

Total Synthesis of Hyperforin

The Harvard community has made this article openly available. [Please share](http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11181077&title=Total+Synthesis+of+Hyperforin&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=36493ea7fe81d5f9595cb87cd38c958f&department=Chemistry+and+Chemical+Biology) how this access benefits you. Your story matters.

(Article begins on next page)

Total Synthesis of Hyperforin

A dissertation presented

by

Brian Andrew Sparling

to

The Department of Chemistry and Chemical Biology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Chemistry

Harvard University

Cambridge, Massachusetts

August, 2013

© 2013 by Brian Andrew Sparling

All rights reserved.

Total Synthesis of Hyperforin

Abstract

Hyperforin (**1**) is the component of the medicinal herb St. John's Wort (*Hypericum perforatum*) responsible for its antidepressant activity. It works by blocking the reuptake of a variety of neurotransmitters through a unique mechanism of action and may be a critical lead for the treatment of depression and possibly other human diseases. However, the therapeutic potential of hyperforin is severely handicapped by its poor water solubility, facile oxidative degradation, and potent activation of pregnane X receptor, leading to increased expression of many genes involved in xenobiotic metabolism. Access to a wide variety of hyperforin analogs is critical for mitigating these shortcomings while maintaining therapeutic activity. While limited semisynthetic manipulation of isolated hyperforin is feasible, total synthesis is the only possible means of obtaining diverse hyperforin analogs.

The goal of the work presented in this thesis was to devise a new enantioselective, versatile approach to hyperforin that would not only incorporate elements of modularity but also exploit latent symmetry within the natural product that would enable facile analog synthesis. Early strategies that we explored included the carbocyclic cyclization of a polyketide and the electrocyclic cascade reaction involving an acylketene. These strategies were inherently flawed, and we subsequently pursued an alternative approach involving a diastereoselective epoxide-opening cascade cyclization.

This approach led to the enantioselective total synthesis of hyperforin. The synthesis is 18 steps in its longest linear sequence and can be deconstructed as the stepwise fusion of six easily obtainable chemicals. The key step in this sequence involved a group-selective, Lewis acid-mediated epoxideopening cyclization of **381**, in which the strategically placed epoxide functionality relayed stereochemical information to the C1, C5, and C8 carbon centers of hyperforin, allowing 2 quaternary stereocenters and

the bicyclic core of hyperforin to be established in a single transformation in forming **382**. Using this 18 step sequence, we were able to synthesize over 40 mg of the natural product in a single batch.

Further, a small library of analogs has been synthesized using the framework of the hyperforin synthesis. These efforts have resulted in the first total synthesis of the natural product secohyperforin and the first enantioselective synthesis of (–)-nemorosone.

Table of Contents

Acknowledgments

First and foremost, I thank my advisor, Prof. Matthew Shair. Matt has been a great mentor, teacher, and motivator, and I am truly grateful for the opportunity to work in his lab and to learn from him. One thing I truly appreciate and will try to emulate in my future career is Matt's drive and determination to pursue projects that have profound applications beyond the realm of synthetic organic chemistry. I am truly honored to have helped establish one such research program, and I look forward to seeing further breakthoughs in the hyperforin project after I leave.

Additionally, I thank my graduate advising committee and thesis committee members, Profs. Eric Jacobsen and Andrew Myers. During our annual meetings, they offered me valuable advice not only on my research project but also on chemistry in general. Their implorations for me to not only think about the "how?" but also the much more fundamental "why?" have had a lasting impact on how I approach and evaluate chemical research.

Before starting my graduate studies at Harvard, I was also fortunate to study under Prof. Timothy Jamison at the Massachusetts Institute of Technology. Tim was willing to let an eager, inexperienced freshman start working in his lab, and I would certainly not be who I am today without him doing so. In particular, the freedom and responsibility he gave to me in the last few years in his lab were crucial towards preparing me for graduate research. In addition, Dr. Graham Simpson was my first mentor, and many of my fundamental practical chemistry skills were a direct result of his endless patience.

In the Shair lab, I have had the opportunity to work alongside many talented and amazing colleagues that are too numerous to all be named in this space. Dave Moebius has been my partner in crime for the hyperforin project, and it has been a real joy getting to know him and work with him. I wish him and his family the best as they head west. I also thank my bay mate Ben Milgram for countless hours of entertainment and brainstorming sessions that I hope will continue at our next place of employment. Shota Kikuchi and Brian Liau are pillars of wisdom and have given me valuable advice throughout the

course of my research. Bill Morris was my mentor when I first started my graduate studies, and I thank him for helping me start on a strong foot.

Outside of the lab, I cannot thank my family enough for their support and love throughout my life. My parents have sacrificed so much so that I could have the best education, and I would not be where I am today without their unconditional love. My grandparents have always been an inspiration to me, and I thank all my all my in-laws, cousins, uncles, aunts, and extended family for their love and encouragement.

I do not know what I would do without my loving wife and best friend Jamie, who has stood by my side through thick and thin these last five years. She has been my anchor and my strength, being my neverending source of encouragement and love. Even during my worst days in the lab, I would come home, see that beautiful smile, and be at ease. I love you so much, and I cannot wait for little Abigail Mae to be here!

Finally, I praise the Lord, my God, for giving me the strength, preseverence, and diligence to accomplish all that is in this dissertation. None of this work would be possible without Him, and I thank God for all that I have been able to do. I thank the community of believers, especially at Park Street Church, for their prayers and fellowship during my time in graduate school. I have truly been blessed, and I hope continue to glorify Him as I move on to the next stage in my life.

I can do all things through Christ who strengthens me.

Philippians 4:13

List of Figures, Schemes, and Tables

Figures

xii

List of Abbreviations

Chapter 1

Polycyclic Polyprenylated Acylphloroglucinols: An Overview

Overview

 \overline{a}

In 1971, a group of Soviet scientists studying the antibacterial properties of St. John's wort (*Hypericum perforatum*, SJW) reported the discovery of a natural product hyperforin (**1**, Figure 1.1) from the medinical herb's alcoholic extract.¹ Using extensive chemical degradation methods, the flat structure of hyperforin was deduced four years later.² Concurrent to these studies was the isolation and X-ray crystallography-guided elucidation of isoxanthochymol (**2**) from the Indian gamboge (*Garcinia xanthochymus*).³ Hyperforin and isoxanthochymol are the founding and prototypical members of a sprawling natural product family known as the polycyclic polyprenylated acylphloroglucinols (PPAPs),⁴ of which there are 260 members to date.

Figure 1.1. Structures of hyperforin (**1**) and isoxanthochymol (**2**).

¹ Gurevic, A. I.; Dobrynin, V. N.; Kolosov, M. N.; Popravko, S. A.; Ryabova, I. D.; Chernov, B. K.; Derbentseva, N. A.; Aizenman, B. E.; Garagulya, A. D. *Antibiotiki* **1971**, *16*, 510-513.

² Bystrov, N. S.; Chernov, B. K.; Dobrynin, V. N.; Kolosov, M. N. *Tetrahedron Lett.* **1975**, *16*, 2791-2794.

³ Karajgoaker, C. G.; Rama Rao, A. V.; Venkataraman, K.; Yemul, S. S.; Palmer, K. J. *Tetrahedron Lett.* **1973**, *14*, 4977-4980.

 4 For reviews on the structural diversity of PPAP natural products, see: (a) Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. *Stud. Nat. Prod. Chem.* **2005**, *32*, 671-720. (b) Baggett, S.; Mazzola, E. P.; Kennelly, E. J. *Stud. Nat. Prod. Chem.* **2005**, *32*, 721-771. (c) Ciochina, R.; Grossman, R. B. *Chem. Rev.* **2006**, *106*, 3963-3986. (d) Singh, I. P.; Bharate, S. B. *Nat. Prod. Rep.* **2006**, *23*, 558-591.

A PPAP natural product may be defined as a bicyclo[3.3.1]nonane (or a larger bridged polycyclic containing a bicyclo[3.3.1]nonane element) bearing a C9 ketone (Figure 1.2).^{5,6} Aside from the C9 position, oxidation is also found at the C2 and C4 positions, and in approximately 80% of PPAPs, these two oxidation sites are conjugated through C3 to form a β-hydroxyenone or β-alkoxyenone functionality array. The periphery of this carbocyclic core is decorated with multiple isoprenoid groups at the C1, C3, C5, C7, and C8 positions. In the great majority of instances, these substituents are derived from the following parent isoprenoids: prenyl in 75% of substituents; lavandulyl in 10% of substituents; and geranyl in 7.5% of substituents. These isoprenoid substituents undergo secondary cyclization to form additional oxacyclic and carbocyclic rings in many PPAPs. Nearly all of these natural products contain a quaternary center at the C8 position, and in 81% of PPAPs, this position is substituted with two methyl groups.

Figure 1.2. Generic PPAP skeleton and typical substituents.

 $⁵$ The general method of PPAP numbering used throughout is in accordance with IUPAC guidelines for bicyclic</sup> compounds. For more information, see: Moss, G. P. *Pure Appl. Chem.* **1999**, *71*, 513-529.

⁶ This definition excludes certain polycyclic polyprenylated acylphloroglucinol natural products that do not contain a bicyclo[3.3.1]nonane subunit. For examples of "atypical PPAPs," see: (a) Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. *J. Nat. Prod.* **2000**, *63*, 104-108 (ialibinone A-E). (b) Wu, J.; Cheng, X.-F.; Harrison, L. J.; Goh, S.-H.; Sim, K.-Y. *Tetrahedron Lett.* **2004**, *45*, 9657-9659 (perforatumone). (c) Thoison, O.; Cuong, D. D.; Gramain, A.; Chiaroni, A.; Van Hung, N.; Sévenet, T. *Tetrahedron* **2005**, *61*, 8529-8525 (garcibracteatone). (d) Tanaka, N.; Kashiwada, Y.; Sekiya, M.; Ikeshiro, Y.; Takaishi, Y. *Tetrahedron Lett.* **2008**, *49*, 2799-2803 (takaneone A-C). (e) Yang, X.-W.; Deng, X.; Liu, X.; Wu, C.-Y.; Li, X.-N.; Wu, B.; Luo, H.-R.; Li, Y.; Xu, H.-X.; Zhao, Q.-S.; Xu, G. *Chem. Commun.* **2012**, *48*, 5998-6000 (hypercohin A).

The placement of an acyl group around the bicyclic ring system is used to classify PPAPs into three different subgroups: (1) "Type A" PPAPs contain a C1 acyl substituent; (2) "Type B" PPAPs contain a C3 acyl substituent; and (3) "Type C" PPAPs contain a C5 acyl substituent. Approximately 52% of PPAPs are Type A, and 46% are Type B. There are only three known Type C PPAPs, and an additional three PPAPs lack acyl substitution all together. When an acyl group is present, it is either an isobutyryl (15%), 2-methylbutyryl (6%), isovaleryl (1.5%), benzoyl (36.5%), or an oxidized benzoyl (41%) group. A comprehensive listing of all published PPAPs with references to chemotaxonomical, geographical, and spectroscopic data is found in Appendix A.

Stereochemistry

 \overline{a}

The absolute configurations of only a few PPAP natural products have been ascertained. Since the most electron-rich atom found in all PPAPs is oxygen, anomalous scattering is not normally large enough to permit the refinement of the Flack parameter⁷ and thus absolute configuration during X-ray diffraction analysis. To circumvent this issue, the crystal structures of PPAPs that have been appended with various brominated groups have been resolved, which now contain atoms with sufficient electron density to allow determination of the Flack parameter. The absolute configurations of hyperforin,⁸ isogarcinol,⁹ isoxanthochymol,¹⁰ and xanthochymol^{10,11} have been solved using this methodology. Recent advancements using Bijvoet pair analysis and subsequent determination of the Hooft parameter allows for the determination of absolute structure at low temperatures without requiring the presence of heavy atoms.12 The absolute configuration of 7-*epi*-clusianone has been solved in this manner.13

⁷ Flack, H. D. *Acta. Cryst.* **1983**, *A39*, 876-881.

⁸ Brondz, I.; Greibrokk, T.; Groth, P.; Aasen, A. J. *Acta Chem. Scand. A* **1983**, *37*, 263-265.

⁹ Marti, G.; Eparvier, V.; Moretti, C.; Susplugas, S.; Prado, S.; Grellier, P.; Retailleau, P.; Guéritte, F.; Litaudon, M. *Phytochemistry* **2009**, *70*, 75-85.

¹⁰ Venkatswamy, G.; Yemul, S. S.; Rama Rao, A. V.; Palmer, K. J. *Indian J. Chem.* **1975**, *13*, 1355-1355.

¹¹ Blount, J. F.; Williams, T. H. *Tetrahedron Lett.* **1976**, *17*, 2921-2924.

¹² Hooft, R. W. W.; Straver, L. H.; Spek, A. L. *J. Appl. Cryst.* **2008**, *41*, 96-103.

The absolute configurations of several PPAPs have been determined through comparison of spectroscopic data and direct semisynthetic conversion. Isoxanthochymol and isogarcinol have identical spectroscopic properties except for optical rotations of opposite sign. Through the observation of similar Cotton effects in the circular dichroism (CD) spectra of isogarcinol, the absolute configuration of isogarcinol 13-*O*-methyl ether¹⁴ and 13,14-didehydroxyisogarcinol¹⁵ were determined. The absolute configuration of guttiferone E (and thus its enantiomer, garcinol) was determined through acid- and heatmediated conversion to isoxanthochymol (2) .¹⁶ Ozonolysis of sinaicone produced the previously characterized $(2R,4R)$ -2,4-dimethylhexanoic acid.¹⁷ Through comparison of CD spectra with computed electronic circular dichroism (ECD) spectra calculated using density functional theory (DFT), the absolute configurations of 7-*epi*-guttiferone $J₁¹⁸$ oxy-guttiferone K₁¹⁹ guttiferone M₁¹⁹ 32-hydroxy-*ent*guttiferone M^{18} have been determined.

In addition, several PPAPs have been isolated in both enantiomeric forms. Specifically, these enantiomeric pairs are: chamuangone (cowanone) and guttiferone Q; cycloxanthochymol and *ent*cycloxanthochymol; garcinialiptone A and *ent*-garcinialiptone A; garcinielliptone I and hyperibone A; garcinol and guttiferone E; guttiferone G (guttiferone I2) and oblongifolin C; guttiferone O2 and oblongifolin F; hyperibone G and propolone D; isogarcinol and isoxanthochymol; and samponione G and *ent*-sampsonione G.

¹³ Christian, O. E.; Fronczek, F. R.; Ky, K.; Pradham, S.; Manandhar, A.; Richmond, C. *Acta Cryst.* **2012**, *E68*, o3222-o3223.

¹⁴ Ito, C.; Itoigawa, M.; Miyamoto, Y.; Onoda, S.; Rao, K. S.; Mukainaka, T.; Tokuda, H.; Nishino, H.; Furukawa, H. *J. Nat. Prod.* **2003**, *66*, 206-209.

¹⁵ Chen, J.-J.; Ting, C.-W.; Hwang, T.-L.; Chen, I.-C. *J. Nat. Prod.* **2009**, *72*, 253-258.

¹⁶ Gustafson, K. R.; Blunt, J. W.; Munro, M. H. G.; Fuller, R. W.; McKee, T. C.; Cardellina, J. H., II; McMahon, J. B.; Cragg, G. M.; Boyd, M. R. *Tetrahedron* **1992**, *48*, 10093-10102.

¹⁷ Řezanka, T.; Sigler, K. *Phytochemistry* **2007**, *68*, 1272-1276.

¹⁸ Acuña, U. M.; Figueroa, M.; Kavalier, A.; Jancovski, N.; Basile, M. J.; Kennelly, E. J. *J. Nat. Prod.* **2010**, *73*, 1775-1779.

¹⁹ Masullo, M.; Bassarello, C.; Bifulco, G.; Piacente, S. *Tetrahedron* **2010**, *66*, 139-145.

Distribution

 \overline{a}

PPAPs have been isolated from 128 different plant species spanning 18 different genii in 6 different families. The great majority (257 out of 260) of PPAPs have been isolated from plants from the Clusiaceae (Guttifereae) and Hypericeae families, members of the Malpighiales order.^{20,21} The genii *Clusia*, *Garcinia*, and *Hypericum* are particularly prolific, having PPAPs isolated from 132 different subordinate species.²² Many PPAPs have been observed in multiple species; hyperforin alone has been detected in 38 distinct species.²³ Only five PPAPs have been isolated outside of the Clusiaceae and Hypericeae families (Figure 1.3): dorstenpictanone (**3**) from *Dorstenia picta* (Moraceae); ²⁴ spiranthenones A-B (**4**,**5**) from *Spiranthera odoratissima* (Rutaceae);²⁵ xanthochymol (**6**) from *Endodesmia calophylloides* (Calophyllaceae);²⁶ and hyperforin (**1**) has been isolated from *Apocynum venetum* (Apocynaceae) 27 and from *Scutellaria baicalensis* (Lamiaceae).28

²⁴ Hussain, H.; Vouffo, B.; Dongo, E.; Riaz, M.; Krohn, K. *J. Asian Nat. Prod. Res.* **2011**, *13*, 547-550.

²⁵ Albernaz, L. C.; Deville, A.; Dubost, L.; de Paula, J. E.; Bodo, B.; Grellier, P.; Espindola, L. S.; Mambu, L. *Planta Med.* **2012**, *78*, 459-464.

²⁶ Talontsi, F. M.; Islam, M. T.; Facey, P.; Douanla-Meli, C.; von Tiedemann, A.; Laatsch, H. *Phytochem. Lett.* **2012**, *5*, 657-664.

27 Zheng, M.; Fan, Y.; Shi, D.; Liu, C. *J. Ethnopharmacol.* **2013**, *147*, 108-113.

²⁸ Murch, S. J.; Rupasighe, H. P. V.; Goodenowe, D.; Saxena, P. K. *Plant Cell Rep.* **2004**, *23*, 419-425.

 20 Hypericeae has traditionally been regarded as a separate family, but recent phylogenic analysis based on the chloroplast gene *rbc*L has shown that it can be classified as a tribe (i.e., Hypericoideae) of the Clusiaceae family. For more information, see: Gustafsson, M. H. G.; Bittrich, V.; Stevens, P. F. *Int. J. Plant Sci.* **2002**, *163*, 1045-1054.

²¹ Wurdack, K. J.; Davis, C. C. *Am. J. Bot.* **2009**, *96*, 1551-1570.

²² For reviews of phytochemical and therapeutic aspects of the PPAPs from these genii, see: (a) Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. *Stud. Nat. Prod. Chem.* **2005**, *32*, 671-720. (b) Hemshekhar, M.; Sunitha, K.; Santhosh, M. S.; Devaraja, S.; Kemparaju, K.; Vishwanath, B. S.; Niranjana, S. R.; Girish, K. S. *Phytochem. Rev.* **2011**, *10*, 325-351.

²³ For a review of the distribution of hyperforin amongst *Hypericum* species, see: Stojanović, G.; Đorđević, A.; Šmelcerović, A. *Curr. Med. Chem.* **2013**, *20*, 2273-2295.

Figure 1.3. Structures of dorstenpictanone (**3**), spiranthenone A-B (**4**,**5**), and xanthochymol (**6**).

While most species of the Clusiaceae family are found in tropical regions, Hypericeae species are found in temperate climes. Given the fact that most PPAPs exhibit some degree of antibacterial properties, it is unsurprising that these compounds are isolated from the flowers and fruit rinds of these species, protecting vulnerable and sexually important organs from bacterial parasites. Hyperforin may exist in concentrations up to 11% in the flowering parts of *Hypericum perforatum*,²⁹ and its concentration generally decreases as the flowers develop and mature.³⁰ Moreover, PPAPs are also found in the latex of many Clusiaceae species, protecting against the development of infections in injuries to these plants. Garcinol (7) and isogarcinol (8) were initially isolated in "surprisingly in large quantities" from the latex of *Garcinia cambogia*; garcinol comprised 37% of total mass of this material (Figure 1.4).³¹

²⁹ Bergonzi, M. C.; Bilia, A. R.; Gallori, S.; Guerrini, D.; Vincieri, F. F. *Drug Dev. Ind. Pharm.* **2001**, *27*, 491-497.

³⁰ Büter, K. B.; Büter, B. *J. Herbs Spices Med. Plants* **2002**, *9*, 95-100.

³¹ Rao, A. V. R.; Venkatswamy, G.; Pendse, A. D. *Tetrahedron Lett.* **1980**, *21*, 1975-1978.

Figure 1.4. Structures of garcinol (**7**) and isogarcinol (**8**).

Species of both the Clusiaceae and Hypericeae families are also noted for their high degree of evolutionary plasticity, and this may be a direct result of adaptation to different methods of pollination. Further, while most flowers in general use nectar and pollen as pollinator rewards, a unique adaptation and defining feature of flowering plants from the Clusiaceae family is the additional use of resins as rewards. Certain honeybees will use these resins to create a material known as propolis, which is used to patch holes in their hives as well as to embalm the carcasses of intruders. Propolis is used widely in a variety of folk medicines, and its application traces back to the ancient Egyptians who used this substance in cadaver mummification.³² The contents of propolis vary according to geography and climate, and PPAPs are the dominant chemicals found in the propolis of New World bee colonies from as far north as the Caribbean islands to as far south as central Brazil. It is interesting to note that while the majority of the 25 distinct PPAPs that have been isolated from these propola have also been found in nearby flora, the plant source of 7 propolis PPAPs have not been identified.

Biosynthesis

 \overline{a}

Very little evidence beyond conjecture is known specifically about PPAP biosynthesis. The only PPAP that has undergone any biosynthetic experimental scrutiny is hyperforin (**1**); however, several generalizations about PPAP biosynthesis can be extrapolated from these studies. In general, the biosynthesis of PPAPs can be broken down into three distinct phases: (1) polyketide synthesis of an

³² For reviews on propolis, see: (a) Salatino, A.; Teixeira, É. W.; Negri, G.; Message, D. *Evid. Based Complement. Alternat. Med.* **2005**, *2*, 33-38. (b) Miguel, M. G.; Antunes, M. D. *J. Pharm. Bioallied Sci.* **2011**, *3*, 479-495. (c) Watanabe, M. A. E.; Amarante, M. K.; Conti, B. J.; Sforcin, J. M. *J. Pharm. Pharmacol.* **2011**, *63*, 1378-1386. (d) Salatino, A.; Fernandes-Silva, C. C.; Righi, A. A.; Salatino, M. L. F. *Nat. Prod. Rep.* **2011**, *28*, 925-936.

acylphloroglucinol precursor; (2) alkylation of this core with isoprenoid side chains and subsequent cyclization to form the characteristic bicyclo[3.3.1]nonane core of PPAPs; and (3) secondary cyclizations, oxidations, and rearrangements.

The first step in PPAP biosynthesis involves the stepwise, decarboxylative condensation of an alkoyl-SCoA or an aroyl-SCoA group (**9**) with three molecules of malonyl-CoA (**10**, Scheme 1.1). This enzyme-bound linear tetraketide (**11**) then undergoes an intramolecular Claisen cyclization to form an acylphloroglucinol (**12**). The enzymes that catalyze these reactions are members of the type III polyketide synthase (PKS) superfamily. While type I and II PKSs contain acyl carrier proteins (ACPs) that shuttle the growing polyketide across modular functional domains (e.g., ketoreductase and dehydratase), type III PKSs lack ACPs and contain a single active site in which the growing polyketide chain is anchored. 33

Scheme 1.1. The first steps in PPAP biosynthesis.

All known type III PKSs are homodimers and contain a highly conserved cysteine-histidineasparagine catalytic triad within the active site of each monomer.³⁴ The cysteine acts as the polyketide attachment site, and the histidine and asparagine residues play critical roles in the decarboxylation of malonyl-CoA during chain extension. Additionally, two generally conserved phenylalanine residues near the entrance of the active site facilitate some degree of substrate specificity; however, PKSs in general poorly differentiate starter units *in vitro* and rely upon compartmentalization within plant tissue and cells

³³ For reviews of type III PKS, see: (a) Flores-Sanchez, I. J.; Verpoorte, R. *Plant Physiol. Biochem.* **2009**, *47*, 167- 174. (b) Beerhues, L.; Liu, B. *Phytochemistry* **2009**, *70*, 1719-1727.

³⁴ Jez, J. M.; Bowman, M. E.; Noel, J. P. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 5319-5324.

to engender a high degree of substrate selectivity.33a For PPAPs such as hyperforin (**1**) containing an isopropyl ketone moiety, isobutyrophenone synthase (BUS) is used to synthesize phlorisobutyrophenone (**13**, Figure 1.5). PPAPs containing phenyl and isobutyl ketones utilize benzophenone synthase (BPS) and phlorisovalerophenone synthase (VPS) to synthesize 2,4,6-trihydroxybenzophenone (**14**) and phlorisovalerophenone (**15**), respectively. Only two PKS systems utilized in PPAP biosynthesis have been characterized: the hyperforin and adhyperforin BUS from *Hypericum calveinum*³⁵ and the hyperandrone A BPS from *Hypericum androsaemum*. 36 In addition, the gene responsible the PKS involved in hyperforin and adhyperforin biosynthesis in *Hypericum perforatum*, named *HpPKS1*, has also been characterized.³⁷

Figure 1.5. Specific examples of intervening acylphloroglucinols in PPAP biosynthesis.

For the biosynthesis of PPAPs, exactly three molecules of malonyl-CoA are condensed with a starter acyl-CoA subunit. For type III PKSs, termination of polyketide chain length is determined by active site volume. For example, if a Thr135Leu point mutation is introduced in the active site of the *Hypericum androsaemum* BPS, the subsequent decrease in active site volume causes this enzyme to become a phenylpyrone sythase without a decrease in catalytic efficiency, in which only two molecules of

³⁵ Klingauf, P.; Beuerle, T.; Mellenthin, A.; El-Moghazy, S. A. M.; Boubakir, Z.; Beerhues, L. *Phytochemistry* **2005**, *66*, 139-145.

³⁶ Liu, B.; Falkenstein-Paul, H.; Schmidt, W.; Beerhues, L. *Plant J.* **2003**, *34*, 847-855.

³⁷ Karppinen, K.; Hohtola, A. *J. Plant Physiol.* **2008**, *165*, 1079-1086.

malonyl-CoA are incorporated.³⁸ This triketide then undergoes lactonization to form 6-phenyl-4-hydoxy-2-pyrone (**16**, Scheme 1.2a) instead of 2,4,6-trihydroxybenzophenone (**14**, Scheme 1.2b).

Scheme 1.2. (a) Phenylpyrone synthase activitiy of Thr135Leu *H. androsaemum* BPS and (b) benzophenone synthase activity of wild-type *H. androsaemum* BPS.

The next step in PPAP biosynthesis involves polyisoprenylation of the acylphloroglucinol nucleus. All isoprenoids are derived from the two C_5 precursors: isopentenyl diphosphate (17) and dimethylallyl diphosphate (**18**). Until the early 1990s, it was thought that these precursors were produced from a single pathway involving a melavonate (19) intermediate (Scheme 1.3).³⁹ This pathway involves the condensation of three molecules of acetyl-CoA (**20**) to 3-hydroxy-3-methylglutaryl-CoA (**21**), and upon reduction to melavonate (**19**), pyrophosphorylation to **22**, and decarboxylative elimination, **17** is synthesized, which can then be isomerized to **18**. Indeed, this is the pathway by which eukaryotes synthesize sterols and other important metabolites.

Scheme 1.3. Melavonate pathway of terpene biosynthesis.

³⁸ Klundt, T.; Bocola, M.; Beuerle, T.; Liu, B.; Beerhues, L. *J. Biol. Chem.* **2009**, *284*, 30957-30964.

³⁹ Bach, T. J. *Lipids* **1995**, *30*, 191-202.

However, in the early 1990s, inconsistencies regarding ¹³C-labelled intermediates led to the independent discoveries of a non-melavonate means of isoprenoid biosynthesis in plants and bacteria by the research groups of Rohmer and Arigoni.⁴⁰ The absence of this pathway in humans has garnered significant attention as a means to develop novel anti-infective pharmaceutical agents.⁴¹ This $deoxyxylulose phosphate pathway⁴² commences with the thiamine pyrophosphate (TPP) mediated$ decarboxylative coupling of pyruvate (**23**) to D-glyceraldehyde-3-phosphate (**24**) to form 1-deoxy-Dxylulose-3-phosphate (**25**, Scheme 1.4). A subsequent rearrangement with concomitant reduction affords 2*C*-methyl-D-erythritol 4-phosphate (**26**). Sequential cytidyl phosphorylation and phosphorylation yields 4-diphosphocytidyl 2*C*-methyl-D-erythritol 2-phosphate (**27**). Cytidyl monophosphate (CMP) is then released to form 2*C*-methyl-D-erythritol-2,4-cyclodiphosphate (**28**). Single-electron transfer from an ironsulfur cluster cofactor mediates the reductive rearrangement of **28** to *E*-1-hydroxy-2-methyl-2-butenyl diphosphate (**29**) through an unknown mechanism of action. Finally, another iron-sulfur clusterfacilitated single-electron transfer process affords either **17** or **18**, depending on the specific enzyme.

Scheme 1.4. Deoxyxylulose phosphate pathway of terpene biosynthesis.

^{40 (}a) Rohmer, M.; Knani, M.; Simonin, P.; Sutter, B.; Sahm, H. *Biochem. J.* **1993**, *295*, 517-524. (b) Arigoni, D.; Sagner, S.; Latzel, C.; Eisenreich, W.; Bacher, A.; Zenk, M. H. *Proc. Natl. Acad. Sci. USA* **1997**, *94*, 10600-10605.

⁴¹ Gräwert, T.; Groll, M.; Rohdich, F.; Bacher, A.; Eisenreich, W. *Cell. Mol. Life Sci.* **2011**, *68*, 3797-3814.

⁴² For reviews of the deoxyxylulose phosphate pathway, see ref. 41 and (a) Rohmer, M. *Nat. Prod. Rep.* **1999**, *16*, 565-574. (b) Eisenreich, W.; Rohdich, F.; Bacher, A. *Trends Plant Sci.* **2001**, *6*, 78-84. (c) Hunter, W. M. *J. Biol. Chem.* **2007**, *282*, 21573-21577.

Higher plants utilize both the melavonate and deoxyxylulose pathways to synthesize terpenoids, and this is a reason for the relatively belated discovery of the latter. In general, the melavonate route is used in the cytoplasm and mitochondria, and it is responsible for the synthesis of sesquiterpenoids and ubiquinones. Other metabolites, such as hemiterpenes, monoterpenes, diterpenes, and carotenoids, are formed via the deoxyxylulose pathway localized in the plastids.⁴³ Given the fact that most substituents on PPAPs are hemiterpenoid or monoterpenoid in origin, it is unsurprising that they are synthesized using the deoxyxylulose phosphate pathway. Due to the presence of a skeletal rearrangement in this pathway (i.e., **25** to **26**), the introduction of isotopically-labeled feedstocks may be used to differentiate between these pathways. A feeding study of *Hypericum perforatum* sprouts performed in the dark utilizing both $[1 - {^{13}C}]$ glucose and $[U - {^{13}C_6}]$ glucose provided evidence for the involvement of the deoxyxylulose pathway in hyperforin biosynthesis.44

Further, this study demonstrated that hyperforin is synthesized from the alkylation of phlorisobutyrophenone (**13**) with 3 molecules of dimethylallyl diphosphate (**18**) and 1 molecule of geranyl diphosphate (**30**). Although the details concerning the specific order of alkylation remain scant, a reasonable biosynthetic sequence can be deduced for hyperforin (Scheme 1.5). Originally proposed by Bystrov and coworkers in 1975 ,² conversion of 13 to deoxycohumulone (31) followed by dearomative alkylation with **30** produces cyclohexadienone **32**. Prenylation of the proximal olefin present in the geranyl side chain of **32** with **18** with either concerted or stepwise cyclization affords hyperforin (**1**).

 43 For more information on the biosynthesis of phytochemical terpenoids, see ref. 42b. In some cases, both pathways may be operational in the biosynthesis of a single natural product. For an example, see: Nabeta, K.; Ishikawa, T.; Kawae, T.; Okuyama, H. *J. Chem. Soc., Chem. Commun.* **1995**, 681-682.

⁴⁴ Adam, P.; Arigoni, D.; Bacher, A.; Eisenreich, W. *J. Med. Chem.* **2002**, *45*, 4786-4793.

Scheme 1.5. Proposed biosynthesis of hyperforin (**1**) from phlorisobutyrophenone (**13**).

The intermediates of this hyperforin biosynthesis bear resemblance to other families of natural products. Polyprenylated acylphloroglucinols such as **31**, also known as deoxycohumulone, were first isolated in hops in 1961⁴⁵ Hops are the female seed cones of *Humulus lupulus* (Cannabaceae) and have been extensively studied by the brewing industry due to the importance of hops in beer flavor and aroma.⁴⁶ Deoxycohumulone (31) is a direct precursor of both colupulone (33),⁴⁷ a typical hop β-acid, and cohumulone (34),⁴⁸ a typical hop α -acid (Scheme 1.6).⁴⁹ In the brewing of beer, hops are boiled with malt and wort in water. Under these conditions, isomerization of cohumulone takes place to give bitter hop iso-α-acids, an important flavoring agent in beer. While hop β-acids like colupulone are thought to

^{45 (}a) Hübner, H.; Maier, J.; Riedl, W. *Z. Physiol. Chem.* **1961**, *325*, 224-228. (b) Lloyd, R. O. V.; Shannon, P. V. R.; Shaw, S. J. *J. Inst. Brewing* **1969**, *75*, 32-36.

^{46 (}a) Stevens, R.; *Chem. Rev.* **1967**, *67*, 19-71. (b) Palamand, S. R.; Aldenhoff, J. M. *J. Agric. Food Chem.* **1973**, *21*, 535-543.

⁴⁷ Zuurbier, K. W. M.; Fung, S.-Y.; Scheffer, J. J. C.; Verpoorte, R. *Phytochemistry* **1995**, *38*, 77-82.

^{48 (}a) Fung, S.-Y.; Zuurbier, K. W. M.; Paniego, N. B.; Scheffer, J. J. C.; Verpoorte, R. *Phytochemistry* **1997**, *44*, 1047-1053. (b) Goese, M.; Kammhuber, K.; Bacher, A.; Zenk, M. H.; Eisenreich, W. *Eur. J. Biochem.* **1999**, *263*, 447-454. (c) Hecht, S.; Kammhuber, K.; Reiner, J.; Bacher, A.; Eisenrech, W. *Phytochemistry* **2004**, *65*, 1057-1060.

⁴⁹ Fung, S.-Y.; Brusee, J.; van der Hoeven, R. A. M.; Niessen, W. M. A.; Scheffer, J. J. C.; Verpoorte, R. *J. Nat. Prod.* **1994**, *57*, 452-459.

mostly decompose during the wort boiling process, recent studies have shown that they also isomerize to bitter-tasting compounds that may further add to the complex composition of beer flavor.⁵⁰

Scheme 1.6. Deoxycohumulone (**31**) as a biosynthetic precursor to both colupulone (**33**) and cohumulone (**34**).

The enzymes responsible for the isoprenylation en route to natural products such as PPAPs and hop acids are collectively known as prenyltransferases.⁵¹ In plants, prenyltransferase activity is mainly located in the plastids, and the alkylating terpenoid is derived from the deoxyxylulose pathway. All known prenyltransferases require a divalent metal cation. The prenyltransferases responsible for the conversion of phlorisobutyrophenone (**13**) to prenyl phlorisobutyrophenone (**35**, also known as "compound co-X"), which is the first prenylation step in the biosyntheses of hop bitter acids and hyperforin, has been characterized in both *Humulus lupulus* and *Hypericum calycinum* (Scheme 1.7). The enzyme utilized in *Humulus lupulus* has an unusually wide substrate scope, and there are conflicting reports as to whether this enzyme is membrane-bound or not.⁵² All other plant prenyltransferases are membrane-bound.⁵¹ The analogous prenyltransferase utilized in hyperforin biosynthesis in *Hypericum*

^{50 (}a) Haseleu, G.; Intelmann, D.; Hofmann, T. *Food Chem.* **2009**, *116*, 71-81. (b) Haseleu, G.; Intelmann, D.; Hofmann, T. *J. Agric. Food Chem.* **2009**, *57*, 7480-7489.

⁵¹ For a review, see: Yazaki, K.; Sasaki, K.; Tsurumaru, Y. *Phytochemistry* **2009**, *70*, 1739-1745.

 52 (a) Zuurbier, K. W. M.; Fung, S.-Y.; Scheffer, J. J. C.; Verpoorte, R. (b) Tsurumaru, Y.; Sasaki, K.; Miyawaki, T.; Uto, Y.; Momma, T.; Umemoto, N.; Momose, M.; Yazaki, K. *Biochem. Biophys. Res. Commun.* **2012**, *417*, 393- 398.

calycinum has also been characterized as being non-membrane-bound.⁵³ To date, the prenyltransferases involved in the formation of deoxycohumulone or the dearomative prenylation of deoxycohumulone have not been characterized.

Scheme 1.7. The first prenylation step in hyperforin and hop bitter acid biosynthesis.

After dearomative poly-isoprenylation of a polyketide acyphloroglucinol, a cascade cyclization takes place to form the characteristic bicyclo[3.3.1] nonane core of PPAP natural products. Hop β-acids, such as colupulone (33) are alkylated⁵⁴ to produce a tertiary carbocationic intermediate, which then is trapped through nucleophilic addition of the cyclohexadienone ring (e.g., see Scheme 1.5). Several modes of nucleophilic addition are available to trap this carbocationic intermediate, as illustrated for grandone (**36**) 55 in Scheme 1.8. Following prenyl transfer and subsequent formation of the carbocation **37**, simple E1-type deprotonation may lead to the formation of weddellianone A (**38**, Scheme 1.8a), a lavandulyl-substituted hop β-acid that has been isolated from *Clusia weddelliana* (Clusiaceae).⁵⁶ In addition, two different nucleophilic carbon centers in the cyclohexadienone ring of **37** may trap this carbocation, either at C1 or at C3, and this divergence leads to either a Type A or Type B PPAP, respectively. If the carbocation is trapped at C1, the Type A PPAP nemorosone^{55b} is generated $(39, 10)$

⁵³ Boubakir, Z.; Beuerle, T.; Liu, B.; Beerhues, L. *Phytochemistry* **2005**, *66*, 51-57.

 54 Note that two possible diastereomers may be generated at C7 from this alkylation event. Only one diastereomer is depicted throughout Scheme 1.8.

⁵⁵ **36** was first synthesized in 1971 in a study of hop β-acids: Collins, M.; Laws, D. R. J.; McGuinness, J. D.; Elvidge, J. A. *J. Chem. Soc. C* **1971**, 3814-3818. It was later isolated from *Clusia grandiflora*: de Oliveira, C. M. A.; Porto, A. M.; Bittrich, V.; Vencato, I.; Marsaioli, A. J. *Tetrahedron Lett.* **1996**, *37*, 6427-6430.

⁵⁶ Porto; A. L. M.; Machado, S. M. F.; de Oliveira, C. M. A.; Bittrich, V.; Amaral, M. do C. E.; Marsaioli, A. J. *Phytochemistry* **2000**, *55*, 755-768.

Scheme 1.8. Cyclization modes of grandone (**36**) after prenylation via intermediate **37**: (a) deprotonation,

(b) C1 cyclization, (c) C3 cyclization, and (d) etherification.

Scheme 1.8b), and if cyclization occurs at C3, the Type B PPAP 7-*epi*-clusianone⁵⁷ is produced (40, Scheme 1.8c). An oxygen atom, such as the ketone oxygen attached to C9, may also intercept this carbocation as depicted in Scheme 1.8d to generate benzopyran-type products like **41**. However, only a single analogous natural product that may involve such a cyclization has been isolated to date (bronianone, 42 , Figure 1.6).^{58,59}

Figure 1.6. Structure of bronianone (**42**).

Unlike Types A and B PPAPs, the relatively rare Type C PPAPs cannot be made via intermediates such as grandone (**36**) but rather an isomeric compound represented as **43** (Figure 1.7a). Only three Type C PPAPs have been isolated to date (Figure 1.7b), garcinielliptone K (**44**), L (**45**), and M (**46**), from *Garcinia subelliptica*. 60

^{57 (}a) Santos, M. H.; Speziali, N. L.; Nagem, T. J.; Oliveira, T. T. *Acta Cryst.* **1998**, *C54*, 1990-1992. (b) Alves, T. M. de A.; Alves, R. de O.; Romanha, A. J.; dos Santos, M. H.; Nagem, T. J.; Zani, C. L. *J. Nat. Prod.* **1999**, *62*, 369- 371.

^{58 (}a) Ollis, W. D.; Redman, B. T.; Sutherland, I. O.; Jewers, K. *J. Chem. Soc. D, Chem. Commun.* **1969**, 879-880. (b) Rama Rao, A. V.; Venkataraman, K.; Yemul, S. S. *Tetrahedron Lett.* **1973**, *14*, 4981-4982.

⁵⁹ The originally proposed structure of xanthochymol (**6**) was similar to **41** and **42** prior to revision. See ref. 3.

⁶⁰ Weng, J.-R.; Tsao, L.-T.; Wang, J.-P.; Wu, R.-R.; Lin, C.-N. *J. Nat. Prod.* **2004**, *67*, 1796-1799.

Figure 1.7. (a) A possible intermediate in Type C PPAP biosynthesis and (b) the only known examples of Type C PPAPs.

Following formation of the bicyclo[3.3.1]nonane ring, a variety of oxidations, cyclizations, and isomerizations may occur, further diversifying the family of PPAP natural products. Many of these transformations are potentially facilitated by epoxidation of an isoprenoid side chain. Examples of secondary cyclization are found in Scheme 1.9 involving plukenetione D/E (7-*epi*-nemorosone, **47**) 61 and its epoxidation product **48**. 5-*exo* epoxide opening of the epoxide found in **48** by the oxygen attached to C4 leads to a PPAP containing a dihydrofuran ring, sampsonione O (49).⁶² A 6-*endo* cyclization (followed by elimination of the resulting alcohol) is also possible, illustrated by the natural products plukenetione F (50) and G (51).⁶¹ Carbocyclization involving the prenyl substituent at C7 is also possible, as evidenced by the formation of plukenetione B $(52)^{61}$ from 48, exemplifying the formation of a tetracyclic PPAP bearing a homoadamantyl subunit.

⁶¹ Henry, G. E.; Jacobs, H.; Carrington, C. M. S.; McLean, S.; Reynolds, W. F. *Tetrahedron* **1999**, *55*, 1581-1596.

⁶² Xiao, Z. Y.; Mu, Q.; Shiu, W. K. P.; Zeng, Y. H.; Gibbons, S. *J. Nat. Prod.* **2007**, *70*, 1779-1782.

Scheme 1.9. Formation of PPAPs through an epoxide intermediate of plukenetione D/E (**47**).

While some PPAPs containing secondary cyclization may arise through enzymatic processes, some other PPAPs may simply be artifacts of the isolation process. For example, simple treatment of xanthochymol (**6**) with acid or heat forms isoxanthochymol (**2**, Scheme 1.10).¹⁰ More in-depth analysis is necessary in order to further elucidate the later stages of PPAP biosynthesis.

Scheme 1.10. Acid- or heat-mediated conversion of xanthochymol (**6**) to isoxanthochymol (**2**).

Bioactivity

Widespread interest in the biological activity of PPAPs stems from the prevalence of these compounds in medicinally-relevant herbs used in a variety of traditional and ethnopharmaceutical treatments. Rather than utilizing an organization based upon natural product, this section is organized into distinct disease areas in order to facilitate greater understanding of the relationship between PPAP structure and bioactivity. The structures of PPAPs discussed herein may be found in Appendix A.

Anti-infective Activity

The anti-infective properties of PPAPs were one of the first types of bioactivity to be recognized. As mentioned previously, it has been theorized that plants biosynthesize PPAPs as a defense against infection. A variety of PPAPs are effective antibacterial agents particularly amongst gram-positive bacteria (Table 1.1); however, some are active against gram-negative bacteria as well (Table 1.2). While many of these bacteria are normally harmless and are intestinal commensals or found on normal skin flora (e.g., *B. subtilis*, *E. faecalis*, *S. aureus*, *S. epidermidis*), they may lead to often fatal infections in immunocompromised individuals, particularly in nosocomial environments. Particularly effective, broadspectrum PPAPs include hyperforin, garcinol, and guttiferone A.

Bacterium	Active PPAPs (MIC in μ g/mL)	Inactive PPAPs	References
Actinomyces naeslundii	hyperibone A $(1.65-3.3)$		63
Bacillus cereus	garcinol (1.5), guttiferone $A1a,b$ hyperatomarin (1.56), hyperpapuanone (8), isoxanthochymol (9.8), papuaforin A (64) , papuaforin C (64) , papuaforin D (130) , papuaforin $E(64)$	7-epi-clusianone, guttiferone G	64,65,66, 67,68,69
Bacillus coagulans	garcinol (2.0)		66
Bacillus megaterium	guttiferone G $(0.61)^b$	isoxanthochymol	67
Bacillus mesentericus	hyperforin (2)		
Bacillus mycoides	hyperforin (0.2)		
Bacillus stearothermophilus	isoxanthochymol $(4.88)^b$	guttiferone G	67
Bacillus subtilis	chamuangone (31) , enervosanone (0.013) , garcinol (0.05) , hyperatomarin (3.1) , hyperforin (0.2)	methyl clusianone, furohyperforin, furohyperforin A, guttiferone G, isoxanthochymol, pyrohyperforin	1,65,66,67, 70,71,72, 73.74
Caryophanon latum	hyperforin (1)		
Clavibacter michiganensis	hyperforin (1)		
Corynebacterium diphtheriae	hyperforin (1)		75

Table 1.1. Evaluation of PPAPs against gram-positive bacteria.

63 Castro, M. L.; do Nascimento, A. M.; Ikegaki, M.; Costa-Neto, C. M.; Alencar, S. M.; Rosalen, P. L. *Bioorg. Med. Chem.* **2009**, *17*, 5332-5335.

64 Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. *J. Nat. Prod.* **2001**, *64*, 701-706.

⁶⁵ Šavikin-Fodulović, K.; Aljančić, I.; Vajs, V.; Menković, N.; Macura, S.; Gojgić, G.; Milosavljević, S. *J. Nat. Prod.* **2003**, *66*, 1236-1238.

66 Negi, P. S.; Jayaprakasha, G. K. *J. Food Sci.* **2004**, *69*, FMS61-FMS65.

l

67 Kuete, V.; Komguem, J.; Beng, V. P.; Meli, A. L.; Tangmouo, J. G.; Etoa, F.-X.; Lontsi, D. *S. Afr. J. Bot.* **2007**, *73*, 347-354.

68 Naldoni, F. J.; Claudino, A. L. R.; Cruz, J. W., Jr.; Chavasco, J. K.; e Silva, P. M. F.; Veloso, M. P.; Dos Santos, M. H. *J. Med. Food* **2009**, *12*, 403-407.

69 Dias, K. S. T.; Januário, J. P.; D' Dego, J. L.; Dias, A. L. T.; dos Santos, M. H.; Camps, I.; Coelho, L. F. L.; Viegas, C., Jr. *Bioorg. Med. Chem.* **2012**, *20*, 2713-2720.

⁷⁰ Lokvam, J.; Braddock, J. F.; Reichardt, P. B.; Clausen, T. P. *Phytochemistry* **2000**, *55*, 29-34.

⁷¹ Vajs, V.; Vugdelija, S.; Trifunović, S.; Karadžić, I.; Juranić, N.; Macura, S.; Milosavljević, S. *Fitoterapia* **2003**, *74*, 439-444.

⁷² Taher, M.; Idris, M. S.; Ahmad, F.; Arbain, D. *Phytochemistry* **2005**, *66*, 723-726.

⁷³ Taher, M.; Idris, M. S.; Ahmad, F.; Arbain, D. *Iran. J. Pharm. Th.* **2007**, *6*, 93-98.

74 Sakunpak, A.; Panichayupakaranant, P. *Food Chem.* **2012**, *130*, 826-831.

75 Schempp, C. M.; Pelz, K.; Wittmer, A.; Schöpf, E.; Simon, J. C. *Lancet* **1999**, *253*, 2129-2129.

⁷⁶ Tandon, R. N.; Srivastava, O. P.; Baslas, R. K.; Kumar, P. *Curr. Sci. India* **1980**, *49*, 472-473.

77 Tchakam, P. D.; Lunga, P. K.; Kowa, T. K.; Lonfouo, A. H. N.; Wabo, H. K.; Tapondjou, L. A.; Tane, P.; Kuiate, J.-R. *BMC Complem. Altern. Med.* **2012**, *12*, 136.

⁷⁸ Trifunović, S.; Vajs, V.; Macura, S.; Juranić, N.; Djarmati, Z.; Jankov, R.; Milosavljević, S. *Phytochemistry* **1998**, *49*, 1305-1310.

⁷⁹ Vugdelija, S.; Vajs, V.; Trifunovic, S.; Djokovic, D.; Milosavljevic, S. *Molecules* **2000**, *5*, M158.

⁸⁰ Bakana, P.; Claeys, M.; Totté, J.; Pieters, L. A. C.; van Hoof, L.; Tamba-Vemba; van den Berghe, D. A.; Vlietinck, A. J. *J. Ethnopharmacol.* **1987**, *21*, 75-84.

⁸¹ Iinuma, M.; Tosa, H.; Tanaka, T.; Kanamaru, S.; Asai, F.; Kobayashi, Y.; Miyauchi, K.-i.; Shimano, R. *Biol. Pharm. Bull.* **1996**, *19*, 311-314.

⁸² Cuesta Rubio, O.; Cuellar, A. C.; Rojas, N.; Velez Castro, H.; Rastrelli, L.; Aquino, R. *J. Nat. Prod.* **1999**, *62*, 1013-1015.

⁸³ Lakshmi, C.; Kumar, K. A.; Dennis, T. J. *J. Indian Chem. Soc.* **2002**, *79*, 968-969.

⁸⁴ Trusheva, B.; Popova, M.; Naydenski, H.; Tsvetkova, I.; Rodriguez, J. G.; Bankova, V. *Fitoterapia* **2004**, *75*, 683- 689.

⁸⁵ Schiell, M.; Kurz, M.; Haag-Richter, S. (Aventis Pharma Deutschland, GmbH). US Patent 6,956,061, October, 18, 2005.

86 Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M. C.; Miorin, P. L.; Pasin, F. d. R.; Tsvetkova, I. *Evid. Based Complement. Alternat. Med.* **2006**, *3*, 249-254.

⁸⁷ Xiao, Z. Y.; Zeng, Y. H.; Mu, Q.; Shiu, W. K. P.; Gibbons, S. *Chem. Biodivers.* **2010**, *7*, 953-958.

⁸⁸ Monzote, L.; Cuesta-Rubio, O.; Matheeussen, A.; Van Assche, T.; Maes, L.; Cos, P. *Phytother. Res.* **2011**, *25*, 458-462.

Table 1.1 (*continued*)**.** Evaluation of PPAPs against gram-positive bacteria.

 \overline{a}

⁹² Rukachaisirikul, V.; Naklue, W.; Sukpondma, Y.; Phongpaichit, S. *Chem. Pharm. Bull.* **2005**, *53*, 342-343.

93 Murata, R. M.; de Almeida, L. S. B.; Yatsuda, R.; dos Santos, M. H.; Nagem, T. J.; Rosalen, P. L.; Koo, H. *FEMS Microbiol. Lett.* **2008**, *282*, 174-181.

94 Almeida, L. S. B.; Murata, R. M.; Yatsuda, R.; Dos Santos, M. H.; Nagem, T. J.; Alencar, S. M.; Koo, H.; Rosalen, P. L. *Phytomedicine* **2008**, *15*, 886-891.

95 Murata, R. M.; Branco-de-Almeida, L. S.; Franco, E. M.; Yatsuda, R.; dos Santos, M. H.; de Alencar, S. M.; Koo, H.; Rosalen, P. L. *Biofouling* **2010**, *26* 865-872.

96 Branco-de-Almeida, L. S.; Murata, R. M.; Franco, E. M.; dos Santos, M. H.; de Alencar, S. M.; Koo, H.; Rosalen, P. L. *Planta Med.* **2011**, *77*, 40-45.

⁸⁹ Trisuwan, K.; Ritthiwigrom, T. *Arch. Pharm. Res.* **2012**, *35*, 1733-1738.

⁹⁰ Matsuhisa, M.; Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Shibata, H.; Higuti, T.; Kozhimatov, O. K.; Ashurmetov, O. *J. Nat. Prod.* **2002**, *65*, 290-294.

⁹¹ Hübner, A. T. *Phytomedicine* **2003**, *10*, 206-208.

Bacterium	Active PPAPs (MIC in μ g/mL)	Inactive PPAPs	References
Streptomyces griseus	hyperforin (100)		
Strept. phaeochromogenes	propolone $A(100)$		
Strept.violochromogenes	propolone A (50)		\circ

Table 1.1 (*continued*)**.** Evaluation of PPAPs against gram-positive bacteria.

a See text.

l

b More active or similar activity as positive control (e.g., vancomycin, chloramphenicol, chlorhexidine).

c Reported to have activity in a diffusion assay.

^d Reported to have low to moderate activity in an antibiogram assay.

Many PPAPs have been evaluated against bacteria involved in areas beyond nosocomial infections. *B. mesentericus* and *B. stearothermophilus* are responsible for food spoilage (particularly bread), ⁹⁸ and hyperforin¹ and isoxanthochymol⁶⁷ show significant activity against these species, respectively. Potato "ring rot" is a particular devastating infection caused by *Clavibacter* michiganensis,⁹⁹ and hyperforin is effective against this bacterium.¹ *B. cereus* is a leading cause of foodborne illness, including "fried rice syndrome."¹⁰⁰ A variety of PPAPs show activity against this bacterium, including garcinol^{66,73} and hyperatomarin.⁶⁵ Garcinol is effective against *L. monocytogenes*, a cause of listeriosis.⁶⁶

Given that honeybees will utilize *Clusia* plant species resins in propolis, it is unsurprising that both chamone I and nemorosone were active against *Paenibacillus alvei* and *Paenibacillus larvae*, two honeybee pathogens.⁵⁶ Both of these PPAPs have been identified in Caribbean propola.

A variety of PPAPs have also been evaluated against bacteria involved in tooth decay. Typically, bacterial synthesis of extracellular glucans allows for biofilm formation, followed by acidification, plaque

⁹⁷ Derbentseva, N. A.; Aizenman, B. Y.; Harahulya, O. O. *Mikrobiologicheskii Zh.* **1971**, *33*, 569-572.

⁹⁸ Thompson, J. M.; Dodd, C. E. R.; Waites, W. M. *Int. Biodeter. Biodegr.* **1993**, *32*, 55-66.

⁹⁹ van der Wolf, J. M.; van Beckhoven, J. R. C. M.; Hukkanen, A.; Karjalainen, R.; Müller, P. *J. Phytopathol.* **2005**, *153*, 358-365.

¹⁰⁰ Drobniewski, F. C. *Clin. Microbiol. Rev.* **1993**, *6*, 324-338.

development, and the formation of dental caries.¹⁰¹ Hyperibone A is fairly effective against a range of bacteria involved in this process, including *A. naeslundii*, *S. gordonii*, *S. mutans*, *S. oralis*, and *S. sobrinus*. Aside from hyperibone A, 7-*epi*-clusianone also displayed activity against *S. mutans* dental caries.⁹⁴ Analyses of *S. mutans in vitro* have shown that this PPAP inhibits glucosyltransferases B and C, which are involved in glucan synthesis.⁹³ In addition, it inhibited F-ATPase activity, preventing acidification without affecting bacterial viability. Using a rodent model of dental caries, treatment with 7 *epi*-clusianone alone or in combination with fluoride produced significant cariostatic effects by reducing the amount of extracellular glucans and disrupting biofilm development without any observed side effects in the treated rats.⁹⁵ These cariostatic effects were attributed to glucosyltransferase inhibition as well as acidification prevention.⁹⁶

The mechanism of antibacterial activity of PPAPs remains largely unknown. Lipophilicity may play an important role in determining antibacterial activity. PPAPs containing a free β-hydroxyenone functionality at the C2–C4 bridge are more active than similar PPAPs that contain β-alkoxyenone at this site; for instance, garcinol and xanthochymol are more potent antibiotics than isogarcinol and isoxanthochymol, respectively. A series of guttiferone A (**53**) derivatives have been synthesized with functionalization at the phenolic oxygen atoms (Figure 1.8).⁶⁹ The analogs with $c \text{Log}P$ (octanol/water) lower than guttiferone A (i.e., **54**, **55**, and **56**) had more potent antibacterial activity than the parent compound across a range of bacteria and were more active than chloramphenicol, used as a positive control. Analogs with higher lipophilicity (i.e., **57**, **58**, and **59**) were less active.

Figure 1.8. Guttiferone A and semisynthetic analogs.

¹⁰¹ Loesche, W. J. *Microbiol. Rev.* **1986**, *50*, 353-380.

Also, it appears that bacterial resistance to PPAPs is orthogonal to that of known antibiotics, which has important implications considering the widespread use of SJW extract to treat depression.⁹² Hyperforin has also been shown to act as an immunomodulatory agent towards bacterial phagocytosis in an *in vitro* model.¹⁰² At concentrations as low as 1 μ g/mL, hyperforin activated human polymorphonuclear neutrophils towards either opsonized or non-opsonized *E. coli*.

Bacterium	Active PPAPs (MIC in μ g/mL)	Inactive PPAPs	References
Citrobacter freundii	guttiferone G $(1.2)^a$	isoxanthochymol	67
Enterobacter aerogenes		guttiferone G, isoxanthochymol	67
Enterobacter cloacae	guttiferone G $(1.2)^a$	isoxanthochymol	67
Escherichia coli	cycloxanthochymol (25), enervosanone (0.013) , garcinol (25-500), guttiferone E, ^b hyperforin (1), isogarcinol (25), isoxanthochymol (25)	chamuangone, methyl clusianone, 7-epi-clusianone, furohyperforin, furohyperforin A, guttiferone A, guttiferone E, guttiferone G, nemorosone, pyrohyperforin, xanthochymol	1,56,66,67, 68, 69, 71, 72, 73, 74, 75, 79, 80,81,83,86, 88,102
Helicobacter pylori	chamuangone (16), garcinol ^{ϵ}		74,103
Klebsiella pneumoniae	isogarcinol (16) , xanthochymol (1.6)	garcinol, guttiferone G, isoxanthochymol	67, 76, 77
Morganella morganii		guttiferone G, isoxanthochymol	67
Neisseria gonorrhoeae	garcinol (63)		80
Proteus mirabilis	guttiferone A (170)	guttiferone G, isoxanthochymol	67,69
Proteus vulgaris	guttiferone G $(1.2)^a$	hyperforin, isoxanthochymol	1,67
Pseudomonas aeruginosa	enervosanone (0.013) , garcinol $(0.05-250)$, isogarcinol (16)	guttiferone A, guttiferone G, hyperforin, isoxanthochymol	1,67,69,72, 73, 75, 77, 80, 97
Salmonella enterica enterica	isogarcinol (5)	guttiferone G, isoxanthochymol	67,77
Salmonella typhimurium	guttiferone A $(39)^a$	guttiferone G, isoxanthochymol	67,69
Serratia marcescens		garcinol	80
Shigella dysenteriae		guttiferone G, isoxanthochymol	67
Shigella flexneri	garcinol (31) , isogarcinol (16)	guttiferone G, isoxanthochymol	67,77,80
Shigella sonnei		chamuangone	74
Yersinia enterocolitica		garcinol	66

Table 1.2. Evaluation of PPAPs against gram-negative bacteria.

^a More active or similar activity as positive control (e.g., chloramphenicol, gentamycin).

b Reported to have activity in a diffusion assay.

c See text.

¹⁰² Brondz, I.; Brondz, A. *J. Biophys. Chem.* **2012**, *3*, 304-310.

¹⁰³ Chatterjee, A.; Yasmin, T.; Bagchi, D.; Stohs, S. J. *Mol. Cell. Biol.* **2003**, *243*, 29-35.

The antiviral activity of several PPAPs has also been evaluated with limited success. Garcinol was completely ineffective against viral infection of VERO cells with an adenovirus, coxsackievirus, herpes simplex virus type 1, measles, poliomyelitis virus type 1, and the Semliki forest virus.⁸⁰ Garcinol was however active at preventing long-terminal repeat promoter activity of porcine endogenous retrovirus, which increases the likelihood of pig-to-human viral transplantation.¹⁰⁴ Considering that this activity could be replicated using CpG methyltransferase, the antiretroviral activity of garcinol in this case may stem from its ability to act as an epigenetic modulator.

A variety of PPAPs have been evaluated for activity against lentiviruses, particularly human immunodeficiency virus (HIV) strains. HIV infection leads to a progressive failure of the immune system, otherwise known as acquired immunodeficiency syndrome (AIDS), which leaves infected individual susceptible to often fatal opportunistic infections and cancer.¹⁰⁵ Similar to PPAP antibacterial activity, a free C2–C4 β-hydroxyenone moiety generally leads to greater activity against HIV pathophysiology. Clusianone decreased HIV infection of 3T3.T4.CCR5 and Jurkat E6-1 cells in a dosedependent manner compared to control, while its *O*-methyl ether was inactive at all concentrations tested.106 Interestingly, *ent*-clusianone was similarly active against both cell lines (its *O*-methyl ether was also inactive). Guttiferones A-E were found to have EC_{50} values in the range of 1-10 μ g/mL against the cytopathic effects of CEM-SS cells infected HIV, although viral replication was not inhibited.¹⁶ Isoxanthochymol, on the other hand, was in inactive in this assay. It should be noted that these compounds were also found to be noncytotoxic to the CEM-SS cells used in this study. Laxifloranone was also found to be active in this CEM-SS HIV assay ($EC_{50} = 0.62 \mu g/mL$); however, if the free carboxylic acid was blocked, all cytopathic effects were lost.¹⁰⁷ In another assay involving C8166 cells,

¹⁰⁴ Ha, H.-S.; Lee, Y.-C.; Park, S.-J.; Jung, Y.-D.; Ahn, K.; Moon, J.-W.; Han, K.; Oh, K.-B.; Kim, T.-H.; Seong, H.-H.; Kim, H.-S. *Genes Genom.* **2012**, *34*, 217-222.

¹⁰⁵ Douek, D. C.; Roederer, M.; Koup, R. A. *Annu. Rev. Med.* **2009**, *60*, 471-484.

¹⁰⁶ Garnsey, M. R.; Matous, J. A.; Kwiek, J. J.; Coltart, D. M. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 2406-2409.

¹⁰⁷ Bokesch, H. R.; Groweiss, A.; McKee, T. C.; Boyd, M. R. *J. Nat. Prod.* **1999**, *62*, 1197-1199.

aristophenone, clusianone, 7-*epi*-clusianone, nemorosone, and propolone A potently prevented HIV infection.¹⁰⁸ Clusianone was the most effective PPAP screened, with an EC_{50} of 20 nM, but showed a TC_{50} value of 0.1 μ M in uninfected C8166 cells. The most selective PPAP test was propolone A, with an EC₅₀ of 0.32 μ M and a TC₅₀ value of 5.0 μ M. Using an MT-4 cell line, guttiferone E, guttiferone O2, and isoxanthochymol did not inhibit HIV replication at subtoxic concentrations.¹⁰⁹

Further, it appears that PPAP anti-HIV activity may occur through several mechanisms of action. Plukenetione A and plukenetione D/E were both evaluated using CEMx174-SEAP cells as well as HEK293T cells infected with a simian immunodeficiency virus vector.¹¹⁰ While both compounds were found to be cytotoxic in the cell lines employed (ca. 4 μ M), both were potent below 2 μ M against lentiviral infection. The activity of plukenetione A was primarily due to its inhibition of reverse transcriptase (IC₅₀ = 1.75 µM), and the activity of plukenetione D/E was due to its interruption of the Akt/PKB signaling cascade. Guttiferone F and 30-*epi*-isogarcinol were both active in an *in vitro* HIV protease assay, demonstrating that at least some PPAPs might target this enzyme.¹¹¹

The action of several PPAPs against the highly infectious, epidemic-causing influenza and hepatitis B viruses has also been reported. The hepatitis B virus causes liver inflammation and while a vaccine is available in developed countries, a significant portion of the world population remains vulnerable to infection.¹¹² Hypersampsones A-F demonstrated activity against hepatitis B e antigen secretion by infected MS-G2 cells at 10 μ g/mL, but viral particle replication was not inhibited.¹¹³

¹⁰⁸ Piccinelli, A. L.; Cuesta-Rubio, O.; Chica, M. B.; Mahmood, N.; Pagano, B.; Pavone, M.; Barone, V.; Rastrelli, L. *Tetrahedron* **2005**, *61*, 8206-8211.

¹⁰⁹ Lannang, A. M.; Louh, G. N.; Biloa, B. M.; Komguem, J.; Mbazoa, C. D.; Sondengam, B. L.; Naesens, L.; Pannecouque, C.; De Clercq, E.; El Ashry, E. S. H. *Planta Med.* **2010**, *76*, 708-712.

¹¹⁰ Diaz-Carballo, D.; Ueberla, K.; Kleff, V.; Ergun, S.; Malak, S.; Freistuehler, M.; Somogyi, S.; Kücherer, C.; Bardenheuer, W.; Strumberg, D. *Int. J. Clin. Pharmacol. Th.* **2010**, *48*, 670-677.

¹¹¹ Magadula, J. J. *J. Pharmaceut. Sci. Innovat.* **2012**, *1*, 31-33.

¹¹² Lok, A. S. F.; McMahon, B. J. *Hepatology* **2007**, *45*, 507-539.

¹¹³ Lin, Y.-L.; Wu, Y.-S. *Helv. Chim. Acta* **2003**, *86*, 2156-2163.

Influenza, otherwise known as the flu, is a highly infectious disease and particularly dangerous owing to the ability of new strains to cross species barriers, incorporating genes from other mammals and birds.¹¹⁴ Guttiferone E, guttiferone O2, and isoxanthochymol have been evaluated against influenza A-infected MDCK cells.¹⁰⁹ All three PPAPs showed minimum cytotoxic concentrations of 4 μ g/mL against these infected cells. However, they were inactive at preventing replication of influenza A subtypes H1N1 and H3N2 and influenza B.

Since several retroviruses use proteases during their reproductive cycle, protease inhibitors may be used in antiretroviral therapies. The serine and cysteine protease inhibition ability of several PPAPs have been evaluated (Table 1.3). While both 7-*epi*-clusianone and garciniaphenone modestly inhibited protease activity, guttiferone A moderately inhibited all four proteases screened.

Table 1.3. Antiproteolytic activity of several PPAPs.

Protease $IC_{50}(\mu M)$					
PPAP	Papain	Trypsin	Cathepsin B	Cathepsin G	References
7-epi-clusianone	19.5	20.1	73 7-74 1	37.4-37.9	115,116
garciniaphenone	130.8	103.5	102.0-103.5	97.6-98.8	115.116
guttiferone A	19	94	-21		115

The antiparasitic properties of a variety of PPAPs have also been evaluated. Malaria is a highly infectious disease spread by female *Anopheles* mosquitoes and is often caused by the protozoan *Plasmodium falciparum*. There were an estimated 219 million cases of malaria reported in 2010, mostly in sub-Saharan Africa, resulting in 1.2 million deaths.¹¹⁷ A variety of PPAPs and semisynthetic analogs of

¹¹⁴ Hsu, J.; Santesso, N.; Mustafa, R.; Brozek, J.; Chen, Y. L.; Hopkins, J. P.; Cheung, A.; Hovhannisyan, G.; Ivanova, L.; Flottorp, S. A.; Sæterdal, I.; Wong, A. D.; Tian, J.; Uyeki, T. M.; Akl, E. A.; Alonso-Coello, P.; Smaill, F.; Schünemann, H. J. *Ann. Intern. Med.* **2012**, *156*, 512-524.

¹¹⁵ Martins, F. T.; Assis, D. M.; dos Santos, M. H.; Camps, I.; Veloso, M. P.; Juliano, M. A.; Alves, L. C.; Doriguetto, A. C. *Eur. J. Med. Chem.* **2009**, *44*, 1230-1239.

¹¹⁶ Murata, R. M.; Yatsuda, R.; dos Santos, M. H.; Kohn, L. K.; Martins, F. T.; Nagem, T. J.; Alencar, S. M.; de Carvalho, J. E.; Rosalen, P. L. *Phytother. Res.* **2010**, *24*, 379-383.

¹¹⁷ *World Malaria Report 2012*; World Health Organization, WHO Press: Geneva, Switzerland.

hyperforin (Figure 1.9) have been evaluated against *P. falciparum* (Table 1.4) and chloroquine-resistant *P. falciparum* (Table 1.5).

PPAP	$IC_{50}(\mu M)$	References	PPAP	$IC_{50}(\mu M)$	References
adhyperforin $HNCy_2$	1.4	118	spiranthenone B	32.1	25
furohyperforin		118	60	7.8	118
guttiferone A	$0.5 - 3.0$	88,119	61	>27	118
hyperforin $HNCy_2$	1.5	118	62	4.8	118
hyperforin, lithium salt	2.1	118	63	>27	118
isoxanthochymol	$2.2 - 4.5$	120.121	64	0.6	118
nemorosone	0.4	88	65	67	118
oxyhyperforin	2.0	118	66 ·HNC _V	1.4	118
spiranthenone A	8.2	25	66. lithium salt	2.7	118
pyrohyperforin	8.6	118	67	2.1	119

Table 1.4. Evaluation of PPAPs against *Plasmodium falciparum*.

Figure 1.9. Semisynthetic analogs of hyperforin.

¹¹⁸ Verotta, L.; Appendino, G.; Bombardelli, E.; Brun, R. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1544-1548.

¹¹⁹ Fromentin, Y.; Grellier, P.; Wansi, J. D.; Lallemand, M.-C.; Buisson, D. *Org. Lett.* **2012**, *14*, 5054-5057.

¹²⁰ Lannang, A. M.; Louh, G. N.; Lontsi, D.; Specht, S.; Sarite, S. R.; Flörke, U.; Hussain, H.; Hoerauf, A.; Krohn, K. *J. Antibiot.* **2008**, *61*, 518-523.

¹²¹ Elfita, E.; Muharni, M.; Latief, M.; Darwati, D.; Widiyantoro, A.; Supriyatna, S.; Bahti, H. H.; Dachriyanus, D.; Cos, P.; Maes, L.; Foubert, K.; Apers, S.; Pieters, L. *Phytochemistry* **2009**, *70*, 907-912.

PPAP	$IC_{50}(\mu M)$	References	PPAP	$IC_{50}(\mu M)$	References
coccinone A	4.3	9	guttiferone A	3.17	88,122
coccinone B	5.5	9	isogarcinol	3.5	9,123
7-epi-coccinone B	3.3	124	7-epi-isogarcinol	$3.2 - 5.1$	9,124
coccinone C	9.0	9	14-deoxy-7-epi-isogarcinol	2.5	124
coccinone D	7.0	9	symphonone A	2.8	124
coccinone E	4.9	9	symphonone B	3.3	124
coccinone F	17.0	9	symphonone C	2.6	124
coccinone G	19.2	9	symphonone D	2.1	124
coccinone H	16.6	9	symphonone E	2.7	124
cycloxanthochymol	2.1	9	symphonone F	3.2	124
garcinol	12.6	9	symphonone G	2.1	124
7- <i>epi</i> -garcinol	10.1	9,124	symphonone H	3.0	124
14-deoxygarcinol	37.2	9	symphonone I	6.7	124

Table 1.5. Evaluation of PPAPs against chloroquine-resistant *P. falciparum*.

Nemorosone and oxidized hyperforin analog **64** were most active against chloroquine-sensitive *P. falciparum*, and cycloxanthochymol and symphonones D and G were the most active against chloroquineresistant *P. falciparum*. Nemorosone was found to be as active as chloroquine against *P. falciparum*. 88 Amongst the hyperforin derivatives, a limited degree of structural modification of the bicyclo[3.3.1]nonane core does not lead to significant changes in potency; analogs with C4 oxygen atom functionalization, with a quaternary center at C3, or hydrogenation of the pendant olefins had similar activity to that of hyperforin.118 The only inactive derivatives screened were **61** and **63**. A semisynthetic analog of guttiferone A, 67 , was found to be more active than the parent PPAP (Figure 1.10).¹¹⁹ Also noteworthy is the potency trend within the coccinone and symphonone families of PPAPs. Those that contain a free C2–C4 β-hydroxyenone (i.e., coccinones F-H) were significantly less potent than the other members, which bear a tetrahydropyran ring containing the C4 oxygen atom.

¹²² Ngouela, S.; Lenta, B. N.; Noungoue, D. T.; Ngoupayo, J.; Boyom, F. F.; Tsamo, E.; Gut, J.; Rosenthal, P. J.; Connolly, J. D. *Phytochemistry* **2006**, *67*, 302-306.

¹²³ Marti, G.; Eparvier, V.; Litaudon, M.; Grellier, P.; Guéritte, F. *Molecules* **2010**, *15*, 7106-7114.

¹²⁴ Marti, G.; Eparvier, V.; Moretti, C.; Prado, S.; Grellier, P.; Hue, N.; Thoison, O.; Delpech, B.; Guéritte, F.; Litaudon, M. *Phytochemistry* **2010**, *71*, 964-974.

Figure 1.10. A semisynthetic analog of guttiferone A.

Unfortunately, many PPAPs that exhibited antimalarial properties were found to be fairly cytotoxic. Adhyperforin, guttiferone A, hyperforin, isoxanthochymol, octahydrohyperforin (**66**), and **67** had cytotoxicity concentrations comparable to their antimalarial activity, but furohyperforin, and oxyhyperforin, and **62** were marginally less cytotoxic. The only PPAPs screened for cytotoxicity that were significantly more potent than cytotoxic were spiranthenones A and B.

In addition, several PPAPs have been evaluated for possible treatment of leishmaniasis. This disease is caused by a variety of different protozoa belonging to the genus *Leishmania*, and is transmitted through the bite of sand flies from the subfamily Phleobotominae.¹²⁵ During sand fly feeding, *Leishmania* promastigotes enter the body. Upon macrophage phagocytosis, amastigotes are produced and proliferate. Leishmaniasis can take several forms, the most common of which involves skin sores, which appear weeks to months after initial exposure. If the parasite migrates to vital organs, visceral leishmaniasis may occur, which is the second largest fatal parasitic disease in the world, after malaria. Despite its prevalence, especially in developing countries, very few treatment options are available. A summary of PPAPs evaluated for leishmanicidal activity is found in Table 1.6.

¹²⁵ González, U.; Pinart, M.; Rengifo-Pardo, M; Macaya, A.; Alvar, J.; Tweed, J. A. *Cochrane Database Syst. Rev.* **2009**, CD004834.

Leishmania species	Life-cycle phase	Evaluated PPAPs $(IC_{50}$ in μ M)	References
	amastigotes	7-epi-clusianone (3.2) , a garciniaphenone (inactive), guttiferone A (4.9)	126
L. amazonensis	promastigotes	7-epi-clusianone (6.6) , <i>a</i> garciniaphenone (11.6), garcinielliptone FC (42.8), guttiferone A $(15.6-30.1)$, nemorosone (11.2)	88.126.127
amastigotes L. donovani		garcinol (0.82), guttiferone A (0.16), ^a guttiferone F (0.20), ^a isogarcinol (0.33) ^a	128
L. infantum	amastigotes	guttiferone A (13.5), isoxanthochymol (2.0), nemorosone (32.9)	88.121
	promastigotes	spiranthenone A (inactive), spiranthenone B (inactive)	

Table 1.6. Evaluation of PPAPs against various *Leishmania* species.

^a More active or similarly active as a positive control (e.g., amphotericin B or miltefosine).

In general, leishmanicidal activity is inversely related to hydrophobicity. 7-*epi*-Clusianone was one of the most active PPAPs screened, against both the amastigote and promastigote forms of the New World protozoan *L. amazonensis*, and it was found to be more potent than amphotericin B in both cases.126 Interestingly, garciniaphenone was active against the promastigote form of this *Leishmania* species but inactive against the amastigote form. While isoxanthochymol was fairly potent against *L. infantum* amastigotes, it was found to be fairly cytotoxic towards MRC-5 cells.¹²¹ Guttiferones A and F and isogarcinol were the most effective leishmanicidal PPAPs screened against the Old World pathogen *L. donovani*. 128 At 8.0 µM concentration, both guttiferone A and F inhibited parasite growth by 98%. Since guttiferone A was shown to be relatively noncytotoxic ($CC_{50} = 17.8 \mu M$ in murine peritoneal macrophages),¹²⁶ it may be a lead structure in the development of a treatment for Old World leishmaniasis.

A variety of PPAPs has also been evaluated against trypanosomiasis, another parasitic protozoan disease. There are two major forms of trypanosomiasis: (1) African trypanosomiasis, otherwise known as

¹²⁶ Pereira, I. O.; Marques, M. J.; Pavan, A. L. R.; Codonho, B. S.; Barbiéri, C. L.; Beijo, L. A.; Doriguetto, A. C.; D'Martin, E. C.; dos Santos, M. H. *Phytomedicine* **2010**, *17*, 339-345.

¹²⁷ Júnior, J. S. C.; de Almeida, A. A. C.; Ferraz, A. de B. F.; Rossatto, R. R.; Silva, T. G.; Silva, P. B. N.; Militão, G. C. G.; Citó, A. M. das G. L.; Santana, L. C. L. R.; Carvalho, F. A. de A.; Freitas, R. M. *Nat. Prod. Res.* **2013**, *27*, 470-474.

¹²⁸ Lenta, B. N.; Vonthron-Sénécheau, C.; Weniger, B.; Devkota, K. P.; Ngoupayo, J.; Kaiser, M.; Naz, Q.; Choudhary, M. I.; Tsamo, E.; Sewald, N. *Molecules* **2007**, *12*, 1548-1557.

sleeping sickness, and (2) Chagas disease.¹²⁹ As the name suggests, African trypanosomiasis is most prevalent in sub-Saharan Africa, and it is caused by the protozoa of *Trypanosoma brucei*, transmitted by the tsetse fly. Chagas disease is the most common form of trypanosomiasis in Latin America, in which *Trypanosoma cruzi* is transmitted by a variety of bloodsucking bugs, such as *Rhodnius prolixus* and *Triatoma brasiliensis*.

A summary of the effects of several PPAPs on the viability of trypanosomiasis protozoa is found in Table 1.7. Guttiferone A, isoxanthochymol, and nemorosone were found to be moderately active against both *T. brucei* and *T. cruzei*. As mentioned earlier, isoxanthochymol is cytotoxic against MRC-5 cells at a concentration similar to its concentration for effective trypanocidal outcomes.¹²¹ Guttiferone A and 67 suffer from similar problems. One study established that guttiferone A had $MC₁₀₀$ values against *T. cruzi* epimastigotes and typanomastigotes of 99.5 μ M and 82.9 μ M, respectively, and these values were well above the 10.7 μ M IC₅₀ value of the PPAP against murine periotoneal macrophages.^{126,130} 7-*epi*-Clusianone was also evaluated against *T. cruzi*; however, it was found to be ineffective *in vivo* in infected mice.131 Interestingly, nemorosone was also found to be non-cytotoxic against the predominant insect vector of Chagas disease, *Rhodnius prolixus*, but it displayed dose-dependent anti-molting effects.¹³²

¹²⁹ Coura, J. R.; Borges-Pereira, J. *Acta Trop.* **2010**, *115*, 5-13.

¹³⁰ Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muñiz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. *Biol. Pharm. Bull.* **2004**, *27*, 141-143.

¹³¹ Alves, T. M. de A.; Alves, R. de O.; Romanha, A. J.; dos Santos, M. H.; Nagem, T. J.; Zani, C. L. *J. Nat. Prod.* **1999**, *62*, 369-371.

¹³² Kelecom, A.; Reis, G. L.; Fevereiro, P. C. A.; Silva, J. G.; Santos, M. G.; Neto, C. B. M.; Gonzalez, M. S.; Gouvea, R. C. S.; Almeida, G. S. S. *An. Acad. Bras. Cienc.* **2002**, *74*, 171-181.

	$IC_{50}(\mu M)$			
PPAP	T. brucei	T. cruzi	References	
guttiferone A	$3.0 - 13.5$	11.8	88,119	
isoxanthochymol	1.9	2.7	121	
nemorosone	17.5	12.5	88	
spiranthenone A	n.d.	inactive	25	
spiranthenone B	n.d.	211.3	25	
67	2.1	n.d.	119	

Table 1.7. Evaluation of PPAPs against *Trypanosoma brucei* and *T. cruzi*.

7-*epi*-Clusianone has also been evaluated for its molluscicidal effects upon *Biomphalaria glabrata*, a Brazilian freshwater snail and known carrier of *Schistosoma mansoni*, one of several parasitic worms responsible for schistosomiasis.¹³¹ However, this PPAP was found to be inactive in the snail toxicity assay.

The antifungal properties of various PPAPs have also been explored, which is summarized in Table 1.8. In general, the PPAPs evaluated were much less effective against fungi than against bacteria, viruses, and parasites, and generalizations about structure-activity relationships cannot be made. Guttiferone A was found to be most active across a wide range of fungi, including several *Candida* species responsible for infections in immunocompromised individuals, the cryptococcosis-causing *Crytococcus neoformans*, and two *Trichophyton* species involved in tinea-type skin infections.⁶⁹ Two semisynthetic guttiferone A derivatives, **54** and **57**, were generally more active than the parent PPAP, and other semisynthetic analogs, namely **55**, **56**, **58**, and **59**, were less active. Unlike antibacterial activity, *c*Log*P* values did not correlate with fungicidal activity. Isogarcinol and pyrohyperforin were found to be active against *Candida albicans*, the most common pathogen involved in yeast infections of the genitals and oral cavity.71,77 Xanthochymol was found to be active in a dose-dependent manner against *Phomopsis viticola*, a leading cause of grapevine dead arm (grape canker).²⁶ Treatment with xanthochymol in the 1-10 µg/mL range caused motility inhibition and lysis of *Phomopsis viticola* zoospores. Only a few other PPAPs have been evaluated against phytopathogenic fungi (i.e., *Aspergillus flavus*, *Aspergillus niger*,
Cladosporium cucumerinium, and *Fusarium avenaceum*), and while garcinol has some phytopathogenic fungicidal activity,⁸⁰ it would be interesting to see if other PPAPs exhibit activity against these fungi.

Fungus	Active PPAPs (MIC in µg/mL)	Inactive PPAPs	References
Aspergillus flavus	garcinol (100)		80
Aspergillus fumigatus	garcinol (100)	xanthochymol	76,80
Aspergillus niger	garcinol (100)		80
Candida albicans	guttiferone A (40) , a isogarcinol (64) , pyrohyperforin (25)	7-epi-clusianone, furohyperforin, garcinol, guttiferone A, guttiferone E, guttiferone G, hyperforin, isoxanthochymol, nemorosone, xanthochymol	1,67,68,69, 71, 75, 76, 77, 80,86,88
Candida glabrata	guttiferone A $(5.0)^a$	guttiferone G, isoxanthochymol	67,69
Candida krusei	isogarcinol (64)	guttiferone A, guttiferone G, isoxanthochymol	67,69,77
Candida lusitaniae		isogarcinol	77
Candida parapsilosis	guttiferone A $(20.0)^a$		69
Candida tropicalis	guttiferone A $(20.0)^a$	garcinol	69,80
Cladosporium cucumerinum		hyperevolutin A, hyperevolutin B	133
Cladosporium sphaerospermum		7-epi-clusianone	57
Cryptococcus neoformans	guttiferone A (5.0) , isogarcinol (64)		69,77,80
Fusarium avenaceum		hyperforin	
Microsporum gypseum	guttiferone A $(100)^a$		69
Microsporum canis	garcinol (100)		80
Mucor plumbeus		hyperforin	
Penicillium chrysogenum		hyperforin	
Phomopsis viticola	xanthochymol ^b		26
Trichophyton ajelloi	isogarcinol (64)		77
Trichophyton interdigitale	garcinol (100), guttiferone A $(20.0)^a$	xanthochymol	69,76,80
Trichophyton rubrum	guttiferone A (11.8) . isogarcinol (32)	nemorosone	77,88

Table 1.8. Evaluation of PPAPs against various fungi.

^{*a*} Value reported is IC_{50} (in μ g/mL).

b See text.

l

Antioxidant and Anti-inflammatory Activity

The antioxidant properties of PPAPs have also been explored in a variety of contexts, both *in vitro* and *in vivo*. A summary of PPAP performance in various *in vitro* antioxidant assays is found in Table 1.9. Unsurprisingly, PPAPs that bear a 3,4-dihydroxybenzoyl group at the C3 position were found to be the most active at scavenging radical or reactive oxygen species in these assays. If one of the

¹³³ Decosterd, L. A.; Stoeckli-Evans, H.; Chapuis, J.-C.; Msonthi, J. D.; Sordat, B.; Hostettmann, K. *Helv. Chim. Acta* **1989**, *72*, 464-471.

phenolic hydroxyl groups is alkylated, as in the 13-*O*-methyl ethers of garcinol and isogarcinol, antioxidant potential is lost.¹⁴ The presence of a C2–C4 β-hydroxyenone was also important but not essential given the strong antioxidant properties of PPAPs such as guttiferone K2, isogarcinol, and isoxanthochymol. A comparison of nemorosone and its *O*-methyl ether illustrates the significance of C2– C4 β-hydroxyenone functionality.¹⁴⁶

PPAP	Antioxidant activity ^{<i>a</i>,<i>b</i>}	References
acuminophenone A	DPPH (1.8), ABTS (3.4), TEAC (7.8)	134
aristophenone	DPPH (125)	135
clusianone	DPPH (inactive)	14
7-epi-clusianone	DPPH (inactive), ABTS (inactive)	18,136,137
garcinielliptone A	DPPH (150), ABTS (139.0), XO (53.8)	138
garcinielliptone C	XO(59.9)	139
garcinielliptone F	DPPH (inactive), ABTS (inactive), XO (inactive)	138
garcinielliptone P	XO(48.1)	140
garcinielliptone S	DPPH (inactive), ABTS (inactive), XO (inactive)	138
garcinol	DPPH (10.2), XO (52)	14,66,141
garcinol 13-O-methyl ether	DPPH (inactive)	14
garsubellin A	DPPH (inactive), ABTS (inactive), XO (inactive)	138

Table 1.9. *In vitro* PPAP antioxidant activity.

l

¹³⁵ Baggett, S.; Protiva, P.; Mazzola, E. P.; Yang, H.; Ressler, E. T.; Basile, M. J.; Weinstein, I. B.; Kennelly, E. J. *J. Nat. Prod.* **2005**, *68*, 354-360.

¹³⁶ Carvalho-Silva, L. B.; Oliveira, M. de V.; Gontijo, V. S.; Oliveira, W. F.; Derogis, P. B. M. C.; Stringheta, P. C.; Nagem, T. J.; Brigagão, M. R. P. L.; dos Santos, M. H. *Food Res. Int.* **2012**, *48*, 180-186.

137 Santa-Cecília, F. V.; Santos, G. B.; Fuzissaki, C. N.; Derogis, P. B. M. C.; Freitas, L. A. S.; Gontijo, V. S.; Stringheta, P. C.; Nagem, T. J.; Brigagão, M. R. P. L.; dos Santos, M. H. *J. Med. Food* **2012**, *15*, 200-205.

¹³⁸ Lin, K.-W.; Huang, A-M.; Yang, S.-C.; Weng, J.-R.; Hour, T.-C.; Pu, Y.-S.; Lin, C.-N. *Food Chem.* **2012**, *135*, 851-859.

139 Lin, K.-W.; Huang, A-M.; Tu, H.-Y.; Weng, J.-R.; Hour, T.-C.; Wei, B.-L.; Yang, S.-C.; Wang, J.-P.; Pu, Y.-S.; Lin, C.-N. *J. Agric. Food Chem.* **2009**, *57*, 8782-8787.

¹⁴⁰ Lin, K.-W.; Huang, A-M.; Tu, H.-Y.; Lee, L.-Y.; Wu, C.-C.; Hour, T.-C.; Yang, C.-H.; Pu, Y.-S.; Lin, C.-N. *J. Agric. Food Chem.* **2011**, *59*, 407-414.

141 Liao, C.-H.; Ho, C.-T.; Lin, J.-K. *Biochem. Biophys. Res. Commun.* **2005**, *329*, 1306-1314.

¹³⁴ Almanza, G. R.; Quispe, R.; Mollinedo, P.; Rodrigo, G.; Fukushima, O.; Villagomez, R.; Akesson, B.; Sterner, O. *Nat. Prod. Commun.* **2011**, *6*, 1269-1274.

PPAP	Antioxidant activity ^{<i>a</i>,<i>b</i>}	References
guttiferone A	DPPH (20.8-31.0), ABTS (12.5)	18, 122, 142, 143
guttiferone E	DPPH (68)	86,135
guttiferone F	DPPH (42.8)	144
guttiferone G	DPPH (26.8)	145
guttiferone H	DPPH(64)	135
7-epi-guttiferone J	DPPH (inactive), ABTS (inactive)	18
guttiferone K2	DPPH (3.9), ABTS (18.4), TEAC (2.5)	134
32-hydroxy-ent-guttiferone M	DPPH (38.3), ABTS (45.6)	18
isogarcinol	DPPH (13.3)	14
isogarcinol 13-O-methyl ether	DPPH (inactive)	14
isoxanthochymol	DPPH (4.6-5.8), ABTS (96.3), TEAC (3.7)	134,145
nemorosone	DPPH (44.1)	146
nemorosone O-methyl ether	DPPH (inactive)	146
xanthochymol	DPPH(53)	86,135

Table 1.9 (*continued*)**.** *In vitro* PPAP antioxidant activity.

a Assay abbreviations: DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); XO, xanthine oxidase; TEAC, Trolox equivalent antioxidant capacity.

 b Values reported in parentheses refer to IC₅₀ (in μ M) for DPPH, ABTS, and XO assays, and Trolox equivalents for TEAC assay.

Other than the results presented in Table 1.9, several other PPAPs have been evaluated for antioxidant properties *in vitro*. Using an HPLC-DPPH assay system, hyperforin and adhyperforin were both identified as very active antioxidant components of alcoholic *Hypericum perforatum* extracts.¹⁴⁷ Similar results were obtained using partially purified HPLC fractions containing hyperforin, adhyperforin, hyperfirin, and adhyperfirin across a variety of tests, including the DPPH assay, FRAP, superoxide anion

¹⁴² Nuñez-Figueredo, Y.; García-Pupo, L.; Ramírez-Sánchez, J.; Alcántara-Isaac, Y.; Cuesta-Rubio, O.; Hernández, R. D.; Naal, Z.; Curti, C.; Padro-Andreu, G. L. *Arzneimittel-Forsch.* **2012**, *62*, 583-589.

¹⁴³ Magadula, J. J. *Int. J. Res. Phytochem. Pharmacol.* **2012**, *2*, 16-20.

¹⁴⁴ Hartati, S.; Triyem; Cahyana, H. *Indo. J. Cancer Chemoprev.* **2010**, *1*, 85-91.

¹⁴⁵ Lannang, A. M.; Komguem, J.; Ngninzeko, F. N.; Tangmouo, J. G.; Lontsi, D.; Ajaz, A.; Choudhary, M. I.; Sondengam, B. L.; Atta-ur-Rahman *Bull. Chem. Soc. Ethiop.* **2006**, *20*, 247-252.

¹⁴⁶ Cuesta-Rubio, O.; Frontana-Uribe, B. A.; Ramírez-Apan, T.; Cárdenas, J. *Z. Naturforsch.* **2002**, *57c*, 372-378.

¹⁴⁷ Gioti, E. M.; Fiamegos, Y. C.; Skalkos, D. C.; Stalikas, C. D. *Food Chem.* **2009**, *117*, 398-404.

test, NO radical inhibition assay, and the lipid peroxidation assay.¹⁴⁸ A mixture of scrobiculatones A and B was found to be active in the DPPH assay.⁸⁴ Guttiferone K and semsinone A were both active in the DPPH, ORAC, and anti-AGEs inhibition assays.¹⁴³

The reactions of garcinol with various radical systems were studied in order to further understand how this PPAP behaves as an antioxidant.¹⁴⁹ Exposure of an acetone solution of garcinol (7) to DPPH in the dark afforded two oxidative cyclization products, 68 and 69 (Scheme 1.11a).¹⁵⁰ Coincidentally, these two compounds were later isolated from *Garcinia nujiangensis* and named nujiangfolin A and B.¹⁵¹ A possible mechanistic manifold for this transformation is shown in Scheme 1.11b. A resonance-stabilized enoxy radical **70** formed via hydrogen atom abstraction may cyclize onto the electron-rich aromatic ring to form **71**, which after tautomerization provides **68** and **69**. The formation of these two oxidation products from garcinol provides evidence that the antioxidant properties of certain PPAPs may be derived from the 3,4-dihydroxybenzoyl and the C2–C4 β-hydroxyenone functional groups. Similar results were observed when a heated acetone solution of garcinol (**7**) was exposed to AIBN, affording hydroperoxide **72** and isogarcinol (**8**) as well as **68** and **69** (Scheme 1.11c).152 The formation of **72** likely involves radical 6-*endo*-trig cyclization of the enoxy radical **70** onto the C1 prenyl group, followed by trapping with molecular oxygen. The formation of isogarcinol may not involve radical intermediates, given that its heat-mediated formation from garcinol has been previously reported.^{31,153,154}

¹⁴⁸ Orčić, D. Z.; Mimica-Dukić, N. M.; Francišković, M. M.; Petrović, S. S.; Jovin, E. Đ. *Chem. Cent. J.* **2011**, *5*, 34.

¹⁴⁹ For a review of the antioxidant properties of garcinol and its derivatives, see: Padhye, S.; Ahmad, A.; Oswal, N.; Sarkar, F. H. *J. Hematology Oncol.* **2009**, *2*, 38.

¹⁵⁰ Sang, S.; Pan, M.-H.; Cheng, X.; Bai, N.; Stark, R. E.; Rosen, R. T.; Lin-Shiau, S.-Y.; Lin, J.-K.; Ho, C.-T. *Tetrahedron* **2001**, *57*, 9931-9938.

¹⁵¹ Xia, Z.-X.; Zhang, D.-D.; Liang, S.; Lao, Y.-Z.; Zhang, H.; Tan, H.-S.; Chen, S.-L.; Wang, X.-H.; Xu, H.-X. *J. Nat. Prod.* **2012**, *75*, 1459-1464.

¹⁵² Sang, S.; Liao, C.-H.; Pan, M.-H.; Rosen, R. T.; Lin-Shiau, S.-Y.; Lin, J.-K.; Ho, C.-T. *Tetrahedron* **2002**, *58*, 10095-10102.

¹⁵³ Krishnamurthy, N.; Lewis, Y. S.; Ravindranath, B. *Tetrahedron Lett.* **1981**, *22*, 793-796.

¹⁵⁴ Sahu, A.; Das, B.; Chatterjee, A. *Phytochemistry* **1989**, *28*, 1233-1235.

Scheme 1.11. (a) The reaction of garcinol (**7**) with DPPH and (b) a possible mechanism, and (c) the reaction of garcinol (**7**) with AIBN.

Several PPAPs have been evaluated in cell-based assays for antioxidant activity. A St. John's wort extract with standardized hyperforin content showed inverse dose-dependent superoxide inhibition in a XO-human placental vein assay.¹⁵⁵ In other words, the most concentrated sample had a pro-oxidant effect, while the most dilute sample had the largest free radical inhibitory effect in this model, showing nearly an 80% decrease compared to control. The radical scavenging ability of hyperforin was further explored in another study involving skin exposed to solar simulated radiation.¹⁵⁶ Hyperforin was found to be more effective than Trolox (and without displaying phototoxicity) in a H₂DCFDA irradiation assay involving HaCaT cells, with an EC_{50} value of 0.7 μ M. A cream containing 1.5% hyperforin was then

¹⁵⁵ Hunt, E. J.; Lester, C. E.; Lester, E. A.; Tackett, R. L. *Life Sci.* **2001**, *69*, 181-190.

¹⁵⁶ Meinke, M. C.; Schanzer, S.; Haag, S. F.; Casetti, F.; Müller, M. L.; Wölfle, U.; Kleeman, A.; Lademann, J.; Schempp, C. M. *Eur. J. Pharm. Biopharm.* **2012**, *81*, 346-350.

formulated and determined to have a radical scavenging ability of $200 \cdot 10^{14}$ radicals/mg, corresponding to a radical protection factor of 39 (comparable to a good sunscreen). After demonstrating that the cream reduced radical formation on irradiated porcine ear skin *ex vivo*, it was applied to 20 volunteers in a randomized, double-blind, vehicle-controlled clinical study. The cream was well tolerated and successfully reduced ultraviolet B-induced erythema. A later study also showed that a hyperforin-rich skin cream provided protection from radical formation in a 9-person study.¹⁵⁷ These results contrast an earlier study, which found that hyperforin was a significant phototoxic component of St. John's wort extracts in an assay involving photosensitized peroxidation of linoleic acid.¹⁵⁸

Several studies of the antioxidant properties of garcinol have been reported. Aside from being almost three times more active by weight than vitamin E in the DPPH assay, it also displayed moderate activity against linoleic acid peroxidation and suppressed protein glycation in an *in vitro* bovine serum albumin/fructose system.¹⁵⁹ Its free radical scavenging ability was also validated in Fenton reaction and H2O2/NaOH/DMSO systems, and *in vivo* by preventing indomethacin-induced acute gastric ulceration in rats through oral administration.¹⁶⁰ Garcinol was also shown to protect DNA and neurons from radicalinduced damage.¹⁴¹ With an IC₅₀ value of 0.32 μ M, garcinol prevented pUC-19 supercoiled DNA from strand breakage under Fenton reaction conditions.

While reactive oxygen species (ROS) are produced normally through metabolism or via immune system oxidative burst, if they accumulate too quickly, cell membrane damage may occur with the concomitant formation of mutagenic or carcinogenic lipid peroxides.¹⁶¹ Table 1.10 summarizes the activity of a variety of PPAPs against ROS formation in polymorphonuclear leukocytes (PMNs), rat

¹⁵⁷ Arndt, S.; Haag, S. F.; Kleemann, A.; Lademann, J.; Meinke, M. C. *Exp. Dermatol.* **2013**, *22*, 354-357.

¹⁵⁸ Onoue, S.; Seto, Y.; Ochi, M.; Inoue, R.; Ito, H.; Hatano, T.; Yamada, S. *Phytochemistry* **2011**, *72*, 1814-1820.

¹⁵⁹ Yamaguchi, F.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. *J. Agric. Food Chem.* **2000**, *48*, 180-185.

¹⁶⁰ Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. *J. Agric. Food Chem.* **2000**, *48*, 2320-2325.

¹⁶¹ Murphy, M. P.; Holmgren, A.; Larsson, N.-G.; Halliwell, B.; Chang, C. J.; Kalyanaraman, B.; Rhee, S. G.; Thornalley, P. J.; Partridge, L.; Gems, D.; Nyström, T.; Belousov, V.; Schumacker, P. T.; Winterbourn, C. C. *Cell Metab.* **2011**, *13*, 361-366.

neutrophils, and human neutrophils stimulated with *N*-formylmethionine leucyl-phenylalanine (fMLP) alone or in combination with cytochalasin B (CB), opsonized zymosan (OZ), or phorbol 12-myristate 13 acetate (PMA). The garcimultiflorone family and 13,14-didehydroxyisogarcinol were found to be potent inhibitors of ROS generated from PMNs stimulated with fMLP/CB. 15 7-*epi*-Clusianone also displayed dose-dependent decrease in ROS in PMNs stimulated with either fMLP or PMA.¹³⁷ Most other PPAPs were either inactive or displayed marginal antioxidant activity, with the only exception being hyperforin, having an IC_{50} value of 1.8 µM against fMLP-stimulated PMNs.¹⁶⁶ Later studies on hyperforin revealed that its ROS inhibition activity was lost when the PMNs were treated with PMA.¹⁶⁷ This, combined with the observation that hyperforin decreased Ca^{2+} levels in resting PMNs and caused a decreased Ca^{2+} response to fMLP, led the authors to conclude that hyperforin targeted components of G protein signaling cascades involved in both Ca^{2+} homeostasis and inflammatory response. The antioxidant properties garcinielliptone FC have also been investigated.¹⁶² Treatment of male mice with 2 mg/kg garcinielliptone FC caused a statistically significant increase in the activity of superoxide dismutase but not catalase.

PPAP	Cell line	Stimulation	IC50 (μM)	References
garcimultiflorone A	PMN	fMLP/CB	5.6	15
garcimultiflorone B	PMN	fMLP/CB	0.11	15
13-hydroxygarcimultiflorone B	PMN	fMLP/CB	0.40	15
garcimultiflorone C	PMN	fMLP/CB	7.2	15
garcimultiflorone D2	PMN	fMLP/CB	72	163
garcinielliptone A	rat neutrophil	fMLP/CB	inactive	164
garcinielliptone A	rat neutrophil	PMA	inactive	164
garcinielliptone B	rat neutrophil	fMLP/CB	inactive	164
garcinielliptone B	rat neutrophil	PMA	inactive	164

Table 1.10. Evaluation of PPAPs against ROS generation.

¹⁶² Júnior, J. S. da C.; de Almeida, A. A. C.; Costa, J. P.; Citó, A. M. das G. L.; Saffi, J.; de Freitas, R. M. *Pharm. Biol.* **2012**, *50*, 453-457.

¹⁶³ Ting, C.-W.; Hwang, T.-L.; Chen, I.-S.; Yen, M.-H.; Chen, J.-J. *Chem. Biodivers.* **2012**, *9*, 99-105.

¹⁶⁴ Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P. *Chem. Eur. J.* **2003**, *9*, 1958-1963.

PPAP	Cell line	Stimulation	IC50 (μM)	References
garcinielliptone C	rat neutrophil	fMLP/CB	11.5	139
garcinielliptone C	rat neutrophil	PMA	inactive	139
garcinielliptone F	rat neutrophil	fMLP/CB	17.0	165
garcinielliptone F	rat neutrophil	PMA	inactive	165
garcinielliptone H	rat neutrophil	fMLP/CB	inactive	165
garcinielliptone H	rat neutrophil	PMA	inactive	165
garcinielliptone I	rat neutrophil	fMLP/CB	inactive	165
garcinielliptone I	rat neutrophil	PMA	inactive	165
garsubellin A	rat neutrophil	fMLP/CB	inactive	164
garsubellin A	rat neutrophil	PMA	inactive	164
hyperforin	PMN	fMLP	1.8	166
hyperforin	PMN	OZ.	inactive	166
hyperforin	PMN	PMA	inactive	167
hyperpapuanone	PMN	fMLP	inactive	166
hyperpapuanone	PMN	OΖ	inactive	166
13,14-didehydroxyisogarcinol	PMN	fMLP/CB	0.88	15
papuaforin A	PMN	fMLP	inactive	166
papuaforin A	PMN	OΖ	inactive	166
papuaforin B	PMN	fMLP	inactive	166
papuaforin B	PMN	OΖ	inactive	166
papuaforin C	PMN	fMLP	inactive	166
papuaforin C	PMN	OΖ	inactive	166
papuaforin D	PMN	fMLP	inactive	166
papuaforin D	PMN	OΖ	inactive	166
papuaforin E	PMN	fMLP	8.0	166
papuaforin E	PMN	OZ	inactive	166

Table 1.10 (*continued*)**.** Evaluation of PPAPs against ROS generation.

Several PPAPs have been evaluated against markers of inflammatory response aside from superoxide burst, such as the release of histamine, elastase, lysozyme, and β-glucuronidase as well as nitrite accumulation (Table 1.11). Given the short half-life of nitric oxide, nitrite accumulation may be used to gauge its release during inflammatory response. The garcimultiflorone family of PPAPs displayed fairly potent activity against elastase release in PMNs.¹⁵ However, to a large degree, the garcinielliptones showed little or no effect on these inflammatory response markers.

¹⁶⁵ Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P. *Chem. Eur. J.* **2003**, *9*, 5520-5527.

¹⁶⁶ Heilmann, J.; Winkelmann, K.; Sticher, O. *Planta Med.* **2003**, *69*, 202-206.

¹⁶⁷ Feißt, C.; Werz, O. *Biochem. Pharmacol.* **2004**, *67*, 1531-1539.

PPAP	Cell line	Stimulation	Measured outcome	$IC_{50}(\mu M)$	Reference
garcimultiflorone A	PMN	fMLP/CB	elastase release	4.7	15
garcimultiflorone B	PMN	fMLP/CB	elastase release	0.14	15
13-hydroxygarcimultiflorone B	PMN	fMLP/CB	elastase release	0.86	15
garcimultiflorone C	PMN	fMLP/CB	elastase release	12.1	15
garcimultiflorone D2	PMN	fMLP/CB	elastase release	6.0	163
garcinielliptone A	rat peritoneal mast cell	compound 48/80	β -glucuronidase release	inactive	164
garcinielliptone A	rat peritoneal mast cell	compound $48/80$	histamine release	inactive	164
garcinielliptone B	rat peritoneal mast cell	compound 48/80	β -glucuronidase release	inactive	164
garcinielliptone B	rat peritoneal mast cell	compound 48/80	histamine release	inactive	164
garcinielliptone C	rat neutrophil	fMLP/CB	β -glucuronidase release	30.0	139
garcinielliptone C	rat neutrophil	fMLP/CB	lysozyme release	27.4	139
garcinielliptone C	RAW264.7	LPS	TNF- α formation	inactive	139
garcinielliptone F	rat neutrophil	fMLP/CB	β -glucuronidase release	26.9	165
garcinielliptone F	rat neutrophil	fMLP/CB	lysozyme release	20.0	165
garcinielliptone F	RAW264.7	LPS	nitrite accumulation	inactive	165
garcinielliptone F	N ₉	$LPS/IFN-\gamma$	nitrite accumulation	inactive	165
garcinielliptone H	rat neutrophil	fMLP/CB	β -glucuronidase release	inactive	165
garcinielliptone H	rat neutrophil	fMLP/CB	lysozyme release	inactive	165
garcinielliptone H	RAW264.7	LPS	nitrite accumulation	inactive	165
garcinielliptone H	N ₉	$LPS/IFN-\gamma$	nitrite accumulation	inactive	165
garcinielliptone I	rat neutrophil	fMLP/CB	β -glucuronidase release	inactive	165
garcinielliptone I	rat neutrophil	fMLP/CB	lysozyme release	inactive	165
garcinielliptone I	RAW264.7	LPS	nitrite accumulation	inactive	165
garcinielliptone I	N ₉	$\text{LPS}/\text{IFN-}\gamma$	nitrite accumulation	7.4	165
garcinielliptone L	rat mast cell	compound 48/80	β -glucuronidase release	22.9	60
garcinielliptone L	rat mast cell	compound 48/80	histamine release	inactive	60
garcinielliptone L	RAW264.7	LPS	nitrite accumulation	22.7	60
garcinielliptone L	N ₉	$\text{LPS}/\text{IFN-}\gamma$	nitrite accumulation	12.8	60
garcinielliptone M	rat mast cell	compound 48/80	β -glucuronidase release	13.6	60
garcinielliptone M	rat mast cell	compound 48/80	histamine release	19.0	60
garcinielliptone M	RAW264.7	LPS	nitrite accumulation	15.3	60
garcinielliptone M	N ₉	LPS/IFN-γ	nitrite accumulation	inactive	60
garsubellin A	rat peritoneal mast cell	compound 48/80	β -glucuronidase release	15.6	164
garsubellin A	rat peritoneal mast cell	compound 48/80	histamine release	inactive	164
13,14-didehydroxyisogarcinol	PMN	fMLP/CB	elastase release	1.2	15

Table 1.11. Evaluation of PPAPs against several markers of inflammation.

The effects of PPAPs on a variety of other markers of inflammation have been explored. Sundaicumones A and B were found to be weak activators of glucocorticoid receptor, which inhibits proinflammatory transcription factors. ¹⁶⁸ Guttiferones O and P inhibited mitogen-activated protein kinase activated protein kinase 2 (MAPKAPK-2), a serine/threonine kinase involved in inflammation-response

¹⁶⁸ Cao, S.; Low, K.-N.; Glover, R. P.; Crasta, S. C.; Ng, S.; Buss, A. D.; Butler, M. S. *J. Nat. Prod.* **2006**, *69*, 707- 709.

transcriptional regulation, both with an IC₅₀ value of 22.0 μ M.¹⁶⁹ Hyperforin has also been evaluated in several anti-inflammatory assays. In human primary hepatocytes and intestinal epithelia, hyperforin induced interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) expression.¹⁷⁰ These effects were found to be dependent on extracellular signal-regulated kinase (ERK) 1 and 2 but independent of pregnane X receptor (PXR) and nuclear factor kappa B (NF-κB). The dicyclohexylammonium salt of hyperforin also prevented fMLP-induced PMN chemotaxis and tissue infiltration in a dose-dependent manner (IC₅₀ = 1 μ M).¹⁷¹ The authors found that this was caused by decreased expression of the adhesion molecule integrin alpha M (ITGAM) and inhibition of matrix metalloproteinase-9 (MMP-9) activation. Subsequent studies found that hyperforin downregulated other markers in activated T cells (e.g., IFN-γ, T-box, CXCR3) and was successfully evaluated in a murine model of experimental allergic encephalomyelitis, an autoimmune disease of the central nervous system.¹⁷²

Hyperforin, garcinol, garcinielliptone FC, and guttiferone K were all found to potently inhibit lipid oxidation using the thiobarbituric acid reactive species (TBARS) assay. Hyperforin prevented lowdensity lipoprotein (LDL) oxidation in Cu^{2+} - and nonmetal-mediated oxidation at concentrations as low as 2.5 μ M.¹⁷³ Garcinol prevented LDL oxidation mediated by both Fe²⁺ (IC₅₀ = 0.42 μ M) and AAPH (IC₅₀ = 1.2 μ M).¹⁷⁴ This was more potent than vitamin E in both assays. Garcinielliptone FC completely inhibited lipid peroxidation in the TBARS assay at 8.3 μ M, and had an IC₅₀ below 2 μ M.¹⁷⁵ Garcinol and

¹⁶⁹ Carroll, A. R.; Suraweera, L.; King, G.; Rali, T.; Quinn, R. J. *J. Nat. Prod.* **2009**, *72*, 1699-1701.

¹⁷⁰ Zhou, C.; Tabb, M. M.; Sadatrafiei, A.; Grün, F.; Sun, A.; Blumberg, B. *J. Clin. Immunol.* **2004**, *24*, 623-636.

¹⁷¹ Dell'Aica, I.; Niero, R.; Piazza, F.; Cabrelle, A.; Sartor, L.; Colalto, C.; Brunetta, E.; Lorusso, G.; Benelli, R.; Albini, A.; Calabrese, F.; Agostini, C.; Garbisa, S. *J. Pharmacol. Exp. Ther.* **2007**, *321*, 492-500.

¹⁷² Cabrelle, A.; Dell'Aica, I.; Melchiori, L.; Carraro, S.; Brunetta, E.; Niero, R.; Scquizzato, E.; D'Intino, G.; Calzá, L.; Garbisa, S.; Agostini, C. *J. Leukoc. Biol.* **2008**, *83*, 212-219.

¹⁷³ Laggner, H.; Schrier, S.; Hermann, M.; Exner, M.; Mühl, A.; Gmeiner, B. M. K.; Kapiotis, S. *Free Radical Res.* **2007**, *41*, 234-241.

¹⁷⁴ Hutadilok-Towatana, N.; Kongkachuay, S.; Mahabusarakam, W. *Nat. Prod. Res.* **2007**, *21*, 655-662.

¹⁷⁵ Júnior, J. S. C.; Ferraz, A. B. F.; Filho, B. A. B.; Feitosa, C. M.; Citó, A. M. G. L.; Freitas, R. M.; Saffi, J. *J. Med. Plants Res.* **2011**, *5*, 293-299.

guttiferone K were found to protect human blood platelets from oxidative damage due to peroxynitrite, but these PPAPs did not prevent protein nitration.¹⁷⁶

Several PPAPs have been evaluated for their ability to inhibit general pro-inflammatory response. Garcinol displayed a neuroprotective effect in rat astrocytes exposed to LPS.¹⁴¹ Under normal circumstances, LPS exposure causes an inflammatory response including iNOS and COX-2 induction, which correlates with neurodegenerative processes. It is believed that garcinol not only behaves as an antioxidant but also inhibits this inflammatory response. In rats with carrageenan-induced paw edema and peritonitis, 7-*epi*-clusianone reduced inflammation in a dose-dependent manner, with oral doses of 5, 10, and 15 mg/kg.¹⁷⁷ Topical treatment of the dicyclohexylammonium salt of hyperform as well as adhyperforin were similarly effective at the reduction of murine croton oil-induced ear edema as indomethacin, with EC_{50} values of 0.25 and 0.30 μ mol/cm².¹⁷⁸ In an 8-person clinical trial, the antiinflammatory effects of hyperforin were found to at least be partly due to the ability of this PPAP to reduce the epidermal cells' ability to recruit alloreactive T cells.¹⁷⁹ These effects were similar to solarsimulated radiation, a known immunosuppressive agent. Hyperforin treatment was also well tolerated and was cosmetically acceptable. When epidermal cells were treated with hyperforin *in vitro*, a dosedependent reduction of T cell and PMN proliferation was observed. As a result, hyperforin therapy may be a possible treatment option for chronic atopic dermatitis or other skin conditions involving overreactive inflammatory response.

Phagocyte activation of iNOS (inducible nitric oxide synthase) causes the release of nitric oxide; however, excessive NO production may lead to neurodegenerative disease. Garcinielliptone FC was

¹⁷⁶ Kolodziejczyk, J.; Masullo, M.; Olas, B.; Piacente, S.; Wachowicz, B. *Platelets* **2009**, *20*, 487-492.

¹⁷⁷ Santa-Cecília, F. V.; Freitas, L. A. S.; Vilela, F. C.; Veloso, C. de C.; da Rocha, C. Q.; Moreira, M. E. C.; Dias, D. F.; Giusti-Paiva, A.; dos Santos, M. H. *Eur. J. Pharmacol.* **2011**, *670*, 280-285.

¹⁷⁸ Sosa, S.; Pace, R.; Bornancin, A.; Morazzoni, P.; Riva, A.; Tubaro, A.; Loggia, R. D. *J. Pharm. Pharmacol.* **2007**, *59*, 703-709.

¹⁷⁹ Schempp, C. M.; Winghofer, B.; Lüdtke, R.; Simon-Haarhaus, B.; Schöpf, E.; Simon, J. C. *Br. J. Dermatol.* **2000** *142*, 979-984.

found to be a potent scavenger of NO in a sodium nitroprusside decomposition assay.175 Hyperforin inhibited LPS-induced NO release in the 0.25-0.75 µM range in murine microglia by decreasing iNOS expression.180 These effects correlated with suppression of the activated states of NF-κB and cAMP response element-binding protein (CREB). Prior results had suggested hypericin, and not hyperforin, was the component of St. John's wort extracts responsible for inhibition of NF-κB.¹⁸¹ In rat aorta at concentrations below 10 µM, 7-*epi*-clusianone induced vasodilation via NO release.¹⁸² Interestingly, at concentrations above 10 µM, vasoconstriction was observed and was dependent on eicosanoid production.

In addition, several PPAPs have been found to directly inhibit or modulate key proteins involved in the biosynthesis of pro-inflammatory eicosanoids.¹⁸³ 5-Lipoxygenase (5-LO) catalyzes the oxidation of arachidonic acid to arachidonic acid 5-hydroperoxide, an intermediate in the biosynthesis of leukotrienes.¹⁸⁴ Arachidonic acid can also be oxidized by cyclooxygenases 1 and 2 (COX-1 and COX-2) to prostaglandin H_2 , the progenitor to prostanoids, prostacyclin, and thromboxanes.¹⁸⁵ While several classes of drugs have been developed to broadly inhibit the action of these enzymes, the discovery and development of specific inhibitors of each of these pro-inflammatory enzymes is still actively pursued.¹⁸⁶

Several PPAPs are reported to be sub-micromolar inhibitors of proteins involved in eicosanoid biosynthesis. Early studies with hyperforin established that it is an uncompetitive inhibitor of both 5-LO

¹⁸⁰ Kraus, B.; Wolff, H.; Elstner, E. F.; Heilmann, J. *Naunyn-Schmied. Arch. Pharmacol.* **2010**, *381*, 541-553.

¹⁸¹ Bork, P. M.; Bacher, S.; Schmitz, M. L.; Kaspers, U.; Heinrich, M. *Planta Med.* **1999**, *65*, 297-300.

¹⁸² Cruz, A. J.; Lemos, V. S.; dos Santos, M. H.; Nagem, T. J.; Cortes, S. F. *Phytomedicine* **2006**, *13*, 442-445.

¹⁸³ For reviews of the biosynthesis and biology of pro-inflammatory eicosanoids, see: (a) Funk, C. D. *Science* **2001**, *294*, 1871-1875. (b) Peters-Golden, M.; Henderson, W. R., Jr. *N. Engl. J. Med.* **2007**, *357*, 1841-1854.

¹⁸⁴ Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. *Trends Biochem. Sci.* **2007**, *32*, 332-341.

¹⁸⁵ Ricciotti, E.; FitzGerald, G. A. *Arterioscler. Thromb. Vasc. Biol.* **2011**, *31*, 986-1000.

¹⁸⁶ Werz, O.; Steinhilber, D. *Pharmacol. Therapeut.* **2006**, *112*, 701-718.

and COX-1.¹⁸⁷ Hyperforin inhibited purified 5-LO with an IC₅₀ value of 90 nM and had an IC₅₀ in the range of 1-2 μ M in Ca²⁺ ionophore-stimulated (PMNs), which was comparable to the known 5-LO inhibitor zileuton. COX-1 activity was also inhibited in stimulated platelet cells, with IC_{50} values ranging from 0.3 to 3 μ M depending on the method of stimulation. No COX-2 inhibition activity was observed. When RAW264.7 mouse marcophages¹⁸⁸ and LPS-stimulated human blood samples¹⁸⁹ were exposed to hyperforin, prostaglandin E_2 biosynthesis was inhibited. Aside from 5-LO and COX-1, hyperforin acts as an inhibitor of membrane-associated prostaglandin E synthetase-1 (mPGES-1) with an IC_{50} value of 1 µM.¹⁸⁹ Further, hyperforin may have a unique pharmacological profile compared to other known 5-LO inhibitors. When carrageenan-treated rats were treated with hyperforin (4 mg/kg, intraperitoneal), suppression of leukotriene B4 was observed; however, when 5-LO point mutations were introduced (W13A-W75A-W102A) or phosphatidylcholine was present, the inhibitory activity of hyperforin was abolished.¹⁹⁰ Other 5-LO inhibitors of different structural classes, ZM230487 and BWA4C, continued to inhibit leukotriene B_4 production in the presence of the modifications.

Given the distinctive nature of hyperforin 5-LO inhibition and moderate potency, a series of semisynthetic hyperforin analogs were evaluated against 5-LO in PMNs.¹⁹¹ Overall, oxidation of hyperforin produced more active 5-LO inhibitors, and alkylation or acylation produced less active 5-LO inhibitors (Table 1.12, Figure 1.11). The most active analog found in the study was oxyhyperforin, which had an IC₅₀ value of 40 nM. Interestingly, analogs featuring a C9 carbinol were similarly active to those

¹⁸⁷ Albert, D.; Zündorf, I.; Dingermann, T.; Müller, W. E.; Steinhilber, D.; Werz, O. *Biochem. Pharmacol.* **2002**, *64*, 1767-1775.

¹⁸⁸ Hammer, K. D. P.; Hillwig, M. L.; Solco, A. K. S.; Dixon, P. M.; Delate, K.; Murphy, P. A.; Wurtele, E. S.; Birt, D. F. *J. Agric. Food Chem.* **2007**, *55*, 7323-7331.

¹⁸⁹ Koeberle, A.; Rossi, A.; Bauer, J.; Dehm, F.; Verotta, L.; Northoff, H.; Sautebin, L.; Werz, O. *Front. Pharmacol.* **2011**, *2*, 7.

¹⁹⁰ Feißt, C.; Pergola, C.; Rakonjac, M.; Rossi, A.; Koeberle, A.; Dodt, G.; Hoffmann, M.; Hoernig, C.; Fischer, L.; Steinhilber, D.; Franke, L.; Schneider, G.; Rådmark, O.; Sautebin, L.; Werz, O. *Cell. Mol. Life Sci.* **2009**, *66*, 2759- 2771.

¹⁹¹ Feißt, C.; Albert, D.; Verotta, L.; Werz, O. *Med. Chem.* **2005**, *1*, 287-291.

containing a C9 ketone functionality. Aside from hyperforin and its derivatives, garcinol also displayed inhibitory activity against various enzymes involved in eicosanoids. Garcinol was found to be most active against 5-LO (IC₅₀ = 0.1 µM), mPGES-1 (IC₅₀ = 0.3 µM), and COX-1 (IC₅₀ = 12 µM) but showed no activity against COX-2.¹⁹²

Hyperforin derivative	$IC_{50}(\mu M)$
hyperforin	0.19
furohyperforin	0.90
oxyhyperforin	0.040
hyperforin O -methyl ether (60)	inactive
63	inactive
73	0.17
74	inactive
75	inactive

Table 1.12. 5-LO inhibition activity of semisynthetic hyperforin analogs.¹⁹¹

Figure 1.11. Semisynthetic hyperforin analogs.

Aside from being an inhibitor of several enzymes involved in eicosanoid biosynthesis, garcinol also acts as an anti-inflammatory agent by blocking pro-inflammatory protein expression. In a study using LPS-activated RAW264.7 cells, it was found that garcinol (at 1μ M concentration) inhibited the phosphorylation of cytosolic phospholipase A_2 (cPLA₂).¹⁹³ This phosphorylation activates cPLA₂, which hydrolyzes phospholipids at the *sn*-2 position, releasing arachidonic acid. On the other hand, hyperforin

¹⁹² Koeberle, A.; Northoff, H.; Werz, O. Biochem. Pharmacol. **2009**, 77, 1513-1521.

¹⁹³ Hong, J.; Sang, S.; Park, H.-J.; Kwon, S. J.; Suh, N.; Huang, M.-T.; Ho, C.-T.; Yang, C. S. Carcinogenesis 2006, *27*, 278-286.

was found to induce phosphorylation of $cPLA₂$ with its activity more pronounced in cells with depleted intracellular Ca^{2+194} The authors proposed that hyperforin inserts itself into lipid membranes and enables $cPLA_2$ to access phospholipids and thus release arachidonic acid. Along with $cPLA_2$ inhibition, garcinol reduced iNOS expression and NO release in RAW264.7 cells at 1μ M concentration, presumably through inhibition of signal transducer and activator of transcription-1 (STAT-1) or NF-κB, master transcriptional regulators.¹⁹⁵ Isogarcinol and semisynthetic garcinol derivatives **68** and **69** had similar effects to garcinol across these assays but were not as active. Akin to garcinol, hyperforin has been shown to downregulate both STAT-1 and NF-κB in rat and human pancreatic islets in the 0.5-5 µM range, preventing the cytokine-induced apoptosis of insulin-secreting β-cells, a cause of type 1 diabetes.¹⁹⁶

7-*epi*-Clusianone and guttiferone A have also been evaluated for anti-inflammatory and antioxidant properties in other contexts. 7-*epi*-Clusianone inhibited carbachol- and histamine-induced guinea pig ileum spasms in a dose-dependent manner, with EC_{50} values in the 2-4 μ M range.¹⁹⁷ It also prevented allergen-induced contraction of guinea pig trachea at 10 µM, and these effects were replicated in an *in vivo* mouse model at 25-100 mg/kg oral dosing. 198 The effects of 7-*epi*-clusianone were blocked by the addition of nitric oxide synthase inhibitors as well as cation channel blockers. Guttiferone A dosedependently reduced the number of ulcerative lesions in a mouse model and was found to be as effective as omeprazole.¹⁹⁹ This indicates that guttiferone A may impart gastroprotective effects.

¹⁹⁴ Hoffmann, M.; Lopez, J. J.; Pergola, C.; Feisst, C.; Pawelczik, S.; Jakobsson, P.-J.; Sorg, B. L.; Glaubitz, C.; Steinhilber, D.; Werz, O. *Biochim. Biophys. Acta* **2010**, *1801*, 462-472.

¹⁹⁵ Liao, C.-H.; Sang, S.; Liang, Y.-C.; Ho, C.-T.; Lin, J.-K. *Molec. Carcinogenesis* **2004**, *41*, 140-149.

¹⁹⁶ Menegazzi, M.; Novelli, M.; Beffy, P.; D'Aleo, V.; Tedeschi, E.; Lupi, R.; Zoratti, E.; Marchetti, P.; Suzuki, H.; Masiello, P. *Int. J. Biochem. Cell Biol.* **2008**, *40*, 1509-1521.

¹⁹⁷ Neves, J. S.; Coelho, L. P.; Cordeiro, R. S. P.; Veloso, M. P.; Rodrigues e Silva, P. M.; dos Santos, M. H.; Martins, M. A. *Planta Med.* **2007**, *73*, 644-649.

¹⁹⁸ Coelho, L. P.; Serra, M. F.; Pires, A. L. de A.; Cordeiro, R. S. B.; Rodrigues e Silva, P. M.; dos Santos, M. H.; Martins, M. A. *J. Pharmacol. Exp. Ther.* **2008**, *327*, 206-214.

¹⁹⁹ Niero, R.; Dal Molin, M. M.; Silva, S.; Damian, N. S.; Maia, L. O.; Delle Monache, F.; Filho, V. C.; de Andrade, S. F. *Naunyn-Schmied. Arch. Pharmacol.* **2012**, *385*, 1103-1109.

Chemotherapeutic Activity

 \overline{a}

Many PPAPs have been evaluated for their antiproliferative activity against a variety of cancer cell lines. Overall, many PPAPs possess the ability to kill or modify cancer cells to a moderate extent, and a variety of underlying mechanisms have been explored. In many instances, apoptosis activation leads to cell death. A summary of the antiproliferative activity of PPAPs as well as several semisynthetic PPAP derivatives (Figure 1.12) against a variety of cancer cell lines is found in Table 1.13.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
aristophenone	human colon adenocarcinoma	SW480	33	135
clusianone	human colorectal carcinoma	HCT-116	3.2	200
clusianone	human cervical carcinoma	HeLa	$3-9.6$	200,201
clusianone	human breast carcinoma	$MCF-7$	5.7	201
clusianone	human pancreas carcinoma	MIA PaCa-2	3.8	201
clusianone	human promyelocytic leukemia	N _{B4}	4.4	200
clusianone	human large cell lung carcinoma	NCI-H460	8.3	200
ent-clusianone	human cervical carcinoma	HeLa	5.8	201
ent-clusianone	human breast carcinoma	$MCF-7$	8.3	201
ent-clusianone	human pancreas carcinoma	MIA PaCa-2	5.2	201
7-epi-clusianone	human renal cell adenocarcinoma	786-0	6.9	116
7-epi-clusianone	human lung carcinoma	A549	27.3	202
7-epi-clusianone	human squamous cell carcinoma	CRL-1623	7.5	116
7-epi-clusianone	human squamous cell carcinoma	CRL-1624	17.8	116
7-epi-clusianone	human Hodgkin's lymphoma	HD-MY-Z	9.8	203
7-epi-clusianone	human myelogenous leukemia	K ₅₆₂	11.8	203
7-epi-clusianone	human T cell leukemia	KE-37	13.6	203
7-epi-clusianone	human breast carcinoma	MCF-7	$6.3 - 19.9$	116,202

Table 1.13. Evaluation of PPAPs against cancer cell proliferation.

²⁰⁰ Dal Piaz, F.; Tosco, A.; Eletto, D.; Piccinelli, A. L.; Moltedo, O.; Franceschelli, S.; Sbardella, G.; Remondelli, P.; Rastrelli, L.; Vesci, L.; Pisano, C.; De Tommasi, N. *ChemBioChem* **2010**, *11*, 818-827.

²⁰¹ Simpkins, N. S.; Holtrup, F.; Rodeschini, V.; Taylor, J. D.; Wolf, R. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 6144- 6147.

²⁰² Tanaka, N.; Takaishi, Y.; Shikishima, Y.; Nakanishi, Y.; Bastow, K.; Lee, K.-H.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O. K.; Ashurmetov, O. *J. Nat. Prod.* **2004**, *67*, 1870-1875.

²⁰³ Nedialkov, P. T.; Zheleva-Dimitrova, D.; Momekov, G.; Karlov, K.; Girreser, U.; Kitanov, G. M. *Nat. Prod. Res.* **2011**, *25*, 1743-1750.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
7-epi-clusianone	human breast carcinoma	NCI-ADR	9.5	116
7-epi-clusianone	human large cell lung carcinoma	NCI-H460	8.7	116
7-epi-clusianone	human ovarian carcinoma	OVCAR ₀₃	5.9	116
7-epi-clusianone	human prostate carcinoma	$PC-3$	5.2	116
7-epi-clusianone	human malignant melanoma	UACC-62	5.8	116
cycloxanthochymol	human lung carcinoma	A549	7.5	204
cycloxanthochymol	human prostate carcinoma	DU145	6.1	204
cycloxanthochymol	human nasopharyngeal carcinoma	KB	8.3	204
cycloxanthochymol	human nasopharyngeal carcinoma	$KB_{\rm win}$	8.1	204
cycloxanthochymol	human colon adenocarcinoma	SW480	16.6	135
ent-cycloxanthochymol	human lung carcinoma	A549	7.5	204
ent-cycloxanthochymol	human prostate carcinoma	DU145	7.8	204
ent-cycloxanthochymol	human nasopharyngeal carcinoma	KB	8.1	204
ent-cycloxanthochymol	human nasopharyngeal carcinoma	$KB_{\rm vin}$	8.6	204
garcicowin A	human colorectal carcinoma	HCT-116	inactive	205
garcicowin B	human colorectal carcinoma	HCT-116	inactive	205
garcicowin C	human colorectal carcinoma	HCT-116	> 5	205
garcicowin C	human cervical carcinoma	HeLa-C3	inactive	206
garcicowin D	human colorectal carcinoma	HCT-116	> 5	205
garcimultiflorone D	human cervical carcinoma	HeLa-C3	17.5	207
18-hydroxygarcimultiflorone D	human cervical carcinoma	HeLa-C3	23.0	207
garcimultiflorone E	human cervical carcinoma	HeLa-C3	14.3	207
garcimultiflorone F	human cervical carcinoma	HeLa-C3	14.9	207
isogarcimultiflorone F	human cervical carcinoma	HeLa-C3	12.4	207
garciniagifolone A	human cervical carcinoma	HeLa	25.3	208
garciniagifolone A	human hepatocellular carcinoma	HepG2	40.0	208
garciniagifolone A	human gastric adenocarcinoma	SGC-7901	9.7	208
garcinialiptone A	human lung carcinoma	A549	7.0	204
garcinialiptone A	human prostate carcinoma	DU145	6.8	204
garcinialiptone A	human nasopharyngeal carcinoma	KB	9.5	204
garcinialiptone A	human nasopharyngeal carcinoma	KB_{vin}	9.3	204
ent-garcinialiptone A	human lung carcinoma	A549	7.0	204
ent-garcinialiptone A	human prostate carcinoma	DU145	7.0	204
ent-garcinialiptone A	human cervical carcinoma	HeLa	inactive	209
ent-garcinialiptone A	human nasopharyngeal carcinoma	KB	7.3	204

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²⁰⁴ Zhang, L.-J.; Chiou, C.-T.; Cheng, J.-J.; Huang, H.-C.; Kuo, L.-M. Y.; Liao, C.-C.; Bastow, K. F.; Lee, K.-H.; Kuo, Y.-H. *J. Nat. Prod.* **2010**, *73*, 557-562.

 \overline{a}

²⁰⁵ Xu, G.; Kan, W. L. T.; Zhou, Y.; Song, J.-Z.; Han, Q.-B.; Qiao, C.-F.; Cho, C.-H.; Rudd, J. A.; Lin, G.; Xu, H.- X. *J. Nat. Prod.* **2010**, *73*, 104-108.

²⁰⁶ Gao, X.-M.; Yu, T.; Lai, F. S. F.; Zhou, Y.; Liu, X.; Qiao, C.-F.; Song, J.-Z.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X.; *Bioorg. Med. Chem.* **2010**, *18*, 4957-4964.

²⁰⁷ Liu, X.; Yu, T.; Gao, X.-M.; Zhou, Y.; Qiao, C.-F.; Peng, Y.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X. *J. Nat. Prod.* **2010**, *73*, 1355-1359.

²⁰⁸ Shan, W.-G.; Lin, T.-S.; Yu, H.-N.; Chen, Y.; Zhan, Z.-J. *Helv. Chim. Acta* **2012**, *95*, 1442-1448.

²⁰⁹ Trinh, B. T. D.; Nguyen, N.-T. T.; Ngo, N. T. N.; Tran, P. T.; Nguyen, L.-T. T.; Nguyen, L.-H. D. *Phytochem. Lett.* **2013**, *6*, 224-227.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
ent-garcinialiptone A	human nasopharyngeal carcinoma	$KB_{\rm vin}$	8.8	204
ent-garcinialiptone A	human breast carcinoma	MCF-7	inactive	209
garcinialiptone C	human nasopharyngeal carcinoma	$KB_{\rm vin}$	7.9	204
garcinialiptone D	human lung carcinoma	A549	7.3	204
garcinialiptone D	human prostate carcinoma	DU145	5.5	204
garcinialiptone D	human nasopharyngeal carcinoma	KB	6.5	204
garcinialiptone D	human nasopharyngeal carcinoma	KB _{vin}	7.6	204
garciniaphenone	human renal cell adenocarcinoma	786-0	5.1	116
garciniaphenone	human squamous cell carcinoma	CRL-1623	15.3	116
garciniaphenone	human squamous cell carcinoma	CRL-1624	20.1	116
garciniaphenone	human breast carcinoma	$MCF-7$	10.3	116
garciniaphenone	human breast carcinoma	NCI-ADR	12.7	116
garciniaphenone	human large cell lung carcinoma	NCI-H460	8.3	116
garciniaphenone	human ovarian carcinoma	OVCAR ₀₃	6.4	116
garciniaphenone	human prostate carcinoma	$PC-3$	6.6	116
garciniaphenone	human malignant melanoma	UACC-62	6.1	116
garcinielliptone FB	human hepatocellular carcinoma	Hep3B	10.2	210
garcinielliptone FB	human colorectal adenocarcinoma	HT-29	18.1	210
garcinielliptone FB	human breast carcinoma	MCF-7	11.0	210
garcinielliptone FC	human larynx carcinoma	$HEp-2$	5.0	127
garcinielliptone FC	human promyelocytic leukemia	$HL-60$	2.3	127
garcinielliptone FC	human pulmonary carcinoma	NCI-H292	5.0	127
garcinielliptone FC	human bladder carcinoma	NTUB1	13.5	138
garcinielliptone I	human colorectal carcinoma	HCT-116	inactive	200
garcinielliptone I	human cervical carcinoma	HeLa	inactive	200
garcinielliptone I	human promyelocytic leukemia	N _{B4}	inactive	200
garcinielliptone I	human large cell lung carcinoma	NCI-H460	inactive	200
garcinol	human pancreatic adenocarcinoma	BXPC-3		211
garcinol	human colorectal carcinoma	HCT-116	$10.5 - 12.0$	200, 205, 212
garcinol	human cervical carcinoma	HeLa	9.8-30.4	200,208
garcinol	human hepatocellular carcinoma	HepG2	inactive	208,213
garcinol	human promyelocytic leukemia	$HL-60$	$9.4 - 17$	150.152.214
garcinol	human colorectal adenocarcinoma	HT-29	$11.4 - 12.0$	212
garcinol	human breast carcinoma	MCF-7	\overline{a}	215
garcinol	human breast adenocarcinoma	MDA-MB-231		215
garcinol	murine liver hepatoma	MH1C1	< 10	213
garcinol	human promyelocytic leukemia	N _{B4}	9.2	200
garcinol	human large cell lung carcinoma	NCI-H460	8.5	200

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

214 Pan, M.-H.; Chang, W.-L.; Lin-Shaiu, S.-Y.; Ho, C.-T.; Lin, J.-K. *J. Agric. Food Chem.* **2001**, *49*, 1464-1474.

215 Ahmad, A.; Wang, Z.; Ali, R.; Maitah, M. Y.; Kong, D.; Banerjee, S.; Padhye, S.; Sarkar, F. H. *J. Cell. Biochem.* **2010**, *109*, 1134-1141.

²¹⁰ Wu, C.-C.; Weng, J.-R.; Won, S.-J.; Lin, C.-N. *J. Nat. Prod.* **2005**, *68*, 1125-1127.

²¹¹ Parasramka, M. A.; Gupta, S. V. *Nutr. Cancer* **2011**, *63*, 456-465.

²¹² Hong, J.; Kwon, S. J.; Sang, S.; Ju, J.; Zhou, J.-n.; Ho, C.-T.; Huang, M.-T.; Yang, C. S. *Free Radical Bio. Med.* **2007**, *42*, 1211-1221.

²¹³ Ohnishi, H.; Asamoto, M.; Tujimura, K.; Hokaiwado, N.; Takahashi, S.; Ogawa, K.; Kuribayashi, M.; Ogiso, T.; Okuyama, H.; Shirai, T. *Cancer Sci.* **2004**, *95*, 936-942.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
garcinol	murine leukemia	P388	8.1	216
garcinol	human gastric adenocarcinoma	SGC-7901	28.6	208
72	human promyelocytic leukemia	$HL-60$	inactive	152
guttiferone A	human ovarian carcinoma	A2780	$8.3 - 13.3$	217,218
guttiferone A	human lung carcinoma	A549	3.3	143
guttiferone A	human prostate carcinoma	DU145	6.4	143
guttiferone A	human colorectal carcinoma	HCT-116	$5.0 - 5.9$	200.219
guttiferone A	human cervical carcinoma	HeLa	11.6	200
guttiferone A	human colorectal adenocarcinoma	HT-29	5	219
guttiferone A	human nasopharyngeal carcinoma	KB	7.4	143
guttiferone A	human nasopharyngeal carcinoma	$KB_{\rm vin}$	6.9	143
guttiferone A	human promyelocytic leukemia	N _{B4}	5.7	200
guttiferone A	human large cell lung carcinoma	NCI-H460	4.2	200
guttiferone A	human colon adenocarcinoma	SW480	21	219
guttiferone B	human colorectal carcinoma	HCT-116	> 5	205
guttiferone E	human colorectal carcinoma	HCT-116	$6.4 - 9$	200,220
guttiferone E	human cervical carcinoma	HeLa	11.3	200
guttiferone E	human cervical carcinoma	HeLa-C3	inactive	206
guttiferone E	human colorectal adenocarcinoma	HT-29	14	220
guttiferone E	human promyelocytic leukemia	NB ₄	10.4	200
guttiferone E	human large cell lung carcinoma	NCI-H460	5.4	200
guttiferone E	human colon adenocarcinoma	SW480	$7.5 - 17$	135,220
guttiferone F	human cervical carcinoma	HeLa	20.0	221
guttiferone F	human breast carcinoma	MCF-7	18.4	$221\,$
guttiferone F	human large cell lung carcinoma	NCI-H460	19.7	221
guttiferone G	human ovarian carcinoma	A2780	10.1	217
guttiferone G	human cervical carcinoma	HeLa	17.1	209
guttiferone G	human cervical carcinoma	HeLa-C3	inactive	206
guttiferone G	human nasopharyngeal carcinoma	KB	7.0	222
guttiferone G	human breast carcinoma	MCF-7	17.8	209
guttiferone H	human colorectal carcinoma	HCT-116	9	220
guttiferone H	human colorectal adenocarcinoma	HT-29	13	220
guttiferone H	human colon adenocarcinoma	SW480	$12 - 16$	135,220
guttiferone I	human ovarian carcinoma	A2780	7.8	218

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²¹⁶ Hartari, S.; Wang, H.-B.; Kardono, L. B. S.; Kosela, S.; Qin, G.-W. *Chin. J. Nat. Med.* **2007**, *5*, 272-276.

l

²¹⁷ Williams, R. B.; Hoch, J.; Glass, T. E.; Evans, R.; Miller, J. S.; Wisse, J. H.; Kingston, D. G. I. *Planta Med.* **2003**, *69*, 864-866.

²¹⁸ Pan, E.; Cao, S.; Brodie, P. J.; Miller, J. S.; Rakotodrajaona, R.; Ratovoson, F.; Birkinshaw, C.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. *Nat. Prod. Commun.* **2010**, *5*, 751-754.

²¹⁹ Yang, H.; Figueroa, M.; To, S.; Baggett, S.; Jiang, B.; Basile, M. J.; Weinstein, I. B.; Kennelly, E. J. *J. Agric. Food Chem.* **2010**, *58*, 4749-4755.

220 Protiva, P.; Hopkins, M. E.; Baggett, S.; Yang, H.; Lipkin, M.; Holt, P. R.; Kennelly, E. J.; Bernard, W. I. *Int. J. Cancer* **2008**, *123*, 687-694.

²²¹ Nguyen, L.-T. T.; Nguyen, H. T.; Barbič, M.; Brunner, G.; Heilmann, J.; Pham, H. D.; Nguyen, D. M.; Nguyen, L.-H. D. *Tetrahedron Lett.* **2012**, *53*, 4487-4493.

²²² Merza, J.; Mallet, S.; Litaudon, M.; Dumontet, V.; Séraphin, D.; Richomme, P. *Planta Med.* **2006**, *72*, 87-89.

			References
human cervical carcinoma	HeLa	28.5	221.223
human breast carcinoma	MCF-7	31.2	221.223
human large cell lung carcinoma	NCI-H460	23.9	221,223
human nasopharyngeal carcinoma	KB	8.5	222
human ovarian carcinoma	A2780	6.0	224
human lung carcinoma	A549	4.4	143
human prostate carcinoma	DU145	4.6	143
human colorectal carcinoma	HCT-116	10	205,219
human colorectal adenocarcinoma	HT-29	5.4-25	219,225
		5.2	143
human nasopharyngeal carcinoma	KB _{vin}	5.3	143
human colon adenocarcinoma	SW480	23	219
human cervical carcinoma			206
human ovarian carcinoma	A2780		224
human cervical carcinoma		6.0	223
human breast carcinoma	MCF-7		223
	NCI-H460	8.0	223
human cervical carcinoma	HeLa	inactive	223
			223
			223
human cervical carcinoma	HeLa	inactive	223
			223
			223
			209
human breast carcinoma		14.3	209
			226
			227
			227
			227
			226
			226
			227
			226
			227
			227
			226
			227
			227
			227
			227
	Cancer cell type human nasopharyngeal carcinoma human large cell lung carcinoma human breast carcinoma human large cell lung carcinoma human breast carcinoma human large cell lung carcinoma human cervical carcinoma human stage II bladder carcinoma human endometrioid carcinoma human endometrioid carcinoma human Hodgkin's lymphoma human promyelocytic leukemia human promyelocytic leukemia human myelogenous leukemia human acute myelogenous leukemia human chronic myeloid leukemia human breast carcinoma human breast adenocarcinoma human neuroblastoma human primary osteosarcoma human T cell leukemia human B cell malignant myeloma	Cell line \mathbf{KB} HeLa-C3 HeLa MCF-7 NCI-H460 MCF-7 NCI-H460 HeLa MCF-7 5637 DOHH-2 EJ HD-MY-Z $HL-60$ $HL-60_{\text{Dox}}$ K562 $KG-1$ LAMA-84 MCF-7 MDA-MB-231 Neuro-2a Saos-2 SKW-3 U266	$IC_{50}(\mu M)$ inactive 4.8 5.5 inactive inactive inactive inactive 19.9 1.2 0.14 8.8 5 2.2 1.8 15.7 12.7 12.7 0.79 0.86 9.4 1.2 3 0.49

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²²³ Nguyen, H. D.; Trinh, B. T. D.; Nguyen, L.-H. D. *Phytochem. Lett.* **2011**, *4*, 129-133.

²²⁴ Cao, S.; Brodie, P. J.; Miller, J. S.; Ratovoson, F.; Birkinshaw, C.; Randrianasolo, S.; Rakotobe, E.; Rasamison, V. E.; Kingston, D. G. I. *J. Nat. Prod.* **2007**, *70*, 686-688.

²²⁵ Kan, W. L. T.; Yin, C.; Xu, H. X.; Xu, G.; To, K. K. W.; Cho, C. H.; Rudd, J. A.; Lin, G. *Int. J. Cancer* **2013**, *132*, 707-716.

²²⁶ Biljali, S.; Momekov, G.; Nedialkov, P.; Zheleva-Dimitrova, D.; Kitanov, G.; Momekova, D.; Stoyanov, N.; Guenova, M.; Michova, A.; Karaivanova, M. *J. Pharm. Technol. Drug Res.* **2012**, *1*, 6.

²²⁷ Momekov, G.; Ferdinandov, D.; Zheleva-Dimitrova, D.; Nedialkov, P.; Girreser, U.; Kitanov, G. *Phytomedicine* **2008**, *15*, 1010-1015.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
hyperevolutin A	human colon carcinoma	$Co-115$	1.5	133
hyperevolutin B	human colon carcinoma	$Co-115$	1.5	133
hyperfoliatin	human lung carcinoma	A549	inactive	202
hyperfoliatin	human breast carcinoma	MCF-7	35.7	202
hyperforin	human melanoma	1F6	8.4	228
hyperforin	human squamous carcinoma	A431	8.4	228
hyperforin	murine pancreatic tumor	ARIP	4.1	228
hyperforin	murine prostatic carcinoma	$AT-2.1$	3.5	228
hyperforin	murine fibrosarcoma	BDX2	74.5	228
hyperforin	human malignant melanoma	HT144	11.2	228
hyperforin	human T cell leukemia	Jurkat	12.1	228
hyperforin	human myelogenous leukemia	K562	14.9	229
hyperforin	human glioblastoma	LN-229	19.2	229
hyperforin	murine prostatic carcinoma	MAT-Lu	16.8	228
hyperforin	human breast carcinoma	MCF-7	2.8	228
hyperforin	human breast adenocarcinoma	MDA-MB-468	3.7	228
hyperforin	murine breast carcinoma	MT-450	2.8	228
hyperforin	human melanoma	MV3	4.7	228
hyperforin	murine bladder carcinoma	NBT-II	inactive	230
hyperforin	murine glioblastoma	RG2	4.7	228
hyperforin	human melanoma	SB1	8.4	228
hyperforin	human melanoma	SB ₃	8.4	228
hyperforin	human ovarian adenocarcinoma	$SK-OV-3$	5.6	228
hyperforin	human bladder carcinoma	T ₂₄	inactive	230
hyperforin	human histiocytic leukemia	U937	15.8	229
hyperforin HNCy ₂	human malignant melanoma	A375	12.4	231
hyperforin HNCy ₂	human lung carcinoma	A549	3.7	231
hyperforin HNCy ₂	murine melanoma	B16-LU8	$5 - 8$	232
hyperforin HNCy ₂	murine colon adenocarcinoma	$C-26$	$5 - 8$	232
hyperforin HNCy ₂	human cervical carcinoma	HeLa	3.1	231
hyperforin HNCy ₂	human hepatocellular carcinoma	HepG2	2.7	231
hyperforin·HNCy ₂	human fibrosarcoma	HT1080	$5 - 8$	232
hyperforin·HNCy ₂	human myelogenous leukemia	K562	$8.6 - 9.9b$	231,233
hyperforin·HNCy ₂	human myelogenous leukemia	K562	3.2^c	233
hyperforin·HNCy ₂	human myelogenous leukemia	$K562_{ADR}$	14.3	231
hyperforin HNCy ₂	human breast carcinoma	MCF-7	2.8	231

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

 \overline{a}

229 Hostanska, K.; Reichling, J.; Bommer, S.; Weber, M.; Saller, R. *Eur. J. Pharm. Biopharm.* **2003**, *56*, 121-132.

230 Skalkos, D.; Stavropoulos, N.; Tsimaris, I.; Gioti, E.; Stalikas, C. D.; Nseyo, U. O.; Ioachim, E.; Agnantis, N. J. *Planta Med.* **2005**, *71*, 1030-1035.

231 Sun, F.; Liu, J.-Y.; He, F.; Liu, Z.; Wang, R.; Wang, D.-M.; Wang, Y.-F.; Yang, D.-P. *J. Asian Nat. Prod. Res.* **2011**, *13*, 688-699.

232 Donà, M.; Dell'Aica, I.; Pezzato, E.; Sartor, L.; Calabrese, F.; Della Barbera, M.; Donella-Deana, A.; Appendino, G.; Borsarini, A.; Caniato, R.; Garbisa, S. *Cancer Res.* **2004**, *64*, 6225-6232.

233 Liu, J.-Y.; Liu, Z.; Wang, D.-M.; Li, M.-M.; Wang, S.-X.; Wang, R.; Chen, J.-P.; Wang, Y.-F.; Yang, D.-P. *Chem.-Biol. Interact.* **2011**, *190*, 91-101.

²²⁸ Schempp, C. M.; Kirkin, V.; Simon-Haarhaus, B.; Kersten, A.; Kiss, J.; Termeer, C. C.; Gilb, B.; Kaufmann, T.; Borner, C.; Sleeman, J. P.; Simon, J. C. *Oncogene* **2002**, *21*, 1242-1250.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
hyperforin·HNCy ₂	human breast adenocarcinoma	MDA-MB-231	5	234
hyperforin HNCy ₂	human neuroblastoma	SK-N-BE	inactive	232
hyperforin·HNCy ₂	murine prostate adenocarcinoma	TRAMP-C1	inactive	232
hyperforin O-acetate	human malignant melanoma	A375	50.6	231
hyperforin O-acetate	human lung carcinoma	A549	41.4	231
hyperforin O-acetate	human cervical carcinoma	HeLa	17.3	231
hyperforin O-acetate	human hepatocellular carcinoma	HepG2	58.9	231
hyperforin O-acetate	human myelogenous leukemia	K562	34.3	231
hyperforin O-acetate	human myelogenous leukemia	$K562_{ADR}$	41.6	231
hyperforin O-acetate	human breast carcinoma	MCF-7	21.7	231
octahydrohyperforin (66)	human breast adenocarcinoma	MDA-MB-231	9	234
octahydrohyperforin O-acetate	human malignant melanoma	A375	inactive	231
octahydrohyperforin O-acetate	human lung carcinoma	A549	inactive	231
octahydrohyperforin O-acetate	human cervical carcinoma	HeLa	inactive	231
octahydrohyperforin O-acetate	human hepatocellular carcinoma	HepG2	inactive	231
octahydrohyperforin O-acetate	human myelogenous leukemia	K562	inactive	231
octahydrohyperforin O-acetate	human myelogenous leukemia	$K562_{ADR}$	inactive	231
octahydrohyperforin O-acetate	human breast carcinoma	MCF-7	inactive	231
tetrahydrohyperforin (76)	human breast adenocarcinoma	MDA-MB-231	\overline{c}	234
hyperibone A	human cervical carcinoma	HeLa	0.176	63
hyperibone B	human colorectal carcinoma	HCT-116	inactive	200
hyperibone B	human cervical carcinoma	HeLa	inactive	200
hyperibone B	human promyelocytic leukemia	NB4	inactive	200
hyperibone B	human large cell lung carcinoma	NCI-H460	inactive	200
hyperibone K	human lung carcinoma	A549	27.4	202
hyperibone K	human breast carcinoma	MCF-7	20.0	202
hyperibone L	human lung carcinoma	A549	20.5	202
hyperibone L	human breast carcinoma	MCF-7	33.4	202
hyperpapuanone	human nasopharyngeal carcinoma	KB	$7.7\,$	64
hypersampsone G	human lung carcinoma	A549	inactive	235
	human lung carcinoma	A549		
hypersampsone H	human colorectal carcinoma		inactive $6 - 8$	235 212
isogarcinol		HCT-116		
isogarcinol	human cervical carcinoma	HeLa-C3	inactive	206
isogarcinol	human promyelocytic leukemia	$HL-60$	$16 - 17$	152
isogarcinol	human colorectal adenocarcinoma	HT-29	$6-8$	212
30-epi-isogarcinol	human colorectal carcinoma	HCT-116	$\overline{5}$	205
30-epi-isogarcinol	human cervical carcinoma	HeLa-C3	inactive	206
30-epi-isogarcinol	human breast carcinoma	MCF-7	25.9	221
30-epi-isogarcinol	human large cell lung carcinoma	NCI-H460	22.6	221
isoxanthochymol	human lung carcinoma	A549	7.3	204
isoxanthochymol	human colon carcinoma	Colo-320-DM	4.9	236
isoxanthochymol	human prostate carcinoma	DU145	7.0	204
isoxanthochymol	human nasopharyngeal carcinoma	KB	7.5	204
isoxanthochymol	human nasopharyngeal carcinoma	KB _{vin}	8.6	204
isoxanthochymol	human breast carcinoma	MCF-7	2.9	236
isoxanthochymol	murine leukemia	P388	2.4	216
isoxanthochymol	human colon adenocarcinoma	SW480	16.6	135
isoxanthochymol	human liver carcinoma	WRL-68	15.5	236

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

l 234 Martínez-Poveda, B.; Verotta, L.; Bombardelli, E.; Quesada, A. R.; Medina, M. Á. *PLoS ONE* **2010**, *5*, e9558.

²³⁵ Zheng, Y. H.; Mu, Q.; Xiao, Z. Y.; Xu, Y.; Rahman, M. M.; Gibbons, S. *Chem. Lett.* **2009**, *38*, 440-441.

²³⁶ Kumar, S.; Chattopadhyay, S. K.; Darokar, M. P.; Garg, A.; Khanuja, S. P. S. *Planta Med.* **2007**, *73*, 1452-1456.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
nemorosone	human ovarian carcinoma	A2780	18.3	237
nemorosone	human ovarian carcinoma	$A2780_{CP}$	12.4	237
nemorosone	human ovarian carcinoma	$A2780_{\text{Dox}}$	13.4	237
nemorosone	human conjuctival melanoma	CRMM-1	25.3	238
nemorosone	human conjuctival melanoma	CRMM-2	12.9	238
nemorosone	human colorectal carcinoma	HCT-116	6.8	200
nemorosone	human colorectal adenocarcinoma	$HCT-8$	8.4	237
nemorosone	human colorectal adenocarcinoma	$HCT-8Ral$	8.8	237
nemorosone	human colorectal adenocarcinoma	$HCT-8SN-38$	8.1	237
nemorosone	human cervical carcinoma	HeLa	$3.3 - 5.2$	146,200,201
nemorosone	human larynx carcinoma	$HEp-2$	3.1	146
nemorosone	human colorectal adenocarcinoma	$HT-29$	10.4	237
nemorosone	human colorectal adenocarcinoma	$HT-29$ _{5-FU}	10.3	237
nemorosone	human colorectal adenocarcinoma	$HT-29_{SN-38}$	$7.0\,$	237
nemorosone	human T cell leukemia	Jurkat	92	237
nemorosone	human myelogenous leukemia	K562	8.4	237
nemorosone	human neuroblastoma	KELLY	5.2	239
nemorosone	human neuroblastoma	$LAN-1$	$4.1 - 16.3$	237,239
nemorosone	human neuroblastoma	$\mathrm{LAN}\text{-}\mathrm{1}_{\mathrm{5-FU}}$	$4.1 - 16.4$	237,239
nemorosone	human neuroblastoma	$LAN-1ADR$	$4.9 - 5.0$	237,239
nemorosone	human neuroblastoma	$LAN-1_{CP}$	$4.2 - 16.8$	237,239
nemorosone	human neuroblastoma	$LAN-1ETO$	18.3	237
nemorosone	human prostate adenocarcinoma	LNCaP	4.2	237
nemorosone	human prostate adenocarcinoma	$\ensuremath{\text{LNCaP}_{\text{ETO}}}$	3.6	237
nemorosone	human stomach carcinoma	M51	11.3	237
nemorosone	human stomach carcinoma	$M51_{CP}$	9.5	237
nemorosone	human breast carcinoma	MCF-7	$6.5 - 8.7$	201,237
nemorosone	human breast carcinoma	$MCF-7$ 5-FU	6.6	237
nemorosone	human breast carcinoma	$MCF-7_{Dox}$	8.5	237
nemorosone	human pancreas carcinoma	MIA PaCa-2	3.4	201
nemorosone	human promyelocytic leukemia	NB ₄	4.8	200
nemorosone	human stage III neuroblastoma	NB69	3.1	239
nemorosone	human large cell lung carcinoma	NCI-H460	$5.0 - 8.4$	200,237
nemorosone	human prostate carcinoma	$PC-3$	$4.0 - 7.2$	146,237
nemorosone	human neuroblastoma	SK-N-AS	6.3	239
nemorosone	human neuronal glioblastoma	U251	3.9	146
ent-nemorosone	human cervical carcinoma	HeLa	3.4	201
ent-nemorosone	human breast carcinoma	$MCF-7$	$\,8\,$	201
			3.5	
ent-nemorosone nemorosone O-methyl ether	human pancreas carcinoma human cervical carcinoma	MIA PaCa-2 HeLa	57.1	201 146
nemorosone O-methyl ether	human larynx carcinoma	HEp-2	94.5	146
nemorosone O-methyl ether	human prostate carcinoma	$PC-3$	85.1	146
nemorosone O-methyl ether	human neuronal glioblastoma	U251	32.9	146
nujiangefolin A	human malignant melanoma	A375	inactive	151
		A549		151
nujiangefolin A	human lung carcinoma		inactive	

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²³⁷ Díaz-Carballo, D.; Malak, S.; Bardenheuer, W.; Freistuehler, M.; Reusch, H. P. *Bioorg. Med. Chem.* **2008**, *16*, 9635-9643.

²³⁸ Westekemper, H.; Freistuehler, M.; Bornfeld, N.; Steuhl, K.-P.; Scheulen, M.; Hilger, R. A. *Graefes Arch. Clin. Exp. Ophthalmol.* **2013**, *251*, 279-284.

²³⁹ Díaz-Carballo, D.; Malak, S.; Bardenheuer, W.; Freistuehler, M.; Reusch, H. P. *J. Cell. Mol. Med.* **2008**, *12*, 2598-2608.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
nujiangefolin A	human gastric adenocarcinoma	\rm{AGs}	inactive	151
nujiangefolin A	human pancreatic adenocarcinoma	BXPC-3	inactive	151
nujiangefolin A	human colorectal carcinoma	HCT-116	$3.2 - 5.9$	212
nujiangefolin A	human hepatocellular carcinoma	HepG2	inactive	151
nujiangefolin A	human promyelocytic leukemia	$HL-60$	$8.4 - 17$	150,152
nujiangefolin A	human colorectal adenocarcinoma	HT-29	$3.2 - 5.9$	212
nujiangefolin A	human breast carcinoma	MCF-7	inactive	151
nujiangefolin A	human breast adenocarcinoma	MDA-MB-231	inactive	151
nujiangefolin A	human lung adenocarcinoma	NCI-H2126	inactive	151
nujiangefolin A	human pancreatic carcinoma	PANC-1	inactive	151
nujiangefolin A	human hepatocellular carcinoma	SMMC-7721	inactive	151
nujiangefolin A	human primary glioblastoma	U87	inactive	151
nujiangefolin B	human malignant melanoma	A375	inactive	151
nujiangefolin B	human lung carcinoma	A549	inactive	151
nujiangefolin B	human gastric adenocarcinoma	\rm{AGs}	inactive	151
nujiangefolin B	human pancreatic adenocarcinoma	BXPC-3	inactive	151
nujiangefolin B	human colorectal carcinoma	HCT-116	$3 - 7$	212
nujiangefolin B	human hepatocellular carcinoma	HepG2	inactive	151
nujiangefolin B	human promyelocytic leukemia	$HL-60$	$8 - 18$	150,152
nujiangefolin B	human colorectal adenocarcinoma	HT-29	$3 - 7$	212
nujiangefolin B	human breast carcinoma	MCF-7	inactive	151
nujiangefolin B	human breast adenocarcinoma	MDA-MB-231	inactive	151
nujiangefolin B	human lung adenocarcinoma	NCI-H2126	inactive	151
nujiangefolin B	human pancreatic carcinoma	PANC-1	inactive	151
nujiangefolin B	human hepatocellular carcinoma	SMMC-7721	inactive	151
nujiangefolin B	human primary glioblastoma	U87	inactive	151
nujiangefolin C	human malignant melanoma	A375	inactive	151
nujiangefolin C	human lung carcinoma	A549	inactive	151
nujiangefolin C	human gastric adenocarcinoma	AGs	inactive	151
nujiangefolin C	human pancreatic adenocarcinoma	BXPC-3	inactive	151
nujiangefolin C	human hepatocellular carcinoma	HepG2	inactive	151
nujiangefolin C	human breast carcinoma	MCF-7	inactive	151
nujiangefolin C	human breast adenocarcinoma	MDA-MB-231	inactive	151
nujiangefolin C	human lung adenocarcinoma	NCI-H2126	inactive	151
nujiangefolin C	human pancreatic carcinoma	PANC-1	inactive	151
nujiangefolin C	human hepatocellular carcinoma	SMMC-7721	inactive	151
nujiangefolin C	human primary glioblastoma	U87	inactive	151
oblongifolin B	human colorectal carcinoma	HCT-116	\lt 5	205
oblongifolin B	human cervical carcinoma	HeLa-C3	inactive	240
oblongifolin C	human colorectal carcinoma	HCT-116	7.3	205,241
oblongifolin C	human colorectal carcinoma	$HCT-116$ _{MDR}	9.8	241
oblongifolin C	human breast carcinoma	$MCF-7$	7.7	241
oblongifolin C	human breast carcinoma	$MCF-7HER2$	9.7	241
oblongifolin D	human colorectal carcinoma	HCT-116	\leq 5	205
oblongifolin D	human cervical carcinoma	HeLa-C3	inactive	240

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²⁴⁰ Xu, G.; Feng, C.; Zhou, Y.; Han, Q.-B.; Qiao, C.-F.; Huang, S.-X.; Chang, D. C.; Zhao, Q.-S.; Luo, K. Q.; Xu, H.-X. *J. Agric. Food Chem.* **2008**, *56*, 11144-11150.

²⁴¹ Feng, C.; Zhou, L.-Y.; Yu, T.; Xu, G.; Tain, H.-L.; Xu, J.-J.; Xu, H.-X.; Luo, K. Q. *Int. J. Cancer* **2012**, *131*, 1445-1454.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
ochrocarpinone A	human ovarian carcinoma	A2780	12.9	242
ochrocarpinone B	human ovarian carcinoma	A2780	14.3	242
ochrocarpinone C	human ovarian carcinoma	A2780	15.8	242
oxy-thorelione A	human breast carcinoma	MCF-7	17.3	221
oxy-thorelione A	human large cell lung carcinoma	NCI-H460	51.3	221
papuaforin A	human nasopharyngeal carcinoma	KB	18.2	64
papuaforin C	human nasopharyngeal carcinoma	ΚB	11.5	64
papuaforin D	human nasopharyngeal carcinoma	KB	13.7	64
papuaforin E	human nasopharyngeal carcinoma	\mathbf{KB}	11.3	64
paucinone A	human cervical carcinoma	HeLa	10	243
paucinone B	human cervical carcinoma	HeLa	8.2	243
paucinone C	human cervical carcinoma	HeLa	24.3	243
paucinone D	human cervical carcinoma	HeLa	5.8	243
plukenetione A	human ovarian carcinoma	A2780	25.8	237
plukenetione A	human ovarian carcinoma	$A2780_{CP}$	31.8	237
plukenetione A	human ovarian carcinoma	$A2780_{\text{Dox}}$	28.9	237
plukenetione A	human colorectal adenocarcinoma	$HCT-8$	25.8	237
plukenetione A	human colorectal adenocarcinoma	$HCT-8Ral$	24.2	237
plukenetione A	human colorectal adenocarcinoma	$\mathrm{HCT}\text{-}8_{\text{SN}\text{-}38}$	23.3	237
plukenetione A	human colorectal adenocarcinoma	HT-29	24.0	237
plukenetione A	human colorectal adenocarcinoma	$HT-29$ _{5-FU}	28.4	237
plukenetione A	human colorectal adenocarcinoma	$HT-29_{SN-38}$	26.6	237
plukenetione A	human T cell leukemia	Jurkat	10.5	237
plukenetione A	human prostate adenocarcinoma	LNCaP	4.0	237
plukenetione A	human prostate adenocarcinoma	LNCapETO	3.4	237
plukenetione A	human stomach carcinoma	M51	13.0	237
plukenetione A	human stomach carcinoma	$M51_{CP}$	15.2	237
plukenetione A	human breast carcinoma	MCF-7	32.5	237
plukenetione A	human breast carcinoma	$MCF-75-FU$	20.0	237
plukenetione A	human breast carcinoma	$MCF-7_{Dox}$	30.0	237
plukenetione A	human large cell lung carcinoma	NCI-H460	26.8	237
plukenetione D/E	human prostate carcinoma	DU145	7.3	244
plukenetione D/E	human prostate carcinoma	DU145 _{MDR}	$6.8\,$	244
plukenetione D/E	human prostate adenocarcinoma	LNCaP	4.1	244
plukenetione D/E	human prostate adenocarcinoma	LNCaP _{ETO}	4.8	244
plukenetione D/E	human prostate carcinoma	$PC-3$	5.0	244
plukenetione D/E	human prostate carcinoma	$PC-3ETO$	5.1	244
15,16-dihydro-16-hydroperoxy-plukentione F	human ovarian carcinoma	A2780	15.7	242
prolifenone A	human gastric adenocarcinoma	AGs	inactive	245
prolifenone A	human colorectal carcinoma	HCT-116	inactive	245
prolifenone A	human breast carcinoma	$MCF-7$	inactive	245
prolifenone A	human large cell lung carcinoma	NCI-H460	inactive	245
prolifenone A	human astrocytoma	SF-268	inactive	245

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²⁴² Chaturvedula, V. S. P.; Schilling, J. K.; Kingston, D. G. I. *J. Nat. Prod.* **2002**, *65*, 965-972.

²⁴³ Gao, X.-M.; Yu, T.; Lai, F. S. F.; Pu, J.-X.; Qiao, C.-F.; Zhou, Y.; Liu, X.; Song, J.-Z.; Luo, K. Q.; Xu, H.-X. *Tetrahedron Lett.* **2010**, *51*, 2442-2446.

²⁴⁴ Díaz-Carballo, D.; Gustmann, S.; Ackikelli, A. H.; Bardenheuer, W.; Buehler, H.; Jastrow, H.; Ergun, S.; Strumberg, D. *Phytomedicine* **2012**, *19*, 1298-1306.

²⁴⁵ Henry, G. E.; Raithore, S.; Zhang, Y.; Jayaprakasam, B.; Nair, M. G.; Heber, D.; Seeram, N. P. *J. Nat. Prod.* **2006**, *69*, 1645-1648.

PPAP	Cancer cell type	Cell line	$IC_{50}(\mu M)$	References
prolifenone B	human gastric adenocarcinoma	AGs	inactive	245
prolifenone B	human colorectal carcinoma	HCT-116	inactive	245
prolifenone B	human breast carcinoma	MCF-7	inactive	245
prolifenone B	human large cell lung carcinoma	NCI-H460	inactive	245
prolifenone B	human astrocytoma	SF-268	inactive	245
propolone A	human colorectal carcinoma	HCT-116	4.4	200
propolone A	human cervical carcinoma	HeLa	10.8	200
propolone A	human promyelocytic leukemia	NB4	6.8	200
propolone A	human large cell lung carcinoma	NCI-H460	6.3	200
propolone B	human colorectal carcinoma	HCT-116	16.4	200
propolone B	human cervical carcinoma	HeLa	inactive	200
propolone B	human promyelocytic leukemia	N _{B4}	inactive	200
propolone B	human large cell lung carcinoma	NCI-H460	23	200
propolone C	human colorectal carcinoma	HCT-116	16.3	200
propolone C	human cervical carcinoma	HeLa	inactive	200
propolone C	human promyelocytic leukemia	NB4	inactive	200
propolone C	human large cell lung carcinoma	NCI-H460	inactive	200
propolone D	human colorectal carcinoma	HCT-116	inactive	200
propolone D	human cervical carcinoma	HeLa	inactive	200
propolone D	human promyelocytic leukemia	NB4	inactive	200
propolone D	human large cell lung carcinoma	NCI-H460	inactive	200
propolone D peroxide	human colorectal carcinoma	HCT-116	inactive	200
propolone D peroxide	human cervical carcinoma	HeLa	inactive	200
propolone D peroxide	human promyelocytic leukemia	N _{B4}	inactive	200
propolone D peroxide	human large cell lung carcinoma	NCI-H460	inactive	200
sampsonione A	murine leukemia	P388	22.2	246
sampsonione I	murine leukemia	P388	11.8	247
sampsonione J	murine leukemia	P388	inactive	247
semsinone A	human lung carcinoma	A549	12.5	143
semsinone A	human prostate carcinoma	DU145	16.4	143
semsinone A	human nasopharyngeal carcinoma	\mathbf{KB}	5.9	143
semsinone A	human nasopharyngeal carcinoma	KB _{vin}	13.9	143
thorelione A	human cervical carcinoma	HeLa	15.4	221
thorelione A	human breast carcinoma	MCF-7	12.3	221
thorelione A	human large cell lung carcinoma	NCI-H460	17.6	221
uralodin B	human hepatocellular carcinoma	HepG2	171.0	248
uralodin B	human promyelocytic leukemia	$HL-60$	21.8	248
uralodin B	human myelogenous leukemia	K562	171	248
uralodin B	human gastric adenocarcinoma	SGC-7901	63.7	248
uralodin C	human hepatocellular carcinoma	HepG2	28.5	248
uralodin C	human promyelocytic leukemia	$HL-60$	14.3	248
uralodin C	human myelogenous leukemia	K562	32.1	248
uralodin C	human gastric adenocarcinoma	SGC-7901	26.1	248

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

²⁴⁶ Hu, L.-H.; Sim, K.-Y. *Tetrahedron Lett.* **1998**, *39*, 7999-8002.

²⁴⁷ Hu, L. H.; Sim, K. Y. *Org. Lett.* **1999**, *1*, 879-882.

²⁴⁸ Chen, X.-Q.; Li, Y.; Cheng, X.; Wang, K.; He, J.; Pan, Z.-H.; Li, M.-M.; Peng, L.-Y.; Xu, G.; Zhao, Q.-S. *Chem. Biodivers.* **2010**, *7*, 196-204.

Table 1.13 (*continued*)**.** Evaluation of PPAPs against cancer cell proliferation.

PPAP	Cancer cell type	Cell line	IC_{50} (μ M)	References
xanthochymol	human lung carcinoma	A 549		204
xanthochymol	human colon carcınoma	Colo-320-DM	0.62	236
xanthochymol	human prostate carcinoma	DH 145	66	204
xanthochymol	human colorectal carcinoma	HCT-116	10	220
xanthochymol	human colorectal adenocarcinoma	HT-29		220
xanthochymol	human nasopharyngeal carcinoma	ΚB		204
xanthochymol	human nasopharvngeal carcinoma	$KB_{\rm vin}$		204
xanthochymol	human breast carcinoma	MCF-7	ገ 475	236
xanthochymol	human colon adenocarcinoma	SW480	8 3-17	
xanthochymol	human liver carcinoma	WRL-68		236
octahydroxanthochymol (77)	human nasopharyngeal carcinoma	KВ	20	249

 a^a Antiproliferative activity was observed, but no IC₅₀ value was reported.

 b^b IC₅₀ value after 48 h of incubation with the compound.

 c^c IC₅₀ value after 72 h of incubation with the compound.

l

Figure 1.12. Semisynthetic PPAP analogs tetrahydrohyperforin (**76**) and octahydroxanthochymol (**77**).

Overall, the presence of a relatively acidic hydroxyl group (either an enolic or phenolic –OH) is imperative for antiproliferative activity. A common feature of inactive PPAPs found in Table 1.13 is the presence of a tetrahydrofuran ring encompassing the C4 (or C2) enolic oxygen atom, such as garcinielliptone I, guttiferone R, hyperibone B, and propolone D. These PPAPs lack any phenolic hydroxyl functionality, as well. Interestingly, while hyperforin *O*-acetate maintains moderate activity across a variety of cell lines, octahydrohyperforin *O*-acetate is inactive.²³¹ A decrease in the activity of nemorosone as its *O*-methyl ether also demonstrates the importance of this free acidic hydroxyl group to antiproliferative activity.146 In addition to the PPAPs listed in Table 1.13, the tin complex of 7-*epi*-

²⁴⁹ Roux, D.; Hadi, H. A.; Thoret, S.; Guénard, D.; Thoison, O.; Païs, M.; Sévenet, T. *J. Nat. Prod.* **2000**, *63*, 1070- 1076.

clusianone [SnClPh₃(7-epi-clusianone)], has been evaluated against HN-5 cells, however with inconclusive results. 250

In some instances, the underlying mechanisms by which PPAPs affect cancer cells have been explored. Several studies have provided evidence that hyperforin influences cancer survival and proliferation through a variety of pathways.²⁵¹ An early study by Schempp and coworkers with MT-450 cells established that hyperforin induces apoptosis through caspase activation.²²⁸ The addition of the nonspecific caspase inhibitor Z-VAD-FMK prevented hyperforin-induced apoptosis. Aside from caspase activation, hyperforin also caused a loss of the mitochondrial transmembrane potential. Given that this latter effect occurred in the presence of Z-VAD-FMK and that hyperforin treatment induced cytochrome *c* release from isolated mitochondria, the authors concluded that hyperforin's ability to increase mitochondrial membrane permeability caused caspase activation and ultimately cell death through apoptosis. Similar results were found in a later study using K562 cells treated with hyperforin \cdot HNCy₂.²³³

In leukemia cells, hyperforin upregulates the pro-apoptotic regulator Noxa in addition to caspase mediated pathways. In cells taken from CLL patients, Noxa upregulation was observed upon treatment with hyperforin, leading to apoptosis.²⁵² siRNA-mediated Noxa silencing partially reduced the effects of hyperforin in these cells. Studies involving various AML cell lines also demonstrated Noxa-induced apoptosis.253 In U937 cells, Noxa upregulation was accompanied with downregulation of anti-apoptotic Bcl-2, an increase in mitochondrial permeability, and inhibition of the kinase activity of the survival factor PKB.

²⁵⁰ Vieira, F. T.; Maia, J. R. da S.; Vilela, M. J.; Ardisson, J. D.; dos Santos, M. H.; de Oliveira, T. T.; Nagem, T. J. *Main Group Met. Chem.* **2009**, *32*, 235-245.

²⁵¹ For reviews on hyperforin cancer biology, see: (a) Quiney, C.; Billard, C.; Salanoubat, C.; Fourneron, J. D.; Kolb, J. P. *Leukemia* **2006**, *20*, 1519-1525. (b) Billard, C.; Merhi, F.; Bauvois, B. *Curr. Cancer Drug Tar.* **2013**, *13*, 1-10.

^{252 (}a) Zaher, M.; Akrout, I.; Mirshahi, M.; Kolb, J.-P.; Billard, C. *Leukemia* **2009**, *23*, 594-596. (b) Zaher, M.; Tang, R.; Bombarda, I.; Merhi, F.; Bauvois, B.; Billard, C. *Int. J. Oncol.* **2012**, *40*, 269-276.

²⁵³ Merhi, F.; Tang, R.; Piedfer, M.; Mathieu, J.; Bombarda, I.; Zaher, M.; Kolb, J.-P.; Billard, C.; Bauvois, B. *PLoS ONE* **2011**, *6*, e25963.

In addition to acting as a pro-apoptotic, hyperforin also acts as an anti-angiogenic agent and an inhibitor of cancer metastasis. In an *in vitro* assay involving BAE cells, treatment with 1-10 µM hyperforin strongly inhibited proliferation.²⁵⁴ Zymographic analysis revealed that hyperforin significantly inhibited urokinase and MMP-2 production. Similar results were observed in a later study involving a panel of murine and human cancer cell lines, ²³² as well as HDMECs and *in vivo* with rats injected with MT-450 cells.²⁵⁵ In cultured B-CLL cells taken from patients, hyperforin inhibited the secretion of MMP-9, with IC₅₀ values below 10 μ M, and inhibited the formation of microtubules of human bone marrow endothelial cells cultured on Matrigel.²⁵⁶ Along with decreased secretion of urokinase, MMP-2, and MMP-9, hyperforin·HNCy₂ inhibited elastase noncompetitively (IC₅₀ = 3 μ M). In mouse models involving both B16-LU8 and C-26, sub-cytotoxic administration of hyperform $HNCv₂$ significantly reduced tumor metastasis and infiltration. Capillary-like structure development of HUVECs was also inhibited, and hyperforin treatment prevented the proliferation of the highly angiogenic Kaposi's sarcoma cell line.²⁵⁷ In the latter instance, significant reduction of vascularization and tumor size was observed compared to control. In contrast to these results, sub-micromolar concentrations of hyperforin actually *increased* VEGF expression in DAOY cells.²⁵⁸ No effect was observed in U87 cells, which overexpresses VEGF.

Due to the instability of pure hyperforin, several semisynthetic analogs have been prepared and their antiproliferative properties have been studied. While alkylation of the C4 enolic oxygen atom imparts stability, this may worsen the already marginal water solubility of hyperforin. To address these issues, the semisynthetic derivative aristoforin (**78**) was synthesized in two steps from hyperforin \overline{a}

²⁵⁴ Martínez-Poveda, B.; Quesada, A. R.; Medina, M. Á. *Int. J. Cancer* **2005**, *117*, 775-780.

²⁵⁵ Schempp, C. M.; Kiss, J.; Kirkin, V.; Averbeck, M.; Simon-Haarhaus, B.; Kremer, B.; Termeer, C. C.; Sleeman, J.; Simon, J. C. *Planta Med.* **2005**, *71*, 999-1004.

²⁵⁶ Quiney, C.; Billard, C.; Mirshahi, P.; Fourneron, J.-D.; Kolb, J.-P. *Leukemia* **2006**, *20*, 583-589.

²⁵⁷ Lorusso, G.; Vannini, N.; Sogno, I.; Generoso, L.; Garbisa, S.; Noonan, D. M.; Albini, A. *Eur. J. Cancer* **2009**, *45*, 1474-1484.

²⁵⁸ Tassone, E.; Maran, C.; Masola, V.; Bradaschia, A.; Garbisa, S.; Onisto, M. *Pharmacol. Res.* **2011**, *63*, 37-43.

(Scheme 1.12).²⁵⁹ Not only was aristoforin more stable and more water-soluble than hyperforin, it also possessed very similar antiproliferative and pro-apoptotic properties as the parent natural product in MT-450 tumor assays. A loss of activity was observed with octahydroaristoforin, the hydrogenolysis product of aristoforin. Both hyperforin and aristoforin were similarly active at suppressing tumor-induced lymphangiogenesis *in vivo* at concentrations below 10 μ M.²⁶⁰ Above 10 μ M, both compounds induced apoptosis in lymphatic endothelial cells through increased mitochondrial membrane permeability and induction of caspase 9.

Scheme 1.12. Synthesis of aristoforin from hyperforin.*^a* ^a Conditions: (a) BrCH₂CO₂Et, K₂CO₃, acetone; (b) NaOH, H₂O, MeOH, 0 °C to rt, 37% (2 steps).

A variety of oxidized and reduced hyperforin derivatives have also been evaluated, and some of the results are shown in Table 1.13. Both octahydrohyperforin (**66**) tetrahydrohyperforin (**76**) were found to be similarly effective towards MDA-MB-231 cells.²³⁴ Tetrahydrohyperforin displayed antiangiogenic properties comparable to hyperforin·HNCy₂ in a BAE cell growth assay and the Matrigel tubule-like structure formation assay. Several other semisynthetic derivatives, including furohyperforin, oxyhyperforin, **79**, **80**, and **81** (Figure 1.13), were also evaluated but were ineffective at inhibiting angiogenesis. This illustrates the importance of the enolic C4 oxygen atom for anti-angiogenic activity.

²⁵⁹ Gartner, M.; Müller, T.; Simon, J. C.; Giannis, A.; Sleeman, J. P. *ChemBioChem* **2005**, *6*, 171-177.

²⁶⁰ Rothley, M.; Schmid, A.; Thiele, W.; Schacht, V.; Plaumann, D.; Gartner, M.; Yektaoglu, A.; Bruyère, F.; Noël, A.; Giannis, A.; Sleeman, J. P. *Int. J. Cancer* **2009**, *125*, 34-42.

As mentioned previously, a significant loss of antiproliferative activity was observed with hyperforin *O*acetate and octahydrohyperforin O -acetate across a variety of cancer cell lines.²³¹

Figure 1.13. Semisynthetic hyperforin derivatives lacking C4 functionality.

Garcinol is another PPAP that has undergone rather extensive mechanistic studies, and it has been found to promote apoptosis and inhibit cancer proliferation, angiogenesis, and metastasis in a variety of ways.²⁶¹ Similar to hyperforin, garcinol activates apoptosis in certain cancer cell lines by increasing mitochondrial membrane permeability. This loss of membrane potential was observed in three different leukemia cell lines and led to activation of caspase 3.²⁶² In this study, similar activity was observed with isogarcinol but not xanthochymol. The addition of the caspase 3 inhibitor Z-DEVD-FMK prevented garcinol-induced apoptotic DNA fragmentation.²¹⁴ Later studies involving pancreatic²¹¹ and breast²¹⁵ cancer cell lines found that garcinol suppressed NF-κB. In HT-29 cells, 10 µM garcinol induced apoptosis and prevented migration by inhibiting the phosphorylation of FAK as well as preventing the activation of the MAPK and PI3K/Akt signaling pathways.²⁶³ Downregulation of STAT-3 was observed

²⁶¹ For a review of the chemotherapeutic properties of garcinol, see: Saadat, N.; Gupta, S. V. *J. Oncol.* **2012**, 647206.

²⁶² Matsumoto, K.; Akao, Y.; Kobayashi, E.; Ito, T.; Ohguchi, K.; Tanaka, T.; Iinuma, M.; Nozawa, Y. *Biol. Pharm. Bull.* **2003**, *26*, 569-571.

²⁶³ Liao, C.-H.; Sang, S.; Ho, C.-T.; Lin, J.-K. *J. Cell. Biochem.* **2005**, *96*, 155-169.

in a variety of cancer cell lines and in an MDA-MD-231 mouse xenograft model.²⁶⁴ In another study involving the MDA-MD-231 and the BT-549 breast carcinoma cell lines, garcinol treatment reversed the epithelial-to-mesenchymal transition and increased phosphorylation of β-catenin.²⁶⁵ These results were also validated in a xenograft mouse model. Breast cancer proliferation may also be inhibited through the ability of garcinol to downregulate the expression of cyclin D3, which is highly upregulated in cancer cells compared to nearby normal tissue.²⁶⁶ Treatment with 1 μ M garcinol in a nicotine-induced MDA-MD-231 cell line prevented cancer proliferation. Garcinol has also been shown to be particularly cytotoxic to cells expressing PDGFRs, kinases implicated in several forms of cancer including medulloblastoma.²⁶⁷ Inhibition of PDGFRs in several cell lines by garcinol led to apoptosis; however, PDGFR-negative MEF cells were not affected by garcinol treatment.

In addition to increased mitochondrial membrane permeability, garcinol may also promote apoptosis through the accumulation of ROS within cancer cells. In garcinol-treated (50 μ M) p53-negative Hep3B cells, this ROS accumulation was observed along with increased expression of endoplasmic reticulum stress modulator GADD153 and loss of mitochondrial membrane potential, leading to cell death.²⁶⁸ Interestingly, an independent study found that while high concentrations of garcinol caused apoptosis in HT-29 and HCT-116 cells, low concentrations $\ll 1 \mu M$) actually promoted cancer cell proliferation.²¹² This latter effect may be mediated by ROS; in the presence of superoxide dismutase and catalase and with concentrations of garcinol 0.5-1 μ M, cell growth was inhibited.

²⁶⁴ Ahmad, A.; Sarkar, S. H.; Aboukameel, A.; Ali, S.; Biersack, B.; Seibt, S.; Li, Y.; Bao, B.; Kong, D.; Banerjee, S.; Schobert, R.; Padhye, S. B.; Sarkar, F. H. *Carcinogenesis* **2012**, *33*, 2450-2456.

²⁶⁵ Ahmad, A.; Sarkar, S. H.; Bitar, B.; Ali, S.; Aboukameel, A.; Sethi, S.; Li, Y.; Bao, B.; Kong, D.; Banerjee, S.; Padhye, S. B.; Sarkar, F. H. *Mol. Cancer Ther.* **2012**, *11*, 2193-2201.

²⁶⁶ Chen, C.-S.; Lee, C.-H.; Hsieh, C.-D.; Ho, C.-T.; Pan, M.-H.; Huang, C.-S.; Tu, S.-H.; Wang, Y.-J.; Chen, L.-C.; Chang, Y.-J.; Wei, P.-L.; Yang, Y.-Y.; Wu, C.-H.; Ho, Y.-S. *Breast Cancer Res. Treat.* **2011**, *125*, 73-87.

²⁶⁷ Tian, Z.; Shen, J.; Wang, F.; Xiao, P.; Yang, J.; Lei, H.; Kazlauskas, A.; Kohane, I. S.; Wu, E. *PLoS ONE* **2011**, *6*, e21370.

²⁶⁸ Cheng, A.-C.; Tsai, M.-L.; Liu, C.-M.; Lee, M.-F.; Nagabhushanam, K.; Ho, C.-T.; Pan, M.-H. *Food Funct.* **2010**, *1*, 301-307.

Administration of garcinol has been shown to prevent carcinogenesis in several animal models. Dietary feeding of garcinol (0.01-0.05% of diet) caused a significant reduction of the formation of azoxymethane-induced colonic aberrant crypt foci (ACF) in rats compared to control.²⁶⁹ Rats were given a garcinol-laden diet 1 week prior to the induction of ACF and during the next four weeks. Up to 40% reduction of ACF frequency was observed (with the 0.05% dietary garcinol cohort). Dietary feeding of garcinol (0.01-0.05%) also prevented 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis.²⁷⁰ Rats were given garcinol either for 10 weeks during carcinogen administration or for 22 weeks following exposure, and in both instances, the frequency of tongue lesions were significantly reduced. Topical treatment of garcinol also prevented 7,12-dimethylbenz[*a*]anthracene-induced hamster cheek pouch carcinogenesis.271 Both short- and long-term application of garcinol prevented inflammation, lesion formation, and tumor size. In these three studies reported, a possible explanation for the suppression of carcinogenesis by garcinol may be due to its ability to decrease the expression of enzymes involved in inflammation response, such as iNOS, COX-2, and 5-LO.

Nemorosone also displays anti-cancer properties and may operate in a similar manner to hyperforin and garcinol. Nemorosone, in concentrations of 50-500 nM, has been shown to increase membrane permeability in mitochondria isolated from rat livers.²⁷² The authors hypothesized that nemorosone acted as a proton shuttle across the mitochondrial membrane, thus dissipating membrane potential. Indeed, nemorosone was found to be cytotoxic to HepG2 cells in 1-25 µM concentrations. In various breast cancer cell lines, nemorosone was selectively cytotoxic to cells expressing estrogen receptor 1, and when an estrogen receptor antagonist was used in conjunction with nemorosone, these

²⁶⁹ Tanaka, T.; Kohno, H.; Shimada, R.; Kagami, S.; Yamaguchi, F.; Kataoka, S.; Ariga, T.; Murakami, A.; Koshimizu, K.; Ohigashi, H. *Carcinogenesis* **2000**, *21*, 1183-1189.

²⁷⁰ Yoshida, K.; Tanaka, T.; Hirose, Y.; Yamaguchi, F.; Kohno, H.; Toida, M.; Hara, A.; Sugie, S.; Shibata, T.; Mori, H. *Cancer Lett.* **2005**, *221*, 29-39.

²⁷¹ Chen, X.; Zhang, X.; Lu, Y.; Shim, J.-Y.; Sang, S.; Sun, Z.; Chen, X. *Nutr. Cancer* **2012**, *64*, 1211-1218.

²⁷² Pardo-Andreu, G. L.; Nuñez-Figueredo, Y.; Tudella, V. G.; Cuesta-Rubio, O.; Rodrigues, F. P.; Pestana, C. R.; Uyemura, S. A.; Leopoldino, A. M.; Alberici, L. C.; Curti, C. *Mitochondrion* **2011**, *11*, 255-263.

effects were enhanced.²⁷³ Nemorosone was also found to be cytotoxic toward the neuroblastoma cell line LAN-1.²³⁹ Significant decreases in Akt and ERK activity were observed and may be the cause of apoptosis in this cell line. Aside from facilitating apoptosis in pancreatic cells via mitochondrial membrane potential dissipation and caspase activation, transcription profiling revealed that nemorosone altered the expression of many proteins involved in unfolded protein response.²⁷⁴ This cellular stress response mechanism may be one avenue by which nemorosone facilitates apoptosis in cancer cells.

The mechanisms by which several other PPAPs inhibit cancer cell proliferation have been explored. Unsurprisingly, guttiferone A also increases mitochondrial membrane permeability and caused apoptosis of the pancreatic cancer cell line HepG2.^{275} Plukenetione A promoted apoptosis in a variety of cancer cell lines, and this may be due to its ability to repress the expression of topoisomerase I and DNA polymerase.²³⁷ In its ability to facilitate LNCaP prostate carcinoma cell apoptosis, 7-*epi*-nemorosone may inhibit MAPK, similar to garcinol.²⁴⁴ The ability of guttiferone K to promote apoptosis may also be due to MAPK inhibition.²²⁵ The addition of a JNK (a type of MAPK) inhibitor partially rescued HT-29 cells from guttiferone K-induced apoptosis. Oblongifolin C promoted apoptosis in HeLa cells via caspase and Bax activation.²⁴¹ In the presence of a pan-caspase inhibitor or the anti-apoptotic protein Bcl-xL, apoptosis was prevented. Caspase activation has also been noted in hyperatomarin-induced cancer cell apoptosis.226 Cathepsin inhibition has been implicated as a major factor in the antiproliferative properties of 7-*epi*-clusianone and garcinaphenone.¹¹⁶

Further, several other PPAPs have been evaluated specifically for antimutagenic and antimitotic activity. Nemorosone displayed modest inhibitory activity in the Ames mutagenicity assay involving various *Salmonella typhimurium* strains, especially against mitomycin C- and aflatoxin B1-induced

²⁷³ Popolo, A.; Piccinelli, A. L.; Morello, S.; Sorrentino, R.; Cuesta Rubio, O.; Rastrelli, L.; Aldo, P. *Can. J. Physiol. Pharmacol.* **2011**, *89*, 50-57.

²⁷⁴ Holtrup, F.; Bauer, A.; Fellenberg, K.; Hilger, R. A.; Wink, M.; Hoheisel, J. D. *Br. J. Pharmacol.* **2011**, *162*, 1045-1059.

²⁷⁵ Pardo-Andreu, G. L.; Nuñez-Figueredo, Y.; Tudella, V. G.; Cuesta-Rubio, O.; Rodrigues, F. P.; Pestana, C. R.; Uyemura, S. A.; Leopoldino, A. M.; Alberici, L. C.; Curti, C. *Toxicol. Appl. Pharmacol.* **2011**, *253*, 282-289.

mutagenesis.²⁷⁶ Garcinielliptone FC facilitated DNA damage and cleavage in the presence of Cu^{2+} , possibly involving the formation of ROS.²⁷⁷ While garcinol, guttiferone B, and oblongifolins A-D were found to be ineffective at microtubule disassembly inhibition, they inhibited tubulin assembly, with IC_{50} values ranging from 50-100 μ M.²⁷⁸ Guttiferones G and J^{222} as well as a mixture of cycloxanthochymol and isoxanthochymol²⁴⁹ showed no effect on tubulin assembly.

Several studies have addressed whether certain PPAPs can be used in concert with other therapeutic agents to treat cancer. When hyperforin was combined with hypericin or procyanidin B2, synergistic cytotoxic effects were observed in K562 and U937 cells upon treatment.²²⁹ Thus, the authors of the study purport that the crude St. John's wort extract may be a viable therapeutic option for various leukemias. In another study, an enhancement of activity was observed in hypericin-mediated photodynamic therapy of HT-29 cells when hyperforin or aristoforin was present.²⁷⁹ In leukemia cells, hyperforin has been shown to impair the activity of P-gp and BCRP, ATP-binding cassette transporters responsible for the development of multidrug resistance in several cancer cell lines.²⁸⁰ Hyperforin's ability to inhibit drug efflux from cancer cells may find use in chemotherapies in which drug resistance develops.

Other than hyperforin, garcinol may be useful as a co-therapeutic in cancer treatment. By inhibiting DNA repair via non-homologous end joining, garcinol has been shown to radiosensitize cancer cells.281 Garcinol may prevent this DNA damage repair by acting as a histone acetyltransferase inhibitor.

²⁷⁶ Camargo, M. S.; Varela, S. D.; de Oliveira, A. P.; Resende, F. A.; Cuesta-Rubio, O.; Vilegas, W.; Varanda, E. A. *Braz. J. Pharmacogn.* **2011**, *21*, 921-927.

²⁷⁷ Wu, C.-C.; Lu, Y.-H.; Wei, B.-L.; Yang, S.-C.; Won, S.-J.; Lin, C.-N. *J. Nat. Prod.* **2008**, *71*, 246-250.

²⁷⁸ Hamed, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoison, O.; Mons, S.; Delpech, B.; Hung, N. V.; Sévenet, T.; Marazano, C. *J. Nat. Prod.* **2006**, *69*, 774-777.

²⁷⁹ Šemeláková, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. *J. Photochem. Photobiol. B* **2012**, *117*, 115-125.

²⁸⁰ Quiney, C.; Billard, C.; Faussat, A.-M.; Salanoubat, C.; Kolb, J.-P. *Leukemia Lymphoma* **2007**, *48*, 1587-1599.

²⁸¹ Oike, T.; Ogiwara, H.; Torikai, K.; Nakano, T.; Yokota, J.; Kohno, T. *Int. J. Radiation Oncol. Biol. Phys.* **2012**, *84*, 815-821.

Garcinol's ability to change gene expression has also been applied to the sensitization of pancreatic cancer cells to the chemotherapeutic gemcitabine.²⁸² A synergistic effect was noted when garcinol and gemcitabine were co-applied to pancreatic cancer cells. Synergistic antiproliferative and apoptotic effects were also noted between garcinol and curcumin in the pancreatic cancer cell lines BXP-3 and PANC-1.²⁸³ Potency of a combination of the two agents was 2- to 10-fold greater than the individual potency of each agent.

Activity against Neurological Disorders

Diseases and disorders of the central nervous system have also been targeted with PPAP-based therapeutics. The most studied PPAP in this area is hyperforin, a component of the medicinal herb St. John's wort, and much work has been done to elucidate its effects on clinical depression.²⁸⁴ For over 2,000 years, St. John's wort has been used to treat a variety of ailments, and several ancient Greek and Roman historians and doctors have recorded the medicinal use of an herb called *hyperikon* that matches the description of *Hypericum perforatum*. 285 Indeed, *hyperikon* is derived from the Latin words *hyper* (meaning "over") and *eikon* (meaning "apparition"), which in the pre-modern medicine era may refer to depression. A traditional English proverb below effectively summarizes the use of St. John's wort prior to the advent of modern medicine:

> *St. John's wort doth charm all the witches away, If gathered at midnight on the saint's holy day, And devils and witches have no power to harm*

²⁸² Parasramka, M. A.; Ali, S.; Banerjee, S.; Deryavoush, T.; Sarkar, F. H.; Gupta, S. V. *Mol. Nutr. Food Res.* **2013**, *57*, 235-248.

²⁸³ Parasramka, M. A.; Gupta, S. V. *J. Oncol.* **2012**, 709739.

²⁸⁴ For reviews of hyperforin and SJW antidepressant activity, see: (a) Greeson, J. M.; Sanford, B.; Monti, D. A. *Psychopharmacology* **2001**, *153*, 402-414. (b) Di Carlo, G.; Borrelli, F.; Ernst, E.; Izzo, A. A. *Trends Pharmacol. Sci.* **2001**, *22*, 292-297. (c) Müller, W. E. *Pharmacol. Res.* **2003**, *47*, 101-109. (d) Zanoli, P. *CNS Drug Rev.* **2004**, *10*, 203-218. (e) Hussain, S.; Ansari, Z. H.; Arif, M. *Int. J. Health Res.* **2009**, *2*, 15-22. (f) Solomon, D.; Ford, E.; Adams, J.; Graves, N. *Aust. N.Z. J. Psychiat.* **2011**, *45*, 123-130.

²⁸⁵ For several excerpts of *hyperikon* use in antiquity, see: (a) Aulus Cornelius Celsus *Da Medica* 5.20.6 and 5.23.3. (b) Dioscorides *Materia Medica* 3.173. (c) Pliny the Elder *Naturalis Historiæ* XXVI.53.
*Those that do gather the plant for a charm Rub the lintels and post with that red juicy flower No thunder nor tempest will then have the power To hurt or to hinder your houses; and bind Round your neck a charm of a similar kind.*²⁸⁶

To this day, SJW extract remains a popular therapeutic for depression in European countries; during the period between April 2007 and March 2008, over 9.5 million units of SJW were sold, mostly in Germany, Russia, and Poland.²⁸⁷ In Germany, standardized SJW extracts are one of the most prescribed antidepressants, with sales comparable to synthetic antidepressants. In the United States, sales of SJW peaked in the late 1990's, reaching upwards of an estimated \$310 million.²⁸⁸ However, the discovery of side effects (to be discussed in the next section) has led to a decrease in SJW sales, with 2007 numbers an estimated \$8.1 million, making it the tenth most popular herbal dietary supplement sold in the country that year.²⁸⁹ Dozens of clinical trials involving SJW treatment of depression have appeared in the literature enlisting over 5,000 patients. A Cochrane Collaboration meta-analysis of 29 double-blind, randomized trials involving 5,489 patients found that SJW was indeed effective for treatment of major depression with efficacy comparable to standard antidepressants.²⁹⁰ Importantly, fewer adverse side effects were encountered with SJW extract use than with other antidepressants.

Given the long history of use, efficacy, and safety of SJW extract, identification of the active component has received considerable attention. Chemicals found in the extract fall into three distinct categories: phloroglucinols, flavonoids, and naphthodianthrones.²⁹¹ An early study purported that the

²⁸⁶ Vickery, A. R. *Econ. Bot.* **1981**, *35*, 289-295.

²⁸⁷ Linde, K. *Forsch. Komplementmed.* **2009**, *16*, 146-155.

²⁸⁸ Golden, F. *TIME* **2001**, *157* (Apr. 30), 60-61.

²⁸⁹ Cavaliere, C.; Rea, P.; Blumenthal, M. *HerbalGram* **2008**, *78*, 60-63.

²⁹⁰ Linde, K.; Berner, M. M.; Kriston, L. *Cochrane Database Syst. Rev.* **2008**, CD000448.

²⁹¹ Nahrstedt, A.; Butterweck, V. *Pharmacopsychiatry* **1997**, *30* (Suppl.), 129-134.

active antidepressant component of herb was hypericin (**82**, Figure 1.14), a naphthodianthrone polyketide that had monoamine oxidase (MAO) inhibition activity, with IC_{50} values of 68 nM and 420 nM for type A and B MAOs, respectively.²⁹² However, there are several reasons to doubt that hypericin, by itself, is the active principle of SJW. Attempts to replicate these original findings have been unsuccessful, using either pure hypericin or crude SJW extracts.²⁹³ In fact, the flavonoid-containing fraction of the extract was the only component to show mild MAO inhibition ability at all. Also, it appears that hypericin does not cross the blood-brain barrier. When rats were orally administered with either SJW extract (1600 mg/kg) or pure hypericin (5 mg/kg), no hypericin was detected in the brain above the detection threshold (16 pmol/g). 294

Figure 1.14. Structure of hypericin.

Upon further analysis of the compounds found in SJW extract, multiple sources found that hyperforin was indeed the primary component responsible for its antidepressant activity.²⁹⁵ While it had been known since the 1970's that hyperforin is a significant constituent of the herb, $\frac{1}{2}$ comprising 2-4% of

²⁹² Suzuki, O.; Katsumata, Y.; Oya, M.; Bladt, S.; Wagner, H. *Planta Med.* **1984**, *50*, 272-274.

^{293 (}a) Thiede, H.-M.; Walper, A. *J. Geriatr. Psychiatry Neurol.* **1994**, *7* (Suppl. 1), 54-56. (b) Bladt, S.; Wagner, H. *J. Geriatr. Psychiatry Neurol.* **1994**, *7* (Suppl. 1), 57-59. (c) Yu, P. H. *Pharmacopsychiatry* **2000**, *33*, 60-65.

²⁹⁴ Paulke, A.; Schubert-Zsilavecz, M.; Wurglics, M. *Monatsh. Chem.* **2008**, *139*, 489-494.

²⁹⁵ For a review of the antidepressant properties of hyperforin, see: (a) Müller, W. E. *Pharmacol. Res.* **2003**, *47*, 101- 109. (b) Wurglics, M.; Schubert-Zsilavecz, M. *Clin. Pharmacokinet.* **2006**, *45*, 449-468. (c) Hussain, S.; Ansari, Z. H.; Arif, M. *Int. J. Health Res.* **2009**, *2*, 15-22.

the dry weight of its aerial parts,²⁹⁶ it had been largely disregarded due to its chemical instability. In fact, the inconsistencies of SJW clinical trials may be due to hyperforin instability; prior to the realization of the significance of hyperforin, the PPAP was found in variable amounts in SJW medical preparations.²⁹⁷

Upon exposure to light and air, hyperforin rapidly converts to furohyperforin, among other oxidation products. Furohyperforin is observed when air is bubbled through a methanolic solution of hyperforin for 6.5 h.²⁹⁸ Upon standing neat exposed to air at 40 °C, or dissolved in nonpolar solvents (e.g., hexane, benzene, petroleum ether), furohyperforin, 33-deoxy-33-hydroperoxy-furohyperforin, oxyhyperforin, oxepahyperforin, furohyperforin isomers 1 and 2, and a variety of monocyclic cyclohexanones were observed.²⁹⁹ Similar degradation products are found when hyperforin is photochemically irradiated in acetonitrile³⁰⁰ or exposed to peroxide oxidants.³⁰¹ Despite its apparent instability upon exposure to light, oxidants, and nonpolar solvents, hyperforin may be stabilized in polar protic solvents. In general, the half-life of hyperforin increases with increasing solvent polarity. After 30 days at 20 ºC in the dark, over 70% of hyperforin remains in ethanol, methanol, or methanol/water suspensions.³⁰² Storage below -20 °C under nitrogen also prevents degradation of hyperforin; after 8 months, only marginal decomposition of hyperforin occurred.³⁰³ Overall, despite the fact that hyperforin

²⁹⁶ Maisenbacher, P. Thesis, University of Tübingen, Tübingen, Baden-Württemberg, Germany, 1991.

^{297 (}a) Wurglics, M.; Westerhoff, K.; Kauzinger, A.; Wilke, A.; Baumeister, A.; Dressman, J.; Schubert-Zsilavecz, M. *J. Am. Pharm. Assoc.* **2001**, *41*, 560-566. (b) Ang, C. Y. W.; Hu, L.; Heinze, T. M.; Cui, Y.; Freeman, J. P.; Kozak, K.; Luo, W.; Liu, F. F.; Mattia, A.; DiNovi, M. *J. Agric. Food Chem.* **2004**, *52*, 6156-6164. (c) Schulte-Löbbert, S.; Holoubek, G.; Müller, W. E.; Schubert-Zsilavecz, M.; Wurglics, M. *J. Pharm. Pharmacol.* **2004**, *56*, 813-818.

²⁹⁸ Orth, H. C. J.; Hauer, H.; Erdelmeier, C. A. J.; Schmidt, P. C. *Pharmazie* **1999**, *54*, 76-77.

^{299 (}a) Fuzzati, N.; Gabetta, B.; Strepponi, I.; Villa, F. *J. Chromatogr. A* **2001**, *926*, 187-198. (b) Wolfender, J.-L.; Verotta, L.; Belvisi, L.; Fuzzati, N.; Hostettmann, K. *Phytochem. Anal.* **2003**, *14*, 290-297.

³⁰⁰ D'Auria, M.; Emanuele, L.; Racioppi, R. *Lett. Org. Chem.* **2008**, *5*, 583-586.

³⁰¹ Verotta, L.; Lovaglio, E.; Sterner, O.; Appendino, G.; Bombardelli, E. *Eur. J. Org. Chem.* **2004**, 1193-1197.

³⁰² Orth, H. C. J.; Schmidt, P. C. *Pharm. Ind.* **2000**, *62*, 60-63.

³⁰³ Orth, H. C. J.; Rentel, C.; Schmidt, P. C. *J. Pharm. Pharmacol.* **1999**, *51*, 193-200.

may readily decompose upon exposure to light and air, relatively straightforward precautions can be taken in order to preserve hyperforin either as a pure substance or as found in SJW extracts.

The discovery that hyperforin was the principle antidepressant component of SJW came in 1998 with a seminal paper by Müller and coworkers.³⁰⁴ Using two murine models for depression, the behavioral despair test and the learned helplessness test, it was found that the antidepressant potency of SJW extracts correlated with hyperforin content. More importantly, isolated hyperforin inhibited the uptake of tritiated neurotransmitters into isolated murine synaptosomes in a dose-dependent manner. IC_{50} values for these *in vitro* experiments ranged from 0.011-3.35 µM and have been confirmed in later studies (Table 1.14).305 Unlike synthetic antidepressants, which selectively block the selective reuptake of individual neurotransmitters, hyperforin appeared to block the reuptake of a variety of neurotransmitters, possibly signifying a novel mechanistic paradigm for the treatment of depression.

Table 1.14. Inhibition of synaptosomal $\int_0^3 H$]neurotransmitter uptake by hyperforin.

Neurotransmitter	$IC_{50}(\mu M)$	References
\lceil ³ H serotonin	$0.12 - 3.35$	304, 306, 307, 308, 309, 310
$\int^3 H$]noradrenaline	0.033-0.080	304,308
$\int^3 H$]dopamine	$0.011 - 0.102$	304,308
[³ H]γ-aminobutyric acid	0.184	304,311
$[^3H]$ L-glutamate	0.143-0.829	304,311

304 Chatterjee, S. S.; Bhattacharya, S. K.; Wonnemann, M.; Singer, A.; Müller, W. E. *Life Sci.* **1998**, *63*, 499-510.

305 See also: Müller, W. E.; Singer, A.; Wonnemann, M.; Hafner, U.; Rolli, M.; Schäfer, C. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 16-21.

306 Singer, A.; Wonnemann, M.; Müller, W. E. *J. Pharmacol. Exp. Ther.* **1999**, *290*, 1363-1368.

307 Gobbi, M.; Valle, F. D.; Ciapparelli, C.; Diomede, L.; Morazzoni, P.; Verotta, L.; Caccia, S.; Cervo, L.; Mennini, T. *Naunyn-Schmied. Arch. Pharmacol.* **1999**, *360*, 262-269.

308 Jensen, A. G.; Hansen, S. H.; Nielsen, E. Ø. *Life Sci.* **2001**, *68*, 1593-1605.

l

309 Verotta, L.; Appendino, G.; Belloro, E.; Bianchi, F.; Sterner, O.; Lovati, M.; Bombardelli, E. *J. Nat. Prod.* **2002**, *65*, 433-438.

310 Leuner, K.; Heiser, J. H.; Derksen, S.; Mladenov, M. I.; Fehske, C. J.; Schubert, R.; Gollasch, M.; Schneider, G.; Harteneck, C.; Chatterjee, S. S.; Müller, W. E. *Molec. Pharmacol.* **2010**, *77*, 368-377.

311 Wonnemann, M.; Singer, A.; Müller, W. E. *Neuropsychopharmacology* **2000**, *23*, 188-197.

Subsequent to the realization that hyperforin may be responsible for the antidepressant activity of SJW, ensuing preclinical and clinical studies provided more evidence to verify this hypothesis. In the behavioral despair and elevated plus-maze murine models of depression, treatment with pure hyperforin led to more favorable outcomes compared to the ethanolic and supercritical $CO₂$ SJW extracts, which contained 4.5% and 38.8% hyperforin, respectively.³¹² Hyperforin was significantly effective in the elevated plus-maze test at concentrations as low as 1 mg/kg , and 3 -day 20 mg/kg treatment with pure hyperforin in the force swim test caused a 40% reduction of immobilization time compared to vehicle. Using the same ethanolic and $CO₂$ SJW extracts as above, positive outcomes in a variety of other murine models of depression were shown to correlate with hyperforin content, including rat resperine syndrome, muricidal rat behavior, 5-hydroxytryptophan-induced mouse head twitches, L-dopa-induced mouse behavior, apomorphine-induced rat stereotypy, and post-swim mouse grooming response.³¹³ In rats that were chronically exposed to unavoidable stress, escape deficit developed along with an anhedonia-type behavior towards palatable food. When these conditioned rats were exposed to SJW extracts or pure hyperforin, this escape deficit behavior diminished and the rats displayed favorable appetitive behavior.³¹⁴ In addition, pure hyperforin was significantly more potent than the SJW extracts used. Hyperforin administration also displayed positive outcome in the murine passive avoidance test.³¹⁵

A variety of clinical trials has also shown that hyperforin is a critical antidepressant component of SJW extracts. In a randomized, 147 out-patient, 42-day, double-blind multicenter study of persons suffering from mild to moderate depression,³¹⁶ the treatment group receiving an extract containing a

³¹² Chatterjee, S. S.; Nöldner, M.; Koch, E.; Erdelmeier, C. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 7-15.

³¹³ Bhattacharya, S. K.; Chakabarti, A.; Chatterjee, S. S. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 22-29.

³¹⁴ Gambanara, C.; Tolu, P. L.; Masi, F.; Rinaldi, M.; Giachetti, D.; Morazzoni, P.; De Montis, M. G. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 42-44.

³¹⁵ Misane, I.; Ögren, S. O. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 89-97.

³¹⁶ In this particular study, depression severity was determined using the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders-IV), and the HAMD (Hamilton Rating Scale for Depression) 17-item questionnaire was used to assess change in depression severity throughout the study.

standardized 5% amount of hyperforin exhibited significantly larger positive endpoint when compared to treatment groups receiving either placebo or an extract with 0.5% hyperforin.³¹⁷ Patients were given three 300 mg tablets per day. In particular, more severely depressed patients responded particularly well to the 5% treatment. In a Phase I trial, 18 healthy volunteers were given one 900 mg tablet a day for 8 days, containing placebo or SJW extract (0.5% or 5% hyperforin), and monitored via quantitative topographic electroencephalography.³¹⁸ Significant pharmacodynamic effects were seen with both non-placebo treatment groups, peaking 4-8 hours after administration, and the treatment group receiving the higher dose of hyperforin saw more pronounced changes in electrical activity. In a 12-man study involving a SJW extract standardized to hypericin, no significant endpoint was achieved, providing further evidence that hyperforin, and not hypericin, is the active component of SIW .³¹⁹

One important note concerning outpatient clinical trials involving SJW is that results may be exacerbated by the readily available nature of its extracts, leading to patient noncompliance and confounding results. The highly publicized Hypericum Depression Trial Study, 320 which found no difference between SJW and placebo for major depression, was replicated three years later with the addition of monitoring plasma hyperforin levels.³²¹ In this study, involving a total of 340 outpatients, one out of every six taking placebo had significant plasma hyperforin, and one-sixth of patients taking the SJW extract had no detectable hyperforin in their blood.

Interest in the underlying antidepressant mechanism of hyperforin and its biomolecular targets has led to numerous studies. Aside from inhibiting the uptake of neurotransmitters by synaptosomes as previously discussed, intraperitoneal injection of hyperforin (10 mg/kg) also was found to increase the

^{317 (}a) Laakmann, G.; Dienel, A.; Kieser, M. *Phytomedicine* **1998**, *5*, 435-442. (b) Laakmann, G.; Schüle, C.; Baghai, T.; Kieser, M. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 54-59.

³¹⁸ Schellenberg, R.; Sauer, S.; Dimpfel, W. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 44-53.

³¹⁹ Franklin, M.; Cowen, P. J. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 29-37.

³²⁰ Hypericum Depression Trial Study Group, *J. Am. Med. Assoc.* **2002**, *287*, 1807-1814.

³²¹ Vitiello, B.; Shader, R. I.; Parker, C. B.; Ritz, L.; Harlan, W.; Greenblatt, D. J.; Gadde, K. M.; Krishnan, R. R.; Davidson, J. R. T. *J. Clin. Psychopharmacol.* **2005**, *25*, 243-249.

extracellular concentration of a variety of neurotransmitters in the rat locus coeruleus.³²² Presumably, hyperforin caused the release of synaptic vesicles containing these neurotransmitters into the synaptic cleft and prevented reuptake. This hypothesis was confirmed in a later study in which neurons in rat brain slices were preloaded with radiolabeled serotonin and dopamine.³²³ Hyperforin dose-dependently caused release of these amines. Similar results were obtained with human blood platelets preloaded with $[$ ¹⁴C]serotonin; treatment with 300 nM hyperforin caused store depletion of this monoamine.³²⁴

The above results do not support the idea that hyperforin works through direct interaction with reuptake enzymes. Michaelis–Menten kinetic analysis reveals that hyperforin blocks serotonin uptake via noncompetitive inhibition in mouse brain synaptosomes.³⁰⁶ Indeed, rat brain cortical synaptosomes pretreated with hyperforin did not prevent binding of tritiated citalopram, a selective serotonin reuptake inhibitor.³⁰⁷ Further, hyperforin failed to inhibit monoamine binding across a wide variety of neurotransmitter transporters and receptors in *in vitro* binding assays.³²⁵ Hyperforin, while inhibiting the uptake of radiolabeled monoamines in rat forebrain homogenates, did not affect binding of $[$ ³H]dihydrotetrabenazine, a known selective vesicular monoamine transporter ligand.³²⁶ Interestingly, SJW extracts do seem to competitively inhibit monoamine receptors in guinea pig hippocampal slices; however, when purified hyperforin was subjected to this *ex vivo* assay, no inhibition was observed. 327

Instead of directly binding to neurotransmitter transports and receptors, numerous studies indicate that hyperforin increases intracellular ion levels, and this mediates not only monoamine uptake inhibition

^{322 (}a) Kaehler, S. T.; Sinner, C.; Chaterjee, S. S.; Philippu, A. *Neurosci. Lett.* **1999**, *262*, 199-202. (b) Philippu, A. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 111-115.

³²³ Roz, N.; Rehavi, M. *Life Sci.* **2004**, *75*, 2841-2850.

³²⁴ Uebelhack, R.; Franke, L. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 146-147.

^{325 (}a) Gobbi, M.; Moia, M.; Pirona, L.; Morazzoni, P.; Mennini, T. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 45-48. (b) Simmen, U.; Higelin, J.; Berger-Büter, K.; Schaffner, W.; Lundstrom, K. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 137-142.

³²⁶ Roz, N.; Mazur, Y.; Hirshfeld, A.; Rehavi, M. *Life Sci.* **2002**, *71*, 2227-2237.

³²⁷ Langosch, J. M.; Zhou, X.-Y.; Heinen, M.; Kupferschmid, S.; Chatterjee, S. S.; Nöldner, M.; Walden, J. *Eur. Neuropsychopharmacol.* **2002**, *12*, 209-216.

but also vesicular monoamine release. A wide variety of neurotransmitter transports rely on co-transport of sodium cations, and the presence of a sodium ion gradient across the cellular membrane facilitates this process.³²⁸ By diminishing this ion gradient, hyperform indirectly inhibits monoamine reuptake. Accordingly, treatment of human platelets with 50 μ M hyperforin caused an increase in intracellular $[Na^+]$ over basal levels.³⁰⁶ A similar effect was observed when a known cation transporter monensin was used; however, hyperforin did not elevate [Na⁺]_{*i*} to extracellular levels, as in the case of monensin, indicating a different transport mechanism. The addition of benzamil, an amiloride derivative and potent Na⁺ ion channel inhibitor, further differentiated hyperforin- and monensin-based pathways.³¹¹ Benzamil attenuated hyperforin-based uptake inhibition but had no effect on monensin's activity. In addition, Ca^{2+} entry or electrical current may facilitate the release of neurotransmitters. In rat cortical synaptosomes, the release of glutamate induced by hyperforin was preceded by an increase of intracellular $[Ca^{2+}]$, indicating that hyperforin-mediated ion influx appears to be nonselective.³²⁹ Dose-dependent Ca^{2+} influx was also observed when 0.6 -18.6 µM hyperforin was added to hamster vas deferens smooth muscle.³³⁰ pH gradient was also dissipated across the membranes of synaptic vesicles isolated from rat striatum and hypothalamus by inhibiting the action of vacuolar H⁺-ATPase with an IC₅₀ value of 0.19 μ M.³³¹ This facilitated the release of radiolabeled serotonin from preloaded vesicles. In addition, ion influx induces an electrical current across the cell membrane. Using patch clamp techniques, hyperforin caused a doseand time-dependent inward current in isolated hippocampal pyramidal neurons and cerebellar rat Purkinje

³²⁸ Shi, L.; Quick, M.; Zhao, Y.; Weinstein, H.; Javitch, J. A. *Mol. Cell* **2008**, *30*, 667-677.

³²⁹ Chatterjee, S. S.; Biber, A.; Weibezahn, C. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 11-19.

³³⁰ Kock, E.; Chatterjee, S. S. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 70-73.

³³¹ Roz, N.; Rehavi, M. *Life Sci.* **2003**, *73*, 461-470.

neurons through ion influx.³³² Low concentrations of hyperforin (100-800 nM) also modulated the activity of P-type calcium channels in Purkinje neurons in a voltage-dependent manner.³³³

To summarize the evidence presented above, the ability of hyperforin to inhibit the reuptake and promote the release of neurotransmitters from neurons may be reliant on nonselective inward ion influx. Taken together, these data suggest that hyperforin may activate an ion channel expressed on neuronal membranes, and elucidation of this ion channel protein may represent a new target for developing antidepressants.334 Indeed, tetrodotoxin, a potent sodium channel blocker, inhibited hyperforin-mediated monoamine release from mouse cortical neurons.³³⁵ Similar inhibition was observed in human platelets and PC12 cells with both SKF-96365 and LOE 908, two inhibitors of nonselective cation channels.³³⁶ The addition of La^{3+} and Gd^{3+} ions also inhibited the activity of hyperforin in these cells, and these cations are known blockers of the canonical transient receptor potential protein (TRPC) channel family.

TRPC channels are members of the transient receptor potential protein superfamily that can be broadly described as cell-surface ion channels involved in many aspects of sensation and response to physical or chemical stimulation.337 TRPC channels were the first members of this family discovered, and all contain six transmembrane domains. They assemble into either homo- or hetero-tetramers, and cation selectivity is determined by the size of the pore loop. Several proteins may be anchored onto the cytoplasmic end of the S6 domain, providing control elements to regulate the activity of the cation

³³² Chaterjee, S.; Filippov, V.; Lishko, P.; Maximyuk, O.; Nöldner, M.; Krishtal, O. *Life Sci.* **1999**, *65*, 2395-2405.

^{333 (}a) Fisunov, A.; Lozovaya, N.; Tsintsadze, T.; Chatterjee, S.; Nöldner, M.; Krishtal, O. *Pflügers Arch.* **2000**, *440*, 427-434. (b) Fisynov, A. I.; Lozovaya, N. A.; Tsyntsadze, T. S.; Yatsenko, N. M.; Chatterjee, S.; Krishtal, O. A. *Neurophysiology* **2001**, *33*, 5-10. (c) Krishtal, O.; Lozovaya, N.; Fusinov, A.; Tsintsadze, T.; Pankratov, Y.; Kopanitsa, M.; Chatterjee, S. S. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 74-82.

³³⁴ Müller, W. E.; Singer, A.; Wonnemann, M. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 98-102.

³³⁵ Marsh, W. L.; Davies, J. A. *Life Sci.* **2002**, *71*, 2645-2655.

³³⁶ Treiber, K.; Singer, A.; Henke, B.; Müller, W. E. *Br. J. Pharmacol.* **2005**, *145*, 75-83.

³³⁷ For an overview of TRP channels, see: Clapham, D. E. *Nature* **2003**, *426*, 517-524.

channel. There are seven known TRPC proteins, and they may be activated by diacylglycerol, phospholipase C, or tyrosine kinases.³³⁸

Further analysis determined that hyperforin selectively activates TRPC6.³³⁹ Hyperforin (10 μ M) induced nonselective ion entry into PC12 cells expressing TRPC6. Furthermore, the entry of Ca^{2+} ions when TRPC6 was activated by hyperform $(0.1-0.3 \mu M)$ caused neurite outgrowth in these cells, similar to the effects of adding nerve growth factor. Cation influx was suppressed in PC12 cells by expressing a dominant negative mutant of TRPC6. This is noteworthy given that the cell expression of related TRPC proteins remained unaffected, such as TRPC3 and TRPC7, which share approximately 75% sequence homology to TRPC6.³⁴⁰ Given the similarity of TRPC6 to other members of the TRPC family, it seems unlikely that hyperforin interacts directly with TRPC6. When PC12 cells were pre-incubated with various tyrosine kinase and phospholipase C inhibitors, the effects of hyperforin were mitigated, possibly indicating that hyperform interacts with a protein involved in TRPC6 activation.³⁴¹

Regardless of the nature of hyperforin's interaction with TRPC6, its ability to act as a TRPC6 molecular probe has furthered understanding of this protein in particular and of ion homeostasis in general. When internal stores of Ca^{2+} are depleted from a cell, various ion channels are activated via the store-operated Ca^{2+} entry (SOCE) pathway.³⁴² In murine brain cortical embryonic neurons from which internal Ca^{2+} stores were depleted using thapsigargin, SOCE became activated.³⁴³ Addition of the TRPC3selective inhibitor Pyr3 potently prevented Ca^{2+} entry; however, the addition of hyperforin facilitated Ca^{2+}

³³⁸ Hofmann, T.; Obukhov, A. G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G. *Nature* **1999**, *397*, 259- 263.

³³⁹ Leuner, K.; Kazanski, V.; Müller, M.; Essin, K.; Henke, B.; Gollasch, M.; Harteneck, C.; Müller, W. E. *FASEB J.* **2007**, *21*, 4101-4111.

³⁴⁰ Dietrich, A.; Mederos y Schnitzler, M.; Emmel, J.; Kalwa, H.; Hofmann, T.; Gudermann, T. *J. Biol. Chem.* **2003**, *278*, 47842-47852.

³⁴¹ Treiber, K.; Henke, B.; Müller, W. E. *Pharmacopsychiatry* **2005**, *38*, A235.

³⁴² Feske, S. *Pflügers Arch.* **2010**, *460*, 417-435.

³⁴³ Gibon, J.; Tu, P.; Bouron, A. *Cell Calcium* **2010**, *47*, 538-543.

entry presumably through TRPC6 activation. This indicates that while TRPC3 participates in SOCE, TRPC6 does not.³⁴⁴ Additionally, the activity of hyperforin was attenuated through the Zn^{2+} chelator TPEN, but SOCE-mediated Ca^{2+} entry remained unaffected. Further studies established that hyperforin also promoted the release of Ca^{2+} and Zn^{2+} stores from isolated brain mitochondria.³⁴⁵ The ability of hyperforin to increase the permeability of mitochondrial membrane has been documented.³⁴⁶ Beyond increasing mitochondrial membrane permeability, chronic hyperform treatment $(1 \mu M)$ treatment for 3 days) has been shown to increase the gene expression of metallothioneins and thus Zn^{2+} storage capacity in cortical neurons.³⁴⁷ Metallothioneins are cysteine-rich proteins and bind to Zn^{2+} among other cationic species. Chronic intraperitoneal injection of rats with hyperforin (4 mg/kg/day) has similar effects, increasing the Zn^{2+} storage capabilities of their brain tissue. Increased intracellular Zn^{2+} stores were also achieved by expressing *TRPC6* in HEK293 cells, but not with *TRPC3* expression.³⁴⁸ These data suggest that TRPC6 is capable of acting as a Zn^{2+} -conducting channel.

Prior studies have suggested that TRPC proteins in general and TRPC6 in particular play crucial roles in neuronal differentiation, plasticity, and outgrowth.³⁴⁹ This may be one avenue by which hyperforin acts as an antidepressant and alters nerve tissue in the brain. Oral dosing (15 mg/kg) of the sodium salt of hyperforin in rats caused changes in the morphology of their brain membranes.³⁵⁰ Another study established that hyperforin treatment of neural stem/progenitor cells promoted the maturation of

³⁴⁴ It should be noted that other hyperforin-activated ion channels mimicking TRPC6 may be present in neurons.

For more information, see: Tu, P.; Kunert-Keil, C.; Lucke, S.; Brinkmeier, H.; Bouron, A. *J. Neurochem.* **2009**, *108*, 126-138.

³⁴⁵ Tu, P.; Gibon, J.; Bouron, A. *J. Neurochem.* **2010**, *112*, 204-213.

³⁴⁶ See the discussion in the *Chemotherapeutic Activity* section on page 64.

³⁴⁷ Gibon, J.; Richaud, P.; Bouron, A. *Neuropharmacology* **2011**, *61*, 1321-1326.

³⁴⁸ Gibon, J.; Tu, P.; Bohic, S.; Richaud, P.; Arnaud, J.; Zhu, M.; Boulay, G.; Bouron, A. *Biochim. Biophys. Acta* **2011**, *1808*, 2807-2818.

³⁴⁹ Ramsey, I. S.; Delling, M.; Clapham, D. E. *Annu. Rev. Physiol.* **2006**, *68*, 619-647.

³⁵⁰ Eckert, G. P.; Keller, J.-H.; Jourdan, C.; Karas, M.; Volmer, D. A.; Schubert-Zsilavecz, M.; Müller, W. E. *Neurosci. Lett.* **2004**, *367*, 139-143.

oligodendrocytes without affecting the proliferation of the progenitor cells.³⁵¹ Oligodendrocyte dysfunction may play a role in the pathogenesis of major depressive disorder.³⁵² Hyperforin, via TRPC6 activation, caused changes in dendritic spine morphology in pyramidal neurons in rat hippocampal slices.³⁵³ These effects were blocked by the addition of La^{3+} , indicating the importance of TRPC6 channels on hyperforin-induced morphological effects. Hyperforin has also been shown to generate neuroprotective effects in neurons through the activation of CREB in a tissue-specific manner. Rats treated with daily hyperforin injections (4 mg/kg) for 4 weeks had increased cortical expression of TRPC6 and TrkB, a brain-derived neurotrophic factor receptor.³⁵⁴ Immediately following a middle cerebral artery occlusion in the brains of rats, direct injection of hyperforin into the brain reduced total cell death and increased TRPC6 and CREB activity.³⁵⁵ One day after the ischemic stroke, the rats treated with hyperforin also displayed higher neurologic scores than the control group. Interestingly, expression of TrkB in the hippocampus remained unaffected. Similar effects were observed in a rat model of status epilepticus, a prolonged seizure event that results in significant brain tissue damage.³⁵⁶ In such an event, TRPC6 expression decreases in affected tissue, ultimately leading to neuronal cell death;³⁵⁷ however, prior hyperforin treatment prevented this downregulation and subsequently prevents neurodegeneration. Conversely, hyperforin has also engendered neuroprotective effects by the *downregulation* of TRPC6 and CREB expression in certain situations. As discussed earlier, hyperforin decreased activated CREB levels

³⁵¹ Wang, Y.; Zhang, Y.; He, J.; Zhang, H.; Xiao, L.; Nazarali, A.; Zhang, Z.; Zhang, D.; Tan, Q.; Kong, J.; Li, X.- M. *J. Neurochem.* **2011**, *119*, 555-568.

³⁵² Uranova, N. A.; Vostrikov, V. M.; Orlovskaya, D. D.; Rachmanova, V. I. *Schizophr. Res.* **2004**, *67*, 269-275.

³⁵³ Leuner, K.; Li, W.; Amaral, M. D.; Rudolph, S.; Calfa, G.; Schuwald, A. M.; Harteneck, C.; Inoue, T.; Pozzo-Miller, L. *Hippocampus* **2013**, *23*, 40-52.

³⁵⁴ Gibon, J.; Deloulme, J.-C.; Chevallier, T.; Ladevèze, E.; Abrous, D. N.; Bouron, A. *Int. J. Neuropsychopharmacol.* **2013**, *16*, 189-198.

³⁵⁵ Lin, Y.; Zhang, J.-C.; Fu, J.; Chen, F.; Wang, J.; Wu, Z.-L.; Yuan, S.-Y. *J. Cerebr. Blood Flow Metab.* **2013**, *33*, 253-262.

³⁵⁶ Kim, D.-S.; Ryu, H. J.; Kim, J.-E.; Kang, T.-C. *Cell. Mol. Neurobiol.* **2013**, *33*, 99-109.

³⁵⁷ Du, W.; Huang, J.; Yao, H.; Zhou, K.; Duan, B.; Wang, Y. *J. Clin. Invest.* **2010**, *120*, 3480-3492.

in mouse microglia by decreasing iNOS expression.¹⁸⁰ In PC12 cells that had been previously activated with NGF, hyperforin actually downregulated TRPC6 expression.³⁵⁸ Decreased expression of TRPC6 in this instance may have promoted neuroprotection by regulating the rate of neurite outgrowth.

Due to its expression throughout the human body, TRPC6 may be a unique target for the treatment of a variety of diseases. Many inflammatory skin conditions are characterized by overproliferating skin cells, and TRPC6 has been associated with Ca^{2+} -induced keratinocyte differentiation.³⁵⁹ Additionally, skin creams formulated with SJW extracts have shown efficacy in several half-side clinical trials involving inflammatory skin diseases, 360 including pressure ulcers, 361 psoriasis, 362 and atopic dermatitis.³⁶³ When HaCaT cells were treated with hyperforin (1 μ M), an influx of Ca²⁺ was observed and differentiation was triggered, and these effects were mimicked through the addition of a high concentration of extracellular Ca^{2+} .³⁶⁴ When TRPC6 was knocked down, both hyperforin- and Ca^{2+} induced differentiation was not observed. TRPC6 is also abnormally expressed in several breast cancer cell lines (e.g., MCF-7, MCF 10A, MDA-MB-231), and the antiproliferative effect of hyperforin on these cell lines may be in part due to its interaction with TRPC6 or its effects on TRPC6 expression.³⁶⁵ In

³⁵⁸ Kumar, S.; Chakraborty, S.; Barbosa, C.; Brustovetsky, T. Brustovetsky, N.; Obukhov, A. G. *J. Cell. Physiol.* **2012**, *227*, 1408-1419.

^{359 (}a) Cai, S.; Fatherazi, S.; Presland, R. B.; Belton, C. M.; Izutsu, K. T. *J. Dermatol. Sci.* **2005**, *40*, 21-28. (b) Beck, B.; Lehen'kyi, V.; Roudbaraki, M.; Flourakis, M.; Charveron, M.; Bordat, P.; Polakowska, R.; Prevarskaya, N.; Skryma, R. *Cell Calcium* **2008**, *43*, 492-505. (c) Woelfe, U.; Laszczyk, M. N.; Kraus, M.; Leuner, K.; Kersten, A.; Simon-Haarhaus, B.; Scheffler, A.; Martin, S. F.; Müller, W. E.; Nashan, D.; Schempp, C. M. *J. Invest. Dermatol.* **2010**, *130*, 113-123. (d) Sun, X.-D.; You, Y.; Zhang, L.; Zheng, S.; Hong, Y.; Li, J.; Gao, X.-H. *Med. Hypotheses* **2012**, *78*, 42-44.

³⁶⁰ For a review of the use of SJW extracts in the treatment of treat skin conditions, see: Schempp, C. M.; Müller, K. A.; Winghofer, B.; Schöpf, E.; Simon, J. C. *Hautarzt* **2002**, *53*, 316-321.

³⁶¹ Lomagno, P.; Lomagno, R. C. *Fitoterapia* **1979**, *50*, 201-205.

³⁶² Najafizadeh, P.; Hashemian, F.; Mansouri, P.; Farshi, S.; Surmaghi, M. S.; Chalangari, R. *Australas. J. Dermatol.* **2012**, *53*, 131-135.

^{363 (}a) Schempp, C. M.; Windeck, T.; Hezel, S.; Simon, J. C. *Phytomedicine* **2003**, *10* (Suppl. 4), 31-37.

³⁶⁴ Müller, M.; Essin, K.; Hill, K.; Beschmann, H.; Rubant, S.; Schempp, C. M.; Gollasch, M.; Boehncke, W. H.; Harteneck, C.; Müller, W. E.; Leuner, K. *J. Biol. Chem.* **2008**, *283*, 33942-33954.

³⁶⁵ Aydar, E.; Yeo, S.; Djamgoz, M.; Palmer, C. *Cancer Cell Int.* **2009**, *9*, 23.

vascular smooth muscle, TRPC6 plays an important role in regulating vascular tone.³⁶⁶ Hyperforin caused dose- and time-dependent smooth muscle constriction in aortic segments taken from mice. In aortic segments taken from TRPC6-knockout mice, no such constriction was observed. In the lung, TRPC6 expression is associated with the induction of platelet-activating factor-induced vascular leakage leading to lung edema.³⁶⁷ Treatment of mouse lungs with hyperforin caused effects similar to platelet-activating factor, including increased intracellular $[Ca^{2+}]$ and weight gain due to fluid entry. TRPC6 malfunction has also been implicated in certain instances of focal segmented glomerulosclerosis, a significant cause of renal disease.³⁶⁸

In addition to TRPC6 and neuronal monoamine receptors, several other potential biomolecular targets of hyperforin have been explored. Both hyperforin and its dicyclohexylamine salt were found to be potent inhibitors of substance P-induced interleukin-6 release in human astrocytoma cells with an IC_{50} value of 1.6 μ M.³⁶⁹ Hypersecretion of interleukin-6 and other cytokines may be involved with the pathophysiology of depression. β-Adrenergic receptors may also be involved in depression since downregulation of these proteins correlate with the antidepressant effects of other medicines.³⁷⁰ When rats were treated with methanolic and CO₂ SJW extracts, a significant decrease in β-adrenergic receptor levels was observed in the frontal cortex region of the brain.³⁷¹ In rat C6 glioblastoma cells, treatment with hyperforin led to a decrease in β_2 -adrenergic receptor expression, indicating that hyperforin was one of

³⁶⁶ Ding, Y.; Winters, A.; Ding, M.; Graham, S.; Akopova, I.; Muallem, S.; Wang, Y.; Hong, J. H.; Gryczynski, Z.; Yang, S.-H.; Birnbaumer, L.; Ma, R. *J. Biol. Chem.* **2011**, *286*, 31799-31809.

³⁶⁷ Samapati, R.; Yang, Y.; Yin, J.; Stoerger, C.; Arenz, C.; Dietrich, A.; Gudermann, T.; Adam, D.; Wu, S.; Freichel, M.; Flockerzi, V.; Uhlig, S.; Kuebler, W. M. *Am. J. Respir. Crit. Care Med.* **2012**, *185*, 160-170.

³⁶⁸ Winn, M. P.; Conlon, P. J.; Lynn, K. L.; Farrington, M. K.; Creazzo, T.; Hawkins, A. F.; Daskalakis, N.; Kwan, S. Y.; Ebersviller, S.; Burchette, J. L.; Pericak-Vance, M. A.; Howell, D. N.; Vance, J. M.; Rosenberg, P. B. *Science* **2005**, *308*, 1801-1804.

³⁶⁹ Gobbi, M.; Moia, M.; Funicello, M.; Riva, A.; Morazzoni, P.; Mennini, T. *Planta Med.* **2004**, *70*, 680-682.

³⁷⁰ Racagni, G.; Brunello, N. *Trends Pharmacol. Sci.* **1984**, *5*, 527-531.

³⁷¹ Simbrey, K.; Winterhoff, H.; Butterweck, V. *Life Sci.* **2004**, *74*, 1027-1038.

the primary components of the extracts responsible for this activity.³⁷² Hyperforin treatment was later shown to also decrease β_1 -adrenergic receptor in this cell line.³⁷³

While hyperforin is considered the chief antidepressant component of SJW extracts, it is not exclusively responsible for the herb's antidepressant activity; other chemicals isolated from the extract have shown efficacy in various *in vitro* and *in vivo* models. Hypericin and pseudohypericin³⁷⁴ as well as the biflavonoid amentoflavone³⁷⁵ and various xanthones³⁷⁶ inhibited monoamine receptor binding. Interestingly, SJW extracts devoid of hyperforin displayed antidepressant-like outcomes in a variety of murine behavioral models, including the elevated plus maze, 377 tail suspension test, and the forced swim test.³⁷⁸ In other behavioral models, positive outcomes were observed even when no detectable amount of hyperforin was present in the brain.³⁷⁹ Flavonoids,³⁸⁰ such as rutin³⁸¹ and quercetin,³⁸² were found to be active in these behavioral models. Amentoflavone was the most active component of the extract at stopping stress-induced hyperthermia in mice.³⁸³ Ouercetin also displayed potent, selective inhibition of

375 Butterweck, V.; Narhstedt, A.; Evans, J.; Hufeisen, S.; Rauser, L.; Savage, J.; Popadak, B.; Ernsberger, P.; Roth, B. L. *Psychopharmacology* **2002**, *162*, 193-202.

376 Muruganandam, A. V.; Ghosal, S.; Bhattacharya, S. K. *Biogenic Amines* **2000**, *15*, 553-567.

377 Coleta, M.; Campos, M. G.; Cotrim, M. D.; da Cunha, A. P. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 20-21.

378 Butterweck, V.; Christoffel, V.; Nahrstedt, A.; Petereit, F.; Spengler, B.; Winterhoff, H. *Life Sci.* **2003**, *73*, 627- 639.

³⁷² Prenner, L.; Sieben, A.; Zeller, K.; Weiser, D. Häberlein, H. *Biochemistry* **2007**, *46*, 5106-5113.

³⁷³ Jakobs, D.; Hage-Hülsmann, A.; Prenner, L.; Kolb, C.; Weiser, D.; Häberlein, H. *J. Pharm. Pharmacol.* **2013**, *65*, 907-915.

³⁷⁴ Simmen, U.; Burkard, W.; Berger, K.; Schaffner, W.; Lundstrom, K. *J. Recept. Signal Transduct. Res.* **1999**, *19*, 59-74.

³⁷⁹ Cervo, L.; Rozio, M.; Ekalle-Soppo, C. B.; Guiso, G.; Morazzoni, P.; Caccia, S. *Psychopharmacology* **2002**, *164*, 423-428.

³⁸⁰ Butterweck, V.; Jürgenliemk, G.; Nahrstedt, A.; Winterhoff, H. *Planta Med.* **2000**, *66*, 3-6.

³⁸¹ Nöldner, M.; Schötz, K. *Planta Med.* **2002**, *68*, 577-580.

³⁸² Paulke, A.; Nöldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. *Pharmazie* **2008**, *63*, 296-302.

³⁸³ Grundmann, O.; Kelber, O.; Butterweck, V. *Planta Med.* **2006**, *72*, 1366-1371.

monoamine oxidase A, with an IC_{50} value of 10 nM.³⁸⁴ Modulation of the hypothalamic-pituitary-adrenal axis may be a therapeutic option in the treatment of depression, and while hyperforin did not alter gene expression in brain areas involved with axis control in rats, 385 various flavonoids 386 and pseudohypericin³⁸⁷ present in SJW extracts modulated axis function. Overall, while hyperforin is the consensus active principle of SJW, various other components display activity across a range of biochemical systems implicated in depression.

Aside from hyperforin, very few PPAPs have been evaluated for antidepressant activity. Adhyperforin is also isolated from SJW, usually in concentrations one-seventh that of hyperforin.³¹² Unsurprisingly, this PPAP also potently inhibits neurotransmitter uptake in the synaptosome uptake assay with IC₅₀ values lower than hyperforin to some extent (Table 1.15). Hyperfoliatin (hyperibone J) has also been evaluated in synaptosomal reuptake assays but was several orders of magnitude less active than hyperforin and adhyperforin (Table 1.15). Like hyperforin, adhyperforin and hyperfoliatin do not bind directly to monoamine receptors.^{308,388} In addition, hyperfoliatin reduced the immobility time of the forced swim test in rats. Hyperatomarin has also been evaluated for uptake inhibition, but was found to be only weakly active against serotonin reuptake $(IC_{50} = 16.8 \mu M)$, and was actually one of the least potent

³⁸⁴ Chimenti, F.; Cottiglia, F.; Bonsignore, L.; Casu, L.; Casu, M.; Floris, C.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; Trombetta, G.; Loizzo, A.; Guarino, I. *J. Nat. Prod.* **1999**, *69*, 945-949.

³⁸⁵ Butterweck, V.; Winterhoff, H.; Herkenham, M. *Neuropsychopharmacology* **2003**, *28*, 2160-2168.

³⁸⁶ Butterweck, V.; Hegger, M.; Winterhoff, H. *Planta Med.* **2004**, *70*, 1006-1008.

³⁸⁷ Simmen, U.; Bobirnac, I.; Ullmer, C.; Lübbert, H.; Büter, K. B.; Schaffner, W.; Schoeffter, P. *Eur. J. Pharmacol.* **2003**, *458*, 251-256.

³⁸⁸ do Rego, J.-C.; Benkiki, N.; Chosson, E.; Kabouche, Z.; Seguin, E.; Costentin, J. *Eur. J. Pharmacol.* **2007**, *569*, 197-203.

components of *Hypericum annulatum* evaluated in this study.³⁸⁹ Furohyperforin was reported to have onetenth the activity of hyperforin against synaptosomal serotonin uptake.³⁹⁰

Table 1.15. Inhibition of synaptosomal ³H neurotransmitter uptake by adhyperforin.⁴

PP∆P	¹ Hlserotonin	³ H noradrenaline	$\int^3 H$ ldopamine	$[{}^3H]_L$ -glutamate	References
adhyperforin	$0.027 - 0.32$	$0.014 - 0.67$	0.003	2.40	308.391
hyperfoliatin		1.8		n.d.	388

 a All data reported are IC₅₀ values (in μ M).

Several semisynthetic hyperforin analogs have been evaluated for antidepressant activity. Crude SJW extracts containing hyperforin and adhyperforin conjugates still retained significant activity in the forced swim test, even though they did not contain detectable hyperforin or adhyperforin.³⁹² In studies involving more resolved hyperforin analogs, hyperforin esters generally show favorable antidepressant activity whereas oxidation products display decreased activity. Across four different animal models of depression (i.e., forced swim test, learned helplessness test, elevated plus maze, and light-dark test), hyperforin *O*-acetate at 3-5 mg/kg dosing showed efficacy.³⁹³ Hyperforin *O*-3,4,5-trimethoxybenzoate (**61**) also shortened immobility time during the forced swim test when injected at 3.1-6.3 mg/kg concentrations.³⁹⁴ At these concentrations, plasma levels of this analog were 30-50 μ M and brain levels were found to be 0.3 μ M. While both of these analogs were active in animal models of depression, neither possessed the ability to inhibit *in vitro* synaptosomal neurotransmitter uptake.^{309,394} A variety of

³⁸⁹ Tzankova, V.; Nedialkov, P.; Kitanov, G.; Danchev, N. *Pharmacologyonline* **2010**, *2*, 142-150.

³⁹⁰ Verotta, L.; Appendino, G.; Belloro, E.; Jakupovic, J.; Bombardelli, E. *J. Nat. Prod.* **1999**, *62*, 770-772.

³⁹¹ Wonnemann, M.; Singer, A.; Siebert, B.; Müller, W. E. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 148-151.

³⁹² Muruganandam, A. V.; Bhattacharya, S. K.; Ghosal, S. *Indian J. Exp. Biol.* **2001**, *39*, 1302-1304.

³⁹³ Zanoli, P.; Rivasi, M.; Baraldi, C.; Baraldi, M. *Behav. Pharmacol.* **2002**, *13*, 645-651.

³⁹⁴ Cervo, L.; Mennini, T.; Rozio, M.; Ekalle-Soppo, C. B.; Canetta, A.; Burbassi, S.; Guiso, G.; Pirona, L.; Riva, A.; Morazzoni, P.; Caccia, S.; Gobbi, M. *Eur. Neuropsychopharmacol.* **2005**, *15*, 211-218.

other hyperforin analogs were found to be inactive in this uptake assay, including hyperforin *O*-methyl ether (**60**), hyperforin *O*-2,4-dinitrobenzoate, **63**, **64**, oxyhyperforin, pyrohyperforin, and **83** (Figure 1.15).309 It should be noted that various diacylphloroglucinol derivatives have been developed as TRPC6 selective inhibitors, but these compounds bear little resemblance to hyperforin.³⁹⁵

Figure 1.15. A semisynthetic hyperforin analog evaluated for antidepressant activity.

Several PPAPs have been evaluated for their activity against neurological disorders beyond clinical depression.³⁹⁶ Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are possible targets for the treatment of various neurological diseases, such as Alzheimer's disease, glaucoma, and myasthenia gravis.397 Various PPAPs exhibit fairly potent inhibition activity against both of these enzymes in an *in vitro* assay (Table 1.16).¹²⁸ At a concentration of 10 μ M, garsubellin A increased choline acetyltransferase activity by 154% in P10 rat septal neurons.³⁹⁸ Mice injected with 1-10 mg/kg hyperforin caused an increase of acetocholine release, and at the highest concentration tested, a significant decrease in locomotor activity was observed.³⁹⁹ The former results could be explained by the ability of hyperforin

³⁹⁵ Leuner, K.; Heiser, J. H.; Derksen, S.; Mladenov, M. I.; Fehske, C. J.; Schubert, R.; Gollasch, M.; Schneider, G.; Harteneck, C.; Chatterjee, S. S.; Müller, W. E. *Molec Pharmacol.* **2010**, *77*, 368-377.

³⁹⁶ For reviews of therapeutic potential of PPAPs against degenerative diseases, see: (a) Verotta, L. *Phytochem. Rev.* **2002**, *1*, 389-407. (b) Wilson, R. M.; Danishefsky, S. J. *Acc. Chem. Res.* **2006**, *39*, 539-549.

³⁹⁷ Tripathi, A.; Srivastava, U. C. *Ann. Neurosci.* **2008**, *15*, 106-111.

³⁹⁸ Fukuyama, Y.; Kuwayama, A.; Minami, H. *Chem. Pharm. Bull.* **1997**, *45*, 947-949.

³⁹⁹ Buchholzer, M.-L.; Dvorak, C.; Chatterjee, S. S.; Klein, J. *J. Pharmacol. Exp. Ther.* **2002**, *301*, 714-719.

to activate ion channels in neurons, and the latter result may indicate that very high, chronic doses of hyperforin may lead to Parkinson's disease. A subsequent study found that hyperforin-induced acetylcholine release in the rat hippocampus is indeed Ca^{2+} -dependent.⁴⁰⁰

PPAP	AChE $IC_{50}(\mu M)$	BChE $IC_{50}(\mu M)$
garcinol	0.66	739
guttiferone A	0.88	2.77
guttiferone F	0.95	3.50
isogarcinol	113	830

Table 1.16. AChE and BChE inhibition activity of several PPAPs.

Hyperforin and its reduced derivative tetrahydrohyperforin (**76**) have been evaluated for their ability to affect β-amyloid (Aβ) biochemistry, a poorly understood but important component of the pathophysiology of Alzheimer's disease.⁴⁰¹ In rat PC12 cells, hyperforin treatment accelerated the proteolysis of amyloid precursor protein.⁴⁰² The activity of hyperforin was distinct from other, known activators of amyloid precursor protein proteolytic secretion. Hyperforin also significantly decreased the formation of amyloid deposits in rats injected with amyloid fibrils.⁴⁰³ The rats also displayed more favorable outcomes in the circular water maze test compared to control and decreased Aβ-related neurotoxicity in hippocampal neurons. Similar *in vivo* effects were observed for tetrahydrohyperforin (**76**).⁴⁰⁴ In amyloid precursor protein-transgenic mice, tetrahydrohyperforin caused a reduction in Aβ

⁴⁰⁰ Kiewert, C.; Buchholzer, M.-L.; Hartmann, J.; Chatterjee, S. S.; Klein, J. *Neurosci. Lett.* **2004**, *364*, 195-198.

 401 For a review of the effects of hyperforin and its derivatives on the pathophysiology of Alzheimer's disease, see: Griffith, T. N.; Varela-Nallar, L.; Dinamarca, M. C.; Inestrosa, N. C. *Curr. Med. Chem.* **2010**, *17*, 391-406.

⁴⁰² Froestl, B.; Steiner, B.; Müller, W. E. *Biochem. Pharmacol.* **2003**, *66*, 2177-2184.

⁴⁰³ Dinamarca, M. C.; Cerpa, W.; Garrido, J.; Hancke, J. L.; Inestrosa, N. C. *Molec. Psychiatry* **2006**, *11*, 1032-1048.

⁴⁰⁴ For a review, see: Carvajal, F. J.; Inestrosa, N. C. *Front. Mol. Neurosci.* **2011**, *4*, 19.

plaque formation, possibly due to the release of AChE from the precursor fibril assemblies⁴⁰⁵ or the prevention of AChE association with amyloid plaques.⁴⁰⁶ Later studies established that this semisynthetic hyperforin derivate dose-dependently prevented cognitive deficit and memory impairment in this transgenic mouse model as well as a decrease in neurotoxicity and an increase in hippocampal neurogenesis.407 Part of this activity could be explained by the inhibition of the proteolytic processing of amyloid precusor protein to Aβ peptide. In addition to affecting Aβ generation and plaque formation, the ability of hyperforin to upregulate P-gp and thus increase clearance of Aβ peptide from the brain may also be effective in preventing the onset of Alzheimer's disease.⁴⁰⁸

Deficit of prepulse inhibition is common phenomenon in patients suffering from a variety of neurological disorders including Alzheimer's disease and schizophrenia. Since inhibition of monoamine receptors may be involved in disruption of prepulse inhibition, it is unsurprising that hyperforin caused a significant decrease in rat startle amplitude in the acoustic startle response test.^{409} Given its effects on prepulse inhibition, hyperforin may exacerbate the symptoms of several mental disorders.

Both garcinol and hyperforin have been evaluated for their effects on the acquisition of new memories. Treatment of mice and rats with the sodium salt of hyperforin (1.25 mg/kg/day) for 7 days caused significant increases in learned responses in the conditioned avoidance test.⁴¹⁰ After 9 days

l

408 Abuznait, A. H.; Cain, C.; Ingram, D.; Burk, D.; Kaddoumi, A. *J. Pharm. Pharmacol.* **2011**, *63*, 1111-1118.

⁴⁰⁵ Dinamarca, M. C.; Arrázola, M.; Toledo, E.; Cerpa, W. F.; Hancke, J.; Inestrosa, N. C. *Chem.-Biol. Interact.* **2008**, *175*, 142-149.

⁴⁰⁶ Carvajal, F. J.; Zolezzi, J. M.; Tapia-Rojas, C.; Godoy, J. A.; Inestrosa, N. C. *J. Alzheimer's Dis.* **2013**, *36*, 99- 118.

^{407 (}a) Cerpa, W.; Hancke, J. L.; Morazzoni, P.; Bombardelli, E.; Riva, A.; Marin, P. P.; Inestrosa, N. C. *Curr. Alzheimer Res.* **2010**, *7*, 126-133. (b) Inestrosa, N. C.; Tapia-Rojas, C.; Griffith, T. N.; Cavajal, F. J.; Benito, M. J.; Rivera-Dictter, A.; Alvarez, A. R.; Serrano, F. G.; Hancke, J. L.; Burgos, P. V.; Parodi, J.; Varela-Nallar, L. *Transl. Psychiatry* **2011**, *1*, e20. (c) Abbott, A. C.; Toledo, C. C.; Aranguiz, F. C.; Inestrosa, N. C. *J. Alzheimer's Dis.* **2013**, *34*, 873-885.

^{409 (}a) Tadros, M. G.; Mohamed, M. R.; Youssef, A. M.; Sabry, G. M.; Sabry, N. A.; Khalifa, A. E. *Behav. Brain Res.* **2009**, *199*, 334-339. (b) Tadros, M. G.; Mohamed, M. R.; Youssef, A. M.; Sabry, G. M.; Sabry, N. A.; Khalifa, A. E. *J. Ethnopharmacol.* **2009**, *122*, 561-566.

⁴¹⁰ Klusa, V.; Germane, S.; Nöldner, M.; Chatterjee, S. S. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 61-69.

following the last dose of hyperforin, the learned response was retained in the animals. Hyperforin also showed improvement after a single dose in the passive avoidance test and reversed scopolamine-induced amnesia. In another study, direct injection of garcinol into the rat lateral amygdala immediately following fear conditioning reduced the consolidation of the Pavlovian fear memory.⁴¹¹ Similarly, garcinol also prevented the reconsolidation of a fear memory following fear memory retrieval. This property of garcinol may be useful for the treatment of post-traumatic stress disorder.

Hyperforin has also been evaluated for the treatment of other neurological conditions. When rats were injected with hyperforin (10 mg/kg) once a day for 7 days, they showed significantly less aggression across four behavioral models: foot shock-induced aggression, isolation-induced aggression, residentintruder aggression, and the water competition test.⁴¹² In a study in which rats were given access to alcohol, injection of SJW extracts containing hyperforin caused a reduction of ethanol consumption that was proportional to the amount of hyperforin in the extracts.⁴¹³ Similar dose-dependent results were found using a breed of mice that preferred alcohol.⁴¹⁴ These effects may be due hyperforin-based *N*-methyl-Daspartate-induced (NMDA) antagonism. NMDA receptors overactivity has been noted in alcohol withdrawal, often causing agitation and seizures in some cases.⁴¹⁵ Hyperform (at a 10 μ M concentration) inhibited NMDA-induced Ca^{2+} influx in isolated rat cortical neurons and blocked the NMDA receptorinduced release of phospholipid-based choline in rat hippocampal slices.⁴¹⁶ These effects may contribute to apparent reduction alcohol consumption observed with hyperforin treatment.

⁴¹¹ Maddox, S. A.; Watts, C. S.; Doyère, V.; Schafe, G. E. *PLoS ONE* **2013**, *8*, e54463.

⁴¹² Kumar, N.; Husain, G. M.; Singh, P. N.; Kumar, V. *Drug Discov. Ther.* **2009**, *3*, 162-167.

⁴¹³ Perfumi, M.; Panocka, I.; Ciccocioppo, R.; Vitali, D.; Froldi, R.; Massi, M. *Alcohol Alcoholism* **2001**, *36*, 199- 206.

⁴¹⁴ Wright, C. W.; Gotti, M.; Grayson, B.; Hanna, M.; Smith, A. G.; Sunter, A.; Neill, J. C. *J. Psychopharmacol.* **2003**, *17*, 403-408.

⁴¹⁵ Grant, K. A.; Valverius, P.; Hudspith, M.; Tabakoff, B. *Eur. J. Pharmacol.* **1990**, *176*, 289-296.

⁴¹⁶ Kumar, V.; Mdzinarischvili A.; Kiewert, C.; Abbruscato, T.; Bickel, U.; van der Schyf, C. J.; Klein, J. *J. Pharmacol. Sci.* **2006**, *102*, 47-54.

In addition to hyperforin, garcinol and guttiferone have displayed neuroprotective effects. Garcinol has been shown to promote the development of neurons.⁴¹⁷ Cortical progenitor cells taken from embryonic rats developed into neurospheres upon treatment of garcinol, and this may be facilitated by $Ca²⁺$ entry through the extracellular signal-regulated kinase pathway, which also promoted neuronal survival. The neuroprotective effects of guttiferone A are most likely derived from its ability to scavenge free radicals. Incubation of PC12 cells with guttiferone A garnered protection from Fe^{3+} auto-oxidation⁴¹⁸ as well as from various reactive oxygen species. 142

Given its ability to inhibit neurotransmitter reuptake by neurons, hyperforin has also been evaluated for its effects on neuroendocrine response. Injection of 9.3 mg/kg hyperforin into rats increased plasma corticosterone, and lowered haloperidol-induced plasma prolactin levels.⁴¹⁹ Since ketanserin but not WAY-100635 inhibited hyperforin-induced plasma corticosterone effects, $5-HT₂$ receptors may be involved in this response. A small-scale, single-blind study involving 12 healthy volunteers found that a hyperforin-enriched SJW extract (at 600, 900, and 1200 mg/kg daily oral dosing over 4 days) stimulated adenocorticotropic hormone, while cortisol and prolactin levels remained unaffected.⁴²⁰ Several patients experienced an increase in growth hormone release, but this effect was not statistically significant compared to placebo.

The analgesic properties of several PPAPs have also been evaluated. Through analyzing the components of SJW extracts individually, it was discovered that both hypericin and hyperforin displayed antinociceptive properties in murine models of neuropathic pain.⁴²¹ Hyperforin was particularly effective

⁴¹⁷ Weng, M.-S.; Liao, C.-H.; Yu, S.-Y.; Lin, J.-K. *J. Agric. Food Chem.* **2011**, *59*, 1031-1040.

⁴¹⁸ Figueredo, Y. N.; García-Pupo, L.; Cuesta Rubio, O.; Hernández, R. D.; Naal, Z.; Curti, C.; Andreu, G. L. P. *J. Pharmacol. Sci.* **2011**, *116*, 36-46.

⁴¹⁹ Franklin, M.; Chi, J. D.; Mannel, M.; Cowen, P. J. *J. Psychopharmacol.* **2000**, *14*, 360-363.

⁴²⁰ Schüle, C.; Baghai, T.; Sauer, N.; Laakmann, G. *Neuropsychobiology* **2004**, *49*, 58-63.

^{421 (}a) Galeotti, N.; Vivoli, E.; Bilia, A. R.; Vincieri, F. F.; Ghelardini, C. *Biochem. Pharmacol.* **2010**, *79*, 1327- 1336. (b) Galeotti, N.; Vivoli, E.; Bilia, A. R.; Bergonzi, M. C.; Bartolini, A.; Ghelardini, C. *J. Pain* **2010**, *11*, 149- 159.

at the prevention of thermally induced pain. This pain inhibition was abolished by the addition of naloxone, indicating hyperforin's effects are most likely opioid-dependent. The analgesic effects of 7 *epi*-clusianone were not limited to thermally induced pain in mouse models, imparting antinociceptive effects in tests including acetic acid-induced writhing, hot plate exposure, the formalin subplantar injection.¹⁷⁷ In the acetic acid-induced writhing model, guttiferone A dose-dependently reduced abdominal constrictions with an EC₅₀ value of 4.5 mg/kg.⁴²²

Other Bioactivity

l

As the popularity of SJW extracts grew in the late 1990's, several instances of alarming side effects were reported.⁴²³ By the end of 1999, more than 8 reported cases suggested that SJW extracts may cause increased hepatic metabolism of prescribed medication. 424 In particular, women consuming SJW extracts experienced a significant decrease in co-medicated theophylline, cyclosporin, warfarin, and ethinylestradiol.⁴²⁵ A subsequent study conducted by the NIH in 16 healthy volunteers found that SJW extract caused a decrease in indivanir, 426 and two German heart transplant patients suffered acute transplant rejection due to SJW extract-accelerated cyclosprorine metabolism.⁴²⁷ These alarming

⁴²² Dal Molin, M. M.; Silva, S.; Alves, D. R.; Quintão, N. L. M.; Delle Monache, F.; Filho, V. C.; Niero, R. *Arch. Pharm. Res.* **2012**, *35*, 623-631.

 423 For reviews of SJW herb-drug interactions, see: (a) Henderson, L.; Yue, Q. Y.; Bergquist, C.; Gerden, B.; Arlett, P. *Br. J. Clin. Pharmacol.* **2002**, *54*, 349-356. Rund, D. *Leukemia Lymphoma* **2007**, *48*, 1470-1471. (c) Borrelli, F.; Izzo, A. A. *AAPS J.* **2009**, *11*, 710-727. (d) Rahimi, R.; Abdollahi, M. *Expert Opin. Drug Metab. Toxicol.* **2012**, *8*, 691-708.

⁴²⁴ Ernst, E. *Lancet* **1999**, *354*, 2014-2016.

^{425 (}a) Rey, J. M. *Med. J. Aust.* **1998**, *169*, 583-586. (b) Stevinson, C.; Ernst, E. *CNS Drugs* **1999**, *11*, 125-132. (c) Nebel, A.; Schneider, B. J.; Baker, R. K.; Kroll, D. J. *Ann. Pharmacother.* **1999**, *33*, 502-506.

⁴²⁶ Piscitelli, S. C.; Burnstein, A. H.; Alfaro, R. M.; Chaitt, D.; Falloon, J. *Lancet* **2000**, *355*, 547-548.

⁴²⁷ Ruschitzka, F.; Lüscher, T. F.; Noll, G.; Meier, P. J.; Turina, M. *Lancet* **2000**, *355*, 548-549.

observations led the FDA to issue a public healthy advisory⁴²⁸ and the British Medicines Control Agency to issue a reminder to doctors. 429

It was soon discovered independently by two different groups that hyperforin is the component of SJW that potently activates pregnane X receptor (PXR, steroid X receptor).⁴³⁰ PXR is a transcription factor that serves as a key regulator of many enzymes involved in xenobiotic metabolism, such as cytochrome P450s and P-gp. It contains a DNA-binding domain and a ligand-binding domain, the latter of which is substantially flexible and allows for the binding of structurally diverse compounds (i.e., xenobiotics). For instance, the compound SR12813 binds to PXR in three distinct orientations.⁴³¹ With an EC_{50} value of 23 nM, hyperforin is the most potent PXR activator discovered.^{430b} Using tritiated SR12813 in a competition binding assay, it was also discovered that hyperforin binds directly to PXR. A resolved crystal structure of hyperforin bound to PXR provided unambiguous proof of direct interaction (Figure 1.16a).432 Compared to an earlier crystal structure of the ligand-binding domain of PXR in its *apo* form, hyperforin caused a 250 $A³$ increase in binding site volume. In addition, most of the contacts hyperforin makes to PXR are through hydrophobic interactions of its prenyl side-chains (Figure 1.16b).

^{428 (}a) Lumpkin, M. M.; Alpert, S. *Public Health Advisory*; U.S. Food and Drug Administration, February 10, 2000. (b) Henney, J. E. *J. Am. Med. Assoc.* **2000**, *283*, 1679-1679.

⁴²⁹ Committee on Safety of Medicines, Medicines Control Agency, *Curr. Prob. Pharmacovigilance* **2000**, *26*, 6-7.

^{430 (}a) Wentworth, J. M.; Agostini, M.; Love, J.; Schwabe, J. W.; Chatterjee, V. K. K. *J. Endocrinol.* **2000**, *166*, R11-R16. (b) Moore, L. B.; Goodwin, B.; Jones, S. A.; Wisely, G. B.; Serabjit-Singh, C. J.; Willson, T. M.; Collins, J. L.; Kliewer, S. A. *Proc. Natl. Acad. Sci. USA* **2000**, *97*, 7500-7502.

⁴³¹ Watkins, R. E.; Wisely, G. B.; Moore, L. B.; Collins, J. L.; Lambert, M. H.; Williams, S. P.; Willson, T. M.; Kliewer, S. A.; Rebindo, M. R. *Science* **2001**, *292*, 2329-2333.

⁴³² Watkins, R. E.; Maglich, J. M.; Moore, L. B.; Wisely, G. B.; Noble, S. M.; Davis-Searles, P. R.; Lambert, M. H.; Kliewer, S. A.; Rebindo, M. R. *Biochemistry* **2003**, *42*, 1430-1438.

Figure 1.16. (a) Detail of hyperforin bound to the ligand-binding domain of PXR and (b) schematic highlighting the contacts between hyperforin and PXR (solid lines indicate nonpolar contacts, and dotted lines indicate hydrogen bonding).

Further, hyperforin-induced PXR activation directly results in the upregulation of genes involved in xenobiotic metabolism and drug efflux. Treatment of primary human hepatocytes with hyperforin induced increased *CYP3A4* expression.^{430b} *CYP2C9* induction was also noted in the hyperforin treatment of HepG2 cells.⁴³³ The increased expression of these cytochrome P450s is significant since CYP3A4 and CYP2C9 are responsible for the metabolism of approximately 50% and 20% of all known drugs, respectively.⁴³⁴ While *CYP3A4* and *CYP2C8* expression did increase upon hyperforin exposure in primary human hepatocytes,⁴³⁵ *CYP24A1* and *CYP27B1* levels remained unchanged.⁴³⁶ In another study, *CYP1A1*, *CYP1A2*, and gene for the monooxygenase FMO5 were upregulated in HepG2 cells, while *CYP4F2* and *NOO2* were downregulated.⁴³⁷ Hyperforin also caused tissue-specific activation of the ATP-binding cassette transporters, which play important roles in controlling the passage of drugs and xenobiotics

⁴³³ Chen, Y.; Ferguson, S. S.; Negishi, M.; Goldstein, J. A. *J. Pharmacol. Exp. Ther.* **2004**, *308*, 495-501.

⁴³⁴ Zanger, U. M.; Schwab, M. *Pharmacol. Therapeut.* **2013**, *138*, 103-141.

⁴³⁵ Komoroski, B. J.; Parise, R. A.; Egorin, M. J.; Strom, S. C.; Venkataramanan, R. *Clin. Cancer Res.* **2005**, *11*, 6972-6979.

⁴³⁶ Wang, Z.; Lin, Y. S.; Dickmann, L. J.; Poulton, E.-J.; Eaton, D. L.; Lampe, J. W.; Shen, D. D.; Davis, C. L.; Shuhart, M. C.; Thummel, K. E. *J. Bone Miner. Res.* **2013**, *28*, 1101-1116.

⁴³⁷ Krusekopf, S.; Roots, I. *Pharmacogenet. Genom.* **2005**, *15*, 817-829.

across intracellular and extracellular membranes. Using porcine brain capillary endothelial cells (PBCECs) as a model for the blood-brain barrier in humans, hyperforin treatment caused significant increases in mRNA levels for P-gp⁴³⁸ and both ABCG1 and 2^{439} P-gp expression also significantly increased in LS180⁴⁴⁰ and T84⁴⁴¹ cells, demonstrating that hyperforin may accelerate the excretion of drugs. Interestingly, while hyperforin caused upregulation of CYP3A4 in Caco-2 cells, P-gp expression actually decreased.442 Aside from regulating xenobiotic metabolism, PXR may also play a role in other areas of human health. Hyperforin-induced PXR activation may prevent liver steatosis, given that hyperforin treatment of HepG2 cells overexpressing PXR exacerbated steatogenic effects in these cells.⁴⁴³ PXR may be important in bone homeostasis and thus prevent osteoporosis; treatment of primary osteocytes with vitamin K_2 or hyperforin activated PXR and led to an increase in bone marker expression.444 However, chronic activation of PXR may lead to osteomalacia via increased CYP24A1 expression, leading to vitamin D deficiency.⁴⁴⁵

It is also important to note that activation of PXR is species-specific. As mentioned previously, porcine PXR is hyperforin-sensitive.⁴³⁸ It is unclear whether mouse PXR is a hyperforin target. One study found that hyperforin did not induce cytochrome P450 expression in Swiss Webster mice, ⁴⁴⁶ but another study found that hyperforin·HNCy₂ increased CYP3A-mediated hepatic erythomycin-*N*- \overline{a}

442 Patel, J.; Buddha, B.; Dey, S.; Pal, D.; Mitra, A. K. *Am. J. Ther.* **2004**, *11*, 262-277.

443 Moya, M.; Gómez-Lechón, M. J.; Castell, J. V.; Jover, R. *Chem.-Biol. Interact.* **2010**, *184*, 376-387.

⁴³⁸ Ott, M.; Fricker, G.; Bauer, B. *J. Pharmacol. Exp. Ther.* **2009**, *329*, 141-149.

⁴³⁹ Lemmen, J.; Tozakidis, I. E. P.; Galla, H.-J. *Brain Res.* **2013**, *1491*, 1-13.

⁴⁴⁰ Tian, R.; Kobayu, N.; Morimoto, S.; Shoyama, Y.; Ohtani, H.; Sawada, Y. *Drug Metab. Dispos.* **2005**, *33*, 547- 554.

⁴⁴¹ Haslam, I. S.; Jones, K.; Coleman, T.; Simmons, N. L. *Biochem. Pharmacol.* **2008**, *76*, 850-861.

⁴⁴⁴ Tabb, M. M.; Sun, A.; Zhou, C.; Grün, F.; Errandi, J.; Romero, K.; Pham, H.; Inoue, S.; Mallick, S.; Lin, M.; Forman, B. M.; Blumberg, B. *J. Biol. Chem.* **2003**, *278*, 43919-43927.

⁴⁴⁵ Pascussi, J. M.; Robert, A.; Nguyen, M.; Walrant-Debray, O.; Garabedian, M.; Martin, P.; Pineau, T.; Saric, J.; Navarro, F.; Maurel, P.; Vilarem, M. J. *J. Clin. Invest.* **2005**, *115*, 177-186.

⁴⁴⁶ Bray, B. J.; Brennan, N. J.; Perry, N. B.; Menkes, D. B.; Rosengren, R. J. *Life Sci.* **2002**, *70*, 1325-1335.

demethylase activity in CD-1 mice.⁴⁴⁷ The cynomolgus monkey (i.e., crab-eating macaque) response to hyperforin is very similar to that of humans, making this species an effective animal model for predicting downstream metabolic enzyme induction via PXR activation.⁴⁴⁸ Unlike mouse PXR, rat PXR is unambiguously unaffected by hyperforin exposure.⁴⁴⁹ In order to study which residues in rat PXR confer hyperforin insensitivity, a variety of rat-human PXR cDNA chimeras were prepared.⁴⁵⁰ Rat PXR hyperforin sensitivity was conferred by converting Phe305 to leucine, and human PXR was rendered hyperforin insensitive via mutagenesis of Leu308 to phenylalanine.

Further evidence for hyperforin activation of xenobiotic metabolism was provided through a variety of drug-specific, small-scale clinical trials involving SJW extracts containing variable amounts of the PPAP. In a study involving 10 renal transplant patients, only those that took SJW extracts with significant hyperforin experienced a cyclosporine drug interaction.⁴⁵¹ Similar herb-drug interactions were encountered in studies involving healthy volunteers taking digoxin, $452,453$ theophylline, 454 alprazolam, 453 caffeine,⁴⁵³ tolbutamide,⁴⁵³ midazolam,⁴⁵⁵ ethinylestradiol,⁴⁵⁶ and 3-ketodesogestrel.⁴⁵⁶ SJW extracts with little to no hyperforin content failed to increase cytochrome P450 expression in several studies.⁴⁵⁷

⁴⁴⁷ Cantoni, L.; Rozio, M.; Mangolini, A.; Hauri, L.; Caccia, S. *Toxicol. Sci.* **2003**, *75*, 25-30.

⁴⁴⁸ Kim, S.; Dinchuk, J. E.; Anthony, M. N.; Orcutt, T.; Zoeckler, M. E.; Sauer, M. B.; Mosure, K. W.; Vuppugalla, R.; Grace, J. E., Jr.; Simmermacher, J.; Dulac, H. A.; Pizzano, J.; Sinz, M. *Drug Metab. Dispos.* **2010**, *38*, 16-24.

⁴⁴⁹ Nöldner, M.; Chatterjee, S. *Pharmacopsychiatry* **2001**, *34* (Suppl. 1), 108-110.

⁴⁵⁰ Tirona, R. G.; Leake, B. F.; Podust, L. M.; Kim, R. B. *Molec. Pharmacol.* **2004**, *65*, 36-44.

⁴⁵¹ Mai, I.; Bauer, S.; Perloff, E. S.; Johne, A.; Uehleke, B.; Frank, B.; Budde, K.; Roots, I. *Clin. Pharmacol. Ther.* **2004**, *76*, 330-340.

⁴⁵² Mueller, S. C.; Uehleke, B.; Woehling, H.; Petzsch, M.; Majcher-Peszynska, J.; Hehl, E.-M.; Sievers, H.; Frank, B.; Riethling, A.-K.; Drewelow, B. *Clin. Pharmacol. Ther.* **2004**, *75*, 546-557.

⁴⁵³ Arold, G.; Donath, F.; Maurer, A.; Diefenbach, K.; Bauer, S.; Henneicke-von Zepelin, H.-H.; Friede, M.; Roots, I. *Planta Med.* **2005**, *71*, 331-337.

⁴⁵⁴ Morimoto, T.; Kotegawa, T.; Tsutsumi, K.; Ohtani, Y.; Imai, H.; Nakano, S. *J. Clin. Pharmacol.* **2004**, *44*, 95- 101.

⁴⁵⁵ Mueller, S. C.; Majcher-Peszynska, J.; Uehleke, B.; Klammt, S.; Mundkowski, R. G.; Miekisch, W.; Sievers, H.; Bauer, S.; Frank, B.; Kundt, G.; Drewelow, B. *Eur. J. Clin. Pharmacol.* **2006**, *62*, 29-36.

Apart from hyperforin, the binding affinity of other PPAPs to PXR has not been explored. The only other PPAP reported to interact with a nuclear receptor is guttiferone G.⁴⁵⁸ Guttiferone G preferentially binds to the liver X receptor α isoform (LXR- α) with an IC₅₀ value of 3.4 μ M, having little to no interaction with LXR-β (IC₅₀ > 15 μ M). Since LXRs play important roles in cholesterol homeostasis, guttiferone G may be a lead structure in the development of cholesterol regulation therapy.

Aside from increasing their expression levels via PXR activation, hyperforin appears to inhibit several proteins involved in xenobiotic metabolism. An early study found that hyperforin noncompetitively inhibited CYP2D6 with a K_i of 1.5 μ M and competitively inhibited CYP3A4 (K_i = 0.48) μ M) and CYP2C9 ($K_i = 1.8 \mu$ M) in *in vitro* binding assays.⁴⁵⁹ Hyperform also potently inhibited cDNAexpressed CYP1A2, CYP2C9, and CYP2C19 with IC_{50} values of 3.9, 0.01, and 0.02 μ M, respectively.⁴⁶⁰ CYP1A1 was also inhibited by hyperforin $(K_i = 1.1 \mu M, IC_{50} = 1.2 \mu M)$, and this was demonstrated by the prevention of the carcinogen formation from CYP1A1-mediated benzo[*a*]pyrene-7,8-dihydrodiol epoxidation.⁴⁶¹ While hyperforin inhibited CYP3A4 with an IC₅₀ value of 0.63 µM, three of its naturally occurring analogs were found to be more potent inhibits of the cytochrome P450 isoform $(IC_{50}$ values in parentheses): furoadhyperforin (0.072 µM), furohyperforin isomer 1 (0.079 µM), furohyperforin isomer 2 (0.23 μ M).⁴⁶² Furohyperforin was also found to inhibit CYP3A4 with an IC₅₀ value of 1.3 μ M. P-gp activity was also moderately inhibited by hyperforin (IC₅₀ = 30 μ M), ascertained by monitoring the active

⁴⁵⁶ Will-Shahab, L.; Bauer, S.; Kunter, U.; Roots, I.; Brattström, A. *Eur. J. Clin. Pharmacol.* **2009**, *65*, 287-294.

^{457 (}a) Gödtel-Armbrust, U.; Metzger, A.; Kroll, U.; Kelber, O.; Wojnowski, L. *Naunyn-Schmied. Arch. Pharmacol.* **2007**, *375*, 377-382. (b) Mueller, S. C.; Majcher-Peszynska, J.; Mundkowski, R. G.; Uehleke, B.; Klammt, S.; Sievers, H.; Lehnfeld, R.; Frank, B.; Thurow, K.; Kundt, G.; Drewelow, B. *Eur. J. Clin. Pharmacol.* **2009**, *65*, 81- 87.

⁴⁵⁸ Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Guan, Z.; Borris, R. P.; Stijfhoorn, E.; Stevenson, D.; Wang, J.; Sharma, N.; MacNaul, K.; Menke, J. G.; Ali, A.; Schulman, M. J.; Singh, S. B. *J. Nat. Prod.* **²⁰⁰⁵**, *68*, 617-619. 459 Obach, R. S. *J. Pharmacol. Exp. Ther.* **2000**, *294*, 88-95.

⁴⁶⁰ Zou, L.; Harkey, M. R.; Henderson, G. L. *Life Sci.* **2002**, *71*, 1579-1589.

⁴⁶¹ Schwarz, D.; Kisselev, P.; Roots, I. *Cancer Res.* **2003**, *63*, 8062-8068.

⁴⁶² Lee, J.-y.; Duke, R. K.; Tran, V. H.; Hook, J. M.; Duke, C. C. *Phytochemistry* **2006**, *67*, 2550-2560.

efflux of daunorubicin from NIH-3T3 cells expressing P-gp.⁴⁶³ P-gp and ABCG2 inhibition was also observed in leukemia cell lines.⁴⁶⁴ Using PBCECs and freshly isolated porcine brain capillaries as models for the blood-brain barrier, hyperforin was found to directly inhibit P-gp activity.⁴⁶⁵ Hyperforin also partially inhibited paclitaxel efflux from xenopus oocytes expressing the liver-specific organic anion transporting polypeptide isoform 1B3.466

Several preclinical and small-scale clinical trials were performed to determine hyperforin's pharmacokinetic profile in various orally available forms.⁴⁶⁷ This is particularly intriguing considering that hyperforin on one hand activates PXR and on the other inhibits various cytochrome P450s. In rats given a SJW extract containing 5% hyperforin (300 mg/kg) orally, hyperforin plasma levels reached a maximum of 370 ng/mL (approximately 690 nM) after a single dose.⁴⁶⁸ After dosing either an extract containing 4.5% or with pure hyperform $HNCy_2$ once a day for 12 days in mice, plasma concentrations of hyperforin were significantly lower than after a single dose.⁴⁴⁷ These data are unsurprising given the fact that hyperforin may increase xenobiotic metabolism through activation of PXR in mice. When a 5% hyperforin extract was co-medicated with the CYP3A4 inhibitor ritonavir (20 mg/kg) in mice, a significant increase in hyperforin bioavailability was observed. ⁴⁶⁷ Co-medication with the P-gp inhibitor valspodar did not have any effect on hyperforin *AUC*. Another study established that hyperforin does indeed cross the blood-brain barrier in mice. $469,470$ While treatment with the purified sodium salt of

⁴⁶³ Wang, E.-j.; Barecki-Roach, M.; Johnson, W. W. *J. Pharm. Pharmacol.* **2004**, *56*, 123-128.

^{464 (}a) Weber, C. C.; Kressmann, S.; Fricker, G.; Müller, W. E. *Pharmacopsychiatry* **2004**, *37*, 292-298. (b) Quiney, C.; Billard, C.; Faussat, A.-M.; Salanoubat, C.; Kolb, J.-P. *Leukemia Lymphoma* **2007**, *48*, 1587-1599.

⁴⁶⁵ Ott, M.; Huls, M.; Cornelius, M. G.; Fricker, G. *Pharm. Res.* **2010**, *27*, 811-822.

⁴⁶⁶ Smith, N. F.; Acharya, M. R.; Desai, N.; Figg, W. D.; Sparreboom, A. *Cancer Biol. Ther.* **2005**, *4*, 815-818.

⁴⁶⁷ For an overview of hyperforin pharmacokinetics, see: Caccia, S. *Curr. Drug Metab.* **2005**, *6*, 531-543.

⁴⁶⁸ Biber, A.; Fischer, H.; Römer, A.; Chatterjee, S. S. *Pharmacopsychiatry* **1998**, *31* (Suppl.), 36-43.

⁴⁶⁹ Keller, J.-H.; Karas, M.; Müller, W. E.; Volmer, D. A.; Eckert, G. P.; Tawab, M. A.; Blume, H. H.; Dingermann, T.; Schubert-Zsilavecz, M. *Anal. Chem.* **2003**, *75*, 6084-6088.

hyperforin (15 mg/kg) produced a 28.8 ng/g brain concentration, treatment with 300 mg/kg SJW extract containing 5% hyperforin only gave a 15.8 ng/g concentration. Hyperforin rat brain concentrations were increased through co-medication with borneol or through electroacupuncture, two techniques that have shown some positive results in increasing blood-brain barrier permeability. 471

Hyperforin pharmacokinetics have been determined in humans through various small-scale studies, and the results of several single- and multiple-dose studies involving various SJW ethanolic extract preparations are shown in Table 1.17. A large degree of pharmacokinetic parameter variation is observed, and this is in part due to the variable nature of the extracts and inherent metabolite ratios as well as inter-individual differences in response to treatment. In general, *Cmax* is rapidly attained within 3-4 hours and follows a linear relationship to the amount of hyperforin administered in single-dose studies. Overall, hyperforin plasma concentrations peaked in the range of 0.16-0.81 M. Single-dose *AUC* also follows a linear relationship up to about 40 mg hyperforin, and at higher concentrations, lower than expected bioavailability is observed. Elimination half-life remained fairly consistent across dosing regimens.

⁴⁷⁰ For an overview of murine brain hyperforin pharmacokinetics, see: Caccia, S.; Gobbi, M. *Curr. Drug Metab.* **2009**, *10*, 1055-1065.

⁴⁷¹ Yu, B.; Ruan, M.; Sun, Y.; Cui, X.; Yu, Y.; Wang, L.; Fang, T. *Neural Regen. Res.* **2011**, *6*, 1876-1882.

Extract dose (mg x day)	Participants ^b	Hyperforin per dose (mg)	t_{max} (h)	C_{max} (ng/mL)	AUC (ng/mL·h)	$t_{1/2}$ (h)	References
600×1	18 M	13.5	4.4(1.5)	84 (28)	1009(203)	19.6(6.3)	472
600×14	18 M	13.5	4.3(1.0)	97(30)	826 (176)	4.3(1.0)	472
300×1	6 M	14.8	3.6(0.6)	153(21)	1336 (145)	9.5(1.1)	468
300×1	6 M, 6 F	15	3.1(0.8)	84 (36)	586 (240)	n.d.	473
300° x 1	6 M, 6 F	15	2.5(0.8)	168 (58)	1483 (897)	n.d.	473
900×1	18 M	17.2	4.5(1.2)	122(46)	1550 (371)	17.5(4.5)	474
900×14	18 M	17.2	3.9(1.3)	87(37)	769 (235)	n.d.	474
600×1	6 M	28.6	3.5(0.3)	302(47)	2215 (279)	8.5(0.7)	468
900×1	7 M, 2 F	42.8	2.9(0.3)	300(23)	3352 (329)	7.2(0.3)	468
900×8	7 M, 2 F	42.8	3.1(0.4)	246(22)	2336 (303)	11.2(1.0)	468
900×1	3 M, 9 F^d	55.1	4.0 (n.d.)	1500 (200)	13600 (2400)	16.6(1.9)	475
900×14^{e}	3 M, 9 F^d	55.1	3.0 (n.d.)	1300 (200)	10900 (2200)	14.7(2.2)	475
1200×1	6 M	59.2	2.8(0.3)	437(101)	3378 (670)	9.7(0.8)	468

Table 1.17. Hyperforin pharmacokinetics following oral dosing of SJW extracts.*^a*

 a ⁿ Pharmacokinetic data are reported as means (\pm standard error).

 b Listed are the number of male (M) and female (F) participants. Unless noted, all participants were healthy volunteers.</sup>

c A softgel capsule formulation was used.

 \overline{a}

^d Patients in these studies were diagnosed with clinical depression prior to treatment. See text below.

^e The SJW extract was co-medicated with the antidepressant amitriptyline (75 mg twice daily).

While most of the data presented in Table 1.17 is derived from studies involving healthy volunteers, one study utilized patients suffering from clinical depression, with initial scores ranging from 10-34 in the Hamilton Rating Scale for Depression.⁴⁷⁵ Intriguingly, hyperforin exposure was significantly higher for these patients than in healthy patients consuming similar amounts of hyperforin. Formulation of the SJW extract also appears to have an effect on oral bioavailability; a softgel capsule formulation led to significant increases in *Cmax* and *AUC* when directly compared to a traditional two-piece hard gelatin capsule.473

⁴⁷² Schulz, H.-U.; Schürer, M.; Bässler, D.; Weiser, D. *Arzneimittel-Forsch.* **2005**, *55*, 15-22.

⁴⁷³ Agrosí, M.; Mischiatti, S.; Harrasser, P. C.; Savio, D. *Phytomedicine* **2000**, *7*, 455-462.

⁴⁷⁴ Schulz, H.-U.; Schürer, M.; Bässler, D.; Weiser, D. *Arzneimittel-Forsch.* **2005**, *55*, 561-568.

⁴⁷⁵ Johne, A.; Schmider, J.; Brockmöller, J.; Stadelmann, A. M.; Störmer, E.; Bauer, S.; Scholler, G.; Langheinrich, M.; Roots, I. *J. Clin. Psychopharmacol.* **2002**, *22*, 46-54.

Multiple-dose hyperforin pharmacokinetics were also investigated.^{468,472,474} In all three instances, significantly lower *AUC* at the end of the treatment regimen was observed and can be explained by hyperforin's ability to activate PXR and thus upregulate xenobiotic metabolism. Similar results were observed upon co-medication of amitriptyline with hyperforin; aside from decreased amitriptyline plasma concentrations, the concentrations of all hydroxylated metabolites of amitriptyline decreased significantly, indicating increased drug efflux.⁴⁷⁵ A study involving five mothers taking SJW extract daily (containing 22.4 mg hyperforin) demonstrated that hyperforin is present in breast milk, but at low levels.⁴⁷⁶ In two breastfed infants, the plasma concentration of hyperforin was present, albeit at the lowest limit of detection (0.1 ng/mL).

The only other PPAP to have undergone pharmacological studies is xanthochymol.⁷⁶ Doses of 1.0-10.0 mg/kg given to anesthetized cats did not lead to cardiovascular side effects. In mice, the LD_{50} of xanthochymol was determined to be 1000 mg/kg, and no detrimental nervous system effects were observed at one-fifth the LD_{50} .

The packaging and unpackaging of eukaryotic DNA around histones largely determines the extent to which genes are expressed. Modifications of these histone proteins, such as through acetylation, alter chromatin structure and regulates transcription.⁴⁷⁷ The enzymes responsible for histone acetylation and deacetylation are called histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, and alteration of HAT and HDAC activity has been implicated in a variety of diseases, such as cancer and neuodegeneration.⁴⁷⁸ Given the ability of a variety of PPAPs to penetrate cell membranes and perturb a variety of biochemical processes, their ability to modulate HAT/HDAC activity has been

⁴⁷⁶ Klier, C. M.; Schmid-Siegel, B.; Schäfer, M. R.; Lenz, G.; Saria, A.; Lee, A.; Zernig, G. *J. Clin. Psychiatry* **2006**, *67*, 305-309.

^{477 (}a) Roth, S. Y.; Denu, J. M.; Allis, C. D. *Annu. Rev. Biochem.* **2001**, *70*, 81-120. (b) Selvi, B. R.; Kundu, T. K. *Biotechnol. J.* **2009**, *4*, 375-390. (c) Huang, J.; Plass, C.; Gerhäuser, C. *Curr. Drug Targets* **2011**, *12*, 1925-1956.

⁴⁷⁸ Lane, A. A.; Chabner, B. A. *J. Clin. Oncol.* **2009**, *27*, 5459-5468.

actively investigated.⁴⁷⁹ Early studies found that hyperforin altered protein expression in hamster smooth muscle cells⁴⁸⁰ and that garcinol altered gene expression in rat livers,⁴⁸¹ implying that these PPAPs may be interacting with epigenetic modulators.

Indeed, garcinol was later found to dose-dependently inhibit two HATs, p300 (IC₅₀ = 7 μ M) and PCAF (IC₅₀ = 5 μ M) both in *in vitro* assay studies as well as *in vivo* studies involving HeLa cells.⁴⁸² Over a hundred genes were affected in HeLa cells treated with garcinol, and apoptosis was observed. Kinetic analysis revealed that garcinol acted as a competitive inhibitor for both enzymes. However, garcinol also exhibited considerable cytotoxicity. In order to find a HAT inhibition-specific molecular probe, nearly 50 semisynthetic garcinol derivatives were screened for p300 inhibition activity.⁴⁸³ Isogarcinol inhibited p300 activity but was also cytotoxic. Three derivatives of garcinol, **84**, **85**, and **86**, were identified as non-cytotoxic, p300-specific inhibitors with IC_{50} values in the range of 5-7 μ M (Figure 1.17). T cells treated with **84** were not only viable but also experienced histone acetylation inhibition after HIV infection, thus preventing viral replication. Subsequent mechanistic studies found that the inhibition of p300 HAT activity by **84** is dissimilar to that of garcinol and isogarcinol.484 Using *in silico* docking methods, garcinol and isogarcinol were found to bind p300 in two distinct sites, including the ATPbinding pocket, but **84** bound to a single, allosteric site. These data were supported by experimental isothermal calorimetric data.

 479 For a review of PPAP HAT chemical biology, see: Dal Piaz, F.; Vassallo, A.; Cuesta Rubio, O.; Castellano, S.; Sbardella, G.; De Tommasi, N. *Mol. Divers.* **2011**, *15*, 401-416.

⁴⁸⁰ Schrattenholz, A.; Schroer, K.; Chatterjee, S. S.; Kock, E. *Planta Med.* **2004**, *70*, 342-346.

⁴⁸¹ Hokaiwado, N.; Asamoto, M.; Tsujimura, K.; Hirota, T.; Ichihara, T.; Satoh, T.; Shirai, T. *Cancer Sci.* **2004**, *95*, 123-130.

⁴⁸² Balasubramanyam, K.; Altaf, M.; Verier, R. A.; Swaminathan, V.; Ravindran, A.; Sadhale, P. P.; Kundu, T. K. *J. Biol. Chem.* **2004**, *279*, 33716-33726.

⁴⁸³ Mantelingu, K.; Reddy, B. A. A.; Swaminathan, V.; Kishore, A. H.; Siddappa, N. B.; Kumar, G. V. P.; Nagashankar, G.; Natesh, N.; Roy, S.; Sadhale, P. P.; Ranga, U.; Narayana, C.; Kundu, T. K. *Chem. Biol.* **2007**, *14*, 645-657.

⁴⁸⁴ Arif, M.; Pradham, S. K.; Thanuja, G. R.; Vedamurthy, B. M.; Agrawal, S.; Dasgupta, D.; Kundu, T. K. *J. Med. Chem.* **2009**, *52*, 267-277.

Figure 1.17. Garcinol and several semisynthetic derivatives.

The ability of garcinol to alter gene expression has been applied across several settings relevant to human health. When garcinol was co-administered with the apoptosis-inducing cytokine TRAIL, several cancer cell lines resistant to TRAIL became sensitive.⁴⁸⁵ Garcinol increased expression of death receptors 4 and 5, receptors of TRAIL, and also decreased the expression of various proteins involved in cell survival. In addition, the epigenetic changes mediated by garcinol and **84** in inhibiting MCF-7 cell proliferation were elucidated.⁴⁸⁶ Increased levels of H4K16 acetylation and H4K20 trimethylation accompanied significant reduction in H3K18 acetylation. A major but limited source of hematopoietic stem cells is human cord blood, and when human cord blood cells were treated with either garcinol or isogarcinol in the presence of thrombopoietin, a significant increase in cell proliferation was observed.⁴⁸⁷ This stem cell expansion may be due to the ability of these PPAPs to inhibit HAT activity. In 3T3-L1 preadipocytes, garcinol treatment prevented adipogenesis and lowered expression levels of proteins associated with this differentiation process, including leptin, resistin, and fatty acid synthase.⁴⁸⁸ This epigenetically-induced anti-adipogenic effect of garcinol may be one avenue for the treatment and prevention of obesity.

⁴⁸⁵ Prasad, S.; Ravindran, J.; Sung, B.; Pandey, M. K.; Aggarwal, B. B. *Mol. Cancer Ther.* **2010**, *9*, 856-868.

⁴⁸⁶ Collins, H. M.; Abdelghany, M. K.; Messmer, M.; Yue, B.; Deeves, S. E.; Kindle, K. B.; Mantelingu, K.; Aslam, A.; Winkler, G. S.; Kundu, T. K.; Heery, D. M. *BMC Cancer* **2013**, *13*, 37.

⁴⁸⁷ Nishino, T.; Wang, C.; Mochizuki-Kashio, M.; Osawa, M.; Nakauchi, H.; Iwama, A. *PLoS ONE* **2011**, *6*, e24298.

⁴⁸⁸ Hsu, C.-L.; Lin, Y.-J.; Ho, C.-T.; Yen, G.-C. *Food Funct.* **2012**, *3*, 49-57.

Aside from garcinol and its derivatives, a variety of other PPAPs have been evaluated for HAT and HDAC activity. While garcinielliptone, hyperibone B, propolones A-D, and propolone D peroxide had no significant interaction with p300, guttiferones A and E as well as clusianone inhibited p300 HAT activity with IC₅₀ values in the 5-10 μ M range.⁴⁸⁹ Interestingly, nemorosone was a potent *activator* of p300 HAT activity. Surface plasmon resonance established that guttiferones A and E, clusianone, and nemorosone all interact directly with p300. Aside from modulating HAT activity, oblongifolin C, hyperforin, and the semisynthetic hyperforin derivative aristoforin (**78**) inhibited HDAC activity of sirtuins SIRT1 and SIRT2 (Table 1.18).⁴⁹⁰ Both oblongifolin C and aristoforin were less cytotoxic toward HUVECs than hyperforin.

Table 1.18. Inhibition of sirtuins by oblongifolin C, hyperforin, and aristoforin.⁴⁹⁰

PPAP	SIRT1 $IC_{50}(\mu M)$	SIRT2 IC ₅₀ (μM)
oblongifolin C		
hyperforin		
aristoforin (78)		

Hyperforin has been evaluated for the ability to modulate contractility. Overactive bladder contractions causes a loss of urine control and leads to incontinence. At concentrations as low as $10 \mu M$, hyperforin inhibited electric field stimulated contractions in isolated rat bladder strips.⁴⁹¹ Naloxone but not neurotransmitter receptor inhibitors and ion channel blockers abrogated the ability of hyperforin to inhibit contractions. This suggests the involvement of opioid receptors. In contrast, at low concentration (10 nM), hyperforin caused a slight increase in carbachol-induced contractions.492 Orally dosed hyperforin delayed acetocholine-induced gastric emptying with an EC_{50} value of about 1 μ M in a rat

⁴⁸⁹ Dal Piaz, F.; Tosco, A.; Eletto, D.; Piccinelli, A. L.; Moltedo, O.; Franceschelli, S.; Sbardella, G.; Remondelli, P.; Rastrelli, L.; Vesci, L.; Pisano, C.; De Tommasi, N. *ChemBioChem* **2010**, *11*, 818-827.

⁴⁹⁰ Gey, C.; Kyrylenko, S.; Hennig, L.; Nguyen, L.-H. D.; Büttner, A.; Pham, H. D.; Giannis, A. *Angew. Chem. Int. Ed.* **2007**, *46*, 5219-5222.

⁴⁹¹ Capasso, R.; Borrelli, F.; Capasso, F.; Mascolo, N.; Izzo, A. A. *Urology* **2004**, *64*, 168-172.

⁴⁹² Valeri, A.; Capasso, R.; Valoti, M.; Pessina, F. *J. Pharm. Pharmacol.* **2012**, *64*, 1770-1776.

model, which may lead to drug-drug interactions since gastric motility plays an important role in drug uptake.⁴⁹³ Overactive contractions of the vas deferens smooth muscle may lead to premature ejaculation. An early study found that hyperforin, in concentrations as low as $0.6 \mu M$, inhibited neurotransmitterinduced contractions of hamster vas deferens smooth muscle tissue.³³⁰ Similar inhibition was observed in phenylephrine-induced contractions of both isolated rat and human vas deferens tissue.⁴⁹⁴ A hyperforinenriched supercritical $CO₂$ SJW extract was shown to prevent chemically-induced ejaculation acceleration in anesthetized rats, the first instance of hyperforin showing efficacy against premature ejaculation in an animal model.⁴⁹⁵

Synthesis Strategies

l

Owing to their fascinating biological activity and unique structural features, PPAPs have been popular targets over the past fifteen years, and many strategies have been developed for their synthesis.⁴⁹⁶ Several salient features of PPAP structure apropos to bond construction are summarized in Scheme 1.13. All PPAPs contain a heavily substituted bicyclo^[3.3].1] nonane core in which one component carbocycle is highly oxygenated and the other carbocycle contains stereochemically-rich functionalization. In particular, a synthetically challenging C7–C8–C1 stereoarray includes contiguous quaternary centers. All studies toward PPAP total synthesis may be broken down into two general strategic camps: (1) a "bottomup" approach and (2) a "top-down" approach. Bottom-up tactics rely on the synthesis of a functionalized cyclohexanone followed by attachment of a 1,3-propanedial synthon. Likewise, top-down strategies typically involve the construction of a functionalized phloroglucinol (or cyclohexane-1,3-dione) which

⁴⁹³ Capasso, R.; Borrelli, F.; Aviello, G.; Capasso, F.; Izzo, A. A. *Naunyn-Schmied. Arch. Pharmacol.* **2008**, *376*, 407-414.

⁴⁹⁴ Capasso, R.; Borrelli, F.; Montanaro, V.; Altieri, V.; Capasso, F.; Izzo, A. A. *J. Urology* **2005**, *173*, 2194-2197.

⁴⁹⁵ Thomas, C. A.; Tyagi, S.; Yoshimura, N.; Chancellor, M. B.; Tyagi, P. *Urology* **2007**, *70*, 813-816.

⁴⁹⁶ For reviews of PPAP synthesis methodology, see ref. 4c and: (a) Tsukano, C.; Siegel, D. R.; Danishefsky, S. J. *J. Synth. Org. Chem. Jpn.* **2010**, 68, 592-600. (b) Njardarson, J. T. *Tetrahedron* **2011**, *67*, 7631-7666. (c) Richard, J.- A.; Pouwer, R. H.; Chen, D. Y.-K. *Angew. Chem. Int. Ed.* **2012**, *51*, 4536-4561. (d) Simpkins, N. S. *Chem. Commun.* **2013**, *49*, 1042-1051.
then undergoes dearomative annulation⁴⁹⁷ or stepwise alkylation-cyclization with a 3-carbon electrophile. An overview of the PPAP synthesis literature is provided below, following this general framework.

Scheme 1.13. General PPAP synthesis strategies.

Several 1,3-dielectrophiles have been utilized in "bottom-up" annulation approaches (Figure 1.18). Malonyl dichloride (**87**) is especially useful for the synthesis of PPAPs considering that annulation would directly afford the correct oxidation state of the C2–C4 bridge. Malonyl dichloride was first used to synthesize bicyclo[3.3.1]nonanes by Effenberger in 1984; however, a fourfold excess of 1-methoxy-1 cyclohexene was required in this initial report.⁴⁹⁸ Stoltz demonstrated that silyl enol ethers may be utilized in addition to alkyl enol ethers and that an excess of malonyl dichloride may be used instead of the enol ether component in this Effenberger annulation.⁴⁹⁹ Nicolaou has utilized methacrylaldehyde (88) in acidmediated annulation reactions to create a series of bicyclic medium-sized rings, including bicyclo^[3.3.1]nonanes.⁵⁰⁰ Kraus has explored several strategies toward the construction of PPAP model systems, using the electrophiles vinylsulfone 89^{501} and methyl acrylate $90.^{502}$ Simpkins also attempted to utilize diaryl malonate 91 but to no avail.⁵⁰³

 497 For a review that features dearomative annulation and cyclization approaches to PPAPs, see: Roche, S. P.; Porco, J. A., Jr. *Angew. Chem. Int. Ed.* **2011**, *50*, 4068-4093.

⁴⁹⁸ Schönwälder, K.-H.; Kollat, P.; Stezowski, J. J.; Effenberger, F. *Chem. Ber.* **1984**, *117*, 3280-3296.

⁴⁹⁹ Spessard, S. J.; Stoltz, B. M. *Org. Lett.* **2002**, *4*, 1943-1946.

⁵⁰⁰ Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. *Angew. Chem. Int. Ed.* **2005**, *44*, 3895-3899.

⁵⁰¹ Kraus, G. A.; Jeon, I. *Tetrahedron* **2005**, *61*, 2111-2116.

Figure 1.18. Various electrophiles utilized in "bottom-up" approaches to PPAPs.

A total synthesis of (±)-clusianone (*rac*-**92**) by Simpkins utilizing an Effenberger annulation strategy is shown in Scheme 1.14. ⁵⁰⁴ Starting with 2-methoxycyclohexenone **93**, α-prenylation followed by methyl lithium addition afforded enone **94**. Conjugate addition of methyl cuprate and subsequent methyl enol ether formation afforded **95**. 505 Exposure of enol ether **95** to malonyl dichloride and subsequent treatment of the product with trimethyl orthoformate afforded vinylogous ester **96** in 24% yield over 2 steps. LDA-mediated bridgehead lithiation and alkylation with prenyl bromide gave **97**, and subsequent benzoylation afforded *rac*-clusianone *O*-methyl ether **98**. Lithium hydroxide-facilitated demethylation revealed *rac*-clusianone. By replacing LDA with a chiral bis-lithium amide in the bridgehead lithiation reaction of **96**, a kinetic resolution allowed **96** to be recovered with 98% ee and facilitated the synthesis of *ent*-clusianone (*ent*-**92**).⁵⁰⁶ Effenberger annulations are also utilized in Delpech and Marazano's synthesis of *rac*-**92**, 507 and Coltart has synthesized *ent*-**92** using a chiral auxiliary to

⁵⁰² Kraus, G. A.; Jeon, I. *Tetrahedron Lett.* **2008**, *49*, 286-288.

⁵⁰³ Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Blake, A. J. *J. Org. Chem.* **2007**, *72*, 4803-4815.

⁵⁰⁴ Rodeschini, V.; Ahmad, N. M.; Simpkins, N. S. *Org. Lett.* **2006**, *8*, 5283-5285.

⁵⁰⁵ Prior to 1999, the only synthesis studies directed toward a PPAP are found in a graduate thesis from the Univeristy of Arizona: Heidt, J. C. Thesis, University of Arizona, Tucson, Arizona, United States of America, 1988. A compound similar to **95** was the most advanced intermediate synthesized in an approach to hyperforin.

⁵⁰⁶ Rodeschini, V.; Simpkins, N. S.; Wilson, C. *J. Org. Chem.* **2007**, *72*, 4265-4267.

^{507 (}a) Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Marazano, C. *Org. Lett.* **2007**, *9*, 287-289. (b) Tolon, B.; Delpech, B.; Marazano, C. *Arkivoc* **2009** (Part xiii), 252-264.

establish absolute stereocontrol.^{106,508} Mehta has utilized an Effenberger annulation in studies directed toward prolifenones A and B. 509

Scheme 1.14. Total synthesis of (\pm) -clusianone by Simpkins (ref. 504).^{*a*}

^a Conditions: (a) LDA, prenyl bromide, THF, -78 °C; (b) MeLi, THF, -78 °C; HCl, 88% (2 steps); (c) MeMgBr, CuBr·Me₂S, TMSCl, HMPA, THF, -78 to -30 °C, 88%; (d) *t*-BuOK, DMSO; Me₂SO₄, 87% (mixture of enol ethers, dominant enol ether shown); (e) malonyl dichloride (87), Et₂O, –20 °C; KOH, BnEt₃NCl, H₂O; (f) HC(OMe)₃, *p*-TsOH, MeOH, 50 °C, 24% (2 steps); (g) LDA, THF, –78 ºC; prenyl bromide, –78 ºC, 91% (h) LiTMP, THF, –78 ºC; BzCl, 91%; (i) LiOH, H2O, dioxane, 90 ºC, 90%.

A prominent feature of Simpkins's total synthesis of clusianone is the bridgehead lithiation and subsequent alkylation of intermediate **96**. The reaction involves the formation of a somewhat unusual pyramidalized carbanionic species from a bridgehead methine whose trajectory limits hyperconjugative delocalization into the neighboring carbonyl π^* molecular orbitals. In the context of PPAP total synthesis, the scope and limitations of bridgehead functionalization has been studied in detail.⁵⁰³ In Scheme 1.14, the bridgehead alkylation occurs at the C5 position of **96**. Bridgehead substitutions at the C1 position, which is proximal to the C8 quaternary center, are understandably more challenging due to its steric environment, and only a limited number of electrophiles have been utilized to functionalize this

⁵⁰⁸ Garnsey, M. R.; Lim, D.; Yost, J. M.; Coltart, D. M. *Org. Lett.* **2010**, *12*, 5234-5237.

⁵⁰⁹ Mehta, G.; Dhanbal, T.; Bera, M. K. *Tetrahedron Lett.* **2010**, *51*, 5302-5305.

position. Simpkins's total synthesis of racemic nemorosone (*rac*-**39**) illustrates the difficulties of direct C1 bridgehead substitution (Scheme 1.15).^{503,510} Starting from enone $99,^{499}$ α-prenylation followed by conjugate methyl addition accessed cyclohexanone **100**. 503 Sequential silylation, Effenberger annulation with malonyl dichloride (**87**), and methylation revealed **101**, which was silylated at the C3 position to yield **102**.

Scheme 1.15. Total synthesis of (\pm) -nemorosone by Simpkins (ref. 510).^{*a*}

^a Conditions: (a) LDA, prenyl bromide, THF, -78 °C, 77%; (b) MeMgBr, CuI, THF, Me₂S, 0 °C, 88%; (c) TBSCl, NEt₃, NaI, MeCN, reflux, 87%; (d) malonyl dichloride (87), Et₂O, -20 °C; BnEt₃NCl, KOH, H₂O; (e) Me₂SO₄, K₂CO₃, acetone, reflux (19%, 2 steps); (f) LiTMP, THF, -78 °C; TMSCl, 94%; (g) LDA, TMSCl, THF, -78 to 0 °C; I₂, 0 °C, 65%; (h) BuLi, THF, -78 ºC; BzCl, 63%; (i) TBAF, THF, 81%; (j) LiTMP, THF; Li(2-Th)CuCN; prenyl bromide, 55%; (k) LiCl, DMSO, 120 ºC, >99%.

A more direct route to nemorosone would involve C3 prenylation; however, such an intermediate would not undergo bridgehead lithiation owing to an acidic bisallylic methylene subunit.⁵⁰³ A variety of conditions for the bridgehead functionalization of **102**, including the use of several carbogenic electrophiles, did not provide any desired products. This illustrates the difficulty of performing bridgehead substitution chemistry at the C1 position relative to the C5 position when compared to the efficient conversion of **96** to **97** in Scheme 1.14. In the end, metalation of **102** with LDA followed by

⁵¹⁰ Simpkins, N. S.; Taylor, J. D.; Weller, M. D.; Hayes, C. J. *Synlett* **2010**, 639-643.

trapping with iodine provided bridgehead iodide **103**. Having installed a functional handle at C1, metalation with butyllithium, trapping with benzoyl chloride, and desilylation provided phenyl ketone **104**. Finally, installation of the C3 prenyl group was facilitated by sequential deprotonation, transmetalation with Lipshutz's cuprate,⁵¹¹ and prenyl bromide alkylation, and demethylation with lithium chloride provided (±)-nemorosone (*rac*-**39**).

Aside from using 1,3-dielectrophiles, several groups have explored the use of an intramolecular aldol reaction to construct the PPAP bicyclo[3.3.1]nonane core. Shibasaki has utilized this reaction in his total synthesis of *ent*-hyperforin (*ent*-**1**), the first enantioselective total synthesis of a PPAP (Scheme 1.16).⁵¹² Starting with diene **105** (available in 7 steps from propargyl bromide)⁵¹³ and oxazolidinone **106**, a catalytic, enantioselective Diels–Alder reaction involving FeBr3 and pybox ligand **107** (Figure 1.19) afforded siloxycyclohexene **108**. This is a particularly effective transformation for the construction of the cyclohexanone carbocycle of PPAPs, since both the C7 and C8 stereocenters of hyperforin are established in a single step. Removal of the oxazolidinone ring and silyl groups of **108** revealed cyclohexanone **109**, and a subsequent series of reactions including a Barbier reaction produced **110** containing the carbon framework of the isopropyl ketone of hyperforin. α-Prenylation gave **111** as a single epimer at the C5 position. After C5 epimerization and functional group manipulations, *O*-allylation afforded **112**, and heating a toluene solution of **112** quantitatively yielded **113** in a high diastereomeric ratio at the newly formed quaternary C1 stereocenter. The high degree of diastereocontrol in this transformation may be rationalized by assuming the C5 prenyl group of **112** directs the carbon-carbon bond formation to the opposite face of the cyclohexene ring. Hydroboration of the olefin present in **113** followed by DMPmediated oxidation provided aldehyde **114**. Exposure of this aldehyde to sodium ethoxide in ethanol

⁵¹¹ Lipshutz, B. H.; Koerner, M.; Parker, D. A. *Tetrahedron Lett.* **1987**, *28*, 945-948.

^{512 (}a) Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. *Angew. Chem. Int. Ed.* **2010**, *49*, 1103-1106. (b) Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. *Tetrahedron* **2010**, *66*, 6569-6584.

^{513 (}a) Apparu, M.; Barrelle, M. *Bull. Soc. Chim. Fr. II* **1983**, 83-86. (b) Usuda, H.; Kuramochi, A.; Kanai, M.; Shibasaki, M. *Org. Lett.* **2004**, *6*, 4387-4390.

Scheme 1.16. Total synthesis of *ent*-hyperforin by Shibasaki (ref. 512).*^a*

a Conditions: (a) 107, FeBr₃, AgSbF₆, 5Å MS, CH₂Cl₂, -70 °C, 93%, 98% ee; (b) EtSLi, THF, 96%; (c) LAH, THF, 99%; (d) MOMCl, TBAI, *i*-Pr₂NEt, CH₂Cl₂, 94%; (e) TBAF, HOAc, THF; (f) HF·pyr, pyr, THF, 91% (2 steps); (g) TMSCl, NEt₁, CH_2Cl_2 ; (h) TIPSOTf, *i*-Pr₂NEt, CH₂Cl₂; (i) K₂CO₃, MeOH; (j) TPAP, NMO, 4Å MS, MeCN, CH₂Cl₂; (k) *i*-PrBr, Li, THF; (l) TBAF, HOAc, THF, 58% (6 steps); (m) TMSCl, imid, DMF, 94%; (n) LDA, HMPA, prenyl bromide, THF, 89%; (o) LDA, THF, NH_4Cl , H₂O, 88%; (p) HF·pyr, pyr, THF; (q) DMP, CH₂Cl₂, 96% (2 steps); (r) NaHMDS, allyl bromide, HMPA, THF, >99%; (s) PhMe, *N*,*N*-diethylaniline, 170 °C, >99%, 12:1 dr; (t) (Sia)₂BH, THF; H₂O₂, NaOH, H₂O, EtOH, 81%; (u) DMP, CH₂Cl₂, 91%; (v) EtONa, EtOH; (w) DMP, CH₂Cl₂, 86% (2 steps); (x) CSA, MeOH, 66% (3 cycles); (y) (COCl)₂, DMSO, CH₂Cl₂; NEt₃, 95%; (z) vinylmagnesium bromide, THF, 92%; (aa) Ac2O, DMAP, *i*-Pr2NEt, CH2Cl2, 98%; (bb) Pd(PPh3)4, HCO2NH4, PhMe, 95%; (cc) **117**, 2-methyl-2-butene, CH₂Cl₂, >99%; (dd) TMSCl, NEt₃, DMAP, CH₂Cl₂, 84%; (ee) Pd(OAc)₂, DMSO, O₂, >99%; (ff) N aBH₄, MeOH, 95%; (gg) CS₂, NaH, THF; MeI, >99%; (hh) PhMe, 150 °C; (ii) EtSLi, THF; MeI, NEt₃, 98% (2 steps); (ji) NaBO₃·4H₂O, HOAc, 95%; (kk) TFAA, DTBMP, CH₂Cl₂, -40 °C; H₂O, 65%; (ll) H₂O₂, HFIP, 87%; (mm) DMP, CH₂Cl₂, 86%; (nn) Amberlyst-15DRY, PhMe, 55%; (oo) LiH, allyl alcohol, 67%; (pp) $[Pd_2(dba)_3]\cdot CHCl_3$, (*S*)-tol-BINAP, THF; Ac₂O, pyr, 50%; (qq) **117**, 2-methyl-2-butene, CH₂Cl₂, 34%; (rr) K₂CO₃, MeOH, 94%.

facilitated the key aldol cyclization reaction,⁵¹⁴ and subsequent DMP-mediated oxidation afforded 115, which contains the bicyclo^[3.3.1]nonane core of hyperforin with all key stereocenters established.

Figure 1.19. A Pybox ligand and an olefin metathesis catalyst, both utilized in the total synthesis of *ent*-hyperforin.

At this point in the synthesis, the only remaining tasks were the installation of the C3 and C7 prenyl groups as well as the 1,3-diketone oxidation state about the C2–C4 bridge. First, the C7 prenyl group was installed via sequential MOM group removal, oxidation, and vinylmagnesium bromide addition of **115** to afford allylic alcohol **116** as a mixture of epimers. Deoxygenation was then accomplished via stepwise acetylation and Pd-catalyzed allylic reduction, and a resulting olefin cross metathesis with 2-methyl-2-butene utilizing Hoveyda–Grubbs second-generation catalyst (**117**, Figure 1.19) afforded **118**. It is noteworthy that the C8 homoprenyl olefin was previously protected as a tertiary methyl ether; if a homoprenyl group was present during this cross metathesis, the authors observed ringclosing metathesis. After considerable experimentation, installation of the C2–C4 1,3-diketone oxidation was accomplished through a vinylogous Pummerer rearrangement. First, a Saegusa oxidation of **118** followed by 1,2-reduction and xanthate formation led to **119**. Thermal [1,3]-rearrangement of the xanthate functionality, thiolysis, *S*-methylation, and *S*-oxidation yielded the rearrangement precursor **120**. Exposure of **120** to trifluoroacetic anhydride and 2,6-di-*tert*-butyl-4-methylpyridine followed by hydrolysis afforded a product, **121**, bearing oxygenation at both the C2 and C4 positions. *S*-Oxidation, DMP-mediated oxidation, elimination of the homoprenyl protecting group, and addition-elimination

 514 This intramolecular aldol strategy for the construction of hyperforin was first revealed in 2007: Shimizu, Y.; Kuramochi, A.; Usuda, H.; Kanai, M.; Shibasaki, M. *Tetrahedron Lett.* **2007**, *48*, 4173-4177.

afforded allylic ether **122**. Finally, intramolecular Pd-catalyzed allyl transfer, acetylation, cross metathesis, and deacetylation revealed *ent*-hyperforin (*ent*-**1**).

Other groups have utilized an intramolecular aldol strategy in their studies toward PPAP natural products. Grossman's approach involved a Pb(OAc)₄-mediated α-alkynylation of β-ketoester 123 with stannane **124**, and subsequent hydrosilylation of an insipient $Co_2(CO)_6$ complex to reveal enal **125**, which upon exposure to aqueous acid afforded allylic alcohol 126 (Scheme 1.17a).⁵¹⁵ Mehta has reported the DIBAL reduction of tetrahydrochromene **127** to bicyclo[3.3.1]nonane **128**, which may proceed through an intermediate hemiacetal **129** that undergoes formal [1,3] rearrangement via aldehyde **130** (Scheme 1.17b).⁵¹⁶ Very similar reductive rearrangements have been reported by Shibasaki⁵¹⁷ and Delpech.⁵¹⁸ In studies toward hyperforin, Chen has reported the synthesis of aldehyde **131** via sequential Pd-catalyzed hydrostannylation of alkyne **132** followed by oxidative cleavage (Scheme 1.17c).⁵¹⁹ Exposure of this aldehyde to NaOEt in EtOH afforded bicyclo[3.3.1]nonane **133**.

⁵¹⁵ Ciochina, R.; Grossman, R. B. *Org. Lett.* **2003**, *5*, 4619-4621.

^{516 (}a) Mehta, G.; Bera, M. K. *Tetrahedron Lett.* **2006**, *47*, 689-692. (b) Mehta, G.; Bera, M. K. *Tetrahedron Lett.* **2008**, *49*, 1417-1420. (c) Mehta, G.; Bera, M. K. *Tetrahedron Lett.* **2009**, *50*, 3519-3522. (d) Mehta, G.; Das, M.; Kundu, U. K. *Tetrahedron Lett.* **2012**, *53*, 4538-4542. (e) Mehta, G.; Bera, M. K. *Tetrahedron* **2013**, *69*, 1815-1821.

⁵¹⁷ Usuda, H.; Kanai, M.; Shibasaki, M. *Tetrahedron Lett.* **2002**, *43*, 3621-3624.

⁵¹⁸ Pouplin, T.; Tolon, B.; Nuhant, P.; Delpech, B.; Marazano, C. *Eur. J. Org. Chem.* **2007**, 5117-5125.

⁵¹⁹ Richard, J.-A.; Chen, D. Y.-K. *Eur. J. Org. Chem.* **2012**, 484-487.

Scheme 1.17. Intramolecular aldol approaches to PPAPs by (a) Grossman, (b) Mehta, and (c) Chen.*^a*

a Conditions: (a) 124, Pb(OAc)₄, THF, -30 °C to rt, 48%; (b) HCO₂H, 71%; (c) Co₂(CO)₈, CH₂Cl₂, 0 °C, 87%; (d) Et₃SiH, bis(trimethylsilyl)acetylene, DCE, 65 °C, 94%, (e) HCl, H₂O, 72%; (f) DIBAL, CH₂Cl₂, 0 °C, 52%; (g) PdCl₂(PPh₃)₂, Bu₃SnH, THF; OsO₄, NMO, H₂O; (h) Pb(OAc)₄, CH₂Cl₂, 79% (2 steps); (i) NaOEt, EtOH, 0 °C to rt; (j) DMP, NaHCO₃, CH₂Cl₂, 70% (2 steps).

In addition to the aldol strategies outlined previously, Plietker has utilized an intramolecular Dieckmann cyclization approach for the synthesis of (\pm) -7-*epi*-clusianone (*rac*-40, Scheme 1.18).⁵²⁰ Starting with acetylacetone (**134**), stepwise prenylation and deacylative aldol methylenation provided enone **135**. Treatment of this enone with dimethyl acetonedicarboxylate (**136**) afforded cyclohexenone **137** as a result of a tandem Michael addition-Knoevenagel condensation. Sequential regioselective methyllithium 1,2-addition, α-prenylation, and conjugate methylation afforded cyclohexanone **138**. In order to facilitate the key Dieckmann cyclization step, stereoselective prenylation at the C1 position of **138** was required in order to position the methyl ketone and methyl ester upon the same face of the

⁵²⁰ Biber, N.; Möws, K.; Plietker, B. *Nature Chem.* **2011**, *3*, 938-942.

cyclohexanone ring. After some experimentation, a Fe-catalyzed allylation⁵²¹ using methyl prenyl carbonate (**139**) afforded cyclization precursor **140**. Treatment with KO*t*-Bu followed by BzCN directly afforded (±)-7-*epi*-clusianone (*rac*-**40**). Further, Plietker was able to synthesize racemic hyperpapuanone, hyperibone L, and oblongifolin A, highlighting the utility of this methodology to obtain Type B PPAPs bearing an *exo* C7 substituent.

Scheme 1.18. Total synthesis of (\pm) -7-*epi*-clusianone by Plietker (ref. 520).^{*a*}

^a Conditions: (a) NaH, EtOH, 0 °C; prenyl bromide, 0 °C to rt; CH₂O, K₂CO₃, H₂O, 60%; (b) MeMgCl, 136, THF, MeOH, 60 °C, 89%, (c) NaH, THF, 0 °C; MeLi, 0 °C; (d) NaH, 18-crown-6, THF, 0 °C; prenyl bromide, 0 °C to rt, 61% (2 steps); (e) MeMgBr, CuI, TMSCl, LiCl, THF, –78 ºC, 96%; (f) *t*-AmOK, 1,3-dimesitylimidazolin-2-ylidene hexafluorophosphate, MTBE, 60 ºC; Bu4N[Fe(CO)3(NO)], rt to 60 ºC; **138**, LiH, THF, 0 ºC to rt; **(139**, 100 ºC, 86%; (g) *t*-BuOK, THF, 0 ºC; BzCN, 0 to 45 ºC, 78%.

Other "bottom-up" approaches involve the use of transition metals or cycloaddition chemistry to facilitate the formation of the bicyclo^[3.3.1]nonane core of PPAPs. Garsubellin A was the first PPAP to be synthesized, and Shibasaki utilized ring-closing metathesis to establish the C2–C4 bridge.⁵²² Kraus has utilized a $Mn(OAc)_{3}$ -mediated oxidative free-radical cyclization to facilitate to formation of the PPAP

⁵²¹ Plietker, B. *Angew. Chem. Int. Ed.* **2006**, *45*, 1469-1473.

⁵²² Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. *J. Am. Chem. Soc.* **2005**, *127*, 14200- 14201.

core in several model systems.⁵²³ Mehta has also synthesized a model bicyclo[3.3.1]nonane⁵²⁴ using a Pdcatalyzed Kende cyclization.⁵²⁵ In an approach to hyperevolutin A, Young utilized an allene-nitrile oxide [3+2] cycloaddition reaction (Scheme 1.19).⁵²⁶ Treatment of 141 with PhNCO facilitated the cycloaddition to form isoxazoline **142**, presumably through intermediate nitrile oxide **143**. Only a single C4 epimer of **142** was isolated, indicating that only one diastereomer of **143** underwent cyclization. Reduction of **142** using Raney Ni quantitatively afforded enamine **144** through cleavage of the isoxazoline ring.

Scheme 1.19. Young's [3+2] allene-nitrile oxide cycloaddition approach to hyperevolutin A (ref. 526).*^a* a^{a} Conditions: (a) PhNCO, NEt₃, 40%; (b) Raney Ni, H₂, MeOH, >99%.

Contrasting "bottom-up" strategies, "top-down" approaches to PPAP synthesis typically involve dearomatization of an oxidized benzene ring through the attachment of the C6–C8 bridge. Many of these strategies are inspired by the proposed biosynthesis of PPAPs, involving the dearomative alkylation of an acylphloroglucinol (e.g., Scheme 1.5). As previously discussed, a challenge of many "bottom-up" strategies is the oxidation of the C2–C4 subunit; in "top-down" strategies, establishing this oxidation very

^{523 (}a) Kraus, G. A.; Dneprovskaia, E.; Nguyen, T. H.; Jeon, I. *Tetrahedron* **2003**, *59*, 8975-8978. (b) Kraus, G. A.; Nguyen, T. H.; Jeon, I. *Tetrahedron Lett.* **2003**, *44*, 659-661.

⁵²⁴ Mehta, G.; Bera, M. K. *Tetrahedron Lett.* **2004**, *45*, 1113-1116.

^{525 (}a) Kende, A. S.; Roth, B.; Sanfilippo, P. J. *J. Am. Chem. Soc.* **1982**, *104*, 1784-1785. (b) Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. *J. Am. Chem. Soc.* **1982**, *104*, 5808-5810.

⁵²⁶ Young, D. G. J.; Zeng, D. *J. Org. Chem.* **2002**, *67*, 3134-3137.

early in the synthesis circumvents this problem. Likewise, a difficulty of latter approaches is the installation of stereochemical elements at a late stage.

Many of these principles were incorporated in the total synthesis of (±)-garsubellin A (*rac*-**145**) by Danishefsky (Scheme 1.20).⁵²⁷ Starting with phloroglucinol triether 146,⁵²⁸ regioselective *ortho* lithiation-prenylation, dihydroxylation, acetonide formation, and desilylation afforded phloroglucinol diether **147**. The reaction of this electron-rich phenol and allyl methyl carbonate under Pd- and Ticocatalysis provided divinylogous carbonate 148 via a dearomative allylation reaction.⁵²⁹ A possible mechanism for this transformation involves Lewis acid-activation of the phenolic hydroxyl group followed by direct *para C*-allylation. Treatment of **148** with perchloric acid facilitated the formation of alcohol **149** as a single diastereomer, bearing the tetrahydrofuran ring of garsubellin A. Cross metathesis with 2-methyl-2-butene facilitated by Grubbs second-generation catalyst (**150**) afforded **151**. Exposure of **151** to iodine not only provided the desired bicyclo[3.3.1]nonane core through a iodocarbocyclization reaction but also promoted iodination at the C1 position, which after treatment with iodine and CAN provided triiodide **152**. Aside from a tandem desired magnesium-iodine exchange with subsequent allylation at the C3 position of **152**, a transannular Wurtz cyclopropanation yielded **153**. Iodide 1,5 addition to the activated cyclopropane in **153** was accomplished by treatment with TMSI, affording **154**. The synthesis of C7 prenylation product **155** was accomplished in two steps: (1) a AIBN-mediated Keck radical allylation⁵³⁰ with allyltributylstannane and (2) cross-metathesis with 2-methyl-2-butene. At this juncture, only C1 acylation was necessary to complete the total synthesis; however, direct bridgehead lithiation-acylation of **155** was not feasible. Accordingly, bridgehead iodination was accomplished using LDA and iodine to afford iodide **156**. Magnesium-iodide exchange, trapping with isobutyraldehyde, DMP-mediated oxidation, and desilylation subsequently afforded (±)-garsubellin A (*rac*-**145**). In

⁵²⁷ Siegel, D. R.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2006**, *128*, 1048-1049.

⁵²⁸ Landi, J. J., Jr.; Ramig, K. *Synth. Commun.* **1991**, *21*, 167-171.

⁵²⁹ Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. *J. Org. Chem.* **1997**, *62*, 4877-4879.

⁵³⁰ Keck, G. A.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. *Tetrahedron* **1985**, *41*, 4079-4094.

addition, these strategies were later utilized in racemic total syntheses of both nemorosone and clusianone.⁵³¹

Scheme 1.20. Total synthesis of (\pm) -garsubellin A by Danishefsky (ref. 527).^{*a*}

^a Conditions: (a) BuLi, Et₂O, 0 °C; prenyl bromide; (b) K₂OsO₄·2H₂O, K₂CO₃, K₃[Fe(CN)₆], MeSO₂NH₂, t-BuOH, H₂O; (c) *p*-TsOH·H₂O, 2,2-dimethoxypropane, acetone; (d) TBAF, THF, 70% (4 steps); (e) Pd(OAc)₂, PPh₃, Ti(Oi-Pr)₄, allyl methyl carbonate, PhH, 80 °C, 62%; (f) HClO₄, H₂O, dioxane, 60 °C, 71%; (g) **150**, 2-methyl-2-butene, CH₂Cl₂, 40 °C, 68%; (h) I₂, KI, KHCO₃, THF, H₂O, 85%; (i) I₂, CAN, MeCN, 50 °C, 77%; (j) *i*-PrMgCl, THF, -78 °C; Li₂CuCl₄, allyl bromide, -78 to 0 °C, 67%; (k) TMSI, CH2Cl2, 0 ºC; HCl, H2O, 0 ºC, 98%; (l) AIBN, allyltributylstannane, PhH, 80 ºC, 82%; (m) **150**, 2-methyl-2 butene, CH2Cl2, 40 ºC, 73%; (n) LDA, TMSCl, THF, –78 ºC; I2, –78 to 0 ºC, 25-36%; (o) *i*-PrMgCl, THF, –78 ºC; *i*-PrCHO, –78 to 0 °C, 72%; (p) DMP, CH₂Cl₂; (q) Et₃N(HF)₃, THF, 88% (2 steps).

Other groups have utilized activated-olefin carbocyclization as key steps in their studies toward PPAP natural products. Jacobsen employed a Claisen rearrangement of enol ether **157**, catalyzed by guanidinium catalyst **158**, to yield **159**, in one step garnering the highly congested C1–C8 bond of hyperforin flanked by two stereogenic quaternary centers (Scheme 1.21a).⁵³² Enol ether hydrolysis

⁵³¹ Tsukano, C.; Siegel, D. R.; Danishefsky, S. J. *Angew. Chem. Int. Ed.* **2007**, *46*, 8840-8844.

⁵³² Uyeda, C.; Rötheli, A. R.; Jacobsen, E. N. *Angew. Chem. Int. Ed.* **2010**, *49*, 9753-9756.

followed by treatment with iodine yielded bicyclic diiodide **160**. In studies toward garsubellin A, Nicolaou performed a Lewis acid-mediated selenocarbocyclization upon **161** using *N*- (phenylseleno)phthalamide (**162**), yielding bicyclo[3.3.1]nonane **163** (Scheme 1.21b).⁵³³ Couladorous reported a dearomative *C*-alkylation of deoxycohumulone (**31**) with allyl chloride **164** to yield cyclohexadienone **165** (Scheme 1.21c). 534 Following monoacetylation to give **166**, exposure to MsCl afforded SN1-type alkylation product **167**. However, a substantial amount of *O*-alkylation product **168** was produced in addition to the desired *C*-alkylation product. SnCl₄-mediated carbocyclization of a prenylated phloroglucinol derivative has also been reported by Marazano; however, this reaction formed a variety of products.⁵³⁵

^{533 (}a) Nicolaou, K. C.; Pfefferkorn, J. A.; Kim, S.; Wei, H. X. *J. Am. Chem. Soc.* **1999**, *121*, 4724-4725. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G.-Q.; Kim, S.; Kessabi, J. *Org. Lett.* **1999**, *1*, 807-810.

⁵³⁴ Couladouros, E. A.; Dakanali, M.; Demadis, K. D.; Vidali, V. P. *Org. Lett.* **2009**, *11*, 4430-4433.

⁵³⁵ Raikar, S. B.; Nuhant, P.; Delpech, B.; Marazano, C. *Eur. J. Org. Chem.* **2008**, 1358-1369.

Scheme 1.21. Carbocyclization approaches to PPAPs by (a) Jacobsen, (b) Nicolaou, and (c) Couladouros. *a*

a Conditions: (a) **158**, hexane, 30 °C, 81%, 7:1 dr, 81% ee; (b) HCl, THF, 90%; (c) I₂, KI, NHCO₃, THF, H₂O, 65%; (d) **162**, SnCl4, CH2Cl2, –23 ºC, 95%. (e) **164**, KOH, Aliquat 336, PhCl, H2O, 81%; (f) Ac2O, pyr, acetone, 89%; (g) MsCl, NEt3, THF, – 40 ºC, 89% (total yield).

Other unique dearomatization strategies have been explored. Njardarson has pursued an oxidative dearomatization-double radical cyclization strategy for the synthesis of Type B PPAPs (Scheme 1.22a).536 Hypervalent iodine-mediated oxidative deraromatization of **169** afforded cyclohexadienone **170**, and exposure of this compound to BEt₃ gave bicyclo^[3.3.1]nonane **171**, the result of two 5-*exo*-trig cyclizations. Simpkins has utilized an unusual rearrangement of the flavonoid catechin (**172**) to catechinic acid (173) , a reaction previously reported by Sears in 1974 (Scheme 1.22b).⁵³⁷

⁵³⁶ McGrath, N. A.; Binner, J. R.; Markopoulos, G.; Brichacek, M.; Njardarson, J. T. *Chem. Commun.* **2011**, *47*, 209-211.

^{537 (}a) Sears, K. D.; Casebier, R. L.; Hergert, H. L.; Stout, G. H.; McCandlish, L. E. *J. Org. Chem.* **1974**, *39*, 3244- 3247. (b) Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Wilson, C. *Org. Biomol. Chem.* **2007**, *5*, 1924-1934.

Scheme 1.22. Other dearomative carbocyclization approaches by (a) Njardarson and (b) Simpkins.*^a* ^a Conditions: (a) PhI(OAc)₂, MeOH, 75%; (b) BEt₃, (TMS)₃SiH, air, PhMe, 73%; (c) NaOH, H₂O, reflux, 91%.

Nakada has explored an alternative approach to PPAPs involving a Birch reductioncyclopropanation-cyclopropane opening sequence,⁵³⁸ exemplified by the racemic total synthesis of hyperforin (Scheme 1.23).⁵³⁹ Starting with methyl 2,6-dimethoxybenzoate (174), Birch reduction with concommitant allylation followed by reduction and silylation produced cyclohexadiene **175**. 540 The allyl moiety in **175** was converted to a methyl ketone using a three step protocol involving dihydroxylation and oxidative cleavage followed by methyl addition mediated with AlMe3 with an ensuing Oppenauer oxidation, affording **176**. Subsequent trifluoracetylation of this compound followed by diazo transfer yielded α-diazoketone 177. Exposure of 177 to $\left[\text{Cu(OTf)}\right]_2$ in the presence of achiral bisoxazoline ligand **178** facilitated an intramolecular cyclopropanation reaction, forming **179**. Unfortunately, the use of chiral ligands did not lead to high levels of absolute stereocontrol. 538c Stepwise α-alkylation of ketone **179** with allyl iodide and iodomethane followed by acid-mediated cyclopropane opening led to isolation of **180**, a bicyclo[3.3.1]nonane core containing the key C1 and C8 vicinal stereogenic quaternary centers of hyperforin. Formal silanolysis of the allyl group of **180**, formation of an enol triflate at the C7 position,

^{538 (}a) Abe, M.; Nakada, M. *Tetrahedron Lett.* **2006**, *47*, 6347-6351. (b) Abe, M.; Nakada, M. *Tetrahedron Lett.* **2007**, *48*, 4873-4877. (c) Abe, M.; Saito, A.; Nakada, M. *Tetrahedron Lett.* **2010**, *51*, 1298-1302.

⁵³⁹ Uwamori, M.; Nakada, M. *Tetrahedron Lett.* **2013**, *54*, 2022-2025.

⁵⁴⁰ Uwamori, M.; Saito, A.; Nakada, M. *J. Org. Chem.* **2012**, *77*, 5098-5107.

and subsequent Pd-mediated carbonylation led to ester **181**. Crabtree's catalyst facilitated stereoselective hydrogenation of the C6–C7 olefin, and subsequent functional group manipulations afforded acetate **182**. Allylic oxidation mediated by TBHP and Pearlman's catalyst afforded β-methoxyenone **183**. Monodesilylation and Wittig homologation produced **184**, and a subsequent aldehyde Wittig homologation yielded enol ether **185**. Hydrolysis of this enol ether, another Wittig homologation, and C5 bridgehead allylation gave 186. Deprotonation at C3, followed by transmetalation with Lipshutz's cuprate,⁵¹¹ and alkylation with allyl bromide yielded **187**. Conversion of the C1 hydroxymethylene of **187** to an isopropyl ketone afforded **188**, and subsequent global cross metathesis and C2 methyl ether cleavage revealed (\pm) -hyperforin (*rac*-1). A similar strategy was utilized in the total synthesis of (\pm) -nemorosone by Nakada.⁵⁴⁰

Scheme 1.23. Racemic total synthesis of (\pm) -hyperforin by Nakada (ref. 539).^{*a*}

^a Conditions: (a) Na, NH₃, *t*-BuOH, Et₂O, -78 °C; allyl bromide; (b) LAH, Et₂O, 0 °C; (c) TIPSOTf, NEt₃, CH₂Cl₂, 0 °C, 74% (3 steps); (d) K2OsO4·H2O, K3[Fe(CN)6], K2CO3, (DHQD)2PHAL, *t*-BuOH, H2O; (e) NaIO4, MeOH, H2O, 81% (2 steps); (f) Me₃Al, PhMe, 0 °C; 3-nitrobenzaldehyde, PhMe, 0 °C to rt, 85%; (g) LHMDS, THF, -78 °C; CF₃CO₂CH₂CF₃; 4nitrobenzenesulfonyl azide, NEt₃, 0 to 40 °C, 85%; (h) [Cu(OTf)]₂·PhMe, 178, PhMe; (i) KHMDS, HMPA, PhMe, THF, –78 °C; allyl iodide, -78 to 0 °C; (j) KHMDS, HMPA, PhMe, THF, -78 °C; MeI, -78 °C to 0 °C; HCl, H₂O, THF, 88% (3 steps); (k) (Sia)₂BH, THF, -20 °C; NaOH, H₂O₂, H₂O, 78%; (l) TBSCl, NEt₃, DMAP, CH₂Cl₂, 99%; (m) Comins' reagent, KHMDS, PhMe, THF, 78 °C, 90%; (n) CO, Pd(OAc)₂, dppf, MeOH, DMF, 50 °C, 93%; (o) H₂, Crabtree's catalyst, DCE, reflux, 97%; (p) DIBAL, CH₂Cl₂, –78 °C; (q) Ac₂O, DMAP, NEt₃, CH₂Cl₂; (r) DMP, NaHCO₃, CH₂Cl₂, 89% (3 steps); (s) TBHP, Pd(OH)₂/C, K₂CO₃, CH₂Cl₂, 69%; (t) CSA, MeOH, CH₂Cl₂; (u) DMP, NaHCO₃, CH₂Cl₂; (v) PPh₃CH₃Br, *t*-BuOK, THF, 0 °C, 74% (3 steps); (w) K₂CO₃, MeOH; (x) DMP, NaHCO₃, CH₂Cl₂, 93% (2 steps); (y) PPh₃(Cl)CH₂OCH₃, KHMDS, THF, 0 °C, 79%; (z) *p*-TsOH, acetone, H2O, 40 ºC; (aa) PPh3CH3Br, *t*-BuOK, THF, 0 ºC, 79% (2 steps); (bb) LiTMP, HMPA, THF, –78 ºC; allyl bromide, 84%; (cc) LiTMP, THF, -78 °C; Li(2-Th)CuCN; allyl bromide, 90%; (dd) TBAF, THF; (ee) DMP, CH₂Cl₂, 84% (2) steps); (ff) *i*-PrMgCl, CeCl₃·2LiCl, THF, -78 °C; (gg) DMP, NaHCO₃, CH₂Cl₂, 71% (2 steps); (hh) **150**, isobutene, 120 °C, 93%; (ii) LiCl, DMSO, 120 ºC, 62%.

While these dearomative alkylation approaches to PPAP natural products are useful and have successfully led to the synthesis of several PPAPs, a more direct strategy would involve *annulation* of a C6–C8 carbon bridge directly onto an aromatic nucleus. However this strategy is not without its

challenges, especially concerning the control of absolute and C7–C8 relative stereochemistry. Both Takagi and Porco have explored such dearomative annulation strategies, utilizing electrophiles such as acrylates 189,⁵⁴¹ 190,⁵⁴² and 191⁵⁴³ as well as enals 192^{544} and 193^{545} and vinylsulfone 194^{544} (Figure 1.20).

Figure 1.20. Various electrophiles utilized in "top-down" annulation strategies.

The total synthesis of *ent*-hyperibone K (*ent*-**195**) by Porco exemplifies the dearomative annulation strategy for PPAP construction (Scheme 1.24).⁵⁴⁵ bis-Prenylation of 2,4,6trihydroxybenzophenone (**14**) 546 using basic, aqueous conditions provided the natural acylphloroglucinol clusiaphenone B (**196**).547 Upon exposure of **196** to enal **193** in the presence of *Cinchona* alkaloid-derived phase-transfer catalyst **197**, adamantane **198** was produced enantioselectively. This is a remarkable reaction, considering that two quaternary stereocenters are formed along with the characteristic PPAP bicyclo[3.3.1]nonane core. Initially, this annulation was performed using enal **192**, but shorter reaction times and higher enantioselectivity was garnered using **193**. A mechanistic model for this transformation

⁵⁴¹ Takagi, R.; Nerio, T.; Miwa, Y.; Matsumura, S.; Ohkata, K. *Tetrahedron Lett.* **2004**, *45*, 7401-7405.

⁵⁴² Takagi, R.; Miwa, Y.; Nerio, T.; Inoue, Y.; Matsumura, S.; Ohkata, K. *Org. Biomol. Chem.* **2007**, *5*, 286-300.

^{543 (}a) Takagi, R.; Inoue, Y.; Ohkata, K. *J. Org. Chem.* **2008**, *73*, 9320-9325. (b) Kondo, H.; Inoue, Y.; Fujii, E.; Takagi, R.; Ohkata, K. *Symp. Chem. Nat. Prod.* **2008**, *50*, 605-610.

⁵⁴⁴ Qi, J.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2007**, *129*, 12682-12683.

⁵⁴⁵ Qi, J.; Beeler, A. B.; Zhang, Q.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2010**, *132*, 13642-13644.

⁵⁴⁶ **14** is available in 2 steps from 1,3,5-trimethoxybenzene: Mondal, M.; Puranik, V. G.; Argade, N. P. *J. Org. Chem.* **2007**, *72*, 2068-2076.

⁵⁴⁷ Delle Monache, F.; Delle Monache, G.; Gacs-Baitz, E. *Phytochemistry* **1991**, *30*, 2003-2005.

involves the formation of a tight ion pair between **196** and **197** in which only one face of **196** is available to engage in binding interactions with the enal electrophile. The remaining C–C bond required for the synthesis of hyperibone K from intermediate **198** was installed via deprotonation with LDA, revealing an aldehyde from a retro-aldol reaction, and trapping with 2-methyl-1-propenylmagnesium bromide, forming alcohol **199**. Exposure of this alcohol to $Sc(OTf)$ ₃ yielded the enantiomer of hyperibone K (*ent*-**195**). This represents one of the only two total syntheses of adamantyl PPAPs reported to date. Using this synthesis strategy, Porco has successfully prepared (\pm)-clusianone,⁵⁴⁴ (\pm)-plukenetione A,⁵⁴⁸ and (\pm)plukenetione D/E (7-*epi*-nemorosone).⁵⁴⁹

Scheme 1.24. Total synthesis of *ent*-hyperibone K by Porco (ref. 545).*^a*

a Conditions: (a) prenyl bromide, KOH, H2O, 0 ºC, 45%; (b) **193**, **197**, CsOH·H2O, 4Å MS, CH2Cl2, –50 ºC, 71%, 90% ee; (c) LDA, 2-methyl-1-propenylmagnesium bromide, THF, -78 to -55 °C; (d) Sc(OTf)₃, CH₃NO₂, 50% (2 steps).

Aside from the approaches outlined above that were developed specifically for PPAP synthesis, more general strategies toward the construction of bicyclo^[3.3.1]nonanes have been developed.⁵⁵⁰ Several

⁵⁴⁸ Zhang, Q.; Mitasev, B.; Qi, J.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2010**, *132*, 14212-14215.

⁵⁴⁹ Zhang, Q.; Porco, J. A., Jr. *Org. Lett.* **2012**, *14*, 1796-1799.

⁵⁵⁰ For a review of bicyclo[3.3.1]nonane synthesis, see: Butkus, E. *Synlett* **2001**, 1827-1835.

tactics include intramolecular conjugate addition reactions to both enones⁵⁵¹ and ynones.⁵⁵² Intermolecular cascade annulations involving unsaturated carbonyl systems have also been explored.⁵⁵³ Rhenium-, 554 gold-,⁵⁵⁵ and copper-mediated⁵⁵⁶ additions of cyclohexanones and their enol ether derivatives have yielded bicyclo[3.3.1]nonane systems. Barriault has reported the use of a Prins-pinacol reaction to fashion a variety of bicyclic ring scaffolds.⁵⁵⁷ An S_N2-type cyclization involving primary tosylate displacement has been explored.⁵⁵⁸

Apart from cyclization strategies, Tadano has developed a zinc-mediated Barbier-type allylation reaction utilizing sugar-based aldehydes to construct stereogenic quaternary carbon centers that resemble the C8 center of PPAPs that bear differential substitution at that position (e.g., hyperforin).⁵⁵⁹

⁵⁵¹ Srikrishna, A.; Kumar, P. P.; Reddy, T. J. *Arkivoc* **2003** (Part iii), 55-66.

⁵⁵² Klein, A.; Miesch, M. *Tetrahedron Lett.* **2003**, *44*, 4483-4485.

^{553 (}a) Barboni, L.; Gabrielli, S.; Palmieri, A.; Femoni, C.; Ballini, R. *Chem. Eur. J.* **2009**, *15*, 7867-7870. (b) Zhao, Y.-L.; Chen, L.; Yang, S.-C.; Tian, C.; Liu, Q. *J. Org. Chem.* **2009**, *74*, 5622-5625. (c) Wang, D.; Crowe, W. E. *Org. Lett.* **2010**, *12*, 1232-1235.

⁵⁵⁴ Kuninobu, Y.; Morita, J.; Nishi, M.; Kawata, A.; Takai, K. *Org. Lett.* **2009**, *11*, 2535-2537.

^{555 (}a) Barabé, F.; Bétournay, G.; Bellavance, G.; Barriault, L. *Org. Lett.* **2009**, *11*, 4236-4238. (b) Sow, B.; Bellavance, G.; Barabé, F.; Barriault, L. *Beilstein J. Org. Chem.* **2011**, *7*, 1007-1013.

⁵⁵⁶ Zhang, C.; Hu, X.-H.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. *J. Am. Chem. Soc.* **2012**, *134*, 9585-9588.

⁵⁵⁷ Lavigne, R. M. A.; Riou, M.; Girardin, M.; Morency, L.; Barriault, L. *Org. Lett.* **2005**, *7*, 5921-5923.

⁵⁵⁸ Majumber, A.; Mandal, A.; Ghosh, P. *J. Atoms Mol.* **2012**, *2*, 176-181.

⁵⁵⁹ Takao, K.-i.; Miyashita, T.; Akiyama, N.; Kurisu, T.; Tsunoda, K.; Tadano, K.-i. *Heterocycles* **2012**, *86*, 147- 153.

Chapter 2

Strategies Toward Hyperforin Synthesis

Synthesis Overview

As elaborated above, hyperforin displays a broad spectrum of biological activity.⁵⁶⁰ Moreover, hyperforin is believed to be the component of St. John's wort that is responsible for its antidepressant activity. This is particularly noteworthy given hyperforin's unique mechanism of action and absence of deleterious side effects that often accompany the use of other clinical antidepressants. However, hyperforin's therapeutic potential is handicapped by several factors: (1) its poor water-solubility; (2) its fragility, readily decomposing in the presence of light and air;⁵⁶¹ and (3) its potent activation of PXR, causing increases in gene expression levels of many proteins involved in xenobiotic metabolism.

In order to mitigate these shortcomings while maintaining potential salutary benefits, access to a broad spectrum of hyperforin analogs is necessary. While semisynthetic manipulation of hyperforin has led to a limited number of such derivatives, 562 total synthesis is the only means by which diverse hyperforin analogs may be obtained. Even though several synthesis endeavors have led to the total synthesis of both racemic and *ent*-hyperforin,⁵⁶³ the considerable length of these routes renders analog synthesis impractical. Therefore, our goal was to devise a short, enantioselective approach to hyperforin that would be amenable to the synthesis of a variety of hyperforin mimetics and enable the first full structure-activity relationship study of hyperforin.

Further, we rationalized that latent symmetry elements in hyperforin may be exploited to expedite total synthesis. Imbedded within the hyperforin bicyclo[3.3.1]nonane core is a 1,3,5-cyclohexanetrione subunit (highlighted in blue in Scheme 2.1a). Retrosynthetic cleavage of the C5–C6 bond in hyperforin (1) via intramolecular S_N 2-type displacement-cyclization would reveal monocyclic intermediate **200**.

⁵⁶⁰ For reviews of hyperforin biological activity, see: (a) Barnes, J.; Anderson, L. A.; Phillipson, J. D. *J. Pharm. Pharmacol.* **2001**, *53*, 583-600. (b) Zanoli, P. *CNS Drug Rev.* **2004**, *10*, 203-218. (c) Vollmer, J. J.; Rosenson, J. *J. Chem. Ed.* **2004**, *81*, 1450-1456. (d) Medina, M. A.; Martínez-Poveda, B.; Amores-Sánchez, M. I.; Quesada, A. R. *Life Sci.* **2006**, *79*, 105-111. (e) Beerhues, L. *Phytochemistry* **2006**, *67*, 2201-2207.

⁵⁶¹ See discussion on page 75.

⁵⁶² For examples of semisynthetic hyperforin analogs, see refs. 259 and 309, and: Bombardelli, E.; Morazzoni, P.; Riva, A.; Fuzzati, N. US Patent 2005/0222274 A1, October, 6, 2005.

⁵⁶³ See discussion on page 108.

Given the substitution pattern around this cyclohexanetrione ring, the C1 quaternary center of **200** is prostereogenic owing to a plane of symmetry intersecting the C1 and C4 atoms. C1 stereochemistry is introduced during the subsequent alkylation event, in which two possible nucleophilic carbon atoms (i.e., C3 and C5) may engage the electrophilic C6. We rationalized that the C7 prenyl substituent stereochemistry would bias the formation of a C5–C6 bond over C3–C6 bond formation (Scheme 2.1b). The former situation would lead to transition state **201**, bearing a pseudoequatorial C7 prenyl substituent, whereas the latter bond-forming event would lead to transition state **202** containing a pseudoaxial C7 prenyl moiety whose orientation begets two *syn*-pentane-like interactions with the C1–C9 and C3–C4 bonds.

Scheme 2.1. (a) Retrosynthetic analysis of hyperforin and (b) transition-state analysis of key cyclization event.

Polyketide Cyclization Approach

Prior to evaluating the plausibility of using this cyclization to construct hyperforin, synthesis of monocyclic precursor **200** was required. In order to evaluate the feasibility of synthesizing **200**, a model system in which the C8 stereogenic center of hyperforin was replaced with a *tert*-butyl group (**203**) was

established (Scheme 2.2). We hypothesized that **203** would be accessed via dienylketene **204** via either a Dieckmann cyclization or a 6π electrocyclization. Conjugated dienylketenes are known to undergo cyclization under fairly mild conditions,⁵⁶⁴ even to form nonaromatic carbocyclic products.⁵⁶⁵ This dienylketene would be accessed via tetraketide **205**, the product of the coupling reaction between acylketene **206** with β-ketocarbonyl species **207**. This route was particularly appealing owing to the lack of oxidation-state changes and protecting group manipulations.

Scheme 2.2. Retrosynthesis of model system **203** via tetraketide **205**.

Initially, we explored the feasibility of constructing several tetraketide-type species similar to **205** (Figure 2.1). Moreover, we chose to explore the coupling chemistry of the previously characterized and prepared *tert*-butylcarbethoxyketene⁵⁶⁶ (208) before exploring the synthesis of the potentially unstable α ketoketene **206**. Due to both the stabilizing effect of the conjugated ester and the steric nature of the *tert*-

⁵⁶⁴ For reviews, see: (a) Harris, T. M.; Harris, C. M. *Tetrahedron* **1977**, *33*, 2159-2185. (b) Harris, T. M.; Harris, C. M. *Pure Appl. Chem.* **1986**, *58*, 283-294.

⁵⁶⁵ For examples of nonaromatic cyclizations of polyketide-type products, see: (a) Griffiths, J.; Hart, H. *J. Am. Chem. Soc.* **1968**, *90*, 3297-3298. (b) Dannenberg, W.; Perst, H.; Seifert, W. J. *Tetrahedron Lett.* **1975**, *16*, 3481- 3484. (c) Fishbein, P. L.; Moore, H. W. *J. Org. Chem.* **1985**, *50*, 3226-3228. (d) Hsung, R. P.; Wulff, W. D. *J. Am. Chem. Soc.* **1994**, *116*, 6449-6450.

^{566 (}a) Newman, M. S.; Zuech, E. A. *J. Org. Chem.* **1962**, *27*, 1436-1438. (b) Evans, A. R.; Hafiz, M.; Taylor, G. A. *J. Chem. Soc., Perkin Trans. 1* **1984**, 1241-1245.

butyl substituent, **208** can be isolated and distilled in the absence of solvent. Several candidate dienylketene precursors were explored. An α-oxoketene may be generated from the thermolysis of a dioxinone,567 such as **209**. α-Oxoketenes may also be generated from the elimination of alcohols and thiols from β-ketoesters and β-ketothioesters, respectively, which also led us to pursue **210** and **211**. 568

Figure 2.1. Carbethoxyketene **208** and several potential dienylketene precursors.

We first explored the synthesis of dioxinone **209** (Scheme 2.3). Magnesium-iodine exchange of iododioxinone **212**569 followed by CuBr-mediated transmetalation and trapping with prenyl bromide afforded intermediate **213**. Deprotonation using LDA and trapping with a second equivalent of prenyl bromide afforded **214**. However, numerous attempts of the coupling of anions derived from **209** as well as its silyl dienyl ether only led to recovery of **214** and hydrolysis of ketene **208**. We concluded that the nucleophilic derivatives of **209** were not reactive enough to engage ketene **208**.

⁵⁶⁷ For a review of dioxinone chemistry, see: Kaneko, C.; Sato, M.; Sakaki, J.-i.; Abe, Y. *J. Heterocyclic Chem.* **1990**, *27*, 25-30.

⁵⁶⁸ For reviews on the synthesis and chemistry of α-oxoketenes, see: (a) Moore, H. W.; Decker, O. H. W. *Chem. Rev.* **1986**, *86*, 821-830. (b) Seikaly, H. R.; Tidwell, T. T. *Tetrahedron* **1986**, *42*, 2587-2613. (c) Tidwell, T. T. *Acc. Chem. Res.* **1990**, *23*, 273-279. (d) Wentrup, C.; Heilmeyer, W.; Kollenz, G. *Synthesis* **1994**, 1219-1248.

⁵⁶⁹ Iwaoka, T.; Murohashi, T.; Katagiri, N.; Sato, M.; Kaneko, C. *J. Chem. Soc., Perkin Trans. 1* **1992**, 1393-1397.

Scheme 2.3. Attempted Synthesis of dioxinone **209**. *a*

^a Conditions: (a) *i*-PrMgCl, THF, –30 ºC; CuBr, LiCl, –30 ºC; prenyl bromide, –30 ºC, 84%; (b) LDA, DMPU, THF, 0 ºC; **214**, 0 ºC; prenyl bromide, –40 ºC to rt, 46%.

While we failed to observe reactivity using monoanions derived from **214**, we hypothesized that more nucleophilic, Weiler-type dianions generated from β-ketocarbonyl-type systems would react with ketene **208**. ⁵⁷⁰ Indeed, both tetraketides **210** and **211** were synthesized (Scheme 2.4). Prenylation of the dianion generated from acetoacetate **215**571 yielded **216**. The reaction of the dianion generated from this acetoacetate with ketene **208** afforded adduct **210** as a complex mixture of diastereomers and tautomers. Likewise, the synthesis of **211** proceeded in similar fashion. Stepwise prenylation of *tert*-butyl acetothioacetate⁵⁷² (217) led to the isolation of 218. The use of DME as solvent in these alkylations was crucial in preventing the formation of byproducts.573 Coupling with ketene **208** was achieved, affording key tetraketide **211**.

^{570 (}a) Hucklin, S. N.; Weiler, L. *J. Am. Chem. Soc.* **1974**, *96*, 1082-1087. (b) Huckin, S. N.; Weiler, L. *Can. J. Chem.* **1974**, *52*, 1343-1351.

⁵⁷¹ Yang, D.; Gao, Q.; Lee, O.-Y. *Org. Lett.* **2002**, *4*, 1239-1241.

⁵⁷² Sakaki, J.-i.; Kobayashi, S.; Sato, M.; Kaneko, C. *Chem. Pharm. Bull.* **1990**, *38*, 2262-2264.

⁵⁷³ (a) Booth, P. M.; Fox, C. M. J.; Ley, S. V. *Tetrahedron Lett.* **1983**, *24*, 5143-5146. (b) Booth, P. M.; Fox, C. M. J.; Ley, S. V. *J. Chem. Soc., Perkin Trans. 1* **1987**, 121-129.

Scheme 2.4. Synthesis of tetraketides **210** and **211**. *a*

^a Conditions: (a) K₂CO₃, prenyl bromide, DMF, acetone, reflux, 64%; (b) NaH, THF, 0 °C; BuLi, 0 °C; **208**, 0 °C to rt, 55%; (c) NaH, DME, 0 ºC; BuLi, –30 ºC; prenyl bromide, –30 ºC to rt, 61%; (d) NaH, DME, 0 ºC; prenyl bromide, 0 ºC to rt, 75%; (e) NaH, DME, 0 ºC; BuLi, –30 ºC; **208**, –30 ºC to rt, 39%.

Unfortunately, all attempts at the generation of dienylketene **219** from either **210** or **211** en route to carbocycle **203** were unsuccessful (Scheme 2.5). Treatment of these tetraketides with acid or base in order to directly generate a ketene intermediate led to decomposition. While it was possible to obtain the extremely unstable carboxylic acid **220**, any attempts to activate this intermediate (e.g., formation of an acid chloride) led to facile decarboxylation.

Scheme 2.5. Attempted ketene generation from tetraketides **210** and **211**.

Concurrent to these studies, we also assessed the feasibility of synthesizing and coupling ketoketene **206** (Scheme 2.6). First, *i*-PrMgCl addition to carbethoxyketene **208** gave β-ketoester **221**.

Stepwise saponification, acid chloride formation, and treatment with NEt₃ afforded ketoketene **206** as a volatile liquid that was stable in the absence of solvent. Upon coupling of β-ketothioester **218** with **206**, we were surprised to isolate α-pyrone **222**. Upon careful analysis of the reaction conditions, it was discovered that the direct product of the coupling reaction was linear polyketide **223**, which upon acidic workup afforded pyrone **222**. Performing a basic aqueous workup gave decreased amounts of this product. Similar acid-mediated heterocyclizations of triketothioacids have been reported.⁵⁷⁴ While the formation of pyrone **222** was undesirable, Harris has reported the conversion of 6-acyl-4-hydroxy-2 pyrones, such as product **222**, to acylphloroglucinols through the use of non-nucleophilic bases, such as LDA or LiH, possibly proceeding through a dienylketene intermediate similar to **204**. 575

Scheme 2.6. Synthesis of ketene **206** and coupling with β-ketothioester **218**. *a*

^a Conditions: (a) *i*-PrMgCl, THF, 0 °C to rt, >99%; (b) NaOH, MeOH, H₂O; (c) PCl₅, Et₂O, reflux, 73% (2 steps); (d) NEt₃, PhH, 51%; (e) NaH.

We hypothesized that the conversion of 6-acyl-4-hydroxy-2-pyrone **222** to key intermediate **203** would proceed through deprotonation of the internal, doubly conjugated methine to reveal extended enolate **224** (Scheme 2.7a). Upon bond rotation and carbon-carbon bond formation, cyclohexanetrione **203** would be accessed, an overall internal *O*-to-*C* acyl migration process. Despite screening a variety of

⁵⁷⁴ Harris, T. M.; Harris, C. M. *Tetrahedron* **1969**, *25*, 2687-2691.

⁵⁷⁵ Harris, T. M.; Wachter, M. P. *Tetrahedron* **1970**, *26*, 5255-5263.

non-nucleophilic bases, we were not able to achieve this transformation (Scheme 2.7b). In most cases, **222** was recovered. Deuterium quench experiments indicated that the isopropyl methine and the pyrone hydroxyl group were the only two positions on **222** being appreciably deprotonated. Use of derivatives of **222** in which the pyrone hydroxyl group was blocked (i.e., **225** and **226**) also did not facilitate desired carbocycle formation. We concluded that not only was deprotonation extremely difficult at the desired site, but the conversion of pyrone **222**, which bears some aromatic character, to the non-aromatic cyclohexanetrione **203** is a thermodynamically unfavorable process.

Scheme 2.7. (a) Proposed and (b) unsuccessful synthesis of carbocycle **203** from pyrone **222**.

Electrocyclic Cascade Approach

Due to the propensity of a linear polyketide to undergo *O*-cyclization to form a pyrone, we explored an alternative synthesis strategy that would mitigate heterocycle formation. We surmised that an electrocyclic cascade reaction involving two equivalents of an alkynyl ether (**227**) and a disubstituted ketene (**228**) may be used to construct **229**, which is a diether of carbocycle **203** (Scheme 2.8a). In this reaction, a [2+2] cycloaddition of one equivalent of the alkynyl ether **227** with ketene **228** would produce cyclobutenone **230** (Scheme 2.8b). Subsequent thermolysis would reveal vinylketene **231** via retro-4π electrocyclization,576 which upon exposure to a second equivalent of alkynyl ether **227** would undergo a second $[2+2]$ cycloaddition to form homologated cyclobutenone **232**. After another retro- 4π electrocyclization to reveal a dienylketene **233**, a final 6π electrocyclization would yield **229**. Analogous electrocyclic cascade reactions have been used to synthesize heavily substituted aryl rings,⁵⁷⁷ and in several instances even non-aromatic cyclohexadienones.⁵⁷⁸

Scheme 2.8. (a) Proposed electrocyclic cascade and (b) mechanism for the synthesis of cyclohexadienone **229**.

⁵⁷⁶ For reviews of electrocyclic opening of cyclobutenones, see: (a) Belluš, D.; Ernst, B. *Angew. Chem. Int. Ed. Engl.* **1988**, *27*, 797-827. (b) Moore, H. W.; Yerxa, B. R. *Chemtracts Org. Chem.* **1992**, *5*, 273-313.

^{577 (}a) Druey, J.; Jenny, E. F.; Schenker, K.; Woodward, R. B. *Helv. Chim. Acta* **1962**, *45*, 600-610. (b) Swenton, J. S.; Saurborn, E.; Srinivasan, R.; Sonntag, F. I. *J. Am. Chem. Soc.* **1968**, *90*, 2990-2991. (c) Neuse, E. W.; Green, B. R. *Liebigs Ann. Chem.* **1974**, 1534-1535. (d) Mayr, H. *Angew. Chem. Int. Ed. Engl.* **1975**, *14*, 500-501. (e) Danheiser, R. L.; Gee, S. K. *J. Org. Chem.* **1984**, *49*,1672-1674. (f) Taing, M.; Moore, H. W. *J. Org. Chem.* **1996**, *61*, 329-340. (g) Turnbull, P.; Heileman, M. J.; Moore, H. W. *J. Org. Chem.* **1996**, *61*, 2584-2585. (h) Xiong, Y.; Moore, H. W. *J. Org. Chem.* **1996**, *61*, 9168-9177. (i) Paquette, L. A. *Eur. J. Org. Chem.* **1998**, 1709-1728.

^{578 (}a) Fishbein, P. L.; Moore, H. W. *J. Org. Chem.* **1985**, *50*, 3226-3228. (b) Dorsey, D. A.; King, S. M.; Moore, H. W. *J. Org. Chem.* **1986**, *51*, 2814-2816.

We first analyzed the reactivity of ketenes **206** and **208** with the known ethyl alkynyl ether **234**, synthesized from the prenylation of ethoxyacetylene (Scheme 2.9).⁵⁷⁹ At temperatures below 100 °C, no reaction occurred; however, above this threshold, oligimerization of **234** was observed. At such temperatures, a retro-ene reaction may occur with **234**, 580 producing the very reactive monosubstituted ketene **235**.

Scheme 2.9. Attempted cycloaddition of alkynyl ether **234** with ketenes **206** and **208**.

In order to possibly circumvent this issue, we hypothesized that $tert$ -butylcyanoketene⁵⁸¹ (236) may react with alkynyl ether **234** at reduced temperatures due to the reduced steric environment surrounding the reactive ketene functionality (Scheme 2.10).⁵⁸² Unlike acylketenes 206 and 208, cyanoketene **236** cannot be isolated neat; it is generated through the thermolysis of diazidobenzoquinone **237** in toluene solution.583,584 After generating a solution of **236**, addition of alkynyl ether **234** afforded not only the [2+2] cycloaddition product, cyclobutenone **238**, but also azabicyclo[4.2.0]octantrienone

⁵⁷⁹ Gao, X.; Hall, D. G. *J. Am. Chem. Soc.* **2005**, *127*, 1628-1629.

⁵⁸⁰ Liang, L.; Ramaseshan, M.; MaGee, D. I. *Tetrahedron* **1993**, *49*, 2159-2168.

⁵⁸¹ For examples of reactions involving **236**, see: Al-Husaini, A. H.; Moore, H. W. *J. Org. Chem.* **1985**, *50*, 2595- 2597.

⁵⁸² For a review of cyanoketene chemistry, see: Moore, H. W.; Gheorghiu, M. D. *Chem. Soc. Rev.* **1981**, *10*, 289- 328.

⁵⁸³ Weyler, W., Jr.; Duncan, W. G.; Liewen, M. B.; Moore, H. W. *Org. Synth.* **1976**, *55*, 32-38.

⁵⁸⁴ We attempted to synthesize **236** from a 2-cyanoacetyl chloride (analogous to the synthesis of ketene **206**); however, an allene was cleanly afforded, presumably through NEt₃-promoted hetero-[2+2] cycloaddition of two equivalents of the ketene followed by decarboxylation of the resulting β-lactone.

239. A possible mechanism for the formation of **239** involves the [4+2] cycloaddition of **236** with **234** to form **240**, which may be depicted as a diploe or a diradical. Coupling of this intermediate with a second equivalent of alkynyl ether **234** would afford **239** via **241**. An electrocyclic cascade that may involve an intermediate similar to 240 has been reported.⁵⁸⁵ Further, heating a solution of 238 and 234 did not yield **239**, demonstrating that **238** is not an intermediate in the synthesis of **239**. Subsequent optimization of this reaction for the synthesis of cyclobutenone **238** allowed us to access functional amounts of this intermediate for later electrocyclic cascade cyclization studies.⁵⁸⁶

Scheme 2.10. (a) Thermolytic formation of **238** and **239**, and (b) a possible mechanism for the formation of **239**. *a a* Conditions: (a) PhMe, reflux; **234**, rt to 120 ºC, 33% **238**, 5% **239**.

We then explored the use of cyclobutenone **238** as an intermediate toward desired cyclohexadienone **229**. As indicated above, extended heating of **238** with alkynyl ether **234** did not yield further coupling products. Attempted coupling of the more reactive lithium alkynoate **242**, generated from successive lithium-bromine exchanges from α,α-dibromoester **243**, 587 only gave low yields of αpyrone **244** and linear ethyl ester **245**, formed through the interception and opening of the cyclobutenone

⁵⁸⁵ Nguyen, N. V.; Chow, K.; Karlsson, J. O.; Doedens, R. J.; Moore, H. W. *J. Org. Chem.* **1986**, *51*, 419-420.

⁵⁸⁶ See the experimental section of this chapter for details.

^{587 (}a) Shindo, M.; Sato, Y.; Shishido, K. *Tetrahedron* **1998**, *54*, 2411-2422. (b) Shindo, M.; Sato, Y.; Koretsune, R.; Yoshikawa, T.; Matsumoto, K.; Itoh, K.; Shishido, K. *Chem. Pharm. Bull* **2003**, *51*, 477-478.

by residual ethoxide from the formation of alkynoate **242** (Scheme 2.11). Akin to the polyketide route results, pyrone formation prevails in the absence of oxygen blocking groups. The ethanolysis product **245** along with its double-bond isomer was also generated by heating **238** with ethanol.

Scheme 2.11. The reaction of *in situ* derived lithium alkynoate **242** with cyclobutenone **238**. *a a* Conditions: (a) *t*-BuLi, THF, –78 ºC to rt; **238**, 8% **244**, 12% **245**.

Owing to pyrone formation from the use of alkynoate **242** and the propensity of ethyl alkynyl ether **234** to undergo retro-ene cyclization, we then investigated the use of methyl alkynyl ether **246**, an alkynyl ether incapable of retro-ene rearrangement. It was synthesized from the base-mediated coupling of dichloroacetylene (generated *in situ* from trichloroethylene, **247**), methanol, and prenyl bromide (Scheme 2.12a).⁵⁸⁸ However, when an excess of **246** was heated to 140 ºC with cyclobutenone **238**, the only product isolated was phloroglucinol diether **248**. A plausible mechanism for the formation of this aromatic product is shown in Scheme 2.12b. Coupling of **238** with **246** to afford the desired cyclohexadienone **249** may have occurred via the proposed electrocyclic cascade reaction— $[2+2]$ cycloaddition of ring-opened vinylketene **250** with alkynyl ether **246**, ensuing retro-4π electrocyclization of cyclobutenone **251** to dienylketene **252**, and subsequent 6π electrocyclization to give **249**—but under the reaction conditions, rapid loss of the *tert*-butyl group from **249** may have afforded **248**. This dissociation may operate via a concerted retro-ene cyclization process or an ionic retro- S_N1 -type reaction.

^{588 (}a) Moyano, A.; Charbonnier, F.; Greene, A. E. *J. Org. Chem.* **1987**, *52*, 2919-2922. (b) Denmark, S. E.; Dixon, J. A. *J. Org. Chem.* **1998**, *63*, 6167-6177.

Miller and others have observed the elimination of sterically demanding alkyl groups from similar "blocked aromatic" cyclohexadienone systems.⁵⁸⁹

Scheme 2.12. (a) Synthesis and (b) possible mechanism for the formation of **248** from the coupling of **246** and **238**. *a* ^a Conditions: (a) MeOH, KH, THF; 247, –60 °C to rt; BuLi, –78 to –10 °C; prenyl bromide, HMPA, –78 °C to rt, 53%; (b) xylenes, 140 ºC, 25%.

We then explored potential methods of mitigating this terminal *tert*-butyl elimination step to isolate the desired cyclohexadienone **249** (Table 2.1). As mentioned above, Miller has observed similar *tert*-butyl eliminations from cyclohexadienones, and these processes were mediated by either heat or acid.589a-c We repeated the reaction of alkynyl ether **246** with cyclobutenone **238** in the presence of amine base to determine if trace amounts of acid were promoting this elimination. However, in the presence of

589 (a) Miller, B.; Margulies, H. *J. Am. Chem. Soc.* **1965**, *87*, 5106-5111. (b) Miller, B. *J. Am. Chem. Soc.* **1970**, *92*, 6252-6259. (c) Miller, B. *Acc. Chem. Res.* **1975**, *8*, 245-256. (d) Nishinaga, A.; Shimizu, T.; Matsuura, T. *Tetrahedron Lett.* **1981**, *22*, 5293-5296. (e) Tashiro, M.; Itoh, T.; Yoshiya, H.; Fukata, G. *Org. Prep. Proced. Int.*

¹⁹⁸⁴, *16*, 155-164. (f) Hewgill, F. R.; Stewart, J. M. *J. Chem. Soc., Chem. Commun.* **1984**, 1419-1420. (g) Kende, A. S.; Hebeisen, P. *Tetrahedron Lett.* **1985**, *26*, 3769-3772. (h) Miller, B.; Baghdadchi, J. *J. Chem. Soc., Chem. Commun.* **1986**, 511-512. (i) Miller, B.; Baghdadchi, J. *J. Org. Chem.* **1987**, *52*, 3390-3394.

N,*N*-diethylaniline (entry 1), not only was a greater proportion of **248** obtained but we also isolated ester **253** (Figure 2.2), the result of opening of cyclobutenone **238** by phenol **248**. Use of the more basic Hünig's base also gave both products with complete mass recovery (entry 2). We did not observe any conversion with the use of microwave irradiation (entry 3). Photolysis (entries 4-6) of a mixture of **238** and **246** in the presence of benzophenone as a triplet sensitizer only gave **254**, the [2+2] cycloaddition product of benzophenone and **246**. ⁵⁹⁰ Changing the reaction solvent from xylenes to heptane, with the goal of destabilizing *tert*-butyl cation formation, did not prevent the formation of **248** (entry 7).

Table 2.1. Attempted formation of **249** from **246** and **238**.

⁵⁹⁰ For examples of photolytic cyclobutenone ring-opening, see: (a) Baldwin, J. E.; McDaniel, M. C. *J. Am. Chem. Soc.* **1968**, *90*, 6118-6124. (b) Toda, F.; Todo, E. *Chem. Lett.* **1974**, 1279-1280. (c) Toda, F.; Todo, Y.; Todo, E. *Bull. Chem. Soc. Jpn.* **1976**, *49*, 2645-2646. (d) Danheiser, R. L.; Casebier, D. S.; Firooznia, F. *J. Org. Chem.* **1995**, *60*, 8341-8350.

Figure 2.2. Products obtained from the reactions of **246** with **238**.

We also repeated the experimental protocol with the addition of BHT to investigate whether radical intermediates were involved (Table 2.1, entry 8); however, the only product isolated was transposed phloroglucinol diether **255**. This product may form via Diels–Alder [4+2] type cycloaddition between ring-opened vinyl ketene **250** to form cyclohexadienone **256** initially, which undergoes *tert*-butyl elimination (Scheme 2.13). The isolation of **255** indicates that a retro-ene cyclization mechanism for this *tert*-butyl elimination is unlikely.⁵⁹¹ Unsurprisingly, the combination of BHT and Hünig's base additives gave a mixture of products, including **248**, **255**, and the ester adduct **257** (entry 9).

Scheme 2.13. A possible mechanism for the formation of **255** from the reaction of **246** with **238** (Table 2.1, entry 5).

l

⁵⁹¹ A retro-ene cyclization mechanism cannot be ruled out all together, since a [1,3]-transposition of the *tert*-butyl group may occur, placing the substituent at the α-position of the ketone. Similar alkyl shifts have been observed by Miller. For more information, see ref. 589.

Given the inability to isolate cyclohexadienone **249** from cyclobutenone **238**, we investigated the chemistry of methyl alkynyl ether **246** with other ketenes (Scheme 2.14). Heating a solution of **246** and ketoketene **206** afforded γ-pyrone **258**. A similar product, **259**, was isolated in the reaction of **246** with carbethoxyketene **208** along with cyclobutenone **260**. This cyclobutenone may have formed via initial [2+2] cycloaddition of **246** and **208** followed by [1,3]-acyl shift. We also explored the reactivity of ketenethioate 261,⁵⁹² which was synthesized⁵⁹³ from Meldrum's acid derivative 262⁵⁹⁴ via acid chloride **263**. Heating a solution of this ketene with **246** produced α-pyrone **264**.

Scheme 2.14. Reactivity of alkynyl ether **246** with various ketenes.*^a*

a Conditions: (a) xylenes, 140 ºC, 4%; (b) PhMe, 110 ºC, 25% total yield (inseparable mixture of **259** and **260**); (c) *i*-Pr2NEt, TMSCl, MeCN, 0 ºC; EtSH, 43 ºC; HCl, H2O; (d) PCl5, Et2O, reflux, 77% (2 steps); (e) NEt3, PhH, 39%; (f) PhMe, 110 ºC, 38%.

l

 592 This is the first known (alkanethiol)acylketene to be made and is the first acylketene bearing a non-first row element acyl substituent.

⁵⁹³ Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. *J. Am. Chem. Soc.* **2005**, *127*, 7284-7285.

⁵⁹⁴ Huang, X.; Chan, C.-C.; Wu, Q.-L. *Tetrahedron Lett.* **1982**, *23*, 75-76.

Overall, these results indicated that under the conditions necessary to promote the desired electrocyclic cascade reaction, *tert*-butyl elimination to afford an aromatic product was unavoidable. Changes to the nature of the alkynyl ether, ketene coupling partner, solvent, and source of heat did not hinder this deleterious division of the desired product. Another approach we pursued involved the use of an ynamine coupling partner instead of an alkynyl ether.⁵⁹⁵ We hypothesized that a more nucleophilic ynamine may allow the electrocyclic cascade reaction to proceed at a lower temperature and possibly allow for the isolation of our desired product.⁵⁹⁶ Indeed, stirring a solution of diethyl ynamine **265**597 and cyclobutenone **238** at 40 ºC afforded a mixture of vinylcyclobutenone **266** and allenyl amide **267** (Scheme 2.15a). Both products may originate from 1,2-addition of the ynamine to the cyclobutenone carbonyl to form intermediate ketene-immonium ion **268**, which after retro- 4π electrocyclization may reveal enolate **269** (Scheme 2.15b). *C*-Alkylation of the immonium ion by the enolate would afford **266** directly, and *O*-alkylation would provide allenyl amide **267** via retro-4π electrocyclization of oxetene **270**.

 \overline{a}

⁵⁹⁵ For reviews on the synthesis and reactivity of ynamines, see: (a) Ficini, J. *Tetrahedron* **1976**, *12*, 1449-1486. (b) Collard-Motte, J.; Janousek, Z. *Top. Curr. Chem.* **1986**, *130*, 89-131. (c) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575-7606.

⁵⁹⁶ For an example of a reaction of an ynamine with a cyclobutenone, see: Ficini, J.; Falou, S.; d'Angelo, J. *Tetrahedron Lett.* **1977**, *18*, 1931-1934.

^{597 (}a) Ficini, J.; Barbara, C. *Bull. Soc. Chim. Fr.* **1965**, 2787-2793. (b) Sauvêtre, R.; Normant, J. F. *Tetrahedron Lett.* **1982**, *23*, 4325-4328.

Scheme 2.15. (a) Synthesis and possible mechanisms for the formation of (b) of **266** and **267** from **265** and **238**. *a a* Conditions: (a) PhMe, rt to 40 ºC, 12% **266**, 68% **267**.

We then attempted to convert vinylcyclobutenone **266** to cyclohexadienone **271**. Given the similarity of **266** to intermediate **232** in Scheme 2.8b, we rationalized that a retro-4π electrocyclization followed by a 6π electrocyclization would afford **271**. However, under a variety of conditions, we were not able to isolate this desired product (Table 2.2). While heating a benzene solution of **266** at 60 ºC did not result in any reaction (entry 1), heating at or above 90 ºC (entries 2-3) afforded aniline **272** as the sole product (Figure 2.3). The formation of **272** from **266** is analogous to the formation of **255** from the reaction of **246** and **238**, in which *tert*-butyl elimination rapidly occurred in the reaction medium. Further heating, and the addition of BHT and Hünig's base did not inhibit the formation of **272** (entries 4-6). The only product from photolysis of **266** was double-bond isomer **273** (entries 7-8).

Table 2.2. Attempted formation of **271** from **266**.

Figure 2.3. Products obtained from the reactions of **266**.

Given the propensity for *tert*-butyl elimination from putative cyclohexadienone intermediates, we also briefly investigated the use of *tert*-butyl(chloro)ketene (**274**) as a coupling partner in this electrocyclic cascade strategy (Scheme 2.16). Replacement of the acyl or cyano group on the ketene with a chlorine atom may prevent undesireable elimination of the bulky alkyl group from a potential cyclohexadienone product. Treating a solution of acyl chloride **275** with base provided *in situ* generation of **274**, 598 which was trapped with alkynyl ether **246** to form cyclobutenone **276**. However, further heating of this cyclobutenone with alkynyl ether **246** did not afford a desired coupling product; rather, rearranged cyclobutenone **277** was isolated, possibly the product of a [1,3]-chloride shift.

 \overline{a}

⁵⁹⁸ Brady, W. T.; Scherubel, G. A. *J. Org. Chem.* **1974**, *39*, 3790-3791.

Scheme 2.16. Formation and reactivity of cyclobutenone **276**. *a* a^a Conditions: (a) NEt₃, PhH, rt to reflux, 27%; (b) PhMe, 110 °C, 49% (16% recovered 276).

In summary, a variety of approaches to mitigate *tert*-butyl elimination were explored. Varying the reaction parameters, including ketene coupling partners, heteroatom-functionalized alkynyl coupling partners, use of photolytic conditions, and use of reaction additives, failed to inhibit this process. With the inability to isolate a stable cyclohexadienone bearing a quaternary center functionalized with a *tert*butyl substituent, we concluded that this electrocyclic cascade approach was inherently flawed, and we therefore sought to explore an alternative strategy for the construction of the bicyclo[3.3.1]nonane core of hyperforin.

Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried glassware under a positive pressure of argon unless otherwise noted. Flash column chromatography was performed as described by Still *et al.*⁵⁹⁹ employing silica gel 60 (40-63 µm, Whatman). Both preparatory and analytical thin-layer chromatography (TLC) were performed using 0.25 mm silica gel 60 F₂₅₄ plates.

Materials. Commercial reagents and solvents were used as received with the following exceptions. Tetrahydrofuran, diethyl ether, dichloromethane, toluene, benzene, hexane, acetonitrile, and *N*,*N*-dimethylformamide were degassed with argon and passed through a solvent purification system (designed by J. C. Meyer of Glass Contour) utilizing alumina columns as described by Grubbs *et al.*⁶⁰⁰ unless otherwise noted. Triethylamine, diisopropylamine, pyridine, and chlorotrimethylsilane were distilled over calcium hydride. Hexamethylphosphoramide was distilled over calcium hydride under reduced pressure. Prenyl bromide was distilled under reduced pressure. Lithium chloride was stored in a vacuum oven for at least 24 h before use. Potassium hydride was washed five times with pentane and dried under reduced pressure directly prior to use. The molarities of butyllithium and *tert*-butyllithium solutions were determined by titration with 1,10-phenanthroline as an indicator (average of three determinations). THF solutions of lithium diisopropylamide were prepared by addition of a hexane solution of butyllithium (1 equiv) to a THF solution of the appropriate amine (1.1 equiv) cooled to –78 °C and stirring the solution for 30 min at 0 ºC.

Instrumentation. ¹H NMR spectra were recorded with Varian INOVA-600 and Varian INOVA-500 spectrometers, are reported in parts per million (δ), and are calibrated using residual non-deuterated solvent as an internal reference: CDCl₃, δ 7.26 (CHCl₃). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, integration). Multiplicities are reported as follows: $s =$ singlet; $d =$ doublet; $t =$ triplet; $q =$ quartet; septet = septet; $m =$ multiplet; $br =$ broad, or

l

⁵⁹⁹ Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923-2925.

⁶⁰⁰ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518- 1520.

combinations thereof. ¹³C NMR spectra were recorded with a Varian INOVA-500 spectrometer, are reported in parts per million (δ), and are referenced from the central peak of the carbon resonance of the solvent: CDCl₃, δ 77.23. Infrared (IR) data were recorded on a Varian 1000 FT-IR using NaCl plates or on a Bruker Alpha FT-IR spectrometer outfitted with an Eco-ATR sampling module. High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) mass spectroscopy on an Agilent 6210 TOF LC/MS or a Bruker q-TOF Maxis Impact mass spectrometer. Gas chromatography mass spectra (GCMS) were performed on a Shimadzu GC-2014 equipped with an AOC-20i auto-injector. Microwave irradiation was accomplished using a CEM Discover microwave reactor. Photoirradiation was accomplished using a water-cooled, 5-inch 450-watt Hanovia UV immersion lamp. No filter was used unless specifically indicated.

Note: For clarity, intermediates that have are not explicitly mentioned in this chapter are numbered sequentially in the experimental section beginning with **278**.

2,2,6-Trimethyl-5-(3-methylbut-2-en-1-yl)-4*H***-1,3-dioxin-4-one (213):**

A THF (350 mL) solution of **212**569 (18.5 g, 69.0 mmol, 1 equiv) in a 3-neck, 1-L round-bottom flask was cooled to –30 ºC and treated dropwise with a THF solution of isopropylmagnesium chloride (2.0 M, 38 mL, 76 mmol, 1.1 equiv) via equal-pressure dropping funnel. After stirring at -30 °C for 20 min, copper(I) bromide (990. mg, 6.90 mmol, 0.1 equiv) and lithium chloride (585 mg, 13.8 mmol, 0.2 equiv) were added, and prenyl bromide (12 mL, 100 mmol, 1.5 equiv) was added after 5 min. After stirring at – 30 °C for 2 h, the reaction was quenched with brine and extracted thrice with Et₂O. The organic extracts were combined, washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo* to a green oil. Flash column chromatography (500 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 12.14 g (57.74 mmol, 84% yield) of **213** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.05 (t, *J* = 6.8 Hz, 1H), 2.94 (d, *J* = 6.8 Hz, 2H), 1.96 (s, 3H), 1.68 (m, 6H), 1.63 (s, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 163.5, 162.4, 132.5, 121.8, 105.14, 104.94, 25.8, 25.3, 24.1, 18.0, 17.6. **FTIR** (thin film) νmax: 2994, 2916, 2859, 1716, 1643, 1389, 1347, 1268, 1235, 1204, 1148, 1054, 973, 919, 835, 781, 732 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{12}H_{18}O_3$, 233.1144; found, 233.1148. **TLC** $R_f = 0.43$ (8:2 hexane:EtOAc).

2,2-Dimethyl-5-(3-methylbut-2-en-1-yl)-6-(4-methylpent-3-en-1-yl)-4*H***-1,3-dioxin-4-one (214):**

1,3-Dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone (10.4 mL, 86.3 mmol, 1.5 equiv) was added to a freshly prepared THF solution of lithium diisopropylamide (0.69 M, 82.9 mL, 57.5 mmol, 1 equiv) in a 200-mL recovery flask cooled to 0 ºC. After stirring for 20 min, **213** (12.10 g, 57.5 mmol, 1 equiv) was added, and the solution was stirred at 0 °C for 20 min. After cooling to -40 °C, prenyl bromide (8.6 mL, 75) mmol, 1.3 equiv) was added, and the reaction was allowed to slowly warm overnight. After stirring for 20 h at rt, the reaction was quenched by the addition of ice-cold 1 N HCl and extracted thrice with Et₂O. The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to a brown oil. Flash column chromatography (500 mL $SiO₂$, 9:1 hexane:EtOAc) afforded 7.30 g (26.2 mmol, 46% yield) of **214** as a pale yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 5.07 (t, *J* = 6.9 Hz, 1H), 5.04 (t, *J* = 6.1 Hz, 1H), 2.95 (d, *J* = 6.9 Hz, 2H), 2.29-2.27 (m, 2H), 2.21 (m, 2H), 1.68 (s, 6H), 1.67 (s, 3H), 1.63 (s, 6H), 1.60 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 166.2, 162.7, 133.4, 132.2, 122.5, 122.3, 105.1, 104.9, 31.2, 25.88, 25.85, 25.3, 25.0, 23.9, 18.04, 17.90.

FTIR (thin film) v_{max} : 2967, 2915, 2859, 1720, 1637, 1444, 1371, 1268, 1204, 1130, 1047, 979, 845 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{17}H_{26}O_3$, 301.1784; found, 301.1774.

TLC $R_f = 0.33$ (9:1 hexane:EtOAc).

*tert***-Butyl 7-methyl-2-(3-methylbut-2-en-1-yl)-3-oxooct-6-enoate (216):**

An acetone (500 mL) and DMF (30 mL) slurry of **215**571 (20. g, 88 mmol, 1 equiv), prenyl bromide (11.2 mL, 97.2 mmol, 1.1 equiv), and potassium carbonate (24.4 g, 177 mmol, 2 equiv) in a 3-neck 1-L roundbottom flask outfitted with a reflux condenser was heated to reflux. After refluxing for 21 h, the reaction was cooled to rt and concentrated *in vacuo*. Short-path distillation (6 mmHg, 110-117 ºC) afforded 16.71 g (56.8 mmol, 64%) of **216** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.04 (t, *J* = 7.2 Hz, 1H), 5.00 (t, *J* = 7.4 Hz, 1H), 3.33 (m, 1H), 2.55 (m,

1H), 2.50-2.43 (m, 3H), 2.26-2.21 (m, 2H), 1.66 (s, 6H), 1.61 (s, 3H), 1.60 (s, 3H), 1.43 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 205.4, 169.0, 134.4, 132.9, 122.9, 120.4, 81.8, 60.3, 42.3, 28.1, 27.1, 25.95, 25.87, 22.4, 18.00, 17.84.

FTIR (thin film) v_{max} : 2971, 2916, 2859, 1735, 1712, 1450, 1368, 1249, 1144, 845 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{18}H_{30}O_3$, 295.2259; found, 295.2268.

TLC $R_f = 0.39$ (9:1 hexane:EtOAc).

1-*tert***-Butyl 7-ethyl 6-(***tert***-butyl)-2,4-bis(3-methylbut-2-en-1-yl)-3,5-dioxoheptanedioate (210):**

216 (346 mg, 1.18 mmol, 1 equiv) was added to a THF (3 mL) slurry of sodium hydride (60% suspension in mineral oil, 46 mg, 1.23 mmol, 1.05 equiv) cooled to 0 ºC in a 10-mL recovery flask. After stirring for 10 min, a hexane solution of butyllithium (2.73 M, 0.65 mL, 1.76 mmol, 1.5 equiv) was added, and the yellow-orange slurry was stirred at 0 ºC. After 10 min, **208**566 (200 mg, 1.18 mmol, 1 equiv) was added, and the solution was allowed to warm to rt. After 90 min, the reaction was quenched at rt with 2 N HCl, diluted with H₂O, and extracted thrice with Et₂O. The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (100 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 299 mg (0.643 mmol, 55%) of 210 as a yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.86-5.83 (m, ~0.5H), 5.08-4.92 (m, 2H), 4.25-4.09 (m, 2H), 4.00-3.90 $(m, \sim1H)$, 3.57-3.44 $(m, \sim1H)$, 3.23-3.17 $(m, \sim1H)$, 3.11-3.07 $(m, \sim0.5H)$, 2.59-2.38 $(m, 3H)$, 1.74-1.56 (m, 12H), 1.46-1.41 (m, 9H), 1.30-1.24 (m, 3H), 1.12-1.04 (m, 9H) (*mixture of tautomers and diastereomers*).

¹³C NMR (125 MHz; CDCl₃) δ: 201.0, 200.1, 199.63, 199.50, 199.02, 198.82, 191.53, 191.51, 187.32, 187.22, 169.4, 169.0, 168.36, 168.34, 168.20, 168.15, 167.96, 167.89, 134.74, 134.60, 134.56, 134.53, 134.40, 134.21, 120.6, 120.41, 120.38, 120.24, 120.19, 120.14, 100.70, 100.69, 82.4, 82.1, 81.7, 67.6, 67.2, 67.0, 66.8, 66.5, 65.7, 63.83, 63.79, 61.5, 61.29, 61.22, 60.9, 60.07, 60.05, 59.5, 56.56, 56.54, 35.2, 35.02, 34.99, 34.82, 34.69, 34.51, 28.35, 28.31, 28.28, 28.25, 28.15, 28.06, 28.01, 27.97, 27.34, 27.23, 27.19, 26.8, 25.87, 25.84, 25.78, 17.92, 17.88, 14.28, 14.25, 14.23 (*mixture of tautomers and diastereomers*).

FTIR (thin film) v_{max} : 2969, 2933, 2873, 1730, 1598, 1448, 1368, 1246, 1143, 1043, 1025, 845 cm⁻¹.

156

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{27}H_{44}O_6$, 465.3207; found, 465.3211.

TLC $R_f = 0.61$ (8:2 hexane:EtOAc).

*S***-***tert***-Butyl 7-methyl-3-oxooct-6-enethioate (278):**

A DME (16 mL) solution of 217^{572} (5.52 mL, 31.5 mmol, 1 equiv) was added dropwise to a DME (125) mL) slurry of sodium hydride (60% suspension in mineral oil, 1.38 g, 34.6 mmol, 1.1 equiv) cooled to 0 ºC in a 500-mL round-bottom flask. After stirring for 5 min, the slurry was cooled to –30 ºC, and a hexane solution of butyllithium (2.60 M, 13.3 mL, 34.6 mmol, 1.1 equiv) was added slowly. After stirring the bright orange slurry at -30 °C for 10 min, prenyl bromide (4.0 mL, 34.6 mmol, 1.1 equiv) was added, and the yellow slurry was allowed to slowly warm to rt. After stirring 90 min, the reaction was quenched with sat. aq. NH4Cl and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to a yellow oil. Short-path distillation (6 mmHg, 100-105 ºC) afforded 4.66 g (19.2 mmol, 61% yield) of **278** as a pale yellow oil.

¹**H NMR** (500 MHz; CDCl₃) δ: 5.32 (s, 1H, *minor tautomer*), 5.09-5.03 (m, 1H, *both tautomers*), 3.55 (s, 2H, *major tautomer*), 2.55 (t, *J* = 7.4 Hz, 2H, *both tautomers*), 2.28-2.22 (m, 3H, *both tautomers*), 2.15- 2.12 (m, 1H, *both tautomers*), 1.69 (s, 3H, *minor tautomer*), 1.67 (s, 3H, *major tautomer*), 1.61 (s, 3H, *both tautomers*), 1.51 (s, 9H, *minor tautomer*), 1.47 (s, 9H, *major tautomer*).

¹³C NMR (125 MHz; CDCl₃) δ: 202.3, 196.4, 192.8, 176.1, 133.2, 122.65, 122.51, 99.8, 58.7, 49.2, 48.3, 43.3, 35.3, 30.4, 29.8, 25.9, 25.1, 22.4, 17.91, 17.88 (*mixture of tautomers*).

FTIR (thin film) v_{max} : 2965, 2924, 2862, 1723, 1674, 1614, 1455, 1364, 1178, 1160, 1080, 978, 863 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{13}H_{22}O_2S$, 243.1421; found, 243.1413.

TLC $R_f = 0.43$ (9:1 hexane:EtOAc).

*S***-***tert***-Butyl 7-methyl-2-(3-methylbut-2-en-1-yl)-3-oxooct-6-enethioate (218):**

278 (5.76 g, 23.8 mmol, 1 equiv) was added to a DME (100 mL) slurry of sodium hydride (60% suspension in mineral oil, 950. mg, 30.9 mmol, 1.3 equiv) cooled to 0 °C in a 200-mL recovery flask. After stirring for 5 min, prenyl bromide (3.6 mL, 31 mmol, 1.3 equiv) was added to the yellow solution, and the reaction was allowed to slowly warm to rt overnight. After 12 h, the reaction was quenched with the addition of H_2O and by pouring the resulting mixture onto ice-cold 1 N NaOH. The mixture was then extracted thrice with CHCl₃. The organic extracts were combined, washed with H₂O and brine, dried over MgSO4, filtered, and concentrated *in vacuo*. The resulting colorless oil was retaken in 98:2 hexane:EtOAc and passed through a short plug of SiO₂, rinsing with 98:2 hexane:EtOAc. Concentration of the filtrate *in vacuo* afforded 7.39 g (23.8 mmol, >99% yield) of **218** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.03 (t, *J* = 7.2 Hz, 1H), 4.98 (t, *J* = 7.3 Hz, 1H), 3.58 (t, *J* = 7.5 Hz, 1H), 2.60-2.46 (m, 4H), 2.24 (q, *J* = 7.2 Hz, 2H), 1.66 (s, 6H), 1.61 (s, 6H), 1.45 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 204.1, 195.9, 134.8, 133.0, 122.8, 119.9, 68.4, 58.7, 49.0, 42.2, 29.8, 28.0, 25.93, 25.87, 22.5, 17.99, 17.85.

FTIR (thin film) v_{max} : 2965, 2922, 2859, 1723, 1672, 1454, 1364, 1162, 984, 926, 825 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{18}H_{30}O_2S$, 333.1858; found, 333.1859.

TLC $R_f = 0.65$ (9:1 hexane:EtOAc).

Ethyl 2-(*tert***-butyl)-6-((***tert***-butylthio)carbonyl)-9-methyl-4-(3-methylbut-2-en-1-yl)-3,5-dioxodec-8 enoate (211):**

A DME (1.1 mL) solution of **218** (663 mg, 2.14 mmol, 1 equiv) was added dropwise to a DME (8.5 mL) slurry of sodium hydride (60% suspension in mineral oil, 94 mg, 2.35 mmol, 1.1 equiv) cooled to 0 °C in a 25-mL recovery flask. After stirring the pink solution at 0 °C for 5 min, it was cooled to –30 °C, and a hexane solution of butyllithium (2.60 M, 0.90 mL, 2.4 mmol, 1.1 equiv) was added dropwise. The resulting yellow-orange solution was stirred for 10 min at -30 °C, and 208^{566} (400 mg, 2.35 mmol, 1.1) equiv) was added dropwise. The resulting yellow-orange solution was allowed to slowly warm to rt overnight. After 16 h, the solution was quenched by pouring it onto sat. aq. $NH₄Cl$, and the resulting mixture was extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to an orange oil. Flash column chromatography (100 mL SiO_2 , $98:2 \rightarrow 8:2$ hexane:EtOAc) afforded 398 mg (0.828 mmol, 39% yield) of 211 as a yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.29 (m, ~0.5H), 5.08-4.81 (m, 2H), 4.22-3.88 (m, 2H), 3.72-3.31 (m, 3H), 2.51-2.23 (m, ~3.5H), 1.65-1.33 (m, 12H), 1.23-1.11 (m, 3H), 1.05-0.93 (m, 9H) (*mixture of tautomers and diastereomers*).

¹³C NMR (125 MHz; CDCl₃) δ: 199.30, 199.27, 199.25, 199.05, 198.8, 198.37, 198.22, 198.02, 197.3, 195.02, 194.94, 194.61, 194.55, 168.21, 168.09, 168.03, 167.6, 134.84, 134.80, 134.74, 134.70, 134.50, 134.35, 122.3, 120.30, 120.19, 120.08, 119.96, 119.84, 119.73, 119.68, 118.3, 101.6, 77.2, 68.34, 68.21, 68.13, 67.7, 67.34, 67.29, 67.21, 67.16, 67.01, 66.92, 66.80, 66.77, 66.74, 66.66, 66.55, 65.6, 61.48, 61.31, 61.21, 61.16, 61.08, 60.96, 60.84, 60.75, 60.71, 60.4, 59.0, 56.75, 56.67, 53.5, 51.8, 49.27, 49.24, 49.04, 48.97, 36.4, 35.4, 35.1, 34.74, 34.69, 34.56, 34.53, 34.39, 34.26, 33.7, 30.06, 30.04, 29.75, 29.69, 29.66, 29.62, 29.3, 28.82, 28.64, 28.52, 28.34, 28.14, 28.10, 28.06, 28.03, 28.00, 27.65, 27.55, 27.47,

27.40, 27.14, 26.99, 26.4, 25.74, 25.69, 25.66, 24.6, 17.88, 17.84, 17.78, 17.76, 17.73, 17.67, 14.26, 14.22, 14.18, 14.14 (*mixture of tautomers and diastereomers*).

FTIR (thin film) v_{max} : 2963, 2914, 2872, 1725, 1671, 1455, 1365, 1302, 1221, 1144, 1043, 935 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{27}H_{44}O_5S$, 503.2802; found, 503.2807.

TLC $R_f = 0.51$ (8:2 hexane:EtOAc).

Ethyl 2-(*tert***-butyl)-4-methyl-3-oxopentanoate (221):**

A THF (265 mL) solution of **208**566 (18.0 g, 106 mmol, 1 equiv) in a 1-L recovery flask was cooled to 0 ºC, and a THF solution of isopropylmagnesium chloride (2.0 M, 58 mL, 120 mmol, 1.1 equiv) was added slowly over 10 min. After the addition was complete, the reaction was allowed to slowly warm to rt. After stirring for 3 h, the reaction was quenched via dropwise addition of H_2O followed by sat. aq. NH₄Cl and extracted thrice with EtOAc. The organic extracts were combined, washed with sat. aq. NaHCO₃ and brine, dried over $MgSO_4$, and filtered through a short plug of $SiO₂$, rinsing with EtOAc. The filtrate was concentrated *in vacuo* to afford 23 g (110 mmol, >99% yield) of **221** as a colorless oil.

1 H NMR (600 MHz; CDCl3) δ: 4.15 (q, *J* = 7.1 Hz, 2H), 3.52 (s, 1H), 2.69 (7, *J* = 6.8 Hz, 1H), 1.24 (t, *J* $= 7.1$ Hz, 3H), 1.09 (d, $J = 6.8$ Hz, 3H), 1.08 (s, 9H), 1.04 (d, $J = 6.8$ Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 209.1, 168.9, 65.8, 61.0, 42.6, 34.7, 28.4, 18.35, 18.18, 14.4.

FTIR (thin film) v_{max} : 2964, 2909, 2874, 1736, 1714, 1466, 1366, 1303, 1223, 1206, 1142, 1021 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{12}H_{22}O_3$, 215.1651; found, 215.1642.

TLC $R_f = 0.42$ (9:1 hexane:EtOAc).

2-(*tert***-Butyl)-4-methylpent-1-ene-1,3-dione (206):**

A MeOH (465 mL) solution of **221** (10.0 g, 46.7 mmol, 1 equiv) in a 1-L round-bottom flask was treated with an aqueous solution of sodium hydroxide (50% by weight, 93 mL). The exothermic yellow solution was placed in a rt water bath and stirred for 12 h. The reaction was then concentrated partially *in vacuo*, cooled to 0 ºC, and slowly acidified with concentrated HCl. After warming the mixture to rt, it was extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to a pale yellow oil. The oil was taken up in $Et₂O$ (210 mL) in a 3neck 500-mL round-bottom flask outfitted with a reflux condenser. Phosphorous(V) chloride (17.6 g, 84.6 mmol, 2 equiv) was added, and the mixture was heated to reflux. After stirring for 4 h at reflux, the reaction was cooled to rt and transferred via cannula to a Schlenk filter funnel and filtered under positive N_2 pressure. The yellow filtrate was distilled directly (6 mmHg, 62-64 °C) to afford 7.03 g (34.3 mmol, 73% yield over 2 steps) of **279** as a colorless oil. A PhH (48 mL) solution of **279** (6.91 g, 33.8 mmol, 1 equiv) in a 100-mL recovery flask was treated with triethylamine (9.4 mL, 68 mmol, 2 equiv), and the resulting yellow slurry was stored in the dark for 7 h. The slurry was then passed through a Schlenk filter funnel under positive N₂ pressure. The filtrate was distilled directly (6 mmHg, 30-32 °C) to afford 2.89 g (17.2 mmol, 51% yield) of **206** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 2.54 (septet, $J = 6.7$ Hz, 1H), 1.24 (s, 9H), 1.11 (d, $J = 6.7$ Hz, 5H). ¹³C NMR (125 MHz; CDCl₃) δ: 200.1, 197.1, 59.7, 41.5, 31.7, 29.5, 19.6.

FTIR (thin film) v_{max} : 2966, 2908, 2874, 2097, 1668, 1459, 1384, 1365, 1248, 1193, 1157, 940 cm⁻¹.

4-Hydroxy-3,5-bis(3-methylbut-2-en-1-yl)-6-(2,2,5-trimethyl-4-oxohexan-3-yl)-2*H***-pyran-2-one**

(222):

A DME (0.6 mL) solution of **218** (336 mg, 1.08 mmol, 1 equiv) was added to a DME (5 mL) slurry of sodium hydride (60% suspension in mineral oil, 48 mg, 1.18 mmol, 1.1 equiv) cooled to 0 °C in a 25-mL round-bottom flask. After stirring the resulting pink solution at 0 °C for 5 min, it was cooled to –30 °C and a hexane solution of butyllithium (1.8 M, 0.65 mL, 1.2 mmol, 1.1 equiv) was added dropwise. After stirring for 10 min at -30 °C, 206 (200. mg, 1.18 mmol, 1.1 equiv) was added and the reaction was allowed to slowly warm to rt. After stirring for 3.5 h, the reaction was quenched with sat. aq. NH₄Cl and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over $Na₂SO₄$, filtered, and concentrated *in vacuo*. Flash column chromatography (75 mL SiO₂, 95:5 \rightarrow 9:1 \rightarrow 1:1 hexane:EtOAc) afforded 218 mg (0.56 mmol, 52% yield) of **222** as a white flocculent solid.

¹H NMR (600 MHz; CDCl₃) δ: 7.95 (br s, 1H), 5.22 (t, *J* = 7.3 Hz, 1H), 5.02 (t, *J* = 6.0 Hz, 1H), 3.57 (s, 1H), 3.21 (d, *J* = 7.3 Hz, 2H), 3.17 (dd, *J* = 16.0, 5.6 Hz, 1H), 3.11 (dd, *J* = 16.0, 7.3 Hz, 1H), 2.68 (septet, *J* = 6.8 Hz, 1H), 1.72 (s, 3H), 1.70 (s, 6H), 1.66 (s, 3H), 1.04 (s, 9H), 0.91 (d, *J* = 6.8 Hz, 3H), 0.90 (d, $J = 6.8$ Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 209.8, 164.9, 164.5, 156.0, 136.6, 133.3, 121.0, 120.4, 114.6, 103.0, 61.1, 39.9, 35.6, 28.9, 25.92, 25.72, 24.0, 23.3, 19.6, 18.10, 18.08, 18.01.

FTIR (thin film) v_{max} : 3252 (br), 2967, 2874, 1727, 1666, 1559, 1449, 1217 cm⁻¹.

HRMS–ESI (m / z): $[M+K]^+$ calculated for $C_{24}H_{36}O_4$, 427.2245; found, 427.2228.

TLC $R_f = 0.41$ (7:3 hexane:EtOAc).

4-Methoxy-3,5-bis(3-methylbut-2-en-1-yl)-6-(2,2,5-trimethyl-4-oxohexan-3-yl)-2*H***-pyran-2-one**

(225):

A THF (3 mL) solution of **222** (168 mg, 0.432 mmol, 1 equiv) in a 20-mL scintillation vial was treated with an Et₂O solution of trimethylsilyldiazomethane (2.0 M, 0.43 mL, 0.87 mmol, 2 equiv). After stirring the yellow solution at rt for 23 h, it was quenched with sat. aq. NH4Cl and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (20 mL SiO_2 , $95:5 \rightarrow 8:2$ hexane:EtOAc) afforded 162.3 mg (0.4032 mmol, 93% yield) of **225** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ 5.15 (t, *J* = 7.1 Hz, 1H), 5.10 (t, *J* = 6.8 Hz, 1H), 3.89 (s, 3H), 3.89 (s, 1H), 3.51-3.47 (m, 1H), 3.10-3.06 (m, 2H), 3.02 (dd, *J* = 14.4, 7.1 Hz, 1H), 2.61 (7, *J* = 6.8 Hz, 1H), 1.78 (s, 3H), 1.72 (s, 3H), 1.69 (s, 3H), 1.66 (s, 3H), 1.09 (s, 9H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.94 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 210.2, 179.5, 162.5, 154.5, 132.3, 132.1, 126.3, 121.9, 121.6, 104.0, 60.2, 56.1, 41.7, 36.4, 29.0, 25.95, 25.79, 24.2, 21.2, 18.8, 18.28, 18.18, 18.0.

FTIR (thin film) νmax: 2962, 2913, 2872, 1723, 1652, 1618, 1592, 1462, 1401, 1324, 1266, 1178, 1124, $1021,974$ cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{25}H_{38}O_4$, 403.2846; found, 403.2843.

TLC $R_f = 0.55$ (8:2 hexane:EtOAc).

3,5-bis(3-Methylbut-2-en-1-yl)-2-oxo-6-(2,2,5-trimethyl-4-oxohexan-3-yl)-2*H***-pyran-4-yl benzoate**

(226):

A pyr (1 mL) solution of **222** (59.8 mg, 0.15 mmol, 1 equiv) in a 5-mL pear-shaped flask was treated with benzoyl chloride (16 µL, 0.17 mmol, 1.1 equiv). After stirring the reaction for 9 h, it was poured onto sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a brown oil. Flash column chromatography (15 mL SiO2, 95:5 hexane:EtOAc) afforded 36.9 mg (74.9 µmol, 50% yield) of **226** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 8.13-8.10 (m, 2H), 7.69-7.65 (m, 1H), 7.53 (td, *J* = 7.8, 3.8 Hz, 2H), 5.09 (t, *J* = 7.0 Hz, 1H), 4.96 (t, *J* = 5.0 Hz, 1H), 3.66 (s, 1H), 3.20-2.96 (m, 4H), 2.76 (7, *J* = 6.8 Hz, 1H), 1.56 (s, 3H), 1.55 (s, 3H), 1.47 (s, 3H), 1.42 (s, 3H), 1.12 (s, 9H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 209.5, 163.12, 163.04, 159.2, 134.5, 133.80, 133.70, 130.5, 128.9, 128.1, 120.9, 119.4, 118.2, 116.0, 61.2, 40.3, 36.0, 32.9, 29.0, 25.81, 25.65, 25.2, 24.6, 19.7, 18.16, 18.02, 17.94. **FTIR** (thin film) νmax: 2967, 2931, 2872, 1743, 1723, 1565, 1452, 1375, 1258, 1229, 1176, 1059, 1022, 706 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{31}H_{40}O_5$, 493.2949; found, 493.2957.

TLC $R_f = 0.66$ (1:1 hexane:EtOAc).

A PhMe (7 mL) solution of **237**582 (82 mg, 0.27 mmol, 1 equiv) in a 2-neck 25-mL round-bottom flask outfitted with a reflux condenser was refluxed for 90 min, whereupon the initially orange solution turned yellow. After cooling to rt, 234⁵⁷⁹ (150. mg, 1.09 mmol, 4 equiv) was added, producing an orange solution. After stirring for 8 h at rt, it was heated at 60 °C for 12 h, and then at 120 °C for 3 h. The bright orange red solution was cooled to rt and concentrated *in vacuo* to an orange red oil. Flash column chromatography (100 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 46 mg (0.18 mmol, 33% yield) of **238** as an orange oil and 10 mg (0.025 mmol, 5% yield) of **239** as an orange oil.

1-(*tert***-Butyl)-2-ethoxy-3-(3-methylbut-2-en-1-yl)-4-oxocyclobut-2-enecarbonitrile (238):**

1 H NMR (600 MHz; CDCl3) δ: 5.08 (t, *J* = 7.0 Hz, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 2.85-2.83 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.09 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 179.6, 172.9, 134.4, 124.6, 119.3, 117.2, 70.0, 68.3, 34.6, 26.4, 25.7, 22.0, 18.0, 15.2.

FTIR (thin film) v_{max} : 2972, 2229, 1768, 1654, 1619, 1599, 1381, 1334 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{16}H_{23}NO_2$, 284.1621; found, 284.1611.

TLC $R_f = 0.39$ (8:2 hexane:EtOAc).

6-(*tert***-Butyl)-3,7-diethoxy-4,8-bis(3-methylbut-2-en-1-yl)-2-azabicyclo[4.2.0]octa-1,3,7-trien-5-one (239):**

1 H NMR (500 MHz; CDCl3) δ: 5.23 (t, *J* = 7.1 Hz, 1H), 5.18 (t, *J* = 7.5 Hz, 1H), 4.53 (dq, *J* = 10.0, 7.1 Hz, 1H), 4.46 (dq, *J* = 10.5, 7.1 Hz, 1H), 4.37 (m, 2H), 3.12 (dd, *J* = 14.0, 7.5 Hz, 1H), 3.03 (dd, *J* = 16.2, 7.1 Hz, 1H), 2.94 (dd, *J* = 16.2, 7.0 Hz, 1H), 2.84 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.71 (s, 6H), 1.66 (s, 3H), 1.64 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 0.99 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 191.9, 180.8, 168.2, 162.7, 133.7, 130.6, 124.8, 123.3, 119.7, 110.6, 69.8, 63.4, 36.8, 29.9, 28.5, 25.98, 25.82, 22.9, 22.5, 18.04, 18.02, 15.53, 15.50. **FTIR** (thin film) v_{max} : 2968, 2942, 1631, 1572, 1370, 1332, 1263 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{25}H_{37}NO_3$, 400.2846; found, 400.2860.

TLC $R_f = 0.30$ (8:2 hexane:EtOAc).

Optimized procedure for the synthesis of 238:

An orange PhMe (180 mL) solution of **237**582 (5.47 g, 18.1 mmol, 2.5 equiv) in a 3-neck 500-mL roundbottom flask outfitted with a reflux condenser was heated to 102.5 ± 2.5 °C for 90 min. After cooling the reaction to rt, a PhMe (36 mL) solution of **234**579 (1.00 g, 7.24 mmol, 1 equiv) was added. The resulting deep red solution was heated to 102.5 ± 2.5 °C for 90 min, cooled to rt, and concentrated *in vacuo* to a dark red oil. Flash column chromatography (500 mL SiO₂, 95:5 \rightarrow 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 1.70 g (6.50 mmol, 90% yield) of **238** as an orange oil.

Ethyl 2,2-dibromo-5-methylhex-4-enoate (243):

A THF (5.5 mL) solution of **280**601 (3.01 g, 19.3 mmol, 1 equiv) was added dropwise to a freshly prepared THF solution of lithium diisopropylamide (0.30 M, 66 mL, 20. mmol, 1.05 equiv) cooled to –78 ºC in a 200-mL recovery flask. After stirring for 25 min at –78 ºC, 1,2-dibromo-1,1,2,2-tetrafluoroethane (3.5 mL, 29 mmol, 1.5 equiv) was added. The resulting black-brown solution was stirred at –78 ºC for 30 min and subsequently quenched by pouring onto sat. aq. $NaHCO₃$. The mixture was extracted thrice with hexane. The organic extracts were combined, washed with H_2O and brine, dried over $MgSO_4$, filtered, and concentrated *in vacuo* to a yellow oil. Short-path distillation (6 mmHg, 56-58 ºC) afforded 2.25 g (9.57 mmol) of a mono-brominated intermediate. A THF (2.8 mL) solution of this intermediate (2.22 g, 9.44 mmol, 1 equiv) was added dropwise to a freshly prepared THF solution of lithium diisopropylamide $(0.30 \text{ M}, 34 \text{ mL}, 9.9 \text{ mmol}, 1.05 \text{ equity})$ cooled to -78 °C in a 100-mL recovery flask. After stirring for 25 min at –78 ºC, 1,2-dibromo-1,1,2,2-tetrafluoroethane (1.7 mL, 14.2 mmol, 1.5 equiv) was added. The pale yellow solution was stirred at –78 ºC for 30 min and subsequently quenched by pouring onto sat. aq. $NaHCO₃$. The mixture was extracted thrice with hexane. The organic extracts were combined, washed with H2O and brine, dried over MgSO4, filtered, and concentrated *in vacuo* to a brown oil. Short-path distillation (6 mmHg, 80-85 ºC) afforded 1.74 g (5.54 mmol, 29% yield over 2 steps) of **243** as a colorless oil.

1 H NMR (600 MHz; CDCl3) δ: 5.24 (t, *J* = 7.0 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.31 (d, *J* = 7.0 Hz, 2H), 1.75 (s, 3H), 1.68 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 166.4, 137.9, 118.7, 64.0, 60.5, 46.0, 26.2, 18.9, 14.0.

FTIR (thin film) v_{max} : 2980, 2932, 2914, 1733, 1445, 1298, 1222, 1177, 1029, 1014, 859, 793, 628 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_9H_{14}Br_2O_2$, 336.9226; found, 336.9233.

 \overline{a}

⁶⁰¹ Cermak, D. M.; Wiemer, D. F.; Lewis, K.; Hohl, R. J. *Bioorg. Med. Chem.* **2000**, *8*, 2729-2737.

TLC $R_f = 0.53$ (9:1 hexane:EtOAc).

A THF (1 mL) solution of **243** (96 mg, 0.31 mmol, 1 equiv) in a 10-mL recovery flask was cooled to –78 ºC and treated with a pentane solution of *tert*-butyllithium (1.70 M, 0.72 mL, 12 mmol, 4 equiv) dropwise over 7 min. The yellow solution was stirred at -78 °C for 90 min, and then slowly warmed from 0 °C to rt. After 4 hours, **238** (80.0 mg, 0.306 mmol, 1 equiv) was added at rt. After stirring at rt for 14 h, the reaction was quenched by pouring onto sat. aq. $NH₄Cl$ and extracted thrice with Et₂O. The organic extracts were combined, washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a viscous orange-red oil. Flash column chromatography (100 mL SiO₂, 95:5 \rightarrow 9:1 \rightarrow 8:2 \rightarrow 1:1 hexane:EtOAc) afforded 9 mg (0.02 mmol, 8% yield) of **244** as a pale yellow oil and 10. mg (0.038 mmol, 12% yield) of **245** as a pale yellow oil.

2-(4-Ethoxy-3,5-bis(3-methylbut-2-en-1-yl)-2-oxo-2*H***-pyran-6-yl)-3,3-dimethylbutanenitrile (244):**

1 H NMR (600 MHz; CDCl3) δ: 5.17 (t, *J* = 6.7 Hz, 1H), 4.98 (t, *J* = 6.5 Hz, 1H), 3.96 (dd, *J* = 7.0, 1.9 Hz, 1H), 3.94 (dd, *J* = 7.0, 1.9 Hz, 1H), 3.63 (s, 1H), 3.17 (d, *J* = 6.7 Hz, 2H), 3.13 (dd, *J* = 16.3, 6.5 Hz, 1H), 2.98 (dd, *J* = 16.3, 6.5 Hz, 1H), 1.73 (s, 9H), 1.70 (s, 3H), 1.39 (t, *J* = 7.0 Hz, 3H), 1.17 (s, 9H). ¹³C NMR (125 MHz; CDCl₃) δ: 165.9, 163.8, 150.9, 134.0, 133.6, 121.1, 120.5, 117.2, 116.9, 116.4,

70.7, 43.5, 36.3, 28.3, 25.91, 25.77, 24.6, 24.0, 18.27, 18.21, 15.8.

FTIR (thin film) v_{max} : 2969, 2931, 2242, 1720, 1639, 1562, 1445, 1375, 1204, 1063, 1022 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{23}H_{33}NO_3$, 372.2533; found, 372.2524.

TLC $R_f = 0.24$ (8:2 hexane:EtOAc).

*Z***-Ethyl 4-cyano-3-ethoxy-5,5-dimethyl-2-(3-methylbut-2-en-1-yl)hex-3-enoate (245):**

1 H NMR (600 MHz; CDCl3) δ: 5.09 (t, *J* = 7.5 Hz, 1H), 4.23 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.03-3.92 (m, 2H), 3.76 (dq, *J* = 8.9, 7.0 Hz, 1H), 2.71 (dt, *J* = 14.3, 6.7 Hz, 1H), 2.44

(dt, *J* = 14.3, 8.9 Hz, 1H), 1.70 (s, 3H), 1.64 (s, 3H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.23 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 171.2, 165.8, 134.9, 120.10, 119.99, 108.6, 65.8, 61.7, 49.6, 33.1, 29.9, 27.6, 25.9, 18.0, 15.4, 14.3.

FTIR (thin film) v_{max} : 2967, 2929, 2872, 2202, 1734, 1600, 1445, 1365, 1296, 1207, 1148, 1030 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{18}H_{29}NO_3$, 308.2220; found, 308.2218.

TLC $R_f = 0.36$ (8:2 hexane:EtOAc).

1-Methoxy-5-methylhex-4-en-1-yne (246):

A THF (120 mL) solution of methanol (2.5 mL, 61 mmol, 1 equiv) was added via cannula over 15 min to a THF (120 mL) slurry of freshly washed potassium hydride (4.91 g, 122 mmol, 2 equiv) in a 500-mL round-bottom flask. After stirring at rt for 105 min, the reaction was cooled to –60 ºC, and a THF (70 mL) solution of trichloroethylene (5.5 mL, 61 mmol, 1 equiv) was added, and the cooling bath was removed. After stirring for 75 min, the reaction was cooled to -78 °C, and a hexane solution of butyllithium (2.73 M, 54 mL, 150 mmol, 2.4 equiv) was added. After slowly warming the reaction to -10 ^oC over 105 min, the reaction was cooled to -78 ^oC, and a HMPA (14 mL) solution of prenyl bromide (7.1 mL, 61 mmol, 1 equiv) was added via cannula. The cooling bath was then removed, and the reaction was stirred at rt for 4 h and was subsequently quenched with a small amount of sat. aq. NaHCO₃, diluted with H₂O, and extracted thrice with pentane. The organic extracts were combined, washed with H₂O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a dark brown oil. Short-path distillation (6 mmHg, 54-70 ºC) afforded 4.04 g (32.5 mmol, 53% yield) of **246** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.16 (t, *J* = 6.9 Hz, 1H), 3.81 (s, 3H), 2.80 (d, *J* = 6.9 Hz, 2H), 1.70 (s, 3H), 1.61 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 132.9, 121.0, 90.7, 65.5, 35.5, 25.7, 17.8, 16.3.

FTIR (thin film) v_{max} : 2965, 2927, 2857, 2281, 1449, 1376, 1241, 1172, 961, 841 cm⁻¹.

GCMS (m / z): [M]⁺ 124 (11%), 109 (90%), 69 (25%), 28 (100%).

TLC $R_f = 0.32$ (99:1 hexane:EtOAc).

2-Ethoxy-6-hydroxy-4-methoxy-3,5-bis(3-methylbut-2-en-1-yl)benzonitrile (248):

A xylenes (3 mL) solution of **238** (34.3 mg, 0.131 mmol, 1 equiv) and **246** (80. mg, 0.64 mmol, 5 equiv) was heated to 140 °C in a 10-mL sealed tube. After stirring at 140 °C for 22 h, the reaction was cooled to rt and concentrated *in vacuo* to an orange oil. Flash column chromatography (100 mL SiO₂, 95:5 \rightarrow 9:1 \rightarrow 8:2 hexane:EtOAc) followed by preparatory thin-layer chromatography (2 \times 99:1 hexane:EtOAc) afforded 11 mg (0.033 mmol, 25% yield) of **248** as a white residue.

¹**H** NMR (600 MHz; CDCl₃) δ: 6.08 (br s, 1H), 5.21 (t, *J* = 7.0 Hz, 1H), 5.10 (t, *J* = 6.7 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 3.71 (s, 3H), 3.38 (d, *J* = 7.0 Hz, 2H), 3.27 (d, *J* = 6.7 Hz, 2H), 1.83 (s, 3H), 1.77 (s, 3H), 1.76 (s, 3H), 1.68 (s, 3H), 1.44 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 161.9, 159.5, 157.4, 136.7, 132.0, 123.2, 122.0, 121.2, 116.7, 114.9, 92.0, 71.2, 62.0, 26.03, 25.90, 23.61, 23.49, 18.19, 18.13, 15.9.

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 3363 (br), 2978, 2930, 2226, 1597, 1579, 1445, 1385, 1097 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{20}H_{27}NO_3$, 330.2064; found, 330.2055. **TLC** $R_f = 0.75$ (95:5 hexane:EtOAc).

*E***-2-Cyano-3-ethoxy-5-methoxy-4,6-bis(3-methylbut-2-en-1-yl)phenyl 4-cyano-3-ethoxy-5,5-**

dimethyl-2-(3-methylbut-2-en-1-yl)hex-3-enoate (253):

A xylenes (1 mL) solution of **238** (12 mg, 0.046 mmol), **246** (28.5 mg, 0.230 mmol, 5 equiv), and Hünig's base (\sim 1 mg, 0.01 mmol, 0.2 equiv) was sparged with N₂ for 5 min in a 10-mL sealed tube and subsequently heated to 140 °C. After stirring for 8.5 h at 140 °C, the reaction was cooled to rt and concentrated *in vacuo*. Flash column chromatography (25 mL SiO_2 , $98:2 \rightarrow 9:1$ hexane:EtOAc) afforded 3.4 mg (0.010 mmol, 22% yield) of **248** as a white residue and 10.5 mg (0.018 mmol, 78% yield) of **253** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.14 (t, *J* = 7.3 Hz, 1H), 5.10 (t, *J* = 6.4 Hz, 1H), 5.02 (t, *J* = 5.8 Hz, 1H), 4.27 (dd, *J* = 9.0, 6.0 Hz, 1H), 4.21-4.16 (m, 3H), 4.08-4.05 (m, 1H), 3.73 (s, 3H), 3.33 (d, *J* = 6.4 Hz, 2H), 3.26 (d, *J* = 5.8 Hz, 2H), 2.82 (m, 1H), 2.66 (m, 1H), 1.76 (s, 3H), 1.74 (s, 3H), 1.72 (s, 3H), 1.71- 1.69 (s, 9H), 1.44 (t, *J* = 7.0 Hz, 3H), 1.36 (t, *J* = 6.9 Hz, 3H), 1.26 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 169.0, 164.2, 162.4, 160.0, 150.1, 135.6, 133.5, 132.6, 128.4, 125.5, 122.4, 121.5, 119.7, 119.5, 114.3, 109.8, 79.4, 71.5, 67.1, 62.1, 49.8, 33.4, 29.9, 27.7, 25.95, 25.86, 25.80, 24.1, 23.8, 18.28, 18.17, 18.11, 15.9, 15.3.

Key 1D nOe correlation.

FTIR (thin film) v_{max} : 2961, 2923, 2854, 2229, 2203, 1769, 1599, 1440, 1385, 1099 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{36}H_{50}N_2O_5$, 613.3612; found, 613.3611. **TLC** $R_f = 0.48$ (8:2 hexane:EtOAc).

4-(3-Methoxyprop-2-yn-1-yl)-3,3-dimethyl-2,2-diphenyloxetane (254):

A PhH (3 mL) solution of **238** (40. mg, 0.15 mmol, 1 equiv), **246** (95 mg, 0.77 mmol, 5 equiv), and benzophenone (9 mg, 0.05 mmol, 0.3 equiv) in a 10-mL borosilicate test tube placed in a continuous flow H2O bath was irradiated with quartz-filtered light for 22 h. The reaction was then concentrated *in vacuo* to an orange-yellow oil. Flash column chromatography (30 mL SiO₂, 95:5 hexane:EtOAc) afforded 4.3 mg (0.014 mmol, 28% yield) of **254** as a white flocculent solid.

¹**H NMR** (600 MHz; CDCl₃) δ: 7.58 (dd, *J* = 8.5, 1.2 Hz, 2H), 7.43 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.33-7.27 (m, 4H), 7.20-7.15 (m, 2H), 4.44 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.79 (s, 3H), 2.51 (dd, *J* = 16.1, 5.6 Hz, 1H), 2.40 (dd, *J* = 16.1, 9.2 Hz, 1H), 1.15 (s, 3H), 1.12 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 145.1, 144.2, 128.2, 127.9, 126.69, 126.54, 125.8, 125.2, 92.2, 91.3, 84.2, 65.5, 46.0, 31.9, 26.6, 20.9, 20.5.

FTIR (thin film) v_{max} : 3058, 3025, 2972, 2943, 2275, 1449, 1239, 995, 959, 709 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{21}H_{22}O_2$, 307.1693; found, 307.1697.

TLC $R_f = 0.51$ (8:2 hexane:EtOAc).

2-Ethoxy-4-hydroxy-6-methoxy-3,5-bis(3-methylbut-2-en-1-yl)benzonitrile (255):

A PhMe (3 mL) solution of **238** (40. mg, 0.15 mmol, 1 equiv), **246** (95 mg, 0.77 mmol, 5 equiv), and 2,6 di-*tert*-butyl-4-methylphenol (7 mg, 0.03 mmol, 0.2 equiv) was heated to 140 ºC in a 10-mL sealed tube. After stirring at 140 ºC for 12 h, the reaction was cooled to rt and concentrated *in vacuo* to an orange oil. Flash column chromatography (30 mL SiO₂, 95:5 hexane:EtOAc) followed by preparatory thin-layer chromatography $(1 \times 98.2 \text{ CH}_2\text{Cl}_2\text{·Et}_2\text{O})$ afforded 3 mg (9 µmol, 6% yield) of 255 as a colorless residue. ¹**H NMR** (600 MHz; CDCl₃) δ: 6.11 (s, 1H), 5.17-5.14 (m, 2H), 4.11 (q, *J* = 7.0 Hz, 2H), 3.94-3.92 (m,

3H), 3.37-3.33 (m, 4H), 1.80 (s, 6H), 1.75 (s, 3H), 1.74 (s, 3H), 1.44 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 160.2, 159.3, 135.5, 135.1, 121.47, 121.42, 117.73, 117.59, 115.5, 93.4, 71.5, 62.5, 26.0, 23.20, 23.03, 18.18, 18.15, 15.9.

FTIR (thin film) v_{max} : 3396 (br), 2979, 2928, 2225, 1586, 1438, 1389, 1178, 1097 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{20}H_{27}NO_3$, 352.1883; found, 352.1888.

TLC $R_f = 0.68$ (95:5 CH₂Cl₂:Et₂O).

*E***-4-cyano-3-ethoxy-5-methoxy-2,6-bis(3-methylbut-2-en-1-yl)phenyl 4-cyano-3-ethoxy-5,5 dimethyl-2-(3-methylbut-2-en-1-yl)hex-3-enoate (257):**

A PhMe (3 mL) solution of **238** (40. mg, 0.15 mmol, 1 equiv), **246** (95 mg, 0.77 mmol, 5 equiv), 2,6-di*tert*-butyl-4-methylphenol (7 mg, 0.03 mmol, 0.2 equiv), and Hünig's base (5 µL, 0.03 mmol, 0.2 equiv) was heated to 140 °C in a 10-mL sealed tube. After stirring for 10.5 h, the reaction was cooled to rt and concentrated *in vacuo* to a brown-red oil. Flash column chromatography (25 mL SiO₂, 95:5) hexane:EtOAc) afforded 6.3 mg (0.019 mmol, 13% yield) of 248 as a colorless residue, 2.5 mg (7.6 µmol, 5% yield) of **255** as a colorless residue, and 19.1 mg (0.032 mmol, 42% yield) of **257** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.24 (t, *J* = 6.4 Hz, 1H), 5.11 (t, *J* = 6.7 Hz, 1H), 5.05 (s, 1H), 5.00 (t, *J* = 6.5 Hz, 1H), $4.27-4.22$ (m, 1H), $4.22-4.17$ (m, 2H), $4.15-4.11$ (m, 1H), 3.74 (s, 3H), 3.33 (d, $J = 6.6$ Hz, 2H), 3.30-3.19 (m, 4H), 1.76 (s, 3H), 1.71 (s, 6H), 1.68 (s, 3H), 1.67 (s, 6H), 1.44 (t, *J* = 5.7 Hz, 3H), 1.42 $(t, J = 5.8$ Hz, 3H), 1.14 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 166.5, 162.3, 160.1, 150.4, 133.8, 132.9, 132.5, 128.1, 125.2, 122.5, 121.77, 121.63, 118.9, 114.0, 98.4, 72.0, 71.5, 62.1, 43.7, 36.3, 29.9, 28.2, 26.9, 25.88, 25.86, 25.84, 25.80, 24.04, 23.86, 18.26, 18.22, 18.19, 15.95, 15.81.

FTIR (thin film) νmax: 2967, 2930, 2857, 2228, 1729, 1597, 1439, 1387, 1160, 1084, 1041, 1024, 988 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{36}H_{50}N_2O_5$, 613.3623; found, 613.3612.

TLC $R_f = 0.50$ (8:2 hexane:EtOAc).

3-(*tert***-Butyl)-2-isopropyl-6-methoxy-5-(3-methylbut-2-en-1-yl)-4***H***-pyran-4-one (258):**

A xylenes (4.8 mL) solution of **206** (41 mg, 0.24 mmol, 1 equiv) and **246** (150 mg, 1.2 mmol, 5 equiv) was heated to 140 °C in a 50-mL sealed tube. After stirring at 140 °C for 7 h, the reaction was cooled to rt and concentrated *in vacuo*. Flash column chromatography (30 mL SiO₂, 95:5 \rightarrow 9:1 \rightarrow 8:2 hexane:EtOAc) followed by preparatory thin-layer chromatography $(2 \times 9:1$ hexane:EtOAc) afforded 2.5 mg (8.5 µmol, 4% yield) of **258** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.19 (t, *J* = 6.7 Hz, 1H), 3.93 (s, 3H), 3.67 (septet, *J* = 6.7 Hz, 1H), 3.02 $(d, J = 6.7 \text{ Hz}, 2\text{H}), 1.72 \text{ (s, 3H)}, 1.67 \text{ (s, 3H)}, 1.44 \text{ (s, 9H)}, 1.25 \text{ (d, } J = 6.8 \text{ Hz}, 6\text{H}).$

¹³C NMR (125 MHz; CDCl₃) δ: 181.5, 162.7, 161.0, 131.9, 128.3, 122.4, 103.8, 55.2, 35.1, 31.7, 30.9, 26.0, 21.12, 21.06, 18.0.

Key 1D nOe correlation.

FTIR (thin film) v_{max} : 2067, 2921, 1664, 1611, 1462, 1381, 1314, 1262, 1141 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{18}H_{28}O_3$, 315.1931; found, 315.1945. **TLC** $R_f = 0.26$ (8:2 hexane:EtOAc).

A PhMe (5.8 mL) solution of **208**566 (50. mg, 0.29 mmol, 1 equiv) and **246** (182 mg, 1.47 mmol, 5 equiv) in a 10-mL sealed tube was heated to 110 ºC. After stirring for 19.5 h at 110 ºC, the reaction was cooled to rt and concentrated *in vacuo* to a yellow oil. Flash column chromatography (30 mL SiO₂, 95:5) hexane:EtOAc) afforded 22.0 mg of an inseparable mixture of 259 and 260 (1.3:1 ratio by ¹H NMR spectroscopy; 0.069 mmol, 25% total yield) as a colorless oil.

FTIR (thin film) v_{max} : 2967, 2954, 2930, 2916, 1719, 1679, 1624, 1608, 1381, 1350, 1263, 1239 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{17}H_{26}O_4$, 317.1723; found, 317.1714.

TLC $R_f = 0.43$ (8:2 hexane:EtOAc).

 \overline{a}

3-(*tert***-Butyl)-2-ethoxy-6-methoxy-5-(3-methylbut-2-en-1-yl)-4***H***-pyran-4-one (259):**⁶⁰²

1 H NMR (600 MHz; CDCl3) δ: 4.99 (t, *J* = 7.6 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 2.90 (dd, *J* = 15.5, 7.6 Hz, 1H), 2.49 (dd, *J* = 15.5, 7.6 Hz, 1H), 1.69 (s, 3H), 1.63 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.15 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 180.6, 174.4, 171.0, 136.2, 135.2, 117.7, 73.1, 61.7, 59.6, 31.4, 28.4, 27.9, 26.1, 18.04, 14.4.

Ethyl 3-(*tert***-butyl)-2-methoxy-1-(3-methylbut-2-en-1-yl)-4-oxocyclobut-2-enecarboxylate (260):**⁶⁰²

1 H NMR (600 MHz; CDCl3) δ: 5.15 (t, *J* = 7.0 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 3.00 (d, *J* = 7.0 Hz, 2H), 1.69 (s, 3H), 1.65 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.36 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 182.4, 158.24, 158.17, 131.9, 122.3, 111.1, 104.0, 66.1, 55.9, 33.9, 30.5, 25.9, 21.2, 17.97, 15.0.

⁶⁰² NMR assignments of the mixture were elucidated using heteronuclear 2D-NMR techniques.

*S***-Ethyl 2-(chlorocarbonyl)-3,3-dimethylbutanethioate (263):**

A MeCN (4 mL) solution of **262**594 (813 mg, 4.06 mmol, 1 equiv) in a 20-mL scintillation vial was cooled to 0 °C. Hünig's base (777 µL, 4.47 mmol, 1.1 equiv) followed by chlorotrimethylsilane (567 µL, 4.47 mmol, 1.1 equiv) were added dropwise over 10 min. After stirring an additional 10 min at 0 °C, ethanethiol (316 µL, 4.26 mmol, 1.05 equiv) was added. The resulting white slurry was warmed to 43 ºC, whereupon a colorless solution formed. After stirring at 43 °C for 4.5 h, the solution was cooled to rt, quenched with 0.3 M HCl, and extracted thrice with $Et₂O$. The organic extracts were combined and extracted once with sat. aq. NaHCO₃. This aqueous extract was stirred vigorously while an aqueous 10% HCl solution was added dropwise until the pH of the solution was \leq 2. This solution was extracted thrice with Et₂O. These organic extracts were combined, washed with brine, dried over MgSO₄, filtered, and concentrated to a colorless oil, which solidified upon cooling. An $Et₂O (12 mL)$ solution of this material and phosphorous(V) chloride (1.46 g, 6.99 mmol, 2 equiv) in a 2-neck 25-mL round-bottom flask outfitted with a reflux condenser was refluxed for 2.5 h. After cooling the solution to rt, it was transferred via cannula to a Schlenk filter funnel and filtered under a positive pressure of N_2 followed by one Et₂O rinse. The filtrate was concentrated under a stream of N_2 and distilled directly. Short-path distillation (6 mmHg, 65-70 ºC) afforded 604 mg (2.71 mmol, 77% yield over 2 steps) of **263** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 3.98 (s, 1H), 2.97 (m, 2H), 1.29 (t, *J* = 7.4 Hz, 3H), 1.15 (s, 9H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 191.1, 167.1, 80.5, 36.8, 28.3, 24.9, 14.5.

*S***-Ethyl 3,3-dimethyl-2-oxomethylidenebutanethioate (261):**

A PhH (3.8 mL) solution of **263** (593 mg, 2.66 mmol, 1 equiv) in a 10-mL pear-shaped flask was treated with triethylamine (0.74 mL, 5.3 mmol, 2 equiv), immediately causing a white precipitate to form. After allowing the flask to stand for 16 h at rt, the reaction was diluted with PhH and filtered through a Schlenk filter funnel under a positive pressure of N_2 . The pale yellow precipitate was washed twice with PhH. The resulting pale yellow filtrate was concentrated *in vacuo*. Short-path distillation (6 mmHg, 45-50 ºC) afforded 195 mg (1.05 mmol, 39% yield) of **261** as a colorless oil.

1 H NMR (500 MHz; CDCl3) δ: 2.96 (q, *J* = 7.4 Hz, 2H), 1.28 (t, *J* = 7.4 Hz, 3H), 1.26 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 189.5, 110.9, 62.9, 32.8, 29.8, 23.8, 15.4.

FTIR (thin film) v_{max} : 2965, 2919, 2874, 2108, 1661, 1241, 1158, 864, 773 cm⁻¹.

5-(*tert***-Butyl)-6-(ethylthio)-4-methoxy-3-(3-methylbut-2-en-1-yl)-2***H***-pyran-2-one (264):**

A PhMe (3.2 mL) solution of **261** (30. mg, 0.16 mmol, 1 equiv) and **246** (100 mg, 0.81 mmol, 5 equiv) was heated to 110 °C in a 10-mL sealed tube. After stirring at 110 °C for 11 h, the reaction was cooled to rt and concentrated *in vacuo*. Flash column chromatography (30 mL SiO₂, 95:5 hexane:EtOAc) afforded 19.0 mg (0.061 mmol, 38% yield) of **264** as a colorless residue.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.04 (t, *J* = 6.2 Hz, 1H), 3.65 (s, 3H), 3.07 (m, 4H), 1.71 (s, 3H), 1.70 (s, 3H), 1.40 (s, 9H), 1.35 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 168.0, 163.9, 155.9, 133.3, 121.6, 120.0, 115.2, 62.3, 35.7, 30.4, 25.8, 25.2, 18.3, 15.5.

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 2964, 2930, 1717, 1597, 1509, 1343, 1118, 1008, 942 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{17}H_{26}O_3S$, 333.1495; found, 333.1497.

TLC $R_f = 0.30$ (9:1 hexane:EtOAc).

A PhH (2 mL) solution of **238** (171 mg, 0.65 mmol, 1 equiv) and **265**597 (100. mg, 0.65 mmol, 1 equiv) was stirred at rt in a sealed tube for 9.5 h. The reaction was then heated to 40 ºC for 1 d. The reaction was subsequently cooled to rt and concentrated *in vacuo* to a red oil. Flash column chromatography (100 mL SiO₂, 95:5 → 9:1 → 8:2 hexane:EtOAc) afforded 32 mg (0.077 mmol, 12% yield) of **266** as a pale yellow oil and 183 mg (0.44 mmol, 68% yield) of **267** as a pale yellow oil.

*E***-2-((3-Butyl-2-(diethylamino)-1-(3-methylbut-2-en-1-yl)-4-oxocyclobut-2-en-1-**

yl)(ethoxy)methylene)-3,3-dimethylbutanenitrile (266):

¹**H** NMR (600 MHz; CDCl₃) δ: 4.97 (t, *J* = 7.2 Hz, 1H), 4.58 (dq, *J* = 10.0, 7.1 Hz, 1H), 3.61-3.53 (m, 2H), 3.28-3.21 (m, 3H), 2.64 (dd, *J* = 15.9, 7.2 Hz, 1H), 2.31 (dd, *J* = 15.9, 7.2 Hz, 1H), 2.19-2.10 (m, 2H), 1.66 (s, 3H), 1.62 (s, 3H), 1.57 (m, 2H), 1.36 (m, *J* = 2.9 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.25 (s, 9H), 1.22 (m, 6H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 180.8, 168.9, 165.0, 134.7, 118.64, 118.57, 117.9, 110.3, 72.0, 67.8, 45.9, 42.6, 35.3, 31.1, 30.9, 27.4, 26.2, 23.7, 22.9, 18.4, 14.9, 14.1, 13.8, 12.7.

Key 1D nOe correlations.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{26}H_{42}N_2O_2$, 437.3139; found, 437.3150.

FTIR (thin film) v_{max} : 2962, 2933, 2873, 2198, 1744, 1586, 1451 cm⁻¹.

TLC $R_f = 0.51$ (8:2 hexane:EtOAc).

*E***-2-Butyl-6-cyano-5-ethoxy-***N***,***N***-diethyl-7,7-dimethyl-4-(3-methylbut-2-en-1-yl)octa-2,3,5-**

trienamide (267):

¹**H NMR** (500 MHz; CDCl₃) δ: 5.14 (t, *J* = 7.3 Hz, 1H), 3.89-3.79 (m, 2H), 3.39-3.28 (m, 4H), 2.90 (dd, *J* $= 16.1, 7.3$ Hz, 1H), 2.81 (dd, $J = 16.1, 7.3$ Hz, 1H), 2.38-2.30 (m, 2H), 1.66 (s, 3H), 1.58 (s, 3H), 1.43-1.38 (m, 2H), 1.36-1.28 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.15 (s, 9H), 1.07 (t, *J* = 7.1 Hz, 6H), 0.85 (t, *J* $= 7.2$ Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 200.4, 166.3, 163.7, 135.0, 119.46, 119.33, 104.7, 103.6, 100.9, 65.8, 42.8 (br), 39.5 (br), 33.0, 30.8, 30.59, 30.47, 29.8, 25.8, 22.4, 17.9, 15.3, 14.6 (br), 13.9, 12.9 (br).

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 2967, 2934, 2873, 2201, 1959, 1633, 1595, 1458, 1429, 1274, 1220, 739 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{26}H_{42}N_2O_2$, 415.3319; found, 415.3321.

TLC $R_f = 0.31$ (8:2 hexane:EtOAc).

3-Butyl-4-(diethylamino)-6-ethoxy-2-hydroxy-5-(3-methylbut-2-en-1-yl)benzonitrile (272):

A PhH (1 mL) solution of **266** (6.0 mg, 14 µmol) was heated to 140 ºC for 15 min in a 10-mL sealed tube. The reaction was subsequently cooled to rt and concentrated *in vacuo* to an orange oil. Preparatory thinlayer chromatography $(1 \times 98.2 \text{ hexane:EtOAc})$ afforded 2.4 mg $(6.7 \text{ µmol}, 48\% \text{ yield})$ of 272 as a pale yellow oil and 1.6 mg (3.9 µmol, 27% recovery) of **266** as a pale yellow oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.39 (br s, 1H), 4.99 (t, *J* = 6.1 Hz, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.30 (d, *J* = 6.1 Hz, 2H), 3.06 (q, *J* = 7.1 Hz, 4H), 2.61-2.58 (m, 2H), 1.73 (s, 3H), 1.67 (s, 3H), 1.52-1.46 (m, 3H), 1.44-1.40 (m, 5H), 1.02 (t, *J* = 7.1 Hz, 6H), 0.96 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 155.8, 155.5, 154.6, 131.0, 128.9, 126.2, 124.3, 115.5, 91.4, 70.8, 48.4, 31.5, 26.7, 25.84, 25.73, 23.8, 18.3, 15.9, 14.8, 14.2.

FTIR (thin film) v_{max} : 3323 (br), 2965, 2929, 2855, 2228, 1592, 1556, 1447, 1378, 1119 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{22}H_{34}N_2O_2$, 381.2512; found, 381.2505.

TLC $R_f = 0.65$ (95:5 hexane:EtOAc).

*Z***-2-((3-Butyl-2-(diethylamino)-1-(3-methylbut-2-en-1-yl)-4-oxocyclobut-2-en-1-**

yl)(ethoxy)methylene)-3,3-dimethylbutanenitrile (273):

A PhH (1 mL) solution of **266** (5.0 mg, 12 µmol) in a 12-mL quartz test tube was irradiated in a continuous flow rt H₂O bath for 4 h. The reaction was then concentrated *in vacuo* to an orange-yellow oil. Preparatory thin-layer chromatography ($1 \times 95:5$ hexane:EtOAc $\rightarrow 1 \times 9:1$ hexane:EtOAc) afforded 1.3 mg (3.1 µmol, 26% yield) of **273** as a pale yellow residue and 1.6 mg (3.9 µmol, 32% recovery) of **266** as a pale yellow residue.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.01 (t, *J* = 7.0 Hz, 1H), 4.24 (dq, *J* = 9.0, 7.0 Hz, 1H), 3.84 (dq, *J* = 9.0, 7.0 Hz, 1H), 3.38 (m, 2H), 3.23-3.18 (m, 2H), 3.03 (dd, *J* = 15.6, 7.0 Hz, 1H), 2.44 (dd, *J* = 15.6, 7.0 Hz, 1H), 2.16-2.05 (m, 2H), 1.67 (s, 3H), 1.61 (s, 3H), 1.52-1.45 (m, 2H), 1.42 (s, 9H), 1.37-1.32 (m, 2H), 1.30-1.28 (m, 3H), 1.23-1.18 (m, 6H), 0.90 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 179.7, 171.4, 165.9, 134.8, 118.7, 115.9, 114.1, 110.2, 74.6, 73.5, 46.3, 42.0, 33.5, 32.16, 32.12, 31.94, 26.1, 23.5, 22.9, 18.6, 16.0, 14.3, 14.1, 13.5.

FTIR (thin film) v_{max} : 2959, 2926, 2854, 2207, 1736, 1591, 1459, 1377 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{26}H_{42}N_2O_2$, 415.3319; found, 415.3307.

TLC $R_f = 0.37$ (8:2 hexane:EtOAc).

4-(*tert***-Butyl)-4-chloro-3-methoxy-2-(3-methylbut-2-en-1-yl)cyclobut-2-enone (276):**

A PhH (5 mL) solution of **275** (500 mg, 2.96 mmol 1 equiv) was added dropwise via cannula to a PhH (20 mL) solution of triethylamine (412 µL, 2.96 mmol, 1 equiv) and **246** (771 mg, 6.21 mmol, 2.1 equiv) in a 50-mL recovery flask. The resulting yellow solution was stirred at rt for 80 min. A reflux condenser was then attached to the recovery flask, and the reaction was refluxed for 90 min. The reaction was then cooled to rt and concentrated *in vacuo* to a red-orange oil. This oil was taken up in 9:1 hexane:EtOAc and filtered to remove an off-white solid. The filtrate was concentrated *in vacuo* to a red-orange oil. Flash column chromatography (100 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 209 mg (0.81 mmol, 27% yield) of **276** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.04 (t, *J* = 7.0 Hz, 1H), 4.09 (s, 3H), 2.86-2.78 (m, 2H), 1.61 (s, 3H), 1.56 (s, 3H), 1.02 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 185.7, 178.7, 133.9, 124.2, 119.4, 89.9, 60.3, 36.6, 26.3, 25.5, 21.4, 17.8. **FTIR** (thin film) v_{max} : 2974, 1771, 1622, 1457, 1356, 1258, 991 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{14}H_{21}ClO_2$, 257.1303; found, 257.1314.

TLC $R_f = 0.18$ (95:5 hexane:EtOAc).

2-(*tert***-Butyl)-4-chloro-3-methoxy-4-(3-methylbut-2-en-1-yl)cyclobut-2-enone (277):**

A PhMe (3 mL) solution of **276** (50. mg, 0.19 mmol, 1 equiv) and **246** (48 mg, 0.39 mmol, 2 equiv) was heated to 140 °C in a 10-mL sealed tube. After stirring at 140 °C for 18.5 h, the reaction was cooled to rt and concentrated *in vacuo* to a yellow-orange oil. Flash column chromatography (30 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 24 mg (0.094 mmol, 49% yield) of **277** as a pale yellow oil along with 8 mg (0.03 mmol, 16% recovery) of **276** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 4.99 (t, *J* = 7.5 Hz, 1H), 4.15 (s, 3H), 3.02 (dd, *J* = 15.5, 7.5 Hz, 1H), 2.71 (dd, *J* = 15.5, 7.5 Hz, 1H), 1.69 (s, 3H), 1.64 (s, 3H), 1.14 (s, 9H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 183.2, 176.3, 137.1, 135.3, 117.4, 82.1, 59.2, 35.7, 31.3, 28.1, 26.0, 18.1. **FTIR** (thin film) v_{max} : 2967, 2870, 1769, 1624, 1480, 1459, 1356 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{14}H_{21}ClO_2$, 257.1303; found, 257.1302.

TLC $R_f = 0.44$ (9:1 hexane:EtOAc).

Chapter 3

Total Synthesis of Hyperforin

Synthesis Overview

l

Given the inability of prior strategies to construct model systems resembling the core of hyperforin, we pursued an alternative strategy that addressed previously experienced shortcomings. One particular difficulty we encountered was the cyclization to form the phloroglucinol-derived carbocycle component of the bicyclo[3.3.1]nonane core of hyperforin. As previously elaborated, these cyclization strategies often afforded heterocyclic rings, such as pyrones. Further, when such a carbocycle was constructed, a very favorable elimination of a *tert*-butyl group was observed, producing a very stable aromatic product. Given the difficulties with pursuing an intermediate such as alkyl halide **200**, which involves strategic cleavage of the C5–C6 bond of hyperforin (**1**), we elected to pursue an alternative strategy involving cleavage of the extremely hindered C1–C8 bond (Scheme 3.1). At first glance, such an approach would not take advantage of latent symmetry elements that would potentially shorten the synthesis sequence, considering that the C5 position of **281** is stereogenic owing to differential substitution at C1 and at C3. In addition, a nucleophilic displacement strategy would not be feasible, considering the hindered nature of the C8 position.⁶⁰³

Scheme 3.1. Retrosynthetic disconnection of hyperforin at two key positions.

 603 S_N1-type cyclization to form the C1–C8 bond of PPAPs has been explored (see ref. 534). When the C8 position contains differential substitution, as in the case of hyperforin, this cyclization mode produced a 1:1 mixture of diastereomers at the C8 position.

To reconcile these challenges, we developed a new synthesis strategy for hyperforin (Scheme 3.2a). In order to engender prostereogenicity at the key C5 position during a key cyclization event, the C1 isopropyl ketone and the C3 prenyl group were removed to afford intermediate **282**. These substituents may be installed late in the synthesis sequence via precendented bridgehead acylation and metalation-prenylation protocols, respectively.⁶⁰⁴ In addition, the C7 prenyl group was replaced with an alcohol functionality. This functional group exchange in **282** facilitates a mechanistic development of a transform, whereby the C7 alcohol would form an epoxide with the C8 position. The formation of the C1–C8 bond would now be reduced to a 6-*endo*-tet epoxide-opening cyclization reaction of **283**, a reaction that has been utilized previously to form carbon-carbon bonds at hindered positions.⁶⁰⁵

⁶⁰⁴ For examples of PPAP total syntheses that employ these reactions at a late stage, see refs. 510 and 527.

⁶⁰⁵ For examples of 6-*endo*-tet carbocyclization reactions that open epoxides at a tertiary position, see: (a) Armstrong, R. J.; Weiler, L. *Can. J. Chem.* **1986**, *64*, 584-596. (b) Pettersson, L.; Magnusson, G.; Frejd, T. *Acta Chem. Scand.* **1993**, *47*, 196-207. (c) Nakada, M.; Kojima, E.-i.; Iwata, Y. *Tetrahedron Lett.* **1998**, *39*, 313-316. (d) Beszant, S.; Giannini, E.; Zanoni, G.; Vidari, G. *Tetrahedron: Asymmetry* **2002**, *13*, 1245-1255. (e) Tong, R.; Valentine, J. C.; McDonald, F. E.; Cao, R.; Fang, X.; Hardcastle, K. I. *J. Am. Chem. Soc.* **2007**, *129*, 1050-1051. (f) Boone, M. A.; Tong, R.; McDonald, F. E.; Lense, S.; Cao, R.; Hardcastle, K. I. *J. Am. Chem. Soc.* **2010**, *132*, 5300- 5308.

Scheme 3.2. (a) Retrosynthesis of hyperforin involving C1–C8 bond cleavage and (b) transitition-state analysis of the key cyclization reaction.

An analysis of this key cyclization event is depicted in Scheme 3.2b. Owing to a plane of symmetry in the cyclohexadienone ring, the C5 position of **283** is prostereogenic. During the key epoxide-opening cyclization involving this intermediate, two diastereotopic nucleophilic enol ethers, at C1 and at C3, may engage in bonding interaction with the epoxide when activated with a Lewis acid. Transition state **284** is favored to yield **282** over its diastereomeric transition state **285**, which must adopt a boat-like conformation containing two severe eclipsing interactions in forming **286**. Additionally, due to geometric constraints of orbital overlap, a 6-(*enolendo*)-tet cyclization should be favored over a 5- (*enolendo*)-tet cyclization. 606 Ultimately, the combinations of these factors culminate in: (1) the construction of the bicyclo[3.3.1]nonane core of hyperforin; (2) the introduction of stereochemistry at the previously prostereogenic C5 position; (3) the creation of a stereogenic quaternary center at C8; and (4) the formation of a conformationally rigid tertiary stereogenic center at C1. Additionally, given our

⁶⁰⁶ Baldwin, J. E.; Lusch, M. J. *Tetrahedron* **1982**, *38*, 2939-2947.

interests in creating a library of hyperforin analogs, alcohol **282** is also an ideal intermediate for diversification, in which a variety of groups may be appended at the C1, C3, and C7 positions.

Dearomative Allylation Approach

Given the difficulties we encountered while attempting to synthesize cyclohexadienones, we chose a well-precedented approach to an intermediate very similar to key cyclization precursor **283**. A Sharpless epoxidation of geraniol⁶⁰⁷ (287) afforded (*S*,*S*)-2,3-epoxygeraniol (288) in 91% ee, which upon mesylation and Finkelstein bromination gave epoxygeranyl bromide 289 (Scheme 3.3).⁶⁰⁸ Large quantities of **289** (120-130 g per batch of material) were processed through this three-step protocol, which involved only a single distillation and no silica gel chromatography. Regioselective lithiation of phloroglucinol triether **146**528 followed by coupling with **289** afforded alkylation product **290**. After desilylation to reveal phenol **291**, a Pd- and Ti-catalyzed dearomative allylation reaction, using a protocol developed for the total synthesis of (\pm) -garsubellin A by Danishefsky,^{527,529} produced cyclohexadienone **292**. This allylation was highly regioselective, and only trace amounts of aromatic allylation products were observed.

⁶⁰⁷ Hanson, R. M.; Sharpless, K. B. *J. Org. Chem.* **1986**, *51*, 1922-1925.

⁶⁰⁸ Gash, R. C.; MacCorquodale, F.; Walton, J. C. *Tetrahedron* **1989**, *45*, 5531-5538.

Scheme 3.3. Synthesis of cyclization precursor **292**. *a*

a Conditions: (a) Ti(O*i*-Pr)₄, L-(+)-DET, TBHP, 4Å MS, CH₂Cl₂, -30 to -10 °C, 92%, 91% ee; (b) MsCl, NEt₃, CH₂Cl₂, 0 °C, 97%; (c) LiBr, acetone, reflux, 94%; (d) BuLi, THF, 0 °C to rt; 289, 0 °C to rt, 81%; (e) TBAF, THF, 84%; (f) Pd(OAc)₂, Ti(O*i*-Pr)₄, allyl methyl carbonate, PPh₃, PhH, 50 °C, 46% (48% recovered 291).

We then screened a variety of acids to promote the conversion of **292** to the desired cyclization product **293** (Table 3.1). Unfortunately, both Lewis (entries 1-12) and Brønsted (entries 13-15) acids failed to produce even trace amounts of our desired product. In many instances (entries 1, 3, 5, 6, 12, and 14), we isolated ketone **294**, the result of acid-mediated epoxide-ketone rearrangement (Figure 3.1). In other cases (entries 2, 10, and 13), acid activation of the epoxide promoted elimination to form allylic alcohols and allylic silyl ethers, such as **295**, **296**, **297**, and **298**. 609 Byproducts **299** and **300** originated from exogenous nucleophilic opening of the epoxide (entries 5 and 15). The only cyclization product observed was cyclopentanol **301** (entry 7), the result of 5-*exo*-tet opening of the epoxide by the pendant homoprenyl sidechain in **292**.

⁶⁰⁹ These byproducts were not rigorously characterized; we surmised the structure of these compounds via comparison to **292** as well as spectroscopic analysis of reaction mixtures.

Table 3.1. Attempted conversion of cyclohexadienone **292** to bicyclo[3.3.1]nonane **293**.

Figure 3.1. Various byproducts formed during attempted conversion of **292** to **293**.

From these studies, we concluded that the cyclohexadienone did not bear sufficient nucleophilic character to engage the activated epoxide. The byproducts obtained involved exogenous nucleophile delivery to the epoxide or even participation of the homoprenyl olefin in the formation of **301**, whereas the cyclohexadienone portion of the molecule remained unchanged. In order to increase the nucleophilic character of the enol ether functionality present in **292**, we attemped to excise the carbonyl group. While several attempts to form a hydrazone failed, hydride reduction of **292** afforded cyclohexadiene **302** (Scheme 3.4). Gratifyingly, exposure of this compound to TMSOTf in the presence of DTBMP afforded cyclization product **303** as a single diastereomer in 85% yield.

Scheme 3.4. Cascade cyclization of **302** to form **303**. *a*

^a Conditions: (a) LAH, CH₂Cl₂, Et₂O, 0 °C, 44%; (b) TMSOTf, DTBMP, CH₂Cl₂, -78 °C, 85%; (c) Pearlman's catalyst, TBHP, Cs_2CO_3 , O_2 , CH_2Cl_2 , 0 to 4 °C, 17%; (e) TMSOTf, CH_2Cl_2 , -78 °C, 52%.

In this reaction, the stereochemistry of two key quaternary centers of hyperforin were established: at the previously prostereogenic C5 carbon, and at the C8 position. In addition to the construction of the bicyclo[3.3.1]nonane framework, the formation of a cyclic methyl ketal bridging the C7 and C9 carbons was an unexpected outcome to this reaction, formed from the intramolecular interception of the C9 oxocarbenium ion by the C7 oxygen atom in intermediate **304** (Scheme 3.4). Nevertheless, the establishment of this cyclic ketal was fortuitous, safeguarding the C7 carbinol from oxidation during subsequent allylic oxidation to reestablish carbonyl functionality at the C2 position. This allylic oxidation of **303** was accomplished using Pearlman's catalyst and TBHP⁶¹⁰ to furnish β-methoxyenone **305**. We also briefly screened several other Lewis acids for the conversion of **302** to **303**; however, lower yields of **303** were observed with BF₃·Et₂O and SnCl₄. Omission of DTBMP afforded ketone **306** as the only reaction product.

 \overline{a}

⁶¹⁰ Yu, J.-Q.; Wu, H.-C.; Corey, E. J. *Org. Lett.* **2005**, *7*, 1415-1417.

Double Alkylation Approach

Even though this route allowed us to access β-methoxyenone **305**, we resolved to develop a more straightforward means of accessing advanced intermediates. Over the three-step sequence beginning with cyclohexadienone **292** and ending with **305**, a carbonyl was reduced and subsequently reintroduced. Our solution involved direct, sequential coupling of a prenyl halide (**307**) and epoxygeranyl bromide (**289**) with 1,5-dimethoxy-1,4,-cyclohexadiene $(308)^{611}$ to form cyclization precursor 309 (Scheme 3.5). Cyclohexadiene **308** may be synthesized from the Birch reduction of 1,3-dimethoxybenzene, ⁶¹² and numerous examples of regioselective alkylations at the methylene proximal to the methoxy groups in **308** have been reported.⁶¹³

Scheme 3.5. Retrosynthesis of cyclization precursor **309**.

For the synthesis of **309**, we investigated both sequences of additions: (1) coupling of **308** with **289** followed by alkylation with **307** and (2) coupling of **307** with **289** followed by alkylation with **289**. Deprotonation of **308** was accomplished using *t*-BuLi, and subsequent trapping with bromide **289**

 \overline{a}

 611 We also briefly explored a route involving the Birch reduction of 1,3-dimethoxy-2-prenylbenzene; however, the conditions necessary for this reduction (i.e., Na, NH₃, reflux, 12-18 h) also resulted in reduction of the prenyl olefin.

⁶¹² Piers, E.; Grierson, J. R. *J. Org. Chem.* **1977**, *42*, 3755-3757.

⁶¹³ For examples of regioselective alkylation of **308**, see: (a) Nelson, N. A.; Tamura, Y. *Can. J. Chem.* **1965**, *43*, 1323-1328. (b) Harvey, R. G.; Pataki, J.; Lee, H. *J. Org. Chem.* **1986**, *51*, 1407-1412. (c) Pattenden, G.; Teague, S. J. *Tetrahedron* **1987**, *43*, 5637-5652. (d) Toth, J. E.; Hamann, P. R.; Fuchs, P. L. *J. Org. Chem.* **1988**, *53*, 4694- 4708. (e) Middleton, D. S.; Simpkins, N. S.; Begley, M. J.; Terrett, N. K. *Tetrahedron* **1990**, *46*, 545-564. (f) Laschat, S.; Narjes, F.; Overman, L. E. *Tetrahedron* **1994**, *50*, 347-358. (g) Mori, K.; Abe, K. *Liebigs Ann.* **1995**, 943-948. (h) Imamura, Y.; Takikawa, H.; Mori, K. *Tetrahedron Lett.* **2002**, *43*, 5743-5746. (i) Studer, A.; Amrein, S.; Schleth, F.; Schulte, T.; Walton, J. C. *J. Am. Chem. Soc.* **2003**, *125*, 5726-5733. (j) Hughes, C. C.; Trauner, D. *Tetrahedron* **2004**, *60*, 9675-9686.

afforded **310** as a single regioisomer (Scheme 3.6). Unfortunately but not unexpectedly, deprotonation of this intermediate afforded bicyclo[5.1.0]octadiene **311**, the product of internal trapping with concomitant opening of the epoxide functionality.

Scheme 3.6. Deprotonation of **310** led to isolation of **311**. *a*

^a Conditions: (a) *t*-BuLi, THF, –78 °C; 289, –78 °C to rt, 45%; (b) *t*-BuLi, THF, –78 to –30 °C; prenyl bromide, –78 °C to rt, 27% (29% recovered **310**).

Prenylation of cyclohexadiene **308** was surprisingly problematic. Initially, alkylation of metalated **308** with prenyl bromide was rather unselective, providing both the desired coupling product **312** as well as its regioisomer **313** in equal amounts (Scheme 3.7). These regioisomers were separated by treatment with SiO2; exposure of unprocessed reaction mixtures facilitated the selective conversion of **313** to the more-polar β-methoxyenones **314** and **315**, while **312** remained unchanged.

Scheme 3.7. Nonselective prenylation of cyclohexadiene **308**. *a*

Even though from a practical standpoint, large quantities of **312** were readily available through this selective hydrolysis protocol, we resolved to improve the overall selectivity of this reaction (Table 3.2). In the absence of HMPA, selectivity improved marginally (entry 2). While the addition of $MgBr₂$

^{*a*} Conditions: (a) *t*-BuLi, THF, –78 °C; HMPA, –78 °C; prenyl bromide, –78 °C to rt; H₂O; SiO₂, 44% **312.**

reversed selectivity, the addition of BaI2 improved selectivity for the formation of **313** (entries 4-5). Substituting *t*-BuLi for *s*-BuLi in the deprotonation step had no effect on regioselectivity (entry 5). When prenyl chloride was used instead of prenyl bromide in otherwise identical conditions to entry 1, regioselectivity improved to 2:1 in favor of the desired regioisomer (entry 6). Several additives were studied in the coupling 308 with prenyl chloride (entries 7-9): ZnCl₂ afforded significant amounts of 3methoxycyclohex-2-enone, and while both $CeCl₃$ and $BaI₂⁶¹⁴$ further improved regioselectivity, the former additive caused a decrease in conversion. The method of preparing anhydrous BaI₂ also had a significant effect on this alkylation. Anhydrous BaI_2 made from drying commercially available BaI₂^{\cdot}2H₂O under vacuum⁶¹⁵ afforded a 3:1 ratio of **312:313** with a 61% yield of **313** (entry 9). Preparing BaI₂ in situ from the reaction of barium metal with I_2 ⁶¹⁶ provided complete regiocontrol for the synthesis of **312**, which was isolated in 91% yield (entry 10).

 \overline{a}

 614 The effects of barium iodide on the regioselectivity of nucleophilic allylation has been studied: (a) Yanagisawa, A.; Yasue, A.; Yamamoto, H. *Synlett* **1993**, 686-688. (b) Yanagisawa, A.; Habaue, S.; Yasue, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 6130-6141. (c) Yanagisawa, A.; Yamada, Y.; Yamamoto, H. *Synlett* **1997**, 1090-1092. (d) Van den Bossche, J.; Shin, J.; Thompson, D. H. *J. Org. Chem.* **2007**, *72*, 5005-5007.

⁶¹⁵ Yanagisawa, A.; Yasue, K.; Yamamoto, H. *Org. Synth.* **1997**, *74*, 178-186.

⁶¹⁶ Corey, E. J.; Lin, S.; Luo, G. *Tetrahedron Lett.* **1997**, *38*, 5771-5774. (b) Corey, E. J. Harvard University, Cambridge, MA. Personal communication, 2012.

Table 3.2. Prenylation of cyclohexadiene **308**.

a The conditions presented in entry 1 are depicted in Scheme 3.7.

b Afforded a 2:1 ratio of **312** to 3-methoxycyclohex-2-enone.

c Low amount of conversion observed.

^d Anhydrous BaI₂ prepared from drying BaI₂·2H₂O at 150 °C at 6 mmHg pressure for 15 h.

 e Anhydrous BaI₂ prepared from the reaction of Ba with I₂. See experimental section for details.

We then explored the alkylation of **312** with epoxygeranyl bromide **289** to form cyclization precursor **309**. Deuterium quench studies revealed that exposure to *tert*-butyllithium at –78 ºC did not lead to deprotonation of **312**. We therefore surveyed the use of several bases across a range of temperatures. In general, a major byproduct during this coupling reaction was 1,3-dimethoxy-2 prenylbenzene (**316**), an oxidation product of **312**. Low levels of deprotonation were observed with *t*-BuLi at –45 ºC and –30 ºC, and increasing the stoichiometry of *t*-BuLi generally favored conversion to **316**. Several additives, including HMPA, TMEDA, MgBr₂, and BaI₂ did not facilitate conversion to **309**. The use of the lithium amide bases LDA and LiTMP did not lead to appreciable deprotonation, even when a solution of LDA and **312** was warmed to rt. Similar results were observed with BuLi when warmed to –30 ºC. Eventually, we discovered that optimal yields of **309** could be achieved through deprotonation of **312** with *s*-BuLi at –30 ºC followed by addition of **289** (Scheme 3.8). If a solution of **312** and *s*-BuLi was warmed above –30 ºC, significant amounts of **316** were produced.

Scheme 3.8. Synthesis of **309** from **312** and **289**. *a a* Conditions: (a) *s*-BuLi, –78 to –30 ºC; **289**, –78 ºC to rt, 51%.

The subsequent cyclization of **309** afforded cyclic ketal **317** using conditions identical to the conversion of **302** to **303** (Scheme 3.9). From a practical material throughput standpoint, we chose to replace DTBMP with 2,6-lutidine; no appreciable decline in yield was observed using the latter base, and it was a much easier reagent to obtain, implement, and separate from product with larger scale reactions. Using this new double alkylation strategy, we were able to access large quantities of **317** from 1,3 dimethoxybenzene in 4 steps, a significant improvement from the prior approach involving dearomative allylation of **291**.

Scheme 3.9. Cyclization of **309** to **317**. *a*

^a Conditions: (a) TMSOTf, DTBMP, CH₂Cl₂, -78 °C, 90% *or* TMSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C, 79%.

The next step in our synthesis sequence involved the allylic oxidation⁶¹⁷ of 317 to β methoxyenone **318** (Table 3.3). This was an exceptionally challenging transformation given the seven allylic sites present in **303** and the steric environment surrounding the desired oxidation site at the C2 position. Numerous allylic oxidation conditions were screened and can be classified into three distinct categories: (1) the combination of a high-valent metal species and TBHP (entries 1-22); (2) stoichiometric

⁶¹⁷ For a recent review of allylic oxidations in total synthesis, see: Nakamura, A.; Nakada, M. *Synthesis* **2013**, *45*, 1421-1451.

metal oxidants (entries 23-32); and (3) the combination of hypervalent iodide species and TBHP (entries 33-65). In many cases, we observed several byproducts, including transposed *tert*-butyl peroxide **319**, enone **320**, and ketone **321** (Figure 3.2).

Table 3.3. Allylic oxidation of enol ether **317**.

Entry	Oxidants (equiv)	Additives (equiv)	Conditions	Results
40	$Phi(OAc)$ ₂ (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 4 h	mixture of 318, 319, and 321
41	$Phi(OAc)_2$ (3), TBHP (4)	none	pentOAc, 4° C, 12 h	mixture of 318 and 321
42	$PhI(TFA)_{2}(2)$, TBHP (1.5)	$Cs_2CO_3(2)$	EtOAc, 4° C, 75 min	318 (10%), 319 (24%), 320 (28%)
43	$PhI(TFA)_{2}(3)$, TBHP (4)	$K_2CO_3(0.5)$	pentOAc, 4 °C, 75 min	318 (23%), 320 (37%)
44	$PhI(TFA)_{2}$ (3), TBHP (4)	$K_2CO_3(0.5)$, 3Å MS	pentOAc, $4^{\circ}C$, $2d$	mixture of 318 and 320
45	PhI $(TFA)_{2}$ (3), TBHP (4)	$K_3PO_4(4)$	EtOAc, $4^{\circ}C$, 45 min	mixture of 318, 320, and 321
46	$PhI(TFA)_{2}$ (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, 4° C, 13 h	318 (21%), 320 (12%)
47	PhI (TFA) , (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -30 °C, 90 min	318 (19%), 320 (28%)
48	$Phi(TFA)_{2}$ (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 1 h	318 (17%), 319 (4%)
49	$PhI(TFA)_{2}$ (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 3.5 h	318 (23%), 319 (10%)
50	$PhI(TFA)$ ₂ (3), TBHP (4)	$Cs_2CO_3(4)$	CH_2Cl_2 , -78 °C, 1 h	318 $(16%)$
51	$PhI(TFA)_{2}(3)$, TBHP (4)	$Cs_2CO_3(4)$	MeCN, -40 °C, 2 h	mixture of 318, 319, 320, and 321
52	PhI(TFA) ₂ (3), TBHP (4), O_2	$Cs_2CO_3(4)$	EtOAc, -78 °C, 1 h	318 (30%)
53	$PhI(TFA)_{2}$ (3), TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 1 h	318 $(16%)$
54	$PhI(TFA)_{2}(3)$, TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 2 h	318 $(17%)$
55	$Phi(TFA)_2$ (3), CHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 1 h	318 (14%), 319 (5%), 320 (15%)
56	$Phi(TFA)_2$ (3), BzOOt-Bu (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C to rt, 1 d	no reaction
57	$Phi(TFA)_{2}$ (3), BPX (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C, 90 min	decomposition
58	$PhI(TFA)_{2}$ (5), TBHP (excess)	$Cs_2CO_3(10)$	EtOAc, -78 °C, 30 min	318 (17%), 320 (11%)
59	322(2)	$K_2CO_3(4)$	PhH, rt , $3d$	319 (26%), 320 (5%)
60	322(2)	$Cs_2CO_3(4)$	PhH, rt, 12 h	mixture of 318 and 319
61	322 (3) , TBHP (4)	$Cs_2CO_3(4)$	EtOAc, -78 °C to rt, 1 d	mixture of 318, 320, and 321
62	322 $(2), O2$	$K_2CO_3(4)$	PhH, rt , 1 d	318 $(9%)$
63	PhIO ₂ (3), TBHP (4)	$K_2CO_3(4)$	EtOAc, 4° C, 12 h	selectively afforded 319
64	IBX(3)	none	DMSO, 110 °C, 14 h	mixture of 318, 320, and 321
65	DMP(3)	$Cs_2CO_3(4)$	$CH2Cl2$, rt, 2 d	no reaction

Table 3.3 (*continued*)**.** Allylic oxidation of enol ether **317**.

Figure 3.2. Byproducts from the allylic oxidation of **317** and the structure of peroxyiodoxolone **322**.

Given the early success with the allylic oxidation of **303** to afford **306**, we first focused on the Pearlman's catalyst-TBHP allylic oxidation system (Table 3.3, entries 1-8).⁶¹⁰ Despite increases in catalyst stoichiometry, we typically observed a considerable conversion to enone **320** and variable conversion to peroxide **319**. Additionally, while changing the identity of the base mitigated has enone formation in similar systems,⁶¹⁸ we did not observe significant changes in product distribution through the

^{618 (}a) Yu, J.-Q.; Corey, E. J. *Org. Lett.* **2002**, *4*, 2727-2730. (b) Yu, J.-Q.; Corey, E. J. *J. Am. Chem. Soc.* **2003**, *125*, 3232-3233.

use of K_2CO_3 , KOH, K_3PO_4 , or Cs_2CO_3 . Using different Pd catalysts had no positive effect on desired yield (entries 9-11). A variety of other known allylic oxidation systems, involving the combination of TBHP and: NaOCl,⁶¹⁹ Cr(CO)₆,⁶²⁰ PDC,⁶²¹ Mn(OAc)₃,⁶²² FeCl₂·4H₂O,⁶²³ NiCl₂·6H₂O,⁶²⁴ CuI,⁶²⁵ SeO₂,⁶²⁶ $RuCl₃,⁶²⁷ Rh₂(cap)₄,⁶²⁸$ and CAN, also did not afford large proportions of 318 selectively (entries 12-22). When stoichiometric metal oxidants were used (entries 23-32), we did not observe any **318** but rather enone **320** and ketone **321** in cases where significant decomposition was not observed.

In addition to the use of metal-based oxidants, we also investigated the use of hypervalent iodine reagents, both in the presence and in the absence of TBHP (Table 3.3, entries 33-65). Prior studies by the Yeung group illustrated the effectiveness of PhI(OAc)₂-TBHP for the allylic oxidation of a wide range of substrates.629 It is believed that exposure of iodosobenzene species **323** to TBHP generates [bis(*tert*butylperoxy)iodo]benzene $(324, S$ cheme $3.10)$.⁶³⁰ This is predicted to be a particularly unstable

l

621 (a) Chidambaram, N.; Chandrasekaran, S. *J. Org. Chem.* **1987**, *52*, 5048-5051. (b) Schultz, A. G.; Taveras, A. G.; Harrington, R. E. *Tetrahedron Lett.* **1988**, *29*, 3907-3910.

622 Shing, T. K. M.; Yeung, Y.-Y.; Su, P. L. *Org. Lett.* **2006**, *8*, 3149-3151.

623 (a) Barton, D. H. R.; Le Gloahec, V. N. *Tetrahedron* **1998**, *54*, 15457-15468. (b) Nakanishi, M.; Bolm, C. *Adv. Synth. Catal.* **2007**, *349*, 861-864.

624 Salavati-Niasari, M.; Babazadeh-Arani, H. *J. Mol. Catal. A* **2007**, *274*, 58-64.

625 Salvador, J. A. R.; e Melo, M. L. S.; Campos Neves, A. S. *Tetrahedron Lett.* **1997**, *38*, 119-122.

626 Mateos, A. F.; Barrueco, O. F.; González, R. R. *Tetrahedron Lett.* **1990**, *31*, 4343-4346.

627 Miller, R. A.; Li, W.; Humphrey, G. R. *Tetrahedron Lett.* **1996**, *37*, 3429-3432.

628 (a) Catino, A. J.; Forslund, R. E.; Doyle, M. P. *J. Am. Chem. Soc.* **2004**, *126*, 13622-13623. (b) Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P. *Org. Lett.* **2005**, *7*, 5167-5170. (c) McLaughlin, E. C.; Choi, H.; Wang, K.; Chiou, G.; Doyle, M. P. *J. Org. Chem.* **2009**, *74*, 730-738.

630 Milas, N. A.; Plesnicar, B. *J. Am. Chem. Soc.* **1968**, *90*, 4450-4453.

⁶¹⁹ Kolympadi, M.; Liapis, M.; Ragoussis, V. *Tetrahedron* **2005**, *61*, 2003-2010.

^{620 (}a) Pearson, A. J.; Chen, Y.-S.; Hsu, S.-Y.; Ray, T. *Tetrahedron Lett.* **1984**, *25*, 1235-1238. (b) Pearson, A. J.; Chen, Y.-S.; Han, G. R.; Hsu, S.-Y.; Ray, T. *J. Chem. Soc., Perkins Trans. 1* **1985**, 267-273.

^{629 (}a) Zhao, Y.; Yeung, Y.-Y. *Org. Lett.* **2010**, *12*, 2128-2131. (b) Zhao, Y.; Yim, W.-L.; Yan, C. K.; Yeung, Y.-Y. *Org. Lett.* **2011**, *13*, 4308-4311. (c) Zhao, Y.; Chew, X.; Leung, G. Y. C.; Yeung, Y.-Y. *Tetrahedron Lett.* **2012**, *53*, 4766-4769.

intermediate, which undergoes reductive elimination to afford PhI and di-*tert*-butyl tetroxide (**325**), which decomposes into a variety of *tert*-butyl polyoxide radicals (**326**), eventually leading to oxygen evolution, and to formation of *t*-BuOH and *t*-BuOO*t*-Bu. These processes appear to be solvent dependent.

Scheme 3.10. Reaction of a generic iodosobenzene species **323** with TBHP.

The rate at which **324** forms and decomposes to PhI and **325** is affected by several factors, including solvent and temperature. Exposure of $PhI(TFA)$ ₂ to TBHP forms **324** at temperatures as low as -30 °C using CH₂Cl₂; the use of more Lewis basic solvents EtOAc, acetone, THF, and MeCN led to lower conversion rates in subsequent allylic oxidations at that temperature. ⁶³¹ Solvent effects were also observed in the PhI(OAc)₂-TBHP allylic oxidation system.^{629a} Use of ester solvents containing large alkyl substituents led to higher yields. This may be due to the solvent effects on the conversion of **323** to **324**, with more sterically demanding Lewis basic solvents decreasing the rate of this reaction.

Several mechanisms may be proposed for the allylic oxidation of **317**. One plausible mechanism involves three distinct stages: a radical abstraction; radical combination; and base-promoted elimination (Scheme 3.11). First, the radical abstraction of a hydrogen atom at the C2 position forms allylic radical **327**. This radical may be intercepted to form peroxide **328**, which then may eliminate alkoxide anion via methine deprotonation⁶³² at C2 to afford 318. This mechanistic proposal may also explain the formation of several byproducts. Interception of allylic radical **327** with a *tert*-buty peroxy radical may form **319**.

 \overline{a}

^{631 (}a) Catir, M.; Kilic, H. *Synlett* **2004**, 2151-2154. (b) Catir, M.; Kilic, H. *Synlett* **2010**, 1319-1322.

⁶³² For an early example of base-mediated cleavage of a dialkyl peroxide, see: Kornblum, N.; DeLaMare, H. E. *J. Am. Chem. Soc.* **1951**, *73*, 880-881.

In addition, E1cB-type expulsion of a peroxy anion from **328** may afford enoxonium **329**, which upon demethylation would afford enone **320**.

Scheme 3.11. A plausible radical-based mechanism for the formation of **318** and other oxidation products from **317**.

In many allylic oxidation experiments, we isolated a significant amount of **319**, and we investigated the possible conversion of this peroxide to the desired β-methoxyenone **318**. Exposure of peroxide **319** to a variety of basic, acidic, and reducing conditions did not afford more than trace amounts of 318. Only upon exposure of 319 to $FeCl_2 \cdot 4H_2O^{633}$ in a Fenton-type reaction, ⁶³⁴ appreciable (5-10%) yield) amounts of β-methoxyenone **318** were produced. The inability to convert **319** to **318** meant that this peroxide was a detrimental byproduct in this reaction process, and we sought to mitigate its formation to improve the yield of **318**. Since a peroxide would approach from outside the concavity of the bicyclic core of **327** to form the epimer shown in **328**, subsequent C2 deprotonation would be exceedingly

 633 For examples of the reaction of peroxides with Fe(II) salts, see: (a) O'Neill, P. M.; Searle, N. L.; Raynes, K. J.; Maggs, J. L.; Ward, S. A.; Storr, R. C.; Park, B. K.; Posner, G. H. *Tetrahedron Lett.* **1998**, *39*, 6065-6068. (b) Singh, C.; Gupta, N.; Tiwari, P. *Tetrahedron Lett.* **2005**, *46*, 4551-4554. (c) Opsenica, I.; Terzić, N.; Opsenica, D.; Angelovski, G.; Lehnig, M.; Eilbracht, P.; Tinant, B.; Juranić, Z.; Smith, K. S.; Yang, Y. S.; Diaz, D. S.; Smith, P. L.; Milhous, W. K.; Doković, D.; Šolaja, B. A. *J. Med. Chem.* **2006**, *49*, 3790-3799.

⁶³⁴ For a review of the Fenton reaction, see: Koppenol, W. H. *Free Radical Bio. Med.* **1993**, *15*, 645-651.

difficult given the steric environment around this position.⁶³⁵ We hypothesized that if oxygen was present, it may intercept **327** and subsequently form a hydroperoxide $(328, R = H)$, and this species may undergo more facile C2 deprotonation to form the desired β-methoxyenone **318**.

Taking all these factors into consideration and screening a variety of conditions involving iodine(III) reagents (Table 3.3, entries 33-58), we were obtained **318** in 30% yield (entry 52). While the use of large ester solvents (i.e., amyl acetate and butyl butyrate) decreased the rate at which radical *tert*butyl polyoxides formed, their relatively high melting points prevented the cooling of the reaction mixtures to further decrease the rate of radical formation. EtOAc was the solvent of choice, allowing reaction mixtures to be cooled to –78 ºC while preventing fast decomposition of TBHP and the hypervalent iodine reagent. In addition, we found that $PhI(TFA)$ ₂ was optimal relative to $PhI(OAc)$ ₂ and PhIO, and the addition of a vigorous stream of oxygen into the reaction mixture caused a significant increase in product yield. We also assessed the use of several iodine(V) reagents, such as peroxyiodoxolone 322,⁶³⁶ PhIO₂, IBX, and DMP (entries 59-65); however, the use of these reagents did not afford the desired allylic oxidation product selectively. Even though yields of the desired βmethoxyenone **318** were not dramatically improved using the optimized PhI(TFA)_2 -TBHP-O₂ system, the use of hypervalent iodine reagents were more conducive for large scale allylic oxidations of **317**, necessary for processing large quantities of material for the total synthesis endeavor.

With access to large amounts of β-methoxyenone **318**, we developed a synthesis strategy that would allow us to quickly access hyperforin. We hypothesized that hyperforin (**1**) may be accessed from cyclopropane **330** (Scheme 3.12a). The cyclopropane present in **330** is activated by both the C1 and C9 carbonyl groups,637 and nucleophilic addition of a prenylmetal species may occur selectively at the C7

⁶³⁵ The difficulty with C2 deprotonation of **328** may favor enone **320** formation via enoxonium **329**.

⁶³⁶ Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. *J. Am. Chem. Soc.* **1996**, *118*, 7716-7730.

⁶³⁷ It should be noted that there is very little orbital overlap between the C9–O π^* orbital and the C7–C9 σ orbital.

position and not at the C8 quaternary center.⁶³⁸ This addition would result in an intermediate C1 bridgehead organometallic **331**, which upon exposure to isobutyryl chloride may directly provide the methyl ether of hyperforin (**60**, Scheme 3.12b). In one single operation, two of the three key remaining C–C bonds of hyperforin would be established: prenylation at the C7 position and acylation at the C1 position (highlighted in Scheme 3.12b). The remaining C3 prenyl group would be installed via a precedented tandem deprotonation-transmetalation-alkylation protocol of **318** to afford **332**, the precursor to **330** via sequential bridgehead lithiation and intramolecular cyclization. 510

Scheme 3.12. (a) Retrosynthesis of hyperforin (**1**) from β-methoxyenone **318** via cyclopropane **330**, and (b) a proposed tandem 1,5-addition-bridgehead acylation of **330** to form *O*-methyl hyperforin (**60**).

Prenylation at the C3 position of **318** was accomplished through the previously mentioned sequential LiTMP-mediated deprotonation, transmetalation with $Li(2-Th)CuCN₅₁₁⁵¹¹$ and trapping with prenyl bromide⁵¹⁰ to afford 333 (Scheme 3.13a). A variety of Lewis and Brønsted acidic conditions were then screened for the hydrolysis of the cyclic ketal present in **333**. No reactivity was observed using

 638 For examples of diacylcyclopropane 1,5-addition that is selective for the least hindered position, see: (a) Tanimori, S.; Kainuki, T.; Nakayama, M. *Biosci. Biotech. Biochem.* **1992**, *56*, 1807-1809. (b) Jiang, X.; Covey, D. F. *J. Org. Chem.* **2002**, *67*, 4893-4900.

aqueous HOAc, LiBF₄, Sc(OTf)₃, CuCl₂·2H₂O, or InCl₃, or anhydrous conditions involving Ti(O*i*-Pr)4/MeOH or SmCl3/TMSCl. Loss of the C3, C5, and C8 olefin functionality was observed when *p*-TsOH·H2O, TFA, Amberlyst-15 acidic resin, or CAN was employed. While no reactivity was observed with aqueous HCl, PPTS, or BF_3 Et₂O/TBAI at rt, decomposition was observed upon heating. Several reagents led to selective cleavage of the C4 *O*-methyl ether, including HBr, BBr₃, TMSI, and FeCl₃·6H₂O. Selective cyclic ketal hydrolysis was ultimately accomplished using BrBMe₂^{,639} exposure of **333** to this reagent at –78 ºC led to hemiketal **334**. The conversion of **333** to **334** may proceed via coordination of the Lewis acidic reagent to the Lewis basic cyclic ketal oxygen to give intermediate **335**, which may undergo ketal cleavage to form oxocarbenium ion **336** (Scheme 3.13b). The displaced bromide anion may then intercept the oxocarbenium ion to form the unstable geminal bromoether **337**, a species we observed spectroscopically but did not isolate. Upon exposure of 337 to $H₂O$ upon reaction quench, the product hemiketal **334** is formed. The reaction was chemoselective for cyclic ketal cleavage at –78 ºC; at higher temperatures, C4 *O*-methyl ether cleavage was also observed. Hydrolysis of **334** was accomplished by refluxing in wet acetone with PPTS to afford **332**.

^{639 (}a) Guidon, Y.; Yoakim, C.; Morton, H. E. *Tetrahedron Lett.* **1983**, *24*, 2969-2972. (b) Guidon, Y.; Yoakim, C.; Morton, H. E. *J. Org. Chem.* **1984**, *49*, 3912-3920. (c) Guidon, Y.; Girard, Y.; Berthiaume, S.; Gorys, V.; Lemieux, R.; Yoakim, C. *Can. J. Chem.* **1990**, *68*, 897-902.

Scheme 3.13. (a) Prenylation and cyclic ketal hydrolysis of **318**, and (b) a possible mechanism for the conversion of **333** to **334**. *a* ^a Conditions: (a) LiTMP, THF, -78 °C ; Li(2-Th)CuCN, THF, -78 to -40 °C ; prenyl bromide, -78 to -40 °C , 71% ; (b) BrBMe₂, CH_2Cl_2 , –78 °C; NEt₃; NaHCO₃, H₂O, 89%; (c) PPTS, acetone/H₂O, reflux, 92%.

We then attempted to synthesize cyclopropane **330** from alcohol **332**; however, we did not obtain this desired product (Scheme 3.14). After conversion to triflate **338**, exposure to LDA led to decomposition, including LDA-mediated hydride transfer to the C9 ketone.⁶⁴⁰ Treatment with NaOMe in MeOH, conditions known to promote bridgehead functionalization.⁶⁴¹ led to quantitative conversion to methanopentalene **339**, the product of methoxide addition to the C4 position followed by cyclization of the resulting C3 enolate to the C7 position. Studies with mesylate **340** were also unsuccessful. While

 640 The reducing ability of LDA has been reported. For several examples, see ref. 527 and: (a) Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. *J. Org. Chem.* **1978**, *43*, 2601-2608. (b) Majewski, M. *Tetrahedron Lett.* **1988**, *29*, 4057-4060. For a review of lithium dialkylamide reduction, see: Majewski, M.; Gleave, D. M. *J. Organomet. Chem.* **1994**, *470*, 1-16.

⁶⁴¹ Nickon, A.; Covey, D. F.; Huang, F.-C.; Kuo, Y.-N. *J. Am. Chem. Soc.* **1975**, *97*, 904-905.

treatment with LDA also resulted in decomposition, exposure to NaOMe/MeOH afforded rearranged cyclopropane **341**. This product may have formed via initial cleavage of the C1–C2 bond with concomitant C1–C7 bond formation from C2 hemiketal anion **342**, followed by lactone formation upon aqueous workup.

Scheme 3.14. Byproducts isolated from attempted bridgehead lithiations of **338** and **340**. *a*

a Conditions: (a) Tf₂O, pyr, CH₂Cl₂, -43 to 0 °C, 84%; (b) NaOMe, MeOH, 0 °C to rt, >99%; (c) MsCl, NEt₃, CH₂Cl₂, 0 °C, 82%; (d) NaOMe, MeOH, 0 to 70 ºC, 15%.

Since there is very poor overlap of the C9 ketone π orbital with the C1–H methine σ^* orbital and that a major source of byproducts was hydride addition to the C9 ketone, we also explored the bridgehead lithiation chemistry of a series of intermediates bearing a C9 dimethyl ketal (Scheme 3.15). By quenching the BrBMe₂-mediated reaction of 333 with MeOH before introduction of H₂O, dimethyl ketal **343** was isolated instead of hemiketal **334**. Reactions of the triflate **344** derived from this intermediate were investigated; however, we did not observe desired cyclopropane formation. Exposure of **344** to LDA afforded tricyclononane **345**, which may have formed via deprotonation of the C3 prenyl methylene with subsequent C4–C7 bond formation, yielding intermediate **346**. After formation of extended enolate

347, quenching with H2O may afford **345**. Treatment of **344** with *s*-BuLi led to **348**, the result of 1,2 addition of *s*-Bu anion to the C2 ketone followed by displacement of the C7 triflate with the resulting alkoxide. Reactions of mesylate **349** and pivalate **350** were also fruitless; when reactivity was observed, it was typically due to C3 prenyl methylene deprotonation.

Scheme 3.15. Synthesis and reactivity of **343** derivatives.*^a*

a Conditions: (a) BrBMe₂, CH₂Cl₂, -78 °C; MeOH, NEt₃, -78 °C, 67%; (b) Tf₂O, pyr, CH₂Cl₂, -40 to -10 °C, 71%; (c) MsCl, pyr, CH2Cl2, 0 ºC to rt, 39%; (d) PivCl, pyr, DMAP, 0 ºC to rt, 82%; (e) LDA, THF, –78 to –20 ºC, 42% (10% recovered **344**); (f) *s*-BuLi, THF, –78 ºC, 33%.

Given the enhanced acidity of the bisallylic methylene attached to C3, we elected to pursue a synthesis strategy in which cyclopropation to form the C1–C7 bond would precede C3 prenylation. BrBMe2-mediated cyclic ketal hydrolysis of **318** afforded hemiketal **351**, and subsequent hydrolysis afforded alcohol **282** (Scheme 3.16). Triflation of **282** yielded **352**. Gratifyingly, exposure of this triflate

to LDA in the presence of TMSCl produced cyclopropane **353**. In this reaction, silylation of the C3 position accompanied C1 bridgehead lithiation with subsequent C1–C7 bond formation, providing **353**. An observed, unstable byproduct in this reaction was the result of LDA-mediated C9 ketone reduction, which was isolated in variable amounts.

Scheme 3.16. Synthesis of cyclopropane **353**. *a*

^a Conditions: (a) BrBMe₂, CH₂Cl₂, –78 °C; NEt₃, –78 °C; NaHCO₃, H₂O, –78 °C to rt, 79%; (b) PPTS, H₂O/acetone, reflux, 90%; (c) Tf₂O, pyr, CH₂Cl₂, -43 to 5 °C, 80%; (d) LDA, TMSCl, THF, -78 °C, 49%.

We then attempted 1,5-addition of a variety of nucleophiles to the activated cyclopropane present in **353**; however, under all conditions screened, we did not isolate any desired products (**354**, Table 3.4). In general, we explored the use of organocuprates⁶⁴² as nucleophiles, given past precedent of the use of these reagents for cyclopropane opening.⁶⁴³ We utilized the Lewis acids TMSCl and BF₃·Et₂O in an attempt to further activate the cyclopropane for nucleophilic attack.^{644,645} The 1,5-addition of

⁶⁴² For reviews of organocuprate chemistry, see: (a) Posner, G. H. *Org. React.* **1975**, *22*, 253-400. (b) Lipshutz, B. H. *Synlett* **1990**, 119-128.

⁶⁴³ For examples of allylcuprate additions to activated cyclopropanes, see: (a) Corey, E. J.; Fuchs, P. L. *J. Am. Chem. Soc.* **1972**, *94*, 4014-4015. (b) Mioskowski, C.; Manna, S.; Falck, J. R. *Tetrahedron Lett.* **1983**, *24*, 5521- 5524. (c) Bertz, S. H.; Dabbagh, G.; Cook, J. M.; Honkan, V. *J. Org. Chem.* **1984**, *49*, 1739-1743. (d) Taber, D. F.; Kewson, K. R.; Raman, K.; Rheingold, A. L. *Tetrahedron Lett.* **1984**, *25*, 5283-5286. (e) He, M.; Tanimori, S.; Nakayama, M. *Biosci. Biotech. Biochem.* **1995**, *59*, 900-902.

⁶⁴⁴ Lipshutz, B. H.; Dimock, S. H.; James, B. *J. Am. Chem. Soc.* **1993**, *115*, 9283-9284.

alkylcuprates to activated cyclopropanes may also be catalyzed by PBu₃.⁶⁴⁶ Due to the inability of accessing prenyllithium from lithium insertion into a prenyl halide, 647 several modes of prenyl cuprate formation were explored. In entry 1, Rieke copper(0) was generated,⁶⁴⁸ but the reagent derived from Cu^{*} and prenyl chloride did not react with the substrate. The only product we observed in this reaction was **355** (Figure 3.3),⁶⁴⁹ the result of nucleophilic opening of THF solvent. No reactivity was observed with prenylcuprates derived from: (a) prenyl-MgBr and CuI⁶⁵⁰ (entries 2-3) and (b) prenyl-Li⁶⁵¹ and CuI (entries 4-5). The generation of prenylcuprate⁶⁵² from prenyl–SnBu₃,⁶⁵³ BuLi,⁶⁵⁴ and CuI afforded iodide **356** and proteodesilylation product **357** (entries 6-7). 655 Iodide **356** was the only product obtained in these

 \overline{a}

650 Lipshutz, B. H.; Hackmann, C. *J. Org. Chem.* **1994**, *59*, 7437-7444.

⁶⁵¹ Prenyllithium was generated from the reaction of phenyl prenyl ether with Li. For more information, see: Eisch, J. J.; Jacobs, A. M. *J. Org. Chem.* **1963**, *28*, 2145-2146.

652 (a) Lipshutz, B. H.; Crow, R.; Dimock, S. H.; Ellsworth, E. L.; Smith, R. A. J.; Behling, J. R. *J. Am. Chem. Soc.* **1990**, *112*, 4063-4064. (b) Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Smith, R. A. J. *J. Am. Chem. Soc.* **1990**, *112*, 4404-4410.

⁶⁴⁵ For a review of the use of Lewis acids in organocopper chemistry, see: Yamamoto, Y. *Angew. Chem. Int. Ed. Engl.* **1986**, *25*, 947-959.

⁶⁴⁶ Kauffman, G. B.; Teter, L. A. *Inorg. Synth.* **1963**, *7*, 9-12.

 647 Rapid Wurtz coupling was observed upon attempted halogen-lithium exchange of allyl halides. For more information, see: (a) Seyferth, D.; Weiner, M. A. *J. Org. Chem.* **1959**, *24*, 1395-1396. (b) Seyferth, D.; Weiner, M. A. *J. Org. Chem.* **1961**, *26*, 4797-4800.

^{648 (}a) Ebert, G. W.; Rieke, R. D. *J. Org. Chem.* **1984**, *49*, 5282-5283. (b) Wehmeyer, R. M.; Rieke, R. D. *J. Org. Chem.* **1987**, *52*, 5057-5059. (c) Rieke, R. D.; Wehmeyer, R. M.; Wu, T.-C.; Ebert, G. W. *Tetrahedron* **1989**, *45*, 443-454. (d) Stack, D. E.; Dawson, B. T.; Rieke, R. D. *J. Am. Chem. Soc.* **1991**, *113*, 4672-2673. (e) Stack, D. E.; Dawson, B. T.; Rieke, R. D. *J. Am. Chem. Soc.* **1992**, *114*, 5110-5116. (f) Stack, D. E.; Klein, W. R.; Rieke, R. D. *Tetrahedron Lett.* **1993**, *34*, 3063-3066.

^{649 (}a) Sakane, S.; Maruoka, K.; Yamamoto, H. *Tetrahedron* **1986**, *42*, 2203-2209. (b) Korthals, K. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2008**, *130*, 2898-2899.

⁶⁵³ For the synthesis of tributylprenylstannane, see: (a) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. *Org. Synth.* **1993**, *71*, 118-124. (b) Kiyokawa, K.; Yasuda, M.; Baba, A. *Organometallics* **2011**, *30*, 2039-2043.

 654 For the generation of allyllithium reagents from the reaction of allyltributylstannanes and BuLi, see: Desponds, O.; Schlosser, M. *J. Organomet. Chem.* **1991**, *409*, 93-101.

⁶⁵⁵ **357** and **358** were not rigorously characterized; we surmised the structure of these compounds via comparison to **353** as well as spectroscopic analysis of reaction mixtures.
studies in which the cyclopropane ring of **353** was opened. We also briefly explored the TMSOTfmediated addition of allyltrimethylsilane⁶⁵⁶ (entry 14), but the only product observed was 357.

Table 3.4. Attempted formation of **354** from nucleophilic 1,5-additions to **353**.

Figure 3.3. Byproducts obtained from the reaction of **353** with various nucleophiles.

Owing to the variability of prenyl–metal formation,⁶⁵⁷ we also assessed the reactivity of butylderived cuprate species for this cyclopropane-opening reaction (Table 3.4, entries 8-13). The preparation

 656 For examples of allyltrimethylsilane addition to activated cyclopropanes, see: (a) Ohno, M.; Matsuoka, S.; Eguchi, S. *J. Org. Chem.* **1986**, *51*, 4553-4558. (b) Bambal, R.; Kemmitt, R. D. W. *J. Chem. Soc., Chem. Commun.* **1988**, 734-735. (c) Monti, H.; Afshari, M.; Léandri, G. *J. Organomet. Chem.* **1995**, *486*, 69-78. (d) Sugita, Y.; Yamadoi, S.; Hosoya, H.; Yokoe, I. *Chem. Pharm. Bull.* **2001**, *49*, 657-658. (e) Gharpure, S. J.; Shukla, M. K.;

Vijayasree, U. *Org. Lett.* **2009**, *11*, 5466-5469.

of these reagents was much more straightforward than the preparation of prenylcuprates. Both Gilman⁶⁵⁸ and Lipshutz-type⁶⁵⁹ higher order cuprates were examined. In these cases, the only product we isolated was 358,⁶⁵⁵ the result of 1,2-addition to the C9 ketone (Figure 3.3).

Given the propensity of nucleophilic 1,2-addition to the C9 ketone, we also synthesized and explored the chemistry of cyclopropane **359**, in which the reactive ketone was masked as a dimethyl ketal. BrBMe₂-mediated cyclic ketal opening of **318** followed by a methanol quench afforded alcohol **360** (Scheme 3.17). A variety of conditions were screened for the synthesis of **359** from the derived triflate **361**. 660 Exposure of **361** to LDA and TMSCl only afforded vinylsilane **362**. 661 We rationalized that a smaller lithium amide base may promote bridgehead deprotonation, since the presence of the C9 dimethyl ketal significantly increased the steric environment surrounding the C1 methine. Exposure of **362** to excess LiNEt₂ provided the desired cyclopropane **359** along with sulfamate **363**, the product of diethylamide displacement of trifluoromethide from **361**. To the best of our knowledge, this is the only known example of trifluoromethide displacement from an alkyl triflate to form a sulfamate. Such a displacement is thermodynamically tenable, given the relative acidity of fluoroform ($pK_a \sim 25{\text -}28$)⁶⁶² versus diethylamine $(pK_a \sim 31)$ ⁶⁶³ Upon reexposure of **363** to LDA or LiNEt₂, only trace amounts of **359** were produced. Interestingly, upon exposure of 361 to LiNEt₂, *rearranged* cyclopropane 364 was

 657 For an example of unexpected reactivity involving an allyl cuprate, see: Hutchinson, D. K.; Fuchs, P. L. *Tetrahedron Lett.* **1986**, *27*, 1429-1432.

^{658 (}a) Gilman, H.; Jones, R. G.; Woods, L. A. *J. Org. Chem.* **1952**, *17*, 1630-1634. (b) Whitesides, G. M.; Fischer, W. F., Jr.; Filippo, J. S., Jr.; Bashe, R. W.; House, H. O. *J. Am. Chem. Soc.* **1969**, *91*, 4871-4882. (c) Lipshutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. *J. Org. Chem.* **1983**, *48*, 546-550.

^{659 (}a) Lipshutz, B. H.; Kozlowski, J.; Wilhelm, R. S. *J. Am. Chem. Soc.* **1982**, *104*, 2305-2307. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.; Parker, D. *J. Org. Chem.* **1984**, *49*, 3928-3938.

⁶⁶⁰ All intermediates bearing both a C9 dimethyl ketal and a C7 triflate were particularly unstable and were not fully characterized.

⁶⁶¹ Reexposure of this product to LDA did not afford cyclopropane **359**.

⁶⁶² Klabunde, K. J.; Burton, D. J. *J. Am. Chem. Soc.* **1972**, *94*, 5985-5990.

⁶⁶³ Ahlbrecht, H.; Schneider, G. *Tetrahedron* **1986**, *42*, 4729-4741.

isolated.⁶⁶⁴ This rearrangement product may arise from 1,2-alkyl shift of carbenoid intermediate **365**. This reaction is remarkable given the contrasting reactivity of closely related triflate **362**.

Scheme 3.17. Synthesis of cyclopropane **359** and byproducts **363** and **364**. *a*

a Conditions: (a) BrBMe₂, NEt₃, CH₂Cl₂, -78 °C; MeOH, NEt₃; NaHCO₃, H₂O, 61%; (b) Tf₂O, CH₂Cl₂, -40 to 0 °C; (c) LDA, TMSCl, HMPA, THF, -78 to 0 °C; (d) LiNEt₂, THF, -78 to -10 °C, 14% **359**, 42% **363** (both yields from **360**); (e) LiNEt₂, THF, –78 ºC to rt, 44% (from **360**).

We then sought to improve the yield of **359** through the intermediacy of benzenesulfonate **366**, since displacement of a phenyl anion would be highly unlikely. Treatment of alcohol **360** with BsCl afforded **366** (Scheme 3.18). Exposure of this sulfonate to LDA and TMSCl afforded vinylsilanes **367** and **368**, in which the sulfonate functionality directed lithiation and subsequent silylation upon the attached phenyl ring. Exposure of both of these products to LiNEt₂ afforded 359 in identical yield. Unfortunately, we were unable to successfully convert cyclopropane **359** to a desired ring-opened product

⁶⁶⁴ The structure of **364** was elucidated from the appearance of nOe correlations between the cyclopropyl methine to both ketal methyl groups, circumstances that would be highly unlikely in the desired cyclopropane.

369. A variety of conditions were screened, similar to those found in Table 3.4. Proteodesilylation at the C3 position and hydrolysis of the C9 ketal were the only products we isolated in this endeavor.

Scheme 3.18. Synthesis of **359** via benzenesulfonate **366** and unsuccessful formation of **369** from **359**. *a a* Conditions: (a) BsCl, pyr, CH₂Cl₂, -40 °C to rt, 48% yield; (b) LDA, TMSCl, THF, -78 to 0 °C, 29% **367**, 41% **368**; (c) LiNEt₂,

THF, –78 ºC to rt, 47% (from either **367** or **368**).

In summary, we did not observe desired 1,5-addition to both **353** and **359** despite screening a variety of nucleophiles under a litany of reaction conditions. Iodide **356** was the only product isolated in which 1,5-addition occurred. Given the ability of an iodide to act as a functional handle, we briefly explored the reactivity of this compound (Scheme 3.19).⁶⁶⁵ Attempted metal-iodine exchange of 356 afforded cyclohexenedione **370**. 666 The formation of this ring-opened product is unsurprising considering the orbital overlap between the σ (C7–M) and the σ ^{*}(C1–C8) bonds of possible intermediate **371**. Keck allylation530 of **356** very cleanly afforded **372**. Upon radical formation at the C7 position, a facile 5-*exo*-

 \overline{a}

⁶⁶⁵ Due to the paucity of iodide **356**, the products of these reactions were not fully characterized; however, spectroscopic analysis provided sufficient evidence to support the structural assertions made herein.

⁶⁶⁶ Micouin, L.; Knochel, P. *Synlett* **1997**, 327-328.

trig radical cyclization preceded intermolecular allylation. Similar cyclization products were obtained from attempted Ni-catalyzed Fu–Negishi couplings of **356**. 667

Scheme 3.19. Reactions of iodide **356**. *a*

a Conditions: (a) ZnBr₂, *i*-PrMgCl, Et₂O, THF, rt; 356; CuCN, LiCl, -78 °C; prenyl bromide, -78 °C to rt, 40%; (b) AIBN, allyltributylstannane, PhH, 80 ºC, >99%.

Total Synthesis of Hyperforin

l

Even though Keck coupling of **356** provided the undesired cyclization product **372**, we were intrigued by the facility of this radical-based transformation. We resolved to utilize a Keck allylation strategy for the installation of the C7 prenyl group, given the aforementioned result and the successful implementation of a Keck allylation strategy in the total synthesis of (\pm) -garsubellin A by Danishefsky.⁶⁶⁸ In order to prevent cyclization prior to intermolecular allylation, masking the olefin present in the C8 side chain was required. A similar strategy was utilized in the total synthesis of *ent*-hyperforin by Shibasaki, in which formal methanolysis provided a temporary means of veiling the C8 olefin.⁶⁶⁹ We rationalized

^{667 (}a) Zhou, J. (S.); Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 14726-14727. (b) Zhou, J. (S.); Fu, G. C. *J. Am. Chem. Soc.* **2004**, *126*, 1340-1341. (c) Netherton, M. R.; Fu, G. C. *Adv. Synth. Catal.* **2004**, *346*, 1525-1532. (d) Strotman, N. A.; Sommer, S.; Fu, G. C. *Angew. Chem. Int. Ed.* **2007**, *46*, 3556-3558. (e) Saito, B.; Fu, G. C. *J. Am. Chem. Soc.* **²⁰⁰⁷**, *129*, 9602-9603. (f) Lu, Z.; Fu, G. C. *Angew. Chem. Int. Ed.* **2010**, *49*, 6676-6678. 668 See discussion on page 120 and ref. 527.

⁶⁶⁹ Specifically, the strategy was implemented in the sequence starting with intermediate **115** and ending with **122**. See the discussion starting on page 113 and ref. 512.

that a similar protecting group strategy would minimally affect existing methodology while providing a practical and prudent means of achieving a total synthesis of hyperforin.

We began implementing this strategy by synthesizing methyl ether **373** from the methoxymercuration of epoxygeranyl bromide **289** (Scheme 3.20). Coupling of **373** with cyclohexadiene **312** afforded cyclization precursor **374**, and exposure of this intermediate to TMSOTf provided the expected enol ether 375. Subsequent allylic oxidation using our optimized $PhI(TFA)_{2}$ –TBHP–O₂ system provided β-methoxyenone 376. However, treatment with BrBMe₂ not only hydrolyzed the cyclic ketal of **376** but also displaced the tertiary methyl ether functionality to form bromide **377** as the only isolated product. Decreasing the BrBMe₂ stoichiometry afforded bromide 378, indicating that methyl ether cleavage preceded cyclic ketal hydrolysis.

Scheme 3.20. Synthesis and reactivity of methyl ether **376**. *a*

 a Conditions: (a) Hg(OAc)₂, MeOH; NaOH, H₂O, 0 °C; NaBH₄, 0 °C; 88%, 4% recovered 289; (b) *s*-BuLi, THF, –78 to –30 °C; **289**, –78 to 0 °C, 67%; (c) TMSOTf, 2,6-lutidine, CH₂Cl₂, –78 °C, 76%; (d) PhI(TFA)₂, TBHP, Cs₂CO₃, O₂, EtOAc, –78 to 0 °C, 29%; (e) BrBMe₂ (5 equiv), NEt₃, CH₂Cl₂, -78 °C; NEt₃; H₂O, NaHCO₃, 37%; (f) BrBMe₂ (2 equiv), NEt₃, CH₂Cl₂, -78 °C; NEt₃; H₂O, NaHCO₃, >90% conversion.

Since Lewis acid coordination was a likely cause of this unintended reactivity, we hypothesized that a more sterically encumbered ether would be less prone to cleavage during the ketal hydrolysis step. Accordingly, triethylsilyl ether **379** was synthesized in two steps from epoxygeranyl bromide **289**: (1) oxymercuration of **289**, and (2) silylation of the resulting alcohol **380** (Scheme 3.21). We attempted to append other, more sterically demanding silyl moieties to **380**; however, intramolecular epoxide-opening cyclization preceded silylation. Coupling of **379** with cyclohexadiene **312** yielded **381**, which upon exposure to TMSOTf generated enol ether **382**. Allylic oxidation, using aforementioned conditions with minor modifications, afforded β-methoxyenone **383** in a significantly higher yield than previous, similar allylic oxidations. Unfortunately, exposure of this compound to BrBMe₂ at -78 °C produced the tertiary bromide **377**, previously observed in the reaction of **376**. Nevertheless, we discovered that if the reaction was cooled to below –90 ºC, silyl ether cleavage was avoided while negligibly affecting the cyclic ketal hydrolysis, and we obtained the desired hemiketal **384**. 670 LiTMP-mediated methanol extrusion from **384** yielded **385**.

 \overline{a}

 670 Methyl ether cleavage was still observed in the reaction of 376 and BrBMe₂ when performed below -90 °C.

Scheme 3.21. Synthesis of triethylsilyl ether **385**. *a*

^a Conditions: (a) Hg(OAc)₂, acetone, H₂O; NaOH, 0 °C; NaBH₄, 0 °C, 91%; (b) TESCl, imid, DMF, 97%; (c) *s*-BuLi, THF, -78 to -30 °C; 379 , -78 to -40 °C, 85% ; (d) TMSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C, 79% ; (e) PhI(TFA)₂, TBHP, Cs₂CO₃, 4Å MS, EtOAc, O₂, -78 to 0 °C, 44%; (f) BrBMe₂, NEt₃, CH₂Cl₂, -78 °C; NEt₃, NaHCO₃, H₂O, 48%; (g) BrBMe₂, NEt₃, CH₂Cl₂, -95 °C; NEt₃, NaHCO₃, H₂O, 57%; (h) LiTMP, THF, -78 to 0 °C, 97%.

Installation of the key C7 prenyl group was accomplished in three steps from **385** via a Keck allylation strategy. A variety of radical initiating functional groups were screened in the radical allylation reaction step to afford **386**, including phenyl thiocarbonate **387**, 671 pentafluorophenyl thiocarbonate **388**, 672 methyl xanthate **389**, and imidazole carbothioate **390** (Scheme 3.22). In addition, we screened several methods of radical generation, including: (1) the use of AIBN, activated both thermally and photochemically; (2) photochemical radical generation (in the absence of a radical promotor); and (3) the combination of B Et₃ and air. A major byproduct in these studies was **391**, the result of reductive deoxygenation. Ultimately, we found that the activation of 388 with BEt₃ and air afforded 386 in

⁶⁷¹ **387** was synthesized in one step from hemiketal **384** rather than from **385**. See experimental section for details.

⁶⁷² *N*-Hydroxysuccinimide (NHS) was utilized in the formation of **388** from **385**. For more information on the use of NHS in the synthesis of thiocarbonates, see: Barton, D. H. R.; Jaszberenyi, J. C. *Tetrahedron Lett.* **1989**, *30*, 2619-2622.

consistently good yield. Past studies have found that the pentafluorophenyl thiocarbonate radical precursor functionality has a relatively long half-life for radical generation;⁶⁷³ this prolonged half-life may prevent the formation of unintended byproducts and favor the selective formation of the intended allylation product. Cross metathesis of **386** with 2-methyl-2-butene catalyzed by Hoveyda–Grubbs second-generation catalyst (**117**) yielded **392**, a product containing the requisite C7 prenyl moiety. Exposure of **392** to LiTMP and TMSCl afforded vinylsilane **393**.

Scheme 3.22. Installation of the C7 prenyl moiety.*^a*

^a Conditions: (a) BuLi, THF, -78 °C; ClC(S)OPh, -78 °C to rt, 60% (from **384**); (b) ClC(S)OC₆F₅, NHS, pyr, PhMe, 80 °C, 82%; (c) NaH, CS₂, THF, 0 °C; MeI, 0 °C to rt, 79%; (d) 1,1'-thiocarbonyldiimidazole, DMAP, CH₂Cl₂, 40 °C, 54%; (e) allyltributylstannane, BEt3, air, PhH, 72% **386**, 16% **391**; (f) **117**, 2-methyl-2-butene, CH2Cl2, 40 ºC, 86%; (g) LiTMP, TMSCl, THF, –78 to 0 ºC, 90%.

We then investigated the C1 bridgehead functionalization of **393**. This was an extremely challenging transformation, given the steric environment around the intended reaction center. In addition, considering that we intended to functionalize the C1 position with an isopropyl ketone, this meant that an electrophile bearing an acidic α-proton needed to be employed. In general, we focused our attention on

 \overline{a}

⁶⁷³ Barton, D. H. R.; Dorchak, J.; Jaszberenyi, J. C. *Tetrahedron* **1992**, *48*, 7435-7446.

several variables in screening this bridgehead functionalization reaction, including: (1) choice of base; (2) deprotonation time and temperature; (3) quenching temperature; (4) choice of electrophile; (5) various additives; and (6) reaction concentration. Specifically, we screened various amide bases, including LDA, LINEt₂, LITMP, and various other TMP-derived organometallics (e.g., TMP–MgX, TMP–ZnCl).⁶⁷⁴ In general, reduction of the C9 ketone was observed with LDA and LiNEt₂, and non-lithium TMP organometallics failed to deprotonate the C1 methine. MeCu(TMP)CNL i_2 ⁶⁷⁵ was the only such base to react with **393**, providing alcohol **394** as the result of methyl addition to the C9 ketone (Scheme 3.23). Appreciable deprotonation using LiTMP was not observed below -20 °C in THF solution; however, prolonged exposure of **393** to LiTMP above –20 ºC caused significant decomposition. Eventually, we discovered that optimal deprotonation of **393** with LiTMP was accomplished in 5 min at 0 ºC. Likewise, quenching temperature was also an important parameter in LiTMP-mediated reactions owing to the instability of **393** and its coupling products at relatively elevated temperatures. Significant increases in material recovery were observed when reactions were quenched at –20 ºC and lower.

Scheme 3.23. Reaction of 393 with MeCu(TMP)CNLi₂.^{*a*}

^{*a*} Conditions: (a) MeCu(TMP)CNLi₂, THF, –78 to 0 °C; *i*-PrC(O)Cl, –78 °C to rt, 49%, 15% recovered 393.

 674 For examples of the use of TMP-derived organometallics in organic synthesis, see: (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. *Angew. Chem. Int. Ed.* **2006**, *45*, 2958-2961. (b) Clososki, G. C.; Rohbogner, C. J.; Knochel, P. *Angew. Chem. Int. Ed.* **2007**, *46*, 7681-7684. (c) Wunderlich, S. H.; Knochel, P. *Angew. Chem. Int. Ed.* **2007**, *46*, 7685-7688. (d) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. *J. Org. Chem.* **2010**, *75*, 4686-4695.

⁶⁷⁵ Usui, S.; Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. *J. Am. Chem. Soc.* **2007**, *129*, 15102- 15103.

We also examined the use of several electrophiles. A reaction between the **393** and *i*-PrCHO was observed, but the product obtained in these reactions also contained C9 ketone reduction, possibly through internal hydride transfer. Dimethyl ketene was an ideal coupling partner, having no acidic αproton, but we were not able to isolate any coupling products from reactions using this electrophile. Coupling reactions with I_2 resulted in decomposition. In the end, we observed our desired product through the use of either isobutyryl chloride or cyanide,⁵²⁰ the latter providing marginally improved yields on a consistent basis. In addition, reaction concentration was an important factor for this reaction. Optimal yields were observed with concentrations above 0.05 M. As a result of these findings, the optimized bridgehead acylation of **393** to afford **395** is depicted in Scheme 3.24. This is a significant improvement over prior PPAP total syntheses involving C1 bridgehead acylation, which required multiple steps involving a bridgehead iodide to synthesize similar intermediates. $510,527,531$

Scheme 3.24. Bridgehead acylation of **393**. *a*

a Conditions: (a) LiTMP, THF, -78 °C, 10 min; 0 °C, 5 min; *i*-PrC(O)CN, -78 to -30 °C, 49%.

It should be noted that we also briefly explored the bridgehead lithiation chemistry of **396** and **397** (Figure 3.4). Under a variety of conditions, C1 functionalization was not observed in reactions involving **396**. Unsurprisingly, we observed products arising from C3 bisallylic methylene deprotonation upon exposure of **397** to lithium amide bases.

Figure 3.4. Structures of **396** and **397**.

Having achieved bridgehead acylation, we investigated the desilylation and dehydration of **395**. We hypothesized that under certain conditions, both tasks may be accomplished in a single step to afford **398**. Heating **395** in the presence of strong acids, such as CSA and *p*-TsOH, caused slow decomposition of the starting material, and in the presence of weaker acids, desilylation was observed but not elimination of the resulting tertiary carbinol. If microwave irradiation was utilized as the source of heat and using both *p*-TsOH and HOAc, we were able to access our desired product **398** (Scheme 3.25). In addition to **398**, we also isolated variable amounts of double-bond isomer **399**. 2-Methyl-2-butene was used as an additive to this reaction to prevent the isomerization of the other olefins present in **395**.

Scheme 3.25. Desilylation and dehydration of **395** to form **398**, and the structure of double bond isomer **399**. *a* ^a Conditions: (a) *p*-TsOH·H₂O, HOAc, 2-methyl-2-butene, PhMe, µwave, 100 °C, 65%.

Total synthesis of hyperforin was accomplished in two steps from **398** (Scheme 3.26). First, C3 prenylation was accomplished using stepwise lithiation, transmetalation with Lipshutz's cuprate,⁵¹¹ and prenyl bromide alkylation to afford hyperforin *O*-methyl ether (**60**). This compound was

spectroscopically identical to 60 semisynthetically derived from hyperforin.^{309,676} Finally, demethylation under Krapcho conditions provided hyperforin (**1**). The hyperforin obtained from this synthesis was spectroscopically indistinguishable from hyperforin that we isolated from SJW as well as published data on the natural product.⁶⁷⁷

Scheme 3.26. Completion of the total synthesis of hyperforin.*^a*

^a Conditions: (a) LDA, THF, –78 °C; Li(2-Th)CuCN, –78 to –40 °C; prenyl bromide, –78 to –30 °C, 98%; (b) LiCl, DMSO, 120 ºC, 55% **1**, 14% **400**, 23% **401**.

Two other rearranged products were isolated in this final deprotection step, **400** and **401**. A possible mechanism for the formation of these byproducts involves formal *C*-to-*O* acyl migration of hyperforin, which may be facilitated by cleavage of the C1–C2 bond to form an intermediate ketene **402** (Scheme 3.27). Chloromethane, a byproduct of the demethylation reaction, may react with **400** to form

 \overline{a}

⁶⁷⁶ See experimental section for more details.

 677 See experimental section for more details. A detailed procedure for the isolation of hyperforin from St. John's wort extract is also provided.

401. A similar *C*-to-*O* migration has been observed previously by Plietker.⁶⁷⁸ Interestingly, the PPAP laxifloranone¹⁰⁷ (403) and the chromenone-type acylphoroglucinol mahureone A^{679} (404) are analogously related despite being isolated from two disparate plant species.⁶⁸⁰

Scheme 3.27. A possible mechanism for the formation of **400** and **401** from **1**, and structures of laxifloranone and mahureone A.

Overall, these efforts culminated in a total synthesis of the naturally occurring enantiomer of hyperforin. The synthesis is 18 steps at its longest linear sequence, starting from geraniol (**287**). Relative and absolute stereochemistry in the synthesis is established through a Sharpless epoxidation reaction. The route is also considerably scalable; more than 40 mg of synthetic hyperforin were generated in a single batch. By recognizing latent symmetry elements embedded in the hyperforin core, we quickly established

 \overline{a}

⁶⁷⁸ Möws, K.; Schürmann, M.; Preut, H.; Plietker, B. *Acta Cryst.* **2009**, *E65*, o1751-o1751.

⁶⁷⁹ Massiot, G.; Long, C.; David, B.; Serrano, M.-J.; Daubié, F.; Alby, F.; Ausseil, F.; Knibiehler, M.; Moretti, C.; Hoffman, J.-S.; Cazaux, C.; Lavaud, C. *J. Nat. Prod.* **2005**, *68*, 979-984.

⁶⁸⁰ Mahureone A is a known inhibitor of DNA polymerase β. For more information, see: Boudsocq, F.; Benaim, P.; Canitrot, Y.; Knibiehler, M.; Ausseil, F.; Capp, J. P.; Bieth, A.; Long, C.; David, B.; Shevelev, I.; Frierich-Heinecken, E.; Hübscher, U.; Amalric, F.; Massiot, G.; Hoffmann, J. S.; Cazaux, C. *Mol. Pharmacol.* **2005**, *67*, 1485-1492.

the bicyclo[3.3.1]nonane core of hyperforin through a diastereoselective epoxide-opening cascade cyclization reaction. In this key conversion of **381** to **382**, the stereochemical identity of three key carbon centers were established including two quaternary centers. Further, the practicality and modularity of this synthesis may be exploited to quickly access a library of hyperforin analogs.

Experimental Section

General Procedures. All reactions were performed in oven-dried or flame-dried glassware under a positive pressure of argon unless otherwise noted. Flash column chromatography was performed as described by Still *et al.*⁵⁹⁹ employing silica gel 60 (40-63 µm, Whatman). Both preparatory and analytical thin-layer chromatography (TLC) were performed using 0.25 mm silica gel 60 F₂₅₄ plates.

Materials. Commercial reagents and solvents were used as received with the following exceptions. Tetrahydrofuran, diethyl ether, dichloromethane, toluene, benzene, hexane, acetonitrile, and *N*,*N*-dimethylformamide were degassed with argon and passed through a solvent purification system (designed by J. C. Meyer of Glass Contour) utilizing alumina columns as described by Grubbs *et al.*⁶⁰⁰ unless otherwise noted. Diethylamine, triethylamine, diisopropylamine, pyridine, 2,2,6,6 tetramethylpiperidine, dimethyl sulfoxide, and chlorotrimethylsilane were distilled over calcium hydride. Hexamethylphosphoramide was distilled over calcium hydride under reduced pressure. Geraniol, titanium(IV) isopropoxide, prenyl chloride, prenyl bromide, allyltributylstannane, and trimethylsilyl trifluoromethanesulfonate were distilled under reduced pressure. *N*-Hydroxysuccinimide was recrystallized using ethanol. [bis(Trifluoroacetoxy)iodo]benzene was crystallized from the reaction of (diacetoxyiodo)benzene with trifluoroacetic acid and subsequently dried under reduced pressure (1 mmHg). Cesium carbonate was dried for at least 12 h at 150 °C under reduced pressure (1 mmHg). Lithium bromide, lithium chloride, and molecular sieves were stored in a vacuum oven for at least 24 h. The molarities of butyllithium, *sec*-butyllithium, and *tert*-butyllithium solutions were determined by titration with 1,10-phenanthroline as an indicator (average of three determinations). THF solutions of lithium diethylamide, lithium diisopropylamide, and lithium 2,2,6,6-tetramethylpiperidide were prepared by addition of a hexane solution of butyllithium (1 equiv) to a THF solution of the appropriate amine (1.1 equiv) cooled to –78 °C and stirring the solution for 30 min at 0 °C. PhH solutions of triethylborane were prepared by addition of neat triethylborane to PhH.

Instrumentation. ¹H NMR spectra were recorded with Varian INOVA-600, Varian INOVA-500, and Varian Mercury 400 spectrometers, are reported in parts per million (δ) , and are calibrated using residual non-deuterated solvent as an internal reference: CDCl₃, δ 7.26 (CHCl₃); C₆D₆, δ 7.16 (C₆D₅H); CD₃OD, δ 3.31 (CD₂HOD). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, integration). Multiplicities are reported as follows: $s = singlet$; $d =$ doublet; t = triplet; q = quartet; septet = septet; m = multiplet; br = broad, or combinations thereof. ¹³C NMR spectra were recorded with a Varian INOVA-500 spectrometer, are reported in parts per million (δ), and are referenced from the central peak of the carbon resonance of the solvent: CDCl₃, δ 77.23; C₆D₆, δ 128.06; CD3OD, δ 49.00. Infrared (IR) data were recorded on a Varian 1000 FT-IR using NaCl plates or on a Bruker Alpha FT-IR spectrometer outfitted with an Eco-ATR sampling module. High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) mass spectroscopy on an Agilent 6210 TOF LC/MS or a Bruker q-TOF Maxis Impact mass spectrometer. Gas chromatography mass spectra (GCMS) were performed on a Shimadzu GC-2014 equipped with an AOC-20i auto-injector. Microwave irradiation was accomplished using a CEM Discover microwave reactor. High-performance liquid chromatography was performed on a Agilent 1100 series HPLC. Chiral high performance liquid chromatography (HPLC) was performed on an Agilent 1200 series HPLC.

Note: For clarity, intermediates that have are not explicitly mentioned in this chapter are numbered sequentially in the experimental section beginning with **405**.

((2*S***,3***S***)-3-Methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-yl)methanol (288):**⁶⁸¹

A CH₂Cl₂⁶⁸² solution of *tert*-butyl hydroperoxide⁶⁸³ (4.0 M, 410. mL, 1.64 mol, 1.5 equiv) was added via cannula over 1 h to a CH_2Cl_2 (850 mL) slurry of 4Å molecular sieves (30.43 g, powdered), L-(+)-diethyl tartrate (28.2 mL, 164 mmol, 0.15 equiv), and titanium(IV) isopropoxide (32.5 mL, 110. mmol, 0.1 equiv) in a 3-neck 5-L round-bottom flask cooled to an internal reaction temperature of –25 ºC. The resulting yellow slurry was stirred at -25 °C for 30 min and then cooled to an internal reaction temperature of -30 ºC. A CH2Cl2 (175 mL) solution of geraniol (**287**, 169.08 g, 1.0961 mol, 1 equiv) was added via cannula, followed by a CH_2Cl_2 (50 mL) rinse. Throughout this addition, the internal reaction temperature of the reaction was maintained ≤ -20 °C. After stirring at –30 °C for 75 min, the reaction was warmed to –10 °C over 2 h. The reaction was then quenched at –10 °C with H₂O (500 mL) followed by a 30 wt% H₂O solution of NaOH saturated in NaCl (300 mL). After stirring vigorously at rt for 45 min, the emulsion was diluted with MeOH (1.5 L) and brine (300 mL), and the layers were separated. The aqueous layer was washed thrice with CH_2Cl_2 . The organic extracts were combined, washed with brine, dried over MgSO4, filtered, and concentrated *in vacuo* to an opaque yellow oil. Short-path distillation (6 mmHg, 90- 93 ºC) afforded 171.05 g (1.0045 mol, 92% yield) of **288** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.08 (t, *J* = 7.1 Hz, 1H), 3.82 (ddd, *J* = 11.8, 6.9, 4.7 Hz, 1H), 3.68 (ddd, *J* = 11.7, 6.8, 4.6 Hz, 1H), 2.97 (dd, *J* = 6.6, 4.3 Hz, 1H), 2.12-2.04 (m, 2H), 1.70-1.65 (m, 5H), 1.61 (s, 3H), 1.50-1.45 (m, 1H), 1.30 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 132.3, 123.5, 63.2, 61.6, 61.4, 38.7, 25.9, 23.9, 17.8, 16.9.

 681 This procedure was adapted from ref. 607.

 682 The CH₂Cl₂ used in this procedure was dried through storage over 3\AA molecular sieves (pelleted) for at least 24 h.

 683 See ref. 607 for preparation of a CH₂Cl₂ solution of *tert*-butyl hydroperoxide.

FTIR (thin film) v_{max} : 3420 (br), 2968, 2928, 2859, 1455, 1385, 1077, 1036, 865 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{10}H_{18}O_2$, 193.1199; found, 193.1200.

 $[\alpha]_D^{23} = -5.36^\circ$ (*c* 3.04, CHCl₃); [91% ee sample from literature:⁶⁰⁷ $[\alpha]_D^{25} = -5.3^\circ$ (*c* 3.0, CHCl₃)].

TLC $R_f = 0.45$ (1:1 hexane:EtOAc).

Chiral HPLC Trace of 288

((2*S***,3***S***)-3-Methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-yl)methyl methanesulfonate (405):**⁶⁸⁴

A CH2Cl2 685 (1.2 L) solution of **288** (100.00 g, 587.37 mmol, 1 equiv) and triethylamine (123 mL, 881 mmol, 1.5 equiv) in a 2-neck 2-L round-bottom flask outfitted with an equal pressure dropping funnel was cooled to an internal reaction temperature of –10 °C, and methanesulfonyl chloride (59.5 mL, 763) mmol, 1.3 equiv) was added dropwise via the equal pressure dropping funnel over 30 min, maintaining an internal reaction temperature ≤ 0 °C. After the addition was complete, the yellow slurry was stirred at 0 ^oC for 15 min, and then quenched at 0 ^oC with H₂O. The layers were separated, and the aqueous layer was washed thrice with CH_2Cl_2 . The organic extracts were combined, washed sequentially with 2 N HCl, brine, and sat. aq. NaHCO₃, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting yellow oil was dissolved in 95:5 hexane:EtOAc and passed through a plug of $SiO₂$, rinsing with 95:5 hexane:EtOAc. Concentration of the filtrate *in vacuo* yielded 142.19 g (572.56 mmol, 97% yield) of **405** as a yellow oil that was used without further purification.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.07 (t, *J* = 7.0 Hz, 1H), 4.42 (dd, *J* = 11.7, 4.1 Hz, 1H), 4.25 (dd, *J* = 11.7, 7.1 Hz, 1H), 3.09-3.07 (m, 4H), 2.12-2.05 (m, 2H), 1.71-1.66 (m, 4H), 1.61 (s, 3H), 1.52-1.47 (m, 1H), 1.33 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 132.6, 123.1, 68.9, 61.3, 59.3, 38.3, 38.0, 25.8, 23.7, 17.8, 17.0.

FTIR (thin film) v_{max} : 2969, 2931, 2860, 1456, 1358, 1176, 981, 957, 833 cm⁻¹.

HRMS–ESI (m / z): $[M+H]$ ⁺ calculated for $C_{11}H_{20}O_4S$, 249.1155; found, 249.1157.

 $[\alpha]_D^{23} = -13.9^\circ$ (*c* 4.08, CHCl₃).

l

TLC $R_f = 0.55$ (1:1 hexane:EtOAc).

⁶⁸⁴ This procedure was adapted from ref. 608.

 685 The CH₂Cl₂ used in this procedure was dried through storage over 3Å molecular sieves (pelleted) for at least 24 h.

(2*S***,3***R***)-3-(Bromomethyl)-2-methyl-2-(4-methylpent-3-en-1-yl)oxirane (289):**⁶⁸⁶

A Me2CO (1 L) slurry of **405** (141.96 g, 571.64 mmol, 1 equiv) and lithium bromide (99.29 g, 1.143 mol, 2 equiv) was heated to reflux in a 2-L recovery flask outfitted with a reflux condenser. After refluxing for 90 min, the slurry was cooled to rt and filtered. The yellow filtrate was concentrated *in vacuo*. The resulting yellow oil was diluted with H_2O and extracted thrice with 9:1 hexane:EtOAc. The organic extracts were combined, washed sequentially with H_2O , sat. aq. NaHCO₃, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting pale yellow oil was dissolved in 9:1 hexane:EtOAc, and passed through a plug of $SiO₂$, rinsing with 9:1 hexane:EtOAc. Concentration of the filtrate *in vacuo* yielded 125.35 g (537.64 mmol, 94% yield) of **289** as a pale yellow oil that was used without further purification.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.10 (t, *J* = 7.1 Hz, 1H), 3.54 (dd, *J* = 10.4, 5.9 Hz, 1H), 3.24 (dd, *J* = 10.4, 7.8 Hz, 1H), 3.08 (dd, *J* = 7.8, 5.9 Hz, 1H), 2.13-2.05 (m, 2H), 1.74-1.70 (m, 4H), 1.61 (s, 3H), 1.45 $(ddd, J=13.7, 9.3, 7.1 Hz, 1H$), 1.31 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 132.5, 123.4, 63.2, 61.7, 38.6, 29.9, 25.9, 24.0, 17.9, 16.3.

FTIR (thin film) v_{max} : 2969, 2928, 2859, 1451, 1385, 1217, 1112, 1071, 890, 652 cm⁻¹.

PCI-GC/MS (m / z): [M+NH₄]⁺ 250 (100%), 252 (97.7%).

 $[\alpha]_D^{23}$ = +22.6° (*c* 4.34, CHCl₃).

TLC $R_f = 0.72$ (1:1 hexane:EtOAc).

 \overline{a}

⁶⁸⁶ This procedure was adapted from ref. 608.

(3,5-Dimethoxy-4-(((2*S***,3***S***)-3-methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-**

yl)methyl)phenoxy)triisopropylsilane (290):

A THF (54 mL) solution of **146** (3.169 g, 10.8 mmol, 1 equiv) in a 200-mL recovery flask was cooled to 0 ºC, and a hexane solution of butyllithium (2.60 M, 4.6 mL, 12 mmol, 1.1 equiv) was added dropwise over 5 min. The cooling bath was then removed, and the resulting yellow solution was stirred at rt for 1 h. After cooling the reaction to 0 ºC and stirring at that temperature for 30 min, **289** (2.76 g, 11.8 mmol, 1.1 equiv) was added dropwise. The cooling bath was subsequently removed, and the resulting colorless solution was stirred at rt for 3 h. The reaction was then quenched at rt with sat. aq. NH₄Cl, diluted with H2O, and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (500 mL SiO2, 95:5 hexane:EtOAc) afforded 4.034 g (8.72 mmol, 81% yield) of **290** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 6.10 (s, 2H), 5.29 (s, 1H), 5.00 (t, *J* = 7.1 Hz, 1H), 3.75 (s, 6H), 2.98 (dd, *J* = 13.6, 4.4 Hz, 1H), 2.88 (dd, *J* = 7.6, 4.4 Hz, 1H), 2.68 (dd, *J* = 13.6, 7.6 Hz, 1H), 1.61 (m, 1H), 1.59 (s, 3H), 1.54 (s, 3H), 1.37 (s, 3H), 1.34 (td, *J* = 6.8, 3.2 Hz, 1H), 1.26 (septet, *J* = 7.4 Hz, 3H), 1.12 (d, *J* = 7.4 Hz, 18H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 159.1, 156.2, 131.7, 124.0, 107.2, 96.4, 63.5, 61.7, 55.7, 39.2, 25.8, 24.1, 22.5, 18.2, 17.7, 16.9, 12.9.

FTIR (thin film) νmax: 2961, 2945, 2868, 1606, 1593, 1496, 1463, 1414, 1200, 1158, 1134, 1021, 883, 686 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{27}H_{46}O_4Si$, 485.3058; found, 485.3064.

TLC $R_f = 0.55$ (8:2 hexane:EtOAc).

3,5-Dimethoxy-4-(((2*S***,3***S***)-3-methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-yl)methyl)phenol (291):**

A THF (30 mL) solution of **290** (3.97 g, 8.58 mmol, 1 equiv) in a 100-mL recovery flask was treated with a THF solution of tetrabutylammonium fluoride (1.0 M, 9.0 mL, 9.0 mmol, 1.05 equiv). After stirring at rt for 1 h, the reaction was quenched at rt with sat. aq. NH4Cl, extracted once with hexane, and extracted twice with EtOAc. The organic extracts were combined, washed with brine, dried over $Na₂SO₄$, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (400 mL SiO₂, 7:3 \rightarrow 1:1 hexane:EtOAc) afforded 2.200 g (7.18 mmol, 84% yield) of **291** as a colorless oil.

¹**H NMR** (500 MHz; CDCl₃) δ: 6.06 (s, 2H), 5.11 (s, 1H), 4.99 (t, *J* = 7.1 Hz, 1H), 3.76 (s, 6H), 2.97 (dd, *J* = 13.5, 4.6 Hz, 1H), 2.91 (dd, *J* = 7.3, 4.6 Hz, 1H), 2.69 (dd, *J* = 13.5, 7.3 Hz, 1H), 2.07-1.95 (m, 2H), 1.63 (m, *J* = 5.2 Hz, 1H), 1.59 (s, 3H), 1.54 (s, 3H), 1.38 (s, 3H), 1.37-1.33 (m, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 159.3, 156.4, 131.9, 123.8, 106.0, 92.1, 64.1, 62.6, 55.7, 39.1, 25.8, 24.1, 22.3, 17.7, 16.9.

FTIR (thin film) v_{max} : 3368 (br), 2936, 2840, 1618, 1603, 1475, 1431, 1206, 1134, 999 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{18}H_{26}O_4$, 307.1904; found, 307.1909.

TLC $R_f = 0.50$ (1:1 hexane:EtOAc).

4-Allyl-3,5-dimethoxy-4-(((2*S***,3***S***)-3-methyl-3-(4-methylpent-3-en-1-yl)oxiran-2-**

yl)methyl)cyclohexa-2,5-dienone (292):

A PhH (36 mL) solution of **291** (2.189 g, 7.14 mmol, 1 equiv), triphenylphosphine (150. mg, 0.572 mmol, 0.08 equiv), and palladium(II) acetate (32 mg, 0.14 mmol, 0.02 equiv) in a 100-mL recovery flask was treated sequentially with allyl methyl carbonate (2.0 mL, 18 mmol, 2.5 equiv) and titanium(IV) isopropoxide (423 μ L, 1.43 mmol, 0.2 equiv). The resulting dark red solution was heated to 50 °C and stirred at that temperature for 2 h. The resulting orange-red solution was subsequently cooled to rt and quenched with sat. aq. NH4Cl. After stirring at rt for 5 min, 1 N HCl was added, and the mixture was extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over $Na₂SO₄$, filtered, and concentrated *in vacuo* to a orange slurry. Flash column chromatography (250 mL $SiO₂$, 7:3 \rightarrow 6:4 \rightarrow 1:1 hexane:EtOAc) afforded 1.148 g (3.31 mmol, 46% yield) of 292 as a pale yellow oil and 1.060 g (3.46 mmol, 48% recovery) of **291** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.59 (s, 1H), 5.58 (s, 1H), 5.39 (ddt, *J* = 17.1, 10.0, 7.2 Hz, 1H), 5.00-4.92 (m, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 2.61-2.54 (m, 2H), 2.40 (t, *J* = 5.9 Hz, 1H), 2.14 (dd, *J* = 13.9, 5.9 Hz, 1H), 2.04 (dd, *J* = 13.9, 5.9 Hz, 1H), 1.98-1.88 (m, 2H), 1.64 (s, 3H), 1.56 (s, 3H), 1.50 (ddd, *J* = 13.7, 9.7, 6.3 Hz, 1H), 1.27 (ddd, *J* = 13.7, 10.0, 6.5 Hz, 1H), 1.17 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 188.0, 173.1, 172.6, 132.2, 131.9, 123.6, 118.4, 103.55, 103.45, 60.7, 59.3, 56.2, 56.0, 49.7, 41.7, 38.9, 35.7, 25.8, 23.9, 17.8, 16.7.

FTIR (thin film) v_{max} : 2928 (br), 1654, 1627, 1592, 1384, 1233, 1206, 1144 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{21}H_{30}O_4$, 369.2036; found, 369.2043.

TLC $R_f = 0.20$ (1:1 hexane:EtOAc).

4-Allyl-4-(3,7-dimethyl-2-oxooct-6-en-1-yl)-3,5-dimethoxycyclohexa-2,5-dienone (294):

A CH2Cl2 (1 mL) solution of **292** (3.3 mg, 9.5 µmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to –78 ºC, and 1 drop of boron trifluoride ethyl etherate was added. After stirring the reaction for 10 min at –78 °C, it was placed in a 0 °C bath. After stirring the reaction at 0 °C for 2 h, it was quenched at 0 °C with brine, diluted with sat. aq. NH₄Cl, and extracted five times with EtOAc. The organic extracts were combined, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow residue. Flash column chromatography (4 mL $SiO₂$, 2:8 hexane:EtOAc) afforded 1.4 mg (4.0 µmol, 43% yield) of 294 as a colorless residue.

¹**H** NMR (500 MHz; CDCl₃) δ: 5.55 (s, 2H), 5.48-5.40 (m, 1H), 5.04 (t, *J* = 6.4 Hz, 1H), 4.96 (dd, *J* = 10.3, 1.3 Hz, 1H), 4.94 (dd, *J* = 17.2, 1.3 Hz, 1H), 3.67 (s, 6H), 3.07 (d, *J* = 16.8 Hz, 1H), 3.03 (d, *J* = 16.8 Hz, 1H), 2.45 (d, *J* = 7.5 Hz, 2H), 2.41 (q, *J* = 6.9 Hz, 1H), 1.89 (q, *J* = 7.5 Hz, 2H), 1.68 (s, 3H), 1.66-1.60 (m, 1H), 1.58 (s, 3H), 1.30-1.24 (m, 1H), 1.00 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 210.5, 188.4, 172.71, 172.62, 132.5, 131.5, 123.9, 118.8, 102.90, 102.86, 56.08, 56.06, 48.3, 46.3, 45.9, 43.2, 32.9, 25.93, 25.76, 17.9, 16.2.

FTIR (thin film) v_{max} : 2965, 2922, 2853, 1715, 1654, 1622, 1446, 1388, 1234, 1205, 1147, 851 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{21}H_{30}O_4$, 369.2036; found, 369.2036. **TLC** $R_f = 0.44$ (EtOAc).

(2*S***,3***S***)-3-((1-Allyl-2,6-dimethoxycyclohexa-2,5-dien-1-yl)methyl)-2-methyl-2-(4-methylpent-3-en-1 yl)oxirane (302):**

A CH₂Cl₂ (0.5 mL) solution of **292** (106 mg, 0.31 mmol, 1 equiv) was transferred via cannula to a CH₂Cl₂ (0.5 mL) slurry of lithium aluminum hydride (23 mg, 0.61 mmol, 2 equiv) in a 10-mL pear-shaped flask cooled to –78 °C, followed by a CH₂Cl₂ (0.5 mL) rinse. After stirring for 30 min at –78 °C, Et₂O (0.5 mL) was added, and the reaction was placed in a 0 °C bath. After stirring at 0 °C for 75 min, the reaction was quenched sequentially at 0 °C with H₂O (23 μ L), 15% (w/v) NaOH (23 μ L), and H₂O (69 μ L). The mixture was warmed to rt, diluted with H_2O , and extracted four times with EtOAc. The organic extracts were combined, washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a brown residue. Flash column chromatography (30 mL $SiO₂$, 95:5 hexane:EtOAc) afforded 45 mg (0.14 mmol, 44% yield) of **302** as a colorless residue.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.57 (ddt, *J* = 17.1, 10.1, 7.1 Hz, 1H), 5.05 (t, *J* = 7.1 Hz, 1H), 4.94-4.88 (m, 2H), 4.80 (t, *J* = 3.5 Hz, 1H), 4.76 (t, *J* = 3.5 Hz, 1H), 3.54 (s, 3H), 3.49 (s, 3H), 2.78 (q, *J* = 3.5 Hz, 2H), 2.64 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.39 (qd, *J* = 12.7, 7.2 Hz, 2H), 2.03 (dd, *J* = 13.7, 4.0 Hz, 1H), 1.97 $(q, J = 7.9 \text{ Hz}, 2H)$, 1.76 (dd, $J = 13.7$, 8.0 Hz, 1H), 1.67 (s, 3H), 1.58 (s, 3H), 1.57-1.54 (m, 1H), 1.29 (dt, *J* = 13.5, 8.4 Hz, 1H), 1.18 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 153.80, 153.73, 135.3, 131.8, 124.2, 116.1, 93.23, 93.17, 61.25, 61.09, 54.6, 54.2, 46.2, 40.2, 39.4, 34.2, 25.8, 24.2, 24.0, 17.8, 16.8.

FTIR (thin film) v_{max} : 2932, 2831, 1694, 1659, 1451, 1381, 1223, 1206, 1139, 908 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{21}H_{32}O_3$, 333.2424; found, 333.2425.

TLC $R_f = 0.78$ (1:1 hexane:EtOAc).

(2*S***,3***S***,3a***R***,7***R***,7a***S***)-7-Allyl-6,7a-dimethoxy-3-methyl-3-(4-methylpent-3-en-1-yl)-2,3,3a,4,7,7a-**

hexahydro-2,7-methanobenzofuran (303):

A CH2Cl2 (6 mL) solution of **302** (100. mg, 0.301 mmol, 1 equiv) and 2,6-di-*tert*-butyl-4-methylpyridine (124 mg, 0.602 mmol, 2 equiv) in a 20-mL scintillation vial was cooled to -78 °C, and trimethylsilyl trifluoromethanesulfonate (65 µL, 0.36 mmol, 1.2 equiv) was added dropwise. After stirring the bright yellow solution at –78 °C for 30 min, it was quenched at –78 °C with sat. aq. NaHCO₃ and extracted four times with EtOAc. The organic extracts were combined, washed with brine, dried over $Na₂SO₄$, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (50 mL SiO₂, 99:1) hexane:EtOAc) afforded 85 mg (0.26 mmol, 85% yield) of **303** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 6.02 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1H), 5.04 (t, *J* = 7.1 Hz, 1H), 5.01-4.95 (m, 2H), 4.54 (dd, *J* = 5.7, 2.1 Hz, 1H), 3.75 (d, *J* = 5.3 Hz, 1H), 3.48 (s, 3H), 3.47 (s, 3H), 2.42 (dd, *J* = 14.1, 7.1 Hz, 1H), 2.29 (dd, *J* = 14.1, 7.1 Hz, 1H), 2.19 (ddd, *J* = 18.1, 6.7, 2.2 Hz, 1H), 2.07-2.02 (m, 2H), 2.01-1.93 (m, 1H), 1.86 (dd, *J* = 12.5, 5.3 Hz, 1H), 1.81 (d, *J* = 12.5 Hz, 1H), 1.72-1.65 (m, 4H), 1.58 (s, 3H), 1.47-1.42 (m, 1H), 1.25-1.20 (m, 1H), 1.14 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 158.1, 138.3, 131.7, 124.9, 115.8, 112.5, 90.8, 79.1, 54.6, 51.3, 46.3, 44.4, 42.0, 38.88, 38.73, 33.6, 28.1, 25.9, 22.9, 20.1, 17.8.

Key 1D nOe correlation.

FTIR (thin film) νmax: 2966, 2930, 1671, 1578, 1460, 1439, 1376, 1304, 1215, 1168, 1136, 1062, 1001, 906 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{21}H_{32}O_3$, 355.2244; found, 355.2245.

TLC $R_f = 0.53$ (9:1 hexane:EtOAc).

(2*S***,3***S***,3a***S***,7***R***,7a***S***)-7-Allyl-6,7a-dimethoxy-3-methyl-3-(4-methylpent-3-en-1-yl)-3,3a,7,7a-**

tetrahydro-2,7-methanobenzofuran-4(2*H***)-one (305):**

A CH2Cl2 (1.7 mL) slurry of **303** (55 mg, 0.17 mmol, 1 equiv) and cesium carbonate (292 mg, 0.83 mmol, 5 equiv) in a 10-mL pear-shaped flask was cooled to 0 ºC open to air, and Pearlman's catalyst (4.4 mg, 0.0082 mmol based on Pd, 0.05 equiv) and a decane solution of *tert*-butyl hydroperoxide (5.5 M, 150 µL, 0.83 mmol, 5 equiv) were added in sequence. The flask was sealed, purged with O_2 via O_2 balloon, and stirred at 4° C for 13 h. The slurry was subsequently diluted with CH₂Cl₂ and filtered through a short plug of SiO2, rinsing with CH2Cl2 followed by EtOAc. The filtrate was concentrated *in vacuo* to a colorless oil. Flash column chromatography (20 mL $SiO₂$, 8:2 hexane:EtOAc) afforded 10.4 mg (0.030 mmol, 17% yield) of **305** as a colorless residue.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.98 (m, 1H), 5.35 (s, 1H), 5.06-5.01 (m, 2H), 4.99 (t, *J* = 7.1 Hz, 1H), 3.91 (d, *J* = 5.5 Hz, 1H), 3.71 (s, 3H), 3.48 (s, 3H), 2.69 (s, 1H), 2.53 (dd, *J* = 14.2, 6.7 Hz, 1H), 2.39 (dd, *J* = 14.2, 7.9 Hz, 1H), 2.06 (d, *J* = 13.1 Hz, 1H), 2.04-1.98 (m, 2H), 1.73-1.67 (m, 1H), 1.64 (s, 3H), 1.55 (s, 3H), 1.43-1.36 (m, 1H), 1.34-1.28 (m, 1H), 1.25 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 197.8, 180.7, 136.8, 132.1, 124.2, 117.3, 115.2, 100.9, 81.0, 56.9, 56.5, 52.1, 48.3, 48.1, 38.3, 38.0, 34.1, 27.9, 25.9, 22.8, 17.8.

FTIR (thin film) v_{max} : 2964, 2923, 2850, 1652, 1604, 1459, 1373, 1228, 1046, 1001 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{21}H_{30}O_4$, 369.2036; found, 369.2034.

TLC $R_f = 0.46$ (6:4 hexane:EtOAc).

(2*S***,3a***R***,7***R***,7a***S***,8***S***)-3a-Allyl-7a-methoxy-8-methyl-8-(4-methylpent-3-en-1-yl)hexahydro-2,7-**

methanobenzofuran-4(2*H***)-one (306):**

A CH2Cl2 (1 mL) solution of **302** (2.6 mg, 7.8 µmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to -78 °C, and trimethylsilyl trifluoromethanesulfonate (2 μ L, 10 μ mol, 1.5 equiv) was added. After stirring the resulting yellow solution at –78 °C for 10 min, it was quenched at –78 °C with sat. aq. NaHCO₃, diluted with H2O, and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a white residue. Flash column chromatography (4 mL $SiO₂$, 9:1 hexane:EtOAc) afforded 1.3 mg (4.1 μ mol, 52% yield) of 306 as a white residue.

1 H NMR (600 MHz; CDCl3) δ: 5.87 (dddd, *J* = 17.1, 10.2, 8.9, 5.7 Hz, 1H), 5.07 (t, *J* = 7.2 Hz, 1H), 5.05-4.99 (m, 2H), 3.92 (d, *J* = 5.6 Hz, 1H), 3.46 (s, 3H), 2.58 (dd, *J* = 14.0, 5.7 Hz, 1H), 2.52 (ddd, *J* = 15.1, 10.9, 7.6 Hz, 1H), 2.38 (ddd, *J* = 15.1, 7.4, 4.1 Hz, 1H), 2.16-2.10 (m, 2H), 2.10-2.04 (m, 1H), 2.01 (dd, *J* = 13.7, 5.6 Hz, 1H), 1.95 (d, *J* = 13.7 Hz, 1H), 1.92-1.87 (m, 1H), 1.86-1.76 (m, 2H), 1.68 (s, 3H), 1.59 (s, 3H), 1.49 (m, 1H), 1.42 (ddd, *J* = 13.7, 11.9, 4.9 Hz, 1H), 1.20 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 212.9, 136.4, 132.3, 124.3, 117.7, 116.4, 79.1, 58.4, 52.2, 45.9, 41.6, 36.3, 36.0, 35.1, 33.8, 28.1, 25.9, 23.3, 19.0, 17.9.

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 2972, 2924, 1702, 1467, 1439, 1328, 1312, 1219, 1180, 1148, 995, 908 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{20}H_{30}O_3$, 319.2268; found, 319.2263.

TLC $R_f = 0.47$ (8:2 hexane:EtOAc).

(2*S***,3***S***)-3-((2,6-Dimethoxycyclohexa-2,5-dien-1-yl)methyl)-2-methyl-2-(4-methylpent-3-en-1 yl)oxirane (310):**

A THF (6 mL) solution of **308** (250. mg, 1.78 mmol, 1 equiv) in a 25-mL recovery flask was cooled to – 78 ºC, and a pentane solution of *tert*-butyllithium (1.70 M, 2.2 mL, 3.8 mmol, 2.1 equiv) was added dropwise. After stirring the dark yellow solution at –78 ºC for 1 h, **289** (873 mg, 3.75 mmol, 2.1 equiv) was added dropwise. The resulting colorless solution was allowed to slowly warm to rt. After stirring for 7 h, the resulting yellow solution was quenched at rt with H2O and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (150 mL SiO₂, 99:1 \rightarrow 98:2 \rightarrow 95:5 \rightarrow 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 234 mg (0.80 mmol, 45% yield) of **310** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.07 (t, *J* = 7.4 Hz, 1H), 4.73 (t, *J* = 3.6 Hz, 1H), 4.71 (t, *J* = 3.6 Hz, 1H), 3.56 (s, 3H), 3.54 (s, 3H), 3.01 (quintet, *J* = 5.3 Hz, 1H), 2.87-2.76 (m, 2H), 2.72 (dd, *J* = 8.1, 4.4 Hz, 1H), 2.12 (dt, *J* = 14.0, 4.9 Hz, 1H), 2.01 (q, *J* = 7.4 Hz, 2H), 1.81 (ddd, *J* = 14.0, 8.1, 4.6 Hz, 1H), 1.67 $(s, 3H)$, 1.59 $(s, 3H)$, 1.58-1.53 (m, 1H), 1.39-1.33 (m, 1H), 1.19 $(s, 3H)$.

¹³C NMR (125 MHz; CDCl₃) δ: 154.2, 131.9, 124.2, 91.77, 91.73, 77.2, 61.3, 61.1, 54.6, 54.3, 39.22, 39.14, 29.3, 25.9, 24.7, 23.9, 17.8, 16.7.

FTIR (thin film) v_{max} : 2963, 2931, 2856, 1693, 1596, 1474, 1383, 1258, 1204, 1146, 1120, 774 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{18}H_{28}O_3$, 315.1931; found, 315.1927.

TLC $R_f = 0.53$ (8:2 hexane:EtOAc).

(*S***)-2-((***S***)-4,8-Dimethoxyspiro[2.5]octa-4,7-dien-1-yl)-6-methylhept-5-en-2-ol (311):**

A THF (0.8 mL) solution of **310** (50. mg, 0.17 mmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to –78 ºC, and a pentane solution of *tert*-butyllithium (1.70 M, 111 µL, 0.19 mmol, 1.1 equiv) was added dropwise. The reaction was allowed to slowly warm to -30 °C over 1 h. The reaction was subsequently cooled to -78 °C, and prenyl bromide (40. μ L, 0.34 mmol, 2 equiv) was added. After warming the reaction to rt over 2.5 h, it was quenched at rt with H2O and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (30 mL SiO₂, 98:2 \rightarrow 95:5 hexane:EtOAc) afforded 13.6 mg (47 µmol, 27% yield) of **311** as a colorless oil as well as 14.4 mg (49 µmol, 29% recovery) of **310** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.14 (t, *J* = 7.1 Hz, 1H), 4.96 (t, *J* = 3.8 Hz, 1H), 4.64 (t, *J* = 3.6 Hz, 1H), 3.98 (s, 1H), 3.58 (s, 3H), 3.47 (s, 3H), 3.00 (dt, *J* = 21.2, 2.9 Hz, 1H), 2.93 (dt, *J* = 21.2, 4.6 Hz, 1H), 2.21-2.11 (m, 2H), 1.68 (s, 3H), 1.62 (s, 3H), 1.55 (t, *J* = 8.5 Hz, 2H), 1.49-1.45 (m, 2H), 1.39-1.35 (m, 1H), 1.17 (s, 3H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 154.0, 152.1, 131.3, 125.3, 95.9, 90.2, 69.7, 54.84, 54.69, 45.1, 35.7, 28.4, 25.93, 25.90, 24.0, 22.7, 17.9, 11.4.

FTIR (thin film) νmax: 3506, 2964, 2928, 2833, 1683, 1651, 1595, 1464, 1446, 1394, 1375, 1228, 1206, 1135, 1105, 1042, 979, 770 cm –1.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{18}H_{28}O_3$, 315.1931; found, 315.1920.

FTIR (thin film) v_{max} : 0.43 (8:2 hexane:EtOAc).

1,5-Dimethoxy-6-(3-methylbut-2-en-1-yl)cyclohexa-1,4-diene (312):

Preparation of barium iodide. Using a hand drill hammer, a chisel,⁶⁸⁷ and a lead brick positioned on the laboratory floor, mineral oil-coated barium rod was portioned into approximately 25 mm segments. Each segment was flattened using the hammer to yield a barium pancake no thicker than 3 mm. A wellsharpened pair of metal cutting snips was used to cut each pancake into 1 mm \times 2 mm \times 10 mm slivers, which were washed with hexane. A 2-neck 2-L round-bottom flask outfitted with a reflux condenser was charged with barium slivers (63.7 g, 464 mmol, 1.3 equiv) and THF (500 mL). The flask was placed in a rt H2O bath, and iodine (99.6 g, 392 mmol, 1.1 equiv) was added in four portions over 20 min with vigorous stirring. After subsequently stirring vigorously for 4 d at reflux, a white-gray slurry of barium iodide was produced.

A THF (800 mL) solution of **308** (50.0 g, 357 mmol, 1 equiv) in a 2-neck 3-L round-bottom flask outfitted with an equal pressure dropping funnel was cooled using a -78 °C dry ice/acetone bath. The dropping funnel was charged with a pentane solution of *tert*-butyllithium (1.56 M, 250. mL, 392 mmol, 1.1 equiv), and this solution was added in portions over 1 h, maintaining an internal reaction temperature \le −65 °C. The resulting yellow slurry was stirred for an additional 45 min at –78 °C. The THF slurry of barium iodide (preparation described above) was poured into this solution under a heavy stream of Ar, and the resulting yellow-green slurry was stirred at -78 °C for 45 min.⁶⁸⁸ A THF (50 mL) solution of prenyl chloride (44.2 mL, 392 mmol, 1.1 equiv) was added via cannula over 10 min, maintaining an internal reaction temperature ≤ -60 °C, and the yellow-green slurry was allowed to slowly warm to -30 ^oC over 45 min. The resulting green-gray slurry was then quenched at -30 ^oC with H₂O. After warming

 \overline{a}

 687 If a hand drill hammer and chisel are unavailable, a standard claw hammer and an appropriately-shaped shelving bracket may be employed in this step.

 688 Directly following the barium iodide addition, the internal reaction temperature rose to -30 °C but returned to -70 ºC within 10 min.

to room temperature, the mixture was diluted with hexane and extracted thrice with 9:1 hexane:EtOAc. The organic extracts were combined, sequentially washed twice with H_2O and once with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale yellow oil. Short-path distillation (6 mmHg, 76-82 ºC) afforded 67.46 g (323.9 mmol, 91% yield) of **312** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 4.99 (t, *J* = 7.4 Hz, 1H), 4.68 (dd, *J* = 4.6, 3.0 Hz, 2H), 3.53 (s, 6H), 2.94–2.91 (m, 1H), 2.78 (ddt, *J* = 20.7, 6.0, 3.0 Hz, 1H), 2.72 (dq, *J* = 20.7, 4.6 Hz, 1H), 2.41 (dd, *J* = 7.4, 4.7 Hz, 2H), 1.64 (s, 3H), 1.55 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 154.5, 132.8, 120.6, 91.9, 54.4, 41.3, 28.5, 26.1, 24.7, 17.8.

FTIR (thin film) νmax: 2995, 2933, 2910, 2825, 1695, 1663, 1446, 1394, 1230, 1206, 1148, 1048, 965, 775 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{13}H_{20}O_2$, 231.1356; found, 231.1350.

TLC $R_f = 0.77$ (9:1 hexane:EtOAc).

(2*S***,3***S***)-3-((2,6-Dimethoxy-1-(3-methylbut-2-en-1-yl)cyclohexa-2,5-dien-1-yl)methyl)-2-methyl-2-(4 methylpent-3-en-1-yl)oxirane (309):**

A THF (140 mL) solution of **312** (5.68 g, 27.3 mmol, 1 equiv) in a 500-mL recovery flask was cooled to –78 ºC, and a *c*-Hex solution of *sec*-butyllithium (1.43 M, 28.6 mL, 40.9 mmol, 1.5 equiv) was added portionwise over 10 min. After stirring the bright orange solution at -78 °C for 1 h, it was warmed to -30 ºC over 90 min and maintained at –30 ºC for an additional 30 min. The dark red solution was then cooled to –78 ºC, and a THF (25 mL) solution of **289** (9.54 g, 40.9 mmol, 1.5 equiv) was added over 2 min. The resulting bright yellow solution was allowed to slowly warm to rt. After stirring for 3 h, the reaction was quenched at rt with H₂O and extracted thrice with EtOAc. The organic extracts were combined, washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (300 mL SiO₂, 98:2 \rightarrow 95:5 hexane:EtOAc) afforded 4.97 (13.8 mmol, 51% yield) of **309** as a pale yellow oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.05 (t, *J* = 6.7 Hz, 1H), 4.90 (t, *J* = 7.1 Hz, 1H), 4.76 (t, *J* = 3.5 Hz, 1H), 4.72 (t, *J* = 3.5 Hz, 1H), 3.51 (s, 3H), 3.47 (s, 3H), 2.75 (m, 2H), 2.63 (dd, *J* = 8.1, 3.9 Hz, 1H), 2.35-2.28 (m, 2H), 2.04 (dd, *J* = 13.7, 3.9 Hz, 1H), 1.97 (q, *J* = 7.9 Hz, 2H), 1.76 (dd, *J* = 13.7, 8.1 Hz, 1H), 1.66 (s, 3H), 1.62 (s, 3H), 1.58-1.56 (m, 4H), 1.54 (s, 3H), 1.27 (dt, *J* = 13.6, 8.3 Hz, 1H), 1.18 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 13-C NMR (126 MHz; CDCl3): δ 154.11, 154.05, 132.5, 131.8, 124.2, 120.7, 93.02, 92.92, 61.4, 61.1, 54.5, 54.1, 46.2, 39.5, 34.6, 34.1, 26.1, 25.9, 24.3, 24.1, 17.85, 17.79, 16.8.

FTIR (thin film) νmax: 2965, 2924, 2855, 2930, 1693, 1658, 1450, 1380, 1205, 1151, 1122, 1075, 973, 778, 688 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{23}H_{36}O_3$, 383.2557; found, 383.2554.

TLC $R_f = 0.54$ (8:2 hexane:EtOAc).

(2*S***,3***S***,3a***R***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-7-(3-methylbut-2-en-1-yl)-3-(4-methylpent-3-en-1-yl)- 2,3,3a,4,7,7a-hexahydro-2,7-methanobenzofuran (317):**

Method A, using 2,6-di-tert-butyl-4-methylpyridine:

A CH2Cl2 (100 mL) solution of **309** (1.88 g, 5.21 mmol, 1 equiv) and 2,6-di-*tert*-butyl-4-methylpyridine $(2.14 \text{ g}, 10.4 \text{ mmol}, 2 \text{ equiv})$ in a 250-mL round-bottom flask was cooled to –78 °C, and trimethylsilyl trifluoromethanesulfonate (1.13 mL, 6.26 mmol, 1.2 equiv) was added. After stirring the golden yellow solution at –78 °C for 45 min, it was quenched at –78 °C with sat. aq. NaHCO₃. After warming the mixture to rt, it was diluted with H_2O and brine, and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (400 mL SiO₂, 99:1 \rightarrow 95:5 hexane:EtOAc) afforded 1.70 g (4.72 mmol, 90% yield) of **317** as a colorless oil.

Method B, using 2,6-lutidine:

A CH2Cl2 (50 mL) solution of **309** (3.62 g, 10.0 mmol, 1 equiv) and 2,6-lutidine (2.4 mL, 30. mmol, 3 equiv) in a 200-mL round-bottom flask was cooled to -78 °C, and trimethylsilyl trifluoromethanesulfonate (3.6 mL, 20. mmol, 2 equiv) was added. After stirring the golden yellow solution at –78 °C for 45 min, it was quenched at –78 °C with sat. aq. NaHCO₃, warmed to rt, and extracted thrice with EtOAc. The organic extracts were combined, washed sequentially with 2 N HCl, H2O, and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale orange oil. Flash column chromatography (250 mL SiO₂, 1:1 \rightarrow 1:3 hexane:CH₂Cl₂) afforded 2.84 g (7.88 mmol, 79% yield) of **317** as a colorless oil.

1 H NMR (600 MHz; CDCl3) δ: 5.34 (t, *J* = 7.1 Hz, 1H), 5.03 (t, *J* = 7.1 Hz, 1H), 4.52 (dd, *J* = 5.6, 2.2 Hz, 1H), 3.74 (d, *J* = 5.1 Hz, 1H), 3.48 (s, 3H), 3.46 (s, 3H), 2.36 (dd, *J* = 14.8, 6.8 Hz, 1H), 2.22-2.17 (m, 2H), 2.05-2.01 (m, 2H), 1.98-1.96 (m, 1H), 1.82 (d, *J* = 12.4 Hz, 1H), 1.78 (dd, *J* = 12.4, 5.1 Hz, 1H), 1.70 (s, 3H), 1.69-1.65 (m, 4H), 1.61 (s, 3H), 1.58 (s, 3H), 1.45 (td, *J* = 13.1, 4.7 Hz, 1H), 1.22 (td, *J* = 13.1, 4.6 Hz, 1H), 1.14 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 13-C NMR (126 MHz; CDCl3): δ 158.5, 131.6, 131.1, 124.9, 123.6, 112.7, 90.6, 78.9, 54.6, 51.4, 46.5, 44.4, 42.0, 39.4, 33.6, 32.8, 28.2, 26.4, 25.9, 22.9, 20.1, 17.99, 17.85. **FTIR** (thin film) v_{max} : 2965, 2931, 1670, 1451, 1374, 1214, 1165, 1126, 1079, 1003, 945, 839, 804 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{23}H_{36}O_3$, 361.2737; found, 361.2730. **TLC** $R_f = 0.50$ (9:1 hexane:EtOAc).

(2*S***,3***S***,3a***S***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-7-(3-methylbut-2-en-1-yl)-3-(4-methylpent-3-en-1-yl)-**

3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2*H***)-one (318):**

An EtOAc (30 mL) slurry of **317** (3.30 g, 9.15 mmol, 1 equiv), cesium carbonate (12.9 g, 36.6 mmol, 4 equiv), and a nonane solution of *tert*-butyl hydroperoxide (5.5 M, 6.7 mL, 27 mmol, 4 equiv) in a 3-neck 200-mL round-bottom flask was sparged for 10 min with O_2 and subsequently cooled to –78 °C with vigorous O2 bubbling. An EtOAc (25 mL) solution of [bis(trifluoroacetoxy)iodo]benzene (11.8 g, 27.5 mmol, 3 equiv) was added dropwise over 8 min, followed by an EtOAc (5 mL) rinse. After stirring the resulting yellow slurry at –78 °C for 1 h, it was quenched at –78 °C with sat. aq. Na₂S₂O₃ and warmed to rt with vigorous stirring over 45 min. The mixture was then extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography $(250 \text{ mL SiO}_2, 98:2 \text{ CH}_2\text{Cl}_2:Et_2\text{O})$ afforded 1.01 g (2.69 mmol, 30% yield) of **318** as a pale yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 5.34 (s, 1H), 5.29 (t, *J* = 6.4 Hz, 1H), 4.98 (t, *J* = 7.1 Hz, 1H), 3.89 (d, *J* = 5.8 Hz, 1H), 3.70 (s, 3H), 3.47 (s, 3H), 2.68 (s, 1H), 2.42 (dd, *J* = 14.9, 6.3 Hz, 1H), 2.35 (dd, *J* = 14.9, 8.0 Hz, 1H), 2.06 (d, *J* = 13.0 Hz, 1H), 2.03-1.97 (m, 1H), 1.93 (dd, *J* = 13.0, 5.8 Hz, 1H), 1.74-1.67 (m, 1H), 1.70 (s, 3H), 1.64 (s, 3H), 1.62 (s, 3H), 1.55 (s, 3H), 1.38 (ddd, *J* = 14.0, 12.1, 4.8 Hz, 1H), 1.34- 1.29 (m, 1H), 1.27 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 197.9, 181.2, 132.9, 132.0, 124.2, 122.1, 115.4, 100.8, 80.8, 56.8, 56.4, 52.2, 48.6, 48.1, 38.8, 34.2, 32.2, 27.9, 26.3, 25.8, 22.8, 17.97, 17.84.

FTIR (thin film) v_{max} : 2970, 2927, 1651, 1604, 1452, 1374, 1228, 1071, 1003 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{23}H_{34}O_4$, 375.2530; found, 375.2528.

TLC $R_f = 0.25$ (7:3 hexane:EtOAc).

(2*S***,3a***R***,6***R***,7***S***,7a***S***,8***S***)-6-(***tert***-Butylperoxy)-7a-methoxy-8-methyl-3a-(3-methylbut-2-en-1-yl)-8-(4 methylpent-3-en-1-yl)hexahydro-2,7-methanobenzofuran-4(2***H***)-one (319):**

A PhH (2 mL) solution of **317** (21.4 mg, 59 µmol, 1 equiv) in a 2-dram scintillation vial was treated with **322**689 (40. mg, 0.12 mmol, 2 equiv) and potassium carbonate (33 mg, 0.24 mmol, 4 equiv). After stirring the reaction at rt for 3 d, it was diluted with 1:1 hexane:EtOAc and filtered through a short plug of $SiO₂$, rinsing with 1:1 hexane:EtOAc. The filtrate was concentrated *in vacuo* to a white residue. Flash column chromatography (25 mL SiO_2 , 992:8 $CH_2Cl_2:Et_2O$) afforded 7 mg (20 µmol, 26% yield) of 319 as a colorless oil and 1 mg (3 µmol, 5% yield) of **320** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.39 (t, *J* = 7.2 Hz, 1H), 5.02 (t, *J* = 6.9 Hz, 1H), 4.73 (d, *J* = 5.3 Hz, 1H), 4.46 (dd, *J* = 5.3, 1.1 Hz, 1H), 3.75 (d, *J* = 5.3 Hz, 1H), 3.56 (s, 3H), 3.53 (s, 3H), 2.46 (s, 1H), 2.37 (dd, *J* = 14.7, 6.9 Hz, 1H), 2.28 (dd, *J* = 14.7, 7.3 Hz, 1H), 2.04-1.93 (m, 1H), 1.82 (dd, *J* = 12.6, 5.3 Hz, 1H), 1.77 (d, *J* = 12.6 Hz, 1H), 1.69 (s, 3H), 1.68 (m, 1H), 1.67 (s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.36 (td, *J* = 12.8, 4.9 Hz, 1H), 1.29-1.26 (m, 1H), 1.25 (s, 9H), 1.21 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 164.9, 131.84, 131.68, 124.6, 123.4, 112.3, 89.0, 80.1, 79.1, 77.4, 55.0, 52.2, 47.0, 44.14, 43.95, 38.3, 34.0, 32.1, 27.9, 26.9, 26.4, 25.9, 23.0, 17.99, 17.89.

Key 1D nOe correlation.

 \overline{a}

⁶⁸⁹ **322** was prepared as described in ref. 636.

FTIR (thin film) νmax: 2970, 2925, 2869, 1657, 1450, 1374, 1363, 1225, 1196, 1169, 1069, 1005, 990, 880 cm^{-1} .

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{27}H_{44}O_5$, 449.3262; found, 449.3248.

TLC $R_f = 0.25$ (7:3 hexane:EtOAc).

(2*S***,3a***R***,7***R***,7a***S***,8***S***)-7a-Methoxy-8-methyl-3a-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)- 3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2***H***)-one (320):**

A PhH (1 mL) solution of **317** (17.6 mg, 49 µmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to 0 ºC, and an aqueous solution of *tert*-butyl hydroperoxide (70% by weight, 14 µL, 98 µmol, 2 equiv) and pyridinium dichromate (37 mg, 98 µmol, 2 equiv) were added in sequence. The reaction was allowed to slowly warm to rt over 5 h, whereupon it was passed through a short plug of $SiO₂$, rinsing with EtOAc. The filtrate was concentrated *in vacuo* to an orange oil. Flash column chromatography (30 mL SiO₂, 9:1) \rightarrow 8:2 hexane:EtOAc) afforded 6.2 mg (18 µmol, 37% yield) of **320** as a pale yellow residue and 2.5 mg (6.7 µmol, 14% yield) of **318** as a pale yellow residue.

1 H NMR (600 MHz; CDCl3) δ: 6.74 (dd, *J* = 10.2, 7.0 Hz, 1H), 6.06 (d, *J* = 10.2 Hz, 1H), 5.37 (t, *J* = 7.2 Hz, 1H), 5.01 (t, *J* = 7.2 Hz, 1H), 3.88 (d, *J* = 6.0 Hz, 1H), 3.47 (s, 3H), 2.59 (d, *J* = 7.0 Hz, 1H), 2.46 (dd, *J* = 14.7, 6.2 Hz, 1H), 2.34 (dd, *J* = 14.7, 8.2 Hz, 1H), 1.98 (d, *J* = 13.6 Hz, 1H), 1.95-1.92 (m, 1H), 1.89 (dd, $J = 13.6$, 6.0 Hz, 1H), 1.84-1.77 (m, 1H), 1.71 (s, 3H), 1.66 (s, 3H), 1.63 (s, 3H), 1.57 (s, 3H), 1.44-1.39 (m, 1H), 1.31-1.23 (m, 4H).

¹³C NMR (125 MHz; CDCl₃) δ: 201.5, 146.4, 132.9, 132.3, 129.2, 124.0, 122.3, 116.2, 80.8, 55.5, 52.5, 48.5, 46.1, 35.6, 34.8, 30.5, 27.0, 26.3, 25.9, 23.4, 18.00, 17.87.

FTIR (thin film) v_{max} : 2966, 2925, 2870, 1728, 1673, 1449, 1375, 1220, 1005, 833 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{22}H_{32}O_3$, 367.2244; found, 367.2238.

TLC $R_f = 0.38$ (8:2 hexane:EtOAc).

(2*S***,3a***R***,7***R***,7a***S***,8***S***)-7a-Methoxy-8-methyl-3a-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-**

yl)hexahydro-2,7-methanobenzofuran-4(2*H***)-one (321):**

A MeCN (0.4 mL) solution of **317** (14.0 mg, 39 µmol, 1 equiv) and a nonane solution of *tert*-butyl hydroperoxide (5.5 M, 35 µL, 0.19 mmol, 5 equiv) in a 2-dram scintillation vial was treated with ceric ammonium nitrate (43 mg, 78 μ mol, 2 equiv). After stirring the reaction for 10 min at rt, it was quenched with sat. aq. NaHCO₃, diluted with H₂O, and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a colorless oil. Flash column chromatography (25 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 3.9 mg (11 µmol, 29% yield) of **321** as a white flocculent solid.

1 H NMR (600 MHz; CDCl3) δ: 5.16 (t, *J* = 7.3 Hz, 1H), 5.06 (t, *J* = 7.1 Hz, 1H), 3.91 (d, *J* = 5.7 Hz, 1H), 3.46 (s, 3H), 2.52 (ddd, *J* = 14.8, 11.0, 7.6 Hz, 1H), 2.43-2.35 (m, 2H), 2.20 (dd, *J* = 14.5, 9.2 Hz, 1H), 2.12-2.04 (m, 2H), 1.97 (d, *J* = 13.7 Hz, 1H), 1.92-1.86 (m, 2H), 1.85-1.75 (m, 2H), 1.69 (s, 3H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.49 (td, *J* = 12.8, 5.1 Hz, 1H), 1.41 (td, *J* = 12.8, 4.8 Hz, 1H), 1.20 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 213.2, 133.8, 132.2, 124.3, 121.5, 116.7, 79.0, 59.1, 52.2, 46.0, 41.5, 36.1, 35.5, 33.8, 29.9, 28.2, 26.3, 25.9, 23.3, 19.1, 18.06, 17.90.

FTIR (thin film) v_{max} : 2966, 2929, 2859, 1707, 1449, 1375, 1325, 1227, 1150, 1103, 999 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{22}H_{34}O_3$, 369.2400; found, 369.2412.

TLC $R_f = 0.65$ (7:3 hexane:EtOAc).

(2*S***,3***S***,3a***S***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-5,7-bis(3-methylbut-2-en-1-yl)-3-(4-methylpent-3-en-1-yl)-3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2***H***)-one (333):**

A THF (19 mL) solution of **318** (697 mg, 1.86 mmol, 1 equiv) in a 100-mL recovery flask was cooled to -78 °C, and a freshly prepared THF solution of lithium 2,2,6,6-tetramethylpiperidide (0.53 M, 7.0 mL, 3.7) mmol, 2 equiv) was added. After stirring the resulting yellow-orange solution at –78 ºC for 20 min, a THF solution of lithium (2-thienyl)cyanocopper(I) (0.22 M, 17 mL, 3.7 mmol, 2 equiv) was added slowly over 10 min. The resulting brown slurry was allowed to slowly warm to –40 ºC over 20 min. After stirring the brown slurry at -40 °C for an additional 30 min, it was cooled to -78 °C, and prenyl bromide $(1.1 \text{ mL}, 9.3 \text{ mmol}, 5 \text{ equiv})$ was added. The reaction was allowed to slowly warm to -40 °C over 45 min, maintained at that temperature for 15 min, and subsequently quenched at -40 °C with sat. aq. NH₄Cl. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a brown oil. Flash column chromatography (200 mL $SiO₂$, 95:5 hexane:EtOAc) afforded 586 mg (1.32) mmol, 71% yield) of **333** as a pale yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 5.30 (t, *J* = 6.9 Hz, 1H), 4.99 (t, *J* = 6.7 Hz, 1H), 4.97 (t, *J* = 7.1 Hz, 1H), 3.87 (d, *J* = 5.7 Hz, 1H), 3.81 (s, 3H), 3.45 (s, 3H), 3.03-3.01 (m, 2H), 2.72 (s, 1H), 2.47 (dd, *J* = 15.2, 6.9 Hz, 1H), 2.31 (dd, *J* = 15.2, 6.9 Hz, 1H), 2.14 (d, *J* = 12.7 Hz, 1H), 1.99-1.95 (m, 1H), 1.92 (dd, *J* = 12.7, 5.7 Hz, 1H), 1.74-1.70 (m, 4H), 1.68 (s, 3H), 1.65 (s, 9H), 1.55 (s, 3H), 1.33-1.28 (m, 2H), 1.26 (s, 3H). ¹³C **NMR** (125 MHz; CDCl₃) δ: 198.6, 176.3, 132.2, 131.88, 131.80, 124.2, 122.8, 122.34, 122.28, 114.6, 81.0, 61.0, 56.7, 52.1, 49.3, 48.4, 39.3, 34.3, 32.8, 27.9, 26.3, 25.84, 25.81, 22.75, 22.65, 18.10, 18.04, 17.8.

FTIR (thin film) v_{max} : 2968, 2925, 1655, 1617, 1449, 1375, 1345, 1331, 1233, 1074, 1009, 941, 829 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{28}H_{42}O_4$, 443.3156; found, 443.3150. **TLC** $R_f = 0.65$ (7:3 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***,9***S***)-7,9-Dihydroxy-4,9-dimethoxy-8-methyl-3,5-bis(3-methylbut-2-en-1-yl)-8-(4 methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-en-2-one (334):**

A CH₂Cl₂ (5 mL) solution of **333** (91 mg, 0.21 mmol, 1 equiv) in a 10-mL recovery flask was cooled to – 78 °C, and a CH₂Cl₂ solution of bromodimethylborane (2.65 M, 0.78 mL, 2.1 mmol, 10 equiv) was added dropwise. The resulting yellow solution was stirred at -78 °C for 20 min and sequentially quenched at – 78 °C with NEt₃ (2 mL) and sat. aq. NaHCO₃. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O , sat. aq. NH₄Cl, and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a viscous yellow oil. Flash column chromatography (50 mL SiO_2 , 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 85 mg (0.18 mmol, 89% yield) of 334 as a pale yellow oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.56 (d, *J* = 11.5 Hz, 1H), 5.36 (t, *J* = 7.3 Hz, 1H), 5.29 (t, *J* = 6.6 Hz, 1H), 3.72 (s, 1H), 3.68 (dd, *J* = 11.9, 5.3 Hz, 1H), 3.54 (s, 3H), 3.35 (dd, *J* = 15.2, 6.4 Hz, 1H), 3.19-3.15 (m, 2H), 3.07 (s, 3H), 2.93 (dd, *J* = 14.1, 11.5 Hz, 1H), 2.91-2.84 (m, 1H), 2.27 (d, *J* = 14.1 Hz, 1H), 2.11- 2.06 (m, 1H), 2.01 (dd, *J* = 12.8, 11.9 Hz, 1H), 1.85 (d, *J* = 0.6 Hz, 3H), 1.73 (s, 3H), 1.73-1.69 (m, 1H), 1.65-1.60 (m, 7H), 1.57 (s, 3H), 1.43 (s, 3H), 1.28 (td, *J* = 12.7, 4.4 Hz, 1H), 1.13 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 197.4, 171.2, 136.5, 131.9, 131.2, 125.8, 124.5, 123.44, 123.31, 100.3, 73.5, 61.9, 57.6, 52.5, 48.2, 41.0, 39.8, 37.5, 30.9, 26.1, 25.84, 25.80, 23.8, 22.3, 18.08, 17.97, 17.7, 17.4.

Key 1D nOe correlations.

FTIR (thin film) νmax: 3464 (br), 2969, 2928, 2859, 1665, 1615, 1450, 1376, 1329, 1235, 1087, 1040, 986, 928, 907, 858, 737 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{28}H_{44}O_5$, 461.3262; found, 461.3254.

TLC $R_f = 0.40$ (7:3 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***)-7-Hydroxy-4-methoxy-8-methyl-3,5-bis(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (332):**

A 4:1 acetone:H2O (10 mL) solution of **334** (84.8 mg, 0.184 mmol, 1 equiv) in a 25-mL recovery flask was treated with pyridinium *para*-toluenesulfonate (231 mg, 0.920 mmol, 5 equiv). The flask was outfitted with a reflux condenser, and the reaction was heated to reflux. After refluxing for 11 h, the reaction was cooled to rt, diluted with H_2O , and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, sequentially washed with sat. aq. NaHCO₃ and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a colorless oil. Flash column chromatography (35 mL SiO₂, 8:2) hexane:EtOAc) afforded 72.8 mg (0.17 mmol, 92% yield) of **332** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.37 (t, *J* = 6.9 Hz, 1H), 5.27 (t, *J* = 7.2 Hz, 1H), 5.19 (t, *J* = 6.5 Hz, 1H), 3.63 (dd, *J* = 11.1, 5.1 Hz, 1H), 3.52 (s, 1H), 3.40 (s, 3H), 3.18 (dd, *J* = 15.4, 6.4 Hz, 1H), 3.10 (dd, *J* = 15.4, 6.7 Hz, 1H), 2.67-2.57 (m, 2H), 2.44 (dd, *J* = 14.5, 7.3 Hz, 1H), 1.92-1.87 (m, 2H), 1.75 (s, 3H), 1.69 (s, 3H), 1.66 (s, 3H), 1.64-1.60 (m, 5H), 1.58 (s, 6H), 1.39 (td, *J* = 12.9, 4.8 Hz, 2H), 0.84 (s, 3H), 0.64 (br s, 1H).

¹³C NMR (125 MHz; C₆D₆) δ: 204.5, 193.6, 173.6, 133.5, 132.3, 131.6, 126.1, 125.1, 123.0, 120.6, 72.1, 69.8, 61.7, 57.8, 46.3, 39.8, 38.4, 30.7, 26.00, 25.98, 25.7, 23.7, 22.1, 18.14, 18.01, 17.90, 15.7.

FTIR (thin film) νmax: 3488 (br), 2968, 2922, 2856, 1736, 1656, 1649, 1593, 1447, 1376, 1341, 1236, 1059 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{27}H_{40}O_4$, 451.2819; found, 451.2830.

TLC $R_f = 0.36$ (7:3 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-5,7-bis(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-8,9 dioxobicyclo[3.3.1]non-6-en-3-yl trifluoromethanesulfonate (338):**

A CH₂Cl₂ (3 mL) solution of 332 (33.5 mg, 78.2 mmol, 1 equiv) in a 10-mL test tube was cooled to -43 °C, and pyridine (44 μ L, 0.54 mmol, 7 equiv) and trifluoromethanesulfonic anhydride (76 μ L, 0.45 mmol, 6 equiv) were added sequentially. The resulting white slurry was allowed to slowly warm to 0 ºC over 100 min. The reaction was subsequently quenched at 0° C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with H_2O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to an orange oil. Flash column chromatography $(40 \text{ mL } SiO₂, 9:1)$ hexane:EtOAc) afforded 36.8 mg (65.6 µmol, 84% yield) of **338** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.22 (t, *J* = 6.9 Hz, 1H), 5.16-5.10 (m, 3H), 3.49 (s, 1H), 3.41 (s, 3H), 3.17 (dd, *J* = 15.3, 7.1 Hz, 1H), 2.97 (dd, *J* = 15.3, 6.5 Hz, 1H), 2.59-2.49 (m, 2H), 2.35 (dd, *J* = 13.1, 5.4 Hz, 1H), 2.29 (dd, *J* = 14.5, 7.5 Hz, 1H), 1.84 (dd, *J* = 13.1, 11.8 Hz, 1H), 1.80-1.73 (m, 1H), 1.72 (s, 3H), 1.64-1.62 (m, 4H), 1.61 (s, 3H), 1.60 (s, 3H), 1.58 (s, 3H), 1.57 (s, 3H), 1.49 (td, *J* = 12.9, 4.6 Hz, 1H), 0.75 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 201.6, 191.8, 172.2, 134.5, 133.7, 132.6, 126.7, 123.7, 121.7, 119.5, 90.9, 69.4, 62.1, 57.4, 45.6, 37.8, 37.0, 30.3, 25.92, 25.86, 25.6, 23.5, 21.6, 18.13, 17.96, 17.87, 16.3. ¹⁹F NMR (470 MHz; C₆D₆) δ: –75.54 (s, 3F).

FTIR (thin film) v_{max} : 2972, 2916, 2860, 1741, 1661, 1597, 1414, 1244, 1210, 1146, 918 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{28}H_{39}F_3O_6S$, 583.2312; found, 583.2293.

TLC $R_f = 0.50$ (9:1 hexane:EtOAc).

(2*R***,3***R***,3a***R***,5***S***,6a***R***)-6,6-Dimethoxy-3-methyl-5,6a-bis(3-methylbut-2-en-1-yl)-3-(4-methylpent-3-en-**

1-yl)hexahydro-2,5-methanopentalene-1,7(2*H***)-dione (339):**

A MeOH (0.25 mL) solution of **338** (12 mg, 21 µmol) in a 10-mL test tube was cooled to 0 ºC, and a MeOH solution of sodium methoxide (0.5 M, 1 mL) was slowly added. The reaction was allowed to slowly warm to rt. After stirring for 20 h, the reaction was quenched at rt with sat. aq. NaHCO₃ and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, washed with H₂O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to afford 9.1 mg (21 µmol, >99% yield) of **339** as a white flocculent solid.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.72 (t, *J* = 7.0 Hz, 1H), 5.45 (t, *J* = 7.9 Hz, 1H), 5.03 (t, *J* = 6.9 Hz, 1H), 3.20 (d, *J* = 2.0 Hz, 1H), 3.12 (s, 3H), 3.04 (s, 3H), 2.81-2.76 (m, 2H), 2.71 (dd, *J* = 14.8, 7.7 Hz, 1H), 2.39 (dd, *J* = 14.6, 7.9 Hz, 1H), 2.17 (dd, *J* = 12.4, 5.8 Hz, 1H), 2.10 (dd, *J* = 5.8, 1.9 Hz, 1H), 1.92 (d, *J* = 12.4 Hz, 1H), 1.87 (dt, *J* = 15.7, 7.5 Hz, 1H), 1.71 (s, 3H), 1.69 (s, 3H), 1.66 (s, 3H), 1.64 (s, 3H), 1.63- 1.61 (m, 4H), 1.52 (s, 3H), 1.18 (t, *J* = 8.5 Hz, 2H), 0.77 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 203.7, 202.5, 133.6, 132.1, 131.6, 124.5, 122.3, 121.8, 107.7, 75.5, 66.24, 66.07, 51.9, 51.2, 47.0, 44.8, 38.9, 35.0, 27.0, 26.6, 26.07, 26.02, 25.8, 22.2, 19.3, 18.10, 18.01, 17.7.

Key 1D nOe correlations.

FTIR (thin film) νmax: 2968, 2926, 2856, 1754, 1706, 1443, 1375, 1308, 1195, 1171, 1141, 1097, 1072, $1046, 858$ cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{28}H_{42}O_4$, 443.3156; found, 443.3148.

TLC $R_f = 0.41$ (9:1 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-5,7-bis(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-8,9 dioxobicyclo[3.3.1]non-6-en-3-yl methanesulfonate (340):**

A CH₂Cl₂ (3 mL) solution of 332 (38.7 mg, 90.3 µmol, 1 equiv) in a 10-mL test tube was cooled to 0 °C, and triethylamine (65 µL, 0.47 mmol, 5.2 equiv) and methanesulfonyl chloride (30 µL, 0.39 mmol, 4.3 equiv) were added sequentially. After stirring the reaction at 0 $^{\circ}$ C for 10 min, it was quenched with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with H₂O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a colorless residue. Flash column chromatography (40 mL SiO_2 , 9:1 hexane:EtOAc) afforded 37.5 mg (74.0 μ mol, 82% yield) of **340** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.31 (t, *J* = 6.9 Hz, 1H), 5.24-5.19 (m, 2H), 4.92 (dd, *J* = 11.6, 5.3 Hz, 1H), 3.54 (s, 1H), 3.54 (s, 3H), 3.16 (dd, *J* = 15.4, 6.9 Hz, 1H), 3.10 (dd, *J* = 15.4, 6.5 Hz, 1H), 2.64-2.59 (m, 2H), 2.55 (dd, *J* = 13.3, 5.3 Hz, 1H), 2.38 (dd, *J* = 14.5, 7.5 Hz, 1H), 2.07 (s, 3H), 1.92 (dd, *J* = 13.3, 11.6 Hz, 1H), 1.85 (tt, *J* = 12.6, 6.2 Hz, 1H), 1.75 (s, 3H), 1.66 (s, 3H), 1.63 (s, 3H), 1.62 (s, 3H), 1.59 (s, 3H), 1.59-1.56 (m, 4H), 1.52 (td, *J* = 12.8, 4.9 Hz, 1H), 0.87 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 202.9, 192.6, 173.3, 134.1, 133.2, 132.2, 127.0, 124.4, 122.2, 119.9, 81.5, 69.8, 62.2, 57.6, 45.7, 38.2, 37.73, 37.69, 30.3, 25.99, 25.95, 25.75, 23.6, 21.8, 18.15, 18.00, 17.94, 16.5.

Key 1D nOe correlations.

FTIR (thin film) νmax: 2968, 2918, 2857, 1738, 1658, 1597, 1449, 1360, 1342, 1236, 1178, 1061, 945, 862 cm^{-1} .

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{28}H_{42}O_6S$, 507.2775; found, 507.2781.

TLC $R_f = 0.50$ (7:3 hexane:EtOAc).

(4a*R***,5a***S***,6***S***,6a***R***,6b***R***)-6b-Hydroxy-4-methoxy-6-methyl-3,4a-bis(3-methylbut-2-en-1-yl)-6-(4 methylpent-3-en-1-yl)-4a,5,5a,6,6a,6b-hexahydro-2***H***-cyclopropa[4,5]cyclopenta[1,2-b]pyran-2-one (341):**

A MeOH solution of sodium methoxide (0.5 M, 1 mL) was slowly added to a 10-mL test tube cooled to 0 ºC containing **340** (5.5 mg, 11 µmol). The reaction was allowed to slowly warm to rt. After 18 h, the test tube was sealed and heated to 70 ºC. After stirring the reaction at 70 ºC for 9 h, it was cooled to rt, quenched with sat. aq. NaHCO₃, and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a pale yellow residue. Preparatory thin-layer chromatography (1 × 8:2 hexane:EtOAc) afforded 0.7 mg (1.6 µmol, 15% yield) of **341** as a colorless residue.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.46 (t, *J* = 6.4 Hz, 1H), 5.39 (t, *J* = 6.4 Hz, 1H), 5.06 (t, *J* = 7.0 Hz, 1H), 3.47 (s, 3H), 3.37 (dd, *J* = 15.5, 6.5 Hz, 1H), 3.23 (dd, *J* = 15.5, 5.9 Hz, 1H), 3.13-3.13 (br s, 1H), 2.48 (dd, *J* = 14.5, 7.7 Hz, 1H), 2.44 (dd, *J* = 14.7, 5.6 Hz, 1H), 2.29 (dd, *J* = 14.7, 7.7 Hz, 1H), 1.99 (dt, *J* = 11.4, 5.6 Hz, 2H), 1.65 (s, 3H), 1.63 (s, 3H), 1.63 (s, 3H), 1.58 (d, *J* = 8.0 Hz, 1H), 1.54 (s, 3H), 1.52 (s, 3H), 1.49 (dd, *J* = 14.5, 4.7 Hz, 1H), 1.45 (s, 3H), 1.27 (s, 3H), 1.13 (td, *J* = 7.8, 4.8 Hz, 1H), 0.99-0.96 (m, 2H).

¹³C NMR (125 MHz; C₆D₆) δ: 170.3, 165.1, 133.6, 132.2, 131.2, 124.9, 123.2, 120.2, 115.0, 108.0, 65.0, 61.6, 42.7, 41.8, 33.4, 31.9, 30.7, 28.1, 25.84, 25.81, 25.77, 25.6, 25.3, 18.1, 17.88, 17.71, 14.1.

FTIR (thin film) νmax: 3308 (br), 2964, 2920, 2854, 1677, 1631, 1452, 1376, 1342, 1224, 1190, 1093, 1005 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{27}H_{40}O_4$, 429.2999; found, 429.2991.

TLC $R_f = 0.61$ (8:2 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***)-7-Hydroxy-4,9,9-trimethoxy-8-methyl-3,5-bis(3-methylbut-2-en-1-yl)-8-(4 methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-en-2-one (343):**

A CH2Cl2 (12 mL) solution of **333** (210 mg, 0.47 mmol, 1 equiv) in a 25-mL recovery flask was cooled to -78 °C, and a CH₂Cl₂ solution of bromodimethylborane (2.65 M, 1.8 mL, 4.7 mmol, 10 equiv) was added. The resulting yellow solution was stirred at -78 °C for 10 min and sequentially quenched at -78 °C with 1:1 NEt₃:MeOH (10 mL) and sat. aq. NaHCO₃. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, washed with H_2O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a brown oil. Flash column chromatography $(100 \text{ mL } SiO₂, 9:1)$ hexane:EtOAc) afforded 149 mg (0.31 mmol, 67% yield) of **343** as a pale yellow oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.27 (t, *J* = 7.1 Hz, 1H), 4.94 (t, *J* = 7.2 Hz, 1H), 4.90 (t, *J* = 6.5 Hz, 1H), 3.76 (s, 3H), 3.47 (ddd, *J* = 11.9, 6.5, 5.4 Hz, 1H), 3.23 (s, 3H), 3.10 (s, 3H), 3.02 (dd, *J* = 15.3, 6.5 Hz, 1H), 2.89 (dd, *J* = 15.3, 6.5 Hz, 1H), 2.82 (s, 1H), 2.57 (dd, *J* = 15.4, 7.6 Hz, 1H), 2.26-2.21 (m, 2H), 1.82-1.74 (m, 2H), 1.68 (dd, *J* = 13.2, 5.4 Hz, 1H), 1.61 (s, 3H), 1.57 (s, 3H), 1.55 (s, 6H), 1.54 (s, 3H), 1.52 (s, 3H), 1.30 (td, *J* = 12.8, 4.7 Hz, 1H), 1.17-1.13 (m, 1H), 1.00 (s, 3H), 0.87 (td, *J* = 12.8, 4.6 Hz, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 198.7, 174.5, 132.3, 131.8, 131.4, 125.1, 123.6, 122.51, 122.39, 103.1, 74.0, 62.3, 59.2, 53.7, 51.1, 50.5, 40.5, 39.8, 36.1, 30.7, 26.2, 25.93, 25.86, 23.4, 21.8, 18.2, 17.95, 17.89.

Key 1D nOe correlations.

FTIR (thin film) νmax: 3468 (br), 2965, 2925, 2857, 1683, 1613, 1451, 1376, 1336, 1225, 1153, 1100, 1065 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{29}H_{46}O_5$, 475.3418; found, 475.3406.

TLC $R_f = 0.47$ (8:2 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5,7-bis(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1 yl)-8-oxobicyclo[3.3.1]non-6-en-3-yl trifluoromethanesulfonate (344):**

A CH_2Cl_2 (2 mL) solution of 343 (42 mg, 88 µmol, 1 equiv) and pyridine (43 µL, 0.53 mmol, 6 equiv) in a 10-mL recovery flask was cooled to -40 °C, and trifluoromethanesulfonic anhydride (74 μ L, 0.44 mmol, 5 equiv) was added. After allowing the reaction to slowly warm from –40 °C to –10 °C over 75 min, it was quenched at -10 °C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed sequentially with H₂O, sat. aq. NH₄Cl, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a brown residue. Flash column chromatography (30 mL SiO₂, 95:5) hexane:EtOAc) afforded 37 mg (63 µmol, 71% yield) of **344** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.56 (t, *J* = 6.9 Hz, 1H), 5.27-5.22 (m, 2H), 5.19 (dd, *J* = 12.0, 5.3 Hz, 1H), 3.58 (s, 3H), 3.33 (dd, *J* = 14.9, 7.4 Hz, 1H), 3.09 (s, 1H), 3.02 (dd, *J* = 14.9, 6.4 Hz, 1H), 2.95 (s, 3H), 2.91 (s, 3H), 2.80-2.78 (m, 1H), 2.63 (dd, *J* = 15.7, 7.2 Hz, 1H), 2.37-2.30 (m, 2H), 2.18 (dd, *J* = 12.9, 5.3 Hz, 1H), 1.99 (tt, *J* = 12.5, 6.1 Hz, 1H), 1.80 (s, 3H), 1.70 (s, 3H), 1.68-1.64 (m, 10H), 1.57 (s, 3H), 1.37 $(td, J = 12.9, 4.3 \text{ Hz}, 1H), 1.19 \text{ (s, 3H)}.$

¹³C NMR (125 MHz; C₆D₆) δ: 196.2, 172.5, 133.3, 132.0, 131.6, 128.4, 124.5, 122.37, 122.18, 102.5, 94.7, 62.1, 59.7, 54.3, 50.46, 50.42, 40.3, 39.8, 34.1, 31.3, 25.98, 25.94, 25.7, 23.5, 21.7, 19.3, 18.03, 17.90, 17.82.

¹⁹F NMR (470 MHz; C₆D₆) δ: –75.71 (s, 3F).

FTIR (thin film) v_{max} : 2973, 2917, 2859, 1739, 1659, 1596, 1413, 1243, 1207, 1145, 915, 881, 626 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{30}H_{45}F_3O_7S$, 607.2911; found, 607.2892.

TLC $R_f = 0.61$ (8:2 hexane:EtOAc).

(1*R***,2***S***,5***S***,6***R***,7***R***,***Z***)-2,9,9-Trimethoxy-6-methyl-1-(3-methylbut-2-en-1-yl)-3-(3-methylbut-3-en-1 ylidene)-6-(4-methylpent-3-en-1-yl)tricyclo[3.3.1.02,7]nonan-4-one (345):**

A THF (1.2 mL) solution of **344** (7.0 mg, 12 mmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to -78 °C, and a freshly prepared THF solution of lithium diisopropylamide (0.088 M, 0.52 mL, 46 µmol, 4 equiv) was added. After stirring the reaction at –78 °C for 1 h, it was allowed to slowly warm to –20 °C over 1 h. The reaction was quenched at -20 °C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow residue. Preparatory thin-layer chromatography $(2 \times 9:1)$ hexane:EtOAc) afforded 2.3 mg (5.0 µmol, 42% yield) of **345** as a colorless residue and 0.1 mg (0.2 µmol, 10% recovery) of **345** as a colorless residue.

¹**H** NMR (600 MHz; C₆D₆) δ: 6.19 (t, *J* = 7.9 Hz, 1H), 5.59 (t, *J* = 7.4 Hz, 1H), 5.15 (t, *J* = 7.4 Hz, 1H), 4.85 (s, 1H), 4.81 (s, 1H), 3.78 (dd, *J* = 15.6, 8.2 Hz, 1H), 3.69 (dd, *J* = 15.6, 7.4 Hz, 1H), 3.18 (s, 3H), 3.06 (s, 3H), 3.00 (s, 3H), 2.87 (s, 1H), 2.73 (dd, *J* = 16.0, 8.5 Hz, 1H), 2.49 (dd, *J* = 16.0, 6.4 Hz, 1H), 2.38 (dd, *J* = 10.1, 7.7 Hz, 1H), 2.32 (dtd, *J* = 19.2, 6.8, 5.4 Hz, 1H), 2.18 (d, *J* = 7.7 Hz, 1H), 2.01 (tt, *J* = 12.8, 6.2 Hz, 1H), 1.90 (d, *J* = 10.1 Hz, 1H), 1.77 (s, 3H), 1.71 (s, 3H), 1.65 (s, 3H), 1.63 (s, 3H), 1.62 (s, 4H), 1.43 (td, *J* = 13.1, 4.4 Hz, 1H), 1.26 (s, 3H), 1.09 (ddd, *J* = 13.1, 12.4, 4.5 Hz, 1H).

¹³C NMR (125 MHz; C₆D₆) δ: 196.9, 144.5, 138.4, 131.9, 131.4, 130.8, 125.1, 123.4, 111.2, 103.9, 87.4, 62.2, 57.6, 52.5, 49.8, 48.1, 44.6, 41.3, 37.1, 36.0, 27.8, 26.3, 25.9, 25.3, 22.8, 22.1, 21.4, 18.0, 17.7.

Key 1D nOe correlations.

FTIR (thin film) νmax: 2965, 2933, 2857, 1708, 1625, 1440, 1376, 1354, 1204, 1123, 1079, 1057, 888 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{29}H_{44}O_4$, 479.3132; found, 479.3133.

TLC $R_f = 0.49$ (9:1 hexane:EtOAc).

(2*R***,3***S***,3a***S***,5***R***,7a***R***)-7a-(***sec***-Butyl)-6-methoxy-3-methyl-5,7-bis(3-methylbut-2-en-1-yl)-3-(4-**

methylpent-3-en-1-yl)-3,3a,5,7a-tetrahydro-2,5-methanobenzofuran-4(2*H***)-one (348):**

A THF (1 mL) solution of **344** (15 mg, 25 µmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to –78 ºC, and a *c*-Hex solution of *sec*-butyllithium (1.43 M, 69 µL, 99 µmol, 4 equiv) was added dropwise. After stirring the resulting yellow-green solution at -78 °C for 30 min, it was quenched at -78 °C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a white residue. Preparatory thin-layer chromatography $(1 \times 1:1 \text{ CH}_2\text{Cl}_2$:hexane) afforded 3.9 mg (8.3 µmol, 33% yield) of 348 as a white residue.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.73-5.67 (m, 1H), 5.65-5.62 (m, 1H), 5.14 (t, *J* = 6.5 Hz, 1H), 3.85 (d, *J* = 16.0 Hz, 1H), 3.38 (s, 3H), 3.32-3.25 (m, 1H), 2.88-2.78 (m, 2H), 2.56-2.43 (m, 1H), 2.02-1.83 (m, 5H), 1.68 (s, 6H), 1.65 (s, 3H), 1.62 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.56 (s, 3H), 1.55 (s, 3H), 1.45-1.36 (m, 3H), 1.35 (d, *J* = 7.3 Hz, 3H, *diastereomer A*), 0.98 (d, *J* = 7.1 Hz, 1H, *diastereomer B*), 0.92 (t, *J* = 7.4 Hz, 3H *diastereomer A*), 0.87 (s, 3H), 0.85 (d, *J* = 7.5 Hz, 3H, *diastereomer B*).

¹³C NMR (125 MHz; C₆D₆) δ: 206.40, 206.36, 161.2, 161.0, 134.2, 133.4, 133.11, 133.09, 131.6, 131.3, 130.05, 130.02, 125.63, 125.53, 124.6, 121.1, 89.8, 89.36, 89.35, 84.97, 84.81, 61.7, 61.18, 61.14, 54.79, 54.74, 51.78, 51.75, 44.9, 44.6, 38.62, 38.50, 34.99, 34.91, 28.2, 27.39, 27.30, 26.05, 25.89, 25.85, 25.79, 25.75, 25.4, 23.8, 22.96, 22.89, 18.02, 17.99, 17.80, 17.77, 17.44, 17.43, 17.36, 14.9, 14.7, 13.99, 13.98, 13.2 (*mixture of two diastereomers*).

FTIR (thin film) v_{max} : 2966, 2929, 2874, 1724, 1634, 1451, 1376, 1231, 1124, 1042, 970 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{31}H_{48}O_3$, 469.3676; found, 469.3677.

TLC $R_f = 0.55$ (1:1 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5,7-bis(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1 yl)-8-oxobicyclo[3.3.1]non-6-en-3-yl methanesulfonate (349):**

A CH₂Cl₂ (2 mL) solution of **343** (30. mg, 63 µmol, 1 equiv) and pyridine (31 µL, 0.38 mmol, 6 equiv) in a 10-mL pear-shaped flask was cooled to 0 °C, and methanesulfonyl chloride (25 μ L, 0.32 mmol, 5 equiv) was added. The reaction was allowed to slowly warm to rt. After 1 d, the reaction was quenched at rt with sat. aq. $NAHCO₃$ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (30 mL $SiO₂$, 9:1 hexane:EtOAc) afforded 13.7 mg (25 µmol, 39% yield) of 349 as a pale yellow oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.65 (t, *J* = 6.8 Hz, 1H), 5.36 (t, *J* = 6.8 Hz, 1H), 5.30 (t, *J* = 7.2 Hz, 1H), 4.93 (dd, *J* = 11.5, 5.8 Hz, 1H), 3.74 (s, 3H), 3.35 (dd, *J* = 15.0, 7.2 Hz, 1H), 3.14-3.11 (m, 2H), 3.03 (s, 3H), 2.97 (s, 3H), 2.91-2.83 (m, 1H), 2.70 (dd, *J* = 15.8, 6.9 Hz, 1H), 2.44 (dd, *J* = 15.8, 6.6 Hz, 1H), 2.37-2.29 (m, 2H), 2.18 (s, 3H), 2.11-2.05 (m, 1H), 1.83 (s, 3H), 1.71 (s, 3H), 1.70 (s, 3H), 1.70-1.63 (m, 7H), 1.59 (s, 3H), 1.40 (td, *J* = 13.0, 4.2 Hz, 1H), 1.29 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 196.9, 173.5, 132.7, 131.7, 130.9, 125.1, 124.7, 122.85, 122.67, 103.0, 84.5, 62.4, 59.7, 54.1, 50.41, 50.34, 40.8, 39.6, 37.9, 34.7, 31.5, 26.07, 26.03, 25.85, 23.6, 21.9, 19.5, 18.08, 17.98, 17.84.

FTIR (thin film) v_{max} : 2968, 2925, 2858, 1668, 1615, 1450, 1358, 1336, 1226, 1177, 1065, 933, 862 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{30}H_{48}O_7S$, 575.3013; found, 575.3017.

TLC $R_f = 0.39$ (8:2 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5,7-bis(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1 yl)-8-oxobicyclo[3.3.1]non-6-en-3-yl pivalate (350):**

A CH₂Cl₂ (2 mL) solution of **343** (30. mg, 63 µmol, 1 equiv), pyridine (31 µL, 0.38 mmol, 6 equiv), and 4-(dimethylamino)pyridine (46 mg, 0.38 mmol, 6 equiv) in a 10-mL pear-shaped flask was cooled to 0 \degree C, and pivaloyl chloride (39 µL, 0.32 mmol, 5 equiv) was added. The resulting colorless solution was allowed to slowly warm to rt. After stirring for 4.5 h, the reaction was quenched at rt with sat. aq. $NaHCO₃$ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to an oily white residue. Flash column chromatography (25 mL SiO2, 95:5 hexane:EtOAc) afforded 29 mg (52 µmol, 82% yield) of **350** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.70 (t, *J* = 6.7 Hz, 1H), 5.40 (t, *J* = 6.6 Hz, 1H), 5.33 (t, *J* = 7.3 Hz, 1H), 5.18 (dd, *J* = 11.4, 5.5 Hz, 1H), 3.87 (s, 3H), 3.36 (dd, *J* = 15.2, 6.8 Hz, 1H), 3.17 (s, 2H), 3.09 (s, 3H), 3.04 (s, 3H), 2.75 (dd, *J* = 15.9, 6.8 Hz, 1H), 2.52 (dd, *J* = 15.9, 6.6 Hz, 1H), 2.14-2.05 (m, 3H), 1.82 (s, 3H), 1.70 (s, 3H), 1.69 (s, 3H), 1.65 (s, 3H), 1.61 (s, 6H), 1.55 (td, *J* = 13.1, 4.4 Hz, 1H), 1.45-1.36 (m, 4H), 1.11 (s, 9H).

¹³C NMR (125 MHz; C₆D₆) δ: 197.3, 177.6, 174.4, 132.4, 131.5, 130.4, 125.4, 124.6, 123.3, 122.9, 103.5, 76.3, 62.5, 59.9, 53.9, 50.44, 50.35, 41.1, 39.17, 39.05, 32.9, 31.7, 27.2, 26.10, 26.01, 25.8, 23.8, 22.1, 20.2, 18.1, 17.89, 17.84.

FTIR (thin film) v_{max} : 2971, 2928, 2877, 1726, 1666, 1615, 1460, 1376, 1335, 1283, 1160, 1063 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{34}H_{54}O_6$, 581.3813; found, 581.3812.

TLC $R_f = 0.66$ (8:2 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***,9***S***)-7,9-Dihydroxy-4,9-dimethoxy-8-methyl-5-(3-methylbut-2-en-1-yl)-8-(4-**

methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-en-2-one (351):

A CH2Cl2 (3 mL) solution of **318** (99 mg, 0.26 mmol, 1 equiv) and triethylamine (22 µL, 0.16 mmol, 0.6 equiv) in a 25-mL recovery flask was cooled to -78 °C, and a CH₂Cl₂ solution of bromodimethylborane $(1.54 \text{ M}, 1.0 \text{ mL}, 1.6 \text{ mmol}, 6 \text{ equiv})^{690}$ was added slowly. After stirring the reaction at -78 °C for 15 min, it was sequentially quenched at –78 °C with NEt₃ (1 mL) and sat. aq. NaHCO₃. After warming the mixture to rt, it was extracted thrice with EtOAc. The organic extracts were combined, washed with H_2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow-orange oil. Flash column chromatography (30 mL SiO_2 , $8:2 \rightarrow 7:3$ hexane:EtOAc) afforded 81 mg (0.21 mmol, 79% yield) of 351 as a flocculent white solid.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.48 (s, 1H), 5.26 (d, *J* = 11.5 Hz, 1H), 5.05 (t, *J* = 7.2 Hz, 1H), 3.75 (s, 3H), 3.62 (dd, *J* = 12.1, 5.3 Hz, 1H), 3.57 (s, 1H), 3.26 (s, 3H), 2.88-2.83 (m, 2H), 2.36 (tt, *J* = 12.7, 6.2 Hz, 1H), 2.25 (d, *J* = 14.3 Hz, 1H), 1.96 (t, *J* = 12.1 Hz, 1H), 1.90 (ddd, *J* = 19.4, 13.1, 6.7 Hz, 1H), 1.73 (s, 3H), 1.71-1.67 (m, 4H), 1.65 (s, 6H), 1.46 (td, *J* = 12.9, 4.7 Hz, 1H), 1.31-1.22 (br s, 1H), 1.12 (s, 3H), 1.06 (td, $J = 12.9$, 4.4 Hz, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 198.2, 176.1, 137.4, 131.4, 125.0, 122.1, 104.1, 100.6, 73.2, 57.6, 56.6, 51.1, 48.6, 40.5, 39.2, 37.0, 30.0, 26.3, 25.9, 21.9, 18.01, 17.89, 17.0.

FTIR (thin film) v_{max} : 3460 (br), 2969, 2928, 2859, 1648, 1602, 1451, 1375, 1221, 1084, 908, 731 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{23}H_{36}O_5$, 393.2636; found, 393.2632.

TLC $R_f = 0.50$ (1:1 hexane:EtOAc).

 \overline{a}

 690 A CH₂Cl₂ solution of bromodimethylborane was prepared as described in ref. 639b.

(1*S***,5***R***,7***S***,8***S***)-7-Hydroxy-4-methoxy-8-methyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1 yl)bicyclo[3.3.1]non-3-ene-2,9-dione (282):**

A 4:1 acetone:H2O (4 mL) solution of **351** and pyridinium *para*-toluenesulfonate (208 mg, 0.83 mmol, 5 equiv) in a 10-mL recovery flask outfitted with a reflux condenser was heated to reflux. After stirring at reflux for 15.5 h, the reaction was cooled to rt, diluted with H_2O , and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (20 mL SiO2, 7:3 hexane:EtOAc) afforded 54 mg (0.15 mmol, 90% yield) of **282** as a white flocculent solid.

1 H NMR (600 MHz; CDCl3) δ: 5.68 (s, 1H), 5.09 (t, *J* = 7.2 Hz, 1H), 4.98 (t, *J* = 7.0 Hz, 1H), 3.83-3.81 (m, 1H), 3.75 (s, 3H), 3.19 (s, 1H), 2.50 (dd, *J* = 14.6, 6.4 Hz, 1H), 2.40 (dd, *J* = 14.6, 7.6 Hz, 1H), 2.35 (tt, *J* = 12.6, 6.8 Hz, 1H), 2.12 (dd, *J* = 13.3, 5.4 Hz, 1H), 1.92 (tt, *J* = 12.6, 6.5 Hz, 1H), 1.76 (dd, *J* = 13.3, 11.6 Hz, 1H), 1.67 (s, 3H), 1.66 (s, 3H), 1.65 (s, 3H), 1.65 (s, 3H), 1.56 (td, *J* = 12.9, 4.8 Hz, 1H), 1.32 (td, $J = 12.8$, 4.7 Hz, 1H), 0.91 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 205.2, 193.1, 177.5, 134.6, 132.2, 124.3, 119.0, 106.1, 72.1, 69.2, 57.1, 56.1, 45.9, 39.4, 38.1, 29.5, 26.1, 25.9, 21.8, 18.1, 17.9, 15.7.

FTIR (thin film) νmax: 3433 (br), 2969, 2915, 2858, 1735, 1649, 1589, 1448, 1352, 1228, 1193, 1052, 1034, 843, 732 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{22}H_{32}O_4$, 361.2373; found, 361.2378.

TLC $R_f = 0.41$ (1:1 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-8,9-**

dioxobicyclo[3.3.1]non-6-en-3-yl trifluoromethanesulfonate (352):

A CH2Cl2 (20 mL) solution of **282** (253 mg, 0.702 mmol, 1 equiv) and pyridine (341 µL, 4.21 mmol, 6 equiv) in a 50-mL recovery flask was cooled to –43 ºC, and trifluoromethanesulfonic anhydride (0.59 mL, 3.5 mmol, 5 equiv) was added. The resulting yellow slurry was allowed to slowly warm to 5 ºC over 2 h, whereupon it was quenched with sat. aq. $NaHCO₃$ and extracted thrice with EtOAc. The organic extracts were combined, washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. The oil was retaken in 8:2 hexane:EtOAc and passed through a plug of $SiO₂$, rinsing with 8:2 hexane:EtOAc. The filtrate was concentrated *in vacuo* to afford 277 mg (0.562 mmol, 80% yield) of **352** as a yellow-orange oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.32 (s, 1H), 5.19-5.15 (m, 2H), 5.07 (dd, $J = 11.6$, 5.5 Hz, 1H), 3.41 (s, 1H), 2.66 (s, 3H), 2.64-2.57 (m, 1H), 2.45 (dd, *J* = 14.4, 6.6 Hz, 1H), 2.30-2.25 (m, 2H), 1.85 (dd, *J* = 12.9, 11.9 Hz, 1H), 1.81-1.76 (m, 1H), 1.74 (s, 3H), 1.65 (t, *J* = 8.4 Hz, 2H), 1.62 (s, 3H), 1.55 (s, 3H), 1.54 (s, 3H), 0.75 (s, 3H).

¹³C NMR (125 MHz; C₆D₆) δ: 201.6, 189.9, 175.4, 134.9, 132.6, 123.6, 118.8, 106.3, 90.6, 68.8, 56.4, 55.3, 45.3, 37.8, 36.6, 29.5, 25.86, 25.80, 21.7, 17.91, 17.82, 16.3.

¹⁹F NMR (470 MHz; C₆D₆) δ: –75.61 (s, 3F).

FTIR (thin film) v_{max} : 2969, 2925, 2858, 1738, 1654, 1636, 1592, 1434, 1214, 1138, 922, 820, 602 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{23}H_{31}F_3O_6S$, 493.1866; found, 493.1865.

(1*S***,2***S***,3***R***,5***R***)-6-Methoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-7-**

(trimethylsilyl)tricyclo[3.3.1.01,3]non-6-ene-8,9-dione (353):

A THF (12 mL) solution of **352** (277 mg, 0.562 mmol, 1 equiv) in a 25-mL recovery flask was cooled to –78 ºC, and chlorotrimethylsilane (3.6 mL, 28 mmol, 50 equiv) and a THF solution of lithium diisopropylamide (0.50 M, 5.6 mL, 2.8 mmol, 5 equiv) were added sequentially. After stirring the resulting orange solution at -78 °C for 45 min, it was quenched at -78 °C with sat. aq. NaHCO₃. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography $(75 \text{ mL SiO}_2, 95:5 \text{ hexane:EtOAc})$ afforded 114 mg (0.27 m) mmol, 49% yield) of **353** as a pale yellow oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.42 (t, *J* = 7.4 Hz, 1H), 5.29 (t, *J* = 7.1 Hz, 1H), 3.23 (s, 3H), 2.60 (dd, *J* = 15.1, 6.4 Hz, 1H), 2.51-2.47 (m, 2H), 2.19 (tt, *J* = 12.5, 6.2 Hz, 1H), 1.87 (ddd, *J* = 13.0, 12.5, 5.2 Hz, 1H), 1.80 (ddd, *J* = 13.5, 11.2, 6.2 Hz, 1H), 1.75 (dd, *J* = 14.0, 5.4 Hz, 1H), 1.69-1.67 (m, 4H), 1.66 (s, 3H), 1.62 (s, 3H), 1.55 (s, 3H), 1.08 (s, 3H), 0.99 (dd, *J* = 7.9, 5.4 Hz, 1H), 0.36 (s, 9H).

¹³C NMR (125 MHz; C₆D₆) δ: 200.3, 194.8, 184.3, 134.5, 131.64, 131.63, 124.7, 119.6, 74.2, 61.9, 56.9, 48.1, 38.8, 37.7, 27.8, 26.29, 26.18, 25.905, 25.898 18.00, 17.85, 16.4, 0.8.

Key 1D nOe correlations.

FTIR (thin film) νmax: 2968, 2918, 2860, 1762, 1664, 1523, 1451, 1438, 1386, 1233, 1201, 1157, 1042, 962, 845, 761, 691 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{25}H_{38}O_3Si$, 415.2663; found, 415.2650.

TLC $R_f = 0.64$ (9:1 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***)-7-Iodo-4-methoxy-8-methyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1 yl)bicyclo[3.3.1]non-3-ene-2,9-dione (357):**

A mixture of copper(I) iodide (20. mg, 0.10 mmol, 30.7 equiv) and lithium chloride (5.3 mg, 0.12 mmol, 36.7 equiv) in a 10-mL recovery flask was subjected to three cycles of heat gun drying under vacuum and purging with Ar. The mixture was subsequently taken up in THF (0.5 mL) and stirred at rt for 3 min. Meanwhile, a THF (1 mL) solution of tributylprenylstannane (37 mg, 0.10 mmol, 30.4 equiv) in a 10-mL pear-shaped flask was cooled to –78 °C, and a hexane solution of butyllithium (1.56 M, 63 μ L, 99 μ mol, 29.2 equiv) was added. After stirring the resulting bright yellow solution at -78 °C for 15 min, it was transferred via dry ice-cooled cannula to the copper(I) iodide-lithium chloride solution cooled to –78 ºC. After stirring the resulting brown-red solution at -78 °C for 10 min, chlorotrimethylsilane (22 µL, 0.17) mmol, 51.0 equiv), a THF (0.25 mL) solution of **353** (1.4 mg, 3.4 µmol, 1 equiv), and a THF (0.25 mL) rinse of the flask that contained **353** were added in quick succession. The reaction was then allowed to slowly warm to 0 °C over 90 min and was stirred at 0 °C for 2 h, at which point the reaction turned black. After stirring for an additional 1 h at 0 $^{\circ}$ C, the resulting colorless solution was quenched at 0 $^{\circ}$ C with sat. aq. NH4Cl and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale yellow residue. Preparatory thin-layer chromatography ($1 \times 8:2$ hexane:EtOAc) afforded 0.8 mg (2 µmol, 50% yield) of **357** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.76 (s, 1H), 5.08 (t, *J* = 7.1 Hz, 1H), 4.97 (t, *J* = 6.9 Hz, 1H), 4.35 (dd, *J* $= 12.8, 5.0$ Hz, 1H), 3.77 (s, 3H), 3.39 (s, 1H), 2.52-2.46 (m, 2H), 2.44-2.36 (m, 3H), 1.89 (tt, $J = 12.4$,
6.0 Hz, 1H), 1.68 (s, 3H), 1.68 (s, 3H), 1.65 (s, 6H), 1.60 (td, *J* = 12.9, 4.3 Hz, 1H), 1.55 (s, 3H), 1.28 (td, *J* = 12.9, 4.3 Hz, 1H), 1.05 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 203.7, 192.6, 176.1, 134.9, 132.4, 123.7, 118.7, 106.6, 67.7, 59.5, 57.2, 46.8, 45.1, 41.9, 37.1, 29.2, 26.15, 25.95, 21.9, 21.0, 18.2, 17.9.

FTIR (thin film) v_{max} : 2962, 2919, 2853, 1736, 1655, 1595, 1453, 1368, 1223, 1191 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{22}H_{31}IO_3$, 493.1210; found, 493.1193.

TLC $R_f = 0.41$ (8:2 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***)-7-Hydroxy-4,9,9-trimethoxy-8-methyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3 en-1-yl)bicyclo[3.3.1]non-3-en-2-one (360):**

A CH2Cl2 (6 mL) solution of **318** (456 mg, 1.22 mmol, 1 equiv) and triethylamine (102 µL, 0.731 mmol, 0.6 equiv) in a 20-mL scintillation vial was cooled to -78 °C, and a CH₂Cl₂ solution of bromodimethylborane (1.26 M, 5.8 mL, 7.3 mmol, 6 equiv)⁶⁹¹ was added slowly. The resulting orangered solution was stirred at –78 ºC for 45 min and subsequently quenched at –78 ºC through the addition of 1:1 MeOH:NEt₃ (8 mL). The reaction was then poured onto sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with 2 N HCl, sat. aq. NaHCO₃, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (150 mL SiO₂, 8:2 hexane:EtOAc) afforded 303 mg (0.745 mmol, 61% yield) of 360 as a flocculent yellow solid.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.40 (s, 1H), 5.34 (t, *J* = 7.2 Hz, 1H), 5.04 (t, *J* = 7.2 Hz, 1H), 3.67 (s, 3H), 3.57-3.54 (m, 1H), 3.35 (s, 3H), 3.23 (s, 3H), 2.89 (s, 1H), 2.68 (dd, *J* = 15.3, 8.0 Hz, 1H), 2.39-2.33 (m, 2H), 1.92-1.88 (m, 1H), 1.84 (dd, *J* = 13.1, 12.1 Hz, 1H), 1.72 (dd, *J* = 13.1, 5.2 Hz, 1H), 1.68 (s, 3H), 1.64 (s, 6H), 1.61 (s, 3H), 1.45 (td, *J* = 12.9, 4.8 Hz, 1H), 1.37 (m, 1H), 1.11 (s, 3H), 1.04 (td, *J* = 12.9, 4.5 Hz, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 198.1, 179.0, 131.9, 131.4, 125.1, 122.1, 103.9, 103.0, 73.5, 59.0, 56.5, 52.4, 51.2, 50.6, 40.6, 39.5, 36.8, 35.9, 30.4, 26.2, 25.9, 21.9, 18.1, 17.9.

FTIR (thin film) v_{max} : 3455 (br), 2967, 2925, 2859, 1654, 1600, 1454, 1374, 1350, 1224, 1060 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{24}H_{38}O_5$, 429.2611; found, 429.2609.

TLC $R_f = 0.49$ (1:1 hexane:EtOAc).

 \overline{a}

 691 A CH₂Cl₂ solution of bromodimethylborane was prepared as described in ref. 639b.

A CH2Cl2 (3 mL) solution of **360** (56.8 mg, 0.140 mmol, 1 equiv) and pyridine (68 µL, 0.84 mmol, 6 equiv) in a 10-mL recovery flask was cooled to -40 °C, and trifluoromethanesulfonic anhydride (118 μ L, 0.699 mmol, 5 equiv) was added. The resulting yellow slurry was allowed to slowly warm to 0 $^{\circ}$ C over 90 min, whereupon it was quenched at 0 $^{\circ}$ C with sat. aq. NaHCO₃ and extracted thrice with 8:2 hexane:EtOAc. The organic extracts were combined, washed with brine, dried over $Na₂SO₄$, filtered, and concentrated to an orange-brown oil. A portion of this oil (30. mg, 56 µmol, 1 equiv) was dissolved in THF (1 mL) in a 10-mL test tube, cooled to -78 °C, and treated sequentially with chlorotrimethylsilane (353 µL, 2.7 mmol, 50 equiv), a freshly prepared THF solution of lithium diisopropylamide (0.50 M, 0.56 mL, 0.28 mmol, 5 equiv), and hexamethylphosphoramide (53 μ L, 0.31 mmol, 5.5 equiv). The orange slurry was stirred at –78 °C for 1 h and was then allowed to warm to 0 °C over 4 h. The reaction was then quenched at 0 °C with sat. aq. NaHCO₃ and extracted thrice with 8:2 hexane:EtOAc. The organic extracts were combined, sequentially washed five times with H_2O and once with brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to an orange oil. This oil was dissolved in THF (1 mL) in a 10-mL test tube, cooled to –78 ºC, and treated with a freshly prepared THF solution of lithium diethylamide $(0.50 \text{ M}, 1.1 \text{ mL}, 0.56 \text{ mmol}, 10 \text{ equiv})$. The brown-orange solution was stirred at -78 °C for 45 min and subsequently allowed to slowly warm to -10 °C over 45 min. The resulting red solution was then quenched at -10 °C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a brown oil. Preparatory thin-layer chromatography (1×9.1) hexane:EtOAc containing 1% NEt₃) afforded 3.5 mg (7.6 μ mol, 14% yield from **360**) of **359** as a colorless oil and 14.5 mg (23.6 μ mol, 42% yield from **360**) of **363** as a pale yellow oil.

(1*S***,2***R***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-7-**

(trimethylsilyl)tricyclo[3.3.1.01,3]non-6-en-8-one (359):

¹**H** NMR (600 MHz; C₆D₆) δ: 5.54 (t, *J* = 7.1 Hz, 1H), 5.47 (t, *J* = 7.2 Hz, 1H), 3.37 (s, 3H), 2.99 (s, 3H), 2.97 (s, 3H), 2.77-2.71 (m, 2H), 2.42 (dd, *J* = 15.0, 7.0 Hz, 1H), 2.41-2.34 (m, 1H), 2.06 (dd, *J* = 13.3, 6.6 Hz, 1H), 1.84 (td, *J* = 12.3, 5.2 Hz, 1H), 1.74 (s, 3H), 1.73-1.68 (m, 4H), 1.68 (m, 4H), 1.62 (s, 3H), 1.54 $(s, 3H)$, 0.84 (t, $J = 7.0$ Hz, 1H), 0.48 (s, 9H).

¹³C NMR (125 MHz; C₆D₆) δ: 199.0, 184.4, 131.2, 131.0, 129.3, 125.6, 123.2, 110.1, 74.2, 64.1, 53.6, 52.3, 51.1, 50.6, 41.8, 38.1, 31.7, 28.3, 26.7, 26.00, 25.95, 17.89, 17.87, 16.5, 1.0.

FTIR (thin film) v_{max} : 2965, 2924, 2854, 1669, 1577, 1453, 1340, 1207, 1145, 1080 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{27}H_{44}O_4Si$, 483.2901; found, 483.2908.

TLC $R_f = 0.68$ (8:2 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-8 oxo-7-(trimethylsilyl)bicyclo[3.3.1]non-6-en-3-yl diethylsulfamate (363):**

¹**H** NMR (500 MHz; C₆D₆) δ: 5.66 (t, *J* = 6.8 Hz, 1H), 5.40 (t, *J* = 7.2 Hz, 1H), 4.82 (dd, *J* = 12.0, 5.2 Hz, 1H), 3.79 (s, 3H), 3.08-2.94 (m, 12H), 2.74 (dd, *J* = 15.8, 7.0 Hz, 1H), 2.55-2.51 (m, 2H), 2.42 (t, *J* = 12.6 Hz, 1H), 2.15 (tt, *J* = 12.3, 6.0 Hz, 1H), 1.91 (td, *J* = 13.2, 4.4 Hz, 1H), 1.83 (s, 3H), 1.70 (s, 3H), 1.68 (s, 3H), 1.59-1.51 (m, 4H), 1.34 (s, 3H), 0.85 (t, *J* = 7.1 Hz, 6H), 0.42 (s, 9H).

¹³C NMR (125 MHz; C₆D₆) δ: 201.1, 187.2, 131.6, 131.1, 128.6, 125.2, 122.7, 103.3, 84.3, 65.0, 60.10, 60.07, 55.0, 50.4, 42.7, 41.0, 39.9, 34.0, 31.4, 26.08, 25.99, 22.1, 20.6, 19.7, 17.97, 17.87, 14.2, 13.3, 1.0. **FTIR** (thin film) νmax: 2971, 2937, 1660, 1600, 1458, 1358, 1345, 1222, 1206, 1165, 1102, 1061, 929, 830 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{31}H_{55}NO_7SSi$, 636.3361; found, 636.3371.

TLC $R_f = 0.55$ (8:2 hexane:EtOAc).

(1*R***,2***S***,3***R***,5***R***)-4,4,6-Trimethoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-**

yl)tricyclo[3.3.1.01,3]non-6-en-8-one (364):

A CH2Cl2 (3 mL) solution of **360** (56.8 mg, 0.140 mmol, 1 equiv) and pyridine (68 µL, 0.84 mmol, 6 equiv) in a 10-mL recovery flask was cooled to -40 °C, and trifluoromethanesulfonic anhydride (118 μ L, 0.699 mmol, 5 equiv) was added. The resulting yellow slurry was allowed to slowly warm to 0 $^{\circ}$ C over 90 min whereupon it was quenched at 0 $^{\circ}$ C with sat. aq. NaHCO₃ and extracted thrice with 8:2 hexane:EtOAc. The organic extracts were combined, washed with brine, dried over Na_2SO_4 , filtered, and concentrated to an orange-brown oil. A portion of this oil (23 mg, 43 µmol, 1 equiv) was dissolved in THF (1 mL) in a 10-mL test tube, cooled to -78 °C, and treated with a freshly prepared THF solution of lithium diisopropylamide (0.50 M, 0.85 mL, 0.43 mmol, 10 equiv). The resulting brown-orange solution was stirred at –78 °C for 45 min and then allowed to slowly warm to rt. After stirring the resulting dark red solution for 16.5 h, it was quenched at rt with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, washed with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a brown oil. Preparatory thin-layer chromatography $(1 \times 8:2 \text{ hexane:EtOAc})$ afforded 7.4 mg (19 µmol, 44% yield from **360**) of **364** as a pale yellow oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 5.33 (s, 1H), 5.31 (t, *J* = 7.2 Hz, 1H), 5.11 (t, *J* = 7.4 Hz, 1H), 3.24 (s, 3H), 3.05 (s, 3H), 3.03 (s, 3H), 2.84 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.80 (dd, *J* = 14.6, 9.0 Hz, 1H), 2.60-2.52 (m, 1H), 2.24-2.18 (m, 1H), 2.00 (d, *J* = 12.8 Hz, 1H), 1.95-1.86 (m, 2H), 1.78 (d, *J* = 12.8 Hz, 1H), 1.67 (s, 3H), 1.66 (s, 3H), 1.63 (s, 3H), 1.56 (s, 3H), 1.29 (s, 3H), 1.16 (d, *J* = 0.9 Hz, 1H).

¹³C NMR (125 MHz; C₆D₆) δ: 13-C NMR (126 MHz; Benzene): δ 195.9, 179.9, 132.5, 131.2, 125.1, 121.8, 111.6, 105.4, 72.2, 55.7, 50.9, 50.0, 48.6, 44.5, 43.8, 39.3, 38.5, 28.6, 26.2, 25.97, 25.91, 18.0, 17.8, 14.7.

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 2965, 2926, 2857, 1675, 1575, 1440, 1339, 1225, 1173, 1141, 1063, 997, 834 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{24}H_{36}O_4$, 411.2506; found, 411.2512.

TLC $R_f = 0.34$ (8:2 hexane:EtOAc).

(1*S***,2***S***,3***S***,5***R***)-6,9,9-Trimethoxy-2-methyl-5-(3-methylbut-2-en-1-yl)-2-(4-methylpent-3-en-1-yl)-8 oxobicyclo[3.3.1]non-6-en-3-yl benzenesulfonate (366):**

A CH2Cl2 (1 mL) solution of **360** (16.1 mg, 39.6 µmol, 1 equiv) and pyridine (19 µL, 0.24 mmol, 6 equiv) in a 10-mL recovery flask was cooled to -40 °C, and benzenesulfonyl chloride (25 μ L, 0.20 mmol, 5 equiv) was added. The resulting yellow solution was allowed to slowly warm to rt. After stirring for 1 d, the reaction was quenched at rt with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography $(30 \text{ mL } SiO₂, 96:4)$ PhH:EtOAc) afforded 10.5 mg (19.2 µmol, 48% yield) of **366** as a colorless oil.

¹**H** NMR (600 MHz; C₆D₆) δ: 7.79 (d, *J* = 7.9 Hz, 2H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.84 (t, *J* = 7.7 Hz, 2H), 5.44 (t, *J* = 6.9 Hz, 1H), 5.37 (s, 1H), 5.16 (t, *J* = 7.2 Hz, 1H), 4.84 (dd, *J* = 12.0, 5.3 Hz, 1H), 3.05 (s, 1H), 2.97 (s, 3H), 2.96 (s, 3H), 2.92 (s, 3H), 2.87-2.79 (m, 1H), 2.64 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.32 (dd, *J* = 15.6, 6.3 Hz, 1H), 2.19 (dd, *J* = 14.5, 10.6 Hz, 1H), 2.01-1.93 (m, 2H), 1.79 (s, 3H), 1.66 (s, 6H), 1.50-1.46 (m, 4H), 1.32-1.24 (m, 4H).

¹³C NMR (125 MHz; C₆D₆) δ: 195.4, 177.3, 138.3, 133.1, 131.29, 131.14, 129.0, 125.2, 122.5, 103.68, 103.56, 85.7, 59.3, 55.9, 52.6, 50.7, 50.4, 40.8, 39.4, 33.9, 30.8, 26.10, 25.97, 21.9, 19.4, 17.9, 17.7. **FTIR** (thin film) νmax: 2965, 2925, 2857, 1655, 1599, 1448, 1363, 1223, 1186, 1097, 1186, 1097, 1050, 940, 853, 723, 689, 590 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{30}H_{42}O_7S$, 547.2724; found, 547.2718. **TLC** $R_f = 0.30$ (95:5 PhH:EtOAc).

(2*S***,3***R***)-3-(Bromomethyl)-2-(4-methoxy-4-methylpentyl)-2-methyloxirane (373):**

A MeOH (110 mL) solution of mercury(II) acetate (10.3 g, 32.2 mmol, 1.5 equiv) in a 250-mL roundbottom flask was treated with **289** (5.00 g, 21.4 mmol, 1 equiv). After stirring the resulting white slurry at rt for 15 min, it was cooled to 0 ºC and was treated with an aqueous solution of NaOH (3 M, 35 mL). After stirring the resulting bright orange slurry at 0 °C for 2 min, and a basic, aqueous solution of NaBH₄ (0.5 M NaBH4 in 3 M NaOH aqueous solution, 35 mL) was added. The resulting gray slurry was stirred at 0 °C for 15 min, diluted with H₂O, and extracted thrice with 8:2 hexane:EtOAc. The organic extracts were combined, sequentially washed thrice with H_2O and once with brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a colorless oil. Flash column chromatography (250 mL SiO₂, 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 4.98 g (18.8 mmol, 88% yield) of **373** as a colorless oil as well as 187 mg (0.802 mmol, 3.7% recovery) of **289** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 3.53 (dd, *J* = 10.4, 5.9 Hz, 1H), 3.24 (dd, *J* = 10.4, 7.7 Hz, 1H), 3.16 (s, 3H), 3.08 (dd, *J* = 7.7, 5.9 Hz, 1H), 1.67-1.62 (m, 1H), 1.48-1.40 (m, 5H), 1.30 (s, 3H), 1.13 (s, 6H). ¹³C NMR (125 MHz; CDCl₃) δ: 74.6, 63.3, 61.6, 49.4, 39.9, 38.8, 30.0, 25.1, 19.6, 16.3.

FTIR (thin film) νmax: 2971, 2948, 2915, 2826, 1465, 1432, 1382, 1364, 1253, 1221, 1205, 1148, 1083, $891,652$ cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{11}H_{21}BrO_2$, 287.0617; found, 287.0621.

TLC $R_f = 0.18$ (9:1 hexane:EtOAc).

(2*S***,3***S***)-3-((2,6-Dimethoxy-1-(3-methylbut-2-en-1-yl)cyclohexa-2,5-dien-1-yl)methyl)-2-(4-methoxy-4-methylpentyl)-2-methyloxirane (374):**

A THF (100 mL) solution of **312** (4.35 g, 20.9 mmol, 1 equiv) in a 250-mL round-bottom flask was cooled to –78 ºC, and a *c*-Hex solution of *sec*-butyllithium (1.21 M, 21.6 mL, 26.1 mmol, 1.25 equiv) was added slowly over 5 min. The resulting yellow slurry was allowed to slowly warm from –78 ºC to –30 ºC over 40 min and then stirred at –30 °C for 15 min. The resulting red-orange slurry was cooled to –78 °C, and a THF (20 mL) solution of **373** (4.98 g, 18.8 mmol, 0.9 equiv) was added followed by two THF (10 mL each) rinses. The resulting cream-colored slurry was allowed to slowly warm to 0° C. After stirring for 3.5 h, the reaction was quenched at 0 $^{\circ}$ C with H₂O and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (400 mL $SiO₂$, 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 4.95 g (12.6 mmol, 67% yield) of **374** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 4.89 (t, *J* = 7.3 Hz, 1H), 4.76 (t, *J* = 3.6 Hz, 1H), 4.72 (t, *J* = 3.6 Hz, 1H), 3.51 (s, 3H), 3.46 (s, 3H), 3.15 (s, 3H), 2.75 (t, *J* = 3.6 Hz, 2H), 2.61 (dd, *J* = 8.0, 3.9 Hz, 1H), 2.34-2.27 (m, 2H), 2.03 (dd, *J* = 13.7, 3.9 Hz, 1H), 1.76 (dd, *J* = 13.7, 8.0 Hz, 1H), 1.62 (s, 3H), 1.54 (s, 3H), 1.54- 1.49 (m, 1H), 1.42-1.37 (m, 2H), 1.35-1.30 (m, 2H), 1.27-1.22 (m, 1H), 1.17 (s, 3H), 1.12 (s, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 154.09, 154.02, 132.5, 120.7, 93.05, 92.94, 74.7, 61.47, 61.27, 54.5, 54.1, 49.3, 46.2, 40.11, 39.91, 34.6, 34.1, 26.1, 25.23, 25.17, 24.2, 19.8, 17.9, 16.8.

FTIR (thin film) νmax: 2972, 2912, 2828, 1695, 1659, 1453, 1381, 1364, 1223, 1206, 1151, 1124, 1084, 1033, 973, 952, 849, 779, 689 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{24}H_{40}O_4$, 393.2999; found, 393.3000.

TLC $R_f = 0.37$ (8:2 hexane:EtOAc).

(2*S***,3***S***,3a***R***,7***R***,7a***S***)-6,7a-Dimethoxy-3-(4-methoxy-4-methylpentyl)-3-methyl-7-(3-methylbut-2-en-1 yl)-2,3,3a,4,7,7a-hexahydro-2,7-methanobenzofuran (375):**

A THF (63 mL) solution of **374** (4.91 g, 12.5 mmol, 1 equiv) and 2,6-lutidine (3.0 mL, 38 mmol, 3 equiv) in a 200-mL round-bottom flask was cooled to –78 ºC, and trimethylsilyl trifluoromethanesulfonate (4.5 mL, 25 mmol, 2 equiv) was added. The resulting golden yellow solution was stirred at -78 °C for 45 min and subsequently quenched at -78 °C with sat. aq. NaHCO₃. The mixture was warmed to rt and extracted thrice with CH_2Cl_2 . The organic extracts were combined, sequentially washed with 1 N HCl, H₂O, and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (300 mL SiO₂, 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 3.74 g (9.52 mmol, 76% yield) of **375** as a pale yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 5.33 (t, *J* = 7.1 Hz, 1H), 4.51 (dd, *J* = 5.5, 2.1 Hz, 1H), 3.74 (d, *J* = 4.6 Hz, 1H), 3.47 (s, 3H), 3.45 (s, 3H), 3.15 (s, 3H), 2.34 (dd, *J* = 14.7, 6.8 Hz, 1H), 2.21 (dd, *J* = 6.8, 1.8 Hz, 1H), 2.18 (dd, *J* = 6.7, 2.3 Hz, 1H), 2.03 (m, 1H), 2.02-1.99 (m, 1H), 1.77 (dd, *J* = 12.0, 4.6 Hz, 1H), 1.75 $(d, J = 12.0 \text{ Hz}, 1H), 1.69 \text{ (s, 3H)}, 1.60 \text{ (s, 3H)}, 1.42-1.28 \text{ (m, 4H)}, 1.18 \text{ (td, } J = 12.6, 3.0 \text{ Hz}, 1H), 1.12 \text{ (s, 3H)}$ 3H), 1.11 (s, 3H), 1.11 (s, 3H), 1.03-0.95 (m, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 158.6, 131.2, 123.6, 112.6, 90.5, 79.0, 74.6, 54.6, 51.4, 49.3, 46.5, 44.5, 41.9, 41.2, 39.3, 34.0, 32.8, 28.2, 26.4, 25.23, 25.15, 20.1, 18.5, 18.0.

Key 1D nOe correlations.

FTIR (thin film) v_{max} : 2968, 2839, 1670, 1451, 1374, 1363, 1208, 1166, 1078, 1006, 843, 805, 785 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{24}H_{40}O_4$, 415.2819; found, 415.2832. **TLC** $R_f = 0.49$ (8:2 hexane:EtOAc).

(2*S***,3***S***,3a***S***,7***R***,7a***S***)-6,7a-Dimethoxy-3-(4-methoxy-4-methylpentyl)-3-methyl-7-(3-methylbut-2-en-1-**

yl)-3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2*H***)-one (376):**

An EtOAc692 (30 mL) slurry of cesium carbonate (12.76 g, 36.2 mmol, 4 equiv), **375** (3.55 g, 9.04 mmol, 1 equiv), and a nonane solution of *tert*-butyl hydroperoxide (5.5 M, 6.6 mL, 36 mmol, 4 equiv) in a 3 neck 300-mL round-bottom flask was cooled to -78 °C with rapid O_2 bubbling, and an EtOAc (25 mL) solution of [bis(trifluoroacetoxy)iodo]benzene (11.67 g, 27.1 mmol, 3 equiv) was added dropwise over 30 min followed by an EtOAc (5 mL) rinse. After stirring the reaction at –78 ºC for 2 h, it was allowed to slowly warm to 0 °C. Afte stirring the pink slurry for 2.25 h, O_2 bubbling was suspended, and the reaction was quenched at 0° C with sat. aq. Na₂S₂O₃. The resulting yellow slurry was stirred vigorously at rt for 45 min and then extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (300 mL $SiO₂$, 7:3 hexane:EtOAc) afforded 1.069 g (2.629 mmol, 29% yield) of **376** as a pale yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.33 (s, 1H), 5.29 (t, *J* = 7.2 Hz, 1H), 3.90 (d, *J* = 5.7 Hz, 1H), 3.70 (s, 3H), 3.46 (s, 3H), 3.12 (s, 3H), 2.67 (s, 1H), 2.41 (dd, *J* = 14.9, 6.1 Hz, 1H), 2.34 (dd, *J* = 14.9, 8.0 Hz, 1H), 2.00 (d, *J* = 13.0 Hz, 1H), 1.93 (dd, *J* = 13.0, 5.7 Hz, 1H), 1.69 (s, 3H), 1.62 (s, 3H), 1.39-1.29 (m, 4H), 1.26 (s, 3H), 1.23-1.11 (m, 2H), 1.09 (s, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 198.0, 181.3, 133.0, 122.1, 115.4, 100.8, 80.7, 74.5, 56.8, 56.4, 52.2, 49.3, 48.6, 48.1, 40.9, 38.8, 34.6, 32.1, 28.0, 26.3, 25.3, 25.0, 18.2, 17.9.

FTIR (thin film) v_{max} : 2969, 2943, 2873, 1720, 1649, 1602, 1453, 1372, 1227, 1070, 1003, 681 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{24}H_{38}O_5$, 429.2611; found, 429.2614.

TLC $R_f = 0.18$ (1:1 hexane:EtOAc).

 \overline{a}

 692 The EtOAc used in this procedure was sparged with O₂ for 30 min directly prior to use.

5-((2*S***,3***R***)-3-(Bromomethyl)-2-methyloxiran-2-yl)-2-methylpentan-2-ol (380):**

A 1:1 THF/H2O (1 L) slurry of mercury(II) acetate (255.52 g, 801.82 mmol, 1.5 equiv) in a 2-L recovery flask was treated with **289** (124.63 g, 534.55 mmol, 1 equiv), and the resulting yellow solution was stirred at rt for 10 min. The solution was then cooled using a 0 $^{\circ}$ C ice bath, and an aqueous solution of NaOH (3) M, 900 mL) was added. The resulting bright yellow-orange slurry was stirred at 0 $^{\circ}$ C for 2 min, and a basic, aqueous solution of N a BH_4 (0.5 M N a BH_4 in 3 M NaOH aqueous solution, 900 mL) was added, immediately producing a gray slurry. After stirring an additional 10 min at 0 ºC, the slurry was extracted thrice with EtOAc. The organic extracts were combined, sequentially washed thrice with H_2O and once with brine, dried over Na2SO4, filtered, and concentrated *in vacuo*. The resulting yellow oil was dissolved in 1:1 hexane:EtOAc and passed through a plug of $SiO₂$, rinsing with 1:1 hexane:EtOAc. Concentration of the filtrate *in vacuo* yielded 122.21 g (486.58 mmol, 91% yield) of **380** as a pale yellow oil that was used without further purification.

¹**H NMR** (600 MHz; CDCl₃) δ: 3.53 (dd, *J* = 10.4, 5.9 Hz, 1H), 3.24 (dd, *J* = 10.4, 7.8 Hz, 1H), 3.07 (dd, *J* = 7.7, 6.0 Hz, 1H), 1.67-1.63 (m, 1H), 1.51-1.44 (m, 5H), 1.43-1.39 (m, 1H), 1.31-1.29 (s, 3H), 1.20 (s, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 71.0, 63.3, 61.5, 43.6, 38.7, 29.9, 29.51, 29.42, 20.0, 16.2.

FTIR (thin film) v_{max} : 3458 (br), 2971, 2947, 2872, 1471, 1386, 1222, 1153, 1073, 891 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{10}H_{19}BrO_2$, 273.0461; found, 273.0457.

 $[\alpha]_D^{23} = +23.1^\circ$ (*c* 1.83, CHCl₃).

TLC $R_f = 0.32$ (1:1 hexane:EtOAc).

((5-((2*S***,3***R***)-3-(Bromomethyl)-2-methyloxiran-2-yl)-2-methylpentan-2-yl)oxy)triethylsilane (379):**

A DMF (1 L) solution of **380** (121.84 g, 485.11 mmol, 1 equiv) and imidazole (132.10 g, 1.940 mol, 4 equiv) in a 2-L recovery flask was placed in a rt $H₂O$ bath and treated with chlorotriethylsilane (163 mL, 0.970 mol, 2 equiv). After stirring the resulting yellow solution at rt for 105 min, the flask was cooled using a 0° C ice bath and slowly quenched with sat. aq. NaHCO₃. After effervescence ceased, the mixture was extracted thrice with 9:1 hexane:EtOAc. The organic extracts were combined, sequentially washed thrice with H2O and once with brine, dried over Na2SO4, filtered, and concentrated *in vacuo*. The resulting colorless oil was dissolved in 95:5 hexane:EtOAc and passed through a plug of $SiO₂$, rinsing with 95:5 hexane:EtOAc. Concentration of the filtrate *in vacuo* yielded 171.69 g (469.84 mmol, 97%) yield) of **379** as a colorless oil that was used without further purification.

¹**H NMR** (600 MHz; CDCl₃) δ: 3.55 (dd, *J* = 10.4, 5.9 Hz, 1H), 3.25 (dd, *J* = 10.4, 7.9 Hz, 1H), 3.07 (dd, *J* = 7.8, 5.9 Hz, 1H), 1.66 (ddd, *J* = 13.2, 9.3, 5.3 Hz, 1H), 1.52-1.37 (m, 5H), 1.30 (s, 3H), 1.20 (s, 6H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 73.3, 63.4, 61.6, 45.0, 38.9, 30.11, 30.02, 20.2, 16.2, 7.3, 7.0.

FTIR (thin film) v_{max} : 2953, 2912, 2876, 1462, 1383, 1364, 1233, 1155, 1042, 1017, 743, 724 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{16}H_{33}BrO_2Si$, 387.1325; found, 387.1326.

 $[\alpha]_D^{23}$ = +16.8° (*c* 6.20, CHCl₃).

TLC $R_f = 0.83$ (1:1 hexane:EtOAc).

((5-((2*S***,3***S***)-3-((2,6-Dimethoxy-1-(3-methylbut-2-en-1-yl)cyclohexa-2,5-dien-1-yl)methyl)-2-**

methyloxiran-2-yl)-2-methylpentan-2-yl)oxy)triethylsilane (381):

A THF (1 L) solution of **312** (46.52 g, 223.3 mmol, 1 equiv) in a 2-neck 3-L round-bottom flask outfitted with an equal pressure dropping funnel was cooled using a –78 ºC dry ice/acetone bath, and a *c*-Hex solution of *sec*-butyllithium (1.56 M, 170. mL, 235 mmol, 1.05 equiv) was added dropwise over 30 min via the equal pressure dropping funnel, maintaining an internal reaction temperature ≤ -65 °C. The resulting yellow-orange slurry was allowed to slowly warm to –30 ºC over 90 min, and the resulting deep red slurry was stirred at –30 ºC for 15 min. The reaction was then cooled using a –78 ºC dry ice/acetone bath, and a THF (200 mL) solution of **379** (73.45 g, 201.0 mmol, 0.9 equiv) was added dropwise via cannula, followed by two THF (50 mL each) rinses, maintaining an internal reaction temperature ≤ -65 ºC throughout the addition. The resulting pale yellow solution was allowed to slowly warm to –40 ºC over 1 h and quenched at -40 °C with sat. aq. NaHCO₃, which produced a small amount of effervescence. The mixture was warmed to rt and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, sequentially washed sequentially with H_2O and brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a pale yellow oil. Flash column chromatography (1 L SiO₂, 98:2 hexane:EtOAc) afforded 83.99 g (170.4 mmol, 85% yield) of **381** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 4.90 (t, *J* = 7.3 Hz, 1H), 4.77 (t, *J* = 3.5 Hz, 1H), 4.72 (t, *J* = 3.6 Hz, 1H), 3.52 (s, 3H), 3.47 (s, 3H), 2.76 (t, *J* = 3.6 Hz, 2H), 2.62 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.31 (qd, *J* = 10.8, 7.6 Hz, 2H), 2.03 (dd, *J* = 13.7, 3.9 Hz, 1H), 1.77 (dd, *J* = 13.7, 7.9 Hz, 1H), 1.63 (s, 3H), 1.55 (s, 3H), 1.53- 1.48 (m, 1H), 1.41-1.31 (m, 4H), 1.28-1.21 (m, 1H), 1.18 (s, 3H), 1.17 (s, 6H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.55 (q, $J = 7.9$ Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 154.09, 154.04, 132.5, 120.7, 93.02, 92.90, 73.5, 61.45, 61.32, 54.5, 54.1, 46.2, 45.4, 39.9, 34.6, 34.2, 30.2, 30.0, 26.1, 24.3, 20.2, 17.9, 16.8, 7.3, 7.0.

FTIR (thin film) νmax: 2953, 2913, 2831, 1695, 1660, 1458, 1382, 1224, 1206, 1152, 1124, 1041, 778, 742, 723 cm^{-1} .

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{29}H_{52}O_4Si$, 493.3708; found, 493.3708.

 $[\alpha]_D^{23}$ = +22.1° (*c* 0.58, CHCl₃).

TLC $R_f = 0.27$ (95:5 hexane:EtOAc).

((5-((3*S***,3a***R***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-7-(3-methylbut-2-en-1-yl)-2,3,3a,4,7,7a-hexahydro-**

2,7-methanobenzofuran-3-yl)-2-methylpentan-2-yl)oxy)triethylsilane (382):

A CH2Cl2 (30 mL) solution of **381** (2.73 g, 5.54 mmol, 1 equiv) in a 100-mL recovery flask was cooled using a -78 °C dry ice/acetone bath, and 2,6-lutidine (1.3 mL, 17 mmol, 3 equiv) and trimethylsilyl trifluoromethanesulfonate (2.46 g, 11.1 mmol, 2 equiv) were added sequentially. The resulting yellow solution was stirred at -78 °C for 45 min and subsequently quenched at -78 °C with sat. aq. NaHCO₃. After warming the mixture to rt, it was extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with 2 N HCl, H_2O , sat. aq. NaHCO₃, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a colorless oil. Flash column chromatography (200 mL SiO₂, 99:1 \rightarrow 98:2 hexane:EtOAc) afforded 2.15 g (4.35 mmol, 79% yield of **382** as a pale yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 5.33 (t, *J* = 7.1 Hz, 1H), 4.51 (dd, *J* = 5.5, 2.0 Hz, 1H), 3.72 (t, *J* = 2.7 Hz, 1H), 3.47 (s, 3H), 3.45 (s, 3H), 2.34 (dd, *J* = 14.7, 6.8 Hz, 1H), 2.21-2.16 (m, 1H), 2.21-2.16 (m, 1H), 2.04-2.00 (m, 1H), 2.04-2.00 (m, 1H), 1.76 (d, *J* = 2.7 Hz, 1H), 1.69 (s, 3H), 1.61 (s, 3H), 1.37 (m, 1H), 1.35-1.34 (m, 1H), 1.34-1.31 (m, 1H), 1.31-1.29 (m, 1H), 1.19 (m, 1H), 1.16 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H), 1.08-1.02 (m, 1H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.54 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 158.6, 131.1, 123.6, 112.6, 90.5, 79.0, 73.4, 54.5, 51.4, 46.49, 46.34, 44.5, 41.9, 39.3, 34.0, 32.7, 30.2, 30.0, 28.2, 26.3, 20.1, 18.9, 17.9, 7.3, 7.0.

FTIR (thin film) v_{max} : 2960, 2876, 2839, 1669, 1456, 1375, 1240, 1166, 1007, 853, 803, 743, 722 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{29}H_{52}O_4Si$, 493.3708; found, 493.3716.

 $[\alpha]_D^{22}$ = +17.6° (*c* 2.76, CHCl₃).

TLC $R_f = 0.50$ (9:1 hexane:EtOAc).

(**3***S***,3a***S***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-3-(4-methyl-4-((triethylsilyl)oxy)pentyl)-7-(3-methylbut-**

2-en-1-yl)-3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2*H***)-one (383):**

An EtOAc⁶⁹³ (500 mL) slurry of [bis(trifluoroacetoxy)iodo]benzene (133.9 g, 311.4 mmol, 3 equiv), cesium carbonate (146.5 g, 415.3 mmol, 4 equiv), 4Å molecular sieves (8.0 g, powdered), and **382** (51.16 g, 103.8 mmol, 1 equiv) in an open 2-L recovery flask was cooled using a –78 ºC dry ice/acetone bath with vigorous O₂ bubbling through the slurry via three foreshortened glass pipettes. An EtOAc (200 mL, sparged for 1 h with $O₂$ directly prior to the reaction) dilution of a nonane solution of *tert*-butyl hydroperoxide (5.5 M, 38 mmol, 210 mmol, 2 equiv) was added via cannula over 20 min. The resulting yellow slurry was allowed to slowly warm to -15 °C over 2.5 h, at which point O₂ bubbling was suspended. The reaction was then quenched at -15 °C with sat. aq. Na₂S₂O₃. After warming the slurry to rt, the layers were separated. The aqueous layer was extracted thrice with EtOAc. The organic extracts were combined, sequentially washed twice with H_2O and once with brine, dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to a red oil. Flash column chromatography (850 mL SiO₂, 9:1 \rightarrow 8:2 hexane:EtOAc) afforded 22.92 g (45.23 mmol, 44% yield) of **383** as a viscous yellow syrup.

¹**H NMR** (500 MHz; CDCl₃) δ: 5.28 (s, 1H), 5.24 (t, *J* = 7.1 Hz, 1H), 3.82 (d, *J* = 5.7 Hz, 1H), 3.64 (s, 3H), 3.40 (s, 3H), 2.61 (s, 1H), 2.36 (dd, *J* = 14.8, 6.2 Hz, 1H), 2.28 (dd, *J* = 14.8, 8.1 Hz, 1H), 1.95 (d, *J* = 13.0 Hz, 1H), 1.86 (dd, *J* = 13.0, 5.7 Hz, 1H), 1.63 (s, 3H), 1.56 (s, 3H), 1.26 (m, 1H), 1.24 (m, 1H), 1.21 (m, 1H), 1.20 (m, 1H), 1.19 (s, 3H), 1.09 (s, 6H), 1.04-0.96 (m, 1H), 0.85 (t, *J* = 7.9 Hz, 9H), 0.47 $(q, J = 7.9 \text{ Hz}, 6\text{H}).$

¹³C NMR (125 MHz; CDCl₃) δ: 197.8, 181.1, 132.6, 122.0, 115.2, 100.6, 80.6, 73.1, 56.7, 56.2, 52.0, 48.4, 48.0, 45.7, 38.7, 34.5, 32.0, 30.1, 29.7, 27.8, 26.1, 18.5, 17.8, 7.1, 6.8.

FTIR (thin film) ν_{max}: 2966, 2913, 2875, 1653, 1606, 1457, 1373, 1229, 1172, 1006, 725 cm⁻¹.

 \overline{a}

 693 The EtOAc used in this procedure was sparged with O₂ for 1 h directly prior to use.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{29}H_{50}O_5Si$, 529.3320; found, 529.3304.

 $[\alpha]_D^{23} = +30.6^\circ$ (*c* 3.22, CHCl₃).

TLC $R_f = 0.50$ (7:3 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***,9***S***)-7,9-Dihydroxy-4,9-dimethoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-**

(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-en-2-one (384):

A CH2Cl2 (20 mL) solution of **383** (794 mg, 1.57 mmol, 1 equiv) and triethylamine (131 µL, 0.940 mmol, 6 equiv) in a 25-mL recovery flask was cooled using a –95 °C ethanol/liquid nitrogen bath, and a CH_2Cl_2 solution of bromodimethylborane⁶⁹⁴ (1.59 M, 5.9 mL, 0.94 mmol, 6 equiv) was added slowly over 5 min, maintaining a bath temperature below –90 ºC. The resulting bright yellow solution was stirred at –95 ºC for an additional 10 min and sequentially quenched at -95° C with 6 mL NEt₃ and sat. aq. NaHCO₃. After warming the mixture to rt, it was extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with 2 N HCl, H_2O , sat. aq. NaHCO₃, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow-orange oil. Flash column chromatography (150 mL SiO₂, 8:2 \rightarrow 7:3 hexane:EtOAc) afforded 471 mg (0.897 mmol, 57% yield) of **384** as a white flocculent solid.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.48 (s, 1H), 5.26 (d, *J* = 9.0 Hz, 1H), 5.05 (t, *J* = 7.1 Hz, 1H), 3.74 (s, 3H), 3.63-3.59 (m, 1H), 3.57 (s, 1H), 3.26 (s, 3H), 2.87-2.83 (m, 2H), 2.36 (tt, *J* = 12.5, 6.2 Hz, 1H), 2.25 $(d, J = 14.0 \text{ Hz}, 1\text{H})$, 2.01-1.93 (m, 2H), 1.92-1.86 (m, 1H), 1.73 (s, 3H), 1.68 (s, 3H), 1.65 (s, 6H), 1.46 (td, $J = 13.0$, 4.8 Hz, 1H), 1.32 (d, $J = 5.9$ Hz, 1H), 1.11 (s, 3H), 1.05 (td, $J = 12.9$, 4.4 Hz, 1H).

¹³C NMR (125 MHz; CDCl₃) δ: 198.2, 176.1, 137.4, 131.4, 125.0, 122.1, 104.1, 100.6, 73.2, 57.6, 56.6, 51.1, 48.5, 40.5, 39.2, 36.9, 30.0, 26.2, 25.9, 21.9, 18.00, 17.88, 17.0.

FTIR (thin film) νmax: 3465(br), 2954, 2913, 2876, 1659, 1645, 1606, 1456, 1365, 1225, 1173, 1087, 1044, 1016, 742, 725 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{23}H_{36}O_5$, 393.2636; found, 393.2632.

 $[\alpha]_D^{23} = -24^\circ$ (*c* 0.70, CHCl₃).

 \overline{a}

 694 A CH₂Cl₂ solution of bromodimethylborane was prepared as described in ref. 639b.

TLC $R_f = 0.50$ (1:1 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***S***)-7-Hydroxy-4-methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-**

methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (385):

A THF (8 mL) solution of **384** (419.9 mg, 0.8001 mmol, 1 equiv) in a 50-mL recovery flask was cooled using a -78 °C dry ice/acetone bath, and a freshly prepared THF solution of lithium 2,2,6,6tetramethylpiperidide (0.50 M, 4.0 mL, 2.0 mmol, 2.5 equiv) was added. The resulting orange solution was allowed to warm to 0 °C over 50 min. The reaction was then quenched at 0 °C with sat. aq. NaHCO₃ at 0 ºC. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to an orange oil. Flash column chromatography (100 mL SiO₂, 7:3 hexane:EtOAc) afforded 381.6 mg (0.7744 mmol, 97% yield) of **385** as a viscous yellow oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.63 (s, 1H), 4.95 (t, *J* = 7.0 Hz, 1H), 3.78 (d, *J* = 7.8 Hz, 1H), 3.73 (s, 3H), 3.15 (s, 1H), 2.47 (dd, *J* = 14.5, 6.4 Hz, 1H), 2.37 (dd, *J* = 14.5, 7.6 Hz, 1H), 2.09 (dd, *J* = 13.4, 5.4 Hz, 1H), 1.88 (s, 1H), 1.73 (dd, *J* = 13.3, 11.6 Hz, 1H), 1.65 (m, 7H), 1.52 (td, *J* = 12.6, 3.5 Hz, 1H), 1.39 (td, *J* = 12.5, 4.1 Hz, 1H), 1.34-1.27 (m, 2H), 1.23 (m, 4H), 1.18 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.86 (s, 3H), 0.54 (q, *J* = 7.8 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 205.4, 193.1, 177.4, 134.4, 119.0, 105.9, 73.6, 72.0, 69.2, 57.0, 56.0, 46.2, 45.6, 39.4, 38.4, 30.6, 29.50, 29.48, 26.1, 18.1, 17.9, 15.7, 7.3, 6.9.

FTIR (thin film) νmax: 3458(br), 2953, 2876, 1740, 1733, 1661, 1594, 1454, 1364, 1231, 1038, 842, 743, 724 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{28}H_{48}O_5Si$, 515.3163; found, 515.3170.

 $[\alpha]_D^{23} = +32.1^\circ$ (*c* 2.30, CHCl₃).

TLC $R_f = 0.56$ (1:1 hexane:EtOAc).

*O***-((1***S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-2-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2-**

en-1-yl)-8,9-dioxobicyclo[3.3.1]non-6-en-3-yl) *O***-phenyl carbonothioate (387):**

A THF solution of **384** (71 mg, 0.14 mmol, 1 equiv) in a 10-mL recovery flask was cooled to –78 ºC, and a hexane solution of butyllithium (2.02 M, 141 µL, 0.28 mmol, 2.1 equiv) was added dropwise over 5 min. After stirring the reaction at –78 °C for 20 min, *O*-phenyl chlorothionoformate (39 µL, 0.28 mmol, 2.1 equiv) was added in one portion. The resulting yellow solution was allowed to slowly warm to rt. After stirring for 90 min, the reaction was quenched at rt with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to an orange oil. Flash column chromatography (50 mL SiO₂, 95:5 hexane:EtOAc) afforded 51 mg (81 µmol, 60% yield) of **387** as a yellow oil.

1 H NMR (600 MHz; CDCl3) δ: 7.41 (dd, *J* = 8.4, 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.08-7.06 (m, 2H), 5.74 (s, 1H), 5.53 (dd, *J* = 11.5, 5.4 Hz, 1H), 4.99 (t, *J* = 7.0 Hz, 1H), 3.80 (s, 3H), 3.25 (s, 1H), 2.56-2.53 (m, 2H), 2.44 (dd, *J* = 14.6, 7.4 Hz, 1H), 1.86 (dd, *J* = 12.9, 11.7 Hz, 1H), 1.69-1.65 (m, 7H), 1.58-1.56 (m, 1H), 1.47-1.41 (m, 2H), 1.37 (m, 2H), 1.23 (s, 3H), 1.23 (s, 3H), 1.03 (s, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.58 (q, $J = 7.9$ Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 204.2, 194.6, 192.2, 177.0, 153.4, 134.9, 129.8, 126.9, 122.0, 118.7, 106.3, 84.6, 73.6, 69.8, 57.4, 55.7, 45.66, 45.60, 38.1, 34.3, 30.5, 29.7, 29.4, 26.2, 18.2, 17.8, 17.5, 7.4, 7.0.

FTIR (thin film) v_{max} : 2958, 2911, 2874, 1739, 1659, 1594, 1490, 1275, 1206, 1034, 1017, 743 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{35}H_{52}O_7SSi$, 651.3152; found, 651.3130.

TLC $R_f = 0.57$ (7:3 hexane:EtOAc).

*O***-((1***S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-2-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2 en-1-yl)-8,9-dioxobicyclo[3.3.1]non-6-en-3-yl)** *O***-(perfluorophenyl) carbonothioate (388):**

A PhMe (100 mL) solution of **385** (5.40 g, 11.0 mmol, 1 equiv), *N*-hydroxysuccinimide (1.26 g, 11.0 mmol, 1 equiv), and pyridine (4.4 mL, 55 mmol, 5 equiv) in a 200-mL recovery flask was treated with pentafluorophenyl chlorothionoformate (8.8 mL, 55 mmol, 5 equiv), and the resulting yellow-orange slurry was stirred at 80 °C for 2 h. After cooling the resulting orange slurry to rt, it was diluted with EtOAc and sequentially washed twice with H_2O and once with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a black oil. Flash column chromatography (700 mL SiO₂, 98:2 \rightarrow 9:1 hexane:EtOAc) afforded 6.47 g (9.00 mmol, 82% yield) of **388** as viscous brown-orange syrup.

1 H NMR (600 MHz; CDCl3) δ: 5.74 (s, 1H), 5.45 (dd, *J* = 11.6, 5.4 Hz, 1H), 4.98 (t, *J* = 6.9 Hz, 1H), 3.80 (s, 3H), 3.27 (s, 1H), 2.55 (dd, *J* = 14.5, 6.3 Hz, 1H), 2.50 (dd, *J* = 13.0, 5.4 Hz, 1H), 2.45 (dd, *J* = 14.5, 7.5 Hz, 1H), 1.92 (t, *J* = 12.3 Hz, 1H), 1.69-1.68 (m, 7H), 1.42-1.29 (m, 5H), 1.21 (s, 6H), 1.07 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.57 (q, *J* = 8.0 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 203.7, 191.8, 176.8, 135.1, 118.4, 106.3, 87.2, 73.5, 69.6, 57.4, 55.6, 45.64, 45.45, 38.0, 34.0, 30.4, 29.7, 29.3, 26.1, 18.2, 17.7, 17.4, 7.3, 7.0.

19F NMR (282 MHz; CDCl3) δ: –152.71 (d, *J* = 18.1 Hz, 2F), –156.71 (t, *J* = 21.9 Hz, 1F), –162.21 (t, *J* = 19.8 Hz, 2F).

FTIR (thin film) νmax: 2960, 2914, 2876, 1742, 1668, 1599, 1523, 1456, 1380, 1312, 1222, 1158, 1043, 966, 845, 743, 725 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{34}H_{47}F_5O_6SSi$, 741.2675; found, 741.2667.

 $[\alpha]_D^{23} = +5.16^\circ$ (*c* 2.28, CHCl₃).

TLC $R_f = 0.69$ (7:3 hexane:EtOAc).

*O***-((1***S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-2-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2-**

en-1-yl)-8,9-dioxobicyclo[3.3.1]non-6-en-3-yl) *S***-methyl carbonodithioate (389):**

A THF (2 mL) solution of **385** (18.0 mg, 36.5 µmol, 1 equiv) and carbon disulfide (22 µL, 0.37 mmol, 10 equiv) in a 10-mL recovery flask was cooled to 0° C, and sodium hydride (60% suspension in mineral oil, 15 mg, 0.37 mmol, 10 equiv) was added. After stirring the resulting white slurry at 0 ºC for 30 min, iodomethane (23 µL, 0.37 mmol, 10 equiv) was added. The resulting yellow slurry was allowed to slowly warm to rt. After stirring for 15.5 h, the reaction was quenched at rt with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (20 mL SiO₂, $98:2 \rightarrow 95:5 \rightarrow 9:1$ hexane:EtOAc) afforded 16.8 mg (28.8 µmol, 79% yield) of **389** as a colorless oil.

1 H NMR (600 MHz; CDCl3) δ: 5.88 (dd, *J* = 11.6, 5.4 Hz, 1H), 5.73 (s, 1H), 4.97 (t, *J* = 7.0 Hz, 1H), 3.80 (s, 3H), 3.23 (s, 1H), 2.55-2.50 (m, 4H), 2.48 (dd, *J* = 13.0, 5.4 Hz, 1H), 2.40 (dd, *J* = 14.6, 7.3 Hz, 1H), 1.76 (dd, *J* = 13.0, 11.6 Hz, 1H), 1.62-1.60 (m, 7H), 1.40-1.22 (m, 5H), 1.19 (s, 6H), 1.07 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 215.8, 204.3, 192.2, 177.1, 134.8, 118.7, 106.2, 83.2, 73.5, 70.1, 57.3, 55.7, 45.8, 45.5, 38.3, 34.5, 30.5, 29.7, 29.3, 26.1, 19.2, 18.2, 17.86, 17.74, 7.4, 7.0

FTIR (thin film) v_{max} : 2956, 2911, 2874, 1739, 1658, 1595, 1458, 1353, 1231, 1208, 1050, 742, 724 cm⁻¹. **HRMS–ESI** (m / z): $[M+Na]^+$ calculated for $C_{30}H_{50}O_5S_2Si$, 605.2761; found, 605.2737.

TLC $R_f = 0.28$ (9:1 hexane:EtOAc).

*O***-((1***S***,2***S***,3***S***,5***R***)-6-Methoxy-2-methyl-2-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2-**

en-1-yl)-8,9-dioxobicyclo[3.3.1]non-6-en-3-yl) 1*H***-imidazole-1-carbothioate (390):**

A CH2Cl2 (1 mL) solution of **385** (19.2 mg, 39.0 µmol, 1 equiv), 1,1′-thiocarbonyldiimidazole (69 mg, 0.390 mmol, 10 equiv), and 4-(dimethylamino)pyridine (5 mg, 40 µmol, 1 equiv) in a 10-mL test tube was sealed and heated to 40 °C. After stirring the brown-orange solution at 40 °C for 30 h, it was cooled to rt, and quenched with a few drops of MeOH. The mixture was diluted with sat. aq. NaHCO3 and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to an orange oil. Flash column chromatography (25 mL SiO_2 , $8:2 \rightarrow 7:3$ hexane:EtOAc) afforded 12.8 mg (21.2 µmol, 54% yield) of **390** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 8.28 (s, 1H), 7.55 (s, 1H), 7.05 (s, 1H), 5.80-5.75 (m, 2H), 4.99 (t, *J* = 7.0 Hz, 1H), 3.85 (s, 3H), 3.29 (s, 1H), 2.56-2.51 (m, 2H), 2.44 (dd, *J* = 14.6, 7.5 Hz, 1H), 1.85 (t, *J* = 12.3 Hz, 1H), 1.71-1.64 (m, 7H), 1.40-1.23 (m, 5H), 1.17 (s, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 0.91 (t, *J* = 7.9 Hz, 9H), 0.53 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 203.7, 191.8, 183.4, 176.9, 137.0, 135.2, 131.4, 118.4, 117.9, 106.3, 83.8, 73.4, 69.6, 57.5, 55.6, 45.6, 45.4, 38.4, 34.2, 30.5, 29.6, 29.3, 26.2, 18.18, 18.04, 17.8, 7.4, 7.0.

FTIR (thin film) νmax: 2957, 2913, 2874, 1740, 1656, 1595, 1460, 1390, 1332, 1285, 1221, 1108, 1042, 986, 742, 724 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{32}H_{50}N_2O_5SSi$, 625.3102; found, 625.3082.

TLC $R_f = 0.58$ (1:1 hexane:EtOAc).

388 (6.46 g, 8.99 mmol, 1 equiv) was taken up in PhH (10 mL) and allyltributylstannane (30 mL) in a 200-mL recovery flask open to air, and a PhH solution of triethylborane (5.0 M, 0.90 mL, 4.5 mmol, 0.5 equiv) was added. The resulting golden yellow solution was stirred vigorously open to air for 30 min, and a PhH solution of triethylborane (5.0 M, 0.90 mL, 4.5 mmol, 0.5 equiv) was added. After stirring an additional 40 min, the solution was concentrated partially *in vacuo* and purified using flash column chromatography (700 mL SiO₂, 98:2 \rightarrow 95:5 hexane:EtOAc) to afford 3.35 g (6.48 mmol, 72% yield) of **386** as a colorless oil and 701 mg (1.47 mmol, 16% yield) of **391** as a pale yellow oil.

(1*S***,5***R***,7***S***,8***R***)-7-Allyl-4-methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (386):**

¹**H** NMR (600 MHz; CDCl₃) δ: 5.69 (s, 1H), 5.65 (dddd, *J* = 16.8, 10.3, 8.5, 5.5 Hz, 1H), 5.01 (dd, *J* = 4.9, 0.8 Hz, 1H), 4.99 (dd, *J* = 11.7, 0.8 Hz, 1H), 4.96 (t, *J* = 7.0 Hz, 1H), 3.73 (s, 3H), 3.13 (s, 1H), 2.46 (dd, *J* = 14.4, 5.9 Hz, 1H), 2.36 (dd, *J* = 14.7, 7.8 Hz, 1H), 2.34-2.30 (m, 1H), 1.97 (dd, *J* = 13.9, 4.6 Hz, 1H), 1.77-1.69 (m, 2H), 1.67-1.64 (m, 4H), 1.63 (s, 3H), 1.48-1.38 (m, 3H), 1.34-1.32 (m, 1H), 1.27 (m, 1H), 1.24-1.22 (m, 4H), 1.21 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.81 (s, 3H), 0.57 (q, *J* = 7.8 Hz, 6H). ¹³C **NMR** (125 MHz; CDCl₃) δ: 207.2, 193.9, 177.5, 137.2, 133.9, 119.5, 116.8, 106.5, 73.7, 70.8, 56.98, 56.95, 46.2, 45.7, 39.8, 39.29, 39.16, 33.9, 30.6, 29.8, 29.6, 26.1, 18.13, 18.06, 17.90, 7.4, 7.0.

FTIR (thin film) νmax: 2961, 2917, 2876, 1733, 1657, 1599, 1460, 1365, 1227, 1171, 1042, 1017, 743, 724 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{31}H_{52}O_4Si$, 539.3527; found, 539.3521.

 $[\alpha]_D^{23}$ = +23.5° (*c* 0.54, CHCl₃).

TLC $R_f = 0.45$ (8:2 hexane:EtOAc).

(1*S***,5***S***,8***R***)-4-Methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5-(3-methylbut-2-en-1 yl)bicyclo[3.3.1]non-3-ene-2,9-dione (391):**

¹**H NMR** (500 MHz; CDCl₃) δ: 5.72 (s, 1H), 4.96 (t, *J* = 7.0 Hz, 1H), 3.74 (s, 3H), 2.97 (s, 1H), 2.50 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.38 (dd, *J* = 14.5, 7.8 Hz, 1H), 1.84-1.80 (m, 1H), 1.77 (dd, *J* = 13.7, 4.2 Hz, 1H), 1.69-1.67 (m, 1H), 1.65 (s, 3H), 1.63 (s, 3H), 1.52-1.27 (m, 7H), 1.25-1.20 (m, 3H), 1.18 (s, 6H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.54 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (125 MHz; CDCl₃) δ: 207.1, 194.1, 177.1, 133.9, 128.5, 119.5, 106.4, 73.6, 72.3, 56.9, 45.6, 43.5, 42.3, 33.4, 31.8, 30.5, 29.80, 29.76, 26.1, 22.0, 18.16, 18.12, 7.3, 7.0.

FTIR (thin film) v_{max} : 2954, 2911, 2875, 1733, 1655, 1597, 1458, 1365, 1224, 1044, 1015, 743, 724 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{28}H_{48}O_4Si$, 499.3214; found, 499.3204.

TLC $R_f = 0.38$ (8:2 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***R***)-4-Methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5,7-bis(3-methylbut-2 en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (392):**

A CH2Cl2 (0.5 mL) and 2-methyl-2-butene (0.5 mL) solution of **386** (18.4 mg, 35.6 µmol, 1 equiv) and Hoveyda–Grubbs 2nd generation catalyst **117** (3.3 mg, 5.3 µmol, 0.15 equiv) in a sealed 10-mL test tube was stirred at 40 ºC for 2 h. The olive-black solution was subsequently cooled to rt and concentrated *in vacuo*. Flash column chromatography (50 mL SiO₂, 95:5 hexane:EtOAc) afforded 16.7 mg (30.6 µmol, 86% yield) of **392** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.69 (s, 1H), 4.98-4.94 (m, 2H), 3.73 (s, 3H), 3.12 (s, 1H), 2.45 (dd, *J* = 14.2, 6.0 Hz, 1H), 2.36 (dd, *J* = 14.6, 7.7 Hz, 1H), 2.14-2.11 (m, 1H), 1.93 (dd, *J* = 14.0, 4.1 Hz, 1H), 1.69 (s, 3H), 1.67-1.65 (m, 4H), 1.63 (s, 3H), 1.58-1.54 (m, 4H), 1.50-1.45 (m, 2H), 1.44-1.38 (m, 3H), 1.34-1.30 (m, 2H), 1.22 (s, 3H), 1.21 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.82 (s, 3H), 0.57 (q, *J* = 7.8 Hz, 6H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 207.4, 194.0, 177.5, 133.8, 133.3, 122.9, 119.7, 106.5, 73.7, 70.9, 57.1, 56.9, 46.4, 45.7, 40.9, 39.5, 39.2, 30.6, 29.9, 29.6, 27.9, 26.10, 26.05, 18.16, 18.13, 18.06, 17.92, 7.4, 7.0. **FTIR** (thin film) νmax: 2964, 2914, 2876, 1733, 1659, 1656, 1600, 1453, 1368, 1227, 1045, 1017, 723 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{33}H_{56}O_4Si$, 567.3840; found, 567.3831.

 $[\alpha]_D^{22} = +27.2^{\circ} (c \ 3.61, \text{CHCl}_3).$

TLC $R_f = 0.49$ (9:1 hexane:EtOAc).

(1*R***,5***R***,7***S***,8***R***)-4-Methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5,7-bis(3-methylbut-2 en-1-yl)-3-(trimethylsilyl)bicyclo[3.3.1]non-3-ene-2,9-dione (393):**

A THF (1 mL) solution of **392** (22.9 mg, 42.0 µmol, 1 equiv) in a 10-mL test tube was cooled to –78 ºC, and chlorotrimethylsilane (53 μ L, 420 μ mol, 10 equiv) and a freshly prepared THF solution of lithium 2,2,6,6-tetramethylpiperidide (0.50 M, 420 µL, 210 µmol, 5 equiv) were added sequentially. After allowing the resulting golden yellow solution to slowly warm to 0° C over 1 h, it was quenched at 0° C with sat. aq. NaHCO₃. The mixture was then extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (20 mL SiO₂, 98:2 hexane:EtOAc) afforded 23.4 mg (37.9 µmol, 90% yield) of **393** as a viscous yellow syrup.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.02-4.97 (m, 2H), 3.83 (s, 3H), 3.11 (s, 1H), 2.51 (dd, *J* = 14.4, 6.3 Hz, 1H), 2.37 (dd, *J* = 14.5, 7.5 Hz, 1H), 2.15-2.11 (m, 1H), 1.99 (dd, *J* = 14.0, 3.7 Hz, 1H), 1.69 (s, 3H), 1.68-1.63 (m, 9H), 1.57 (s, 3H), 1.48 (td, *J* = 12.7, 3.9 Hz, 1H), 1.46-1.37 (m, 2H), 1.30 (td, *J* = 12.2, 4.1 Hz, 1H), 1.26-1.24 (m, 1H), 1.21 (s, 3H), 1.21 (s, 3H), 1.14 (td, *J* = 12.6, 4.2 Hz, 1H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.80 (s, 3H), 0.57 (q, *J* = 8.1 Hz, 6H), 0.23 (s, 9H).

¹³C NMR (125 MHz; CDCl3) δ: 207.9, 198.6, 185.7, 133.70, 133.59, 127.7, 122.8, 120.0, 73.7, 72.6, 64.1, 59.7, 46.7, 45.7, 41.8, 39.29, 39.27, 30.6, 30.0, 29.7, 27.6, 26.02, 25.97, 18.21, 18.14, 17.88, 17.83, 7.4, 7.0, 0.8.

FTIR (thin film) νmax: 2962, 2914, 2876, 1729, 1652, 1556, 1461, 1440, 1382, 1247, 1216, 1045, 845, 743, 724 cm–1.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{36}H_{64}O_4Si_2$, 617.4416; found, 617.4395.

 $[\alpha]_D^{23}$ = +29.8° (*c* 1.24, CHCl₃).

TLC $R_f = 0.40$ (95:5 hexane:EtOAc).

(1*R***,5***S***,7***S***,8***R***,9***S***)-9-Hydroxy-4-methoxy-8,9-dimethyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5,7-**

bis(3-methylbut-2-en-1-yl)-3-(trimethylsilyl)bicyclo[3.3.1]non-3-en-2-one (394):

A THF (0.5 mL) solution of **393** (7.4 mg, 12 µmol, 1 equiv) in a 10-mL test tube was cooled to –78 ºC, and a freshly prepared THF solution of dilithium (cyano-κC)methyl(2,2,6,6-tetramethyl-1 piperidinyl)copper⁶⁹⁵ (0.17 M, 353 µL, 60. µmol, 5 equiv) was added dropwise. The resulting pale yellow solution was stirred at -78 °C for 10 min and at 0 °C for 15 min. The resulting yellow solution was subsequently cooled to -78 °C, and a THF solution of isobutyryl chloride (1.0 M, 60. μ L, 60. μ mol, 5 equiv) was added. The reaction was stirred at -78 °C for 30 min and then allowed to slowly warm to rt. After stirring an additional 2.5 h, the reaction was quenched at rt with sat. aq. NH4Cl and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O, sat. aq. NaHCO₃, and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow residue. Preparatory thin-layer chromatography $(1 \times 95.5 \text{ hexane:EtOAc})$ afforded 3.7 mg $(5.8 \text{µmol}, 49\% \text{ yield})$ of **394** as a white flocculent solid and 1.1 mg (1.8 µmol, 15% recovery) of **393** as a pale yellow residue.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.40 (t, *J* = 6.8 Hz, 1H), 5.05 (t, *J* = 7.3 Hz, 1H), 3.73 (s, 3H), 2.43-2.41 (m, 2H), 2.27 (s, 1H), 2.14 (dd, *J* = 13.2, 5.4 Hz, 1H), 2.02 (t, *J* = 13.2 Hz, 1H), 1.80-1.75 (m, 1H), 1.74- 1.72 (m, 4H), 1.67-1.63 (m, 7H), 1.61 (s, 3H), 1.50-1.36 (m, 4H), 1.34-1.24 (m, 5H), 1.23 (s, 3H), 1.21 (s, 3H), 1.20 (s, 3H), 1.06 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H), 0.22 (s, 9H). ¹³C NMR (125 MHz; CDCl₃) δ: 205.2, 187.1, 133.3, 132.8, 125.8, 124.1, 122.0, 100.3, 75.9, 74.0, 66.7, 63.7, 52.6, 46.1, 42.9, 41.9, 38.0, 31.02, 30.83, 30.66, 29.4, 28.5, 27.3, 26.4, 26.0, 22.1, 18.2, 17.8, 7.4, 7.0, 0.9.

l

 695 For the preparation of a THF solution of dilithium (cyano-κC)methyl(2,2,6,6-tetramethyl-1-piperidinyl)copper, see ref. 675.

FTIR (thin film) v_{max} : 3503 (br), 2957, 2913, 1651, 1564, 1459, 1380, 1244, 1050, 843, 742, 723 cm⁻¹. **HRMS–ESI** (m / z): $[M+H]^+$ calculated for $C_{37}H_{68}O_4Si_2$, 633.4729; found, 633.4726. **TLC** $R_f = 0.18$ (95:5 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***R***)-1-Isobutyryl-4-methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-5,7-bis(3-**

methylbut-2-en-1-yl)-3-(trimethylsilyl)bicyclo[3.3.1]non-3-ene-2,9-dione (395):

A THF (200 µL) solution of **393** (15.9 mg, 25.8 µmol, 1 equiv) in a 10-mL pear-shaped flask was cooled to –78 °C, and a freshly prepared THF solution of lithium 2,2,6,6-tetramethylpiperidide (0.50 M, 155 μ L, 77.3 µmol, 3 equiv) was added dropwise. The resulting yellow solution was stirred at –78 ºC for 10 min and at 0 °C for 5 min. The resulting orange solution was then cooled to -78 °C, and isobutyryl cyanide⁶⁹⁶ (12.5 mg, 129 µmol, 5 equiv) was added. The resulting yellow solution was slowly warmed to –30 ºC over 35 min and subsequently quenched with sat. aq. NaHCO₃. The mixture was warmed to rt and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H2O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow residue. Preparatory thin-layer chromatography (3 × 98:2 hexane:EtOAc) afforded 8.6 mg (13 µmol, 49% yield) of **395** as a colorless residue.

¹**H NMR** (600 MHz; CDCl₃) δ: 4.98 (m, 1H), 4.97 (m, 1H), 3.91-3.88 (s, 3H), 2.55 (dd, *J* = 14.5, 6.2 Hz, 1H), 2.41 (dd, *J* = 14.4, 7.6 Hz, 1H), 2.08 (d, *J* = 13.5 Hz, 1H), 1.97 (septet, *J* = 6.5 Hz, 1H), 1.92-1.89 (m, 1H), 1.89-1.85 (m, 1H), 1.78-1.70 (m, 1H), 1.68 (s, 3H), 1.66 (s, 3H), 1.66 (s, 3H), 1.60-1.59 (m, 1H), 1.57-1.56 (s, 3H), 1.50-1.45 (m, 1H), 1.45-1.42 (m, 1H), 1.38-1.35 (m, 1H), 1.34-1.33 (m, 1H), 1.33-1.30 (m, 1H), 1.29-1.25 (m, 1H), 1.17 (s, 3H), 1.16 (s, 3H), 1.13 (d, *J* = 6.5 Hz, 3H), 1.02 (d, *J* = 6.5 Hz, 3H), 0.98 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 9H), 0.54 (q, *J* = 8.0 Hz, 6H), 0.26 (s, 9H).

13C NMR (125 MHz; CDCl3) δ: 209.4, 197.6, 187.3, 134.4, 133.7, 128.3, 122.9, 119.4, 85.2, 73.6, 64.8, 59.6, 49.5, 46.1, 44.4, 43.0, 38.4, 37.4, 30.4, 30.0, 27.3, 26.13, 25.96, 21.7, 21.1, 20.7, 18.28, 18.12, 13.8, 7.4, 7.0, 0.7.

 \overline{a}

 696 For the preparation of isobutyryl cyanide, see ref. 520.

FTIR (thin film) νmax: 2965, 2914, 2876, 1730, 1637, 1565, 1561, 1456, 1379, 1315, 1249, 1220, 1156, 1049, 845, 743, 724 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{40}H_{70}O_5Si_2$, 709.4654; found, 709.4626.

 $[\alpha]_D^{22} = -42.9^\circ$ (*c* 0.46, CH₂Cl₂).

TLC $R_f = 0.47$ (95:5 hexane:EtOAc).

(2*S***,3***S***,3a***S***,7***R***,7a***S***)-6,7a-Dimethoxy-3-methyl-3-(4-methyl-4-((triethylsilyl)oxy)pentyl)-7-(3 methylbut-2-en-1-yl)-5-(trimethylsilyl)-3,3a,7,7a-tetrahydro-2,7-methanobenzofuran-4(2***H***)-one**

(396):

A THF (3 mL) solution of **383** (147 mg, 0.290 mmol, 1 equiv) in a 10-mL test tube was cooled to –78 ºC, and chlorotrimethylsilane (184 µL, 1.45 mmol, 5 equiv) and a freshly prepared THF solution of lithium 2,2,6,6-tetramethylpiperidide (0.50 M, 1.7 mL, 0.87, 3 equiv) were added sequentially. The resulting bright yellow solution was stirred at -78 °C for 10 min and then allowed to slowly warm to -35 °C over 25 min. The reaction was subsequently quenched at -35 °C with sat. aq. NaHCO₃ and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (50 mL SiO₂, 95:5 hexane:EtOAc) afforded 114 mg (0.197 mmol, 68% yield) of **396** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.27 (t, *J* = 6.9 Hz, 1H), 3.85 (d, *J* = 5.6 Hz, 1H), 3.72 (s, 3H), 3.43 (s, 3H), 2.62 (s, 1H), 2.51 (dd, *J* = 15.3, 6.9 Hz, 1H), 2.28 (dd, *J* = 15.3, 6.9 Hz, 1H), 2.12 (d, *J* = 12.6 Hz, 1H), 1.90 (dd, *J* = 12.6, 5.6 Hz, 1H), 1.69 (s, 3H), 1.62 (s, 3H), 1.40-1.23 (m, 4H), 1.25-1.17 (m, 5H), 1.16 (s, 3H), 1.14 (s, 3H), 0.90 (t, *J* = 7.8 Hz, 9H), 0.52 (q, *J* = 7.8 Hz, 6H), 0.19 (s, 9H).

¹³C NMR (125 MHz; CDCl₃) δ: 202.7, 187.3, 132.1, 122.2, 121.6, 115.2, 80.7, 73.3, 61.2, 57.5, 52.2, 49.1, 48.1, 46.0, 39.4, 35.1, 32.7, 30.6, 29.6, 28.0, 26.2, 18.7, 18.0, 7.3, 7.0, 1.1.

FTIR (thin film) νmax: 2953, 2910, 2875, 1646, 1571, 1458, 1311, 1244, 1224, 1070, 1045, 1011, 843, 723 cm^{-1} .

HRMS–ESI (m / z): $[M+K]^+$ calculated for $C_{32}H_{58}O_5Si_2$, 617.3454; found, 617.3437.

TLC $R_f = 0.67$ (8:2 hexane:EtOAc).

(1*S***,5***R***,7***S***,8***R***)-4-Methoxy-8-methyl-8-(4-methyl-4-((triethylsilyl)oxy)pentyl)-3,5,7-tris(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (397):**

A THF (0.5 mL) solution of **392** (7.2 mg, 13 µmol, 1 equiv) in a 10-mL test tube was cooled to –78 ºC, and a freshly prepared THF solution of lithium 2,2,6,6-tetramethylpiperidide (0.50 M, 53 μ L, 26 μ mol, 2 equiv) was added dropwise. After stirring the resulting bright yellow solution at –78 ºC for 20 min, a THF solution of lithium (2-thienyl)cyanocopper(I)⁵¹¹ (0.10 M, 264 μ L, 26.4 mmol, 2 equiv) was added. The resulting brown slurry was allowed to slowly warm to –40 °C over 20 min and subsequently stirred at -40 °C for 30 min. The resulting pale yellow solution was cooled to -78 °C, and prenyl bromide (7.6 μ L, 66 umol, 5 equiv) was added. The reaction was allowed to slowly warm to 0 °C over 2 h, and was then quenched at 0° C with sat. aq. NH₄Cl and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O , sat. aq. NaHCO₃, and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a brown oil. Flash column chromatography (20 mL SiO₂, 98:2 hexane:EtOAc) afforded 7.0 mg (11 µmol, 86% yield) of **397** as a colorless oil.

¹**H** NMR (600 MHz; CDCl₃) δ: 5.03-4.99 (m, 2H), 4.97 (t, *J* = 7.4 Hz, 1H), 3.88 (s, 3H), 3.17 (s, 1H), 3.11 (d, *J* = 6.3 Hz, 2H), 2.47 (dd, *J* = 14.7, 6.0 Hz, 1H), 2.34 (dd, *J* = 14.7, 7.1 Hz, 1H), 2.15-2.10 (m, 1H), 1.98 (dd, *J* = 14.0, 3.9 Hz, 1H), 1.71-1.68 (m, 4H), 1.67 (s, 6H), 1.66-1.65 (m, 4H), 1.65 (s, 3H), 1.57 (s, 3H), 1.47 (td, *J* = 12.7, 4.1 Hz, 1H), 1.43-1.36 (m, 3H), 1.36-1.28 (m, 2H), 1.22 (s, 3H), 1.21 (s, 3H), 1.11 (td, *J* = 12.7, 4.0 Hz, 1H), 0.94 (t, *J* = 7.8 Hz, 9H), 0.80 (s, 3H), 0.57 (q, *J* = 7.8 Hz, 6H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 207.5, 195.0, 174.3, 133.51, 133.37, 132.6, 126.9, 122.9, 122.5, 120.2, 73.7, 71.3, 62.3, 58.8, 46.7, 45.8, 41.3, 39.27, 39.07, 30.7, 30.3, 29.5, 27.7, 26.05, 26.00, 25.84, 23.5, 18.23, 18.19, 18.12, 17.99, 17.82, 7.4, 7.0.

FTIR (thin film) νmax: 2963, 2914, 2875, 1732, 1655, 1601, 1452, 1382, 1340, 1233, 1170, 1043, 1016, 743, 723 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{38}H_{64}O_4Si$, 635.4466; found, 635.4449.

TLC $R_f = 0.45$ (9:1 hexane:EtOAc).

(1*R***,5***R***,7***S***,8***R***)-1-Isobutyryl-4-methoxy-8-methyl-5,7-bis(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-**

en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (398):

A PhMe (0.5 mL) solution of **395** (2.2 mg, 3.2 µmol, 1 equiv) in a 7-mL microwave vial was treated with 2-methyl-2-butene (100 µL), HOAc (50 µL), and a HOAc solution of *para*-toluenesulfonic acid monohydrate (1.0 M, $6.4 \mu L$, $6.4 \mu mol$, 2 equiv). The vial was sealed and irradiated in a microwave reactor (200 watt power) to 100 ºC and held at that temperature for 15 min. The resulting yellow solution was cooled to rt, quenched with sat. aq. $NaHCO₃$, and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo* to a yellow residue. Preparatory thin-layer chromatography $(3 \times 1.1$ hexane:CH₂Cl₂) afforded 1.0 mg (2.1 µmol, 65% yield) of **398** as a colorless residue.

1 H NMR (600 MHz; CDCl3) δ: 5.89 (s, 1H), 5.04 (t, *J* = 6.8 Hz, 1H), 4.98 (t, *J* = 6.8 Hz, 1H), 4.93 (t, *J* = 6.3 Hz, 1H), 3.80 (s, 3H), 2.49 (dd, *J* = 14.8, 6.5 Hz, 1H), 2.42 (dd, *J* = 14.7, 7.6 Hz, 1H), 2.15-2.07 (m, 3H), 1.95-1.82 (m, 3H), 1.78-1.73 (m, 1H), 1.69 (s, 3H), 1.72-1.64 (m, 1H), 1.663 (s, 3H), 1.661 (s, 3H), 1.64 (s, 3H), 1.59 (s, 3H), 1.56 (s, 3H), 1.46-1.40 (m, 2H), 1.13 (d, *J* = 6.5 Hz, 3H), 1.05 (d, *J* = 6.5 Hz, 3H), 1.00 (s, 3H).

13C NMR (125 MHz; CDCl3) δ: 209.5, 207.1, 193.0, 177.4, 134.4, 133.5, 131.3, 124.9, 122.6, 119.3, 107.0, 84.4, 57.30, 57.12, 49.1, 43.2, 42.7, 39.4, 36.8, 29.7, 27.5, 26.18, 26.08, 25.91, 25.2, 21.7, 20.7, 18.21, 18.19, 17.9, 13.8.

FTIR (thin film) ν_{max}: 2967, 2926, 2855, 1728, 1722, 1645, 1601, 1456, 1376, 1227 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{31}H_{46}O_4$, 483.3468; found, 483.3469.

 $[\alpha]_D^{22} = +37.0^{\circ}$ (*c* 0.13, CHCl₃).

TLC $R_f = 0.26$ (9:1 hexane:EtOAc).

(1*R***,5***R***,7***S***,8***R***)-1-Isobutyryl-4-methoxy-8-methyl-5,7-bis(3-methylbut-2-en-1-yl)-8-(4-methylpent-4-**

en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (399):

A PhMe (3 mL) solution of **395** (58.0 mg, 84.4 µmol, 1 equiv) in a 7-mL microwave vial was treated with 2-methyl-2-butene (100 μ L), HOAc (100 μ L), magnesium sulfate (51 mg, 0.42 mmol, 5 equiv), and a HOAc solution of *para*-toluenesulfonic acid monohydrate (1.0 M, 60. µL, 60. µmol, 0.7 equiv). The vial was sealed and irradiated in a microwave reactor (200 watt power) to 100 °C and held at that temperature for 15 min. The resulting yellow slurry was cooled to rt, quenched with sat. aq. NaHCO₃, and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H₂O and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. The oil was split into two samples and purified using preparatory high-performance liquid chromatography with a 30 mm \times 250 mm Agilent Prep-SIL 10 µm column (injection volume: 500 µL each, hexane; detection at 254 nm; 23 °C \pm 2 °C column temperature; 40 mL/min flow rate; gradient elution from $100:0 \rightarrow 60:40$ hexane:CH₂Cl₂ over 45 min). The fractions eluting at 34-37 min were collected and concentrated *in vacuo* to afford 6.2 mg (13 µmol, 15% yield) of **399** as a colorless oil. The fractions eluting at 28-33 min were collected and concentrated *in vacuo* to afford 19.3 mg (39.8 µmol, 47% yield) of **398** as a colorless oil.

¹**H NMR** (600 MHz; CDCl₃) δ: 5.89 (s, 1H), 4.98 (t, *J* = 6.9 Hz, 1H), 4.93 (t, *J* = 6.8 Hz, 1H), 4.71-4.59 $(m, 2H), 3.80$ (s, 3H), 2.48 (dd, $J = 14.5, 6.0$ Hz, 1H), 2.42 (dd, $J = 14.5, 7.8$ Hz, 1H), 2.11 (septet, $J = 6.5$ Hz, 1H), 2.06 (dd, *J* = 13.9, 5.3 Hz, 1H), 1.96-1.83 (m, 4H), 1.76-1.72 (m, 1H), 1.70 (s, 3H), 1.69 (s, 3H), 1.66 (s, 6H), 1.59-1.55 (m, 5H), 1.45-1.34 (m, 3H), 1.12 (d, *J* = 6.5 Hz, 3H), 1.05 (d, *J* = 6.5 Hz, 3H), 0.99 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 209.6, 207.1, 193.0, 177.4, 146.3, 134.4, 133.5, 122.7, 119.3, 110.0, 107.0, 84.4, 57.32, 57.12, 49.1, 43.3, 42.7, 39.4, 38.8, 36.8, 29.7, 27.5, 26.19, 26.10, 24.5, 22.7, 21.7, 20.7, 18.22, 18.17, 13.8.

FTIR (thin film) v_{max} : 2968, 2927, 2872, 1729, 1645, 1601, 1449, 1374, 1231 cm⁻¹.

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{31}H_{46}O_4$, 505.3288; found, 505.3278.

TLC $R_f = 0.26$ (9:1 hexane:EtOAc).

(1*R***,5***R***,7***S***,8***R***)-1-Isobutyryl-4-methoxy-8-methyl-3,5,7-tris(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (60, hyperforin** *O***-methyl ether):**³⁰⁹

A THF (5 mL) solution of **398** (107.4 mg, 222.5 µmol, 1 equiv) in a 50-mL pear-shaped flask was cooled using a –78 ºC dry ice/acetone bath, and a freshly prepared THF solution of lithium diisopropylamide $(0.50 \text{ M}, 1.3 \text{ mL}, 670 \text{ \mu}$ mol, 3 equiv) was added dropwise. After stirring the resulting yellow solution at – 78 °C for 20 min, a freshly prepared THF solution of 2-thienyl(cyano)copper lithium⁵¹¹ (0.10 M, 6.7 mL, 0.67 mmol, 3 equiv) was added dropwise. The resulting light brown solution was stirred at –78 ºC for 5 min and at -40 °C for 30 min. The solution was then cooled using a -78 °C dry ice/acetone bath, and prenyl bromide $(437 \mu L, 3.34 \text{ mmol}, 15 \text{ equity})$ was added dropwise. After slowly warming the golden yellow solution to –30 °C over 90 min, it was quenched at –30 °C with sat. aq. NH₄Cl, warmed to rt, and extracted thrice with EtOAc. The organic extracts were combined, sequentially washed with H_2O , sat. aq. NaHCO3, and brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to a yellow oil. Flash column chromatography (75 mL SiO2, 98:2 hexane:EtOAc) afforded 120.6 mg (219.0 µmol, 98% yield) of **60** as a colorless oil.

1 H NMR (500 MHz; CDCl3) δ: 5.07-5.02 (m, 2H), 4.99 (t, *J* = 6.7 Hz, 1H), 4.95 (t, *J* = 7.1 Hz, 1H), 3.92 (s, 3H), 3.18 (d, *J* = 6.5 Hz, 2H), 2.50 (dd, *J* = 14.7, 6.0 Hz, 1H), 2.41 (dd, *J* = 14.7, 7.4 Hz, 1H), 2.11- 2.06 (m, 2H), 1.99 (septet, *J* = 6.5 Hz, 1H), 1.92-1.84 (m, 3H), 1.77-1.70 (m, 1H), 1.69-1.66 (m, 15H), 1.64 (s, 3H), 1.63-1.62 (m, 1H), 1.59 (s, 3H), 1.56 (s, 3H), 1.44-1.41 (m, 1H), 1.39-1.37 (m, 1H), 1.11 (d, *J* = 6.5 Hz, 3H), 1.02 (d, *J* = 6.5 Hz, 3H), 0.99 (s, 3H).

¹³C NMR (125 MHz; CDCl₃) δ: 209.3, 207.3, 194.1, 174.1, 134.0, 133.5, 133.2, 131.2, 127.6, 125.0, 122.7, 121.9, 119.9, 84.3, 62.6, 58.9, 49.4, 43.4, 42.8, 39.1, 36.7, 30.3, 27.3, 26.10, 26.01, 25.88, 25.80, 25.1, 23.6, 21.5, 20.6, 18.27, 18.14, 18.12, 17.9, 13.8.

FTIR (thin film) νmax: 2968, 2927, 2874, 1730, 1725, 1645, 1601, 1447, 1377, 1338, 1236, 1100, 1079, 1060 cm^{-1} .

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{36}H_{54}O_4$, 551.4095; found, 551.4102.

 $[\alpha]_D^{22}$ = +49.6° (*c* 0.33, CHCl₃).

TLC $R_f = 0.52$ (9:1 hexane:EtOAc).

	¹ H NMR (500 MHz, CDCl ₃)	13 C NMR (125 MHz, CDCl ₃)			
Hyperforin-derived	Synthetic	Hyperforin-derived	Synthetic b		
5.05 (t, $J = 7.0, 1H$)		209.1	209.1		
5.03 (t, $J = 7.0$, 1H)	$5.07 - 5.02$ (m, 2H)	207.1	207.1		
4.99 (t, $J = 7.0$, 1H)	4.99 (t, $J = 6.7$, 1H)	193.9	193.9		
4.94 (t, $J = 7.1$, 1H)	4.95 (t, $J = 7.1$, 1H)	173.9	173.9		
3.91 (s, 3H)	3.92 (s, 3H)	133.8	133.7		
3.17 (d, $J = 6.5$, 1H) ^a	3.18 (d, $J = 6.5$, 2H)	133.3	133.3		
2.49 (dd, $J = 15.0, 6.0, 1H$)	2.50 (dd, $J = 14.7, 6.0, 1H$)	132.9	132.9		
2.40 (dd, $J = 15.0, 7.5, 1H$)	2.41 (dd, $J = 14.7, 7.4, 1H$)	131.0	131.0		
2.10 (m, 1H)		127.4	127.4		
2.07 (m, 1H)	$2.11 - 2.06$ (m, 2H)	124.7	124.8		
	1.99 (septet, $J = 6.5$, 1H)	122.5	122.5		
1.87 (m, 1H)		121.7	121.7		
1.85 (m, 1H)	$1.92 - 1.84$ (m, 3H)	119.7	119.7		
1.73 (m, 1H)	$1.77 - 1.70$ (m, 1H)	84.1	84.1		
1.67 (s, 3H)			62.3		
1.67 (s, 3H)		58.6	58.6		
1.67 (s, 3H)	$1.69 - 1.66$ (m, 15H)	49.2	49.1		
1.67 (s, 3H)		43.2	43.2		
1.63 (s, 3H)		42.6	42.6		
1.63 (s, 3H)	1.64 (s, 3H)	38.8	38.8 36.5		
	$1.63 - 1.62$ (m, 1H)	36.5			
1.58 (s, 3H)	1.59 (s, 3H)	30.1	30.1		
1.55 (s, 3H)	1.56 (s, 3H)	27.1	27.1		
	$1.44 - 1.41$ (m, 1H)	25.9	25.9		
1.39 (m, 1H)	$1.39 - 1.37$ (m, 1H)	25.8	25.8		
1.10 (d, $J = 6.5$, 3H)	1.11 (d, $J = 6.5$, 3H)	25.7	25.7		
1.01 (d, $J=6.5, 3H$)	1.02 (d, $J = 6.5$, 3H)	25.6	25.6		
0.98 (s, 3H)	0.99 (s, 3H)	24.9	24.9		
		23.4	23.4		
		21.3	21.3		
		20.4	20.4		
		18.0	18.0		
		17.9	17.91		
		17.9	17.89		
		17.6	17.6		

Table 3.5. NMR data comparison of synthetic **60** with **60** derived from natural hyperforin (ref. 309).

a Several NMR signals for **60** are not reported in ref. 309. In particular, there are only 50 protons reported for **60**, which contains 54 protons. Also, the shift of the *O*-methyl group is not reported in the 13C NMR data.

13.6 13.6

 b For the purpose of this analysis, the CDCl₃ signal in the ¹³C NMR of synthetic **60** was re-referenced to 77.00 ppm to match the</sup> reported chemical shift reference in ref. 309.

Note: All manipulations for the following procedure were conducted in the dark. Solvents used during the workup procedure were sparged for at least 15 min with N_2 prior to use.

A DMSO (3 mL) slurry of **60** (74.9 mg, 136 µmol, 1 equiv) and lithium chloride (58 mg, 1.4 mmol, 10 equiv) in a 15-mL round-bottom flask was heated to 120 ºC. After stirring the pale yellow solution for 30 min at 120 $^{\circ}$ C, it was cooled to rt, diluted with H₂O, and extracted thrice with 1:1 hexane:EtOAc. The organic extracts were combined, sequentially washed thrice with $H₂O$ and once with brine, dried over Na2SO4, filtered, and concentrated *in vacuo* to afford a yellow oil. Flash column chromatography (30 mL SiO2, 95:5 hexane:EtOAc) afforded 40.0 mg (74.5 µmol, 55% yield) of **1** as a colorless oil, 10.8 mg (19.6 µmol, 14% yield) of **400** as a colorless oil, and 12.5 mg (23.3 µmol, 23% yield) of **401** as a colorless oil.

Hyperforin (1):

¹H NMR (500 MHz; CD₃OD) δ: 5.12 (t, $J = 7.0$ Hz, 1H), 5.04-4.95 (m, 3H), 3.12 (dd, $J = 14.6$, 7.2 Hz, 1H), 3.07 (dd, *J* = 14.7, 7.1 Hz, 1H), 2.49 (dd, *J* = 14.4, 6.9 Hz, 1H), 2.40 (dd, *J* = 14.6, 6.8 Hz, 1H), 2.14 (septet, *J* = 6.5 Hz, 1H), 2.10-2.02 (m, 1H), 2.02-1.87 (m, 3H), 1.78-1.72 (m, 3H), 1.71 (s, 3H), 1.68 (s, 6H), 1.66 (s, 3H), 1.66-1.63 (m, 1H), 1.64 (s, 3H), 1.63 (s, 3H), 1.59 (s, 3H), 1.58 (s, 3H), 1.37 (dd, *J* = 13.3, 12.2 Hz, 1H), 1.09 (d, *J* = 6.5 Hz, 3H), 1.04 (d, *J* = 6.5 Hz, 3H), 0.97 (s, 3H).

¹³C NMR (125 MHz; CD₃OD) δ: 211.7, 208.8, 134.6, 134.2, 133.5, 131.8, 126.1, 123.8, 122.6, 122.1, 120.9, 82.6, 60.7, 49.5, 43.05, 43.02, 40.8, 37.9, 30.7, 28.6, 26.16, 26.06, 25.99, 25.92, 25.4, 22.5, 22.0, 21.2, 18.27, 18.16, 18.11, 17.86, 15.3.

FTIR (thin film) v_{max} : 3326 (br), 2969, 2925, 2876, 1725, 1601, 1447, 1377, 1232, 838 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{35}H_{52}O_4$, 537.3938; found, 537.3937.

 $[\alpha]_D^{23} = +39.5^{\circ}$ (*c* 3.02, EtOH); [natural sample from literature:¹ $[\alpha]_D^{18} = +41^{\circ}$ (*c* 5, EtOH)].

TLC $R_f = 0.26$ (9:1 hexane:EtOAc).

€ **(3***S***,4a***S***,6***S***,7***R***)-8-Isobutyryl-3,7-dimethyl-3,4a,6-tris(3-methylbut-2-en-1-yl)-7-(4-methylpent-3-en-1-yl)-4a,5,6,7-tetrahydro-2H-chromene-2,4(3***H***)-dione (400):**

¹**H** NMR (500 MHz; CDCl₃) δ: 5.09 (t, *J* = 6.1 Hz, 1H), 5.01-4.96 (m, 2H), 4.93 (t, *J* = 6.4 Hz, 1H), 2.71 (septet, *J* = 6.9 Hz, 1H), 2.64 (dd, *J* = 13.7, 8.1 Hz, 1H), 2.57 (dd, *J* = 13.7, 7.1 Hz, 1H), 2.46 (dd, *J* = 13.5, 2.7 Hz, 1H), 2.25 (dd, *J* = 14.5, 7.0 Hz, 1H), 2.06 (dd, *J* = 13.8, 4.9 Hz, 1H), 1.84-1.76 (m, 5H), 1.74-1.69 (m, 4H), 1.69-1.63 (m, 4H), 1.62 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.52 (s, 3H), 1.52-1.49 (m, 1H), 1.47 (s, 3H), 1.37 (t, *J* = 13.3 Hz, 1H), 1.31-1.25 (m, 1H), 1.21 (d, *J* = 6.9 Hz, 3H), 1.15 (d, *J* = 6.9 Hz, 3H), 1.14 (s, 3H), 1.11-1.07 (m, 1H).

¹³C **NMR** (125 MHz; CDCl₃) δ: 209.0, 205.2, 169.8, 144.5, 137.2, 136.25, 136.11, 133.4, 132.0, 124.0, 122.5, 119.3, 117.1, 56.8, 52.3, 42.6, 40.9, 37.51, 37.37, 34.3, 31.5, 27.27, 27.15, 26.24, 26.14, 26.10, 25.9, 25.2, 23.2, 22.8, 18.7, 18.31, 18.28, 18.25, 17.8, 17.5.

FTIR (thin film) νmax: 2971, 2930, 2875, 1778, 1724, 1699, 1665, 1451, 1377, 1255, 1237, 1136, 1094, 1056, 844 cm⁻¹.

HRMS–ESI (m / z): $[M+H]^+$ calculated for $C_{36}H_{54}O_4$, 551.4096; found, 551.4095.

TLC $R_f = 0.66$ (9:1 hexane:EtOAc).

(4a*R***,6***S***,7***R***)-4-Hydroxy-8-isobutyryl-7-methyl-3,4a,6-tris(3-methylbut-2-en-1-yl)-7-(4-methylpent-3-en-1-yl)-4a,5,6,7-tetrahydro-2***H***-chromen-2-one (401):**

¹**H NMR** (500 MHz; CDCl₃) δ: 5.11-4.98 (m, 3H), 4.93 (t, *J* = 6.5 Hz, 1H), 3.35-3.33 (m, ~0.7H), 3.22 (dd, *J* = 8.3, 5.8 Hz, ~0.3H), 2.77-2.56 (m, 3H), 2.52-2.42 (m, 1H), 2.25 (dd, *J* = 14.2, 6.3 Hz, ~0.3H), 2.17-2.02 (m, 2H), 1.91 (dd, *J* = 14.5, 8.2 Hz, ~0.7H), 1.88-1.80 (m, 1H), 1.76 (s, ~1H), 1.75 (s, ~2H), 1.72 (s, 3H), 1.69 (s, 3H), 1.66 (s, 3H), 1.63-1.62 (m, 4H), 1.62-1.61 (m, 4H), 1.60 (s, 3H), 1.60-1.44 (m, 7H), 1.44-1.25 (m, 3H), 1.23 (s, 3H), 1.15-1.11 (m, 3H) (*mixture of tautomers and diastereomers*).

¹³C NMR (125 MHz; CDCl₃) δ: 208.9, 202.3, 201.7, 167.2, 166.2, 145.3, 144.9, 137.75, 137.65, 137.4, 136.9, 135.3, 133.50, 133.40, 132.00, 131.94, 124.03, 123.93, 122.49, 122.37, 119.7, 118.0, 116.97, 116.88, 55.2, 54.6, 53.1, 52.6, 42.78, 42.64, 41.1, 37.9, 37.63, 37.46, 37.32, 34.1, 32.7, 29.6, 28.1, 27.34, 27.31, 27.27, 26.24, 26.09, 26.07, 26.04, 25.90, 23.41, 23.21, 23.06, 22.97, 22.85, 18.95, 18.76, 18.35, 18.28, 18.24, 18.22, 18.10, 17.86, 17.83, 17.81, 17.63 (*mixture of tautomers and diastereomers*).

FTIR (thin film) νmax: 2969, 2916, 2875, 1781, 1728, 1697, 1665, 1447, 1377, 1254, 1223, 1142, 1102, 1050 cm^{-1} .

HRMS–ESI (m / z): $[M+Na]^+$ calculated for $C_{35}H_{52}O_4$, 559.3758; found, 559.3756.

TLC $R_f = 0.51$ (9:1 hexane:EtOAc).

Figure 3.5. ¹H NMR spectra comparison of natural and synthetic hyperforin (1).

NMR Data Comparison of Synthetic and Natural Hyperforin (1).

On the following pages, the ${}^{1}H$ and ${}^{13}C$ NMR data for synthetic 1 are compared to published data for natural 1 as well as synthetic *ent*-1. All NMR data have been acquired using $CD₃OD$ solvent. NMR spectrometer frequencies are noted.

The references from which NMR data for natural **1** are presented include:

Reference A: Erdelmeier, C. A. J. *Pharmacopsychiatry* **1998**, *31* (Supplement 1), 2-6.

Reference B: Adam, P. A.; Arigoni, D.; Bacher, A.; Eisenreich, W. *J. Med. Chem.* **2002**, *45*, 4786-4793.

- **Reference C:** Cui, Y.; Ang, C. Y. W.; Beger, R. D.; Heinze, T. M.; Hu, L.; Leakey, J. *Drug Metab. Dispos.* **2004**, *32*, 28-34.
- **Reference D:** Lee, J.-y.; Duke, R. K.; Tran, V. H.; Hook, J. M.; Duke, C. C. *Phytochemistry* **2006**, *67*, 2550-2560.
- **Reference E:** Cao, X.; Wang, Q.; Li, Y.; Bai, G.; Ren, H.; Xu, C.; Ito, Y. *J. Chromatogr. B* **2011**, *879*, 480-488.

The reference from which NMR data for *ent-***1** are presented:

Reference F: Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. *Tetrahedron* **2010**, *66*, 6569- 6584.

The positional numbering scheme used for these tables is shown below.

As previously noted,⁴⁶² small deviations in the NMR data from the different references may be attributed to not only different chemical shift references but also to the concentration of **1** and to the water content in the NMR sample, which influence the keto-enol tautomerization at the hyperforin C2–C4 position. In the ¹ H NMR analysis of **1**, we observed concentration- and water-dependent changes in the lineshape of the C26 proton signals and in the chemical shifts of the C11, C12, and C13 proton signals. We also observed broadening of the C1 and C5 signals and an absence of the C2 and C4 signals in the 13C NMR spectrum of **1**.

Table 3.6. ¹H NMR data comparison of synthetic and natural hyperforin (1). H NMR data comparison of synthetic and natural hyperforin (**1**).

							Ref. A Ref. B Ref. C Ref. D Ref. E Ref. F This work
Position	50 MHz	125 MHz	150 MHz	150 MHz	150 MHz	125 MHz	125 MHz
$\mathbf{1}$	82.6 (br)	82 (br)	82.7	82.74	82.42	i --	82.6 (br)
\overline{c}	185.3 (br)		212.9		209.64		
3	122.1	122.12	121.3	122.1	120.25	121.90	122.1
$\overline{4}$	181.2 (br)	ί÷,	182.2		181.59	$\overline{}$	
5	60.8 (br)	60 (br)	61.2		58.27		60.7 (br)
6	40.8	40.82	40.7	40.8	40.27	41.68	40.8
7	43.0	42.95	43.3	43.1	42.57	43.94	43.02
8	49.5	49.10	49.5	49.54	47.81	\mathbb{R}	49.5
9	208.8	208.85	210.0	208.82	208.35		208.8
10	211.7	211.78	212.9	211.7	209.64		211.7
11	43.0	43.00	42.8	43.0	41.57	43.68	43.05
12	22.0	$21.98\,$	21.0	21.99	20.44	22.86	22.0
13	21.2	21.16	19.8	20.85	19.36	22.01	21.2
14	15.3	15.31	15.2	15.3	15.8	16.13	15.3
15	37.9	37.92	38.0	37.88	37.68	38.81	37.9
16	25.4	25.42	28.8	28.62	27.66	26.33	25.4
17	126.1	126.04	123.7	120.85	122.31	122.82	126.0
18	131.8	131.84	133.9	134.69	133.36		131.8
19	25.9	25.87	25.9	25.90	24.88	26.74	25.92
20	18.1	18.09	17.9	17.84	17.92	18.94	18.11
21	28.6	28.62	25.6	25.43	24.0	29.52	28.6
22	123.8	123.77	126.3	126.05	126.61	126.98	123.8
23	134.2	134.25	131.6	131.81	131.61	135.04	134.2
24	26.0	25.97	26.0	25.98	24.90	26.83	25.99
25	18.2	18.15	18.1	18.1	18.01	19.01	18.16
26	22.5	22.50	22.8	22.50	22.40	23.43	22.5
27	122.6	122.53	124.1	122.54	122.71	124.73	122.6
28	133.5	133.60	132.5	133.58	133.19	132.63	133.5
29	26.1	26.05	26.1	26.16	24.99	26.90	26.06
30	17.9	17.84	18.2	18.15	18.10	18.70	17.86
31	30.7	30.69	30.8	30.70	30.03	31.59	30.7
32	120.9	120.86	121.5	123.74	121.21	123.66	120.9
33	134.7	134.71	134.1	134.25	132.93	135.44	134.6
34	26.2	26.15	26.0	26.05	25.01	27.02	26.16
35	18.3	18.25	18.2	18.25	18.14	19.10	18.27

Table 3.7. 13C NMR data comparison of synthetic and natural hyperforin (**1**).

Isolation of hyperforin (1) from St. John's Wort extract: 697

Supercritical CO₂ extract of St. John's wort was obtained from Flavex Naturextrakte GmbH as a generous gift or was purchased from "From Nature with Love." The brown resinous extract (1.468 g) was dissolved in MeOH (150 mL, saturated in heptane) and heptane (50 mL, saturated in MeOH) with the aid of sonication. The layers were separated, and the heptane fraction was extracted twice with MeOH (75 mL each, saturated in heptane). The MeOH extracts were combined, washed twice with heptane (50 mL, saturated in MeOH), and concentrated *in vacuo* to a brown-yellow syrup. Flash column chromatography (500 mL SiO₂, 98:2 \rightarrow 95:5 \rightarrow 9:1 hexane:EtOAc) afforded 572 mg (1.07 mmol, 38% yield by weight of initial extract) of **1** as a pale yellow syrup.

 \overline{a}

 697 This procedure was adapted from ref. 44.

Appendix A

A Comprehensive Listing of all Polycyclic Polyprenylated Acylphloroglucinols

In the table below, all known 260 PPAPs are listed. The PPAPs are presented in alphabetical order, except for certain instances (e.g., epimers, ethers). Along with the name and structure of each PPAP, the plant species and geographical location from which that PPAP has been isolated is listed. In cases where a PPAP has been isolated from multiple species, the species from which the PPAP was initially isolated is listed in boldface text. In addition, references to spectroscopic data (i.e., NMR, UV, IR) and relevant crystal structure refinements are provided. Optical rotation data is also listed. Unless indicated by an explicit reference to an absolute configuration determination, an arbitrary enantiomer is depicted for each PPAP. For certain PPAPs, multiple names have been given, mostly due to simultaneous discovery of the PPAP by several groups. All alternative names are provided in italicized text below name that was provided by the initial published report. If a PPAP has been isolated in both enantiomeric forms, the name of its corresponding enantiomeric PPAP is also found below its name. All references herein are found at the end of this appendix.

hyperfori n (118) O Ö OH O

-
-
- *Hypericum androsaemum* (northern Turkey)¹⁴⁵
- *H. aviculariifolium* (northern Turkey)¹⁴⁵
- H. barbatum (throughout Macedonia and Serbia)^{146,147}
- *H. bithynicum* (northern Turkey)¹⁴⁵
- *H. bupleuroides* (Maçka district, Trabzon, Turkey)¹⁴⁸
- *H. calabricum* (Calabria, Italy)¹⁴⁹
- *H. calycinum* (Bonn, Germany)⁷
- H. confertum (Uludağ Mountain, Bursa, Turkey)¹⁵⁰
- H. elodes (Umbrian-Marchean Apennines, Italy)^{8,151}
- *H. empetrifolium* (Irbid, northern Jordan)¹⁵²
- H. ericoides (El Feidja, northwestern Tunisia)¹⁰
- *H. grandifolium* (Pedro Álvarez, Tenerife, Canary Islands $)^{153}$
- *H. heterophyllum* (northern Turkey)¹⁴⁵
- H. hircinum (Umbrian-Marchean Apennines, Italy)¹⁵⁴
- *H. hirsutum*
	- Umbrian-Marchean Apennines, Italy¹⁵⁴ Throughout Macedonia and Serbia^{146,147}
	- Spisska Tomašovca, Slovakia¹⁵⁵
	- Northern Turkey¹⁴⁵
- *H. hyssopifolium*
	- Umbrian-Marchean Apennines, Italy^{151,154} Northern Turkey¹⁴⁵
- *H. leschenaultii* (Indonesia)¹⁵⁶
- *H. leptophyllum* (Yozgat, Turkey)¹⁵⁷
- H. linarioides (throughout Macedonia and Serbia)^{146,147}
- *H. maculatum*
	- Prakovce, Slovakia⁹
	- Spisska Tomašovca, Slovakia¹⁵⁵
	- Throughout Macedonia and Serbia^{146,147}
- *H. microsepalum* (southeastern USA)¹⁵⁶ *H. montanum* (Umbrian -Marchean Apennines,
- Italy)^{151,154}
- *H. montbretii* (Cakalli, ¹⁵⁸ Samsun, Turkey¹⁴⁵)
- H. nummularioides (northern Turkey)¹⁴⁵
- *H. olympicum* (throughout Macedonia and Serbia)¹⁴⁶ H. orientale (northern Turkey)^{145,159}
- *H. perfoliatum*
	- Northern Turkey¹⁴⁵
		- El Feidja, northwestern Tunisia¹⁰
- *H. perforatum*
	- Yerevan, ¹⁶⁰ Armenia¹⁶¹
	- Mt. Taylor, Canberra, Australia¹¹
	- Ontario, Canada¹⁶¹
	- Longxi, Gansu, China¹⁶²
	- Throughout Estonia¹⁶³
		- Alpirsbach, Black Forest,¹² Germany³
	- Epirus, Greece 4
	- Throughout India^{155,164}
	- Throughout Italy^{13,151,154,165,166} Throughout Macedonia and Serbia¹⁴⁶
	- **Russia**¹⁶⁷
	- Cemernik Mountain, southern Serbia⁵
	- Nová Ľubovňa, Slovakia¹⁴
	- Slovenia¹⁶⁸
	- Throughout Switzerland¹⁶⁹
	- Throughout northern Turkey^{145,170}
	- El Feidja, northwestern Tunisia¹⁰
	- Western Montana, USA¹⁶¹
	- Ithaca, New York, USA¹⁶¹ Southeastern USA¹⁵⁶

Appendix A References

 \overline{a}

¹ Almanza, G. R.; Quispe, R.; Mollinedo, P.; Rodrigo, G.; Fukushima, O.; Villagomez, R.; Akesson, B.; Sterner, O. *Nat. Prod. Commun.* **2011**, *6*, 1269-1274.

2 Alali, F. Q.; Tawaha, K.; Gharaibeh, M. *Z. Naturforsch.* **2009**, *64c*, 476-482.

 3 Hölscher, D.; Shroff, R.; Knop, K.; Gottschaldt, M.; Crecelius, A.; Schneider, B.; Heckel, D. G.; Schubert, U. S.; Svatoš, A. *Plant J.* **2009**, *60*, 907-918.

4 Tatsis, E. C.; Boeren, S.; Exarchou, V.; Troganis, A. N.; Vervoot, J.; Gerothanassis, I. P. *Phytochemistry* **2007**, *68*, 383-393.

5 Orčić, D. Z.; Mimica-Dukić, N. M.; Francišković, M. M.; Petrović, S. S.; Jovin, E. Đ. *Chem. Cent. J.* **2011**, *5*, 34.

6 Alali, F. Q.; Tawaha, K. *Saudi Pharm. J.* **2009**, *17*, 269-274.

7 Klingauf, P.; Beuerle, T.; Mellenthin, A.; El-Moghazy, S. A. M.; Boubakir, Z.; Beerhues, L. *Phytochemistry* **2005**, *66*, 139-145.

8 Piovan, A.; Filippini, R.; Caniato, R.; Borsarini, A.; Maleci, L. B.; Cappelletti, E. M. *Phytochemistry* **2004**, *65*, 411-414.

⁹ Mártonfi, P.; Repčák, M.; Mihoková, L. *Folia Geobot. Phytotax.* **1996**, *31*, 245-250.

10 Hosni, K.; Msaâda, K.; Taârit, M. B.; Hammami, M.; Marzouk, B. *Ind. Crop. Prod.* **2010**, *31*, 158-163.

11 Lee, J.-y.; Duke, R. K.; Tran, V. H.; Hook, J. M.; Duke, C. C. *Phytochemistry* **2006**, *67*, 2550-2560.

12 Maisenbacher, P.; Kovar, K.-A. *Planta Med.* **1992**, *58*, 291-293.

13 Bergonzi, M. C.; Bilia, A. R.; Gallori, S.; Guerrini, D.; Vincieri, F. F. *Drug Dev. Ind. Pharm.* **2001**, *27*, 491-497.

14 Repčák, M.; Mártonfi, P. *Biológia* **1997**, *52*, 91-94.

15 Wang, K.; Wang, Y.-Y.; Gao, X.; Chen, X.-Q.; Peng, L.-Y.; Li, Y.; Xu, G.; Zhao, Q.-S. *Chem. Biodivers.* **2012**, *9*, 1213-1220.

¹⁶ Piccinelli, A. L.; Cuesta-Rubio, O.; Chica, M. B.; Mahmood, N.; Pagano, B.; Pavone, M.; Barone, V.; Rastrelli, L. *Tetrahedron* **2005**, *61*, 8206-8211.

17 Cuesta-Rubio, O.; Padron, A.; Vastro, H. V.; Pizza, C.; Rastrelli, L. *J. Nat. Prod.* **2001**, *64*, 973-975.

18 Liu, X.; Yu, T.; Gao, X.-M.; Zhou, Y.; Qiao, C.-F.; Peng, Y.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X. *J. Nat. Prod.* **2010**, *73*, 1355-1359.

19 Baggett, S.; Protiva, P.; Mazzola, E. P.; Yang, H.; Ressler, E. T.; Basile, M. J.; Weinstein, I. B.; Kennelly, E. J. *J. Nat. Prod.* **2005**, *68*, 354-360.

20 Ishida, V. F. de C.; Negri, G.; Salatino, A.; Bandeira, M. F. C. L. *Food Chem.* **2011**, *125*, 966-972.

21 Lokvam, J.; Braddock, J. F.; Reichardt, P. B.; Clausen, T. P. *Phytochemistry* **2000**, *55*, 29-34.

22 Sakunpak, A.; Panichayupakaranant, P. *Food Chem.* **2012**, *130*, 826-831.

23 Trisuwan, K.; Ritthiwigrom, T. *Arch. Pharm. Res.* **2012**, *35*, 1733-1738.

 \overline{a}

24 Porto; A. L. M.; Machado, S. M. F.; de Oliveira, C. M. A.; Bittrich, V.; Amaral, M. do C. E.; Marsaioli, A. J. *Phytochemistry* **2000**, *55*, 755-768.

25 McCandlish, L. E.; Hanson, J. C.; Stout, G. H. *Acta Cryst.* **1976**, *B32*, 1793-1801.

26 da Silva, M. C. A.; Heringer, A. P.; Figueiredo, M. R.; de Paiva, S. R. *Liq. Chromatogr. Relat. Technol.* **2012**, *35*, 2313-2321.

27 Monache, F. D.; Monache, G. D.; Gacs-Baitz, E. *Phytochemistry* **1991**, *30*, 2003-2005.

28 de Oliveira, C. M. A.; Porto, A. M.; Bittrich, V.; Vencato, I.; Marsaioli, A. J. *Tetrahedron Lett.* **1996**, *37*, 6427- 6430.

29 Ito, C.; Itoigawa, M.; Miyamoto, Y.; Onoda, S.; Rao, K. S.; Mukainaka, T.; Tokuda, H.; Nishino, H.; Furukawa, H. *J. Nat. Prod.* **2003**, *66*, 206-209.

30 Biloa Messi, B.; Marti, G.; Ho, R.; Ndjoko Ioset, K.; Meli Lannang, A.; Hostettmann, K.; Wolfender, J.; *Planta Med.* **2010**, *76*, 1334-1334.

31 Christian, O. E.; McLean, S.; Reynolds, W. F.; Jacobs, H. *Nat. Prod. Commun.* **2008**, *3*, 1781-1786.

32 Hu, L.-H.; Sim, K.-Y. *Tetrahedron* **2000**, *56*, 1379-1386.

33 Nguyen, L.-T. T.; Nguyen, H. T.; Barbič, M.; Brunner, G.; Heilmann, J.; Pham, H. D.; Nguyen, D. M.; Nguyen, L.-H. D. *Tetrahedron Lett.* **2012**, *53*, 4487-4493.

³⁴ Derogis, P. B. M. C.; Martins, F. T.; de Souza, T. C.; Moreira, M. E. de C.; Filho, J. D. S.; Doriguetto, A. C.; de Souza, K. R. D.; Veloso, M. P.; dos Santos, M. H. *Mag. Reson. Chem.* **2008**, *46*, 278-282.

35 Martins, F. T.; Camps, I.; Doriguetto, A. C.; dos Santos, M. H.; Ellena, J.; Barbosa, L. C. A. *Helv. Chim. Acta* **2008**, *91*, 1313-1325.

36 Naldoni, F. J.; Claudino, A. L. R.; Cruz, J. W., Jr.; Chavasco, J. K.; Faria e Silva, P. M.; Veloso, M. P.; Dos Santos, M. H. *J. Med. Food* **2009**, *12*, 403-407.

37 Xiao, Z. Y.; Mu, Q.; Shiu, W. K. P.; Zeng, Y. H.; Gibbons, S. *J. Nat. Prod.* **2007**, *70*, 1779-1782.

38 Tanaka, N.; Takaishi, Y.; Shikishima, Y.; Nakanishi, Y.; Bastow, K.; Lee, K.-H.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O. K.; Ashurmetov, O. *J. Nat. Prod.* **2004**, *67*, 1870-1875.

39 Nedialkov, P. T.; Zheleva-Dimitrova, D.; Momekov, G.; Karlov, K.; Girreser, U.; Kitanov, G. M. *Nat. Prod. Res.* **2011**, *25*, 1743-1750.

40 Carvalho-Silva, L. B.; Oliveira, M. de V.; Gontijo, V. S.; Oliveira, W. F.; Derogis, P. B. M. C.; Stringheta, P. C.; Nagem, T. J.; Brigagão, M. R. P. L.; dos Santos, M. H. *Food Res. Int.* **2012**, *48*, 180-186.

41 Acuña, U. M.; Figueroa, M.; Kavalier, A.; Jancovski, N.; Basile, M. J.; Kennelly, E. J. *J. Nat. Prod.* **2010**, *73*, 1775-1779.

42 Santos, M. H.; Speziali, N. L.; Nagem, T. J.; Oliveira, T. T. *Acta Cryst.* **1998**, *C54*, 1990-1992.

43 Alves, T. M. de A.; Alves, R. de O.; Romanha, A. J.; dos Santos, M. H.; Nagem, T. J.; Zani, C. L. *J. Nat. Prod.* **1999**, *62*, 369-371.

44 Derogis, P. B. M. C.; Martins, F. T.; de Souza, T. C.; Moreira, M. E. de C.; Filho, J. D. S.; Doriguetto, A. C.; de Souza, K. R. D.; Veloso, M. P.; Dos Santos, M. H. *Magn. Reson. Chem.* **2008**, *46*, 278-282.

 \overline{a}

45 Christian, O. E.; Fronczek, F. R.; Ky, K.; Pradham, S.; Manandhar, A.; Richmond, C. *Acta Cryst.* **2012**, *E68*, o3222-o3223.

46 Marti, G.; Eparvier, V.; Moretti, C.; Susplugas, S.; Prado, S.; Grellier, P.; Retailleau, P.; Guéritte, F.; Litaudon, M. *Phytochemistry* **2009**, *70*, 75-85.

47 Marti, G.; Eparvier, V.; Moretti, C.; Prado, S.; Grellier, P.; Hue, N.; Thoison, O.; Delpech, B.; Guéritte, F.; Litaudon, M. *Phytochemistry* **2010**, *71*, 964-974.

48 Yang, H.; Figueroa, M.; To, S.; Baggett, S.; Jiang, B.; Basile, M. J.; Weinstein, I. B.; Kennelly, E. J. *J. Agric. Food Chem.* **2010**, *58*, 4749-4755.

49 Xia, Z.-X.; Zhang, D.-D.; Liang, S.; Lao, Y.-Z.; Zhang, H.; Tan, H.-S.; Chen, S.-L.; Wang, X.-H.; Xu, H.-X. *J. Nat. Prod.* **2012**, *75*, 1459-1464.

50 Roux, D.; Hadi, H. A.; Thoret, S.; Guénard, D.; Thoison, O.; Païs, M.; Sévenet, T. *J. Nat. Prod.* **2000**, *63*, 1070- 1076.

51 Iinuma, M.; Tosa, H.; Tanaka, T.; Kanamaru, S.; Asai, F.; Kobayashi, Y.; Miyauchi, K.-i.; Shimano, R. *Biol. Pharm. Bull.* **1996**, *19*, 311-314.

52 Zhang, L.-J.; Chiou, C.-T.; Cheng, J.-J.; Huang, H.-C.; Kuo, L.-M. Y.; Liao, C.-C.; Bastow, K. F.; Lee, K.-H.; Kuo, Y.-H. *J. Nat. Prod.* **2010**, *73*, 557-562.

53 Hussain, H.; Vouffo, B.; Dongo, E.; Riaz, M.; Krohn, K. *J. Asian Nat. Prod. Res.* **2011**, *13*, 547-550.

54 Taher, M.; Idris, M. S.; Ahmad, F.; Arbain, D. *Phytochemistry* **2005**, *66*, 723-726.

55 Taher, M.; Idris, M. S.; Ahmad, F.; Arbain, D. *Iran. J. Pharm. Th.* **2007**, *6*, 93-98.

56 Hartati, S.; Soemiati, A.; Wang, H.-B.; Kardono, L. B. S.; Hanafi, M.; Kosela, S.; Qin, G.-W. *J. Asian Nat. Prod. Res.* **2008**, *10*, 509-513.

57 Vugdelija, S.; Vajs, V.; Trifunovic, S.; Djokovic, D.; Milosavljevic, S. *Molecules* **2000**, *5*, M158.

58 Vajs, V.; Vugdelija, S.; Trifunović, S.; Karadžić, I.; Juranić, N.; Macura, S.; Milosavljević, S. *Fitoterapia* **2003**, *74*, 439-444.

59 Hashida, C.; Tanaka, N.; Kashiwada, Y.; Ogawa, M.; Takaishi, Y. *Chem. Pharm. Bull.* **2008**, *56*, 1164-1167.

60 Chen, X.-Q.; Li, Y.; Cheng, X.; Wang, K.; He, J.; Pan, Z.-H.; Li, M.-M.; Peng, L.-Y.; Xu, G.; Zhao, Q.-S. *Chem. Biodivers.* **2010**, *7*, 196-204.

61 Verotta, L.; Appendino, G.; Belloro, E.; Jakupovic, J.; Bombardelli, E. *J. Nat. Prod.* **1999**, *62*, 770-772.

62 Li, Y.; Cao, X. *J. Liq. Chromatogr. Relat. Technol.* **2012**, *35*, 2558-2566.

63 Trifunović, S.; Vajs, V.; Macura, S.; Juranić, N.; Djarmati, Z.; Jankov, R.; Milosavljević, S. *Phytochemistry* **1998**, *49*, 1305-1310.

64 Verotta, L.; Appendino, G.; Jakupovic, J.; Bombardelli, E. *J. Nat. Prod.* **2000**, *63*, 412-415.

65 Xu, G.; Kan, W. L. T.; Zhou, Y.; Song, J.-Z.; Han, Q.-B.; Qiao, C.-F.; Cho, C.-H.; Rudd, J. A.; Lin, G.; Xu, H.-X. *J. Nat. Prod.* **2010**, *73*, 104-108.

66 Zhou, Y.; Lee, S.; Choi, F. F. K.; Xu, G.; Liu, X.; Song, J.-Z.; Li, S.-L.; Qiao, C.-F.; Xu, H.-X. *Anal. Chim. Acta* **2010**, *678*, 96-107.

67 Gao, X.-M.; Yu, T.; Lai, F. S. F.; Zhou, Y.; Liu, X.; Qiao, C.-F.; Song, J.-Z.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X.; *Bioorg. Med. Chem.* **2010**, *18*, 4957-4964.

68 Chen, J.-J.; Ting, C.-W.; Hwang, T.-L.; Chen, I.-C. *J. Nat. Prod.* **2009**, *72*, 253-258.

 \overline{a}

69 Ting, C.-W.; Hwang, T.-L.; Chen, I.-S.; Yen, M.-H.; Chen, J.-J. *Chem. Biodivers.* **2012**, *9*, 99-105.

70 Shan, W.-G.; Lin, T.-S.; Yu, H.-N.; Chen, Y.; Zhan, Z.-J. *Helv. Chim. Acta* **2012**, *95*, 1442-1448.

71 Trinh, B. T. D.; Nguyen, N.-T. T.; Ngo, N. T. N.; Tran, P. T.; Nguyen, L.-T. T.; Nguyen, L.-H. D. *Phytochem. Lett.* **2013**, *6*, 224-227.

72 Chien, S.-C.; Chyu, C.-F.; Chang, I-S.; Chiu, H.-L.; Kuo, Y.-H. *Tetrahedron Lett.* **2008**, *49*, 5276-5278.

73 Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P. *Chem. Eur. J.* **2003**, *9*, 1958-1963.

74 Lin, K.-W.; Huang, A-M.; Yang, S.-C.; Weng, J.-R.; Hour, T.-C.; Pu, Y.-S.; Lin, C.-N. *Food Chem.* **2012**, *135*, 851-859.

75 Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P. *Chem. Eur. J.* **2003**, *9*, 5520-5527.

76 Wu, C.-C.; Weng, J.-R.; Won, S.-J.; Lin, C.-N. *J. Nat. Prod.* **2005**, *68*, 1125-1127.

77 Wu, C.-C.; Lu, Y.-H.; Wei, B.-L.; Yang, S.-C.; Won, S.-J.; Lin, C.-N. *J. Nat. Prod.* **2008**, *71*, 246-250.

78 Júnior, J. S. C.; Ferraz, A. B. F.; Filho, B. A. B.; Feitosa, C. M.; Citó, A. M. G. L.; Freitas, R. M.; Saffi, J. *J. Med. Plants Res.* **2011**, *5*, 293-299.

79 Mangas-Marín, R.; Bello-Alarcón, A.; Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. *Latin Am. J. Pharm.* **2008**, *27*, 762-765.

80 Hernández, I. M.; Fernandez, M. C.; Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. *J. Nat. Prod.* **2005**, *68*, 931- 934.

81 Weng, J.-R.; Tsao, L.-T.; Wang, J.-P.; Wu, R.-R.; Lin, C.-N. *J. Nat. Prod.* **2004**, *67*, 1796-1799.

82 Lin, K.-W.; Huang, A-M.; Tu, H.-Y.; Lee, L.-Y.; Wu, C.-C.; Hour, T.-C.; Yang, C.-H.; Pu, Y.-S.; Lin, C.-N. *J. Agric. Food Chem.* **2011**, *59*, 407-414.

83 Lenta, B. N.; Vonthron-Sénécheau, C.; Weniger, B.; Devkota, K. P.; Ngoupayo, J.; Kaiser, M.; Naz, Q.; Choudhary, M. I.; Tsamo, E.; Sewald, N. *Molecules* **2007**, *12*, 1548-1557.

84 Rukachaisirikul, V.; Naklue, W.; Sukpondma, Y.; Phongpaichit, S. *Chem. Pharm. Bull.* **2005**, *53*, 342-343.

85 Kumar, S.; Sharma, S.; Chattopadhyay, S. K. *Biomed. Chromatogr.* **2009**, *23*, 888-907.

86 Rao, A. V. R.; Venkatswamy, G.; Pendse, A. D. *Tetrahedron Lett.* **1980**, *21*, 1975-1978.

87 Iinuma, M.; Ito, T.; Miyake, R.; Tosa, H.; Tanaka, T.; Chelladurai, V. *Phytochemistry* **1998**, *47*, 1169-1170.

88 Masullo, M.; Bassarello, C.; Suzuki, H.; Pizza, C.; Piacente, S. *J. Agric. Food Chem.* **2008**, *56*, 5205-5210.

89 Kolodziejczyk, J.; Masullo, M.; Olas, B.; Piacente, S.; Wachowicz, B. *Platelets* **2009**, *20*, 487-492. 90 Shen, J.; Yang, J.-S. *Acta Chim. Sinica* **2007**, *65*, 1675-1678.

91 Hutadilok-Towatana, N.; Kongkachuay, S.; Mahabusarakam, W. *Nat. Prod. Rep.* **2007**, *21*, 655-662.

 92 Bakana, P.; Claeys, M.; Totté, J.; Pieters, L. A. C.; van Hoof, L.; Tamba-Vemba; van den Berghe, D. A.; Vlietinck, A. J. *J. Ethnopharmacol.* **1987**, *21*, 75-84.

93 Krishnamurthy, N.; Lewis, Y. S.; Ravindranath, B. *Tetrahedron Lett.* **1981**, *22*, 793-796.

94 Kaur, R.; Chattopadhyay, S. K.; Tandon, S.; Sharma, S. *Ind. Crop. Prod.* **2012**, *37*, 420-426.

95 Hartari, S.; Wang, H.-B.; Kardono, L. B. S.; Kosela, S.; Qin, G.-W. *Chin. J. Nat. Med.* **2007**, *5*, 272-276.

⁹⁶ Hamed, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoison, O.; Mons, S.; Delpech, B.; Hung, N. V.; Sévenet, T.; Marazano, C. *J. Nat. Prod.* **2006**, *69*, 774-777.

97 Sahu, A.; Das, B.; Chatterjee, A. *Phytochemistry* **1989**, *28*, 1233-1235.

 \overline{a}

98 Hartati, S.; Kadono, L. B. S.; Kosela, S.; Harrison, L. J. *J. Biol. Sci.* **2008**, *8*, 137-142.

99 Negi, P. S.; Jayaprakasha, G. K. *J. Food Sci.* **2004**, *69*, FMS61-FMS65.

 100 Xu, G.; Feng, C.; Zhou, Y.; Han, Q.-B.; Qiao, C.-F.; Huang, S.-X.; Chang, D. C.; Zhao, Q.-S.; Luo, K. Q.; Xu, H.-X. *J. Agric. Food Chem.* **2008**, *56*, 11144-11150.

101 Fukuyama, Y.; Kuwayama, A.; Minami, H. *Chem. Pharm. Bull.* **1997**, *45*, 947-949.

102 Fukuyama, Y.; Minami, H.; Kuwayama, A. *Phytochemistry* **1998**, *49*, 853-857.

103 Monzote, L.; Cuesta-Rubio, O.; Matheeussen, A.; Van Assche, T.; Maes, L.; Cos, P. *Phytother. Res.* **2011**, *25*, 458-462.

104 Dal Molin, M. M.; Silva, S.; Alves, D. R.; Quintão, N. L. M.; Delle Monache, F.; Filho, V. C.; Niero, R. *Arch. Pharm. Res.* **2012**, *35*, 623-631.

105 Acuña, U. M.; Dastmalchi, K.; Basile, M. J.; Kennelly, E. J. *J. Food Compos. Anal.* **2012**, *25*, 215-220.

106 Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muñiz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. *Biol. Pharm. Bull.* **2004**, *27*, 141-143.

107 Gustafson, K. R.; Blunt, J. W.; Munro, M. H. G.; Fuller, R. W.; McKee, T. C.; Cardellina, J. H., II; McMahon, J. B.; Cragg, G. M.; Boyd, M. R. *Tetrahedron* **1992**, *48*, 10093-10102.

108 Williams, R. B.; Hoch, J.; Glass, T. E.; Evans, R.; Miller, J. S.; Wisse, J. H.; Kingston, D. G. I. *Planta Med.* **2003**, *69*, 864-866.

109 Magadula, J. J. *Int. J. Res. Phytochem. Pharmacol.* **2012**, *2*, 16-20.

110 Lenta, B. N.; Ngouela, S.; Noungoue, D. T.; Tsamo, E.; Connolly, J. D. *Bull. Chem. Soc. Ethiop.* **2004**, *18*, 175- 180.

111 Ngouela, S.; Lenta, B. N.; Noungoue, D. T.; Ngoupayo, J.; Boyom, F. F.; Tsamo, E.; Gut, J.; Rosenthal, P. J.; Connolly, J. D. *Phytochemistry* **2006**, *67*, 302-306.

112 Pan, E.; Cao, S.; Brodie, P. J.; Miller, J. S.; Rakotodrajaona, R.; Ratovoson, F.; Birkinshaw, C.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. *Nat. Prod. Commun.* **2010**, *5*, 751-754.

113 Martins, F. T.; Cruz, J. W., Jr.; Derogis, P. B. M. C.; dos Santos, M. H.; Veloso, M. P.; Ellena, J.; Doriguetto, A. C. *J. Braz. Chem. Soc.* **2007**, *18*, 1515-1523.

114 Dias, K. S. T.; Januário, J. P.; D' Dego, J. L.; Dias, A. L. T.; dos Santos, M. H.; Camps, I; Coelho, L. F. L.; Viegas, C., Jr. *Bioorg. Med. Chem.* **2010**, *18*, 4957-4964.

115 Lenta, B. N.; Noungoue, D. T.; Devkota, K. P.; Fokou, P. A.; Ngouela, S.; Tsamo, E.; Sewland, N. *Acta Cryst.* **2007**, *E63*, o1282-o1284.

116 Huang, S.-X.; Feng, C.; Zhou, Y.; Xu, G.; Han, Q.-B.; Qiao, C.-F.; Chang, D. C.; Luo, K. Q.; Xu, H.-X. *J. Nat. Prod.* **2009**, *72*, 130-135.

117 Lannang, A. M.; Louh, G. N.; Biloa, B. M.; Komguem, J.; Mbazoa, C. D.; Sondengam, B. L.; Naesens, L.; Pannecouque, C.; De Clercq, E.; El Ashry, E. S. H. *Planta Med.* **2010**, *76*, 708-712.

118 Han, Q.-B.; Yang, N.-Y.; Tian, H.-L.; Qiao, C.-F.; Song, J.-Z.; Chang, D. C.; Chen, S.-L.; Luo, K. Q.; Xu, H.-X. *Phytochemistry* **2008**, *69*, 2187-2192.

119 Merza, J.; Mallet, S.; Litaudon, M.; Dumontet, V.; Séraphin, D.; Richomme, P. *Planta Med.* **2006**, *72*, 87-89.

120 Cuesta-Rubio, O.; Frontana-Uribe, B. A.; Ramírez-Apan, T.; Cárdenas, J. *Z. Naturforsch.* **2002**, *57c*, 372-378.

121 Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M. C.; Miorin, P. L.; Pasin, F. d. R.; Tsvetkova, I. *Evid. Based Complement. Alternat. Med.* **2006**, *3*, 249-254.

122 Azebaze, A. G. B.; Ouahouo, B. M. W.; Vardamides, J. C.; Valentin, A.; Kuete, V.; Acebey, L.; Beng, V. P.; Nkengfack, A. E.; Meyer, M. *Chem. Nat. Compd.* **2008**, *44*, 582-587.

123 Fuller, R. W.; Blunt, J. W.; Boswell, J. L.; Cardellina, J. H., II; Boyd, M. R. *J. Nat. Prod.* **1999**, *62*, 130-132.

124 Magadula, J. J. *J. Pharm. Sci. Innovat.* **2012**, *1*, 31-33.

 \overline{a}

125 Hartati, S.; Triyem; Cahyana, H. *Indo. J. Cancer Chemoprev.* **2010**, *1*, 85-91.

126 Doan, T. N.; Kim, E. K.; Qui, H. J.; Son, E. M.; Lee, J. E.; Galaaraidii, O.; Lee, B. J.; Youn, H. J.; Koo, K. A. *Planta Med.* **2008**, *74*, 1034.

127 Gey, C.; Kyrylenko, S.; Hennig, L.; Nguyen, L.-H. D.; Büttner, A.; Pham, H. D.; Giannis, A. *Angew. Chem. Int. Ed.* **2007**, *46*, 5219-5222.

128 Elfita; Supriyatna; Bahti, H. H.; Dachriyanus *Indo. J. Chem.* **2008**, *8*, 97-100.

129 Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Guan, Z.; Borris, R. P.; Stijfhoorn, E.; Stevenson, D.; Wang, J.; Sharma, N.; MacNaul, K.; Menke, J. G.; Ali, A.; Schulman, M. J.; Singh, S. B. *J. Nat. Prod.* **2005**, *68*, 617-619.

130 Lannang, A. M.; Komguem, J.; Ngninzeko, F. N.; Tangmouo, J. G.; Lontsi, D.; Ajaz, A.; Choudhary, M. I.; Sondengam, B. L.; Atta-ur-Rahman *Bull. Chem. Soc. Ethiop.* **2006**, *20*, 247-252.

 \overline{a}

- 133 Nguyen, H. D.; Trinh, B. T. D.; Nguyen, L.-H. D. *Phytochem. Lett.* **2011**, *4*, 129-133.
- 134 Nilar; Nguyen, L.-H. D.; Venkatraman, G.; Sim, K.-Y.; Harrison, L.-J. *Phytochemistry* **2005**, *66*, 1718-1723.
- 135 Masullo, M.; Bassarello, C.; Bifulco, G.; Piacente, S. *Tetrahedron* **2010**, *66*, 139-145.

136 Cao, S.; Brodie, P. J.; Miller, J. S.; Ratovoson, F.; Birkinshaw, C.; Randrianasolo, S.; Rakotobe, E.; Rasamison, V. E.; Kingston, D. G. I. *J. Nat. Prod.* **2007**, *70*, 686-688.

137 Carroll, A. R.; Suraweera, L.; King, G.; Rali, T.; Quinn, R. J. *J. Nat. Prod.* **2009**, *72*, 1699-1701.

138 Rücker, G.; Manns, D.; Hartmann, R.; Bonsels, U. *Arch. Pharm.* **1995**, *328*, 725-730.

139 Momekov, G.; Ferdinandov, D.; Zheleva-Dimitrova, D.; Nedialkov, P.; Girreser, U.; Kitanov, G. *Phytomedicine* **2008**, *15*, 1010-1015.

¹⁴⁰ Biljali, S.; Momekov, G.; Nedialkov, P.; Zheleva-Dimitrova, D.; Kitanov, G.; Momekova, D.; Stoyanov, N.; Guenova, M.; Michova, A.; Karaivanova, M. *J. Pharm. Technol. Drug Res.* **2012**, *1*, 6.

¹⁴¹ Šavikin-Fodulović, K.; Aljančić, I.; Vajs, V.; Menković, N.; Macura, S.; Gojgić, G.; Milosavljević, S. *J. Nat. Prod.* **2003**, *66*, 1236-1238.

142 Decosterd, L. A.; Stoeckli-Evans, H.; Chapuis, J.-C.; Msonthi, J. D.; Sordat, B.; Hostettmann, K. *Helv. Chim. Acta* **1989**, *72*, 464-471.

143 Benkiki, N.; Kabouche, Z.; Tillequin, F.; Vérité, P.; Chosson, E.; Seguin, E. *Z. Naturforsch.* **2003**, *58c*, 655-658.

144 Touafek, O.; Kabouche, Z.; Boustie, J.; Bruneau, C. *Nat. Prod. Commun.* **2012**, *7*, 63-64.

145 Smelcerovic, A.; Zuehlke, S.; Spiteller, M.; Raabe, N.; Özen, T. *Biochem. Syst. Ecol.* **2008**, *36*, 316-319.

146 Smelcerovic, A.; Spiteller, M. *Pharmazie* **2006**, *61*, 251-252.

147 Smelcerovic, A.; Verma, V.; Spiteller, M.; Ahmad, S. M.; Puri, S. C.; Qazi, G. N. *Phytochemistry* **2006**, *67*, 171- 177.

148 Ayan, A. K.; Radušienė, J.; Çirak, C.; Ivanauskas, L.; Janulis, V. *Pharm. Biol.* **2008**, *47*, 847-853.

149 Statti, G. A.; Conforti, F.; Menichini, F.; Marrelli, M.; Carmen, G.; Tundis, R.; Loizzo, M. R.; Bonesi, M.; Menichini, F. *Biol. Res.* **2011**, *44*, 213-218.

150 Çirak, C.; Radušiené, J.; Janulis, V.; Ivanauskas, L. *Nat. Prod. Commun.* **2010**, *5*, 897-898.

¹³¹ Kuete, V.; Komguen, J.; Beng, V. P.; Tangmouo, J. G.; Etoa, F.-X.; Lontsi, D. *S. Afr. J. Bot.* **2007**, *73*, 347-354.

¹³² Ciochina, R.; Grossman, R. B. *Chem. Rev.* **2006**, *106*, 3963-3986.

¹⁵¹ Maggi, F.; Ferretti, G.; Pocceschi, N.; Menghini, L.; Ricciutelli, M. *Fitoterapia* **2004**, *75*, 702-711.

¹⁵² Tawaha, K.; Gharaibeh, M.; El-Elimat, T.; Alali, F. Q. *Ind. Crop. Prod.* **2010**, *32*, 241-245.

¹⁵³ Bonkanka, C. X.; Smelcerovic, A.; Zuehlke, S.; Rabanal, R. M.; Spiteller, M.; Sánchez-Mateo, C. del C. *Planta Med.* **2008**, *74*, 719-725.

¹⁵⁴ Sagratini, G.; Ricciutelli, M.; Vittori, S.; Öztürk, N.; Örtürk, Y.; Maggi, F. *Fitoterapia* **2008**, *79*, 210-213.

155 Kusari, S.; Zühlke, S.; Borsch, T.; Spiteller, M. *Phytochemistry* **2009**, *70*, 1222-1232.

- 156 Crockett, S. L.; Schaneberg, B.; Khan, I. A. *Phytochem. Anal.* **2005**, *16*, 479-485.
- 157 Camas, N.; Radusiene, J.; Stanius, Z.; Caliskan, O.; Cirak, C. *Sci. World J.* **2012**, 501027.

158 Çirak, C.; Radušiené, J. *Nat. Prod. Res.* **2007**, *21*, 1151-1156.

 \overline{a}

159 Cirak, C.; Radusiene, J.; Stanius, Z.; Camas, N.; Caliskan, O.; Odabas, M. S. *Acta Physiol. Plant.* **2012**, *34*, 1313-1320.

160 Charchoglyan, A.; Abrahamyan, A.; Fujii, I.; Boubakir, Z.; Gulder, T. A. M.; Kutchan, T. M.; Vardapetyan, H.; Bringmann, G.; Ebizuka, Y.; Beerhues, L. *Phytochemistry* **2007**, *68*, 2670-2677.

161 Kirakosyan, A.; Gibson, D. M.; Sirvent, T. *J. Herbs Spices Med. Plants* **2003**, *10*, 73-88.

162 Shan, M. D.; Hu, L. H.; Chen, Z. L. *J. Nat. Prod.* **2001**, *64*, 127-130.

163 Helmja, K.; Vaher, M.; Püssa, T.; Orav, A.; Viitak, A.; Levandi, T.; Kaljurand, M. *Nat. Prod. Res.* **2011**, *25*, 496- 510.

164 Verma, V.; Smelcerovic, A.; Zuehlke, S.; Hussain, M. A.; Ahmad, S. M.; Ziebach, T.; Qazi, G. N.; Spiteller, M. *Biochem. Syst. Ecol.* **2008**, *36*, 201-206.

165 Pietta, P.; Gardana, C.; Pietta, A. *Il Farmaco* **2001**, *56*, 491-496.

167 Gurevich, A. I.; Dobrynin, V. N.; Kolosov, M. N.; Popravko, S. A.; Ryabova, I. D.; Chernov, B. K.; Derbentseva, N. A.; Aizenman, B. E.; Garagulya, A. D. *Antibiotiki* **1971**, *16*, 510-513.

- 168 Umek, A.; Kreft, S.; Kartnig, T.; Heydel, B. *Planta Med.* **1999**, *65*, 388-390.
- 169 Büter, B.; Orlacchio, C.; Soldati, A.; Berger, K. *Planta Med.* **1998**, *64*, 431-437.
- 170 Çirak, C.; Radusiene, J.; Janulis, V.; Ivanauskas, L. *J. Integr. Plant Biol.* **2008**, *50*, 575-580.
- 171 Spiteller, M.; Özen, T.; Smelcerovic, A.; Zuehlke, S.; Mimica-Dukić, N. *Fitoterapia* **2008**, *79*, 191-193.

172 Zheng, M.; Fan, Y.; Shi, D.; Liu, C. *J. Ethnopharmacol.* **2013**, *147*, 108-113.

173 Murch, S. J.; Rupasighe, H. P. V.; Goodenowe, D.; Saxena, P. K. *Plant Cell Rep.* **2004**, *23*, 419-425.

- ¹⁷⁴ Erdelmeier, C. A. J. *Pharmacopsychiatry* **1998**, *31* (Supplement 1), 2-6.
- ¹⁷⁵ Adam, P. A.; Arigoni, D.; Bacher, A.; Eisenreich, W. *J. Med. Chem.* **2002**, *45*, 4786-4793.
- ¹⁷⁶ Cui, Y.; Ang, C. Y. W.; Beger, R. D.; Heinze, T. M.; Hu, L.; Leakey, J. *Drug Metab. Dispos.* **2004**, *32*, 28-34.
- ¹⁷⁷ Cao, X.; Wang, Q.; Li, Y.; Bai, G.; Ren, H.; Xu, C.; Ito, Y. *J. Chromatogr. B* **2011**, *879*, 480-488.
- 178 Bystrov, N. S.; Chernov, B. K.; Dobrynin, V. N.; Kolosov, M. N. *Tetrahedron Lett.* **1975**, *16*, 2791-2794.

¹⁶⁶ Filippini, R.; Piovan, A.; Borsarini, A.; Caniato, R. *Fitoterapia* **2010**, *81*, 115-119.

179 Brondz, I.; Greibokk, T.; Groth, P. A.; Aasen, A. J. *Tetrahedron Lett.* **1982**, *23*, 1299-1300.

180 Brondz, I.; Greibrokk, T.; Groth, P.; Aasen, A. J. *Acta Chem. Scand. A* 1983, 37, 263-265.

181 Matsuhisa, M.; Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Shibata, H.; Higuti, T.; Kozhimatov, O. K.; Ashurmetov, O. *J. Nat. Prod.* **2002**, *65*, 290-294.

182 Castro, M. L.; do Nascimento, A. M.; Ikegaki, M.; Costa-Neto, C. M.; Alencar, S. M.; Rosalen, P. L. *Bioorg. Med. Chem.* **2009**, *17*, 5332-5335.

183 Qi, J.; Beeler, A. B.; Zhang, Q.; Porco, J. A., Jr. *J. Am. Chem. Soc.* **2010**, *132*, 13642-13644.

184 Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. *J. Nat. Prod.* **2001**, *64*, 701-706.

¹⁸⁵ Lin, Y.-L.; Wu, Y.-S. *Helv. Chim. Acta* **2003**, *86*, 2156-2163.

 \overline{a}

186 Zheng, Y. H.; Mu, Q.; Xiao, Z. Y.; Xu, Y.; Rahman, M. M.; Gibbons, S. *Chem. Lett.* **2009**, *38*, 440-441.

187 Zeng, Y.-H.; Osman, K.; Xiao, Z.-Y.; Gibbons, S.; Mu, Q. *Phytochem. Lett.* **2012**, *5*, 200-205.

188 Wabo, H. K.; Kowa, T. K.; Lonfouo, A. H. N.; Tchinda, A. T.; Tane, P.; Kikuchi, H.; Frédérich, M.; Oshima, Y. *Rec. Nat. Prod.* **2012**, *6*, 94-100.

189 Tchakam, P. D.; Lunga, P. K.; Kowa, T. K.; Lonfuou, A. H. N.; Wabo, H. K.; Tapondjou, L. A.; Tane, P.; Kuiate, J.-R. *BMC Complem. Altern. Med.* **2012**, *12*, 136.

190 Ito, C.; Miyamoto, Y.; Nakayama, M.; Kawai, Y.; Rao, K. S.; Furukawa, H. *Chem. Pharm. Bull.* **1997**, *45*, 1403- 1413.

191 Marti, G.; Eparvier, V.; Litaudon, M.; Grellier, P.; Guéritte, F. *Molecules* **2010**, *15*, 7106-7114.

192 Krishnamurthy, N.; Ravindranath, B.; Guru Row, T. N.; Venkatesan, K. *Tetrahedron Lett.* **1982**, *23*, 2233-2236.

193 Kaur, R.; Vasudev, P. G.; Chattopadhyay, S. K. *Acta Cryst.* **2012**, *E68*, o1861-o1862.

194 Elfita, E.; Muharni, M.; Latief, M.; Darwati, D.; Widiyantoro, A.; Supriyatna, S.; Bahti, H. H.; Dachriyanus, D.; Cos, P.; Maes, L.; Foubert, K.; Apers, S.; Pieters, L. *Phytochemistry* **2009**, *70*, 907-912.

195 Kumar, S.; Chattopadhyay, S. K. *Biomed. Chromatogr.* **2007**, *21*, 139-163.

196 Ee, G. C. L.; Cheow, Y. L. *Asian J. Chem.* **2008**, *20*, 343-351.

197 Waterman, P. G.; Crichton, E. G. *Planta Med.* **1980**, *40*, 351-355.

198 Waterman, P. G.; Hussain, R. A. *Biochem. Syst. Ecol.* **1983**, *11*, 21-28.

199 Lannang, A. M.; Louh, G. N.; Lontsi, D.; Specht, S.; Sarite, S. R.; Flörke, U.; Hussain, H.; Hoerauf, A.; Krohn, K. *J. Antibiot.* **2008**, *61*, 518-523.

200 Lakshmi, C.; Kumar, K. A.; Dennis, T. J. *J. Indian Chem. Soc.* **2002**, *79*, 968-969.

201 Karajgoaker, C. G.; Rama Rao, A. V.; Venkataraman, K.; Yemul, S. S.; Palmer, K. J. *Tetrahedron Lett.* **1973**, *14*, 4977.

202 Rama Rao, A. V.; Venkatswamy, G.; Yemul, S. S. *Indian J. Chem.* **1980**, *19B*, 627-633.

203 Zhong, J.-Y.; Wang, W.-D.; Tao, G.-D.; Li, K.-L. *Acta Bot. Sin.* **1986**, *28*, 533-537.

204 Rama Rao, A. V.; Venkatswamy, G.; Yemul, S. S. *Chem. Indust.* **1979**, 92-92.

 \overline{a}

205 Venkatswamy, G.; Yemul, S. S.; Rama Rao, A. V.; Palmer, K. J. *Indian J. Chem.* **1975**, *13*, 1355-1355.

206 de Almeida, M. F.; Guedes, M. L. S.; Cruz, F. G. *Tetrahedron Lett.* **2011**, *52*, 7108-7112.

207 Bokesch, H. R.; Groweiss, A.; McKee, T. C.; Boyd, M. R. *J. Nat. Prod.* **1999**, *62*, 1197-1199.

208 Schiell, M.; Kurz, M.; Haag-Richter, S. (Aventis Pharma Deutschland, GmbH). US Patent 6,956,061, October, 18, 2005.

209 de Oliveira, C. M. A.; Porto, A. L. M.; Bittrich, V.; Marsaioli, A. J. *Phytochemistry* **1999**, *50*, 1073-1079.

210 Cuesta-Rubio, O.; Velez-Castro, H.; Frontana-Uribe, B. A.; Cárdenas, J. *Phytochemistry* **2001**, *57*, 279-283.

²¹¹ Kelecom, A.; Reis, G. L.; Fevereiro, P. C. A.; Silva, J. G.; Santos, M. G.; Neto, C. B. M.; Gonzalez, M. S.; Gouvea, R. C. S.; Almeida, G. S. S. *An. Acad. Bras. Cienc.* **2002**, *74*, 171-181.

212 Cuesta-Rubio, O.; Piccinelli, A. L.; Fernandez, M. C.; Hernández, I. M.; Rosado, A.; Rastrellli, L. *J. Agric. Food Chem.* **2007**, *55*, 7502-7509.

213 Díaz-Carballo, D.; Malak, S.; Bardenheuer, W.; Freistuehler, M.; Reusch, H. P. *Bioorg. Med. Chem.* **2008**, *16*, 9635-9643.

214 Pagano, B.; Pavone, M.; Piccinelli, A. L.; Rastrelli, L.; Cuesta-Rubio, O.; Mattia, C. A.; Barone, V. *Chem. Phys. Lett.* **2008**, *462*, 158-163.

215 Teixeira, J. S. R.; Cruz, F. G. *Tetrahedron Lett.* **2005**, *46*, 2813-2816.

216 Cruz, F. G.; Teixeira, J. S. R. *J. Braz. Chem. Soc.* **2004**, *15*, 504-508.

217 Chaturvedula, V. S. P.; Schilling, J. K.; Kingston, D. G. I. *J. Nat. Prod.* **2002**, *65*, 965-972.

218 Ishida, Y.; Shirota, O.; Sekita, S.; Someya, K.; Tokita, F.; Nakane, T.; Kuroyanagi, M. *Chem. Pharm. Bull.* **2010**, *58*, 336-343.

219 Gao, X.-M.; Yu, T.; Lai, F. S. F.; Pu, J.-X.; Qiao, C.-F.; Zhou, Y.; Liu, X.; Song, J.-Z.; Luo, K. Q.; Xu, H.-X. *Tetrahedron Lett.* **2010**, *51*, 2442-2446.

220 Gao, X.-M.; Yu, T.; Luo, K. Q.; Xu, H. X. US Patent Appl. 2011/0301233, December 8, 2011.

221 Xiao, Z. Y.; Zeng, Y. H.; Mu, Q.; Shiu, W. K. P.; Gibbons, S. *Chem. Biodivers.* **2010**, *7*, 953-958.

222 Henry, G. E.; Jacobs, H.; Carrington, C. M. S.; McLean, S.; Reynolds, W. F. *Tetrahedron Lett.* **1996**, *37*, 8663- 8666.

223 Christian, O. E.; Henry, G. E.; Jacobs, H.; McLean, S.; Reynolds, W. F. *J. Nat. Prod.* **2001**, *64*, 23-25.

224 Henry, G. E.; Jacobs, H.; Carrington, C. M. S.; McLean, S.; Reynolds, W. F. *Tetrahedron* **1999**, *55*, 1581-1596.

225 Grossman, R. B.; Jacobs, H. *Tetrahedron Lett.* **2000**, *41*, 5165-5169.

226 Díaz-Carballo, D.; Gustmann, S.; Ackikelli, A. H.; Bardenheuer, W.; Buehler, H.; Jastrow, H.; Ergun, S.; Strumberg, D. *Phytomedicine* **2012**, *19*, 1298-1306.

227 Bittrich, V.; Amaral, M. do C. E.; Machado, S. M. F.; Marsaioli, A. J. *Z. Naturforsch.* **2003**, *58c*, 643-648.

228 Henry, G. E.; Raithore, S.; Zhang, Y.; Jayaprakasam, B.; Nair, M. G.; Heber, D.; Seeram, N. P. *J. Nat. Prod.* **2006**, *69*, 1645-1648.

229 Cuesta Rubio, O.; Cuellar, A. C.; Rojas, N.; Velez Castro, H.; Rastrelli, L.; Aquino, R. *J. Nat. Prod.* **1999**, *62*, 1013-1015.

230 Shan, M. D.; Hu, L. H.; Chen, Z. L. *Chinese Chem. Lett.* **2000**, *11*, 701-704.

231 Hu, L.-H.; Sim, K.-Y. *Tetrahedron Lett.* **1998**, *39*, 7999-8002.

232 Li, Z.-Q.; Lei, L.; Ma, G.-Y.; Rong, H.; Hu, Z.-H. *Chinese Tradit. Herb. Drugs* **2004**, *35*, 131-134.

233 Hu, L.-H.; Sim, K.-Y. *Tetrahedron Lett.* **1999**, *40*, 759-762.

234 Hu, L. H.; Sim, K. Y. *Org. Lett.* **1999**, *1*, 879-882.

 \overline{a}

235 Trusheva, B.; Popova, M.; Naydenski, H.; Tsvetkova, I.; Rodriguez, J. G.; Bankova, V. *Fitoterapia* **2004**, *75*, 683-689.

236 Magadula, J. J.; Kapingu, M. C.; Bezabih, M.; Abegaz, B. M. *Phytochem. Lett.* **2008**, *1*, 215-218.

²³⁷ Řezanka, T.; Sigler, K. *Phytochemistry* **2007**, *68*, 1272-1276.

238 Albernaz, L. C.; Deville, A.; Dubost, L.; de Paula, J. E.; Bodo, B.; Grellier, P.; Espindola, L. S.; Mambu, L. *Planta Med.* **2012**, *78*, 459-464.

239 Fukuyama, Y.; Kaneshi, A.; Tani, N.; Kodama, M. *Phytochemistry* **1993**, *33*, 483-485.

240 Cao, S.; Low, K.-N.; Glover, R. P.; Crasta, S. C.; Ng, S.; Buss, A. D.; Butler, M. S. *J. Nat. Prod.* **2006**, *69*, 707- 709.

241 Guo, N.; Chen, X.-Q.; Zhao, Q.-S. *Acta Bot. Yunnanica* **2008**, *30*, 515-518.

242 Dreyer, D. L. *Phytochemistry* **1974**, *13*, 2883-2884.

243 Talontsi, F. M.; Islam, M. T.; Facey, P.; Douanla-Meli, C.; von Tiedemann, A.; Laatsch, H. *Phytochem. Lett.* **2012**, *5*, 657-664.

244 Crichton, E. G.; Waterman, P. G. *Phytochemistry* **1979**, *18*, 1553-1557.

245 Waterman, P. G.; Hussain, R. A. *Phytochemistry* **1982**, *21*, 2099-2101.

246 Tandon, R. N.; Srivastava, O. P.; Baslas, R. K.; Kumar, P. *Curr. Sci. India* **1980**, *49*, 472-473.

247 Botta, B.; Mac-Quhae, M. M.; Delle Monache, G.; Delle Monache, F. *J. Nat. Prod.* **1984**, *47*, 1053-1053.

248 Blount, J. F.; Williams, T. H. *Tetrahedron Lett.* **1976**, *17*, 2921-2924.

Appendix B

Catalog of Spectra

499

ppm -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

