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Abstract 

 

In recent years, considerable progress has been made towards 

understanding the genetic basis of the evolution of morphological traits.  In 

contrast, relatively little is known about how behavioral traits evolve.  

Astyanax mexicanus, a species of fish that exists in both surface and cave 

forms, is an ideal system to study behavioral evolution.  Surface and cave 

morphs of Astyanax mexicanus differ in a variety of morphological and 

behavioral traits.  They are interfertile, allowing for genetic analysis of the 

evolution of these traits.  Finally, Astyanax mexicanus exists in multiple, 

independently evolved cave populations, providing an excellent system for 

studying convergent evolution. 

 In this dissertation I have analyzed two behaviors that evolved in cave 

Astyanax: the loss of aggregation behavior, and a change in feeding posture.  

While surface Astyanax both school and shoal, cave populations do not 

display either of these behaviors.  Surface Astyanax feed at an angle nearly 

perpendicular relative to the ground, while cavefish feed at a lower angle.  I 

quantified these behaviors in three cave populations and compared them to 
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surface fish behavior.  I performed quantitative trait loci (QTL) analysis to 

elucidate the genetics of these behaviors.  Finally, I explored the contribution 

of morphological traits that have evolved in cave populations of Astyanax to 

these behavioral traits.   

 I found that multiple, independently evolved cave populations of 

Astyanax have lost schooling behavior and altered feeding posture.  Loss of 

schooling behavior evolved through multiple genetic changes, and this loss 

results from both vision-dependent and vision-independent changes.  Feeding 

posture, on the other hand, has not evolved through any changes in 

morphology analyzed here.  Interestingly, two independently evolved cave 

populations have evolved changes in feeding posture through at least some 

different genetic loci.   

Behavior in cavefish can evolve through multiple genetic changes, 

rather than through one gene of large effect.  Changes in morphological traits 

can play a key role in behavioral evolution.  Lastly, while convergent 

behaviors have evolved in different cave populations, these behaviors can 

evolve through different genetic loci.  Together, this work provides 

fundamental insight into the genetic basis of behavioral evolution.    
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 Organisms are extremely diverse in both morphology and behavior.  

Underlying this diversity are genetic changes, which over evolutionary time 

have come to differentiate populations of organisms from one another and 

specify a diverse set of characteristics.  Understanding the genetic basis 

underlying the evolution of morphological traits has been and continues to be 

a field of intense interest, where researchers have made considerable 

progress.  Equally important, but much less well understood, is the genetic 

basis of the evolution of behavioral traits.   

 Understanding the genetic basis of behavioral evolution will elucidate 

many important evolutionary questions, including:  Do behaviors evolve 

through changes in one gene of large effect or multiple genes of small effect?  

What are the contributions of the evolution of morphological traits, such as 

sensory systems, to the evolution of behavioral traits?  When a behavior 

evolves multiple times, does it evolve through changes in the same genes?  

Do behaviors evolve through coding or regulatory changes?  What is the 

contribution of natural selection to behavioral evolution?  What are the 

developmental and genetic constraints on behavioral evolution?   

 In this dissertation, I attempt to understand some of these questions 

using the blind Mexican cavefish, Astyanax mexicanus, as a system to study 

the evolution of two behaviors – loss of schooling behavior and modification 

of feeding posture.  As an introduction, I briefly discuss the genetic basis of 

behavioral evolution.  I discuss the utility of cave organisms for the study of 

evolution, and give an overview of the organism discussed in this dissertation, 
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Astyanax mexicanus.  I discuss what is currently known about the specific 

behaviors discussed in this dissertation, both generally and specifically in 

Astyanax.  I conclude with an overview of the research presented in this 

dissertation.  

 

Genetics of the evolution of behavior 

 A behavior is defined as any of an organism’s actions.  Behaviors are 

important for many aspects of an organism’s life, including mating and raising 

young, finding and obtaining food, selecting a habitat, and avoiding predators, 

to name a few.  Why an organism behaves in a particular way is based on a 

large number of factors, including that organism’s genetic makeup, neuronal 

circuitry, environment, perception of that environment, and past experiences.  

Given the large number of factors influencing behavior, it is unsurprising that 

the types of genes important for generating behaviors and their functions are 

diverse, including genes involved in sensory systems, emotion, motivation, 

nervous system development, and neural plasticity (Bendesky and 

Bargmann, 2011).   

 Behavioral evolution has been an area of interest for quite some time 

(Lorenz, 1958).  Behaviors can evolve.  For example, in response to a new 

environment, populations can evolve both morphological and behavioral traits 

as they adapt to new selective pressures (e.g. Spence et al., 2013).  

Behaviors can also play a role in the evolution of other traits.  Behavioral 

shifts can allow organisms to exploit a new environments, thereby exposing 
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them to new sets of selective pressures, which in turn can affect evolution of 

other traits (Duckworth, 2009).  Investigations into the genetic underpinnings 

of behaviors help further our understanding of behavioral evolution (Boake et 

al., 2002). 

 A significant amount of evidence, from classic studies of both 

laboratory animals and natural populations, has helped broaden our 

understanding of the genetic architecture underlying behavioral traits.  Many 

previous studies have focused on determining the function of single genes 

through the analysis of mutants or candidate genes, as well as identifying 

many genes and genetic loci responsible for behavior through genetic 

mapping or gene expression studies (reviewed in Boake et al., 2002; 

Bendesky and Bargmann, 2011).   

Quantitative trait loci (QTL) analysis is an important tool that can be 

used to elucidate the genetic basis of behavioral traits.  QTL analysis involves 

phenotyping a group of related individuals, genotyping these individuals for 

markers distributed across the genome, building a linkage map to determine 

the relationship of these markers to one another, and mapping where the loci 

responsible for these phenotypes are within the genetic linkage map.  QTL 

analysis has been used successfully to map the genetic basis of behavioral 

traits differing between inbred strains of laboratory animals such as flies (e.g. 

Edwards and Mackay, 2009) and mice (e.g. Sauce et al., 2012), as well as in 

natural populations such as sticklebacks (Greenwood et al., under review) 

and deer mice (Weber et al., 2013).  QTL analysis can answer important 
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questions about behavior traits, including whether they evolve by changes of 

large or small effect, where these changes are located within the genome, 

and whether independently evolved populations evolve similar traits through 

the same or different loci.  Furthermore, QTL analysis provides an initial step 

towards identifying the genes and genetic changes underlying behavioral 

evolution.         

A few principles from this work have emerged that are relevant to the 

evolution of behavior.  First, although single genes of large effect can underlie 

natural variation in behavior, many behaviors are controlled by multiple genes 

of smaller effect (Bendesky and Bargmann, 2011).  Second, while genes 

responsible for variation in behavior in natural populations could be in many 

different groups of genes, many of the genes identified so far affect sensory 

systems, or neurotransmitters and neurotransmitter receptors (Bendesky and 

Bargmann, 2011).   

 To understand the origins and evolution of a given behavior, it is 

essential to understand the behavior from a broad perspective.  Tinbergen 

established categories important for the study of any behavior.  He held that 

to understand behavior, we must understand proximate mechanisms, the 

development of behavior and mechanistic, causal explanations for how 

behavior works, as well as ultimate mechanisms, including how behaviors 

affect survival and the evolutionary history of organisms and their behavior 

(Tinbergen, 1963).  Astyanax mexicanus is particularly suitable to this type of 

analysis, due to both its habitat and the rich wealth of previous research.  In 
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this dissertation, I contribute to aspects of the genetic underpinnings of 

behavioral evolution in Astyanax and attempt to integrate this with what is 

known about the ecology of the system, with the objective of moving closer to 

Tinbergen’s goal of an integrated understanding of behavior. 

  

The cave as a system to study evolutionary biology 

 Caves are an excellent place to study evolution, in particular 

adaptation to a novel environment.  The cave habitat provides several striking 

selective pressures, the most obvious of which is darkness.  Animals within a 

cave must navigate, find food, avoid predators, and mate, all without visual 

cues (Culver and Pipan, 2009). The lack of light means there are not any 

primary producers, and most cave ecosystems, therefore, rely on food 

brought in from outside of the cave.  This often, although not always, results 

in caves having reduced amounts of food (Culver and Pipan, 2009).  For a 

number of environmental factors, such as temperature, caves represent a 

relatively constant environment with little variability compared to surface 

habitats.  Other environmental factors, however, can be quite variable within 

caves, such as flood-dependent food availability (Culver and Pipan, 2009). 

 Similarities between cave habitats have led to a large amount of 

convergent evolution.  Many cave organisms have evolved a similar set of 

troglomorphic, or subterranean-specific, traits: reduced eyes and 

pigmentation, elongated appendages, and enhanced non-visual sensory 

systems (Culver and Pipan, 2009).  It is estimated that over 50,000 
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subterranean species exist, counting only those groups which include at least 

50 identified subterranean species.  These represent 21 invertebrate orders 

and 2 vertebrate groups, salamanders and fishes (Culver and Pipan, 2009).  

Furthermore, cave species do not appear to be a random sampling of surface 

populations that were swept into the caves by chance.  This has led many 

cave biologists to speculate that certain populations are pre-adapted to cave 

life (Culver and Pipan, 2009). 

 There has been a considerable amount of debate about the role of 

natural selection in the evolution of cave-specific traits (Culver and Pipan, 

2009).  Some researchers have postulated that the loss of traits such as eyes 

and pigmentation results from lack of use (e.g. Darwin, 1859) and subsequent 

accumulation of neutral mutations (e.g. Wilkens, 1988).  Others have argued 

that some regressive traits, such as eye loss, could have arisen under natural 

selection (e.g. Protas et al., 2007), either because they are, themselves, 

adaptive or through pleiotropic selection in favor of constructive traits 

(Yamamoto et al., 2009; Yoshizawa et al., 2012).  Constructive traits, on the 

other hand, are thought to be adaptive in cave environments (reviewed in 

Culver and Pipan, 2009). 

 Cave organisms are interesting for the study of evolutionary biology for 

several reasons (Protas and Jeffery, 2012).  Cave animals evolved from 

surface animals.  Therefore, the direction of evolution is known.  The surface 

counterparts of some of these cave species are extant, providing an 

opportunity for comparative studies, and in some cases to perform genetic 
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crosses.  The environment in which cave animals evolved is relatively well 

defined, and, therefore, the ecological influences on cave traits are easier to 

study.  Finally, the evolution of similar traits across a large number of species 

allows for the study of convergence.   

 

An introduction to Astyanax mexicanus 

 Astyanax mexicanus is a species of teleost fish that exists in both cave 

and surface forms. Cave forms of Astyanax were first described in 1936 

(Hubbs and Innes, 1936).  Both surface and cave forms of Astyanax 

mexicanus are extant, therefore comparisons can be made between derived 

(cave) and ancestral-like (surface) fish.  Cave forms of Astyanax have 

evolved a variety of morphological and behavioral traits (reviewed in Jeffery, 

2008).  Furthermore, cave and surface forms are interfertile (Sadoglu, 1979), 

and can be bred together to explore the genetic basis of the evolution of 

these cave traits (Wilkens, 1988).  Importantly, both cave and surface fish live 

and breed in the lab and have a relatively short generation time, 4-6 months 

(Jeffery, 2008), both of which facilitate genetic and developmental research.   

A number of tools have been developed for Astyanax mexicanus 

because of its utility as a model system for evolutionary research.  The 

genetic underpinnings of many cave traits have been mapped using the 

linkage maps established for quantitative trait loci (QTL) mapping (Protas et 

al., 2006, 2007, 2008; Gross et al., 2009; Yoshizawa et al., 2012; O'Quin et 

al., 2013).  Genetic overexpression and knockdown techniques have been 
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used successfully in Astyanax to perturb gene expression during 

development (Yamamoto et al., 2004, 2009).  Genomic tools exist, including a 

BAC library (Di Palma et al., 2007) and extensive synteny maps with 

zebrafish (Gross et al., 2008; O'Quin et al., 2013), that are useful for 

identifying candidate genes under QTL.  Transcriptomic analyses have been 

performed comparing both adult (Gross et al., 2013) and developing (Hinaux 

et al., 2013) surface fish and cavefish.  Most recently, the Astyanax 

mexicanus genome has been sequenced and is currently in the process of 

being assembled and annotated, which will allow for a more comprehensive 

analysis of specific genes and mutations underlying the evolution of cave 

traits.   

 Like other cave animals, Astyanax is also a useful system for studying 

convergent evolution.  At least 30 cave populations of Astyanax mexicanus 

exist (Mitchell et al., 1977; Espinasa et al., 2001).  Each cave population is 

named after the cave it inhabits, and these populations share a number of 

morphological similarities (Figure 1.1).  The origin and evolutionary history of 

these cave populations has been studied extensively (reviewed in Gross, 

2012).  Existing cave populations were colonized by two separate surface 

populations: one older, now extinct population, which colonized the El Abra 

cave populations including Pachón, Tinaja and Chica caves, and one younger 

population which colonized the Micos and Molino caves (Bradic et al., 2012).  

Furthermore, both invasions consisted of multiple, independent colonization  
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A
B

C

D

E

Figure 1.1.  Map of cave locations and examples of morphologies of 

surface and cave Astyanax mexicanus. 

A.  Map of the Sierra de el Abra region of Mexico.  Caves with cavefish are 

indicated by circles.  Red circles indicate the cavefish populations used in 

this work.  B.  Surface fish.  C.  Pachón cavefish.  D.  Molino cavefish.  E.  

Tinaja cavefish.  Map adapted from Mitchell et al. (1977). 
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events.  At least three invasions occurred from the old surface population - 

Pachón, Chica, and then the rest of the El Abra cave populations, and two 

invasions from the new population - Micos and Molino populations (Mitchell et 

al., 1977; Dowling et al., 2002; Strecker et al., 2003; Strecker et al., 2004; 

Bradic et al., 2012).   Analyses of the genetics of different morphological traits 

have confirmed that many traits evolved independently in different caves 

(Wilkens and Strecker, 2003; Protas et al., 2006; Borowsky, 2008; Gross et 

al., 2009).  Therefore, Astyanax mexicanus is useful for studying convergent 

evolution of traits.  

Together, the evolutionary history, ecology and genetics of Astyanax 

mexicanus make it an ideal system for studying important questions about 

how traits evolve.  So far, research on Astyanax mexicanus has elucidated 

some aspects of the evolution of certain cave traits, including the number and 

identity of genes underlying the evolution of traits, if these changes are due to 

coding or regulatory mutations, whether these traits have evolved by 

selection, or through neutral mutations, and the role of pleiotropy during 

evolution.  The genetic and developmental underpinnings of some of the 

morphological traits have also been uncovered.  This research has shed light 

on the genetic basis of independently evolved traits, including whether they 

evolve through the same or different genetic changes.  I will now briefly 

review some of the morphological and behavioral traits evolved in cave 

Astyanax mexicanus, and what is known about their evolution.     
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 Cavefish have evolved a suite of regressive morphological traits, 

including typical troglobite traits, such as a reduction in pigmentation and the 

eyes.  Cavefish have a reduced number of melanophores.  Additionally, their 

melanophores produce less pigment than melanophores in surface fish, and 

some cave populations are albino (Sadoglu, 1957; Sadoglu and McKee, 

1969; Wilkens, 1988; Wilkens and Strecker, 2003).  While the decrease in 

pigmentation cell number is a polygenic trait (Sadoglu, 1957; Wilkens, 1988; 

Protas et al., 2008), albinism is caused by one gene of large effect (Sadoglu, 

1957; Protas et al., 2006). Interestingly, multiple populations of cavefish have 

evolved a reduction in the number of melanophore pigmentation cells and 

melanin content per cell through different mutations in melanocortin 1 

receptor (Mc1r) (Gross et al., 2009), and albinism through different mutations 

in ocular and cutaneous albinism II (Oca2) (Protas et al., 2006). Furthermore, 

some of these mutations were coding, while others are likely regulatory 

(Protas et al., 2006; Gross et al., 2009).  Loss of pigmentation has been 

hypothesized to occur through neutral mutations, rather than through 

selection against pigmentation (Wilkens, 1988).  This may be the case for 

reduction in the number of pigment producing cells, as cave alleles at QTL 

responsible for pigmentation both increase and decrease the number of 

pigment producing cells, an indication that this trait may have evolved without 

selection (Protas et al., 2007).  It has been speculated that albinism, on the 

other hand, could have evolved as an adaptation due to trade-offs.  Excess L-

tyrosine substrate no longer used to make melanin in albino animals could be 
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used to synthesize extra dopamine, which could play a role in adaptive 

behaviors such as foraging (Jeffery, 2006).  Further investigations into the 

role of Oca2 in evolution are needed to resolve this interesting question.      

Adult cavefish do not have external eyes (Figure 1.1).  Larval cavefish 

develop eyes which degrade and eventually become covered by skin 

(reviewed in Jeffery, 2001).  Reduction of the eyes in cavefish is the result of 

multiple developmental processes.  The initial optic vesicle is smaller in 

cavefish relative to surface fish (Cahn, 1958), a process likely controlled by 

an expansion of the sonic hedgehog genes (Shha and Shhb) along the 

midline during cavefish development (Yamamoto et al., 2004).  In addition, 

the ventral portion of the retina is never formed (Yamamoto et al., 2004), due 

to an early expansion of fibroblast growth factor 8 (Fgf8) and Shh (Yamamoto 

et al., 2004; Pottin et al., 2011).  Many other aspects of eye degradation result 

from the apoptosis of the lens (reviewed in Protas and Jeffery, 2012).  This 

has been demonstrated by early lens transplantations from surface fish to 

cavefish, which result in smaller but well-formed cavefish eyes, and lens 

transplantations from cavefish to surface fish, which result in largely degraded 

eyes (Yamamoto and Jeffery, 2000).  Lens apoptosis, like the smaller optic 

vesicle, is a result of the expansion of Shh at the midline in cavefish 

(Yamamoto et al., 2004).   

Eye reduction in cavefish is the result of many genetic changes (Protas 

et al., 2007; Protas et al., 2008).  Furthermore, reduction of the eyes has 

occurred through at least some different genetic changes in multiple cave 
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populations (Wilkens, 1971; Wilkens and Strecker, 2003; Borowsky, 2008).  

Whether the reduction of the eyes in Astyanax has occurred through lack of 

use and therefore the accumulation of neutral mutations (Wilkens, 1971), or 

through selection for smaller eyes has been a matter of debate.  All of the 

QTL responsible for eye reduction from a Pachón cave cross have cave 

alleles associated with a decrease in eye size.  This is evidence that, at least 

in the Pachón cave population, eye reduction may be under selection (Protas 

et al., 2007).    

Other regressive morphological traits in cavefish include a decrease in 

the size of the optic tectum (Soares et al., 2004), and in some cave 

populations a reduced number of ribs (Dowling et al., 2002), a reduction in the 

number of anal fin rays (Protas et al., 2008), reduced scales (Wilkens, 1988), 

and smaller suborbital bones (Yamamoto et al., 2003).  Additionally, while 

surface fish display space-dependent growth, defined as the size of the 

environment having an effect on growth rate, multiple cave populations have 

decreased this effect (Gallo and Jeffery, 2012).    

Cave Astyanax have also evolved constructive traits, many of which 

probably aid in foraging and navigation in the dark environment of the cave.  

The Astyanax mexicanus lateral line consists of both superficial and canal 

neuromasts, the functional units of the lateral line.  Cavefish have an 

increased number of cranial superficial neuromasts, and increased size of 

both superficial and canal neuromasts relative to surface fish (Teyke, 1990; 
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Jeffery et al., 2000).  These sensory organs most likely evolved to help 

cavefish locate food in the dark (Yoshizawa et al., 2010). 

Cavefish have a number of other constructive adaptions thought to be 

associated with differences in foraging.  They have an increased sensitivity to 

amino acids in the water (Protas et al., 2008), as well as skeletal traits 

potentially associated with feeding, such as wider jaws (Yamamoto et al., 

2009) and an increased number of maxillary teeth (Yamamoto et al., 2003).  

Additionally, they have an increased number of taste buds.  Taste buds in 

surface fish are confined to the lips and mouth, while in cavefish taste buds 

are also on the ventral side of the lower jaw, along the top of the head, and 

expanded laterally on the lip (Schemmel, 1974; Varatharasan et al., 2009).  

Interestingly, the expansion of taste buds and jaw width in cave Astyanax has 

been linked developmentally to the reduction in eye size.  Shh expression at 

the midline, which reduces the size of the eyes, also increases the number of 

taste buds and the width of the jaw (Yamamoto et al., 2004, 2009).  

Furthermore, some QTL for taste buds and eye size overlap (Protas et al., 

2007), supporting the idea that the same genes may play a role in the 

evolution of both of these traits.  This provides a potential explanation for how 

selection could be acting to decrease eye size.  There could be a trade-off 

between having eyes, and other, dark-adaptive traits, such as enhanced taste 

buds and jaw width, if these traits are controlled by the same genes as eye 

size (Jeffery, 2005).   
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Cavefish also have modified brain morphology relative to surface fish.  

They have a larger telencephalon, hypothalamus, and olfactory lobes relative 

to surface fish (Menuet et al., 2007), reviewed in (Retaux et al., 2008).  Many 

of these changes might be linked to enhanced non-visual sensory systems, 

and they are at least in part controlled by the Shh and Fgf8 pathways (Menuet 

et al., 2007).   

In addition to morphological differences, Astyanax cavefish have 

evolved a suite of behavioral differences.  Some of these behaviors have may 

have evolved to help cavefish find food in the dark, which would suggest that 

they are adaptive.  Cavefish probably lack macroscopic predators in the cave 

(Jeffery, 2008), and behaviors important for predator avoidance could, in 

principle, be lost in cavefish due to a release of selective pressures to 

maintain these traits. 

Behaviors that may be linked to food finding include a vibration 

attraction behavior (VAB), present in some cavefish populations and 

nonexistent in the majority of surface fish (Yoshizawa et al., 2010).  Cavefish 

are attracted to objects oscillating in the water, a behavior that is presumably 

a disadvantage in the surface fish habitat, which contains predators.  In a 

dark, predator-free environment, however, this behavior could enhance their 

ability to find food (Yoshizawa et al., 2010).  VAB relies on functional 

superficial neuromasts (Yoshizawa et al., 2010) and has evolved through 

multiple genetic changes.  It has been linked genetically with an increase in 

the number of orbital neuromasts and a reduction in eye size, both of which 
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share overlapping QTL with VAB and each other (Yoshizawa et al., 2012).  

This finding is particularly interesting, as it offers another explanation for why 

the loss of eyes may have been under selection (Yoshizawa et al., 2012; 

Yoshizawa et al., 2013).   

Reductions in sleep and aggression are also cavefish behavioral traits 

hypothesized to be important in foraging.  Cavefish spend less time sleeping 

relative to surface fish.  This behavior, reduced in multiple cavefish 

populations, and potentially regulated through β-adrenergic signaling, may 

have evolved to give cavefish more time for foraging (Duboue et al., 2011; 

Duboue et al., 2012).  Many, although not all, cavefish populations also 

display reduced aggression (Parzefall, 1983; Burchards et al., 1985; 

Parzefall, 1985; Espinasa et al., 2005; Elipot et al., 2013).  Reduction in 

aggression has been linked to an increase in the amount of brain serotonin in 

cavefish relative to surface fish, and may be controlled by Shh (Elipot et al., 

2013).  Reduction of aggression in cavefish may represent a behavioral shift, 

where cavefish forage rather than fight (Elipot et al., 2013).    

Other behaviors in cavefish may have been lost as a result of a lack of 

predators in the cave, such as a depressed response to an alarm substance.  

Surface fish can sense an alarm substance released from broken skin of 

conspecific fish, and when alarm substance is placed into their water, surface 

fish avoid this area and display fear-associated behaviors.  Some cavefish, 

however, display a reduced fear response in the presence of alarm substance 

(Fricke, 1987; Parzefall and Fricke, 1991).   



 18 

 Astyanax mexicanus has been used successfully to identify many 

interesting aspects of the evolution of both behavior and morphology.  

Morphological traits have been particularly well studied, and in a few cases, 

genetic loci and mutations that are likely responsible for the evolution of these 

traits have been identified.  With the exception of vibration attraction behavior, 

the loci underlying the evolution of behavioral traits in Astyanax mexicanus 

are much less well understood.   

 

Shoaling and schooling behaviors 

 Social interactions occur in many species. These interactions range 

from mating and parental care to complex group aggregations such as flocks 

of birds and schooling fish (de Bono, 2003). The molecular basis of variation 

in social behavior in natural populations has been studied in a number of 

animals, including social organization in fire ants (Krieger and Ross, 2002), 

reviewed in (Robinson et al., 2008), pair bonding in voles (e.g. Winslow et al., 

1993), reviewed in Donaldson and Young, 2008), and the onset of foraging 

behavior in bees (reviewed in Robinson et al., 2008).  Although genes 

involved in social behaviors have been identified, little is known regarding the 

evolutionary genetics of these behaviors.  

 Schooling and shoaling are aggregation behaviors in fish. Schooling 

occurs when fish swim in parallel, exhibiting synchronized behaviors, e.g., 

changing direction together. Shoaling, on the other hand, occurs when fish 

aggregate, with or without exhibiting synchronous movement (Pitcher, 1983). 
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Many factors influence fish aggregation, including shoal size (e.g. Krause et 

al., 1997), species (e.g. Saverino and Gerlai, 2008), body size (e.g. Ward and 

Krause, 2001), kinship (e.g. Evans and Kelley, 2008) and familiarity (e.g. 

Barber and Ruxton, 2000). To aggregate, fish sense one another using 

multiple sensory systems. For example, without vision or a lateral line, 

another fish, saithe can school, although less efficiently than with all of their 

senses intact. Without both of these cues, however, these fish can no longer 

school (Pitcher et al., 1976; Partridge and Pitcher, 1980). Olfactory cues from 

conspecific fish also attract other fish (e.g. Hemmings, 1966). 

 Adaptive reasons for schooling and shoaling include predator 

avoidance, increased ability to sense the environment, and food acquisition. 

Predators appear to be distracted by a large number of similar-looking fish, 

and a predator’s chance of successfully attacking prey is decreased when fish 

are in a school (for example Landeau and Terborgh, 1986).  Modeling of 

movements of groups of prey fish indicates that predators are less likely to 

attack groups that display both attraction and orientation to conspecifics 

(Ioannou et al., 2012).  Additionally, models of predator-prey interactions have 

shown that predator confusion, defined as when predators become less 

successful at attacking prey in a large, moving group, can lead to an increase 

in swarming behavior in prey over evolutionary time (Olson et al., 2013).   

Shoaling increases group vigilance, which allows individual fish to 

spend more time feeding instead of being on the lookout for predators 

(Magurran et al., 1985). Groups also make faster, more accurate decisions 
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relative to those made by individuals during encounters with a predator (Ward 

et al., 2011).  In addition to detecting predators, being in a school can improve 

a fish’s ability to respond to cues in its environment (e.g. Berdahl et al., 2013).  

Aggregation can also increase food finding and feeding efficiency (e.g. 

Pitcher et al., 1982; Baird et al., 1991; Ranta and Kaitala, 1991).  

Aggregation is not always beneficial to individual fish.  Shoaling may 

result in increased competition with shoal mates (e.g. Ranta et al., 1993). 

During food deprivation, fish decrease their tendency to shoal (e.g. Krause, 

1993; Plath and Schlupp, 2008) and fish spend less time handling their food 

when the size of the shoal they are in increases (Street et al., 1984). 

Additionally, some fish living in areas with low fish and bird predation do not 

school (Plath and Schlupp, 2008). Thus, both decreased food resources and 

decreased predation can lead to decreased tendency to shoal. 

 The genetic and neurological basis of shoaling behavior has begun to 

be examined.  QTL mapping of reduced shoaling behavior in laboratory 

strains of zebrafish relative to wild fish has revealed that reduction of shoaling 

in domesticated zebrafish occurs through multiple genetic changes (Wright et 

al., 2006).  Work on the neurological basis of shoaling behavior has 

implicated dopamine as important in this behavior (Scerbina et al., 2012; 

Mahabir et al., 2013; Saif et al., 2013). 

Astyanax mexicanus is an excellent system to study the evolution of 

shoaling and schooling because there are distinct differences in the tendency  
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B

Figure 1.2.  Surface and cavefish in their natural habitats. 

A.  Surface fish at Naciemiento del Rio Choy in San Luis Potosi state, Mexico. 

These fish live in high density and spend much of their time in shoals.  B.  

Cavefish, shown here in the Piedras cave in San Luis Potosi state, Mexico, live 

in a lower density and are not seen in shoals or schools.  Piedras photograph 

courtesy of Dr. William Jeffery.  
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to aggregate between cave and surface forms (Figure 1.2).  Surface 

populations of Astyanax tend to shoal and school (Parzefall, 1983) while 

multiple cave populations do not school or shoal in the wild or the lab 

(Parzefall, 1983; Parzefall and Fricke, 1991; Gregson and De Perera, 2007), 

reviewed in Parzefall, 1985). Loss of shoaling behavior in cavefish does not 

appear to be explained solely by differences in vision, since when Piedras 

cave and surface fish are crossed, the portion of the F2 population that can 

see has variable shoaling tendency (Parzefall and Fricke, 1991).  However, 

vision appears important for at least shoaling behavior.  Surface fish do not 

shoal in the dark (Gregson and De Perera, 2007).   

Reduction of shoaling has occurred in other species of cavefish 

(Timmermann et al., 2004; Plath and Schlupp, 2008) indicating a convergent 

loss of this behavior in cave environments across multiple species of fish. 

This derived reduction in shoaling behavior in cavefish may be due to either 

decreased food sources, a lack of predators, or both of these factors. Thus, 

loss of shoaling in cavefish could be due to selection against shoaling due to 

the adverse effects of food competition, or a loss of selection for shoaling in 

the absence of predators. 

 

Feeding behavior 

 Adaptation to feeding in specific environmental conditions, such as a 

cave, where food can be scarce and may be difficult to locate, is particularly 

important to cave organisms. In response to these challenges, cavefish have 
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evolved characteristics that increase their ability to find food in the dark. 

Seasonal floods often wash surface fish into the caves, where they become 

trapped during the dry season. Surface fish collected in the caves appear to 

be starving, and they die shortly after being trapped (Mitchell et al., 1977). 

These observations suggest that cavefish have evolved specific feeding 

adaptations that are greatly improved over the primitive surface fish traits in 

cave conditions.  

Cavefish have an improved ability to find food in the dark. Pachón 

cavefish find food four times faster than surface fish in dark conditions and 

react faster when food enters the water (Hüppop, 1987).  Some of this 

improvement may be due to differences in the non-visual sensory systems 

discussed previously, such as an enhanced lateral line (Teyke, 1990; Jeffery 

et al., 2000), an increased number of taste buds (Schemmel, 1974; 

Varatharasan et al., 2009), or the increased ability to sense amino acids in 

the water (Protas et al., 2008).  Behavioral traits, such as vibration attraction 

behavior (Yoshizawa et al., 2010), also likely play a role in this enhanced 

ability to find food in the dark.   

Cave and surface fish have an additional difference in feeding behavior 

that may play a role in food finding (Schemmel, 1980).  In the dark, surface 

fish feed at an angle of ~80° relative to the bottom of the tank, whereas 

cavefish feed at an angle of ~56° (Figure 1.3). Crosses between Pachón 

cavefish and surface fish indicate a genetic basis for feeding angle that is  
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Figure 1.3.  Feeding posture in cave and surface fish. 

A.  A schematic representation of feeding posture in surface fish.  B.  Feeding 

posture in Pachón cavefish.  Figure from Schemmel (1980). 
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likely controlled by one gene contributing to a substantial portion of the 

phenotype with minor effects caused by multiple additional loci (Schemmel, 

1980). Furthermore, feeding angle is consistent across multiple populations of 

cavefish, including those that independently evolved (Mitchell et al., 1977; 

Schemmel, 1980; Dowling et al., 2002; Strecker et al., 2004; Bradic et al., 

2012). Crosses between Pachón and Sabinos cave populations resulted in 

genetic noncomplementation, indicating that feeding posture is controlled by 

the same genes or pathways in these populations. Additionally, feeding angle 

does not appear to be due to the overall increased number of taste buds in 

the Pachón cave population (Schemmel, 1980). 

Although enhanced feeding efficiency may be caused by many factors, 

feeding posture likely plays a role in feeding efficiency in cavefish.  Multiple, 

independently evolved cavefish populations have converged upon this trait, 

suggesting that it is adaptive, and therefore likely to effect foraging. 

 

Overview of the dissertation 

 Astyanax mexicanus is an excellent model system for understanding 

the genetic basis of the evolution of cave traits.  The extreme environment of 

the cave, the existence of surface and multiple cave populations, the ease of 

husbandry in the laboratory, the existing genetic tools, and the extensive 

literature on Astyanax provide a strong foundation on which to base genetic 

behavioral studies.     
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In this dissertation, I study the genetic basis of the evolution of two 

behaviors – loss of schooling and feeding posture – in Astyanax mexicanus.  

First, I examine aggregation behavior in surface fish and multiple populations 

of cavefish using two behavioral assays, one to detect schooling behavior, 

and the other to detect shoaling behavior.  I examine the contributions of two 

sensory systems that have evolved in cavefish, the visual system and the 

lateral line, to schooling and shoaling in surface fish, and to the evolutionary 

loss of schooling behavior in cavefish.  By crossing surface fish and Tinaja 

cavefish and performing QTL analysis, I examine the genetic architecture 

underlying the evolutionary loss of schooling behavior in this cave population.   

 In addition, I examine the convergent evolution of feeding posture in 

two independently evolved cave populations, from the Tinaja and Pachón 

caves.  Through a series of crosses and mapping, I examine whether feeding 

posture in these cave populations has evolved through the same or distinct 

genetic changes.  Finally, I explore the contributions of the evolution of some 

craniofacial traits and sensory systems to the evolution of feeding posture. 

 In the appendices, I include additional work.  This includes QTL for 

neuromast number and size and morphometric analysis of cave and surface 

forms of Astyanax mexicanus.  Additionally, I present work on identification of 

mouse perichondrium-specific markers, and a study on identifying multiple 

cell types in micromass cultures. 
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Abstract 
 
Background:  Little is known about the genetic basis of the evolution of social 

behaviors, such as schooling in fish.  Astyanax mexicanus is an ideal system 

in which to study this problem. This species is fragmented into several 

isolated yet interfertile populations. The surface populations of Astyanax 

mexicanus, living in rivers like their common ancestors, school, while derived 

cave populations of the same species have lost schooling behavior.   

Results:  We quantify schooling behavior in individual Astyanax mexicanus 

from one surface and three cave populations, as well as in crosses of surface 

fish and cavefish.  We demonstrate a genetic basis of schooling behavior and 

report some of the first quantitative trait loci (QTL) for schooling behavior.  

Using a scototaxis vision assay, we find that the evolutionary modulation of 

schooling has both vision-dependent and independent components.  We also 

quantify differences in the lateral line between cavefish and surface fish and 

conclude that these differences have a small effect on the evolutionary loss of 

schooling behavior in cave populations.  We provide evidence that a 

monoamine may have played a role in the evolution of schooling behavior. 

Conclusions:  Vision is essential for schooling tendency in Astyanax 

mexicanus, while the lateral line has a small effect on this behavior.  

Schooling behavior has a genetic basis and is controlled by several QTL.  As 

there are vision-dependent and independent bases of schooling behavior, 

and separate QTL underlying these processes, we conclude that schooling 

behavior in Astyanax mexicanus has evolved both through changes in 
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sensory systems and through changes in genetic loci that likely act 

downstream of sensory inputs.   

 

Introduction  

 In adapting to new environments, animals modify both morphological 

and behavioral traits.  While studies have begun to identify the genetic basis 

of morphological adaptations (for example (Shapiro et al., 2004; Colosimo et 

al., 2005; Protas et al., 2006; Steiner et al., 2007; Protas et al., 2008)), far 

less is known about how behaviors evolve.  Thus, fundamental questions 

remain unanswered about the genetic architecture of behavioral evolution. 

For example, does behavioral change depend on a small number of large 

effect loci or many loci of small effect?  Little is known about the genetics 

underlying convergence of behaviors, and whether the same or different 

genes and pathways are utilized in the independent evolution of similar 

behavioral traits. Moreover, behavioral and morphological traits co-evolve in 

the face of new selective pressures and often depend on one another. Thus, 

one would like to understand how behaviors co-evolve with morphological 

traits, such as sensory systems. 

 Schooling behavior in fish is a trait that is dependent on environmental 

context, and most species of fish exhibit this behavior during some phase of 

their life cycle (Shaw, 1978).  Schooling benefits fish in a variety of ways, 

including predator avoidance and foraging (Partridge, 1982; Pitcher et al., 

1982; Magurran et al., 1985; Landeau and Terborgh, 1986; Baird et al., 1991; 
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Ioannou et al., 2012).  However, in some situations schooling behavior 

appears to be less advantageous.  For example, when food is scarce, fish 

tend to school less (Krause, 1993; Plath and Schlupp, 2008).  When fish do 

school, they rely on the ability to sense one another.  Both the visual system 

and the ability to sense water pressure and current through the lateral line 

have been implicated in schooling behavior (Hemmings, 1966; Pitcher et al., 

1976; Partridge and Pitcher, 1980; Partridge, 1982). 

 While much is known about how and why fish school and shoal, little is 

known about the evolution of these behaviors.  One exception to this is the 

reduction of schooling in domesticated zebrafish (Wright et al., 2006).  The 

Mexican tetra, Astyanax mexicanus, provides an excellent opportunity to 

examine this question.  Astyanax mexicanus exists in two forms, a sighted 

surface-dwelling form, and a blind cave-dwelling form.  Not surprisingly, given 

the distinct environments they inhabit, cavefish differ from surface fish in a 

variety of morphological and behavioral traits.  Morphological adaptations to 

life in the caves include an increased number and distribution of taste buds 

and cranial superficial neuromasts, regressed eyes and decreased or absent 

melanin pigmentation (Schemmel, 1974; Wilkens, 1988; Teyke, 1990).  

Cavefish also have a variety of modified behaviors, including reduced 

aggression and a decrease in time spent sleeping, a depressed response to 

alarm substance, an enhanced attraction to vibrations in their environment, 

modified feeding behaviors, and the absence of schooling (Schemmel, 1980; 

Burchards et al., 1985; Fricke, 1987; Parzefall and Fricke, 1991; Yoshizawa 



 41 

et al., 2010; Duboue et al., 2011).  While many of these behaviors have been 

studied to some extent, little is known about their genetic architecture.      

Cave and surface forms of Astyanax mexicanus are interfertile, 

allowing for the genetic analysis of cave traits (Wilkens, 1988).  In particular, 

quantitative trait locus (QTL) mapping has been used successfully to identify 

loci underlying the evolution of several morphological traits in these fish 

(Protas et al., 2006; Protas et al., 2007; Protas et al., 2008; Gross et al., 

2009; Yoshizawa et al., 2012; O'Quin et al., 2013).  Another advantage of 

studying evolution in Astyanax mexicanus is the existence of a number of 

independently evolved cave populations (Mitchell et al., 1977; Dowling et al., 

2002; Strecker et al., 2004; Bradic et al., 2012; Gross, 2012).  Fish from these 

distinct cave populations display similar morphological characteristics and 

behaviors, making Astyanax mexicanus an ideal system in which to study 

parallel and convergent evolution.   

While the surface form of Astyanax mexicanus actively aggregate into 

schools and shoals, the cave forms have reduced this behavior (Parzefall, 

1983; Parzefall, 1985; Parzefall and Fricke, 1991).  The apparent absence of 

macroscopic predators in the caves relieves at least one selective pressure 

favoring schooling, suggesting that the loss of schooling behavior could be 

the result of relaxed selection.  Alternatively, the scarcity of food resources in 

most caves potentially renders clustering of the fish disadvantageous, which 

would suggest that the loss of this behavior could be adaptive in the caves.  

The absence of schooling could also be a secondary consequence of the loss 
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of vision and/or changes in the lateral line system in cavefish, or a pleiotropic 

consequence of other adaptive neurological or morphological changes.   

 Here, utilizing two different behavioral assays, we establish that 

schooling behavior has been lost in three independently evolved cave 

populations.  We place this behavior in the context of cavefish-specific 

alterations in sensory systems, including the lateral line, which does not 

appear to have a large effect on schooling evolution, and vision, which does 

affect this process.  We assess vision by assaying scototaxis, or preference 

for the dark, a trait that is lost in cavefish.  Using this dark preference assay, 

along with examination of eye morphology and experimental eye ablation, we 

show that vision is necessary for schooling behavior in Astyanax mexicanus, 

and that loss of the visual system in cavefish contributed to loss of schooling 

behavior.  However, we provide genetic evidence for both vision-dependent 

and independent components in the evolutionary loss of schooling behavior. 

Finally, we provide evidence that dopamine may have modulated the loss of 

schooling behavior.  

 

Results  

Loss of schooling behavior in cavefish  
  
 Schooling and shoaling behaviors in fish occur when individual fish, 

perceiving and responding to their local environment, interact in the context of 

larger groups.  By following a set of relatively simple rules on the local scale, 

their behaviors result in complex group patterns of collective motion (Couzin 



 43 

et al., 2002; Couzin and Krause, 2003; Sumpter, 2006).  In order to quantify 

differences in this behavior, we use a relatively simple definition of schooling, 

the tendency of fish to synchronize their behavior, and swim in an oriented 

manner relative to one another (Pitcher, 1983).  To quantify schooling 

behavior we first measured the tendency of fish to follow a model school of 

plastic fish (Wark et al., 2011)  (Figure 2.1A).  Surface fish follow the model 

school (Figure 2.1B and D). In contrast, three independently evolved cave 

populations (Mitchell et al., 1977; Dowling et al., 2002; Strecker et al., 2004; 

Bradic et al., 2012; Gross, 2012) from the Tinaja, Pachón, and Molino caves 

were significantly different from surface fish, and did not display schooling 

behavior (Kruskal Wallis: H4=63.6, p<0.001; Mann-Whitney compared to 

surface: Tinaja: U=3, z=-6, p<0.001; Pachón: U=1, z=-4.6, p<0.001; Molino: 

U=4, z=-4.6, p<0.001; Surface: n=34, Tinaja: n=19, Pachón: n=9, Molino: 

n=10, F1s: n=12; Figure 2.1C and D). 

 We next utilized a shoaling assay to complement the model school 

assay.  Shoaling behavior is defined as the tendency of fish to aggregate with 

other fish of the same species (Pitcher, 1983). This definition of shoaling 

includes schooling behavior. We used two measures of shoaling for each 

group of fish, the average nearest neighbor distance (NND) and the average 

distance between each fish and every other fish in the tank, the inter-

individual distance (IID), (Figures 2.1E and F).  Surface fish swam 

significantly closer together than fish from any of the cave populations by  
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Figure 2.1.  Cavefish have lost the tendency to school and shoal. 
 
A.  Diagram of the model school behavioral assay.  B.  Image from a video of a 

surface fish.  C.  Image from a video of a Tinaja cavefish.  Arrows indicate the 

position of the live fish.  D.  Average proportion of the time spent following the 

school in surface fish (n=34), and cavefish populations – Tinaja (n=19), Pachón 

(n=10) and Molino (n=10).  Asterisks indicate p-values in a Mann-Whitney test.  

E.  Method for quantifying average nearest neighbor distance.  F.  Method for 

quantifying average inter-individual distance.  G.  Shoaling measured as the 

average nearest neighbor distance (in centimeters) for each fish in a group. 

Groups of six fish each were measured for surface (9 groups), Tinaja (9 

groups), Pachón (3 groups), and Molino (3 groups) fish. Asterisks indicate p-

values in a Mann-Whitney test.  H.  Shoaling measured as the average inter-

individual distance (in centimeters) for the groups in G.  Asterisks indicate p-

values in a Mann-Whitney test.  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.1, cont. 
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NND (Kruskal-Wallis: H3=18.8, p<0.001; Mann-Whitney test compared to 

surface: Tinaja: U<0.001, z=-3.6, p<0.001; Pachón: U<0.001, z=-2.5, p<0.05; 

Molino: U<0.001, z=-2.5, p<0.05; Surface: n=9 groups, Tinaja: n=9 groups, 

Pachón: n=3 groups, Molino: n=3 groups; Figure 2.1G) and by IID (Kruskal 

Wallis: H3=17.4, p<0.001; Mann-Whitney compared to surface: Tinaja: 

U<0.001, z=-3.6, p<0.001; Pachón: U<0.001, z=-2.5, p<0.05; Molino: 

U<0.001, z=-2.5, p<0.05; Figure 2.1H).  Average standard length of the fish in 

each group was not significantly correlated with NND within surface fish 

(Pearson’s correlation: R =0.43, p=0.24, n=9 groups, Figure 2.2A) or within 

Tinaja cavefish (Spearman’s correlation: rho=-0.42, p=0.27, n=9 groups, 

Figure 2.2B).  

 Taken together, these results indicate that multiple, independently 

evolved natural populations of cavefish have decreased the tendency to 

aggregate compared to the surface population.  Cavefish have lost the 

tendency to swim oriented to one another, or school, as well as decreased 

the tendency to congregate in a group, or shoal. 

Genetics of schooling behavior 

 Surface fish raised in isolation follow the model school, responding 

similarly in the assay to group-raised fish (t36=-0.5, p=0.61; group-raised 

n=34, isolation-raised n=4; Figure 2.3A). Thus, schooling behavior in 

Astyanax, as measured in this assay, is not learned and likely has a genetic 

basis. To study the inheritance of this behavior, we crossed surface fish and 

Tinaja cavefish to generate F1 hybrid fish.  F1 hybrid fish follow the model  
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Figure 2.2.  Effects of standard length and sex on schooling and 

shoaling behaviors. 

A.  Average standard length compared to average nearest neighbor 

distance for shoals of surface fish (n=9).  B.  Average standard length 

compared to average nearest neighbor distance for shoals of cavefish 

(n=9).  C.  Proportion of time spent schooling of male and female F2 

fish (n=252).  D.  Plot of the distribution of the average proportion of 

time spent schooling as a function of body length, in centimeters, in 271 

F2 fish. 
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Figure 2.3.  Genetics of schooling behavior. 

A.  Proportion of time spent schooling in individually raised (n=4) and group raised 

(n=34) surface fish.  B.  Distribution of the proportion of time spent schooling in 

surface fish (n=34), surface/Tinaja F1 hybrid fish (n=12), Tinaja cavefish (n=19). 

Asterisks indicate p-values in a Mann-Whitney test.  C.  The distribution of the 

average proportion of time spent schooling across five trials of 287 F2 fish from a 

surface/Tinaja F1 hybrid intercross.  All error bars indicate standard deviation. 

*p<0.05, **p<0.01, ***p<0.001. 
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school, similar to surface fish, but significantly different from Tinaja fish 

(Mann-Whitney compared to F1: surface: U=155.5, z=-1.2, p=1.0; Tinaja: 

U<0.001, z=-4.8, p<0.001; Surface: n=34, Tinaja: n=19, F1: n=12), indicating 

that tendency to school segregates as a dominant trait (Figure 2.3B).   

To probe the genetic architecture of this trait more deeply, F1 hybrid 

fish were intercrossed to generate F2 fish.  F2 fish vary widely in their 

behavior, ranging from an apparent complete lack of schooling behavior 

similar to cavefish, to a strong tendency to follow the model school, similar to 

surface fish (Figure 2.3C).  These results strongly indicate a polygenic basis 

for this behavior.  Tendency to school in F2 fish differed based on sex (Mann-

Whitney: U=6669, z=-2.1, p<0.05, n=252; Figure 2.2C) and was not 

correlated with size (Spearman’s rho=0.05, p=0.37, n=271; Figure 2.2D).   

An enhanced lateral line in cavefish does not contribute significantly to 
loss of schooling behavior 
 

The lateral line and the visual system have been implicated in 

schooling behavior in other fish species (Hemmings, 1966; Pitcher et al., 

1976; Partridge and Pitcher, 1980; Partridge, 1982).  Cavefish have an 

enhanced lateral line and have lost their eyes (Wilkens, 1988; Teyke, 1990), 

either or both of which could influence the observed differences in schooling 

behavior between these populations.  

Cavefish have enhanced the size and number of superficial cranial 

neuromasts, the sensory organ of the lateral line system, relative to surface 

fish (Teyke, 1990; Jeffery et al., 2000) (Figure 2.4A and B).  It was, thus, 

possible that the larger numbers of cranial neuromasts in cavefish provide a  
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Figure 2.4.  Relationship between schooling behavior and the lateral line 

system. 

A.  Cranial neuromasts in a Tinaja cavefish.  B.  Cranial neuromasts in a surface 

fish.  Neuromasts are visualized using DASPEI.  C. Distribution of cranial 

neuromast number corrected for size in surface fish (n=21), surface/Tinaja F1 

hybrid fish (n=7), and Tinaja fish (n=21).  D.  Distribution of cranial neuromast 

number corrected for size in the F2 population (n=227).  E.  Proportion of the 

time spent schooling as a function of number of cranial neuromasts corrected 

for size in the F2 population (n=214).  F.  Proportion of the time spent schooling 

as a function of neuromast diameter (in pixels) in the F2 population (n=154).  

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.4, cont. 
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sensory input that helps repel them from one another, leading to avoidance of 

conspecifics and hence a decrease in the tendency to school.  

 Surface fish indeed have significantly fewer cranial neuromasts than 

cavefish (one-way ANOVA: F2,46=99.2, p<0.001; Surface: n=21, Tinaja: n=21, 

F1: n=12; Games-Howell Surface compared to Tinaja: p<0.001, Figure 2.4A-

C).  F1 hybrid fish have an intermediate number of cranial neuromasts, 

significantly different from both surface (Games-Howell p<0.001) and cavefish 

(Games-Howell p<0.001).  The F2 population (n=227) ranges in number of 

cranial neuromasts, with a peak between the number observed in F1 and 

cavefish (Figure 2.4D).   

 To determine if the number of cranial neuromasts has an effect on 

schooling behavior, we compared the body size-corrected number of 

neuromasts to the proportion of time spent schooling for each fish in the F2 

population (Figure 2.4E).  The number of neuromasts in F2 fish accounted for 

a statistically significant amount of variation in the proportion of time 

schooling, but the effect size was quite small (Spearman’s rho=-0.22, 

p<0.001, n=214).  In addition to superficial neuromast number, we also 

measured superficial neuromast diameter in F2 fish, and found no correlation 

between this measure and the proportion of time schooling (Spearman’s 

rho=0.04, p=0.64, n=154, Figure 2.4F).  Thus, the increased number and size 

of neuromasts that evolved in response to the cave environment did not have 

a large effect on the evolution of schooling tendency. 
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Neuromast ablation does not have a significant effect on either 

schooling or shoaling behavior 

 To determine the extent to which the lateral line system is required for 

schooling and shoaling activity in Astyanax, fish were treated with 0.002% 

gentamicin to ablate neuromast function (Song et al., 1995; Van Trump et al., 

2010; Yoshizawa et al., 2010).  Surface fish did not show a significant 

difference in behavior in the absence of neuromasts, as assessed either by 

schooling (Mann-Whitney: U=191, z=-0.5, p=0.63; treated: n=21, untreated: 

n=21; Figure 2.5A) or by shoaling as measured by NND (t10=-1.03, p=0.33; 

treated: n=6 groups, untreated: n=6 groups; Figure 2.5 B), or by IID (t10=-

1.01, p=0.34; Figure 2.5C).  Tinaja cavefish also did not swim significantly 

farther apart from one another by NND (t10=-1.69, p=0.12; treated: n=6, 

untreated: n=6, Figure 2.5B) and IID (t10=-1.15, p=0.28, Figure 2.5C). While 

not significant, NND and IID in both surface and Tinaja fish were greater in 

treated fish compared to controls. Therefore, it is unlikely that an enhanced 

lateral line drives the evolution of loss of schooling or shoaling behavior in 

cavefish. 

Vision is essential for schooling behavior 

 Visual function is important for schooling and shoaling behavior in a 

variety of fish species, either independent of or in conjunction with lateral line 

function (for example (Pitcher et al., 1976; Partridge and Pitcher, 1980; 

Gregson and De Perera, 2007)).  It has been previously reported that in 

Astyanax mexicanus, surface fish placed in the dark show a reduction in  
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Figure 2.5.  Effects of neuromast ablation on schooling and shoaling 

behavior. 

A.  Proportion of the time spent schooling in surface fish treated with 0.002% 

gentamicin (n=21) and untreated (n=21).  B.  Average nearest neighbor 

distances for surface fish groups treated with 0.002% gentamicin (n=6) and 

untreated (n=6) and Tinaja fish groups treated (n=6) and untreated (n=6).  C.  

Average inter-individual distances for the groups in B.  
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Figure 2.6.  Vision is required for schooling and shoaling behavior. 

A.  Proportion of time spent schooling of surface fish in the light (n=12) versus 

the dark (n=10).  Asterisks indicate p-value in a Mann-Whitney test. B.  Shoaling 

nearest neighbor distance measured in groups of six of surface fish (5 groups) 

and cavefish (5 groups) in the light and the dark. Asterisks indicate p-value in a 

paired t-test.  C.  Shoaling inter-individual distances measured in groups from B.  

Asterisks indicate p-value in a paired t-test.  D.  Surface fish with zero (n=7), 

one (n=12) or two (n=8) lenses removed assayed with the model school. 

Asterisks indicate p-value in a Games-Howell test.  E.  One group each of one- 

(5 trials), two-lenses (5 trials) removed, or control fish (2 trials) assayed for 

shoaling by nearest neighbor distances.  F.  Inter-individual distances for groups 

from E.  G.  Eye size in control surface fish.  H.  Partial eye degradation in 

surface fish with lenses removed.  I.  Complete eye degradation in surface fish 

with lenses removed.  J.  Eye degradation in cavefish.  Error bars indicate 

standard deviation.  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.6, cont. 
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shoaling (Gregson and De Perera, 2007).  We verified this result in our 

shoaling assay. Groups of surface fish in the dark swam significantly farther 

apart compared to the same groups in the light as measured by both NND 

(paired t-test: t4=-17.2, p<0.001, n=5 groups; Figure 2.6B) and IID (paired t-

test: t4=-15.2, p<0.001; Figure 2.6C). As expected, cavefish were unaffected 

by the change in lighting conditions both by NND (paired t-test: t4=-1.2, 

p=0.31, n=5 groups; Figure 2.6B) and by IID (paired t-test: t4=0.45, p=0.67; 

Figure 2.6C). To determine if schooling behavior in surface Astyanax also 

requires vision, surface fish were assayed with the model school.  Schooling 

behavior in surface fish was completely lost in the dark compared to in the 

light (Mann-Whitney: U=1, z=-4, p<0.001; light: n=12, dark: n=10, Figure 

2.6A).   

 Loss of surface fish schooling in the dark could be due to a learned 

reliance on vision for schooling behavior.  If this were the case, fish that lost 

vision early in development might school in the absence of sight.  Cavefish 

develop eyes, which undergo apoptosis and degenerate (Wilkens, 1988; 

Jeffery and Martasian, 1998; Jeffery, 2001).  Cavefish eye degradation can 

be phenocopied in surface fish by removing lenses at 36 hours post 

fertilization (hpf) (Yamamoto and Jeffery, 2000).  To test if surface fish that 

lost visual function during development would school, one, two, or no lenses 

were removed in surface fish.  Fish eyes lacking lenses ranged in their adult 

morphology from a small, degraded eye to a complete absence of an eye, 

resembling cavefish (Figure 2.6G-J).  
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 Lens removal had a significant effect on both schooling (one-way 

ANOVA: F2,24=13.9, p<0.001; control: n=8, one lens removed: n=12, two 

lenses removed: n=7; Figure 2.6D) and shoaling measured by NND (Welch 

ANOVA: F=253.9, p<0.01; control n=2 trials, one lens removed: n=5 trials, 

two lenses removed: n=5 trials; Figure 2.6E) and IID (one-way ANOVA: 

F2,9=127.1, p<0.001; Figure 2.6F).  Surface fish with both lenses removed 

schooled significantly differently from control fish and fish with one lens 

removed, regardless of their amount of eye degeneration (planned-contrast 

test: t14.1=-7.8, p<0.001; Games-Howell test compared to control fish: p<0.01 

and one-lens removed fish: p<0.001, Figure 2.6D).  Additionally, groups of 

two-lenses removed surface fish swam significantly farther away from one 

another compared to control fish (NND Games-Howell test: p<0.001, Figure 

2.6 E; IID Games-Howell test: p<0.001, Figure 2.6F).  Surface fish retaining 

one eye were indistinguishable from control fish in the model school assay 

(Games-Howell test: p=0.996, Figure 2.6D).  However, fish with one eye had 

intermediate nearest neighbor distances in the shoaling assay, significantly 

different from both control (NND Games-Howell test: p<0.05; IID Games-

Howell test: p<0.001) and two-lenses removed fish (NND Games-Howell test: 

p<0.001, Figure 2.6E; IID Games-Howell test: p<0.001, Figure 2.6F). These 

results demonstrate that visual function is necessary for schooling and 

shoaling in surface forms of Astyanax mexicanus.   

 
Vision-dependent and independent loss of schooling tendency in F2 

fish 
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Since visual function is required for schooling behavior in Astyanax 

mexicanus, the ancestral fish would have lost the ability to school immediately 

upon entering the pitch-dark cave environment.  Thus, cavefish may have 

evolved their decreased tendency to school in our assays solely as a 

consequence of their loss of eyes.  Alternatively, loss of schooling behavior 

may have become fixed in these fish through additional changes, 

independent of the loss of vision.  To distinguish between these possibilities, 

visual function was assayed in the F2 population.  

Visual function in the F2 population can be approximated using the 

external morphology of the eyes.  Both eye diameter (t8.7=-13.1, p<0.001; 

Surface: n=20, F1: n=5) and pupil diameter (t4.9=-9.0, p<0.001) are 

significantly reduced in F1 hybrid fish compared to surface fish (Figure 2.7A). 

Nearly all F2 fish (n=283) have eyes and pupils, although most of them are 

smaller than surface fish eyes (Figures 2.7B and C). Eye diameter and pupil 

diameter are highly correlated in the F2 population (Pearson’s R = 0.81, 

p<0.001, n=283, Figure 2.7D).  Proportion of time schooling in the F2 

population is weakly to moderately positively correlated with both eye size 

(Spearman’s rho=0.27, p<0.001, n=270) and pupil size (Spearman’s 

rho=0.35, p<0.001, n=270, Figure 2.7E and F).  However, there are individual 

fish with relatively large eyes and pupils who still did not demonstrate 

schooling behavior.  This suggests that while schooling requires visual 

function, there may be an independent genetic basis for loss of schooling.   
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Figure 2.7.  Relationship of eye and pupil size in F2 fish. 

A.  Eye size and pupil size in surface fish (n=20) and F1 hybrid fish (n=5) 

from a surface/Tinaja cross. Eye and pupil size are corrected for body 

length.  Error bars indicate standard deviation.  B. Distribution of corrected 

eye diameter in the F2 population (n=285).  C.  Distribution of corrected pupil 

diameter in F2 fish population (n=285).  Both eye and pupil diameters were 

corrected for the expected size of the eye or pupil of a surface fish of the 

individual’s body length.  D.  Relationship between eye and pupil size in the 

F2 fish population (n=283).  E.  Average proportion of time schooling in the 

F2 population (n=270) as a function of eye size.  F.  Average proportion of 

the time schooling in the F2 population (n=270) as a function of pupil size.   
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Figure 2.7, cont. 
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Figure 2.8.   Dark preference and schooling behavior. 

A.  Surface (n=9), Tinaja (n=14), and Surface/Tinaja hybrid F1 (n=4) 

individuals in an assay for dark preference. Dark preference was quantified as 

the number of seconds spent in the dark out of a total of 300 seconds.  

Asterisks indicate p-values in a Mann-Whitney test.  B.  Distribution of average 

time spent in the dark across 3 trials for F2 population of fish (n=275). C.  

Relationship between eye diameter and time spent in the dark (n=265).  D.  

Relationship between pupil diameter and time spent in the dark (n=265).  E.  

Average proportion of the time spent schooling as a function of dark 

preference in the F2 population (n=266).  F. The distribution of the tendency to 

school in seeing F2 fish, defined as spending an average of 200 seconds in 

the dark (n=151).  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.8, cont. 
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Of course, F2 fish with large eyes and pupils may still lack visual 

function, and fish with smaller eyes may be able to see.  To more directly test 

visual function, fish were tested for their ability to sense light. Surface fish 

display strong negative phototaxis, spending nearly all of their time in the 

dark.  Tinaja cavefish behave significantly differently (Kruskal Wallis: 

H2=175.6, p<0.001; Surface: n=9, Tinaja: n=14, F1: n=4; Mann-Whitney 

Surface compared to Tinaja: U<0.001, z=-4, p<0.001; Figure 2.8A), showing 

no preference for either the dark or the light.  Surface/Tinaja F1 hybrids 

display strong negative phototaxis, not significantly different from surface fish 

(Mann-Whitney: U=5, z=-2, p=0.15) and significantly different from Tinaja fish 

(U<0.001, z=-3, p<0.01; Figure 2.8A).  

Dark preference in the F2 fish population had a bimodal distribution 

(n=275, Figure 2.8B).  Dark preference in the F2 population was moderately 

positively correlated with both eye diameter (Speaman’s rho=0.36, p<0.001, 

n=265) and pupil diameter (Spearman’s rho=0.47, p<0.001, n=265, Figures 

2.8C and D).  This is consistent with the hypothesis that smaller eyes and 

pupils are associated with less visual function. 

Dark preference was also moderately positively correlated with the 

tendency to school in the F2 population (Spearman’s rho=0.42, p<0.001, 

n=266, Figure 2.8E).  A large proportion of non-schooling fish had no dark 

preference, or spent around 150 seconds in the dark.  This indicates that 

many of the F2 fish that displayed no tendency to school have little visual 

function.  However, some F2 individuals that showed a strong dark 
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preference did not show any tendency to school, suggesting that there has 

been a loss of the tendency to school in cavefish independent of vision. 

In order to test for factors that affect schooling behavior independently 

of vision, a population of F2 fish with visual perception needed to be defined.  

Light-perceiving F2 fish were defined as those fish with an average time spent 

in the dark of 200 seconds (2/3 of their time) or more out of a 300 second 

trial. This cutoff would include F1 and surface fish, but exclude Tinaja 

cavefish. Because dark preference could reflect multiple aspects of visual 

response, this cutoff likely excludes some fish that can see.  However, this 

conservative method allowed us to definitively identify a subset of light-

perceiving fish, and exclude all fish that can no longer perceive light.   

Light-perceiving fish (n=151), defined in this manner, were then 

analyzed for their propensity to school. Interestingly, within this group of light-

perceiving F2 fish, many do not display schooling behavior (Figure 2.8F).  

However, the proportion of F2 fish with the lowest schooling tendency (less 

than five percent of the time) is significantly less than in the general F2 

population, from 50% of the total F2 population to 35% of the light-perceiving 

portion of the F2 population.  This is likely because many of the F2 fish that 

lacked the ability to see failed to school for that reason, and were excluded 

from this subgroup.   

To confirm that there is a non-visual component to the loss of grouping 

behavior in the cavefish, groups of light-perceiving and non-light-perceiving 

F2 fish were tested in the shoaling assay.  Light-perceiving, schooling groups  
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Figure 2.9.  Shoaling in F2 fish. 

A.  F2 fish were separated into groups based on visual function and tendency 

to school. Groups of 6 fish of light perceiving, schooling fish (6 groups), light 

perceiving, non-schooling fish (4 groups) and non-light perceiving, non-

schooling fish (3 groups) were tested for shoaling behavior by nearest 

neighbor distance. Asterisks indicate p-values for a planned-contrast test.  B.  

F2 fish (from A) assayed for shoaling by inter-individual distance.  All error 

bars indicate standard deviation.  *p<0.05, **p<0.01, ***p<0.001. 
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of fish swam significantly closer to one another compared to light-perceiving, 

non-schooling fish groups and non-light-perceiving, non-schooling groups by 

NND (one-way ANOVA: F2,10=7.65, p<0.05; planned-contrast test: t10=-3.91, 

p<0.01; Schooling: n=6 groups, Light-perceiving, non-schooling: n=4 groups, 

Non-light-perceiving, non-schooling: n=3 groups; Figure 2.9A). These groups 

were not significantly different by IID, although they trended in the same 

direction as NND (one-way ANOVA: F2,10=3.5, p=0.07, Figure 2.9B).  

Furthermore, a mixed group of F2s, containing 2 fish from each of these 

categories, produced a NND of 10.17 and an IID of 22.27.  This NND is 

outside the range of the light-perceiving, schooling F2 fish.  This confirms that 

a subset of F2 fish maintain visual function, but do not have a tendency to 

aggregate.   

The roles of monoamine neurotransmitters in schooling behavior 

 Recent research has shown that there are differences in levels of 

monoamine neurotransmitters between cave and surface Astyanax 

mexicanus (Strickler and Soares, 2011; Elipot et al., 2013).  In order to 

determine if these differences could have an effect on schooling behavior, we 

treated cave and surface fish with two inhibitors, (R)-(-)-Deprenyl 

hydrochloride and fluoxetine hydrochloride. Both of these drugs result in an 

increase in serotonin levels in the brain (Elipot et al., 2013).  However, (R)-(-)-

Deprenyl hydrochloride targets monoamine oxidase (MAO), inhibiting the 

breakdown of multiple monoamines. 
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Figure 2.10.  Role of monoamine neurotransmitters in schooling and 
shoaling behavior. 
 
A.  Proportion of the time spent schooling in untreated (Un, n=21), 10uM 

Deprenyl treated (D, n=12), and 14 uM Fluoxetine treated (Fl, n=21) surface 

fish.  Asterisks indicate p-values in a Mann-Whitney test.  B.  Average nearest 

neighbor distance in groups of untreated (Un, n=6 groups), 10uM Deprenyl 

treated (D, n=6 groups), and 14 uM Fluoxetine treated (Fl, n=5 groups) 

surface fish and untreated (Un, n=6 groups) and 10 uM Deprenyl treated (D, 

n=6 groups) Tinaja cavefish.  Asterisks indicate p-values in a Games-Howell 

test.  C.  Average inter-individual distances for groups from B.  Asterisks 

indicate p-values in a Games-Howell test.  All error bars indicate the standard 

deviation.  *p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.10, cont. 
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 The treatments result in significant differences in schooling behavior 

(Kruskal Wallis: H2=18.4, p<0.001; Untreated: n=36, Deprenyl: n=12, 

Fluoxetine: n=22).  (R)-(-)-Deprenyl treatment results in a significant decrease 

in schooling behavior (Mann-Whitney: U=46, z=-4, p<0.001) while fluoxetine 

does not significantly affect schooling relative to control fish (Mann-Whitney: 

U=313, z=-1.3, p=0.38, Figure 2.10A).  In addition, (R)-(-)-Deprenyl (Welch 

ANOVA: H2=18.4, p<0.01; Untreated: n=6 groups, R-Deprenyl: n=6 groups, 

Fluoxetine: n=5 groups; Games-Howell: p<0.01) but not fluoxetine (Games-

Howell: p=0.35) results in significantly greater separation between fish in the 

shoaling assay using NND (Figure 2.10B).  The results for IID are similar 

(Welch ANOVA: H2=21.6, p<0.01; R-Deprenyl Games-Howell: p<0.01, 

Fluoxetine Games-Howell: p=0.21; Figure 2.10C).  In contrast, the Tinaja 

cavefish in the shoaling assay were not affected by treatment with (R)-(-)-

Deprenyl hydrochloride when measured by NND (Mann-Whitney: U=0.9, z=-

1.4, p=0.18; Untreated: n=6 groups, Treated: n=6 groups, Figure 2.10B) or by 

IID (Mann-Whitney: U=12, z=-0.96, p=0.39, Figure 2.10C).  While we have 

not tested for differences in brain monoamine levels here, this data suggests 

that an increase in brain monoamine levels, but not specifically brain 

serotonin levels, decreases the tendency to school. 

QTL mapping of schooling behavior 

 Finally, we performed QTL analysis to map the regions of the genome 

underlying the loss of schooling behavior in the Tinaja cavefish. We 

generated a novel linkage map of 330 SNPs falling onto 28 linkage groups  



 71 

 

 

 

 

 
 
 
 
 
 
Table 2.1.  Summary of QTL statistics.   
 
CI = Confidence Interval.  PVE = Percent variance explained.  
 
 
Trait LG cM LOD CI PVE 
Schooling 27 20 4.0 16-26 cM 6.4 
Dark preference 27 20 3.9 9-27 cM 6.4 
Schooling – seeing fish 6 9 4.4 0-14 cM 12 
Eye diameter 3 74.1 4.9 65-113 cM 7.9 
Pupil diameter 3 74.1 4.6 67-77 cM 7.3 
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Figure 2.11.  Visual and non-visual QTL for evolutionary loss of 

schooling behavior in cavefish. 

A.  Linkage map derived from SNPs in a Tinaja/Surface intercross.  B.  QTL 

for a binary measure of dark preference (n=267) where fish spending 

greater than 200 seconds were scored as preferring the dark.  The line 

indicates a significant LOD score for a p-value < 0.05.  C.  QTL for a binary 

measure of the tendency to follow the model school (n=276).  Fish were 

scored as schooling if they spent more than 5% of their time following the 

model on average.  The line indicates a genome-wide significance LOD 

score for a p-value < 0.05.  D.  QTL for a binary measure of the tendency to 

follow the model school for the subset of fish that preferred the dark 

(n=143).  E.  Plot of the phenotype values by genotype at the QTL for dark 

preference measured as a binary of time the dark (1=preferring the dark, 

0=no dark preference).  F.  Plot of the phenotype values by genotype at the 

QTL for schooling, measured as proportion of time following the model 

schooling and then made into a binary trait (1=schooling, 0=non-schooling).  

G.  Plot of the phenotype values by genotype at the schooling QTL in light-

responsive fish, measured as proportion of time following the model 

schooling and then made into a binary trait (1=schooling, 0=non-schooling). 

Genotypes are for homozygous surface (SS), heterozygous (SC) or 

homozygous cave (CC) alleles. 
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Figure 2.11, cont. 
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Figure 2.12.  Schooling in surface and Tinaja cavefish tested multiple 

times each. 

Average proportion of time spent schooling in surface fish (n=11) and Tinaja 

cave fish (n=9) tested five times each. 
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using a double digest RADseq technique (Peterson et al., 2012) (Figure 

2.11A).  

 Schooling behavior varied widely across the five trials we tested. To 

assess the reproducibility for individual fish across multiple trials, we used an 

intraclass correlation coefficient.  The intraclass correlation coefficient for 

surface fish tested five times each was 0.62, and for F2 fish was 0.51.  In 

addition, there was an effect of schooling trial number in the F2 population 

(F1,1123=101.2, p<0.001) which resulted in an overall trend towards less 

tendency to school as trial number increased.  In order to integrate this data 

to map the schooling in F2 fish, we used a binary measure of schooling 

behavior, described in the methods, which would include all surface fish, but 

exclude all Tinaja cavefish (Figure 2.12).   

 Using this binary measure of schooling behavior, we mapped a single 

significant QTL on linkage group 27 that explained 6.4% of the variance 

(n=276, p<0.05, Figure 2.11C, Table 2.1).  Homozygous cave alleles at a 

marker underlying this QTL result in a decrease in schooling behavior, and a 

heterozygous genotype result in an intermediate tendency to school (Figure 

2.11F).  A significant QTL explaining 3.6% of the variance was also observed 

in this location when schooling was mapped as a continuous trait as the 

average across five trials.    

 In addition to schooling behavior, we mapped a binary measure of dark 

preference, using the cutoff for light-perception as 200 seconds in the dark on 

average across three trials.  Dark preference maps to one significant QTL on  
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Figure 2.13.  QTL for eye and pupil diameters. 

A.  QTL for corrected pupil diameter (n=276).  Line is for a LOD score p=0.05.  

B.  QTL for corrected pupil diameter (n=276).  Line is for a LOD score p=0.05.  

C.  Plot of the phenotype values by genotype at the QTL for corrected eye 

diameter.  D.  Plot of the phenotype values by genotype at the QTL for 

corrected pupil diameter.  SS is a homozygous surface genotype, SC is 

heterozygous, and CC is a homozygous cave genotype.   
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Figure 2.13, cont. 
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linkage group 27 that explains 6.4% of the variance (n=267, p<0.05, Figure 

2.11B, Table 2.1).  Homozygous cave alleles at a marker underlying this QTL 

result in less time spent in the dark, while heterozygous genotypes result in 

an intermediate percentage of time spent in the dark (Figure 2.11E).  This 

QTL marker mapped to the same location as the schooling QTL.  

 In order to map the genetic basis of schooling behavior that is 

independent of visual function, a binary measure of schooling behavior in 

light-perceiving fish (defined as described above) was mapped.  This resulted 

in one significant QTL on linkage group 6 that explains 12% of the variance 

(n=143, p<0.05, Figure 2.11D, Table 2.1).  Somewhat surprisingly, 

homozygous cave genotypes at a marker underlying this QTL resulted in an 

increase in schooling behavior, while fish with homozygous surface or 

heterozygous genotypes schooled a similar amount of time (Figure 2.11G).  

This QTL does not fall in the same place as the QTL for dark preference, eye 

size, or pupil size  (Figure 2.11B, Figure 2.13 A-D, Table 2.1).  Thus this QTL 

identifies a vision-independent genetic contribution to the evolution of 

schooling behavior.  Although this peak was present as the highest peak 

when schooling was mapped within these individuals as a continuous trait, it 

was not significant at a p=0.05.   

 

Discussion  

 Much is known about the ecology underlying schooling behavior.  

However, little is known about how this behavior evolves.  Here, we use the 
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loss of schooling in the cavefish Astyanax mexicanus to elucidate essential 

questions about the evolution of schooling.  We determine that while both the 

visual system and the lateral line affect schooling in surface fish to some 

extent, it is the loss of sight in cavefish that plays the most significant role in 

the loss of schooling behavior. In contrast, lateral line enhancement in 

cavefish plays at most a minor role in schooling behavior loss. Our results 

suggest that loss of schooling evolved by multiple genetic changes, only 

some of which are vision-dependent.  

The visual system is essential in schooling behavior in surface fish 

 Both the lateral line system and the visual system have previously 

been implicated in schooling behavior in a variety of fish species (Hemmings, 

1966; Pitcher et al., 1976; Partridge and Pitcher, 1980).  It has been proposed 

that while the visual system allows fish to swim closer to one another, the 

lateral line provides a repulsive force (Partridge and Pitcher, 1980).  We find 

that only vision, and not lateral line sensation, played a key role in the 

evolution of this behavior in the cave population of Astyanax mexicanus.  

Surface Astyanax do not school and have reduced shoaling in the dark. Other 

surface fish behaviors, such as aggression, may involve learned visual cues, 

which are no longer necessary if fish are raised deprived of vision (Espinasa 

et al., 2005).  However, adult surface fish blinded at 36 hpf also did not school 

and had a reduction in shoaling.  This demonstrates that vision is likely 

necessary for both schooling and shoaling behavior.  However, there remains 

a possibility that surface fish choose not to school without visual cues.   
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We also tested the effect of loss of one eye on schooling and shoaling 

behavior.  Interestingly, while fish with one eye could follow the model school, 

fish with one eye shoaled farther apart from one another.  This could result 

from the importance of two functional eyes in tracking fish swimming in a 

disorganized manner, while other sensory organs, such as the lateral line, 

may compensate for the loss of one eye during schooling behavior.  

Loss of vision has a large effect on the evolutionary loss of schooling 

behavior, while enhancement of the lateral line plays a minor role at 

most 

 Visual function is essential for both schooling and shoaling behavior in 

surface Astyanax mexicanus.  Therefore, the ancestral fish would have lost 

the ability to school immediately upon becoming entrapped in the dark cave 

environment. Subsequently, the cavefish lost their eyes and also evolved a 

decreased capacity for schooling, even when returned to a light-exposed 

environment. By examining the visual system and schooling behavior in the 

F2 population, we examined the role of visual function in the evolution of 

schooling behavior.  We found that morphological measures of the visual 

system, eye and pupil size, as well as behavioral measures for vision, were 

correlated with schooling behavior in the F2 population. Additionally, the QTL 

for dark preference maps to the same region as a QTL for schooling behavior.  

This QTL for schooling behavior leads to a decrease in schooling behavior 

with the homozygous cave genotype, and may explain the proportion of loss 

of schooling behavior explained by loss of visual function.  Alternatively, since 
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the QTL for dark preference does not fall in the same location as QTL for eye 

or pupil size, it is also plausible that the behavioral difference in the dark 

preference assay mapped to this QTL has to do with a loss of dark preference 

per se, and not to perception of light.  However, it could be related to an eye-

size independent aspect of visual processing still related to light perception, 

such as retinal degeneration or lens degeneration.  Previous work in Pachón 

cavefish identified some QTL for retinal degeneration that were not 

overlapping with eye or lens QTL (O'Quin et al., 2013) and not all lens QTL 

overlap with eye size QTL (Protas et al., 2007).  

 While we found a significant correlation between number of 

neuromasts and schooling in F2 fish, the correlation was weak, and ablation 

of neuromasts in surface and cavefish was not sufficient to drive fish to swim 

closer together, or to increase schooling behavior.  Therefore, it is unlikely 

that neuromasts play a large role in the evolution of schooling behavior.  

Potential effects of increase of brain dopamine levels on decrease of 

schooling 

 Both dopamine and serotonin have been implicated in Pachón cavefish 

evolution (Strickler and Soares, 2011; Elipot et al., 2013).  There is an 

increase in the amount of brain serotonin in Pachón cavefish compared to 

surface fish, and this increase in serotonin levels may lead to the observed 

decrease in aggression in Pachón fish (Elipot et al., 2013).  In addition, 

tyrosinase 3-monooxygenase/tryptophan 5-monooxygenase activation protein 

epsilon polypeptide 1 (YWHAE), an enzyme involved in dopamine 
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biosynthesis, is upregulated in Pachón cavefish brains (Strickler and Soares, 

2011).  Both of these pathways are hypothesized to function in cavefish to 

change feeding behavior, as cavefish may need to spend an increased 

amount of time foraging relative to surface fish (Strickler and Soares, 2011; 

Elipot et al., 2013).  Therefore, these pathways may have been selected for in 

cavefish for other behavior purposes, and have a pleiotropic effect on 

schooling behavior.  

 We found that potentially increasing levels of multiple monoamines, 

presumably including both serotonin and dopamine, with (R)-(-)-Deprenyl 

hydrochloride, decreased both schooling and shoaling tendency in surface 

fish.  Although (R)-(-)-Deprenyl hydrochloride affects brain levels of serotonin 

in Astyanax mexicanus (Elipot et al., 2013), it is unlikely that changing 

serotonin levels alone affects schooling behavior given the insignificant effect 

of fluoxetine.  This indicates that another monoamine, not serotonin, plays a 

role in schooling behavior in Astyanax mexicanus.  Given the evidence that a 

molecule involved in the synthesis of dopamine is upregulated in at least one 

population of cavefish, our results are consistent with an increase in the 

amount of brain dopamine affecting schooling behavior in cavefish. Thus, 

brain neurotransmitter levels that have evolved to change adaptive behaviors, 

such as feeding behavior, may have a secondary, pleiotropic effect on 

schooling behavior.  Testing whether modulation of dopamine specifically 

affects schooling and shoaling behavior, if R-deprenyl can induce increased 

levels of dopamine, and whether cavefish have increased amounts of 
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dopamine compared to surface fish, would be an interesting complement to 

this work.     

Evolution of schooling behavior independent of loss of vision 

 While loss of vision plays an important role in loss of schooling 

behavior, we also found evidence for a vision-independent loss of schooling 

behavior.  Many F2 fish with a strong response to light still do not follow the 

model school.  This is similar to what was previously seen in shoaling assays 

in Astyanax mexicanus, where many F2 fish found to have visual function did 

not shoal (Parzefall and Fricke, 1991). Interestingly, when the effects of vision 

are removed by performing QTL analysis on only those fish that are light 

responsive, a second QTL, which does not fall in the same location as the 

vision, eye size, or pupil size QTL, emerges.  In addition, we performed QTL 

analysis for neuromast number, and neither of the schooling QTL fall in the 

same place as the neuromast QTL (data not shown).  This suggests that the 

second QTL for the loss of schooling is vision and lateral line independent.  

Markers located under this QTL map to zebrafish chromosome 5 (Table 2.2).  

Fine scale mapping, combined with detailed analysis of the genes within this 

interval, will be necessary to identify the specific genetic changes responsible 

for the schooling QTL.    

Potential evidence for relaxed selection on schooling in the cave 

 Once the ancestors of cavefish entered caves, they would not be able 

to school due to lack of light, and this could relax selection on schooling 

behavior.  In addition, the ecology of the cave habitat suggests that there   
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Table 2.2 – Zebrafish location of Astyanax markers 

Marker is the RAD-seq marker.  LG is the linkage group and cM is the 

position on that linkage group in centimorgans.  Zebrafish chromosome and 

position refer to the location the marker mapped to in the zebrafish genome. 

 
Marker LG cM Zebrafish 

chromosome 
Zebrafish 
position 

3777.30r 1 1.61 16 49352154 
7517.34r 1 27.1 24 27937870 
1775.14r 1 50.58 20 10282422 
834.30r 2 56.14 7 39294283 
1439.29r 2 87.3 4 23260016 
3863.39r 3 54.58 9 16877883 
517.28r 4 115.08 22 748928 
1746.14r 5 4.19 23 18826367 
2437.18r 5 52.19 23 20450560 
3652.31r 6 4.44 5 28800915 
1942.24r 8 45.93 21 39152588 
5004.36r 8 74.53 21 44371714 
1720.16r 9 35.26 9 41231661 
3992.28r 10 9.12 24 251036 
1056.10r 10 19.2 24 31446055 
3720.41r 11 20.52 14 34634976 
2160.11r 12 34.73 1 29432744 
5928.36r 12 43.67 13 35581479 
949.12r 12 63.24 15 1006948 
1627.32r 21 35.59 24 43047372 
976.33r 22 4.81 10 25150581 
566.31r 25 8.71 19 21693166 
4144.36r 27 0 5 25882088 
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would be no counter-selection to maintain schooling behavior, in spite of the 

loss of vision. A likely lack of macroscopic predators in the caves removes 

one major selective pressure for schooling in the cave environment. Although 

it is speculative, one possibility for the evolution of schooling behavior is that 

once vision was impaired by the lack of light, schooling was no longer under 

selection, and alterations in genes affecting this behavior would be neutral in 

consequence. This could be an explanation for identification of loci where F2 

fish show an increase in schooling behavior with a homozygous cave 

genotype. Since a large percentage of seeing F2 fish still do not school, there 

are likely other loci where the cave alleles contribute to loss of schooling 

behavior.  We expect that decreased schooling behavior is caused by a 

variety of genetic changes, and that many of these have effects too small to 

detect in our current analysis. 

Convergence on a decreased tendency to school in multiple cavefish 

populations and different fish species 

 Here, we demonstrate that multiple, independently evolved cavefish 

populations have lost the tendency to school.  Previous work on Astyanax 

mexicanus also showed a loss of schooling and reduction in shoaling 

behavior in cave populations (Parzefall, 1983; Parzefall, 1985; Parzefall and 

Fricke, 1991).  Our work corroborates this previous work.  Schooling behavior 

is also lost in other species of cave populations (reviewed in (Parzefall, 1985; 

Parzefall, 2001)).  The importance of the loss of the visual system for loss of 

schooling behavior in Astyanax mexicanus may be general in cave 
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populations, and it would be interesting to know if other cavefish species have 

reduced schooling behavior due to lack of visual cues. 

In addition to cavefish, benthic threespine sticklebacks (Gasterosteus 

aculeatus) display reduced schooling behavior (Wark et al., 2011).  

Greenwood and Wark et al. explore the genetics of this loss of schooling 

behavior in marine versus benthic stickleback populations (cosubmitted).  

While cave Astyanax and benthic sticklebacks both have a reduced tendency 

to school, the mechanisms that lead to loss of schooling behavior may be 

different in these two species. Benthic sticklebacks, which have intact visual 

systems, still show some tendency to follow a model school, but position 

themselves differently within it.  In contrast, cave Astyanax have lost all 

tendency to follow a model school.  This may be due to differences in habitats 

and selective pressures.  Once they have entered the cave environment, 

Astyanax could no longer school due to loss of visual cues necessary for this 

behavior.  In addition, cavefish do not encounter the selective pressures 

usually associated with schooling behavior. For example, within the caves 

there are probably no macroscopic predators.  In contrast, benthic 

sticklebacks are still confronted with predators, but display a shelter seeking 

behavior rather than a schooling behavior (Wark et al., 2011).   

 Interestingly, both cave Astyanax and benthic sticklebacks appear to 

have evolved differences in schooling behavior through modifications of 

sensory systems.  Loss of vision contributes to the evolutionary loss of 

schooling tendency in cave Astyanax and lateral line evolution contributes to 
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the evolution of schooling position in sticklebacks.  Thus, convergent loss of 

schooling behavior can occur through modulation of different sensory 

systems and different behavioral components.  Together, these studies 

demonstrate the contribution of sensory system evolution to the evolution of 

complex behaviors. 

 This work provides a start towards understanding the genetic basis of 

the loss of schooling behavior.  Identification of the genes underlying these 

QTL will provide interesting insight into how schooling behavior is controlled, 

and how it evolves, and will allow us to test whether different species of fish 

lose schooling behavior through the same genes and pathways. 

 

Conclusion 

 In conclusion, we report the results of two behavioral assays for social 

grouping in surface and three cave populations of Astyanax mexicanus.  We 

have shown that the loss of schooling behavior in a cave population of 

Astyanax has a genetic basis and is a complex trait, influenced by at least two 

loci.  We show that vision, but not the lateral line, is important for schooling 

behavior in surface fish, and that vision is not a learned cue for schooling, but 

instead is required for this behavior.  However, vision is not sufficient for 

schooling behavior.  Loss of schooling behavior in cavefish has a genetic 

basis independent of eye loss.  Additionally, we offer evidence that schooling 

was likely lost due to relaxed selection, as opposed to selection against 

schooling behavior in cave populations.  
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Materials and Methods 

Animal Husbandry and Crosses 

 All animal procedures were in accordance with the guidelines of the 

National Institutes of Health and were approved by the Institutional Animal 

Care and Use Committee at Harvard Medical School. 

 Cave and surface populations of fish used in this study were obtained 

at multiple times.  The predecessors for the majority of the fish studied here 

were collected in either 2001 or 2002.  These populations of fish were 

randomly crossed and all of the fish studied here are from the first generation 

or subsequent generations of fish bred in the lab.  The Molino fish studied 

here are from a cross between wild caught Molino fish and a lab-maintained 

Molino fish population.  Both surface and cavefish were maintained on a 14 

hour light 10 hour dark cycle.   

 Individual female Tinaja cavefish were crossed to individual male 

surface fish to generate two families of F1 hybrid fish. F1 hybrid fish were 

crossed to one another to generate 320 F2 fish.  All F2 fish were from the 

same single Tinaja and surface parent.  F2 fish were tagged ventrally using 

Visual Implant Elastomer tags (Northwest Marine Technology, Inc).  All 

assays and measurements were performed on adult fish, at least four and 

half months of age.       

Schooling behavior 
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 Schooling behavior was measured as previously described (Wark et 

al., 2011).  Six model fish were created using a surface fish mold.  The fish 

were attached to a round wire, and propelled in a circle at 25 rpm by a motor.  

Assays were filmed from above using a Basler camera (Basler) at a frame 

rate of ten frames per second.  The assay tank (60cm length x 37cm width x 

18.5 cm height) was illuminated from above and to the side to reduce glare on 

the surface of the water.  Light was diffused using photo umbrellas to create a 

constant light across the surface of the water.  Individual fish were introduced 

to the tank, acclimated for two minutes and then filmed for three minutes.  F2 

fish and a subset of Tinaja cave and surface fish were assayed five times 

each, with at least two weeks between each trial.  Schooling was scored for 

each video as the proportion of time spent schooling throughout the three-

minute trial.  Schooling was defined as a fish being within 1.5 model fish body 

lengths of the model and oriented in the same direction as the model school 

for at least ten frames.  Schooling videos were scored manually in a program 

developed in LabVIEW (National Instruments).  A small number of fish 

displayed freezing behavior for more than 1/3 of the time in the assay.  These 

fish were not scored for this trial and were retested.  For fish assayed five 

times, the reported proportion of time spent schooling was the average across 

all five trials.   

Assays performed in the dark were illuminated from below using 

infrared illumination.  Surface and cavefish assayed in the dark were first 

assayed in the light, and assayed in the dark on the following day.  For 
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assays beyond the initial characterization of schooling behavior we focused 

on only surface and Tinaja cavefish as these populations were relevant to our 

genetic studies. 

Shoaling behavior 

 Fish were assayed for shoaling behavior in groups of six.  Assays were 

performed in a ten-gallon tank (50.8 cm length x25.4 cm width x30.48 cm 

height) filled with water to a height of four cm to minimize the effect of height 

when calculating distances between fish.  Assays were filmed and illuminated 

from above, as described above.  Fish groups (6 fish per group) were 

acclimated to the tank for 10 minutes, and then filmed for 10 minutes.  30 

frames, or 3 frames per minute, were extracted from each video.  In each 

frame, the nearest neighbor distance in centimeters was calculated for each 

individual fish using Fiji (Schindelin et al., 2012).  Nearest neighbor distance 

was measured as the distance from the center of the body of a fish to the 

center of the body of the fish nearest to it.  The average nearest neighbor 

distance was calculated as the average of all of the nearest neighbor 

distances for a group of fish over the course of the trial.  We also measured 

shoaling by inter-individual distance, which was assessed by measuring the 

distance between each fish and all of the other fish in the group, and 

averaging this measure for across all of the fish in the tank.  For shoaling 

group coherency, distances between pairs of fish were not re-measured for 

each individual. 
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To test shoaling in the dark, surface and cavefish assayed in the dark 

were first assayed in the light, and assayed in the dark on the following day.  

For the lens ablation experiments, the small number of lens-removed fish 

available made it impossible to assay more than one group of fish from each 

category.  Therefore, each group was tested multiple times to make sure that 

results were consistent.  

For groups of F2 fish, F2 fish were separated into groups based both 

on light-perception and the tendency to school.  Light-perceiving fish were 

defined as spending 200 seconds or more on average over three trials in the 

dark.  Non-light-perceiving fish were defined as fish spending less than 200 

seconds of their time in the dark.  Schooling fish were defined as those that 

spent at least five percent of their time following the model school, and non-

schooling fish as those that spent less than five percent of their time 

schooling.  These numbers were chosen to correspond with our QTL mapping 

data (see below).  Groups of F2 fish were housed together for 5 days before 

the assay to allow them to acclimate to each other.  

For assays beyond the initial characterization of shoaling behavior we 

focused on only surface and Tinaja cavefish as these populations were 

relevant to our genetic studies.   

Dark preference assay 

 Scototaxis was measured according to (Maximino et al., 2010).  Fish 

were placed in a 10-gallon glass tank with one half covered with aluminum foil 

to prevent light penetration.  The other side was kept uncovered and 
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illuminated with photo umbrellas to create constant light.  Fish were assayed 

individually for 5 minutes.  Trials were repeated three times on consecutive 

days, with the exception of surface fish, which were assayed one time each.  

The time the fish spent in the dark was measured and averaged over all trials.  

We focused on only surface and Tinaja cavefish as these populations were 

relevant to our genetic studies. 

Quantification of morphological traits 

Standard length was calculated at the end of all behavioral trials.  It 

was measured as the distance from the tip of the nose to the beginning of the 

tail.  Eye size and pupil size were calculated at the same time as body size.  

The diameter of both eyes and both pupils for each fish were calculated, and 

averaged together.  Measurements were made in Fiji (Schindelin et al., 2012).  

Eye and pupil size scales with body size in surface fish.  For surface and F1 

fish, eye and pupil size were corrected for standard length.  To correct for eye 

and pupil size in F2 fish, the expected eye and pupil size for a surface fish 

was calculated for each fish’s standard length.  The observed eye or pupil 

size was divided by the expected size, and numbers were reported as a 

proportion of the observed over the expected (Protas et al., 2008).   

Neuromasts were visualized using (2-(4-(dimethylamino)styryl)-N-

Ethylpyridinium iodide, or DASPEI (Invitrogen) (Jørgensen, 1989).  Fish were 

placed in 25 ug/ml for one hour, and then imaged.  Staining was imaged 

under a dissecting scope.  Cranial neuromast number was quantified using 

Fiji (Schindelin et al., 2012) for the left side of the face for each fish, and 
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included all visible neuromasts from the nose to the gill.  Neuromast number 

scaled with size of the fish.  To account for variation in fish size, neuromast 

number was corrected for the nose to pectoral length taken at the time of 

imaging neuromasts for each fish.  Nose to pectoral length scaled with body 

size, and was therefore a good proxy for body size.  This correction removed 

all effects of standard length on neuromast number.  Neuromast diameter 

was measured for three suborbital neuromasts per fish, and the average 

diameter is reported in pixels.  

Note that some morphological traits were not measured in all F2 fish, 

and therefore numbers of F2 fish measured for each trait are variable.  We 

focused on only surface and Tinaja cavefish as these populations were 

relevant to our genetic studies.   

Neuromast ablation 

 Neuromasts were ablated by treating fish with 0.002% gentamicin, 

which was shown to ablate neuromast function in Astyanax mexicanus 

previously (Yoshizawa et al., 2010).  Fish were placed in gentamicin or fish 

water for 14-20 hours, and then removed to fresh fish water for behavioral 

assays.  Fish were tested first for shoaling, and then a subset of fish were 

tested for schooling.  Control fish were mock-treated with fish water only.  We 

confirmed that the ablations worked by staining the fish using DASPEI after 

the behavioral assay. 

Lens removal  
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 Lens removal was conducted as previously described (Yamamoto and 

Jeffery, 2000; Yamamoto and Jeffery, 2002).  Briefly, fish embryos at 36-48 

hours post fertilization were treated with a calcium-free medium and 

embedded in agar.  Lenses were removed using a tungsten needle, and 

embryos were recovered from the agar.  Control fish were embedded in agar 

and recovered, but did not have lenses removed. 

Inhibitor treatment 

 Fish were treated with 10 uM of (R)-(-)-Deprenyl hydrochloride (Sigma) 

or 14 uM of Fluoxetine hydrochloride (Sigma) by administering the drug to 

their water for 5 hours prior to the experiment.  Assays occurred in fresh 

water.  Control fish were placed in fish water only for 5 hours prior to assays.  

Fish were first assayed for shoaling behavior, and then a subset of these fish 

were also assayed for schooling behavior.  

SNP identification and genotyping 

 SNPs for genotyping and linkage map construction were discovered 

using double digest RADseq as previously described (Peterson et al., 2012).  

Tinaja, surface, and F1 hybrid parental fish, as well as all F2 fish were 

anesthetized in tricaine and fins were clipped for DNA extraction.  DNA was 

digested using MspI and EcoRI (New England BioLabs) overnight.  Digested 

DNA was purified using Agencourt AMPure XP beads (Beckman Coulter) and 

ligated to 48 unique barcoded adaptors (Peterson et al., 2012).  DNA was 

then pooled, bead purified, and size selected for a size of 224 bp of genomic 

DNA using the Pippin prep (Sage Science).  Size selected DNA was amplified 
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with Phusion (New England BioLabs) for 10 cycles using Illumina indexed 

primers.  Up to 144 individuals were pooled and sequenced using Hiseq 2000 

(Illumina) sequencing.  Parental fish were sequenced using 100 bp PE 

sequencing and F2 fish were sequenced using 50 bp SE reads. 

 Sequence data were analyzed as described for reference-free 

clustering in (Peterson et al., 2012).  The resulting assembly was used as a 

reference for mapping using Stampy (Lunter and Goodson, 2011), and 

realignment and variant calling were performed using the genome analysis 

toolkit (version 2.1) with indelrealigner and unified genotyper (McKenna et al., 

2010; DePristo et al., 2011).  Using a QD of 5 and a GQ of 20, genotypes 

were determined at each locus for each individual.  We mapped markers to 

zebrafish using BLAST as described previously (O'Quin et al., 2013).    

QTL mapping 

 Linkage map construction and QTL mapping were performed in R/qtl 

(Broman et al., 2003).  Linkage map construction was performed using the 

Kosambi map function and an error rate of 0.005.  All QTL were mapped 

using the maximum likelihood and Haley-Knott methods for interval mapping, 

using the function “scanone”.  All methods yielded similar results for the traits 

reported.  Binary traits were mapped using a binary model, while continuous 

traits were mapped using a normal model (eye and pupil size) or a non-

parametric model (schooling).  All p-values presented were for α=0.05 after 

1000 permutations using a genome-wide significance threshold.  Percent 
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variance explained was estimated using “fitqtl.”  The confidence interval was 

established using the “bayesint” function. 

For mapping schooling behavior, we used a binary measure of 

schooling.  Fish that schooled 5% of the time or more across five trials were 

counted as schooling. This cut-off was chosen because no cavefish tested 

schooled for more than 5% of the time in five trials, while all surface fish 

(Figure 2.12) and F1 fish (data not shown) schooled for more than 5% of the 

time.  In addition, it included F2 fish that schooled in only one trial, which we 

did not observe in cavefish.  For mapping dark preference, we used a binary 

cutoff of 200 seconds on average spent in the dark, and for light-perceiving 

schooling fish, we used only the fish that spent 200 seconds or more in the 

dark. 

Statistics 

To compare the different traits, we performed ANOVA on traits for which we 

had measured multiple groups, and then planned-contrast tests and post hoc 

Games-Howell tests, frequently used post hoc tests for ANOVA, to determine 

pairwise differences between groups.  Comparisons of groups which had non-

normal distributions, as measured by a Shapiro-Wilk test, were analyzed 

using a Kruskal Wallis test, followed by pairwise Mann-Whitney tests 

corrected for multiple testing using a Bonferroni correction.  Comparisons that 

violated a homogeneity of variance test, using a Levene test, were subjected 

to a Welch ANOVA, followed by post-hoc Games-Howell tests.  Comparisons 

with only two groups were tested by a Student’s T-test or a Welch test.  For 
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the correlation statistics, we used a Pearson correlation for normally 

distributed traits and Spearman rank correlations for non-normally distributed 

traits.  To determine repeatability across five trials, we determined the 

intraclass correlation coefficient.  All statistics were performed in R (Team, 

2012) or in SPSS. 
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Abstract  

 When an organism colonizes a new environment, it needs to adapt, 

both morphologically and behaviorally, to survive and thrive. While recent 

progress has been made in understanding the genetic architecture underlying 

morphological evolution, behavioral evolution is poorly understood. Here, we 

use the Mexican cavefish, Astyanax mexicanus, to study the genetic basis for 

convergent evolution of feeding posture. When river-dwelling surface fish 

became entrapped in the caves they were confronted with dramatic changes 

in the availability and type of food source and in their ability to perceive it. In 

this setting, multiple independent populations of cavefish exhibit an altered 

feeding posture compared to their ancestral surface forms. We determined 

that this behavioral change in feeding posture did not evolve to accommodate 

changes in cranial facial morphology, or to take advantage of the expansion 

in the number of taste buds. Quantitative genetic analysis demonstrates that 

two different cave populations have evolved similar feeding postures through 

a small number of genetic changes, some of which appear to be distinct.  This 

work indicates that independently evolved populations of cavefish can evolve 

the same behavioral traits to adapt to similar environmental challenges by 

modifying different sets of genes. 

 

Introduction 

 The colonization of caves is an extreme example of a species entering 

a new environment.  Unique attributes of caves, relative to the surface 
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environment, include darkness, high humidity, relatively constant 

temperature, absence of predators, and scarcity of food.  Under these 

circumstances, many species of cave animals have evolved a suite of similar 

traits, both constructive, such as heightened sensory systems, and 

regressive, including loss of pigmentation and reduction in eye morphology 

(Protas and Jeffery, 2012).  To study the evolution of cave-specific traits, we 

have focused on Astyanax mexicanus, the Mexican tetra.  Astyanax 

mexicanus exists in two forms, a cave-dwelling form and a river-dwelling 

surface form.  Importantly, in spite of at least 10,000 years of isolation, these 

forms remain interfertile (Wilkens, 1988), allowing one to take a genetic 

approach utilizing quantitative trait loci (QTL) analysis for the mapping of cave 

traits. Furthermore, there are multiple, independently evolved cave 

populations (Mitchell et al., 1977; Dowling et al., 2002; Strecker et al., 2004; 

Bradic et al., 2012; Gross, 2012) that in many cases have evolved similar 

traits, allowing for the study of convergent evolution. 

Populations of cave organisms have often been the subjects of studies 

in convergence.  For example, loss of pigmentation evolved via disruptions in 

the same place in the melanin synthesis pathway in multiple species of cave 

organisms (Bilandzija et al., 2012).  Similarly, a decrease in the levels of 

melanin synthesis arose in multiple cave populations of Astyanax mexicanus 

through different mutations in the same genes (Protas et al., 2006; Gross et 

al., 2009).  In contrast, crosses between multiple cave populations of 

Astyanax mexicanus result in embryonic hybrid fish with larger, functional 
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eyes, indicating that evolution of this trait is controlled by different genetic loci 

in different cave populations (Wilkens, 1988; Borowsky, 2008).  

 Behavioral traits are among the most intriguing and least understood 

adaptations to caves.  Cave populations of Astyanax mexicanus have evolved 

an enhanced attraction to sources of vibration, loss of schooling behavior, 

reduction in time spent sleeping, and a loss of aggression (Schemmel, 1974; 

Burchards et al., 1985; Wilkens, 1988; Teyke, 1990; Parzefall and Fricke, 

1991; Yoshizawa et al., 2010; Duboue et al., 2011; Elipot et al., 2013).  Little 

is known about how these behaviors evolve and whether each behavior has 

evolved through the same or different genes or pathways as an adaptation to 

cave life.     

 Here we focus on a convergent aspect of feeding behavior and its 

potentially related morphological traits found in cave populations of Astyanax 

mexicanus.  Surface fish feed at a steep angle relative to the substrate when 

feeding in the dark.  In contrast, multiple cave populations feed at a much 

lower angle (Schemmel, 1980).  We examined feeding posture in three 

independently evolved cave populations to determine the underlying genetic 

architecture, including the extent to which this behavior was dependent upon 

correlated morphological changes, and to determine if multiple cave 

populations evolved this alternative feeding posture through changes in the 

same or different genetic loci.  
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Results 

Characterizing feeding posture in several independently evolved cave 

populations 

 We developed assays to quantify feeding posture by measuring the 

feeding angle for individual fish, filming them in the dark, from either above or 

the side, with an infrared camera (Figure 3.1A). We measured feeding 

posture in surface fish, as well as in three independently evolved populations 

from different caves, Pachón, Tinaja, and Molino. There were significant 

differences in feeding angle among groups (ANOVA: F6,194=25.4, p<0.001).  

While surface fish fed at a high angle (average 74°), two populations of 

cavefish, the Pachón cavefish and the Tinaja cavefish, fed at significantly 

lower angles on average (38° and 49°; Games-Howell: p<0.001 and p<0.001 

respectively; Surface n=43, Pachón n=29, Tinaja n=46; Figure 3.1B-D).  

However, the third population of cavefish, from the Molino cave, fed at an 

angle similar to surface fish (66°, Games-Howell: p=0.253; Molino n=24; 

Figure 3.1D).  Thus, cavefish populations can differ from each other in 

feeding posture and a lower feeding posture has evolved independently in at 

least two cave populations. 

Genetics of feeding posture 

In order to investigate the genetic basis of feeding posture, we 

performed multiple crosses and measured feeding posture in the resulting 

progeny.  F1 hybrid fish from both surface/Tinaja and surface/Pachón crosses 

exhibited average feeding angles similar to surface fish, indicating that a  
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Figure 3.1. Genetics of feeding angle in multiple, independently evolved 

cave populations.   

A.  Schematic of two methods for filming feeding posture: top or side.  The 

surface/Tinaja cross was filmed from the side, while the surface/Pachón cross 

was filmed from above.  B.  Feeding posture in a surface fish.  C.  Feeding 

posture in a Tinaja cavefish.  D.  Distribution of feeding posture in surface fish 

(n=43), surface/Tinaja F1 hybrid fish (n=4), surface/Pachón F1 hybrid fish 

(n=30), Tinaja (n=46), Pachón (n=29), Molino (n=24), and Pachón/Tinaja F1 

hybrid fish (n=25).  E.  Distribution of 267 F2 fish from a surface/Pachón F1 

intercross.  F.  Distribution of 226 F2 fish from a surface/Tinaja F1 hybrid 

intercross.  *p<0.05, **p<0.01, ***p<0.001 
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Figure 3.1, cont. 
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surface-like phenotype is dominant (76° and 71°; Games-Howell: p=0.998, 

p=0.958, respectively; surface/Tinaja F1s n=4, surface/Pachón F1s n=30; 

Figure 3.1D).  F1 fish from both of these crosses were significantly different 

from their parental cave population (Games-Howell: surface/Tinaja F1s 

p<0.001, surface/Pachon F1s: p<0.001; Figure 3.1D).  In addition, feeding 

posture was similar in surface/Pachón F1 hybrid fish regardless of which 

parent was a surface fish and which parent was a Pachón cavefish (73° and 

68°; independent t-test, t28=0.87, p=0.39; Pachón-mothered F1: n=14, 

Surface-mothered F1: n=16).   

F2 fish were generated by intercrossing F1 hybrid fish.  F2 population 

distributions of feeding angle from the surface/Tinaja and surface/Pachón fish 

both have peaks weighted towards the mean angle observed in surface fish 

with tails extending over the angle seen in cave populations (surface/Pachón 

F2s n=267, surface/Tinaja F2s n=226; Figure 3.1E and F).  These 

distributions suggest that this is a multigenic trait in both cave populations. 

Fish body length had a small contribution to average feeding angle in the 

surface/Tinaja F2 cross (r=0.25, p<0.001, n=170, Supplemental Figure 1A).  

Sex of the fish also contributed to feeding posture (t138=-2.2, p<0.05, n=170, 

Figure 3.2B).  However, neither of standard length (r=-0.09, p=0.137, n=267) 

nor sex (Mann-Whitney: U=173, p=0.85, n=39) affected feeding posture in the 

surface/Pachón F2 population (Figure 3.2C and D). 

 To determine if feeding posture evolved by the same genes in these 

two cave populations, we crossed Pachón and Tinaja fish and measured  
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Figure 3.2.  Effects of body length and sex on feeding angle. 

A.  Average angle compared to standard length in surface/Tinaja F2 hybrid 

fish (n=170).  B.  Average angle in male and female fish from a surface/Tinaja 

F2 hybrid cross (n=170).  C.  Median angle compared to standard length in 

surface/Pachón F2 hybrid fish (n=267).  D.  Median feeding angle in male 

(n=15) and female (n=24) fish from a surface/Pachón F2 cross.  
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feeding angle in F1 hybrid fish.  Pachón/Tinaja F1 hybrid fish ranged in their 

behavior from surface-like to cave-like feeding postures (Figure 3.1D).  

Furthermore, this F1 population was significantly different from surface 

(Games-Howell: p<0.01, Pachón/Tinaja F1 fish n=25) and Pachón fish 

(Games-Howell: p<0.01), but not significantly different from Tinaja fish 

(Games-Howell: p=0.394).  Pachón and Tinaja fish populations were 

significantly different from one another (Games-Howell: p<0.05).  Lack of 

complete complementation in the Pachón/Tinaja F1 hybrid fish data suggests 

that some of the genetic changes controlling evolution of feeding posture in 

these two caves were shared, or resulted from independent, but additive 

genetic changes.  However, differences between the Pachón and Tinaja fish 

populations, and between Pachón/Tinaja F1 hybrid fish and Pachón fish 

suggest that at least one genetic change resulting in a lower feeding angle 

was different between these two populations.  Furthermore, these data are 

consistent with previous results demonstrating that these two cave 

populations evolved independently (Borowsky, 2008; Bradic et al., 2012). 

The evolution of feeding posture is not linked to craniofacial 

morphological evolution 

 In addition to behavioral changes, cavefish have evolved a variety of 

morphological traits to adapt to cave life.  Many of these morphological 

adaptations are found in multiple, independently evolved cave populations.  

Therefore, it was possible that feeding posture evolved secondarily, as a 

result of one or more of these morphological traits.  In order to test this 
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hypothesis, we quantified cranial facial traits that have evolved in cave 

populations, and compared their inheritance to feeding posture. 

 The shape of the cavefish face is noticeably different from that of the 

surface fish (Yamamoto et al., 2003), in particular by having an altered angle 

of the jaw relative to the body axis.  While the adaptive significance of this is 

unclear, clearly it could relate in a direct manner to feeding behavior.  We 

measured the angle of the jaw by measuring the angle from the tip of the 

nose to the lower end of the second suborbital bone, relative to a line 

bisecting the fish from the tip of the nose to the tail, and found significant 

differences between groups of parental fish (ANOVA:  F4,96=17.4, p<0.001; 

Surface n=38, surface/Pachón F1s n=9, Pachón n=21, Tinaja n=22, Molino 

n=10).  Surface fish have a larger jaw angle compared to Pachón (Games-

Howell: p<0.001) and Tinaja (Games-Howell: p<0.05) but not Molino cavefish 

(Games-Howell: p=0.10; Figure 3.3A).  In addition, Pachón fish have 

significantly smaller jaw angles than the other cavefish (Games-Howell: 

Tinaja p<0.01 and Molino p<0.05).  Surface/Pachón F1 hybrid fish looked 

similar to surface fish (Games-Howell: p=0.40) and different from Pachón fish 

(Games-Howell: p<0.01; Figure 3.3A) and the majority of surface/Pachón F2 

fish had a jaw angle similar to surface fish, with a subset of these fish having 

a Pachón-like jaw angle, indicating that this trait is multigenic and that the 

surface phenotype is largely dominant (Figure 3.3B).  However, jaw angle 

was not significantly correlated with feeding angle in F2 fish (r=0.03, p=0.61,  
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Figure 3.3.  Comparison of feeding angle to cranial facial traits. 

A. Jaw angle in surface (S, n=38), surface/Pachón F1 hybrid fish (S/P F1s, 

n=9), Pachón (P, n=21), Tinaja (T, n=22), and Molino (M, n=10) fish.  B.  Jaw 

angle in surface/Pachón F2 fish (n=237).  C.  Median feeding angle compared 

by jaw angle in surface/Pachón F2 fish (n=231).  D.  Ventral taste bud residuals 

regressed against nose to pectoral length in surface (n=14), surface/Tinaja F1 

hybrid fish (S/T F1s, n=4), Tinaja (n=10), Pachón (n=9), and Molino (n=10) fish.  

E.  Ventral taste bud residuals regressed against nose to pectoral length in 

surface/Tinaja F2 fish (n=154).  F. Average feeding angle by ventral taste bud 

number residuals in surface/Tinaja F2 fish (n=83).  G.  Orbit diameter residuals 

regressed against nose to pectoral length in surface (n=25), surface/Tinaja F1 

hybrids (n=3), Tinaja (n=18), Pachón (n=9) and Molino (n=10) cavefish.  H.  

Orbit diameter residuals regressed against nose to pectoral length in 

surface/Tinaja F2 fish (n=213).  I.  Average feeding angle by orbit diameter 

residuals in surface/Tinaja F2 fish (n=119).  J.  Jaw width residuals regressed 

against nose to pectoral length in surface (n=25), surface/Tinaja F1 hybrids 

(n=3), Tinaja (n=18), Pachón (n=8) and Molino (n=10) cavefish.  K.  Jaw width 

residuals regressed against nose to pectoral length in surface/Tinaja F2 fish 

(n=212).  L.  Average feeding angle by jaw width residuals in surface/Tinaja F2 

fish (n=118).  M.  Maxillary tooth number in surface (n=13), surface/Tinaja F1 

hybrids (n=5), Tinaja (n=8), Pachón (n=9), and Molino (n=12) cavefish.  N.  

Maxillary tooth number in surface/Tinaja F2 fish (n=162).  O.  Average feeding 

angle by maxillary tooth number in surface/Tinaja F2 fish (n=95).  *p<0.05, 

**p<0.01, ***p<0.001. 
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Figure 3.3, cont. 
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n=231, Figure 3.3C).  Therefore, it is unlikely that feeding posture evolved as 

a consequence of jaw angle. 

 Another morphological trait that could potentially affect feeding posture 

is taste bud number and distribution.  Cavefish have more taste buds than 

surface fish, and unlike surface fish, their taste buds are widely distributed all 

over their heads (Schemmel, 1974; Varatharasan et al., 2009).  In principle, 

cavefish could have changed their feeding posture in order to allow their 

expanded ventral taste buds to contact the substrate as they search for food.  

We visualized taste buds by staining whole fish with an antibody against 

calretinin, and quantified taste bud number dorsally, ventrally, and on both 

lips.  Number of taste buds scaled with body size, so we corrected for size by 

calculating the residuals when taste bud number was regressed against nose 

to pectoral length.  There were significantly different numbers of taste buds 

between groups (ANOVA: F4,42=24.0, p<0.001; Surface n=14, surface/Tinaja 

F1s n=4, Tinaja n=10, Pachón n=9, Molino n=10).  Surface fish had 

significantly fewer ventral taste buds than Tinaja (Games-Howell: p<0.001) 

and Pachón (Games-Howell: p<0.001) but not Molino cavefish (Games-

Howell: p=0.053; Figure 3.3D).  While Pachón and Tinaja fish do not have 

significantly different numbers of taste buds from one another (Games-

Howell: p=0.96), Molino cavefish have significantly fewer taste buds than 

either of these other caves (Games-Howell: p<0.01 and p<0.01, respectively).  

Taste bud number in surface fish was not significantly different than in 
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surface/Tinaja F1 fish (Games-Howell: p=0.85), suggesting that the surface 

phenotype is dominant (Figure 3.3D).   

 Surface/Tinaja F2 fish range in their number of taste buds, with the 

majority of F2 fish having an intermediate phenotype (n=154, Figure 3.3E).  

However, ventral taste bud number was not significantly correlated with 

feeding angle in F2 fish (r=0.21, p=0.051, n=83, Figure 3.3F).  Therefore, it is 

unlikely that increased number of taste buds affected the evolution of feeding 

posture. 

 To determine if other aspects of cranial facial morphology affected 

feeding posture, we measured cranial skeletal traits previously described to 

be different between cave and surface fish, including orbital opening 

diameter, jaw width and maxillary tooth number (Wilkens, 1988; Jeffery, 

2001).  

 Orbital diameter scaled with body size, and was corrected for body 

size as described above.  There were significant differences in orbit diameter 

in the different fish populations (ANOVA:  F4,60=159.6, p<0.001; Surface 

n=25, surface/Tinaja F1s n=3, Tinaja n=18, Pachón n=9, Molino n=10).  

Surface fish have larger orbital diameters than all three cave populations 

(Games-Howell: Tinaja p<0.001, Pachón p<0.001, Molino p<0.001, Figure 

3.3G).  Molino and Pachón cavefish do not have significantly different orbital 

diameters (Games-Howell: p=0.99), however, Tinaja fish have smaller orbits 

than fish from the other two caves (Games-Howell:  p<0.01 and p<0.05, 

respectively).  Surface/Tinaja F1 hybrid fish have an intermediate orbit size,  
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significantly different from Tinaja fish (Games-Howell: p<0.01) but not 

significantly different from surface fish (Games-Howell: p=0.056, Figure 

3.3G).  Surface/Tinaja F2 fish ranged in orbit size, with the majority of fish 

having orbits similar to F1 hybrid fish (n=213, Figure 3.3H).  Orbit size did not 

correlate with feeding angle (r=-0.06, p=0.54, n=119, Figure 3.3I).  In addition, 

eye size was not correlated with feeding angle in the surface/Pachón cross 

(r=0.02, p=0.75, Figure 3.4).  Thus, we found no evidence for orbit size 

affecting feeding posture. 

 Jaw width was measured at the jaw joint, and corrected for body size 

as described above.  There were significant differences between groups of 

fish (ANOVA:  F4,60=15.9, p<0.001; Surface n=25, surface/Tinaja F1s n=3, 

Tinaja n=18, Pachón n=8, Molino n=10).  Surface fish have significantly 

narrower jaws than cave populations (Games-Howell test: Tinaja p<0.001, 

Pachón p<0.01, and Molino p<0.01; Figure 3.3J).  Surface/Tinaja F1s have 

jaw widths similar to surface fish (Games-Howell: p=0.909) and significantly 

different from Tinaja fish (Games-Howell: p<0.01), indicating that the surface 

phenotype is dominant (Figure 3.3J).  The majority of surface/Tinaja F2 fish 

have an intermediate jaw width (n=212, Figure 3.3K).  However, as with the 

other morphological traits, jaw width was not correlated with feeding angle 

(r=0.03, p=0.77, n=118, Figure 3.3L). 

Finally, fish groups have significantly different numbers of total 

maxillary teeth (ANOVA: F4,38=19.7, p<0.001; Surface n=13, surface/Tinaja 

F1s n=5, Tinaja n=8, Pachón n=9, Molino n=12).  Surface fish have 
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significantly fewer maxillary teeth than all cavefish (Games-Howell:  Tinaja 

p<0.001, Pachón p<0.001, Molino p<0.001; Figure 3.3M).  Surface/Tinaja F1 

hybrid fish are intermediate in phenotype, not significantly different from 

surface fish (Games-Howell: p=0.18) or from Tinaja cavefish (Games-Howell: 

p=0.13).  The majority of F2 fish look like F1 hybrid fish, with an intermediate 

phenotype between Tinaja and surface fish (n=162, Figure 3.3N).  Tooth 

number is also not correlated with feeding angle in F2 fish (r=0.19, p=0.06, 

n=95, Figure 3.3O).  Together, these morphological data suggest that it is 

unlikely that differences in feeding posture among surface fish, Tinaja and 

Pachón cavefish are secondary consequences of differences in any of these 

morphological traits. 

QTL mapping of feeding posture 

 We performed QTL mapping on F2 fish from a surface/Pachón F1 

intercross and from a surface/Tinaja F1 intercross.  For the surface/Pachón 

cross, 382 individuals were genotyped for 698 markers, from RAD-seq, 

microsatellites, and candidate genes, and a linkage map of 25 linkage groups 

was generated as previously described (O'Quin et al., 2013) and was used for 

mapping.  For the surface/Tinaja cross, a linkage map was generated from 

330 SNPs and 292 individuals, as previously described (Kowalko et al., 

submitted), and eight microsatellites mapped in the surface/Pachón cross 

were included in this map.  In addition, 47 individuals were added to the 

surface/Tinaja cross.  Together, these additional data resolved the linkage 

map to 27 linkage groups.   
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 We found two significant QTL at a p-value of 0.05 in the 

surface/Pachón cross, one on LG 6 and one on LG 17 that explained 7 and 

5.4 percent of the variance in feeding angle, respectively (Figure 3.5A,D-G, 

Table 3.1).  Homozygous cave genotypes at markers under both QTL 

resulted in a decrease in feeding angle, with heterozygous genotypes 

resulting in an intermediate feeding phenotype (Figure 3.5E and G). 

 We found one significant QTL at a p-value of 0.05 in the surface/Tinaja 

cross on LG 24 that explained 10.8 percent of the variance in feeding angle 

(Figure 3.6A and C, Table 3.1).  Homozygous cave genotypes at the marker 

under this QTL resulted in an increase in feeding angle (Figure 3.6D).  The 

heterozygous genotype had a similar feeding angle to the homozygous cave 

genotype.   

 In order to determine if the QTL were present in the same or different 

locations in these two crosses, we performed alignment analyses using the 

latest Astyanax mexicanus genomic assembly (Assembly: 

Astyanax_mexicanus-1.0.2).  In addition, we genotyped microsatellites under 

the QTL peaks of the surface/Pachón cross in the surface/Tinaja cross, and 

placed these markers onto the linkage map.  In total, 194 genomic markers of 

both surface/Pachón and surface/Tinaja crosses were successfully aligned to 

101 genomic scaffolds indicating 101 syntenic regions between Pachón and 

Tinaja linkage maps. We confirmed that we were matching the appropriate 

linkage groups by determining that the eight microsatellites we genotyped in 

the surface/Tinaja cross mapped to the appropriate linkage groups in the 
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Figure 3.5.  QTL mapping of feeding angle, jaw angle and eye size in a 

surface/Pachón cross. 

A.  Genome-wide LOD scores from a scanone QTL for feeding angle (red) 

and jaw angle (blue) and eye size (green).  The scales on the left are for 

feeding posture and jaw angle, and on the right for eye size.  Dotted line 

indicates a p-value cutoff of 0.05 with the color corresponding the color for 

the trait.  The X-axis indicates genetic distance in each linkage group.  B.  

Jaw angle QTL at LG 3.  Blue shaded area indicates the confidence interval 

using Bayesian credible intervals with probability coverage as 0.95 for the 

QTL.  C.  Effect plot of phenotypic values of jaw angle against each 

genotype (mean ± s.e.m.) at the peak locus at LG 3.  D.  Feeding angle QTL 

at LG 6.  Red area indicates the confidence interval.  E.  Effect plot of 

feeding angle QTL at LG 6.  F.  Feeding angle QTL at LG 17.  Red shaded 

areas indicate confidence intervals.  G.  Effect plot of feeding angle QTL at 

LG 17.  SS, surface fish homozygote.  SC. heterozygote, and CC, cavefish 

homozygote. 
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Figure 3.5, cont. 
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Table 3.1 – QTL analysis. 

LG-P: Linkage groups of the surface/Pachón cross.  LG-T:  Linkage groups of 

the surface/Tinaja cross.  cM: centimorgan.  CI: Confidence intervals for the 

position of the QTL using a 95% Bayesian credible interval.  PVE: percentage 

of the phenotypic variance explained.  S/P:  Surface/Pachón cross.  S/T:  

Surface/Tinaja cross. 

 

Trait Cross LG-P LG-T cM CI PVE alpha 
Feeding angle S/P 6 

17 
11 
13 

35.6 
49 

21-42 
34-73 

7 
5.4 

0.05 

Jaw angle S/P 3 2 63 55-72 8.3 0.05 
Feeding angle S/T 20 24 36 20-52 10.8 0.05 
Tastebuds – lateral S/T 25 18 123 114-124 10.9 0.05 
Tastebuds – ventral S/T 2 1 148 76-154 11.6 0.05 
Orbit 
 
 
 
 

S/T 11 
19 
15 
13 
12 

3 
6 
9 

16 
20 

74 
74 
35 
88 
12 

70-84 
68-75 
34-36 
78-96 
4-24 

7.8 
11.2 
7.0 
5.6 
6.6 

0.05 

Jaw width S/T 22 7 61 0-70 7.2 0.15 
Maxillary tooth number S/T 1 21 0 0-46 9.1 0.15 
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Figure 3.6.  QTL mapping of feeding angle, taste buds, orbit diameter, 

jaw width, and maxillary tooth number in a surface/Tinaja cross. 

A.  Genome-wide LOD score from scanone QTL for feeding angle (FA - black), 

lateral taste bud number residuals (LTB - dark blue) and ventral taste bud 

number residuals (VTB -light blue).  Lines indicates p-value cutoff of 0.05 for 

each trait.  B.  Genome-wide LOD score from scanone for feeding angle (FA - 

black), jaw width residuals (JW - light green), maxillary tooth number (MT - 

red), and orbit diameter residuals (OD – dark green).  Lines indicate p-value 

cutoff of 0.05 (solid) or 0.15 (dotted) for each trait.  C.  Feeding angle QTL at 

LG 24.  D.  Effect plot for feeding angle QTL.  E.  Lateral taste bud residuals 

QTL at LG 18.  F.  Effect plot for lateral taste bud residuals at LG 18.  G.  

Ventral taste bud residuals QTL at LG 1.  H.  Effect plot for ventral taste bud 

residuals at LG 1.  I.  Jaw width residuals QTL at LG 7.  J.  Effect plot for jaw 

width residuals at LG 7.  K.  Maxillary tooth number QTL at LG 21.  L.  Effect 

plot for maxillary tooth number QTL at LG 21.  M.  Orbital diameter residuals 

QTL at LGs 3, 6, 9, 16, and 20.  N.  Effect plot for orbital diameter residuals at 

LG 3.  O.  Effect plot for orbital diameter residuals at LG 6.  P.  Effect plot for 

orbital diameter residuals at LG 9.  Q.  Effect plot for orbital diameter residuals 

at LG 16.  R.  Effect plot for orbital diameter residuals at LG 20.  For 

D,F,H,J,L,N-R, CC stands for homozygous cave genotypes, SS for 

homozygous surface genotypes, and SC for heterozygous genotypes. For 

C,E,G,I,K,M, red shaded area indicates the 95% confidence interval. 
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Figure 3.6, cont. 
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surface/Pachón cross.  Pachón LG 6 displayed synteny with Tinaja LG 11, 

and Pachón LG 17 displayed synteny with Tinaja LG 13 (Figures 3.7A and B).  

In addition, Tinaja LG 24 showed synteny with Pachón LG 20 (Figure 3.8).  

None of these linkage groups shared QTL, even at a lenient p-value of 0.1.  

Thus, it appears that we identified distinct QTL, representing different loci 

regulating feeding angle in each cavefish population. 

Morphological trait QTL do not overlap with behavioral QTL 

 We also mapped the morphological traits described above to 

determine if there was overlap with the behavioral QTL we identified.  QTL 

mapping of jaw angle in the surface/Pachón cross resulted in one significant 

QTL on LG 3 at a p-value of 0.05 (Figure 3.5A-B).  Both heterozygous and 

homozygous cave alleles resulted in a larger jaw angle (Figure 3.5C).  QTL 

mapping of taste bud number in the surface/Tinaja cross resulted in two 

significant QTL, one for ventral taste bud number, and one for the number of 

taste buds on the lateral left side of the face (Figure 3.6A, E, G).  The lateral 

taste bud QTL explained 10.9 percent of the variance of this trait, while the 

ventral taste bud QTL explained 11.6 percent of the variance (Table 3.1).  

Both of these QTL resulted in more taste buds in individuals with homozygous 

cave alleles, and an intermediate number of taste buds in heterozygous 

individuals (Figure 3.6F and H).  Orbit diameter QTL mapped to two QTL on 

LG3 and LG6 using a one QTL model of mapping, and an additional 3 QTL 

on LGs 9,16, and 20 using a step-wise mapping method (p<0.05, Figure 3.6B  
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Figure 3.7  Aligning Pachón and Tinaja linkage maps reveals a lack of 

overlap of the surface/Pachón feeding angle QTL regions with 

surface/Tinaja QTL.   

A.  Feeding angle QTL on LG 6 from the surface/Pachón cross in red.  Red 

area indicates the confidence interval.  The LOD trace for feeding angle on 

the corresponding linkage group, LG 11, from the surface/Tinaja cross in 

black.  B.  Feeding angle QTL on LG 17 from the surface/Pachón cross in 

red.  Red area indicates the confidence interval.  The LOD trace for feeding 

angle on the corresponding linkage group, LG 13, from the surface/Tinaja 

cross in black.  Red characters indicate genomic markers of the 

surface/Pachón cross, which were successfully anchored on the shared 

genomic scaffolds between the surface/Pachón and the surface/Tinaja 

crosses.   
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Figure 3.7, cont. 
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Figure 3.8  Aligning Pachón and Tinaja linkage maps reveals a lack of 

overlap of the surface/Tinaja feeding angle QTL regions with the 

surface/ Pachón QTL.   

Feeding angle QTL on LG 24 from the surface/Tinaja cross in black.  Red 

area indicates the confidence interval.  The LOD trace for feeding angle on 

the corresponding linkage group, LG 20, from the surface/ Pachón cross in 

red.   
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and M).  These QTL explained 7.8, 11.2, 7.0, 5.6, and 6.6 percent of the 

variance of orbit size, respectively (Table 3.1). Cave alleles resulted in 

smaller orbit size in three of the five of these QTL (Figure 3.6N-R).  Jaw width 

mapped to one suggestive QTL on LG 7 that explained 7.2 percent of the 

variance in jaw width (p<0.15, Figure 3.6B and I, Table 3.1).  Cave alleles 

resulted in a larger jaw width at this QTL (Figure 3.6J).  Maxillary tooth 

number mapped to one suggestive QTL on LG 21 that explained 9.1 percent 

of the variance of this trait (p<0.15, Figure 3.6B and K, Table 3.1).  Cave 

alleles of this QTL resulted in more maxillary teeth (Figure 3.6L). 

We compared the QTL from the Tinaja cross with the morphological 

QTL described here and elsewhere ((Protas et al., 2007; Protas et al., 2008) 

and Figure 3.5A) from a Pachón cross.  We found that the Tinaja taste bud 

and maxillary tooth QTL were not in the same regions as those in Pachón fish 

(Protas et al., 2007; Protas et al., 2008).  We found that only one eye size 

QTL, the Tinaja LG 6 QTL for orbit diameter, was located at the syntenic 

region of the Pachón eye size QTL at LG 19 (Figure 3.5A and Figure 3.6L).  

This is consistent with the idea that Pachón and Tinaja fish share only a small 

number of eye loci (Borowsky, 2008).   

 None of the QTL for morphological traits mapped to the same location 

as the QTL for feeding angle in the surface/Tinaja cross, or to the locations of 

the QTL for feeding angle in the surface/Pachón cross (Table 3.1).  While the 

one QTL for eye size maps to the same region as a QTL for feeding angle in 

the surface/Pachón cross, it is unlikely that eye size plays a large role in the 
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evolution of feeding angle in Pachón fish given the lack of correlation between 

these traits in the F2 fish from this cross (Figure 3.7, Figure 3.5A).  These 

data suggest that evolutionary changes in cranial facial morphology and 

sensory systems are not responsible for the differences in feeding posture 

observed in some cavefish populations and surface fish.   

 

Discussion 

 We find that a similar feeding posture has evolved in multiple, 

independently evolved cave populations.  F2 fish generated from crosses 

between surface fish and fish from two of the caves had a range of feeding 

postures, indicating that multiple genes control the evolution of this behavior.  

Furthermore, a complementation test indicates that at least some different loci 

control the reduction in feeding angle in these cave populations.  These 

conclusions are consistent with QTL mapping, in which we find multiple QTL 

for feeding posture, and different loci in each cavefish cross.  Last, we 

measure a variety of craniofacial morphological traits, and find that none of 

them correlate with feeding posture, and, moreover, that the majority of QTL 

for these traits do not fall in the same locations as feeding posture QTL, 

indicating a small, if any, contribution of morphological traits to the evolution 

of feeding posture.  

Convergence in feeding posture in two cave populations is controlled 

by at least some different genetic loci 
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 QTL analysis indicates that evolution of feeding posture is controlled 

by multiple genetic loci, which are not shared between Pachón and Tinaja 

cave populations. Consistent with this, hybrid individuals in a Pachón/Tinaja 

cross have an intermediate phenotype, significantly different from the Pachón 

parental population.  

 It is likely, however, that there are loci that are the same between the 

two cave populations, which result in Pachón/Tinaja hybrid fish with a low 

feeding angle.  We may not have identified loci that are similar between these 

populations in our QTL mapping because they control only a small amount of 

the variance of this trait. With more individuals one might identify overlapping 

genetic loci and hence detect direct evidence for parallel evolution of this trait.  

Feeding posture is not controlled solely by evolution of morphological 

traits 

 There is evidence in Astyanax mexicanus that some morphological 

traits evolved through changes in the same genes in multiple cave 

populations (Protas et al., 2006; Gross et al., 2009).  In addition, there is 

evidence for co-evolution of behavioral and morphological traits through the 

same genetic loci, for example, neuromast number and vibration response 

(Yoshizawa et al., 2012b).  Morphological changes can, in principle, affect 

behavioral traits, either because morphological traits are themselves 

important for the behavior, or through pleiotropic effects.  However, in the 

case of feeding posture we did not find evidence for a large effect of 

morphological traits, such as altered craniofacial morphology and distribution 
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and number of taste buds, either through correlations in F2 fish or from QTL 

mapping.  

We did find overlapping QTL for eye size and feeding posture in the 

surface/Pachón cross.  While this may be the result of a single loci that 

contributed to the evolution of both feeding posture and eye size, loss of the 

eyes in cavefish alone cannot explain the change in feeding posture we 

observe here.  First, the feeding posture QTL located at the eye size QTL 

explains a small amount of the variation in this trait.  Second, we see no 

correlation or overlap with orbit QTL in feeding posture in the surface/Tinaja 

cross.  Furthermore, Molino cavefish also have lost eyes, yet feed similarly to 

surface fish.  In addition to eye size, many of the morphological traits we 

quantified were shared between all three of the cave populations we studied.  

This provides additional evidence that these morphological traits are not, in 

and of themselves, sufficient to alter feeding posture.  While it is possible that 

other morphological changes, not quantified here, played a role in the 

evolution of feeding posture, the most parsimonious model is that feeding 

angle evolved through changes in the nervous system itself. 

Evidence for adaptive nature of feeding posture in the cave environment 

 Two of the three independently evolved cave populations we tested fed 

at a lower angle compared to surface fish.  The Molino cave population, which 

displayed a feeding posture similar to surface fish, is an evolutionarily young 

population of cavefish (Bradic et al., 2012), which retains some surface-like 

traits that have subsequently been lost in older cave populations, as shown 
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here and previously (Espinasa et al., 2005).  Some ecological factors, such as 

possible differences in feeding requirements, may play a role in preventing 

the evolution of feeding posture.  However, if there is an adaptive advantage 

for an altered feeding posture, Molino fish may not have had enough time to 

evolve this posture.   

Although Pachón and Tinaja fish evolved independently, they have 

converged on similar feeding postures.  Moreover, this behavioral change 

does not appear to be a mere pleiotropic consequence of morphological 

alterations that arise for some other reason.  Together, this evidence 

suggests some adaptive reason to evolve feeding posture.  

 Cavefish must forage in caves, many of which have a limited amount 

of food.  Furthermore, they must identify food in an environment independent 

of sight.  That they have successfully adapted to these challenges is indicated 

by experiments where surface fish are reintroduced to cave conditions.  

These experiments indicate that cavefish are better at finding food in the dark 

than surface fish (Hüppop, 1987).  In addition, surface fish found trapped in 

the cave show signs of starvation (Mitchell et al., 1977).  Therefore, it is likely 

that an altered feeding posture evolved as a result of selection for improved 

foraging.  For example, tactile cues resulting from more contact with the 

substrate may aid in successful foraging in the dark.  Other behavioral and 

morphological traits have been implicated in the evolution of foraging and 

finding food in the dark (Yoshizawa et al., 2010; Elipot et al., 2013).  
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Together, these highlight the complexity of the evolutionary response of 

Astyanax mexicanus to the entrapment in the extreme cave environment. 

 

Materials and methods 

Animal Care 

 All animal procedures were in accordance with the guidelines of the 

National Institutes of Health and were approved by the Institutional Animal 

Care and Use Committee at Harvard Medical School or the University of 

Maryland Animal Care and Use Committee. 

Crosses 

Female Tinaja cavefish were crossed to male surface fish to generate 

two families of F1 fish.  F1 hybrid fish from one Tinaja and one surface parent 

were interbred to generate a large population of F2 fish for phenotypic 

analysis and mapping.   

For the Pachón cross, we generated all hybrid progeny from an original 

mating between one pair of cavefish and surface fish (Jeffery and Yamamoto, 

2000; Yoshizawa and Jeffery, 2008; Yamamoto et al., 2009; Yoshizawa et al., 

2010; Yoshizawa et al., 2012a; Yoshizawa et al., 2012b).  One pair of F1 

hybrids from this cross was mated to generate 384 F2 individuals for 

phenotypic and genetic analysis.  

Feeding posture assays 

Feeding posture was tested by placing individual fish into tanks and 

starving them for six days.  Fish were placed in the dark on the sixth night, 
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and assayed on the seventh day.  For the assay, fish were placed on the 

filming platform, allowed to acclimate for 3 minutes, and filmed for 2 minutes 

(surface/Pachón fish) or 3 minutes (surface/Tinaja fish).  Fish were fed one 

piece of food once filming had begun, and fish that fed less than 3 times in a 

trial were retested.  Fish that were tested for multiple trials were given at least 

1 week to recover between trials. Fish were either filmed from above 

(surface/Pachón fish) or from the side (surface/Tinaja fish), and were 

visualized by utilizing infrared illumination. 

For fish filmed from above, feeding angles were calculated with the 

following equation:  

feeding!angle = ! cos!! !"#!"   

where FdL is the fish length when fish struck the food and SL is the standard 

length. The assay was duplicated if the fish showed more than 40˚ of angle 

differences among their strikes per assay.  Standard length (SL) was 

measured by immersion in ice-cold 66.7 mg/ml Ethyl 3-aminobenzoate 

methanesulfonate salt (MS222, Sigma) in conditioned water and imaged on 

the left side using a SteREO Discovery V.20 with Achromat S lens (0.3 ×) 

equipped with AxioCam HRc (Zeiss, Göttingen, Germany). When imaged, 

each fish standard length was determined by digitally measuring the length of 

the body from the tip of the snout to the base of the caudal fin using 

AxioVision software (Release 4.8.2, Zeiss).  

For measurements from the side, the angle of feeding posture was 

measured manually using software developed in LabVIEW (National 
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Instruments). Angle was measured during the highest angle feed from each 

feeding bout, and from the side by drawing a line through the head to the 

nose, and measured relative to the bottom of the tank.  SL was measured 

immediately after the first trial using a ruler.  

All fish were measured once for feeding posture, and the median 

feeding angle is reported, with the exception of the F2 fish from the 

surface/Tinaja cross, which were assayed 3 times to obtain appropriate 

reproducibility.  The feeding angle for each trial was averaged across all three 

trials for these fish only.   

Fish were fed either beef liver food (beef liver, carrots, spinach, 

oatmeal, and water, homogenized and frozen) or ground brine shrimp flake 

(O.S.I. marine lab, Burlingame, CA) mixed into 40˚C preheated and liquidized 

1% agar (Sigma-Aldrich, St. Louis, MO) in fish conditioned water (pH 6.8; 

conductivity approximately 600 mS), and then poured into 35 mm dish (Fisher 

Scientific, Pittsburg, PA).  After the solidification of the food, it was cut into 

small pieces (approximately 5 × 5 × 5 mm cubes).     

Quantification of morphological traits 

 Sacrificed fish were antibody stained to detect taste buds, and then 

stained to image the skeletons.  For anti-calretinin antibody staining, fish were 

placed into 4% paraformaldehyde for 2 hours at room temperature.  They 

were washed 5 times with PBS + 1% triton, and then moved into block (PBST 

+ 5% HINGS) for one hour, and then incubated in antibody (monoclonal anti-

calretinin, SWANT) overnight for 2 nights at room temperature while rocking.  
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The following day fish were placed in 5 1-hour washes in PBST, and then 

placed into secondary overnight, rocking at room temperature.  After imaging, 

fish were placed into formaldehyde.  After fixing, fish were placed into alizarin 

red in 1% KOH to stain their skeletons, washed in 1% KOH, and imaged in 

25% glycerol.   

 Taste bud quantification and skeletal measurements were performed in 

Fiji (Schindelin et al., 2012).  Taste buds were quantified from the dorsal and 

ventral sides of the head, as well as laterally on each lip.  Orbital size was 

measured as the diameter of the orbit.  Jaw width was measured ventrally at 

the posterior tip of the dentary bone.  Maxillary tooth number was the number 

of teeth on both maxillary bones. Taste bud number, orbital size, and jaw 

width were all corrected for size of the fish using the distance between the 

pectoral fin and the tip of the fish nose as a proxy for fish length.  The 

measurements were regressed against nose to pectoral length, and the 

residuals from this line were calculated and used as the trait value for each of 

these traits.  Residuals were calculated by pooling all fish.  

 Eye size was determined as previously described (Yoshizawa et al., 

2012b) by measuring the diameter of each eyeball along its rostral-caudal 

axis.  We standardized these measurements by dividing them by each fish’s 

standard length.  

Statistics 

 When groups of 3 or more were compared, a one-way ANOVA 

analysis was performed, followed by post hoc Games-Howell tests to obtain 
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pairwise comparisons.  A Pearson correlation coefficient was calculated to 

compare feeding angle to the morphological traits.  All statistics were 

performed in R (Ihaka, 1996) or in IBM SPSS 20.0.0 software (IBM, Somers, 

NY, USA).   

Genotyping and QTL analysis 

Tinaja cross 

 Fish from the surface/Tinaja cross were genotyped for SNPs and a 

linkage map was built as described previously (Kowalko et al. (submitted)).  

46 additional individuals were added to this analysis.  In addition, 

microsatellites from the surface/Pachon cross were genotyped in the 

surface/Tinaja cross by identifying size differences on a gel after PCR.  These 

markers were added to the map in R/qtl (Broman et al., 2003), which resolved 

two separate linkage groups from the previous analysis into one.    

Pachón cross 

We isolated genomic DNA from fin-clips using the DNeasy Blood & Tissue Kit 

(Qiagen, Valencia, CA) or the quick extraction protocol (Nusslein-Volhard and 

Dahm, 202). Genotyping methods were as described previously (Yoshizawa 

et al., 2012b; O'Quin et al., 2013). Briefly, we genotyped 382 F2 fish for 235 

genome-wide polymorphic microsatellite loci and 117 of 382 F2 fish for a 

conservative set of 463 single nucleotide polymorphisms (SNPs) identified by 

sequenced restriction-site associated DNA tags (RAD-seq) method. We 

performed genetic linkage in the program R/qtl (Broman et al., 2003) following 

the protocols described in Broman and Sen (Broman et al., 2003; Yoshizawa 
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et al., 2012b; O'Quin et al., 2013). Briefly, for genetic linkage mapping, we 

grouped the RAD-seq and microsatellite markers into linkage groups by 

specifying a maximum recombination distance of 0.35 and minimum LOD 

threshold of 6. We then ordered markers along each linkage group using 

“ripple” function of R/qtl or by manually, and then estimated genetic distances 

using the Kosambi map function. 

For both crosses, following linkage mapping, we scanned the genome 

for QTL associated with phenotypes in R/qtl by using both the scanone 

function, and using stepwiseqtl, a model selection algorithm for multiple QTL 

mapping (Broman et al., 2003; Manichaikul et al., 2009).  For the 

surface/Pachón cross, standard length and age at sampling (1 or 2 years old) 

were used as covariates for all of the traits mapped.  For the surface/Tinaja 

cross, standard length and sex were used as covariates for mapping feeding 

angle, and no covariates were used for mapping the other traits, as effects of 

standard length had already been taken into account.  We assessed the 

statistical significance of the resulting LOD scores by calculating the 95th 

percentile of genome-wide maximum penalized LOD scores for each trait 

using 1,200 random permutations of the genotypic and phenotypic data. We 

defined confidence intervals for the position of the final QTL using 95% 

Bayesian credible intervals. 

Alignment analysis 

To identify syntenic region between the linkage maps generated from 

surface/Pachón and surface/Tinaja crosses, we anchored Pachón linkage 
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map (O'Quin et al., 2013) to the latest Astyanax genome assembly 

(Assembly: Astyanax_mexicanus-1.0.2; BioProject: PRJNA89115 at NCBI 

Genbank). To do this, we first downloaded the assembly 

Astyanax_mexicanus-1.0.2 from the NCBI Genome resource 

(http://www.ncbi.nlm.nih.gov/genome, accessed at April 30, 2013). We then 

built searchable databases of this genome and searched the consensus 

sequences of each RAD-seq and microsatellite locus to these databases 

using the default parameters of the Burrows-Wheeler Aligner (BWA version 

0.6.2-r126, (Li and Durbin, 2009)) the blastn option of the program blast 

v2.2.27+ (Camacho et al., 2009), respectively. We retained the top hit (96M 

for BWA, as for blastn, an expectation value (E) as 0.00001 or less), and 

used all anchored sites to identify regions of synteny between the maps from 

surface/Pachón and surface/Tinaja crosses. 
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 At the beginning of this dissertation, I raised a number of questions 

about how behaviors evolve.  Using the cavefish Astyanax mexicanus, I have 

answered some of these questions.  This work will add to the growing body of 

literature on the genetics of behavioral evolution and will play a role in 

supporting general theories of how behaviors evolve.  Thus, it is worth 

discussing how this work answers these questions of evolutionary interest, as 

well as what remains to be learned about the evolution of schooling and 

feeding posture in Astyanax mexicanus. 

 

Do behaviors evolve through changes in one gene of large effect, or multiple 

genes of small effect? 

 In both of the behaviors studied here, multiple QTL were identified.  

Additionally, all of these QTL are of small effect.  This result is similar to what 

has been found for other behavioral QTL in natural populations; for example, 

QTL for burrowing behavior in Peromyscus (Weber et al., 2013) and QTL for 

vibration attraction behavior in Astyanax (Yoshizawa et al., 2012), as well as 

the majority of QTL for behavior found in laboratory mice and rats (reviewed 

in Bendesky and Bargmann, 2011).  However, it is also possible for natural 

variation in one gene to have a large effect on behavior in natural populations.  

For example, different alleles of the foraging gene in Drosophila affect feeding 

behavior and metabolism in both larvae and adults (Sokolowski, 1980; 

Pereira and Sololowski, 1993; Kent et al., 2009). 
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It is interesting to speculate that the complexity of the behavior may 

play a role in the number of genes involved in natural variation of the 

behavior.  For instance, if schooling behavior could be parsed into discrete 

behavioral components would we then find one gene of large effect 

modulating each of these behavioral components?  Modeling of collective 

behaviors, including schooling and shoaling in fish, suggests that large group 

patterns can be explained by a relatively simple set of rules followed by each 

individual (reviewed in Couzin and Krause, 2003; Sumpter, 2006).  If 

individuals are given three rules to obey in relation to the individuals closest to 

them (to want to be closer to other individuals until they are too close, to be 

repulsed at closer distances, and to want to orient to neighboring individuals) 

group patterns including schooling and shoaling emerge (Couzin et al., 2002).  

These parameters have been determined for actual groups of fish by 

observing and measuring individuals in groups (Katz et al., 2011).  It may be 

possible, therefore, to determine these rules for surface and cavefish, and 

then measure and QTL map additional, potentially less complex parameters 

for schooling behavior in F2 fish.  This parsing of a complex behavior may 

lead to identification of genes of larger effect modifying this behavior.  

Alternatively, the same set of genes may govern different aspects of the same 

behavior.  Thus, in addition to effect size of individual genes, it would be 

informative to know if the same or different genes and loci play a role in 

regulating different parameters involved in schooling behavior.  
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What are the contributions of the evolution of morphological traits, such as 

sensory systems, to the evolution of behavioral traits?   

 In this dissertation, I found that the visual system plays an important 

role in schooling behavior and that a locus responsible for loss of schooling 

may also play a role in the visual system.  That evolving sensory systems 

have an effect on behavior has been shown elsewhere.  An enhanced lateral 

line in cave Astyanax mexicanus plays a role in the evolution of vibration 

attraction behavior (Yoshizawa et al., 2010, 2012).  The importance of 

sensory system evolution in the evolution of behaviors might be a universal 

principle.  It has been argued that sensory system genes may be preferred 

targets for natural selection on behavioral adaptations (Bendesky and 

Bargmann, 2011).   

The drastic differences in morphology between cave and surface fish 

make Astyanax mexicanus an excellent system to study the contributions of 

morphological traits to behavioral evolution.  However, this question is of 

interest in organisms beyond cavefish.  Understanding how an organism 

senses its environment, and then how these environmental cues are 

processed, is essential for the study of any behavior.  Studying the 

contributions of the evolution of sensory systems to behavioral evolution is 

another way of determining how organisms sense their environment and 

process this sensory information into behavioral outputs.   

Furthermore, studying behavioral evolution in the context of evolving 

morphological traits may aid in finding the genetic changes responsible for 
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evolution of both behavioral and morphological traits.  For example, a single 

locus that affects both a behavior and a sensory system trait may result from 

the gene responsible for the locus acting in that sensory system, or in regions 

of the brain responsible for processing information from that sensory system.  

This information could provide clues as to the identity of the gene underlying 

behavioral evolution, as well as to how the gene is functioning.  For example, 

in the case of the schooling QTL that overlaps with the dark preference QTL, 

we can first look for candidate genes that are involved in visual processing, as 

changes in these genes could affect both of these traits.   

Finding that behaviors rely on the evolution of morphological traits, or 

contribute to the evolution of these morphologies, raises interesting questions 

about how this occurs during evolution.  If, for example, a change in a 

behavioral trait requires a change in morphology, this morphological change 

would have to occur before or at the same time as the behavioral change.  

Another interesting question is what it means when QTL for a sensory system 

change and a behavioral change overlap.  If the QTL overlap due to changes 

in the same gene affecting both of these traits, this could be due to the 

requirement for the sensory system modification for the behavioral change, or 

because the same genetic change affects both of these processes 

separately.  If the dark-preference QTL identified here does indeed modify the 

visual system, then it is possible that the genetic change that affects the 

visual system affects schooling behavior only secondarily, as a result of visual 

system changes.  This would be consistent with the observation that surface 
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fish do not school when they no longer have the capacity to see.  However, 

further work needs to be done, to first identify this genetic change, and then to 

test it functionally, to determine the meaning of the overlapping QTL.  

 

When a behavior evolves multiple times, does it evolve through the same 

genes?   

Convergence occurs when two populations evolve a similar trait 

independently.  Convergence can occur through changes in the same gene, 

or through changes in different genes that result in the same phenotype.  For 

example, in the evolution of coloration, similar morphologies evolve through 

changes in different genes as well as through changes in the same gene 

(reviewed in Manceau et al., 2010).  In Astyanax mexicanus cavefish, 

reduction in pigmentation and albinism have evolved independently through 

changes in the same gene in multiple cave populations (Protas et al., 2006; 

Gross et al., 2009), but reduction of the eyes has occurred through at least 

some different genetic changes (Wilkens and Strecker, 2003; Borowsky, 

2008).   

Convergence in behavioral traits is of particular interest, since 

apparently similar behaviors evolve over and over again.  For example, while 

the majority of mammals are polygamous, monogamy has likely evolved in 

mammals independently multiple times (Turner et al., 2010).  In voles, male 

pair bonding, a component of monogamy, is controlled by changes in 

expression in the arginine vasopressin 1a receptor (Winslow et al. 1993; Lui 
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et al. 2001; reviewed in (Donaldson and Young, 2008)).  However, some 

species of monogamous Peromyscus do not show changes in expression of 

this receptor, correlations between microsatellite number variation and mating 

system, nor do they have coding differences between monogamous and 

polygamous populations that change the receptors signaling activity, making 

it unlikely that monogamous Peromyscus evolved this behavior through the 

same gene as voles (Turner et al., 2010).  Furthermore, variation in the 

promoter of this locus cannot explain variation in mating systems across all 

mammals (Fink et al., 2006).  In other cases, variation in one gene is 

responsible for differences in behavior across species.  An example is the 

foraging gene identified in Drosophila.  Natural variation in this gene is 

responsible for variation in behavior in both flies and nematodes (reviewed in 

Bendesky and Bargmann, 2011). 

Convergence of feeding posture has evolved in multiple, independently 

evolved populations of Astyanax mexicanus cavefish (Schemmel, 1980).  We 

found that two of these populations appear to have evolved similar feeding 

postures through at least some independent genetic changes.  It will be 

interesting to identify the actual genetic changes responsible for feeding 

posture in each of these populations in the future and to determine how each 

is acting to modify this behavior.  This will allow us to determine exactly how 

different genes and genetic changes can produce similar behavioral changes.  

For instance, are these mutations acting on genes in the same biochemical 



 156 

pathway or a common genetic network?  Are they active in the same 

populations of neurons, but in different ways? 

We also found that schooling behavior is lost in multiple, independently 

evolved populations of cavefish.  This result is unsurprising in the context of 

convergence on similar morphological traits, in this case, loss of eyes.  Future 

work identifying the location of loci important for loss of schooling in other 

cavefish populations will be necessary to find out if the same or different 

genes are responsible for reduction in schooling behavior in these 

populations.  Because regression of eyes was lost by at least some different 

genetic changes in these populations (Wilkens and Strecker, 2003; Borowsky, 

2008), it is likely that the visual system dependent loss of schooling behavior 

also occurred through changes in different loci.  It would be of particular 

interest, therefore, to find out if the Molino and Pachón cavefish populations 

have a visual system independent loss of schooling behavior, and, if so, if this 

component of the behavior is controlled by the same gene or genes as in the 

Tinaja population. 

Schooling behavior has been lost in other, more distantly related fish 

as well, such as benthic sticklebacks.  Comparing Pachón and Tinaja linkage 

groups to the early version of the Astyanax mexicanus genome as described 

in Chapter 3 allowed me to take advantage of the existing, more extensive 

synteny maps created between Pachón linkage maps and the zebrafish 

genome (Gross et al., 2008; O'Quin et al., 2013).  Interestingly, a marker from 

Tinaja LG 27, which contains one of the QTL for schooling, maps to Pachón 



 157 

LG 2.  This linkage group is syntenic with the zebrafish genomic region 

containing Ectodysplasin (Masato Yoshizawa, personal communication), a 

gene that falls under a QTL for reduction of schooling in benthic sticklebacks.  

The current state of the Astyanax mexicanus genome, along with a relatively 

sparse linkage map, unfortunately, did not allow us to confirm this result 

(Jessica Lehoczky, unpublished results).  Once the Astyanax mexicanus 

genome is fully assembled and annotated, it should be straightforward to test 

the hypothesis that the QTL for reduction in schooling in these two species 

share some of the same genes.   

 

What is the contribution of natural selection to behavioral evolution?   

 The longstanding debate about evolution of morphological traits in 

cave organisms – whether they evolve traits through neutral mutation, 

because they no longer require the surface trait, or through natural selection, 

because it is advantageous to lose the surface trait or gain a cave trait within 

the cave, can also be applied to the evolution of behavior.  For the traits 

studied here, it is possible that both situations occurred.  Once within the 

caves, fish could no longer school without visual cues in the dark, and no 

longer needed schooling behavior to avoid predators.  Therefore, loss of 

schooling behavior could have evolved through an accumulation of mutations 

affecting a trait that was no longer necessary.  Alternatively, the behavior 

could be adaptive, if there is better allocation of scarce food resources in the 

absence of aggregation.   
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A lower feeding posture may be adaptive in the cave.  Multiple cave 

populations evolved feeding posture independently, and there is no evidence 

that feeding posture evolved secondarily to candidate morphological traits.  

Furthermore, feeding posture may be important for foraging behavior.  For 

example, feeding at a lower angle may increase the tactile cues a cavefish 

has for locating food along the ground.  On the other hand, it is possible that 

feeding posture arose by genetic drift, due to a lack of selection to maintain a 

higher feeding posture.  For example, a high feeding posture in surface fish 

may be less likely to expose the fish to predators while feeding.  Within the 

cave, a lack of predators would release selective pressures to maintain a 

higher feeding posture.  In order to test whether a lower feeding posture is 

adaptive in the cave, future work is needed to determine if having a lower 

feeding posture does indeed give fish an advantage when trying to find food 

in the dark.  Similar experiments could be performed to those which found 

that cavefish are more successful at finding food in the dark than surface fish 

(Hüppop, 1987), by feeding groups of high and low feeding posture F2s in the 

dark, and determining which are more successful at obtaining food.  Initial 

experiments performed by an undergraduate in the laboratory, Tess Linden, 

did not reveal significant differences between these populations.  However, in 

these experiments, we did not control for differences in other morphological 

traits, such as number of neuromasts, which likely play a role in the ability to 

find food in the dark.  Controlling for morphological traits, along with 

increasing the number of groups tested, could reveal differences in food 
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finding ability based on feeding posture.  Additionally, identification of the 

genes underlying the QTL for these traits would allow for tests of signatures 

of selection at these locations, which would provide further evidence for the 

adaptive or non-adaptive nature of these traits.   

 

What are the developmental and genetic constraints on behavioral evolution?   

 Constraints on behavioral evolution will limit the number of possible 

behaviors existing in a population of animals that can be used to respond to a 

new environmental challenge, in this case, the cave environment.  There are 

genetic constraints, for example, the genetic underpinnings of the behavioral 

repertoire in the current, invasive population, which have been influenced by 

the past adaptations to the old environment.  This history of adaptation will 

have limited the potential behavioral responses available to the current 

population (Kappeler et al., 2013).  Other constraints may be developmental.  

For example, the overrepresentation of neurotransmitters and their receptors 

identified in cases where behaviors vary naturally could be due to 

developmental constraints on rewiring neural circuitry, such that changes in 

behavior are more likely to occur through changes in expression of 

neuromodulators, rather than changes in neural circuitry (Bendesky and 

Bargmann, 2011).  Pleiotropy could act as an additional constraint on 

evolution of behaviors.  Cavefish may lose their eyes because the same 

genes responsible for eye degradation result in an increase in constructive 

traits, and changes to more adaptive behaviors (Protas et al., 2007; 
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Yamamoto et al., 2009; Yoshizawa et al., 2012).  The genes responsible for 

the evolution of behavioral traits would also have to either have few or no 

pleiotropic effects, or have effects that are neutral or outweighed by the 

benefits of evolving an adaptive behavior. 

 To fully understand the constraints on the evolution of schooling and 

feeding behaviors, we would need to have a much more extensive knowledge 

of the genes underlying these behaviors, of which genes are responsible for 

the evolutionary change, and of how these genes function during 

development.  However, our analysis of morphological traits has given us 

some insight into constraints on the evolution of these behaviors.  First, we 

did not identify morphological differences between cave and surface fish that 

constrained feeding posture.  It is possible, however, that other morphological 

traits not studied here, such as the shape of profile of the face, constrain this 

behavior (see Appendix 2).  Further investigation into the contribution of these 

morphological traits is needed to fully understand how this behavior evolved.  

Finally, we found that the visual system plays a large role in the evolution of 

schooling behavior.  Surface fish do not school in the dark.  Therefore, it is 

likely that not having a functional visual system, first because it was dark, and 

secondarily because of the regression of the eyes, played a large role in 

constraining social behavior in cave Astyanax mexicanus, and was a 

constraint on behavioral evolution. 

Summary 
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  In this dissertation, I use the Mexican cavefish, Astyanax mexicanus, 

to explore the evolution of two behaviors.  I found that both schooling and 

shoaling behaviors were lost in multiple cave populations of Astyanax 

mexicanus.  Surface Astyanax cannot school in the dark or when they are 

blinded during development, underscoring the importance of a functional 

visual system for schooling behavior in this species.  Reduction of the visual 

system plays a large role in the evolutionary loss of schooling behavior in 

cave Astyanax.  While the lateral line may play a small role in the loss of 

schooling behavior, ablation of the lateral line does not have a large effect on 

schooling behavior in surface Astyanax.  QTL analysis revealed that the loss 

of schooling behavior is complex, occurring through multiple genetic loci.  

Furthermore, QTL analysis revealed both visual system-dependent, and 

visual system-independent contributions to loss of schooling behavior. 

 Feeding posture has also been modified in multiple populations of 

cavefish.  The candidate morphological traits examined here do not appear to 

have played a large role in the evolution of feeding posture.  The evolution of 

this trait is also controlled by multiple genetic loci.  At least some of these loci 

appear to be different between two independently evolved populations of 

cavefish that have evolved similar feeding postures.  

 Together, this work has provided insight into how behavioral traits 

evolve, elucidating the genetic architecture underlying behavioral evolution, 

and providing insight into the contributions of evolving morphological traits to 

the evolution of behavioral traits. 
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taste buds in a surface/Pachón cross.   
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Results and Discussion 
 
 Multiple, independently evolved populations of cavefish (Mitchell et al., 

1977; Dowling et al., 2002; Strecker et al., 2003; Strecker et al., 2004; Bradic 

et al., 2012) have an increased number of neuromasts relative to surface fish 

(Kruskal-Wallis: H4=57.2, p<0.001; Mann-Whitney compared to surface: 

Tinaja: U<0.001, z=-5.5, p<0.001; Pachón: U<0.001, z=-4.1, p<0.001; Molino: 

U<0.001, z=-4.8, p<0.001; Surface: n=21, surface/Tinaja F1s: n=7, Tinaja: 

n=21, Pachón: n=8, Molino: n=13; Figure A1.1A).  Furthermore, Molino 

cavefish have significantly fewer neuromasts than Tinaja (U=51, z=-3, 

p<0.05) and Pachón (U=4, z=-3.5, p<0.001) cavefish.  Tinaja cavefish also 

have significantly larger neuromasts compared to surface fish (t30=14.7, 

p<0.001; Surface: n=9, Tinaja: n=7; Figure A1.1B). 

 QTL mapping of neuromast number results in three significant QTL at 

a p<0.05 (Figure A1.2A).  The QTL at LG 18 explained 14.2 percent of the 

variance, and a homozygous cave genotype at this locus results in an 

increase in the number of neuromasts relative to a homozygous surface 

genotype (Figure A1.2C).  The QTL at LG 10 and 24 explained 7.6 and 3 

percent of the variance, respectively, and a homozygous cave genotype at 

either of these loci results in decreased numbers of neuromasts relative to the 

homozygous surface genotype (Figures A1.2B and D).  QTL mapping of 

neuromast size results in one significant QTL on LG 10 at a p<0.05 (Figure 

A1.2A).  This QTL accounts for 11.2 percent of the variance of the trait, and a  
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Figure A1.1.  Cavefish have an increased number and size of 

neuromasts relative to surface fish. 

A.  Number of neuromasts corrected for nose to pectoral length in surface 

fish (n=21), surface/Tinaja F1 hybrid fish (n=7), Tinaja (n=21), Pachon (n=8), 

and Molino (n=13) cavefish.  B.  Average neuromast diameter (in pixels) in 

surface fish (n=9) and Tinaja cavefish (n=7).  *p<0.05, **p<0.01, ***p<0.001. 
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Figure A1.2.  QTL for neuromast number and diameter. 

A. QTL for neuromast number corrected for nose to pectoral length 

(black) and neuromast diameter (red).  B. Neuromast number by 

genotype at a significant marker on LG 10.  C.  Neuromast number by 

genotype at a significant marker on LG 18.  D.  Neuromast number by 

genotype at a significant marker on LG 24.  E.  Neuromast diameter at a 

significant marker on LG 10.  B-E.  SS = homozygous surface, SC = 

heterozygous, CC = homozygous cave. 
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Figure A1.2, cont. 
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homozygous cave genotype at this locus results in larger neuromasts relative 

to the homozygous surface genotype (Figure A1.2E).  This QTL overlaps with 

one of the neuromast number QTL, which may indicate that the same gene is 

responsible for both neuromast number and neuromast size. 

 The QTL for neuromasts do not overlap with the QTL for the behavioral 

traits presented earlier in this dissertation, schooling, which has QTL on LG 6 

and LG 26, and feeding angle, which has one QTL on LG 24.  Although the 

QTL for feeding angle and neuromasts are on the same linkage group, these 

QTL, and their confidence intervals, are not overlapping.  

 

Materials and Methods 

 Neuromast number and diameter were measured by staining each fish 

with DASPEI.  Neuromast number is the number of cranial superficial 

neuromasts on the right side of the face, from the gill to the nose.  Neuromast 

number was corrected for body length of the fish by dividing by the nose to 

pectoral length of each fish, which scales with body size.  Neuromast 

diameter was measured for cranial superficial neuromasts in the suborbital 

region of the face.  Neuromast diameter did not scale with body size, and was 

measured at the same magnification for each fish.  Three neuromasts were 

measured for each fish, and the average diameter of these three neuromasts 

is reported. 

 QTL mapping was performed as described in Chapters 2 and 3.  The 

linkage map used for this analysis was the linkage map in Chapter 3, which 
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had additional markers and individuals compared to the map in Chapter 2, 

and one less linkage group. 
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This appendix contains a preliminary morphometric analysis.  Johanna Kowalko, 
Tess Linden, and Clifford Tabin designed the research.  Tess Linden performed 
the research under the supervision of Johanna Kowalko.  Craig Albertson 
contributed to the design of the analysis, and gave advice on setting up 
morphometric analysis.  Johanna Kowalko wrote the text. 
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 Chapter 3 of this dissertation contains linear measurements of different 

aspects of the cranial skeleton for comparison with feeding posture.  In order to 

get a better idea of if changes in the form of the cranial skeleton, rather than just 

discrete linear measurements, contributed to evolution of feeding posture, we 

performed morphometric analysis of Tinaja cave, surface, and F2 fish. 

 

Results and Discussion 

 Landmarks that were shared between both Tinaja cavefish and surface 

fish on the lateral profile of the face (Figure A2.1A) and the ventral jaw (Figure 

A2.1B) were placed on Tinaja cavefish (n=26), surface fish (n=29) and F2 fish 

(n=187).  Principal component analysis (PCA) was performed to determine the 

differences in shape.  For the lateral analysis, cave and surface fish were 

significantly different along PC 1 (p<0.001) but not PC 2 (Figure A2.2).  PC 1 

explained 35.5 percent of the variance of the shape, and PC 2 explained 10.1 

percent of the variance.  All of the remaining principal components explained less 

than 10 percent of the variance.  The ventral PCA analysis resulted in both PC 1 

(p<0.001) and PC 2 (p<0.001) being significantly different between cave and 

surface fish (Figure A2.3).  PC 1 explained the majority of the variance (84%) 

while PC 2 explained only 6 percent of the variance.   

To determine if the shape of the face is associated with changes in 

feeding posture, we looked at the relationship between each major principal  
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A                                                                       B

Figure A2.1.  Landmarks for morphometric analysis. 

A.  Landmarks used for the lateral profile view.  B.  Landmarks used for the 

ventral jaw view. 
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eye

eye

eye

eye

Figure A2.2.  Lateral PCA.   

Surface = blue, Tinaja = red, F2 = green.  X-axis is PC 1 and Y-axis is PC 2.  

Boxes are warps from the consensus for the extreme of each axis. 
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Figure A2.3.  Ventral PCA. 

Surface = blue, Tinaja = red, F2 = green.  X-axis is PC 1 and Y-axis is PC 2.   
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Figure A2.4.  Principal components do not correlate with feeding angle. 

A.  Feeding angle compared to lateral PC 1 in F2 fish.  B.  Feeding angle 

compared to lateral PC 2 in F2 fish.  Feeding angle compared to ventral PC 

1 in F2 fish.  Feeding angle compared to ventral PC 2 in F2 fish. 
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component and feeding posture in the F2 fish.  Lateral PC 1 (R=-0.04, p=0.67) 

and PC 2 (R=-0.11, p=0.28) were not significantly correlated with feeding angle 

(Figures A2.3A and B).  Ventral PC 1 (R=-0.03, p=0.75) and PC 2 (R=0.05, 

p=0.62) were also not significantly correlated with feeding angle (Figures A2.3C 

and D). 

 Last, we attempted to QTL map the principal components to determine the 

genetic basis of the shape changes in cavefish.  Unfortunately, none of the 

principal components had QTL significant at a p-value of 0.05.  For future 

analyses, we will try to add additional landmarks to the PCA analysis to try to 

gain information about the shape of the face.  Additionally, we will include 

cavefish from the other caves in the analysis, to determine if cavefish which have 

evolved independently have converged upon similar shapes.  Last, we will 

compare fish with one or two lenses removed to surface and cavefish to 

determine the contribution of lens degeneration to evolution of the shape of the 

face. 

 

Materials and Methods 

 Fish were stained with alizarin red to identify the bones.  All images were 

taken in 25% glycerol.  Landmarks were placed on each fish using tpsDIG2 

(Morphometrics at SUNY Stony Brook).  Size correction was performed using 

Coordgen6f and Standard6 (Morphometrics at SUNY Stony Brook), correcting for 

standard length.  The PCA analysis was run in PCAGen6n (Morphometrics at 

SUNY Stony Brook) and plotted in Excel.  Correlations were performed in R .     
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Identification of mouse perichondrium-specific 
 

 genes 
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This appendix contains preliminary work identifying perichondrium-specific 
markers in the mouse performed as a side project during the dissertation 
work presented here. 
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Introduction 

 Endochondral ossification, the process by which most bones develop, 

begins when mesenchymal cells in the limb bud condense in areas that will 

become the future bones (Hall and Miyake 2000).  The cells in these 

condensations differentiate into chondrocytes, cells that make up the 

cartilage. Adjacent to the condensations, cells differentiate into the 

perichondrium, a flattened layer of cells that surrounds the cartilage.  After a 

period of proliferative growth, the centrally located chondrocytes stop dividing 

and enlarge, becoming hypertrophic and mineralizing the matrix surrounding 

them.  At this time, the perichondrium adjacent to the hypertrophic 

chondrocytes becomes the periosteum, a portion of which differentiates into 

osteoblasts.  Osteoblasts are bone progenitor cells, and the osteoblasts 

originating from the perichondrium form both cortical bone collar and 

trabecular bone.  As hypertrophic chondrocytes undergo apoptosis, 

osteoblasts from the perichondrium invade along with the vasculature, 

forming the tissue that will become the trabecular portion of the bone 

(Kronenberg, 2003, 2007).   

Interactions between the cartilage, the perichondrium, and the 

vasculature regulate both cartilage and bone development.  Determining the 

contributions of each of these tissues to skeletal development is challenging 

because many genes important in this process are expressed in multiple 

tissues (Colnot 2005).  The perichondrium is the least well studied of these 

tissues.  It consists of two morphologically and molecularly distinct layers of 
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cells that have multiple functions in skeletal development.  The outer layer is 

believed to play a structural role by interacting with connective tissue such as 

the tendons and ligaments (Scott-Savage and Hall 1980).  The inner layer is 

thought to be important for the growth of cartilage and the bone (Bairati et al. 

1996; Pathi et al. 1999).  In addition to these roles, some perichondrium cells 

are believed to be the progenitors for some osteoblasts (Bairaiti et al. 1996; 

Colnot et al. 2004).   

Signals from the perichondrium are essential for bone growth.  When 

the perichondrium is removed, chondrocyte proliferation and hypertrophy are 

affected and the cartilage increases in length (Pathi et al. 1999; Long and 

Linsenmayer 1998; Di Nino et al. 2002; Colnot et al. 2004). In addition, 

perichondrium removal inhibits vascular invasion and ossification (Colnot et 

al. 2004). Some of the signaling molecules generated by the perichondrium 

that are critical for bone development have been identified.  These molecules 

include parathyroid hormone-related peptide (PTHrP), which is regulated by 

Indian hedgehog, and multiple fibroblast growth factors (FGFs) and bone 

morphogenetic proteins (BMPs) (Kronenberg 2003; Pathi et al. 1999; 

Vortkamp et al. 1996).  In addition, Hox genes, which are important in 

patterning and growth of skeletal elements, are expressed in the outer 

perichondrium layer.  This is the major site of Hox expression in the limb after 

the early limb bud stages.  However, Hox gene function in this layer is not 

fully understood.  Further understanding of the role(s) of genes expressed in 
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the perichondrium during bone development will lead to a better 

understanding of the tissue interactions necessary for skeletal development.   

 In order to further understand the role that the perichondrium plays in 

bone development, Bandyopadhyay et al. (2008) identified genes specifically 

expressed in the perichondrium and the periosteum relative to other skeletal 

tissues.  They performed a microarray screen comparing gene expression in 

the perichondrium, the periosteum, bone tissue, and non-hypertrophic 

cartilage from chicken tibio-tarsi, and looked for genes upregulated in the 

perichondrium or periosteum compared to the rest of the tissues.  They found 

20 genes expressed only in the periskeletal tissue, and confirmed the tissue 

expression of these genes by in situ hybridization.  Through the identification 

of these new marker genes, the authors were able to conclude that the 

perichondrium and the periosteum are molecularly distinct, and that the 

perichondrium is composed of two molecularly distinguishable layers.  The 

genes identified in this study can be used to further determine the role of the 

perichondrium in skeletal development. 

 Hox genes encode transcription factors that pattern the body axes.  

Mammalian Hox genes evolved by 2 sequential duplications of an ancestral 

cluster which is shared with invertebrates, to create four clusters of Hox 

genes, HoxA, HoxB, HoxC, and HoxD, containing a total of 39 genes.  Each 

cluster has up to thirteen paralogues, or corresponding genes on separate 

clusters, and these paralogues are the most closely related to each other. 

Along the main body axis Hox gene clusters are expressed from 3’ to 5’ both 
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temporally and spatially, with 3’ genes expressed earlier, and in a more 

anterior position than the 5’ genes in the same cluster (Kmita and Duboule 

2003). The anterior expression boundary of Hox gene expression maps axial 

morphology across vertebrates (Burke et al. 1995).  In addition to patterning 

the body axis, Hox genes pattern secondary body axes, including the limb. 

While all four clusters of Hox genes are expressed in the limb, the HoxA and 

the HoxD clusters are the most important.  Loss of both HoxA and HoxD 

clusters in the forelimbs results in truncations of the distal skeletal elements 

due to an arrest in early patterning of the limb (Kmita et al. 2005).  Paralogues 

from these two groups have both overlapping and specific functions, and 

synergistic phenotypes are observed in double mutants of HoxA and HoxD 

paralogues in the limb, relative to individual phenotypes for mutants of the 

same genes (Davis et al. 1995; Favier et al. 1996; Fromental-Ramain et al. 

1996).  In contrast, expression of genes from the HoxB and HoxC clusters 

can be eliminated with little effect on limb phenotypes (Medina-Martinez et al. 

2000; Suemori and Noguchi 2000).   

The 5’ HoxA and HoxD genes are initially expressed in nested 

domains along the anterior-posterior limb axis, with more 5’ genes expressed 

in the posterior portion of the limb (Tarchini and Duboule 2006).  Later, these 

genes are expressed in a dynamic fashion, including a late phase of 

expression in which their spatial order is reversed, with 5’ Hox genes 

extending more anteriorly (Nelson et al 1996).  They are expressed in the 

precartilagous condensations (Dolle and Duboule 1989).  After cartilage 
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condensation, the Hox genes become restricted to the cells adjacent to the to 

cartilage, in the mesenchyme and the perichondrium (Favier et al. 1996; Dolle 

and Duboule 1989; Dolle et al. 1993).  They are expressed in the outer layer 

of the perichondrium, and do not overlap with the inner layer, as defined by 

Bmp4 and Patched expression (Suzuki and Kuroiwa 2002). 

Hox gene expression is important for both patterning and growth of the 

developing skeletal elements (Dolle et al. 1993; Davis et al. 1995).  Patterning 

takes place before and during the formation of cartilage condensations 

(Mariani and Martin 2003).  Early Hox gene expression, in concert with sonic 

hedgehog (Shh) expression, is responsible for patterning the digits (Knezevic 

et al. 1997; Zakany et al. 2004; Tarchini et al. 2006). Hox genes are also 

important for bone condensation.  For example, Hoxd-11 misexpression 

results in extra condensations in digit I in the hindlimb (Goff and Tabin 1997).  

Hox genes affect the bone growth. For example, removal of all 11th paralogue 

activity (Hoxa11/Hoxd11 compound null mutant) does not affect initial 

condensations but results in an almost complete subsequent lack of growth of 

the forearm elements (Davis et al. 1995).  Similarly, through a presumed 

dominant-negative effect on the 11th paralogues, Hoxd-13 misexpression 

results in a shortening of the femur, tibia, fibula and the tarsometatarsals 

(Goff and Tabin 1997).  This could be a consequence of the action of Hox 

genes within the cartilage progenitors at early stages of limb development, or 

alternatively the continued activity of Hox genes at later stages, influencing 

growth signals produced in the perichondrium.  Because Hox genes are 
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important over multiple stages of limb development, discerning the 

importance of Hox expression in specific tissues and at particular times in 

limb development is difficult.  Generating inducible, tissue-specific loss of Hox 

genes in the perichondrium will help to understand the mechanism by which 

Hox expression ultimately affects the growth phase of bone development.   

 

Results and Discussion 

 To perturb Hox genes specifically in the perichondrium, we needed a 

perichondrium-specific marker to generate a perichondrium-specific Cre line.  

This line could then be used to remove the HoxA locus using a floxed HoxA 

line (Kmita et al. 2005).  To identify markers appropriate for this line, I 

performed in situ hybridizations in mouse for candidate genes that were 

perichondrium-specific in the chicken (Bandyopadhyay et al. 2008). 

 I looked at expression patterns of genes at about E13.5, when the 

perichondrium is formed and there is a minimal amount of bone in the limb 

skeleton.  Galectin-1 is not expressed in the cartilage, but is expressed in 

most of the other tissues (Figure A3.1).  Stromal cell-derived factor 1 (SDF1) 

is expressed in what appears to be the outer layer of the perichondrium, 

along with other non-cartilage tissues (Figure A3.2).  Thrombospondin 2 

(Tsp2) is expressed in the perichondrium, next to the cartilage (Figure A3.3).  

ABI family, member 3 (ABI3BP) is expressed most strongly around the 

cartilage, and in additional non-cartilage tissue (Figure A3.4).  V-maf 

musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) is expressed   
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Figure A3.1.  Galectin-1 expression. 
 
Galectin-1 expression in an E13.5 forelimb at A. 5x B. 10x and C. 20x. 
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Figure A3.2.  SDF-1 expression. 
 
SDF-1 expression in an E13.5 hindlimb at A. 5x  B. 10x  C. 5x and D.  
 
20x. 
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Figure A3.3.  Tsp2 expression. 
 
Tsp2 expression in an E13.5 hindlimb at A. 5x and B. 10x. 
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Figure A3.4.  ABI3BP expression. 
 
ABI3BP expression at E13.5 in at A. 5x and B. 20x. 
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around the digits, in the outer layer of the perichondrium (Figure A3.5).  

Dickkopf-related protein 3 (Dkk3) is expressed in the perichondrium, and 

most strongly around the joints (Figure A3.6).  Cellular retinoic acid-binding 

protein 1 (CRABP1) is expressed in the outer layer of the perichondrium 

(Figure A3.7). 

 I next looked at promising markers by whole mount in situ, to get an 

idea of the expression patterns throughout the body, over developmental 

time.  I looked at CRABP1 and Dkk3 at multiple time points in development 

(Figures A3.8 and A3.9). 

 From these analyses, it appeared that CRABP1 was a good candidate 

for an outer layer perichondrial marker, and that it could be used to make a 

Cre line to ablate Hox gene expression in the perichondrium.  To test whether 

Hox genes and CRABP1 were coexpressed, I performed double fluorescent 

in situs on Hoxd11 and CRABP1.  Hoxd11 and CRABP1 are coexpressed 

around the digits of the forelimbs, but not in the wrist area at about E13.5 

(Figure A3.10).  However, given the broad limb expression of CRABP1 early 

in development (Figure A3.8) it may be necessary to make an inducible Cre 

line in order to have perichondrium-specific expression.  Thus, a CRABP1 

inducible Cre line would be a useful tool for studying the outer layer of the 

perichondrium, and for removing Hox gene expression from the 

perichondrium. 

 We are also interested in having a Cre line that is active in the inner 

perichondrial layer.  Dkk3, from both the literature and from the  
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Figure A3.5.  MafB expression. 
 
MafB expression in E13.5 forelimbs at A. 5x B. 10x and C. 20x. 
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Figure A3.6.  Dkk3 expression. 
 
Dkk3 expression in E13.5 limbs at A. 5x and B. 20x and at C. 5x E17.5. 
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C                                    D

E                                    F

Figure A3.7.  CRABP1 expression. 
 
CRABP1 expression in E13.5 forelimbs in A. the autopod at 5x B. the  
 
zeugopod at 5x C. the autopod at 10x D. the zeugopod at 10x E. the  
 
autopod at 20x and F. the zeugopod at 20x. 
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A3.8.  CRABP1 expression by whole mount in situ. 
 
Expression at approximately A. E11 B. E13.5 and C. E14.5. 
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C                                           D

E                                           

Figure A3.9.  Dkk3 expression by whole mount in situ. 
 
Expression at approximately A. E9.5 B. E11 C. E12 D. E13.5 and E.  
 
E14.5. 



 200 

 

 

 

 

 

 

A                           B                          C

D                           E                          F

CRABP1               Hoxd11                 Merge

Figure A3.10.  Double fluorescent in situs of CRABP1 and Hoxd11. 
 
A. CRABP1 in green.  B. Hoxd11 in red.  C. Merge of A and B.  D.  
 
CRABP1 in green.  E. Hoxd11 in red.  F. Merge of D and E.   
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expression studies here, was a promising candidate for this.  In addition to 

being expressed in the joints, Dkk3 is expressed in the periarticular 

perichondrium (Witte et al. 2009).  Additionally, a BAC transgenic Cre for 

Dkk3 exists (Sato al. 2007).  We obtained this line and crossed it to a reporter 

line with Tdtomato in the Rosa locus.  Tdtomato could be seen without 

antibody staining in the limb starting at E13.5.  As the limb matured, cells with 

a history of Dkk3 were located in the joints, and in the perichondrium adjacent 

to the joints.  There appeared to be some Cre activity in connective tissue as 

well (Figures A3.11-13).  This preliminary fate map sets the groundwork for 

future more extensive fate mapping, and identifies a potentially useful marker 

of at least a portion of the inner layer of the perichondrium. 

 Last, we were interested in determining the role of Hox genes 

expressed in the joints.  Removal of the 5’ Hox genes from the limb results in 

disruption of growth differentiation factor 5 (GDF5) expression and joint 

fusions (Villavicencio-Lorini et al. 2010).  However, at least some of the HoxD 

genes are also expressed later in the joints (Suzuki and Kuroiwa 2002).  

Thus, Hox genes might be playing a role later in joint development.  GDF5 is 

a marker expressed early in joint development (Storm et al. 1994) and Figure 

A3.14).  A GDF5-cre line that expresses Cre in the developing joints exists 

(Koyama et al. 2008).  We obtained this line from the Kingsley lab to cross to 

HoxA conditional mice.  However, a subset of the individuals in each cross 

expressed Cre in tissues beyond the joints (Figure A3.15).  Future work on 

the role of Hox genes in the developing joints will have to be performed in  
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Figure A3.11.  Fate mapping of Dkk3-cre in embryonic mice. 
 
A-C. E13.5 mice.  E-H.  Approximately E18.5.  A, C, E, G – photographs of  
 
Embryos.  B, D, F, H – photographs of embryos under the fluorescence. 
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Figure A3.11, cont. 

 

A                                      B

C                                      D

E                                      F

G                                      H



 204 

 

 

A                                           B

C                                           D

E                                           F

Figure A3.12. Dkk3-cre fate map at E18.5. 
 
Sections of Dkk3-cre Tdt mice at E18.5.  B, D, F – Tdtomato.  A, C, E  
 
- Merge of Tdtomato and DAPI. 
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Figure 3.13.  Dkk3-cre fate mapping at P0. 
 
Sections of Dkk3-cre Tdt mice at P0.  A’-D’ are magnifications of A-D.   
 
A, C, E, G – DAPI stain.  B, D, F, H – Tdtomato. 
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A

B

Figure 3.14.  GDF5 expression. 
 
A.  Whole mount in situ of GDF5 at approximate E13.5.  B. Section in  
 
situ of GDF5 at approximately E13.5. 
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A                                     B

C                                     D

Figure 3.15.  GDF5-cre fate mapping. 
 
X-gal stained adult mouse limbs that are GDF5-cre LacZ.  A and C –  
 
Joint specific GDF5-cre.  B and D – Non-joint specific GDF5-cre. 
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mice that have both Cre and a reporter crossed into the background to 

determine which individuals are expressing a joint-specific Cre for the 

analysis of loss of Hox genes in the joints.  

 

Materials and Methods 

 All in situs were performed following the standard Cepko/Tabin lab in 

situ protocols for either whole mount or section in situs.  Fluorescent in situs 

were performed using a modified version of the section in situ protocol using 

a tyramide amplification step (Trimarchi et al. 2007).   

 For the fate mapping work, the Dkk3-cre fate mapping was performed 

by crossing male mice heterozygous for Dkk3-cre to female mice 

homozygous for Tdtomato in the Rosa locus.  All of the images shown here 

were from whole mice or embryos, or sections that were not antibody stained.  

Sections were stained with DAPI.  GDF5-cre fate mapping was performed by 

crossing male mice heterozygous for GDF5-cre to female mice homozygous 

for the R26R allele, with LacZ expressed from the Rosa locus, and then 

performing X-gal staining on whole limbs.  Note that the number of mice 

expressing Cre outside of the joints may be affected by the mouse line 

backgrounds, and that determining which background gives the cleanest 

expression may aid in future studies. 
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This appendix is preliminary work for a manuscript titled “Micromasses: More 
than just a tool to study cartilage.”  This work was performed as a side project 
during graduate school.  It is the result of a collaboration between Jessica Whited 
and Johanna Kowalko, who contributed equally to this work.  Jessica Whited, 
Johanna Kowalko, and Clifford Tabin designed the experiments and contributed 
to the writing.  Johanna Kowalko, Jessica Whited, and Stephanie Tsai did the 
experiments.  Scott Stadler contributed reagents.  



 215 

 
Results and Discussion 

 Micromasses have classically been thought of as an assay for cartilage 

formation.  Any patterning that has been studied in micromasses has been 

limited to patterns occurring between cartilage nodules and non-cartilage spaces.  

However, a previous study identified digit-like cartilage projections forming 

radially around the edge of the micromass (Stadler et al., 2001).  We confirmed 

that micromasses form a digit-like pattern around their edges, and that these 

digit-like structures stain with alcian blue (Figure A4.1A and B). 

 We next investigated whether the non-cartilage spaces in our micromass 

cultures express markers of different cell types.  We performed in situ 

hybridizations for genes expressed in different cell types in the limb bud during 

cartilage formation.  Multiple cell-type-specific markers showed restricted 

patterns in the micromass culture system reminiscent of their expression in the 

limb bud.  Sox9, which marks cartilage condensations, was expressed in the 

cartilaginous nodules (Figure A4.2A).  Msx2, a marker for the interdigital space, 

was expressed between cartilage nodules (Figure A4.2B).  In addition, 

perichondrial markers CRABP1 and Tsp2 were expressed in space between 

cartilaginous nodules, as was Bmp2 (Figure A4.2C-E).  Bmp4 was expressed in 

both the cartilage and the cells surrounding the cartilage nodules (Figure A4.2F).  

GDF5, a joint marker, was expressed in between cartilage nodules (Figure 

A4.2G).   
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A B

Figure A4.1.  Micromasses display digit-like cartilage projections 

around their edges. 

A.  Micromass stained with alcian blue.  B.  Close up of the edge of a 

micromass. 
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Figure A4.2.  Micromasses have restricted expression of markers of 

multiple cell types. 

A.  In situ for Sox9.  B.  In situ for Msx2.  C.  In situ for CRABP1.  D.  In 

situ for Tsp2.  E.  In situ for Bmp2.  F.  In situ for Bmp4.  G.  In situ for 

GDF5.   
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Figure A4.2, cont. 

 

A B

C D

E F
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To determine if these patterns were set up based on the original cell’s location 

within the limb bud, we labeled different regions within the original limb bud and 

generated micromasses.  Sonic hedgehog (Shh) is expressed in the posterior 

portion of the developing limb bud.  To test whether anterior-posterior patterning 

of the limb bud affects micromass patterning, we made micromasses from Shh-

cre heterozygous animals crossed to a Tdtomato reporter line, so that limb bud 

cells derived from the posterior portion of the limb bud were labeled red.  

Micromasses derived from these crosses had red cells in both cartilage and non-

cartilage spaces, as determined by cell shape (Figure A4.3A).  Therefore, 

anterior-posterior position in the limb bud is not responsible for only cartilage or 

non-cartilage fate in the micromass culture.   

 It is also possible that the fate of the micromass cells is determined by the 

original proximal-distal position of the limb bud cells.  To test this hypothesis, we 

crossed an ubiquitously expressed Cre, Human beta actin-cre, heterozygous 

mice with a Tdtomato reporter line.  This resulted in either red (Cre-positive) or 

wildtype (Cre-negative) embryos.  Limb buds harvested from these embryos 

were divided into proximal and distal portions, and red-proximal cells were mixed 

with non red-distal cells, and vice versa.  The resulting micromasses had red 

cells in both the cartilage and the non-cartilage areas (Figure A4.3B).  Thus, 

patterning seen in the micromasses did not result from original proximal-distal 

location in the limb bud. 

 Last, we tested the effect of factors expressed in the limb on micromass 

pattern formation.  We treated micromasses with a range of concentrations of  
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A                                              B

Figure A4.3.  Position in the limb bud does not dictate cartilage 

versus non-cartilage fate for micromass cells. 

A.  Shh-cre Tdtomato micromasses after plating for 2 days.  B.  

Micromasses after 4 days with the distal cells labeled with Tdtomato and 

the proximal cells unlabeled.   
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A                                            B

C                                            D

E

Figure A4.4.  FGF-8 treated micromasses. 

Micromasses after 5 days treated with A. 0 ng/uL B. 2.5 ng/uL C. 10 

ng/uL D. 50 ng/uL and E. 150 ng/uL of FGF-8. 
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Fibroblast growth factor 8 (FGF-8) protein.  FGF-8 treatment resulted in an 

increase in the number and length of digit-like structures around the edge of the 

micromass (Figure A4.4).  Increasing FGF signaling in the limb can induce extra 

phalanges in the developing chicken limb (Sanz-Ezquerro and Tickle, 2003).  

Therefore, micromasses may be useful for determining in vivo effects of signaling 

molecules on digit patterning. 

  

Materials and Methods 

 Micromasses were generated from mouse embryonic limb buds stages 

E10-E11.5, using a protocol modified from (Stadler et al., 2001).  In situs were 

performed using a modified version of the Cepko/Tabin lab section in situ 

protocol.  Micromasses were FGF-8 treated during flooding.   

 

 

 

 

 

 

 

 

 

 

 



 223 

References 

Sanz-Ezquerro, J. J. and Tickle, C. (2003) 'Fgf signaling controls the number of 
phalanges and tip formation in developing digits', Curr Biol 13(20): 1830-6. 
 
Stadler, H. S., Higgins, K. M. and Capecchi, M. R. (2001) 'Loss of Eph-receptor 
expression correlates with loss of cell adhesion and chondrogenic capacity in 
Hoxa13 mutant limbs', Development 128(21): 4177-88. 
 
 


