ozone observing system provides 

constraints on surface ozone approaching those from a UV+Vis+TIR ozone observing system, 

assuming that the ozone-CO error correlation statistics can be well characterized. 

Our study used the same pair of models to compute the ozone-CO error correlations and 

to simulate the data assimilation procedure, which may overestimate the information provided by 

the error correlations. The OSSE would be improved through the use of a third independent 

model. It would obviously be best to derive the error correlations from observations, but aircraft 

observations are too sparse and satellite observations are smoothed by their averaging kernels. 

Observations can however be used to test the error correlation patterns derived from paired-

model analyses, as we did here with ICARTT aircraft data.  
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Chapter 4. Monitoring high-ozone events in the US Intermountain 

West using TEMPO geostationary satellite observations 

 

[Zoogman, P., Jacob, D.J., Chance, K., Liu, X., Fiore, A., Lin, M., Travis, K., in preparation for 

submission] 

 

Abstract 

High-ozone events, approaching or exceeding the national ambient air quality standard 

(NAAQS), are frequently observed in the US Intermountain West in association with subsiding 

background influence. Monitoring and attribution of these events is problematic because of the 

sparsity of the surface network and lack of vertical information. We present an Observing System 

Simulation Experiment (OSSE) to evaluate the ability of the future geostationary satellite 

instrument TEMPO (Tropospheric Emissions: Monitoring of Pollution), scheduled for launch in 

2018-2019, to monitor and attribute such high-ozone events in the Intermountain West through 

data assimilation. TEMPO will observe ozone in the UV+Vis for sensitivity in the lower 

troposphere. Our OSSE uses ozone data from the AM3-Chem global chemical transport model 

(CTM) as the “true” atmosphere and samples it for April-June 2010 with the current surface 

network (CASTNet sites), TEMPO, and a low-elevation orbit (LEO) IR satellite instrument. The 

synthetic data are then assimilated into an independent CTM (GEOS-Chem) using a Kalman 

filter. Error correlation length scales (500 km in horizontal, 1.7 km in vertical) extend the range 

of influence of observations. We show that assimilation of surface data alone does not 

adequately monitor high-ozone events in the Intermountain West.  Assimilation of TEMPO data 

greatly improves the monitoring capability, with little information added from the LEO 
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instrument. The vertical information from TEMPO further enables the attribution of NAAQS 

exceedances to background ozone and this is illustrated with the case of a stratospheric intrusion.  

 

4.1 Introduction 

 Harmful impacts of surface level ozone on both humans and vegetation is of increasing 

concern in areas formerly considered remote. The US Environmental Protection Agency (EPA) is 

considering lowering the current National Ambient Air Quality Standard (NAAQS) of 75 ppbv (4th 

highest maximum daily 8-hour average per year) to a value in the range of 60-70 ppbv (EPA, 2012).  

Ozone concentrations in this range are frequently observed at high-elevation sites in the western US 

with no local pollution influence (Lefohn et al., 2001). Although ozone levels have been decreasing 

over the eastern US for the past two decades due to emissions controls, there has been no such 

decrease in the West except for California (Cooper et al., 2012). Free tropospheric ozone at 3-8 

km altitude over the western US has been increasing by  0.41 ppbv year-1 during the past two 

decades (Cooper et al., 2012) and this could affect background surface concentrations in the 

West (Zhang et al., 2008).  There has been great interest in using satellite observations of ozone 

and related species to monitor and attribute background surface ozone (Lin et al,. 2012a; Fu et 

al., 2013). This capability has been limited so far by the sparseness of satellite data and low 

sensitivity to the surface. All satellite measurements so far have been from low-elevation orbit 

(LEO). Here we show that multispectral measurements from the NASA TEMPO geostationary 

satellite mission over North America, scheduled for launch in 2018-2019, can provide a powerful 

ozone monitoring resource to complement surface sites, and can help to identify NAAQS 

exceedances caused by elevated background.  
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 The North American background is defined by the EPA as the surface ozone concentration 

that would be present over the US in the absence of North American anthropogenic emissions. It 

defines the achievable benefits from domestic emissions control policies (including agreements 

with Canada and Mexico). The background contribution to surface ozone is particularly high in 

the Intermountain West, extending between the Sierra Nevada/Cascades to the west and the 

Rocky Mountains on the east, due to high elevation and arid terrain (Zhang et al., 2011). 

Subsidence of high-ozone air from the free troposphere can cause surface ozone concentrations in that 

region to approach or exceed the NAAQS (Reid et al., 2008). This is not an issue in the eastern US 

because of lower elevation, forest cover, and high moisture (Fiore et al., 2002). 

Several chemical transport models (CTMs) have been used to estimate the North 

American background including GEOS-Chem (Fiore et al., 2003; Zhang et al., 2011), AM3-

Chem (Lin et al., 2012a,b), CMAQ (Mueller and Mallard 2011), and CAMx (Emery et al., 

2012). Values average 30-50 ppbv in spring and summer over the Intermountain West with 

events frequently exceeding 60 ppbv. However, there are large differences between models 

reflecting variable contributions from the stratosphere (Lin et al. 2012b), lightning (Kaynak et al. 

2008, Zhang et al. 2011), and wildfires (Mueller and Mallard, 2011; Zhang et al., 2011; Jaffe and 

Wigder, 2012; Singh et al., 2012). 

Background effects on surface ozone air quality are important to diagnose, as NAAQS 

exceedances can be dismissed as exceptional events if shown to be not reasonably controllable 

by local governances (EPA 2013). Monitoring of ozone in the Intermountain West is mostly 

performed at urban stations designed to observe local pollution and not background influences. 

There is a limited network of CASTNet sites located at national parks and other remote 

locations, and these have been used extensively to estimate background ozone and evaluate 



67 
 

models (Fiore et al., 2002; Zhang et al., 2011; Lin et al., 2012b; Cooper et al., 2012). Langford et 

al. (2009) demonstrated that transport of stratospheric air contributed to surface ozone in excess 

of 100 ppbv in Colorado in 1999. Yates et al. (2013) similarly demonstrated a stratospheric 

origin for a NAAQS exceedance in Wyoming in June 2012 by using a combination of 3-D 

modeling, aircraft observations, LEO satellite data, and geostationary weather satellites.  But the 

current air quality observing system is very limited in its ability to (1) monitor ozone at sites 

prone to high background, and (2) diagnose the origin of high-ozone events at these sites. 

Geostationary satellites are a promising tool to address this limitation (Fishman et al., 2012). 

These satellites orbit around the Earth with a 24-h period in an equatorial plane, thus continuously 

staring at the same scenes.  Depending on the observing strategy, they may provide hourly ozone data 

over a continental domain, while a LEO satellite may offer at best a 1-day return time. A global 

constellation of geostationary satellite missions targeted at air quality is planned to launch in 2018-2019 

including TEMPO (Tropospheric Emissions: Monitoring of Pollution) over North America (Chance et 

al. 2012), SENTINEL-4 over Europe (Ingmann et al., 2012), and GEMS over East Asia (Bak et al., 

2013).  

TEMPO will measure backscattered solar radiation in the 290-750 nm range, including 

the UV and Vis (Chappuis) ozone bands (Chance et al., 1997; Liu et al., 2005). Observation in 

the weak Chappuis bands takes advantage of the relative transparency of the atmosphere in the 

Vis to achieve sensitivity to near-surface ozone. This UV+Vis multispectral combination for 

ozone observation has not been used from space before. A theoretical study by Natraj et al. (2011) 

indicates that it should provide sensitivity to the lower troposphere. An observing system simulation 

experiment (OSSE) by Zoogman et al. (2011) shows that a UV+Vis instrument in geostationary orbit 

could provide useful constraints on surface ozone through data assimilation.. 
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Here we conduct an OSSE to quantify the potential of geostationary ozone measurements 

from TEMPO to improve monitoring of ozone NAAQS exceedances in the Intermountain West 

and the role of background ozone in causing these exceedances. Our goal is to inform the TEMPO 

observing strategy and develop methods for exploitation of TEMPO data. OSSEs have previously 

informed mission planning for geostationary observations of atmospheric composition (Edwards et al., 

2009; Zoogman et al, 2011, 2013). An important feature of our work here is the inclusion of 

surface network and LEO satellite observations in the data assimilation system to properly 

quantify the added benefit of TEMPO observations. 

 

4.2 Observing System Simulation Experiment (OSSE) 

OSSEs are a standard technique for assessing the information to be gained by data assimilation 

from adding a new instrument to an existing observing system (Lord et al., 1997). The OSSE 

framework involves the use of a CTM to generate g synthetic time-varying 3-D fields of concentrations 

(taken as the “true” atmosphere), and the virtual sampling of this “true” atmosphere by the different 

instruments composing the observing system for data assimilation. This virtual sampling follows the 

observing schedules and error characteristics of each instrument. The virtual observations are then 

assimilated in a second, independent CTM, and the results of the assimilation (with and without the 

new instrument) are compared to the “true” atmosphere to assess the value of the new instrument 

(Edwards et al., 2009). 

Here we conduct an OSSE for April-June 2010, when background ozone over the 

Intermountain West is at its seasonal maximum (Brodin et al., 2010). The observing system includes 

the CASTNet surface network, a LEO instrument, and TEMPO. The “true” atmosphere is provided by 

the AM3-Chem CTM (Lin et al., 2012a,b). The model used for data assimilation (“forward model”) is 



69 
 

the GEOS-Chem CTM (Zhang et al, 2011); it generates a priori concentrations at successive time steps 

to be corrected to the “true” atmosphere by the observing system through data assimilation. The 

information provided by the observing system is quantified by the correction of the mismatch between 

the “true” state and the a priori. We describe below our OSSE framework including the simulation 

models (AM3-Chem and GEOS-Chem CTMs), the observing system, and the data assimilation 

system. 

 

4.2.1 Simulation Models 

We use for our “true” atmosphere the global AM3-Chem CTM with horizontal resolution of 

1/2ox5/8o (Lin et al., 2012a,b). This CTM was successful in reproducing background ozone variability 

and exceptional events in the Western US during the CalNex field campaign in April-June 2010 (Lin et 

al., 2012b). This is important because the “true” CTM should reproduce the characteristics of the 

observations relevant to the OSSE. Lin et al. (2012a,b) used AM3-Chem to investigate the effect of 

Asian transport and stratospheric intrusions on surface ozone in the Intermountain West during April-

June 2010, and they quantified the ozone background through a sensitivity simulation with  North 

American anthropogenic sources shut off. Here we use 3-hourly concentrations archived from 

their standard simulation to provide the global 3-D ozone fields of the “true” atmosphere. 

Our forward model for data assimilation is  the GEOS-Chem CTM (Bey et al., 2001; 

http://www.geos-chem.org) The version used here (v8-02-03) was previously described by Zhang 

et al. (2011) in a study of background ozone influence on the Intermountain West during 2006-

2008. It covers the North America domain with 1/2ox2/3o horizontal resolution (10oN – 60oN, 

140oW – 40oW), nested within a global domain with 2ox2.5o horizontal resolution. Here we apply 

it to April-June 2010. GEOS-Chem and AM3-Chem have completely separate development heritages 
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and use different driving meteorological fields, chemical mechanisms, and emission inventories. This 

independence between the two CTMs used in the OSSE is important for a rigorous assessment (Arnold 

and Dey 1986). The horizontal resolution of both CTMs (~50 km) is adequate for characterization of 

background ozone.

Figure 4.1 shows the maximum daily average 8-hour (MDA8) ozone concentrations in surface 

air for each model, averaged over April-June 2010. AM3-Chem has higher ozone concentrations than 

GEOS-Chem over the US as a whole and over the Intermountain West (bordered region) in particular. 

Zhang et al. (2011) previously showed that GEOS-Chem can reproduce ozone concentrations in 

the Intermountain West up to 70 ppbv with relatively little error, but cannot reproduce 

exceptional events of higher concentrations. AM3-Chem is biased high in the mean but better 

simulates high-ozone events. 

Figure 4.1: Mean values of the daily maximum 8-hour average (MDA8) ozone concentrations 
for April-June 2010 in surface air. Left panel shows values from the AM3-Chem CTM used as 
the “true” atmosphere in our OSSE. Right panel shows the a priori values from the GEOS-Chem 
CTM used for data assimilation. The black lines delineate the Intermountain West and black 
crosses show CASTNet surface measurement sites in the region.

     0 20 40 60 80 ppbv
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4.2.2 Observing System and Synthetic Observations 

 Our OSSE simulates the anticipated ozone observing system over the Intermountain West 

during operation of TEMPO. This will consist of surface measurements, LEO satellite 

measurements (now becoming operational), and TEMPO geostationary satellite measurements. 

For the LEO satellite measurements we assume a future version of the IASI (Infrared Atmospheric 

Sounding Interferometer) instrument, IASI-3, that will be launched in 2016 on the MetOp-C satellite 

(Clerbaux, 2009). That instrument retrieves ozone in the thermal infrared (TIR). We also expect to have 

in that time frame UV ozone observations from the TROPOMI instrument scheduled for LEO launch 

in 2015 (http://www.tropomi.eu). TIR and UV ozone instruments have similar vertical sensitivities 

(Zhang et al., 2010). TIR has the advantage of providing observations at night that will be 

complementary to TEMPO. 

The Clean Air Status and Trends Network (CASTNet; www.epa.gov/castnet) provides 

hourly data  for 12 surface sites in the Intermountain West (Figure 4.1) that are used for 

background monitoring (EPA 2013). Although these sites are sparse, they are intended to be 

regionally representative and exhibit significant spatial correlation (Jaffe, 2011). We use these 

correlations in our data assimilation system as described below. CASTNet ozone measurements 

have 2% instrument error (EPA 2010). There is additional representation error when assimilating 

CASTNet data into a CTM due to the spatial mismatch between the point where the 

measurement is taken and the model gridsquare mean to which it is compared. We find a 

representation error of 5% for the ~50x50 km2 gridsquare size of GEOS-Chem, based on the 

model error correlation length scale (see Section 4.2.4). During nighttime the representation error 

could be much larger due to surface air stratification (Fiore et al., 2002). Thus we only assimilate 

CASTNet data during daytime.     
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TEMPO and IASI-3 are both nadir viewing satellite instruments, with retrieval of vertical 

concentration profiles to be made by optimal estimation (Rodgers, 2000). If xp is the vector of 

true concentrations in an observation column, the retrieved profile xp' is related to xp by the 

instrument averaging kernel matrix A which defines the sensitivity of xp' to xp (A = xp'/ xp ):   

xp' = xs+A(xp - xs) + (4.1)

where ε is the instrument noise  vector and Sx is an independent a priori ozone profile used to 

regularize the retrieval.

Figure 4.2: Averaging kernel matrices assumed in this study (from Natraj et al. [2011]) for clear-
sky retrievals of tropospheric ozone from space in the UV+Vis (left) and the TIR (right). 
UV+Vis in our study corresponds to TEMPO, while TIR corresponds to a future LEO instrument 
flying concurrently with TEMPO. Lines are matrix rows for individual vertical levels, with the  color 
gradient from red to blue corresponding to vertical levels ranging from surface air (red) to 200 hPa 
(blue). Inset are the degrees of freedom for signal (DOFS) for the atmospheric columns below 200, 
800, and 900 hPa.

Figure 4.2 shows typical clear-sky averaging kernel matrices for UV+Vis and TIR retrievals of 

tropospheric ozone taken from the Natraj et al. (2011) theoretical study. Also shown are the degrees 

of freedom for signal (DOFS) below given pressure levels. The DOFS are the number of independent 
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pieces of information in the vertical provided by the retrieval, as determined from the corresponding 

trace of the averaging kernel matrix.  

We generate synthetic TEMPO geostationary observations from the AM3-Chem “true” 

atmosphere by sampling daytime vertical profiles over land in the North American domain with the 

averaging kernel matrix given in Figure 4.2. TEMPO observations over the ocean are not included as 

the planned field of regard for the mission includes very little ocean and because the ocean surface is 

too dark for Vis retrievals. We similarly generate synthetic LEO IASI-3 observations over the North 

American domain (140o-40o W, 10o -70o N) twice a day (local noon and midnight) with the averaging 

kernel matrix given in Figure 4.2. We omit scenes with cloud fraction > 0.3 (as given by the GEOS 

meteorology). We assume fixed averaging kernel matrices, acknowledging that in practice there is 

significant variability (Worden et al., 2013). Gaussian noise is added to the synthetic observations 

following Natraj et al. (2011) to simulate the random error associated with the spectral measurement. 

The noise from the TEMPO instrument (footprint of 4x8 km2) is reduced by the square root of the 

number of observations averaged over each GEOS-Chem grid square (~50x50 km2)  in the data 

assimilation process. Since the TEMPO measurements are spatially dense we assume zero 

representation error during assimilation. IASI measurements have footprint diameters of 12-40 km with 

centers spaced 25-80 km apart (August et al., 2012); no reduction of the random error is applied to the 

LEO observations. 

 

4.2.3 Assimilation of surface and satellite measurements 

The goal of our data assimilation system is to optimize an n-element state vector (x) of 3-

D tropospheric ozone concentrations over the North American domain of GEOS-Chem, using 

surface and satellite observations to correct the GEOS-Chem simulation at successive time steps. 
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CASTNet and TEMPO data are assimilated at discrete 3-h time steps, and LEO data are 

assimilated at 12-h time steps. We use a Kalman filter, as previously applied to ozone data 

assimilation by Khattatov et al (2000), Parrington et al. (2008), and  Zoogman et al. (2011). At 

each time step, we calculate an optimal estimate x̂  of the true ozone concentrations x as a weighted 

average of the CTM forecast ax  (with corresponding error vector εa relative to the true concentrations) 

and the observations x' (with error ε, and with x' set to ax  where there are no observations). The 

errors are characterized by error covariance matrices Sa = E[εaεa
T] and  Sε = E[εεT], where E[ ] is the 

expected-value operator. Assuming Gaussian error distributions for εa and ε we obtain (Rodgers, 

2000): 

)'(ˆ aa KxxGxx −+=         (4.2) 

where  K is the observation operator that maps the state vector to the observation vector. For satellite 

measurements Kxa = xs + A(xa – xs) (equation (1) with no noise term), while for surface measurements 

Kxa = xa. The gain matrix G is given by 

( ) 1−
+= εSKKSKSG T

a
T

a    (4.3) 

and determines the relative weight given to the observations and the model. The instrument error 

covariance matrix Sε is assumed diagonal and set to an arbitrarily large number in locations 

where there are no observations. For surface measurements we include the 5% representation 

error in quadrature with the 2% instrument error to define the instrument error covariance matrix. 

The optimal estimate x̂  has error ε̂  with error covariance ]ˆˆ[ˆ TE εεS = : 

     ( ) an SGKIS −=ˆ     (4.4) 

Where nI  is the identity matrix of dimension n. 
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 The model error covariance matrix Sa expresses the error in the forward model at each 

assimilation time step and is given by: 

𝑺𝑎 = �
var(𝜺𝑎,1) ⋯ cov(𝜺𝑎,1, 𝜺𝑎,𝑛)

⋮ ⋱ ⋮
cov(𝜺𝑎,𝑛, 𝜺𝑎,1) ⋯ var(𝜺𝑎,𝑛)

� (4.5) 

where εa = (εa,1,…,εa,n)T  , with εa,i  representing the error for GEOS-Chem gridbox i . At each 

assimilation time step the forward model error is decreased as described by the a posteriori error 

covariance matrix Ŝ  (equation (4.4)). The diagonal terms of Ŝ  are transported as tracers in GEOS-

Chem to the next assimilation time step and are augmented by a model error variance reflecting the 

time-dependent divergence of the model from the true state following Zoogman et al. (2011). This 

yields the diagonal terms var(εa,i) of Sa. The off-diagonal terms (error covariances) describe the 

propagation of information from each observation over a spatial domain of influence. We 

compute cov(εa,i , εa,j) for each pair of gridboxes (i,j) as a function of the horizontal and vertical 

distance between the two gridboxes using the error correlation length scales from section 4.2.4. 

In practice the dimension of the matrices used in the assimilation is limited to make the 

problem computationally tractable. Solution to (4.2) for each grid column is calculated ignoring 

satellite measurements at a horizontal distance away greater than 510 km (the horizontal error 

correlation length scale, see below).  

 

4.2.4 Error Correlation Length Scales 

The spatial extent of information provided by an observation to correct the GEOS-Chem 

model simulation through data assimilation can be quantified by correlating the GEOS-Chem 

errors relative to in situ observations at different sites in the Intermountain West (for the 

horizontal scale) and ozonesonde profiles (for the vertical scale) . To define a horizontal error 
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correlation length scale we used actual CASTNet surface measurements from our period of study 

(April-June 2010), downloaded from http://epa.gov/castnet/. We compute the time series of 

model error during daytime (0900 – 1700 LT) at each surface site, and from there derive the

model error correlation between each pair of surface sites. Figure 4.3 (left) shows the correlation 

coefficients plotted against the distance d between sites (binned every 100km). We find R=exp(-

d/510 km). We also show the error correlation length scale calculated when comparing the 

GEOS-Chem CTM and the AM3-Chem CTM (in red) sampled over the Intermountain West 

region. The model-model error correlation length scale is similar to the model-observation length 

scale and this provides some support for the realism of error patterns in our OSSE. We assume 

that the horizontal error correlation length scale is invariant with altitude.

Figure 4.3: Error correlation length scales for the GEOS-Chem model simulation of tropospheric 
ozone in the US Intermountain West. The error correlations are relative to actual CastNet and 
ozonesonde observations (in black) and relative to the AM-3 model sampled in the 
Intermountain West region (in red). Statistics are computed for April-June 2010. The left panel 
shows the correlation coefficient (R) of the model error between pairs of CASTNet sites, plotted 
against the distance between sites. Values are for the 12 CASTNet sites in the Intermountain 
West (Figure 4.1). The right panel shows the correlation coefficient of the model error between 
pairs of vertical levels (up to 8 km altitude) for ozonesonde measurements from the IONS-2010
campaign in California [Cooper et al. 2011], plotted against distance between levels.  
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Exponential fits to the data are shown inset, where d and z are horizontal and vertical distances in 
km. 

To estimate the vertical correlation length scale we compare GEOS-Chem ozone 

concentrations to in situ vertical profiles from May-June 2010 ozonesondes at six locations in 

California (Cooper et al. 2011). Figure 4.3 (right) shows the correlation coefficients plotted 

against the vertical distance z (binned every 500 m) for the time series of model errors at each 

ozonesonde station from the surface to 8 km altitude. We find R=exp(-z/1.7 km). Again, the 

model-model length scale (red) is not significantly different from the model-observation length 

scale.  

 

4.3 TEMPO observation of high-ozone events in the Intermountain West 

 We now apply our data assimilation system to evaluate the benefit of TEMPO 

observations to monitor and attribute ozone exceedances in the Intermountain West. We compare 

the “true” concentrations in surface air over the Intermountain West to GEOS-Chem CTM ozone 

concentrations without data assimilation (a priori) and with assimilation of synthetic CASTNet, 

TEMPO, and LEO observations. We also performed an assimilation of CASTNet and TEMPO 

observations without a LEO instrument and found no significant difference in assimilation 

results. Thus the LEO instrument does not add significant information beyond TEMPO for 

constraining surface ozone concentrations in the Intermountain West. Its value for tracking 

exceptional events will be discussed in section 4.4. 

 Figure 4.4 examines the ability of the data assimilation system to monitor daily MDA8 

ozone over the Intermountain West at the 1/2ox2/3o (~50x50 km2) GEOS-Chem grid resolution. 

The top panel shows a scatterplot of a priori GEOS-Chem MDA8 ozone concentrations in April- 
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Figure 4.4: Improved monitoring of surface ozone across the Intermountain West from data 
assimilation of CastNet (surface) and TEMPO (geostationary satellite) observations.  The figure 
shows scatterplots of simulated (GEOS-Chem) vs. “truth” (AM-3) daily maximum 8-h (MDA8) 
surface ozone for April-June 2010 for all 1/2ox2/3o grid squares in the region (Figure 4.1) and for 
individual days. Results are for GEOS-Chem without data assimilation (top), with assimilation of 
CASTnet synthetic surface data (middle), and with additional assimilation of TEMPO, and LEO 
synthetic satellite data (bottom).  Comparison statistics are inset. Also shown are the reduced-
major-axis (RMA) regression line and the 1:1 line.
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June 2010, for individual grid squares over the Intermountain West domain of Figure 1 and 

individual days, vs. the “true” concentrations from the AM3-Chem model. The GEOS-Chem a  

priori is biased low and performs poorly in reproducing the “true” variability (R2=0.12, bias = -

9.0 ppbv). Assimilation of synthetic CASTNet surface measurements reduces the low bias from 

9.0 to 2.8 ppbv, but still does not capture much of the variability (R2=0.34). Adding the synthetic 

TEMPO geostationary observations eliminates the low bias and captures over half of the 

variability (R2=0.58).   

 The ability of TEMPO observations to capture high-ozone events is of particular interest. 

Figure 4.5 shows a map of the number of days in April-June 2010 with MDA8 ozone in excess 

of 70 ppbv for individual GEOS-Chem gridsquares in the Intermountain West. Values are shown 

for the “true” atmosphere, the GEOS-Chem a priori without data assimilation, and the data 

assimilation results including only the CASTNet observations and with the addition of TEMPO 

observations. The “truth” shows an average of 5.7 high-ozone events per gridsquare in the 

Intermountain West over the April-June 2010 period. The a priori model has only 0.8 event-days 

and the spatial pattern is very different (spatial correlation R2=0.09 for the ensemble of 

Intermountain West gridsquares). Assimilation of surface measurements improves both the 

average number of high-ozone events (3.6 event-days) and the spatial pattern (R2=0.62). The 

inability to fully correct the bias is due in part to the large impact of free tropospheric air in 

driving high-ozone events, and in part to the limited coverage from the sparse surface network. 

Adding TEMPO satellite observations almost fully corrects the bias (mean of 5.4 event-days) 

and captures most of the spatial distribution of high-ozone events (R2=0.82).  
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Figure 4.5: Improved detection of high-ozone events in the Intermountain West by data 
assimilation. The figure shows the number of events (daily maximum 8-h ozone > 70 ppbv) in 
April-June 2010 on the GEOS-Chem grid. The “truth” defined by the AM-3 model (top left 
panel) is compared to GEOS-Chem simulations without data assimilation (top right), with 
assimilation of CASTNet surface data (bottom left), and with additional assimilation of TEMPO 
and LEO satellite data (bottom right). Locations of CASTNet surface sites used for assimilation 
with their “true” values are overlain.

4.4 Attribution of exceptional events using TEMPO observations

TEMPO provides continuous observation in the free troposphere as well as in the 

boundary layer, with separation between the two (Figure 4.2). Thus it could be particularly 

powerful in quantifying free tropospheric background contributions to NAAQS exceedances and 

assist in the designation of exceptional events where an exceedance of the NAAQS is considered 

to be outside local control. 
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We examine a case study of a stratospheric intrusion on June 13 in the AM3-Chem model 

taken as the “truth”. Figure 4.6 shows a time series for June 2010 of MDA8 ozone 

concentrations at a location in northern New Mexico (107oW, 36oN).  We choose this event as it 

was diagnosed by Lin et al. (2012b) as a major stratospheric event in the Intermountain West.

Actual observations at nearby CASTNet locations indicate ozone in excess of 75 ppbv during the 

June 12-15 period. 

Figure 4.6: Detection of an exceptional ozone event by TEMPO. The Figure shows the June 
2010 time series of daily maximum 8-h (MDA8) ozone concentrations at a location in northern 
New Mexico (107oW, 36oN) featuring a major stratospheric intrusion on June 13 in the AM3-
Chem model taken as the “truth” (black line). The ability to capture this event is examined for 
the GEOS-Chem model without data assimilation (a priori, red line) and with assimilation of 
surface measurements only (green line) and satellite measurements added (blue line).

Evidence of free tropospheric origin for the June 13 event is critical to achieving an 

“exceptional event” designation.  Figure 4.7 (top left) shows a longitude-altitude cross section of 

ozone concentrations in the AM3-Chem model taken as the “truth”. The stratospheric intrusion is 

manifest at 103-109oW. The a priori GEOS-Chem model (top right) also shows a stratospheric 

ozone enhancement extending to the surface but of much smaller magnitude. Assimilation of 
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surface measurements (not shown) makes little correction in the free troposphere. Satellite 

measurement imagery from TEMPO without assimilation (bottom left) shows elevated values in 

the free troposphere but does not properly represent surface gradients due to instrument 

smoothing. Assimilating TEMPO observations into the GEOS-Chem CTM together with LEO 

measurements (bottom right) captures the magnitude and spatial structure of the stratospheric 

intrusion, and this would make a strong case for diagnosis of an exceptional event.

Figure 4.7: Longitude-altitude cross-section of ozone concentrations (36oN, 3 GMT on June 14, 
2010) associated with the stratospheric intrusion of Figure 6. The “true” state from the AM3-
Chem model (top left) is compared to the GEOS-Chem model without data assimilation (top 
right) and with assimilation of surface and satellite data (bottom right). The bottom left panel 
shows synthetic TEMPO observations of the “true” state (gray regions indicate cloudy scenes) 
without data assimilation. Local topography is shown in white.
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We see here that the use of data assimilation efficiently enhances the information from TEMPO 

to constrain surface air concentrations. Information from the LEO instrument does not add 

significantly in this case to observations from TEMPO, although it does correct ozone fields over 

the ocean where TEMPO does not observe at night. The LEO instrument could thus be valuable 

for tracking transpacific transport of ozone plumes. 

 

4.5 Summary 

 We demonstrated the potential of future TEMPO UV+Vis geostationary observations to 

monitor ozone exceedances in the Intermountain West and identify those exceedances caused by 

the North American background. Our goal was to inform the TEMPO observing strategy and 

develop methods for exploitation of its data. To accomplish this we performed an observation system 

simulation experiment (OSSE) for assimilation of the TEMPO data using two different chemical 

transport models (CTMs), one as the “true” atmosphere and one as the forward model for data 

assimilation. We also included in our OSSE surface measurements from the current CASTNet 

monitoring network sites in the Intermountain West  (12 sites) and satellite measurements from a 

thermal infrared (TIR) low-elevation orbit (LEO) instrument projected to be in orbit concurrently with 

TEMPO.  

An important factor in data assimilation is the scales over which observed information 

can be propagated with the forward model. We quantified this using model error correlation 

length scales for the Intermountain West based on actual CASTNet and ozonesonde data. We 

find length scales of 500 km (horizontal) and 1.7 km (vertical). These are in close agreement 

with error correlation length scales between the two CTMs used in our OSSE. 
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We find that the CASTNet surface observations are too sparse to adequately monitor 

high-ozone events in the Intermountain West even after data assimilation. We show that the 

TEMPO geostationary observations will provide a greatly improved observing system for 

monitoring such events. In addition, because of the information they provide on the vertical 

distribution of ozone, they can effectively diagnose NAAQS exceedances caused by background 

ozone. Concurrent LEO satellite observations provide no significant added value for monitoring 

the ozone background over the US but could be useful for tracking transpacific plumes. 

 Use of the complete observing system simulated here (surface, geostationary, and LEO) 

will provide a powerful tool for future air quality policy. Planning is underway to combine this 

system with regional air quality models to supply the public with near real time pollution reports 

and forecasts. These reports and forecasts would be much the same as currently available 

weather information, also provided in large part from geostationary satellite observations.  
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