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Evolutionary Adaptation and Antimalarial Resistance in

Plasmodium falciparum

ABSTRACT

The malaria parasite, Plasmodium falciparum, has a demonstrated history of
adaptation to antimalarials and host immune pressure. This ability unraveled
global eradication programs fifty years ago and seriously threatens renewed
efforts today. Despite the magnitude of the global health problem, little is known
about the genetic mechanisms by which the parasite evades control efforts.
Population genomic methods provide a new way to identify the mutations and

genes responsible for drug resistance and other clinically important traits.

In this thesis, I set out to develop and apply novel approaches to studying
parasite adaptation in three parts. First, I carry out a global, genomic survey of P.
falciparum diversity and perform a genome-wide association study (GWAS) to
identify a number of candidate markers of drug resistance. Subsequent validation
shows a causal relationship between one of these candidates and parasite drug

response.

Second, I further pursue the GWAS approach by sampling a single population
more deeply and moving from array-based genotypes to whole-genome sequence
data. I demonstrate the deficiences of array-based GWAS in low linkage
disequilibrium (LD) populations and argue for a complete transition to
sequence-based GWAS for small, low-LD genomes like P. falciparum. 1
additionally develop the use of along-haplotype natural selection test to detect

associations with adaptive traits.
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Dissertation advisor: Professor Pardis C. Sabeti Daniel John Park

Finally, I exploit the parasite’s short generation time to detect temporal
signatures of selection in progress from samples collected over several years. I
develop and evaluate new genome-wide statistics for this test and find that it
identifies coding variants, often in surface proteins subject to balancing selection.
This approach is complementary to existing selection tests and is a timely

addition to the genomic toolkit available to malaria eradication efforts.

This research contributes numerous novel approaches to the problem of the
rapidly evolving P. falciparum parasite and significantly advances the field’s ability
to provide the tools and knowledge required for current global eradication

campaigns.

iv



Contents

UsiNnG GENOMICS TO INFORM MALARIA CONTROL AND ERADICA-
TION EFFORTS

1.1
12
13
14
1.5
1.6

Background . . . . . ...
Technological Advancements . . . . . ... ... ........
Population Structure and Linkage Disequilibrium . . . . . . ..
Signaturesof Selection . . . . . ... ... ... ... ... ..
Finding the Genetic Basis for Specific Phenotypes . . . . . . . .
Conclusions and Dissertation Overview . . . ... .. ... ..

(GENOME-WIDE ASSOCIATION STUDIES IDENTIFY THE ANTI-

MALARIAL RESISTANCE Locus PF10_035$

2.1 Introduction . .. .. ... ... ... ...
22 Results . . . . ... e
23 Discussion . . . . ... e e e e e e e e e e e e e
24 Methods . . ... ... . ...
2.5 Acknowledgements . . . . ... ... ... Lo L
SEQUENCE-BASED ASSOCIATION AND SELECTION-ASSOCIATION SCANS
31 Introduction . .. .. ... ... ... ...
32 Results . . .. .. . e
33 Discussion . . ... ... e e e e e e e e e e e e e
34 Methods . . ... ... . .. ...
3.5 Acknowledgements . . . . . ... ... ... L.
TEMPORAL SIGNATURES OF SELECTION

41 Introduction . ... ... ... .. ...
42 Results . . . . . . . e
43 Discussion . . . . . . . . ... e e e e e e e
44 Methods . ... ... . . ...
4.5 Acknowledgements . . . . ... ... oL

SECONDARY PUBLICATIONS
A.l1 Published manuscripts, Sept 2010 to July2013 . . . . . ... ..

O N W -

18

20
21
22
33
38
42

43
44
45
s1
56
60

61
62
63
67
71
74

76



A.2  Manuscripts in preparationorreview . . . . . . . ... ... .. 80

B ASCERTAINMENT Bias CORRECTIONS TO SELECTION STUDIES IN

PLASMODIUM FALCIPARUM 82
B.l Introduction . . ... .... ... ... ... ... 83
B.2 ResultsandDiscussion . . . . ... ... ............ 84
B3 Methods . ... ... ... ... . ... .. 87
B4 Acknowledgements . . . ... ... ... Lo Lo L 89
C SUPPLEMENTAL MATERIAL FOR CHAPTER 2 920
C.1 Author Contributions to Supplemental Material . . . . . .. .. 90
C.2 Supplemental Methods . . . . .. ... .. ........... 91
C.3 Supplemental DataFiles . ... ... .............. 98
C4 Supplemental Figures . . . . . . ... ... ... .. ...... 99
C.S SupplementalTables . . .. ... ... ............. 111
C.6 Figures and Tables Supporting Supplemental Methods . . . . . 119
D SUPPLEMENTAL MATERIAL FOR CHAPTER 3 124
D.1 Author Contributions to Supplemental Material . . . . . .. .. 124
D.2 Supplemental DataFiles . . ... ... ............. 125
D.3 SupplementalResults . . . . . ... ... ... ... ... ... 125
D4 Supplemental Methods . . . . . ... ..... ... .. ..., 127
D.S Supplemental Figures . . . . . .. ... ............. 130
E  SuPPLEMENTAL MATERIAL FOR CHAPTER 4 135
E.1  Author Contributions to Supplemental Material . . . . . . . .. 135
E.2 Supplemental Figures . . . . . ... ... ............ 136
E.3 Null models of the selection coefficient . . . . . ... ... ... 138
E4 Long-haplotypetests . . .. ... ................ 142
ES ExvivoGWAStests. . .. ... ... .............. 143
REFERENCES 145

vi



1.1
1.2
13
2.1

2.2
2.3

24
2.5

3.1

3.2
3.3
3.4
4.1
B.1
B2
B3
B4
Cl1
C2
C3
C4
C.S
C.6
C7

C38

Listing of figures

Signatures of balancing selection . . . . . ... ... ... ... 9
Signatures of directional selection . . . . ... ... ...... 12
Identifying drugresistance loci using GWASs and functional studies 17
Parasite global population structure and genetic diversity vs. di-

VEIGENCE . & v v v vt e e e e e e e 23
Genome-wide association study (GWAS) results . . . . .. .. 27
Overexpression of PF10_03S5 decreases parasite susceptibility

to halofantrine (HFN) and related antimalarials . . . . .. . . . 30
Correlations between antimalarial drugstested . . . . . . . . .. 32
Copy number variation at PF10_035S5 is associated with HFN re-

sistance . .. ..o 34
Simulated P. falciparum arrays are unable to tag SNPs not present

onthearray . . . . ... ... ... .. L 46
Association signals around pfmdr1 (array vs. sequence) . . . . . 49
Significant signals of drug-associated selection (XP-EHH) . .. S0
Localizing the pyrimethamine-associated selection signal on chr12 54
Two test statistics match null distributions. . . . . . . ... ... 64
Diversity vs. Divergence in Senegal, uncorrected . . . . . . . .. 84
Watterson’s éw vs. Tajima’s éT, uncorrected and corrected . . . . 86
Fgsr vs. Tajima’s D, uncorrected and corrected . . . . . . . . .. 87
Null simulations of TajimasD . . . ... ... ......... 88
Population structure (PCA) within each continent . . . . . . . 99
Linkage disequilibrium decay by distance . . . . ... ... .. 100
Functional (GO category) enrichment in nucleotide diversity . . 101
SNP diversity and divergence by translation consequence . . . . 102
Raw REHH scores across genome and by allele frequency . . . . 103
Long-range haplotype signals across the genome . . . . . . . .. 103

GWAS P-value distributions for Fisher’s exact test, permuted
Fisher’s exact test, and Cochran-Mantel-Haenszel (CMH) tests . 104
GWAS results forthe EMMAtest . . . ... .......... 10S

vii



C.9 GWAS P-value distributions for HLR tests for association to drug

FESIStANCE . . . v v e e e e e e e e e e e e e e e e e e 106
C.10 GWAS P-value distributions for HLR tests for association to drug
sensitivity . . . . . ... L oo 107

C.11 PFI0_035S copy number variation measured by Affymetrix hy-

bridizationintensity . . . . ... ... ... ... ... L. 108
C.12 PF10_03SS copy number variation measured by Southern blotting 109
C.13 Drug resistance phenotype classification for sweep and GWAS

analyses . . .. ... 110
C.14 Genic/intergenic effect on array performance . . .. ... ... 119
C.1S Effect of SNP discovery minor allele count on array performance 119
C.16 Effect of GC composition on array performance . . . . . . . .. 120
C.17 Effect of non-unique flanking sequence on array performance . . 120
C.18 Arraymarkerspacing . . . . ... ... ... ... ... 121
C.19 Final concordant marker density across genome . . . . . .. .. 123
C.20 Distribution of markers pergene . . . . .. ... ... ... .. 123
D.1 Drugresponse distributions . . . . ... ... ... ... 130
D.2 Drugresponse correlationheatmap . . . ... ... ... ... 131
D.3 EMMA GWAS plots (sequence data, 45 samples) . . . .. . .. 132
D.4 XP-EHH GWAS plots (sequence data, 45 samples) . . . . . .. 133
D.S EMMA GWAS plots (array data, 24 samples) . . . ....... 134
E1l DAFspectra. . . . ... ... ... 136
E.2 DAF over time formajordrugloci . . . ... ... ....... 137
E.3 HMM statistics are biased at extreme DAF . . . . . . ... ... 138
E.4 HMM statistics at different drift strengths and time spans . . . . 139
ES5 Volcanoplot: Pvs.s . .. ... ................. 140
E.6 Double-zero variants lead to inflated statistics . . . . . ... .. 141
E.7 Long-haplotype selection testsin W. Africa . . . ... ... .. 142
E.8 ExvivoGWAS:EMMA . ... .. ... .. ... . ...... 143
E9 ExvivoGWAS:XP-EHH . ... ................. 144

viii



1.1
2.1

4.1

Cl1
C2
C3
C4
C.S
C.6
C7

CS8

Listing of tables

Speed of drug resistance evolution in P. falciparum . . . . . . . . 2
Eleven genome-wide significant associations with antimalarial

drugresistance . . . ... ... ... ... .. .. 28
Top candidates for strong selection . . . . . ... ... ... .. 66
Parasitelist . . ... ... ... ... ... ... ... ... .. 112
Array taggingability . . ... ... o o L L L 113
Long Range Haplotype (LRH) hits . . . . . ... ... .... 114
ICso drug resistance phenotypedata . . . .. ... ... ... .. 115
Parasitesusedin GWAS . . . .. ... ... ... .. .... 116
PF10 0355 copy number summary for 38 parasites . . . . . . . 117
Annotation and GenelD Information for identified genes in Fig-

aure2.1B.. . .o 118
Statistics on marker spacing by chromosome . . . . . . ... .. 122

ix



FORMY SON ISAAC, MY GREATEST “ACCOMPLISHMENT” IN GRADUATE SCHOOL,
AND MOST OF ALL, FOR MY WIFE SUSAN, WHO BORE THE GREATER BURDEN OF MY

ACADEMIC CAREER INDULGENCE.



Acknowledgments

E WORK REPORTED IN THIS DISSERTATION was performed under
the supervision of Professor Pardis Sabeti. She deserves credit,
not just for excellent mentorship and support during my time

as a student, but for successfully recruiting me to pursue doctoral studies in the
first place. She has been an advocate and advisor in my career path these past
several years. My dissertation committee, comprised of Professors Sabeti, Dan
Hartl, John Wakeley, and Dyann Wirth, provided valuable feedback and guidance
throughout the course of this research and I have enjoyed working with all of

them during my time at Harvard and the Broad.

This research was made possible by, and performed in the in the context of, the
malaria genetics group, a collaboration between labs at Harvard GSAS, Harvard
SPH, and the Broad Institute. In addition to the labs represented in the dissertation
committee, I would like to thank Dan Neafsey’s team at the Broad, the Sequencing
team at the Broad, and Sarah Volkman at the School of Public Health, for their
critical roles in the work described here. Additionally, Steve Schaffner (Broad),
Clarissa Valim (HSPH), and Hsiao-Han Chang (OEB) frequently provided help
in thinking through analyses and methods.

The members of the Sabeti Lab provide a special kind of environment: one
that is fun, inquisitive, and sharpening. I've learned much from simply sitting with
fellow researchers regardless of how similar or different our methods, organisms,
or training are. A number of the important methods I utilize in this dissertation

started with ideas tossed around in conversation with fellow labmates.

xi



My research built on many lessons learned over the past decade applying com-
putational tools to biological problems. From my Master’s thesis work with Prof.
Amy Keating at MIT a dozen years ago, to the informatic analysis and statistical
consulting work at MGH under Glenn Short and Mason Freeman, to the soft-
ware development group at the Broad under Dave DeCaprio, Phil Montgomery,
and Mike Koehrsen, these previous groups, mentors, and experiences continued
to play an important role for how I approached my work throughout my time at
Harvard.

I am indebted to my parents for all that they have provided for me, and for their
encouragement to pursue this program. I value their love and support and for
the ways my relationships with them and with my siblings, Andy and Janice, have

evolved significantly over these past several years.

I am thankful for my son, Isaac, and especially for my wife, Susan. Susan has en-
couraged and supported my academic pursuits, despite the costs to our finances,
stability, and most of all, our time together. I am grateful for her love and patience.
She gets to enroll in the next degree program. We are both thankful for our com-
munity and friends in Boston and at Highrock Church, who have kept us sane, en-
couraged, loved, and fed, throughout the busiest seasons (particularly when Isaac

was born).

My graduate studies are funded by a Graduate Research Fellowship from the
National Science Foundation, which supported my entire three-year period at
Harvard. Professor Sabeti is supported by fellowships from the Burroughs Well-

come and Packard Foundations.

The research described in this dissertation is funded by the Bill and Melinda
Gates Foundation, National Institutes of Health (Grant: 1R01AI075080-01A1),
Ellison Medical Foundation, ExxonMobil Foundation, NIH Fogarty International
Center, NIAID, Harvard Malaria Initiative, and Broad SPARC.

xii



Author List

CHAPTER 1: USING GENOMICS TO INFORM MALARIA CONTROL AND ERADICA-

TION EFFORTS

Chapter 1 is heavily based on a review article to which the following authors con-
tributed: Sarah K. Volkman, Daniel E. Neafsey, Stephen F. Schaftner, Daniel J.
Park, and Dyann F. Wirth. In addition, the staff at Nature Reviews Genetics made

editorial contributions to the text and aesthetic modifications to the figures.

Most of the text in this chapter is largely duplicated from the original review arti-
cle. However, many sections and visuals that were not relevant to this dissertation
were removed in an effort to keep this chapter focused on introducing concepts
and approaches used later in this thesis (assessment of interventions, complexity
of infection, molecular barcoding, proteomics, Fig 3, Fig 4, Box 1, Box 2). Also,

Fig 1 was split into two figures (1.1 and 1.2) for space and clarity.

Most of the introductory and concluding paragraphs have largely been replaced
orrewritten. The first four and last four paragraphs of the chapter are original to this
thesis and written by me. Table 1.1 was not in the review article, but was compiled

by DEN separately for [112].

A number of sections have been revised for this dissertation. In particular, dis-
cussions of technologies and recent literature have been updated to reflect the ad-
vances and new publications in the past year since the review article was originally

published.

For the original review article, I wrote the GWAS section (Section 1.5, SFS and

xiii



DEN wrote on population structure, LD, and selection (Sections 1.3 and 1.4) and
SKV outlined the overall structure and wrote intro, conclusion, and transitional
text throughout. After the first draft, all authors heavily edited all sections, and I
made contributions throughout Sections 1.3 and 1.4 as well. Other sections that I

had minimal involvement in were omitted from this version of the text.

Ilustrative visuals for this review article were conceived by SKV and DEN and
executed by the staff at Nature Reviews Genetics. In most cases, these figures re-
utilize images or data previously published by our group and are noted as such in

the figure captions (Figures 1.1 and 1.2).

CHAPTER 2: GENOME-WIDE ASSOCIATION STUDIES IDENTIFY THE ANTI-

MALARIAL RESISTANCE Locus PF10 0355

The following authors contributed to Chapter 2: Daria Van Tyne*, Daniel J. Park®,
Stephen F. Schaffner®, Daniel E. Neafsey*, Elaine Angelino™, Joseph F. Cortese,
Kayla G. Barnes, David M. Rosen, Amanda K. Lukens, Rachel F. Daniels, Danny
A. Milner, Jr, Charles A. Johnson, Ilya Shlyakhter, Sharon R. Grossman, Justin
S. Becker, Daniel Yamins, Elinor K. Karlsson, Daouda Ndiaye, Ousmane Sarr,
Souleymane Mboup, Christian Happi, Nicholas A. Furlotte, Eleazar Eskin, Hyun
Min Kang, Daniel L. Hartl, Bruce W. Birren, Roger C. Wiegand, Eric S. Lander,
Dyann E. Wirth*, Sarah K. Volkman®, and Pardis C. Sabeti*. The first five and last

three authors of Chapter 2 are noted as sharing equal contribution.

In short, I was responsible for the front half of this study (chip design, analy-
sis and GWAS) and DVT was responsible for the back half (functional follow up
with the PF10_035S locus). EA was responsible for the long range haplotype se-
lection scans shown in supplemental figures. DEN and SES were responsible for
analyses of LD, population structure, and natural selection. I designed the geno-
typing array based on previous experience with a pilot array [113] and analyzed
and processed array data using a conservative validation approach. I performed
all genome-wide association analyses and performed all corrections necessary for

population structure and multiple testing.

Xiv



CHAPTER 3: SEQUENCE-BASED ASSOCIATION AND SELECTION-ASSOCIATION

ScaNs

The following authors contributed to Chapter 3: Daniel J. Park, Amanda K.
Lukens, Daniel E. Neafsey, Stephen F. Schaffner, Hsiao-Han Chang, Clarissa
Valim, Ulf Ribacke, Daria Van Tyne, Kevin Galinsky, Meghan Galligan, Justin
S. Becker, Daouda Ndiaye, Souleymane Mboup, Roger C. Wiegand, Daniel L.
Hartl*, Pardis C. Sabeti*, Dyann F. Wirth*, and Sarah K. Volkman*. The last four
authors contributed equally to Chapter 3.

I performed nearly all computational analyses for this chapter. AKL was respon-
sible for drug assays and parasite culturing. HHC performed PCA analyses. I an-
alyzed all sequence data, performed association and selection tests, and analyzed

results.

CHAPTER 4: TEMPORAL SIGNATURES OF SELECTION

The project described in Chapter 4 is not yet in preparation for manuscript sub-
mission, so a formal author list has not yet been prepared. However, a short list of
individuals that have contributed to aspects of this project are mentioned in its ac-
knowledgements section. These include: Diana Miao, Daria Van Tyne, Hsiao-Han
Chang, Clarissa Valim, Hilary Finucane, Stephen F. Schaffner, Daniel E. Neafsey,
Eli L. Moss, and Pardis C. Sabeti.

I performed all computational analyses described in this chapter. DVT inspired
the projectidea when observing trends at a few candidate genes. DM is performing
PCR validation of the top hits this summer on a larger sample set. HHC, CV, HF,
SES, and DEN advised on modeling and methods throughout. ELM performed

final sequence alignment and genotype calls based on protocols I first developed.



This chapter is based on material originally published in
Volkman, Neafsey, Schaffner, Park, and Wirth, Harnessing
genomics and genome biology to understand malaria biol-
ogy, Nature Reviews Genetics (13), 2012 [176]. See page

xiii for details on author contributions.

doi://10.1038/nrg3187

Using Genomics to Inform Malaria

Control and Eradication Efforts

LOBAL HEALTH ORGANIZATIONS are in the midst of a renewed push to-
wards the eradication and eventual extinction of the malaria parasites,
the mostlethal of which is Plasmodium falciparum. These efforts rely on

a number of approaches applied in parallel, from indoor spraying and bed nets to
improved local health infrastructure. Ultimately, one of the most vital tools in this
arsenal remains the effective use of antimalarial drugs [94]. P. falciparum, how-
ever, has demonstrated an adaptability to numerous drugs (Table 1.1). For exam-
ple, widespread chloroquine resistance was a major factor in the abandonment of

the Global Malaria Eradication Programme in 1969 [111].

The eventual emergence of resistance to more modern drugs is a significant con-

cern, as the current global eradication efforts rely heavily on a single class of drugs:



artemisinin and its derivatives. Although fully artemisinin-resistant forms have not
yet been described, recent work has shown that the alarming trend of slower par-
asite clearance rates in artemisinin-treated patients is increasing over time and ap-
pears to be a genetically heritable trait of the parasite [ 10, 121]. This underscores
an urgent need for the research community to be able to detect and understand

newly emerging resistance adaptations.

Among the major diseases of greatest human impact, malaria is unique in that it
is caused by a sexual eukaryote, allowing it to adopt beneficial combinations of
mutations more quickly than asexual pathogens [66]. While this amplifies the
challenges for global disease control, it is actually a favorable feature for genomic
inquiry, as it allows us to apply many of the modern tools developed in human
genomics that require meiotic recombination such as association studies and se-
lection scans. This allows for the realistic expectation that understanding emerg-
ing drug resistance in P. falciparum is feasible in the time frame required for global

eradication.

This introductory chapter describes the genomic tools now available to tackle
these questions, the many challenges involved, the current state of the field in
applying these approaches to the P. falciparum malaria parasite, and the lessons

learned so far about parasite evolution.

Table 1.1: Speed of drug resistance evolution in P, falciparum

Drug Introduction  In vivo resistance Origin
Chloroquine 1945 Early 1960s [131] SE Asia,

S America
Sulfadoxine 1967 Late 1960s [61] SE Asia,
+ Pyrimethamine S America
Mefloquine 1985 Early 1990s [137] SE Asia
Atovaquone 2000 2002 [55] Africa

+ Proguanil

Artemether 2001 2008 [47, 124] SE Asia
+ Lumefantrine



1.1 BACKGROUND

The WHO estimates that close to one million children die from malaria every year
[126], with the highest mortality among African children. Increased control ef-
forts have reduced the malaria burden in some areas, but evidence of rebounding
malaria [ 166] brings these general trends into question and confirms that we have
much to learn to defeat this important human pathogen. It is now more critical
than ever to understand key aspects of malaria biology and transmission, iden-
tify targets vulnerable to intervention strategies, and create tools to interpret the
changinglandscape of infection. One powerful approach uses population biology-
based investigations to provide critical insight about the causes and spread of dis-
ease. This strategy aids biological discovery by using population structure and ge-
netic diversity to identify loci under selection or associated with clinical pheno-

types, and for developing tools to monitor and evaluate interventions.

P. falciparum is a eukaryotic pathogen with a complex lifecycle, spending part
ofits lifespan in its definitive host, the anopheles mosquito, as mostly a diploid or-
ganism, and the remainder in its human host as a haploid organism where it gives
rise to numerous clinical manifestations from mild to life-threatening illness. The
24 Mb genome of the parasite is distributed among 14 linear chromosomes and
the parasite contains two extra-nuclear circular chromosomes that comprise the
apicoplast and mitochondrial genomes. The full P. falciparum genome sequence
was published in 2002 [57] and was followed by publication of other Plasmod-
ium genome sequences, including that of Plasmodium vivax [23], which causes
significant human malaria. These data have allowed elucidation of basic genome
architecture and identification of key structural elements, common metabolic and
biosynthesis pathways and unique aspects shared among several Plasmodium par-

asites [22,23, 57, 64].

The P. falciparum genome is evolving in response to natural selection pressures
of the human host immune system, the mosquito vector and various environmen-
tal factors including drug treatment and changes in transmission intensity due to
specific interventions [ 12, 50, 178]. The data imply that parasites can escape both

natural and artificial selection pressures through evolution. Understanding these



adaptations in the P. falciparum population can allow us to identify and circum-
vent survival strategies used by the parasite, guiding the development of new drugs
and vaccines. Indeed, similar approaches have been applied to much simpler viral
genomes for tracking influenza outbreaks and for developing effective influenza

vaccines [59].

1.2 TECHNOLOGICAL ADVANCEMENTS

New genomic technologies are what drive the recent advances in our understand-
ing of the history and evolution of the malaria parasite. Population genomic stud-
ies in malaria started with the low-coverage sequencing of a few dozen global para-
sites [ 74, 106, 174] and accelerated with the development of various whole genome
genotyping arrays that allowed researchers to cheaply genotype a hundreds to hun-
dreds of thousands of markers across a large population of parasites. Depend-
ing on the technology, these methods can be used to characterize genomic vari-
ation at different levels, including SNPs, microsatellite variation (MSVs), inser-
tions or deletions (indels), and copy number variants (CNVs). However, array-
based methods need to be custom-built for each organism, requiring specific tools
for P. falciparum [30, 45, 75, 83, 106, 113, 161, 170] and P. vivax [180] to be con-

structed.

More recently, dramatic decreases in the per base-pair cost of next-generation

sequencing technologies has led to a shift in the economics of studying the

Single Nucleotide Polymorphism (SNP)—A single base pair in the genome where the allele varies
within a population. This is the most common form of genetic variation in populations and provides the
data for most modern genomic studies.

Microsatellite —A class of repetitive DNA sequence that is made up of repeats that are 2-8 nucleotides
in length. They can be highly polymorphic and are frequently used as molecular markers in population
genetics studies.

Indel—A position in the genome that varies in the population where the alleles are not all of the same
length. Microsatellites are a type of indel.

Copy number variant (CNV)—This is a segment of DNA (e.g. a gene or a chunk of chromosome) that is
duplicated elsewhere in the genome, and individuals in the population vary as to how many copies they
have.



modestly-sized parasite genome. Although some arrays remain valuable, for
example to identify CNVs, whole-genome sequencing is now similar in cost to
array-based genotyping, while providing information about a significantly larger
number of genomic markers without the species-specific customization required
of arrays. Consequently, additional P. falciparum genomes have been sequenced
at greater depth to identify essentially all genetic variation in those genomes, thus
allowing delineation of the composition and relative proportions of parasite types

within a human infection [7, 13, 28, 95, 98, 102, 127-129].

These practical advancements are enhanced by several key bioinformatics anal-
ysis improvements, many of which were developed for the analysis of other organ-
isms and driven by international collaborative efforts such as the Human Genome
Project [86]. New computational strategies to identify SNPs and other variants in-
cluding MSVs, indels and CNVs from sequencing data are being developed and ap-
plied to P. falciparum, providing additional markers that are potentially associated
with drug resistance. Availability of genome sequences for closely related species,
including Plasmodium reichenowi [74] (which infects non-human primates [91]),
will greatly advance our ability to make population genomic inferences by identi-

tying derived alleles for selection analysis.

Once obtained, this rich genomic information can yield important insights
about the biology of the malaria parasite, as described in the following sections.
Applications include gaining insights into parasite population structure and in-
terventions, and identifying important regions of the genome—either those that
show evidence of evolutionary selection or specific loci identified by genome-
wide association studies (GWASs) or mutant screens—that are responsible for

particular parasite phenotypes.

1.3 POPULATION STRUCTURE AND LINKAGE DISEQUILIBRIUM

Genetic variation in the parasite reveals the exposure history of a given parasite
or parasite population to selective pressures. Central to our understanding of ge-
netic variation in P. falciparum is determining its current population structure,

including how allele frequencies vary between different populations within the



species, and the degree to which alleles at neighboring variant sites are correlated
by linkage disequilibrium (LD). Data used to inform our current understanding
of population structure and LD is derived from genome-wide array-based meth-
ods [6, 31, 45, 107, 113, 160, 161, 170], from SNP information provided by older
sequencing data from a few dozen published genomes [74, 106, 174], and from re-
cent next-generation sequencing studies [28,95,102]. Genomic structure among
isolates has been delineated using principal components analysis (PCA), from

which one can infer the relatedness of samples.

1.3.1 GroBAL GENOMIC DIVERSITY

Advances in genomic technologies have enabled analysis of many different para-
sites derived from distinct geographic locations. Large-scale population structure
in P, falciparum follows continental lines, with major branches in Africa, South and
Central America, and South and East Asia (extending to Papua New Guinea) [ 105,
113]. The picture within each group depends on the region. Within Africa, popu-
lation differences between countries have ranged from undetectable (Uganda vs.
Congo [8], Cameroon vs. Congo [141]) or very small (Zimbabwe vs. Uganda and
Congo [8]), to modest over the longest distances (Nigeria vs. Sudan vs. South
Africa [35]). By contrast, in Southeast Asia and the western hemisphere, local
population structure is pronounced even within a single country [105, 174]. The
overall picture is consistent with a recent geographic spread from a source pop-
ulation in Africa, which has remained by far the largest population. Estimates of
genetic diversity measurements present the same picture, with the highest values
consistently occurring within Africa and the lowest in the Americas. From these
types of analyses, we can identify mutations that are fixed in one parasite popula-

tion but are distinct from other populations, and thus may be useful to identify spe-

Linkage Disequilibrium (LD)—In population genetics, linkage disequilibrium is the nonrandom
association of alleles. For example, alleles of SNPs that reside near one another on a chromosome often
occur in nonrandom combinations owing to infrequent recombination.

Principal components analysis (PCA)—A statistical method used to simplify data sets by transforming
a series of correlated variables into a smaller number of uncorrelated factors. It is commonly used to
correct for stratification in genome-wide association studies.



cific parasites. Knowledge of the genetic characteristics of geographically distinct
populations is important for controlling for population stratification in GWASs,
tracking persistent parasite types as interventions are applied and localizing new

sources of infection to maximize the effectiveness of control measures.

1.3.2 EXPLANATIONS FOR OBSERVED LD STRUCTURE

Levels of genomic diversity in different populations are reflected in the observed
patterns of LD. Very little LD is seen in Africa, and what is seen extends less than 1
kb [34, 105, 129, 174]. LD is slightly higher in Southeast Asia (mean r* = 0.3 for
markers less than 1 kb apart) and more so in South America (mean r* = 0.5,
for markers less than 1 kb apart), where it spans about 10 kb. This difference
could stem from demographic history. For example, population bottlenecks in the
non-African populations could have eliminated many allele combinations, leaving
strong correlations, thus high LD, in the remaining parasites. It could also stem
from a smaller effective population size outside of Africa, limiting these popula-
tions to fewer allele combinations, which contributes to higher levels of LD. De-
tailed understanding of recombination and of the demographic history of different

populations is needed to distinguish the two causes.

LD patterns also reflect the transmission history of strains within that popula-
tion. The sexual phase of the P. falciparum life cycle occurs in the midgut of female
Anopheles mosquitoes, following consumption of a blood meal containing male
and female P, falciparum gametocytes. Because female Anopheles mosquitoes typ-
ically bite only a single human host during each egg-brooding cycle, the gameto-
cyte pool available for sexual union in the midgut matches the gametocyte com-
position in individual infected human hosts. In geographical regions with high

levels of malaria transmission, a high complexity of infection (COI) is thought to

Population stratification—The presence of multiple population subgroups that show limited
interbreeding. When such subgroups differ in both allele frequency and disease prevalence, this can
lead to erroneous results in association studies.

Effective population size (N.) —The number of individuals in a population genetic model that most
closely matches the allele frequency distributions in the data. This can differ from actual population size
owing to historical demographic events, such as population bottlenecks, migration and other factors.



be produced through ‘super-infection’ (multiple bites from distinct, P. falciparum-
infected mosquitoes), although new evidence supports a model of co-infection
of mixed infections [122]. This makes recombination (outcrossing) possible be-
tween genetically distinct P. falciparum gametocytes during the sexual phase (pro-
vided genetic diversity is high enough to ensure genetically distinct parasites), and
results in short blocks of LD. By contrast, if only a single P. falciparum strain is
present, the gametocytes will be identical, and the lack of recombination will re-

sult in longer blocks of LD.

Ultimately, as parasite population sizes get extremely small, one would antici-
pate that LD should become extended and theoretically approach a value of one.
Thus, tools to measure changes in parasite population structure have the poten-
tial to inform reductions in malaria transmission as outcrossing rates are reduced
to the point where selfing among parasites occurs in a given population, such as

might be expected during a successful intervention strategy [40].

14 SIGNATURES OF SELECTION

In the course of its life cycle, the parasite faces numerous and intense selective pres-
sures. These include exposure to antimalarial drugs and immune challenges from
both the human host and mosquito vector. Evidence abounds from recent studies
of parasite diversity for two broad classes of strong natural selection in the parasite

genome.

1.4.1 BALANCING SELECTION

Genotyping and sequence analysis indicate that an unusually large fraction of
the P. falciparum genome exhibits the polymorphism profile of immune-mediated
balancing selection: a high density of high frequency polymorphisms is seen in
hundreds of antigenic genes [ 7, 50, 178]. Balancing selection maintains polymor-

phisms with the potential to encode alternate immunological identities and keeps

Balancing selection—Selection that favors the maintenance of more than one polymorphic allele in a
population by mechanisms such as frequency-dependent selection or heterozygote advantage.



them at an intermediate population frequency indefinitely (Figure 1.1A)
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Figure 1.1: Signatures of balancing selection. (A) In a given population (large grey cir-
cle) there are numerous individuals (square matrix of circles) each containing alleles (red
or yellow circles) across their genomes. Diversity refers to the amount of allelic variation
among individuals in a population, whereas divergence refers to the amount of allelic vari-
ation between different populations. Under balancing selection, one would expect to find
high diversity at a locus under selection, but low divergence between populations. (B) Dis-
tribution of loci based upon both within population differences (diversity, as measured by 7)
and between population differences (divergence, as measured by Fg1 between parasites
from Senegal and Thailand) is shown. Loci classified as transporters or enzymes including
the acyl-CoA-synthetase (ACS) genes are shown as blue diamonds; loci classified as anti-
gens including var, rifin, stevor, and surfin molecules are shown as red diamonds; and all
other loci are shown as grey diamonds. Molecules along the x-axis (high diversity and low
divergence) are under diversifying selection and these include a number of known antigens.
In contrast, molecules along the y-axis (low diversity and high divergence) are more likely
under directional selection and these include a number of known drug resistant molecules.
Panel (B) was previously published in Van Tyne et al. [170].

When parasite populations are geographically separated, genes subject to bal-
ancing selection are unlikely to diverge as rapidly as other genes, because the se-
lection prevents differences from differentially fixing in the populations. Genome-
wide comparisons of diversity (within a population, measured by 7) and diver-
gence (between populations, measured by Fgr) identify genetic loci that are more
likely to be affected by this diversifying selection [ 170] in that they exhibit elevated

diversity with relatively low divergence. (Figure 1.1B shows an example diver-



sity and divergence analysis between parasites from Senegal and Thailand [170].)
From these analyses known antigens and vaccine candidates are identified, as well
as novel genetic loci that encode putative antigens that trigger the human immune
response. This prediction was validated when several highly polymorphic genes
were expressed and recognized by human immune sera, including seven previ-
ously unknown antigens [106]. This result suggests that diverse genomic regions
may encode antigenic loci useful for vaccine approaches. However, a number of
vaccine studies suggest that the ability to successfully target a polymorphic locus
such as merozoite surface protein 1 (MSP1) [159] or apical membrane antigen 1
(AMAL1) [163] may be undermined by the parasite’s ability to survive the elicita-
tion of a locus-specific immune response. Thus, strategies to use a combination of

non-variant yet immunogenic vaccine targets may be warranted.

Diversity and divergence analyses can identify loci that, conversely, diverge
between parasite populations (Fsy > 0.4). Divergent loci between popula-
tions from Senegal and Thailand [170] encode proteins that are proposed to
have various cellular functions including DNA replication (e.g. PFI0_0165;
PF14_0278; PFI14 0316), lipid metabolism (e.g. PFB069Sc; PFEI1250w;
PFB0685¢; PFC00S50c); gametocytogenesis or sexual development molecules
(e.g. PF13_0248; PFC0640w) and transporters (e.g. PFL1125w; PF14_0342;
PF14_04SS) (Figure 1.1B). The reasons for the divergence are currently unclear
and require further investigation, but may be a consequence of differences in

vector populations or other distinct selective pressures between Senegal and
Thailand.
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1.4.2 DIRECTIONAL SELECTION

Directional selection in the context of a traditional ‘selective sweep’ [155] leaves a
distinctive genomic imprint consisting of depleted polymorphism and enhanced
LD (Figure 1.2AB). This genomic signature is detectable via ‘haplotype-based’
tests of natural selection, such as the long-range haplotype (LRH) test. In response
to strong selective pressures, long haplotype signals resulting from the rapid rise of
variants linked to flanking mutations are easily detected as they stand out from the
normally short LD of the genomic background [150] (Figure 1.2B). It is impor-
tant to note that these signals may be absent if directional selection began on com-
mon or standing variation [150]. Equally important is the difficulty in identify-
ing a clear demarcation between selective sweeps and neutral processes without a
detailed understanding of demographic history and recombination rate variation,
knowledge that is lacking for P. falciparum. Nevertheless, in genome-wide scans
for selective sweeps a number of loci show strong evidence for recent directional
selection, and they all point to a single, recent evolutionary pressure: drugs. Loci
known to confer resistance to formerly effective anti-malarial drugs, including the
chloroquine resistance transporter (pfcrt) for chloroquine [ 184] and bifunctional
dihydrofolate reductase—thymidylate synthase (dhfr-ts) for pyrimethamine [109]
show all the signs: a local desert of diversity and strong LD between those SNPs
found in the swept region (Figure 1.2A). Other key modifier genes, including the
P, falciparum multiple drug resistance gene (pfmdrl) [56, 183] and the GTP cy-
clohydrolase gene (gchl) [83, 110], have been implicated in some drug responses,

generally through adaptive changes in their copy number.

A plethora of additional genes show weaker evidence for recent positive selec-

Directional selection—Selection that favors one allele over all other alleles of a gene. The frequency of
this beneficial allele can rise or can be held in check by recurrent mutation.

Selective sweep—Describes the reduced levels of genetic diversity observed around a selected locus.
A selective sweep (also referred to as genetic hitch-hiking) arises because positive selection for an
advantageous allele increases the frequency of not only that allele but also other alleles contained within
the same haplotypes.

Long-range haplotype (LRH) test —A test for haplotypes with significantly longer than expected
ranges of linkage disequilibrium; this indicates a lack of recombination between genetic markers caused
by natural selection.
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Figure 1.2: Signatures of directional selection. (A) Selective sweep as a consequence of
selection for drug resistant parasites results in the reduction of diversity (red line) from av-
erage genome values (blue line) as a consequence of selection for an allele (red box) that
confers survival under drug pressure. Neighboring alleles are maintained along with the
advantageous allele, resulting in a relatively large area of the genome with reduced diver-
sity. Identification of genomic regions with reduced diversity in drug resistant parasites
as a consequence of directional selection reveals candidate drug resistant genes. (B) A
haplotype bifurcation diagram [150] visualizes long-range associations for a given SNP.
The thickness of the line represents the relative frequency of each allele in the population
under study. Although the long-range associations between the ancestral (A) allele have
been whittled away by recombination, the derived (T) allele maintains long-range associ-
ations with other SNPs, suggesting it arose recently and that insufficient time has passed
for recombination to substantially break down these associations. Panel (B) was previously
published in Volkman et al. [174].
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tion [6,28, 31,95, 102,107, 160, 170, 185], raising the possibility they are also asso-
ciated with drug responses. Their products have various putative functional roles
[170], including cell-surface adhesion, membrane transporters, genome mainte-
nance, transcriptional regulation, metabolism and post-translational modification
such as ubiquitination. Evidence for sweeps at multiple genes in a single path-
way suggest that selection has been involved. For example, several genes in the
ubiquitination pathway [ 133] are under positive selection both in worldwide pop-
ulations and in a deep population analysis of parasites isolated recently in Sene-
gal. Similarly, proteins in the fatty acid and lipid metabolism pathway have among
the highest signals of selection, implicating the human or mosquito physiological
state as strong selective forces on parasite survival and propagation. Key to the
success of these approaches is functional characterization of candidate loci and
demonstrating their involvement in conferring important clinical phenotypes such
as drug resistance [ 170]. Preliminary functional data suggests that members of the
cytoadherence-linked asexual protein or clag family can modulate parasite drug
responses [ 116], consistent with the observation that some surface molecules are

under positive selection [107, 170].

1.5 FINDING THE GENETIC BASIS FOR SPECIFIC PHENOTYPES

1.5.1 PARASITE PHENOTYPES

A key challenge for identifying causal loci from genomic or functional studies is
classification and quantification of robust and reliable phenotypes. Clinical phe-
notypes related to pathogenesis (anemia or severe disease), immunity or parasite
clearance rates (associated with drug resistance) are most informative and reliable
when they are assessed in parasites that are taken directly from the patient during
a natural infection. However, the human host unavoidably complicates interpre-
tation of these traits, and their assessment can often only be obtained once. A
thorough phenotypic assessment would therefore necessitate large sample num-
bers and thoughtful study design to account for variation both within the hu-

man and parasite populations. Thus far, phenotyping has been mainly carried out
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on culture-adapted [165] parasites that have been isolated from patients. These
can then be tested for various in vitro phenotypes including drug response, inva-
sion types, cytoadherence properties, the ability to produce gametocytes, or their

metabolic profiles.

This section focuses on the use of genomics to identify mutations associated
with altered drug responses, but these approaches could be applied to other bio-
logically important phenotypes.

1.5.2 LINKAGE ANALYSIS IN P. FALCIPARUM

Linkage mapping in P. falciparum has been accomplished using laboratory genetic
crosses to correlate segregation patterns in the progeny associated with specific
phenotypes, including drug response [51, 65, 123, 148, 152, 179], pathogenesis
[65], or mosquito infectivity [ 168]. Originally MSVs were used as genomic mark-
ers [157], but these have now been augmented with variants determined using
whole-genome methods (array- or sequencing-based). Linkage studies leverage
the reasonably high level of recombination in P, falciparum [ 76 ] to map the genetic
determinants for specific traits: one round of recombination between parents and
progeny results in large haplotype blocks that require fewer markers to identify
[12]. In some geographic regions, where low diversity means that recombination
rarely results in the reassortment of haplotype blocks, it may even be possible to
carry out similar analyses using field isolates [46, 62]. Combining linkage analysis
with other independent tests, such as association mapping, provides a potentially

powerful means of prioritizing candidate genes responsible for a given phenotype.

1.5.3 CHALLENGES OF GWASS IN P, FALCIPARUM

The molecular and genetic mechanisms of many phenotypic traits that are most
relevant to elimination and eradication, such as variability in parasite responsive-
ness to drugs, are poorly understood. Because GWASs do not require prior knowl-
edge of gene functions or trait mechanisms, they are useful for identifying impor-
tant genetic variants in organisms such as P. falciparum that have many genetic

loci with no known functional homologues. Although these candidate variants
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require functional validation, the use of GWAS as a hypothesis-generating experi-
ment provides a powerful starting point for identifying traits and is one of the most

effective approaches available in our modern genomic toolkit.

Undertaking GWASs in P. falciparum requires overcoming various challenges
including: identifying heritable traits, coping with low LD, using appropriate sam-
ple collection or other methods to deal with population stratification, and func-
tionally validating associations. These challenges are described below, followed

by examples of successful GWASs.

When surveying the P. falciparum genome for genotype-phenotype associa-
tions, only phenotypes with a strong genetic basis (those with high heritability)
will be detected by a GWAS. Heritability of P. falciparum traits, such as drug resis-
tance, can be variable: recent studies of parasite clearance rates in Southeast Asia
found that the heritability of this phenotype depends on when and where samples
are collected [ 10, 11]. Confounding this complication, anti-malarial responses can
be quantified in various ways, including in vitro based metrics, such as ICsp, or clin-

ically derived metrics, such as in vivo parasite clearance rates.

The short blocks of LD in P, falciparum, particularly in African populations [ 113,
170], are an important consideration for study design. Traditional GWASs rely
on the genotyped markers being correlated to causal mutations through high LD
[42]. In a population with low LD, an array-based GWAS may not have sufficient
detection power unless the causal mutation is present on the array. However, when
a signal is found, short LD makes localizing the signal to a single gene much easier
[140]. Loss of detection power due to limited LD can therefore be circumvented
by utilizing whole-genome sequencing to identify all variants in the genome. Use
of sequence data for GWASs reveals stronger association signals, provides more
supporting markers in areas of high LD and can detect candidate loci in areas of

low LD that were previously missed by array-based GWASs. Sequencing-based

Heritability — The proportion of the total phenotypic variation in a trait that can be attributed to genetic
effects.

1C5o—Also known as the half maximal inhibitory concentration, this is the concentration of a small
molecule that results in 50% inhibition of a molecular target or cellular process. In the case of drug
resistance studies, this is the concentration of drug that kills half of the parasites.

15



approaches are thus a promising avenue for future GWASs in malaria.

Population demography—particularly in the form of population stratification—
can hinder GWAS analyses if not appropriately controlled for. The presence of
closely related individuals in the dataset or, conversely, broad genetic differences
between groups of samples due to differing population histories can erroneously
inflate associations and produce false positives [5]. The ideal GWAS would elim-
inate such confounders by choosing samples with a broad range of values for
each strongly heritable phenotype while sampling entirely from a single, non-
stratified population. However, this is not always possible and many approaches
have been developed to eliminate false positives [44, 135, 139] while analysing
stratified data sets. In particular, mixed-model approaches [ 79, 80, 136, 164] have
been used successfully to control for population stratification in malaria studies

[129, 160, 170].

For studies with relatively small sample sizes, which include all malaria-based
GWAS:s to date, gains in study power can be achieved by using multi-marker or
haplotype-based association approaches [31,42, 129, 160, 170] instead of standard
single-marker tests. Positively selected variants typically lie on long haplotypes

[150] that are more easily detectable by multi-marker tests, such as the LRH test.

1.54 GWAS ArPPROACHES TO IDENTIFY DRUG RESISTANCE LocCI

Although the GWAS approach is promising, we are still in the early days of ap-
plying this methodology for loci discovery in the malaria parasite, with the few
GWASs primarily investigating novel variants associated with drug resistance.
These studies [31, 107, 129, 160, 170, 185] generate long lists of loci hypothesized
to be associated with specific phenotypes, and a current challenge is winnowing
the list to the most likely candidates. One strategy involves combining results
of independent tests to identify the most likely candidate genes for functional

follow-up (Figure 1.3).

Mixed-model approaches—A class of linear model in which quantitative phenotypes are modelled
using both fixed, genetic effects (including SNP genotypes and the principal components of population
structure) and random effects (which explicitly models both the heritable and non-heritable components
of phenotypic variation).
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Figure 1.3: Identifying drug resistance loci using GWASs and functional studies. (A)
Schematic representing data from a drug assay, measured as an inhibitory concentration
of 50 percent (ICsg) that represents the drug concentration at which parasite viability is de-
creased by half. Such assays can be used to classify parasite responses to anti-malarial
compounds, thus distinguishing a drug-resistant parasite (green line) from a drug-sensitive
parasite (grey line). (B) Genome-wide association study (GWAS) analysis results shown as a
Manhattan plot where P-values for variants across the fourteen chromosomes (represented
by different colors across the x-axis) are shown. The Bonferroni level for genome-wide sig-
nificance is shown as a dotted line, and genetic variants that rise above this level are as-
sociated with the drug phenotype observed in panel A. (C) Multiple independent analysis
approaches can be combined to improve the power of locus identification for functional
follow up. For example, alleles identified by GWASSs, long-range haplotype (LRH) tests, or
diversity and divergence analyses are identified, and a gene expression construct is cre-
ated comprising the genetic variant that is associated with drug resistance. To test whether
each gene variant is necessary and sufficient to confer the observed drug resistant pheno-
type, each putative drug-resistance variant is introduced into a drug sensitive parasite by
transfection, followed by testing for drug resistance.
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Several previously known drug targets and one novel GWAS result have now
been functionally validated, lending support to the idea of using GWAS to find re-
sistance loci. The GWAS by Van Tyne et al. [ 170] identified a highly polymorphic
locus, PF10_03SS, as being associated with halofantrine resistance based on a rela-
tively small set of globally diverse parasites. PF10_0355 was classified as a member
of the msp3 gene family [ 125]. When a variant of PF10_035S from a drug resistant
parasite was introduced into a drug sensitive parasite through transfection, the par-
asite was rendered resistant not only to halofantrine but also to chemically similar
drugs (mefloquine and lumefantrine), but not to chemically distinct compounds
(chloroquine, artemisinin, atovaquone). This is the first functional demonstration
that a potential drug resistance locus identified by a GWAS confers a drug resis-
tance phenotype.

This study employed a modest number of parasites sampled from many popu-
lations using a limited marker set. More recent studies now assay larger parasite
numbers from single populations using sequencing data to capture essentially all

genetic variation and demonstrating significant increases in power [129].

1.6 CONCLUSIONS AND DISSERTATION OVERVIEW

Genomic analysis is providing rich and unique insight into the biology and pop-
ulation history of P. falciparum. The strongest selective forces that leave visible
imprints on the parasite genome are the signals of balancing selection on surface
proteins due to human immune pressure, as well as the signals of directional selec-
tion due to anti-malarial drugs. The goal of contemporary disease elimination ef-
forts should be to prevent selective sweeps from occurring in response to current
treatment strategies. This can be achieved through careful genomic surveillance

and flexible, combinatorial application of drug treatments.

In the decade since the publication of the P, falciparum genome sequence [57],
modern genomics has advanced our understanding of the parasite. However, we
are just beginning to leverage population genetic information to discover the vari-
ants responsible for clinically important phenotypes. The work in this dissertation

plays an important role in the development of these tools and methods.
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In Chapter 2, I perform one of the first GWASs for antimalarial drug resistance.
Asthe only such study to date that includes a functional validation, it demonstrates
the utility of the GWAS approach to find causal markers for poorly understood
phenotypes. It also influenced the methodologies used by others in the malaria
genomics field, with later drug studies adopting the linear model [31] and mixed

model [160] association methods first successfully demonstrated here.

In Chapter 3, I demonstrate the use of whole-genome sequence data for asso-
ciation studies and the clear deficiencies of array-based association studies. Other
groups in the field are now moving from array to next generation sequence data
as well [7, 95, 102]. Importantly, I also demonstrate the novel use of the cross-
population extended haplotype homozygosity selection test (XP-EHH, a type of
LRH test, [151]) in the context of a GWAS. Similar approaches that combine XP-

EHH and association tests can be seen soon afterwards in work by others [ 160].

In Chapter 4, I explore the use of time course data to directly infer the strength of
directional selection throughout the genome. Such approaches have not yet been
shown on a genome-wide scale, nor have they been applied in the malaria para-
site previously. The results provide an additional source of insight into the evolu-
tionary forces shaping the P. falciparum genome. Here I demonstrate a proof of
concept study, and outline the parameters for properly designing and conducting

a whole-genome time-course selection study.

The research described in this dissertation has the potential to provide substan-
tial new insights into the recent evolution of the malaria parasite, particularly as
it relates to drug resistance. The results highlight a number of candidate genes
and mutations that can lead to biological insights and epidemiological surveillance
tools. But more importantly, this thesis develops and provides new genomic meth-
ods that can be used by others in conducting similar types of research. As such, it
makes significant advancements to the field of malaria genomics by improving the

way research is conducted globally.
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Genome-wide Association Studies
Identify the Antimalarial Resistance Locus
PFI0 0355

E PLASMODIUM FALCIPARUM PARASITE'S ability to adapt to environ-
mental pressures, such as the human immune system and anti-
malarial drugs, makes malaria an enduring burden to public health.

Understanding the genetic basis of these adaptations is critical to intervening suc-
cessfully against malaria. To that end, we created a high-density genotyping ar-
ray that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and
applied it to 57 culture-adapted parasites from three continents. We character-
ized genome-wide genetic diversity within and between populations and identi-

fied numerous loci with signals of natural selection, suggesting their role in recent
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adaptation. In addition, we performed a genome-wide association study (GWAS),
searching for loci correlated with resistance to thirteen antimalarials; we detected
both known and novel resistance loci, including a new halofantrine resistance lo-
cus, PF10_03SS. Through functional testing we demonstrated that PF10_035$
overexpression decreases sensitivity to halofantrine, mefloquine and lumefantrine
but not to structurally unrelated antimalarials, and that increased gene copy num-
ber mediates resistance. Our GWAS and follow-on functional validation demon-
strate the potential of genome-wide studies to elucidate functionally important

loci in the malaria parasite genome.

2.1 INTRODUCTION

Plasmodium falciparum malaria is a major public health challenge that contributes
significantly to global morbidity and mortality. Efforts to control and eliminate
malaria combine antimalarial drugs, bed nets and indoor residual spraying, with
vaccine development a longer-term goal. Genetic variation in the parasite popula-
tion threatens to undermine these efforts, as the parasite evolves rapidly to evade
host immune systems, drugs and vaccines. Studying genetic variation in parasite
populations will expand our understanding of basic parasite biology and its ability
to adapt, and will allow us to track parasites as they respond to intervention efforts.
Such understanding is increasingly important as countries move towards reducing

disease burden and the ultimate elimination of malaria.

Given the potential impact of rapid evolution of P. falciparum in response to
control and eradication strategies, discovery and characterization of P. falciparum
genetic diversity has accelerated in recent years. Since the first malaria genome
was sequenced in 2002 [57], over 60,000 unique SNPs have been identified by
concerted sequencing efforts [ 74, 106, 174], and several genomic tiling arrays [ 24,
45,75, 83, 161] and low-density SNP arrays [107, 113] have been developed to
query this genetic variation. Recently the first malaria GWAS was published [107],
in which 189 drug-phenotyped parasites from Asia, Africa and the Americas were
genotyped using alow-density array (3,257 SNPs); that study identified loci under

positive selection and found several novel drug resistance candidates.
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For our study, we adopted two strategies for identifying genes involved in the
malaria parasite’s adaptive response: searching for signals of recent or ongoing
natural selection, and searching for loci associated with one important clinical
adaptation—resistance to antimalarial drugs. To make these searches possible, we
began by sequencing 9 geographically diverse strains of P. falciparum to identify
novel variation, thereby doubling the number of publicly available SNPs to 111,536
(allaccessibleathttp://plasmodb.org/), and used these SNPs to develop a high-
density genotyping array assaying 17,582 validated markers. After characterizing
linkage disequilibrium and population structure in our samples, we used the ar-
rays to search for evidence of both ongoing balancing selection and recent positive
selection, and to carry out a GWAS that sought loci associated with resistance to
thirteen antimalarial agents. We then followed up one of the novel loci associated
with drug resistance in order to verify that variation there was biologically involved

in modulating drug response.

2.2 REsuULTS

2.2.1 GENETIC DIVERSITY

We identified global population structure among malaria parasites using princi-
pal components analysis (PCA) of 57 genotyped culture-adapted parasite sam-
ples (Figure 2.1A, Table C.1, Figure C.1). African, American and Asian samples
form three distinct clusters, reflecting the likely independent introduction of P.
falciparum from Africa into Asia and the Americas. There was little evidence for
structure within Africa, suggesting high gene flow throughout the region (Figure
C.1). Asian and American parasites however both show substantial internal struc-

ture.

There are also dramatic differences in linkage disequilibrium (LD) between
populations, with substantial LD extending less than 1 kb in Senegal, 10 kb in Thai-
land, and 100 kb in Brazil (Figure C.2). These observations are consistent with
previous findings, which showed that LD decays more rapidly in Africa, due either

to founder effects in other continents [8] or to elevated outcrossing frequencies in
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Figure 2.1: Parasite global population structure and genetic diversity vs. divergence. (A)
Population structure is visualized using the first two principal components of genetic vari-
ation for 57 parasites. Solid circles represent individual parasites, with colors assigned by
reported origin: Africa in red, America in blue, and Asia in green. The nine strains used for
ascertainment sequencing are indicated with (). (B) Genetic diversity (SNP 7) in Senegal
versus divergence (FsT) between Senegal and Thailand is reported for 688 genes contain-
ing > 3 successfully genotyped SNPs. Blue diamonds: enzymes, acyl-CoA synthetases
(ACS) or transporters; red diamonds: antigens, vars, rifins, stevors or surfins; gray dia-
monds: all other genes. Gene IDs (http://plasmodb.org/) for highlighted genes are
listed in Table C.7. A gene with unknown function is flagged with (*) to indicate that SNP 7
is off-scale (0.014).
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Africa [8, 105], where higher transmission intensity leads to a greater likelihood of

sexual outcrossing rather than selfing within the mid-gut of vector mosquitoes.

The short LD in malaria, driven by high levels of recombination, means that a
high density of markers is required to identify candidate loci in association studies,
since causal variants not on the array can seldom be tagged by neighboring alleles
(Table C.2). On the other hand, short LD can aid in fine-mapping candidate asso-
ciations and greatly accelerates the search for causal genes. Short LD also aids in
identifying genomic regions under recent positive selection with recombination-
based methods, since the increased LD in selected regions should stand out against

the short-LD background.

2.2.2 DETECTING SIGNALS OF NATURAL SELECTION

We expect that many parasite proteins that interact with the host immune system
will be under balancing selection, because they will be under selective pressure
to maintain high levels of diversity. Indeed, previous studies have shown that re-
gions of the P. falciparum genome that are highly polymorphic and appear to be
under balancing selection encode antigens that are recognized by the human im-
mune system [ 106]. We examined evidence for balancing selection in our data by
searching for regions with high nucleotide diversity (as measured by SNP ) and
low population divergence (as measured by Fsr) (Figure 2.1B). When we exam-
ined the loci lying in this region of the graph (Figure C.3), we found a number of
known antigens and vaccine candidates. Loci in the same region with unknown
function are thus potential novel antigens that trigger human immune response to

malaria, and may prove useful as biomarkers or as candidate vaccine molecules.

We carried out a similar search for loci under positive selection by identifying
regions with both low nucleotide diversity within Senegal and Thailand and high
population divergence between the two populations (Figure 2.1B). We observed
throughout the genome that nucleotide diversity was lower for nonsynonymous
SNPs than for intergenic SNPs (Figure C.4), a characteristic result of widespread
purifying selection. At the same time, nonsynonymous SNPs exhibited signifi-

cantly greater divergence than intergenic SNPs in all pairwise population com-
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parisons, suggesting the effect of positive selection in local P. falciparum popu-
lations. Nonsynonymous SNPs with low diversity within a population and high
divergence between the two populations studied may represent polymorphisms

responsible for adaptive evolution.

We also carried out a genome-wide scan for recent positive selection using the
long-range haplotype (LRH) test [150], which identifies common variants that
have recently spread to high prevalence using recombination as a clock. Approx-
imately 15 genes were identified as having undergone recent positive selection by
this approach, including known drug resistance loci (pfcrt and dhfr) as well as
multiple members of the acyl-CoA synthetase (ACS) and ubiquitin protein lig-
ase families (Figure C.5 and C.6); these latter genes also exhibit high divergence
between Senegal and Thailand (Figure 2.1B), evidence for selection that is recent
and population-specific. Taken as a group, the genes identified by the LRH test
show a significant enrichment for higher than average population divergence (as
measured by Fgr, Mann-Whitney U = 1583, P = 0.0071). All of these loci (Ta-
ble C.3, Dataset 1), which include genes in the folate metabolism, lipid biosynthe-
sis and ubiquitin pathways, should be viewed as candidates for functional follow-

up and further characterization.

2.2.3 GENOME-WIDE ASSOCIATIONS WITH DRUG RESISTANCE

In order to directly assess the genetic basis for one important response to anti-
malarial intervention, we carried out a GWAS to identify loci associated with drug
resistance in parasites. This same approach can potentially be applied to many
other clinically relevant malaria phenotypes, e.g. host response, invasion, and ga-
metocyte formation. Our first step was to measure drug resistance (ICs, values)
to 13 antimalarial drugs (amodiaquine, artemether, artesunate, artemisinin, ato-
vaquone, chloroquine, dihydroartemisinin, halofuginone, halofantrine, lumefan-
trine, mefloquine, piperaquine and quinine) in S0 culture-adapted parasites using

a high-throughput assay (Tables C.4 and C.5, Appendix C, Dataset 1).

We performed the genome-wide association analysis using two statistical tests:

efficient mixed-model association (EMMA) and a haplotype likelihood ratio
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(HLR) test (Figures C.7, C.8, C.9, C.10, Appendix C). EMMA identifies quan-
titative trait associations in individuals with complex population structure and
hidden relatedness; it has previously been shown to outperform both PCA-based
and Agc-based correction approaches in highly inbred and structured mouse,
maize, and Arabidopsis populations [79]. EMMA is particularly applicable for
small and structured sample sets: one of its first applications was in a study of
24 diploid mouse strains [79], essentially the same sample size as in our study
(50 haploid strains). The HLR test is a multi-marker test designed to detect the
association of a single haplotype with a phenotype, and is particularly powerful
when the associated haplotype experienced recent strong selection (and is there-
fore long) and occurs on a low-LD background [90]; it is therefore particularly
appropriate for this study. We addressed the effect of population structure in
the HLR test using population-specific permutation (Section 2.4). When used
together, these two complementary approaches provide a highly sensitive screen

for association signals within the P. falciparum genome.

The well-characterized chloroquine resistance locus, pfcrt, served as a positive
control for our GWAS methods (Figure 2.2A and 2.2C, Table C.2), an important
test given our small sample size and the limited LD present in P. falciparum. As
expected, we found evidence for association with resistance to chloroquine using
both tests, consistent with previous studies [107]; EMMA yielded evidence for
association with genome-wide signficance, while the signal from the HLR test fell

just short of genome-wide significance (Figure 2.2C).

Applying the same tests to the other drug phenotypes, we detected numerous
novel loci showing significant associations with drug resistance (Figure 2.2A and
2.2D, Table 2.1). Quantile quantile plots for each test demonstrate that we were
able to effectively control for population structure (Figure 2.2B). Despite our small
sample size and the low LD in P. falciparum, in total eleven loci achieved genome-
wide significance for association with resistance to five different drugs: amodia-
quine, artemisinin, atovaquone, chloroquine and halofantrine. In most cases, the
short extent of LD allowed localization to individual genes. Among the loci iden-
tified were various transporters and membrane proteins, as well as five conserved

genes with unknown function (Table 2.1, Dataset 1).
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Figure 2.2: Genome-wide association study (GWAS) results. (A) Genome-wide signifi-
cant associations were found for five antimalarials (out of thirteen tested) using EMMA and
HLR tests. They include pfcrt (chromosome 7) associated with chloroquine resistance and
eleven novel associations with resistance to several drugs, listed in Table 2.1. (B) Quantile-
quantile plots for the P-value distributions in (A) show no significant confounding from pop-
ulation structure. Bonferroni-corrected genome-wide significance is marked with a dashed
line; Benjamini-Hochberg significance is marked with a dotted line. (C-D) Close-ups are
shown of the GWAS signal (top) and haplotypes (bottom) for resistance to (C) chloroquine
(CQ) around the gene pfcrt and (D) halofantrine (HFN) around the gene PF10_0355. Yellow:
sensitive allele; red: resistant allele; Blue: no data. Isolates are ordered by ICsq, with the
highest ICsq on the bottom.
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Table 2.1: Eleven genome-wide significant associations with antimalarial drug resistance.
Positions are given with respect to the PlasmoDB 5.0 reference assembly of 3D7. Drug ab-
breviations are ATV: atovaquone; CQ: chloroquine; HFN: halofantrine; ADQ: amodiaquine;
ARTS: artemisinin. The HLR test for CQ-pfcrt association is just below the genome-wide
significance threshold and is omitted here, but is shown in Figure 2.2C.

chr  SNPs test drug P-value genes PlasmoDB de-
scription
6 674,154 EMMA ATV 2.36 x 10~/ PFF0785w Ndc80 homologue,
putative
7 459,787 EMMA cQ 4.72 x 1077 MAL7P1_27 chloroquine resis-
tance transporter
10 1,435,226, HLR- HFN 471 x 1079, PF10_035S, erythrocyte mem-
1,435,286, risk-6 4.25 x 10~° PF10_0356 brane protein
1,435,370, (2 over- putative, liver stage
1,437,695, lapping antigen 1
1,437,718, hits)
1,441,590,
1,444,868
11 657,349 EMMA ATV 4.01 x 10~° PF11_0178 conserved unknown
11 738,407 EMMA HFN  7.20 x 1077 PF11_0203 peptidase, putative
11 1,123,028, HLR-risk- ADQ  5.26 x 107¢ PF11_0302 conserved unknown
1,124,030 2
12 1,964,935 EMMA HFN 6.15x 1078 PFL2285c¢ conserved unknown
13 757,689 EMMA HEN 1.28 x 1077 PF13_0101 conserved unknown
14 1,233,470 EMMA HEN 532 x 1077 PF14_0293 conserved unknown
14 2,814,793, HLR-risk- ARTS  4.90 x 10~¢ PF14_0654 aminophospholipid
2,815,714 2 transporter, puta-
tive
14 3,130,449 EMMA ATV 1.03 x 1076 PF14_0729 early  transcribed
membrane protein
14.2
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2.2.4 FUNCTIONAL VALIDATION OF A NOVEL RESISTANCE CANDIDATE

Demonstrating that a signal of association actually reflects a causal molecular pro-
cess requires functional testing and validation of the candidate locus, both be-
cause of concerns about power and reproducibility of genetic association tests,
and because even a robust statistical correlation need not imply biological cau-
sation. To confirm the ability of GWAS to identify functionally relevant can-
didates, we investigated one of our association findings, PF10_03SS, in greater
depth. This gene contains multiple SNPs associated with halofantrine resistance
(Figure 2.2D), and encodes a putative erythrocyte membrane protein (http://
plasmodb.org/) characterized by high genetic diversity.

We set out to determine the role of PFI0_035S in halofantrine resistance by
transfecting halofantrine-sensitive Dd2 parasites with episomal plasmids con-
taining the PF10_03SS gene from a halofantrine-resistant parasite (SenP08.04),
a technique that is used routinely for stable transgene expression [36]. Two in-
dependent transfectants overexpressing the PFI10_035S gene from SenP08.04
both showed reduced susceptibility to halofantrine when compared with the Dd2
parent or a transfection control (Figure 2.3A), suggesting that this gene is indeed

involved in modulating parasite drug response.

Two independent transfectants overexpressing the endogenous PF10 03SS
gene from halofantrine-sensitive Dd2 also showed reduced susceptibility to hal-
ofantrine (Figure 2.3A), however, pointing to a role of overexpression in the
observed resistance. Because PF10_035S is annotated as a putative erythrocyte
membrane protein and belongs to the merozoite surface protein 3/6 family, we
tested the hypothesis that the observed effect was the by product of a growth or
invasion-related process, rather than resistance due to a direct interaction with the
antimalarial itself. To that end, we expanded our drug testing in the transfectant
lines to include other antimalarials, some structurally related and some unrelated

to halofantrine.

Overexpression of PF10_03SS from either the Dd2 or the SenP08.04 parent
caused increased resistance to the structurally related antimalarials mefloquine

and lumefantrine (Figure 2.3B and 2.3C), but had no effect on parasite sus-
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Figure 2.3: Overexpression of PF10_0355 decreases parasite susceptibility to halofantrine
(HFN) and related antimalarials. Parasite susceptibility to six antimalarials was measured
by 3H-hypoxanthine incorporation. Comparisons were made between Dd2 (HFN-sensitive
strain) and SenP08.04 (HFN-resistant strain), as well as 4 transfected lines. “Dd2+Dd2”:
Dd2 parasites overexpressing PF10_0355 from Dd2; “Dd2+P08”: Dd2 parasites overex-
pressing PF10_0355 from SenP08.04. Overexpression of PF10_0355 decreases parasite
susceptibility to (A) HFN and structurally related (B) mefloquine (MFQ) and (C) lumefantrine
(LUM). Overexpression of PF10_0355 does not alter parasite susceptibility to (D) chloro-
quine (CQ), (E) artemisinin (ARTS) or (F) atovaquone (ATV). Mean ICso= standard error is
shown. Significance levels: *: p < 0.0§, **: p < 0.01, **: p < 0.001.
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ceptibility to the structurally unrelated antimalarials chloroquine, artemisinin
or atovaquone (Figure 2.3D and 2.3E). Indeed, we found evidence of cross-
resistance between halofantrine and both mefloquine and lumefantrine (Figure
2.4). We also observed cross-resistance between halofantrine and artemisinin,
which is expected as cross-resistance between aminoquinolines and artemisinin
compounds has been previously demonstrated [107, 134] and resistance to all
these drugs has been shown to be mediated by changes in pfmdrl copy number
[29, 153]. Overexpression of PFI0_0355, however, alters parasite susceptibility
to the aminoquinolines but not to artemisinin, suggesting that this effect is spe-
cific for that set of structurally related compounds and distinct from the effect of
pfmdrl, which seems to exert a global effect of resistance to unrelated compounds
(i.e. both aminoquinolines and artemisinins). Using the Dd2 parasite line, which
has amplified pfimdrl copy number, as a background for PF10_03SS overexpres-
sion allowed us to distinguish between cross-resistance to a structurally related
class of compounds (mediated by PF10_035S overexpression) and pan-resistance

to multiple classes of drugs.

Given that overexpression of the PF10_03SS gene both from a halofantrine-
resistant and from a sensitive parasite conferred resistance to halofantrine-related
drugs, we investigated whether gene amplification might be driving the observed
resistance, as it often does for antimalarial drugs [9, 56, 110, 137, 146, 183]. We
quantified PF10_0355 copy number in our transfectants and found that the trans-
fectant with the highest ICs for all three drugs (Dd2+P08B) also had the high-
est PF10_03SS copy number, as measured by quantitative PCR (qPCR) (Figure
2.5A). Furthermore, when we examined the PF10_03SS gene on our SNP array,
we detected a substantial increase in hybridization intensity at the PF10 035S
locus compared to the genome average, suggesting that this gene is amplified in
some parasites (Figure 2.5B). The amplified region appears only to contain the
PFI10_0355 gene itself and not surrounding loci. We observed a similar pattern at
pfmdrl on chromosome S, where copy number variation is well established (Fig-
ure C.11). Follow-up qPCR analysis of 38 parasite lines confirmed that parasites
with amplified PF10_03SS$ have a greater mean halofantrine ICs. (Figure 2.5C,

Table C.11, Dataset 1). Copy number variation was further confirmed in a num-
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Figure 2.4: Correlations between antimalarial drugs tested. (A) Pearson correlation values
(r) between Iog10 (ICSO) values are rendered as a color in a symmetric correlation matrix
(red: correlated; white-uncorrelated, blue: inversely correlated). Thirteen antimalarials are
measured: artemether (ARTM), artesunate (ARTN), artemisinin (ARTS), dihydroartemisinin
(DHA), halofantrine (HFN), lumefantrine (LUM), mefloquine (MFQ), quinine (QN), chloroquine
(CQ), amodiaquine (ADQ), atovaquone (ATV), piperaquine (PIP), and halofuginone (HFG).
Drugs are grouped by structural relatedness. (B-F) Correlation plots are given with a linear

regression line for HFN compared to the 5 other drugs tested for antimalarial resistance
with PF10_0355 overexpression: (B) LUM, (C) MFQ, (D) ATV, (E) CQ, and (F) ARTS.
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ber of parasites by quantitative Southern blotting (Figure C.12).

2.3 DiscussiON

In this study we used natural selection and genome-wide association methods
to probe the genetic basis of adaptation in P. falciparum. These approaches are
complementary: scanning for selected loci permits an unbiased search for un-
known adaptive changes, but provides little information about the processes at
work, while GWAS gives a focused look at one easily identified (and clinically crit-
ical) adaptive phenotype. Results from both approaches open up new avenues for

study, as we seek to understand the biological significance of the findings.

The specifics of our strategy were designed to cope with two potential limita-
tions in applying genome-wide population genetic approaches to malaria: small
sample sizes, due to the difficulty in adapting parasites to culture and assessing
drug and other phenotypes; and a lack of correlation (LD) between nearby vari-
ants in the parasite genome, which limits our ability to infer untyped SNPs from
genotyped markers. The second limitation we addressed by developing a high-
density genotyping array (based on new sequencing), to increase the fraction of
genetic variation that we could directly interrogate, while the effect of the first was

mitigated by the phenotype we targeted in our GWAS.

Drug resistance is a phenotype well-suited for GWAS because it is expected to
be caused by common alleles of large effect at few genomic loci [65]. If this is the
case, associations will be much easier to detect than in a typical human GWAS,
in which the phenotype is caused by alleles at many loci that are either rare or of
small effect. Additionally, the haploid nature of the intra-erythrocytic stage of P.
falciparum further heightens GWAS power by eliminating the issue of allelic dom-
inance. Finally, the increased LD caused by recent selection for drug resistance
counteracts the loss of power that comes from short LD, small sample size, and
the temporal and geographic stratification of the parasite population that we ex-
amined. Thus, despite the potential limitations, we were able to detect a known
drug resistance locus (pfcrt), observed little P-value inflation in our GWAS data
(Figures C.8, C.9, C.10), and identified a number of genome-wide significant loci
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ent Dd2 and transfected lines from gqPCR analysis. Dd2+Dd2: Dd2 parasites overex-
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PF10_0355 from HFN-resistant SenP08.04. Copy number was compared to the reference
locus PFO7_0076. (B) Increased hybridization intensity at PF70_0355 on the high-density
SNP array, measured by Z-scores for normalized and background-corrected data, for the
HFN-resistant isolate SenP19.04. (C) Strains with increased copy number of PF10_0355 (as
measured by gPCR > 1.2 X 3D7) show a significantly higher resistance to HFN (p = 0.02,
Student t-test).
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associated with drug resistance. Part of this success was likely due to specific tests

we used to account for population structure.

Going beyond these statistical tests, we went on to functionally validate one
of these loci, demonstrating that increased PF10_0355 copy number confer resis-
tance to three structurally related antimalarial drugs. This demonstrates the feasi-
bility of coupling GWAS and functional testing in the malaria parasite for identi-
tying and validating novel drug resistance loci and illustrates the power of GWAS

to find functionally important alleles.

Comparing our results to the recent GWAS described by Mu et al. [ 107], which
was also directed at finding drug-resistance loci, we see that, beyond the well-
known pfcrt locus, there was no overlap between the associations identified by
each study. Differing sets of drugs tested and analytical methods explain much
of the disagreement. Of the eleven candidate associations in Table 2.1, one (that
with pfcrt) was found by both studies, eight were associations with drugs not as-
sayed in Mu et al. (atovaquone and halofantrine), and two were found only with
a haplotype-based test, an approach not used by Mu et al.. Our candidate locus at
PF10 0355, in fact, would not have been detectable in the Mu et al. study because
it was identified only by the multi-marker HLR test, because it involved an associ-
ation with halofantrine, and because the Mu et al. genotyping array lacked markers

within 4 kb of the gene (http://plasmodb.org/).

Different parasite populations and marker sets probably explain many of the di-
hydroartemisinin, mefloquine and quinine associations identified by Mu et al. but
notseen in our data set. The studies used different parasite population sets—theirs
was weighted toward southeast Asian strains, and ours toward African strains—
and selection pressures and selected alleles can both vary between populations.
Our smaller sample size also means that we might lack power to identify some as-
sociations accessible to Mu et al.. These difficulties are reflected in human GWAS
studies as well, where the ability to replicate associations using multiple tests and

in different sample sets has also been challenging to achieve [92].

Ultimately, the disparities in loci identified point to the role of population anal-

ysis as a tool for candidate gene discovery and not as a definitive study. Even
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within each study, there is little overlap between the signals observed with dif-
ferent methods—our study detects only one gene (pfcrt) by both GWAS tests
(EMMA and HLR), while Mu et al. detected only two genes (unknowns, not
pfert) by both of their GWAS tests (Eigensoft and PLINK). Even a well-designed
GWAS serves only as a hypothesis-generating experiment, and it is vital to em-
pirically validate candidate loci associated with a phenotype of interest. Espe-
cially given the small sample sizes and relatively sparse marker density used in both
malaria GWAS studies to date, functional validation of candidates is necessary to

address concerns about false positive results.

Our functional result, that increased PF10_03SS copy number confers de-
creased susceptibility to halofantrine, mefloquine and lumefantrine, raises addi-
tional questions for study. Further work will be needed to determine the precise
contributions of copy number variation and gene mutation to the parasite’s re-
sponse to these drugs. The biological function of this gene’s product is unknown,
but previous work indicates putative localization to the parasite surface [154],
as well as it being a potential target of host immunity and balancing selection
[125]. While the protein itself does not appear to be a transporter, it is possible
that it directly binds drug or perhaps couples with transport proteins to modulate
drug susceptibility; interaction between membrane transporters and non-channel
proteins has been demonstrated in cancer, plant and yeast systems [17, 58, 100].
Additional experiments are certainly required to determine the precise role of
PF10 0355 in modulating parasite response to this class of compounds, includ-
ing assessing its relevance to resistance in natural populations, but it is clear that

alteration of this locus can mediate drug resistance in P. falciparum.

Although halofantrine, mefloquine and lumefantrine are not commonly used as
primary interventions, widespread halofantrine use has recently been documented
in West Africa. Notably, halofantrine was used to treat nearly 18 million patients
between 1988 and 2005 [20, 60], and it remains in production and use today.
Use of halofantrine, mefloquine or lumefantrine as monotherapy may further ex-
plain how mutations and copy number variation in the PF10_035S gene were se-
lected. Lumefantrine is also currently used as a partner drug in the artemisinin-

based combination therapy (ACT) Coartem. The shorter half-life of artemether
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allows lumefantrine to be present as monotherapy, making it vulnerable to selec-
tion of drug resistant mutants. As genetic loci associated with drug responses are
identified and validated, these provide new molecular biomarkers to evaluate drug
use and response in malaria endemic settings. Thus, our findings have implica-
tions for defining molecular biomarkers for monitoring partner drug responses as

intervention strategies, such as ACTs, are applied.

Beyond identifying a novel drug resistance locus, this study illustrates the gen-
eral utility of a GWAS approach for the discovery of gene function in P. falciparum.
Even with a small and geographically heterogeneous sample of parasites, we iden-
tified a number of new loci associated with drug response and validated one of
them. Larger samples from a single population will have much greater power to
detect additional loci, including those where multiple and low frequency alleles
contribute to resistance. Future GWAS have the potential both to provide greater
insights into basic parasite biology and to identify biomarkers for drug resistance
and other clinically relevant phenotypes like acquired protection, pathogenesis,

and placental malaria.

Future GWAS will be able to counteract the loss of power caused by low LD,
either by focusing on parasite populations with reduced outcrossing rates, or by
studying cases of very strong selective pressure. This issue will soon become moot,
however, as the declining cost of whole genome sequencing makes it practical to
assay every nucleotide in the genome on a routine basis. Culture-adapted para-
sites are amenable to robust and reproducible phenotypic characterization, but
their limitations—the potential for artifactual mutations during adaptation and for
a biased selection of clones within a given infection—mean that genetic changes
identified using them require both functional validation and demonstration that
the changes are important during natural infection. As direct sequencing of clini-
cal isolates with demonstrable clinical phenotypes such as ex vivo drug response
or invasion properties becomes increasingly feasible, sequencing will enable us to
directly identify genetic changes in the parasite associated with clinically relevant
phenotypes. In the years ahead, genome analysis of P. falciparum has the poten-
tial to identify genetic loci associated with many phenotypes, enhance our under-

standing of the biology of this important human pathogen, and inform the devel-
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opment of diagnostic and surveillance tools for malaria eradication.

24 METHODS

24.1 PARASITES, DRUG TESTING, AND DNA IsoLATION

Parasite samples and origins are detailed in Appendix C and Table C.1. Parasites
were maintained by standard methods [165] and were tested for their response to
amodiaquine, artemether, artesunate, artemisinin, atovaquone, chloroquine, di-
hydroartemisinin, halofuginone, halofantrine, lumefantrine, mefloquine, pipera-
quine and quinine according to the methods outlined by Baniecki et al. [16] (Ta-
ble C.4, Figure C.13, Appendix C). Follow-up drug testing was done by measuring
uptake of *H-hypoxanthine [177]. Nucleic acids were obtained from parasite cul-
tures using Qiagen genomic-tips (Qiagen, USA). All DNA samples were evaluated
by molecular barcode [39].

2.4.2 ARRAY GENOTYPING

We sequenced nine geographically diverse parasite isolates to 1.25X coverage,
nearly doubling the number of publicly available SNPs to 111,536 (Appendix C).
These parasites had been previously sequenced to 0.25X coverage [174] and the
deeper sequencing allowed for more thorough SNP discovery. Using this com-
bined marker set, we created a high-density Affymetrix-based SNP array for P. fal-
ciparum containing 74,656 markers. Arrays were hybridized to 57 independent
parasite samples (Table C.1), including 17 previously sequenced strains used as
a validation set. Genotype calls were produced using the BRLMM-P algorithm
[1]. Markers that did not demonstrate perfect concordance between sequence and
array data for the 17 strains were removed (Appendix C). The remaining 17,582
SNPs constituted the high-confidence marker set used throughout this study (me-
dian marker spacing 444 bp, mean spacing 1,316 bp). All genomic positions and
translation consequences are listed with respect to the PlasmoDB 5.0 assembly and

annotation. SNP genotype data are publicly available on http://plasmodb.org/
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(release 6.0, July 2009) and dbSNP (Build B134, May 2011), accessible by search-
ing for submission batches Pf 0002 (sequencing of nine isolates) and Pf 0003
(genotyping of 57 isolates) from submitter BROAD-GENOMEBIO. Genotype

data is also available as Dataset 2.

2.4.3 PrinciPAL COMPONENT ANALYSES

Principal components analysis (PCA) was performed using the program Smart-
PCA [130]. All single-infection samples were used for the analysis in Figure
2.1. Samples that tightly clustered with the wrong continental population (A4,
Malayan Camp and T2_C6) represented likely cases of contamination and were

thus omitted from all other analyses.

244 DI1VERSITY/DIVERGENCE ANALYSIS

We measured diversity using a statistic we term ‘SNP 7, which quantifies the aver-
age number of pair-wise differences among samples from a given population at as-
sayed SNPs. Population divergence was measured using Fsr, calculated using the
method of Hudson et al. [69]. Statistical evaluation of the significance of differ-
ences in SNP 7 and Fgr among populations was performed using a bootstrapping
approach, where the SNP set was re-sampled with replacement and each statistic

recomputed 1000 times.

2.4.5 LINKAGE DiSEQUILIBRIUM (LD) ANALYSIS

The statistic r* was calculated within each population for all pairs of SNPs sharing
the same chromosome [67]; pairs were binned by distance and averaged within
each bin. The level of LD between unlinked markers was estimated by calculat-
ing r* between all pairs of SNPs on different chromosomes. To determine the
bias caused by small sample size, the unlinked calculation was repeated, with the
change that for each pair of SNPs, the genotype for one was taken from one strain
while the genotype for the second was taken from another strain. This background

value of r* was calculated separately for the possible pairs of different strains and
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then averaged. Only single infections, as assessed by molecular barcode, were

used.

24.6 LonG Range HaprLoType (LRH) ANALYSIS

Because of the small number of samples, LRH results for individual continental
populations had a high level of variance. Thus, we pooled together samples from
Africa (n = 26) and Asia (n = 18, excluding India), as suggested by our PCA
analysis. SNPs included in the analysis had a minor allele frequency of at least
0.05 and a call rate of at least 0.8; missing genotypes were imputed using PHASE.
LRH analysis was performed using Sweep. Each SNP defined two core alleles,
one base pair in length. We calculated relative extended haplotype homozygosity
(REHH) for each core allele, to its left and right [ 150], yielding up to four REHH
scores per SNP locus. We standardized the REHH scores as a function of core
allele frequency, defined on a discrete grid from 0.05 to 0.95 with even spaces of
0.02S. This yielded a normally-distributed set of Z-scores for which we calculated

corresponding P-values and Q-values.

2.4.7 GENOME WIDE ASSOCIATION STUDY (GWAS)

We performed a GWAS for drug resistance to thirteen antimalarials across 50 of
our genotyped samples. 7,437 SNPs that had a minor allele count of five samples as
well as an 80% call rate under every phenotype condition were used for GWAS. A
Bonferroni significance threshold of log, ,(P-value) > 5.17 was used for all tests.

See Appendix C for more details on GWAS methods.

The Efficient Mixed-Model Association (EMMA) test [79] models quantita-
tive trait associations to a data set with complex population structure and hidden
relatedness. It calculates a genotype similarity matrix instead of discrete categories
and does not require a priori specification of populations. The resulting P-value
distributions demonstrate little remaining effect from population structure (Fig-

ure C.8) while retaining power to find a number of associations at genome-wide
significance (Figures C.8, 2.2A, Table 2.1).
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The Haplotype Likelihood Ratio (HLR) test [90] models the likelihood that a
single, resistant haplotype rose to dominance while all other haplotypes propor-
tionally decreased. PLINK [142] is used to produce sliding window haplotypes
across the genome and calculate haplotype frequencies for input to the HLR test.
We produced input for all 2-, 4- and 6-marker windows. The LOD scores gener-
ated by the HLR test were converted to empirical pointwise P-values by perform-
ing approximately 370,000 permutations of the null model for each test condition,
allowing us to calculate empirical P-values up to a significance of 10~56. We pre-
served population-specific phenotype frequencies by permuting only within each
of three populations defined by our PCA analysis (Table C.1). Resulting P-value
distributions fit expectations well for the vast majority of test conditions (Figures
C.9, C.10) and the test demonstrates power to detect a number of loci at genome-

wide significance (Figure 2.2A, Table 2.1).

2.4.8 Copry NUMBER VARIATION (CNV)

Copy number was assessed by evaluating the hybridization intensity at the
PF10_0355 locus on the high-density SNP array (Appendix C). Follow-up anal-
yses were done by quantitative real-time PCR (qPCR) of the PF10_0355 locus
using the Delta Delta Ct method [52] PF10_035S was compared to the refer-
ence locus PF07 0076 and 3D7 was used as a reference strain. A summary of
PF10 0355 copy number for all parasite strains tested is provided in Table C.6.
Select resistant strains that were found to have multiple copies of PF10_035S were
further analyzed by quantitative Southern blotting and PF10_035S copy number
was compared to the dhps gene from the 3D7 strain [167].

2.49 PFI10_035S OVEREXPRESSION

The fulllength ORF of PF10_0355 was amplified from either the Dd2 (HFN sensi-
tive) or SenP08.04 (HFN resistant) parasite isolate and cloned into the pBIC009
plasmid under the expression of the Hsp86 promoter. Plasmid DNA was isolated,
tranfected into the Dd2 parasite strain and stable transfectants were selected with

2.5nM WR99210 [53]. Parasites from two independent experiments for each vec-
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tor type (Dd2+Dd2 and Dd2+SenP08.04) were isolated and successful transfec-
tion was confirmed by plasmid rescue as well as episome-specific PCR and se-
quencing. Additionally, a vector control strain was made by transfecting Dd2
parasites with the pBIC009 plasmid containing the firefly luciferase gene (EC
1.13.12.7).

2.5 ACKNOWLEDGEMENTS

We gratefully acknowledge B. Coleman, J. Dvorin, M.T. Duraisingh, U. Ribacke
and C. Valim for help with overexpression vectors and useful discussions. T.
Burke, N. Mahesh, G. Ramirez, and N. Senaratne provided technical help. Para-
sites lines or samples were provided by: J. Barnwell, A.P. Dash, C.E. Chitnis, K.
Day, A. Djimde, C. Plowe, A.M. Katzin, D. Kyle, S. Thaithong, S.d.L. Moraes,
J. Smith; and X. Su. Malaria Research and Reagent Resource Repository pro-
vided parasites deposited by: W. E. Collins, D.E. Kyle, L. H. Miller, D. Baruch, W.
Trager, D. Walliker, U. Certa, R. Reber-Liske, T.E. Wellems, and Y. Wu (Appendix
C).

42



This chapter was originally published as Park, et al,
Sequence-based association and selection scans identiy drug
resistance loci in the Plasmodium falciparum malaria para-
site, PNAS (109), 2012 [129]. This work was also presented
at the American Society of Tropical Medicine and Hygiene
(Dec 2011, Philadelphia, PA). See page xv for details on au-

thor contributions.

doi://10.1073/pnas.1210585109

Sequence-based Association and

Sele&ion-association Scans

ROUGH RAPID GENETIC ADAPTATION and natural selection, the

Plasmodium falciparum parasite—the deadliest of those that

cause malaria—is able to develop resistance to antimalarial drugs,

thwarting present efforts to control it. Genome-wide association studies (GWAS)
provide a critical hypothesis-generating tool for understanding how this occurs.
However, in P. falciparum, the limited amount of linkage disequilibrium (LD)
hinders the power of traditional, array-based GWAS. Here, we demonstrate the
feasibility and power improvements gained by utilizing whole-genome sequenc-
ing for association studies. We analyze data from 45 Senegalese parasites and
identify genetic changes associated with the parasites’ in vitro response to twelve
different antimalarials. To further increase statistical power, we adapt a common

test for natural selection, XP-EHH, and utilize it to identify genomic regions
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associated with resistance to drugs. Using this sequence-based approach and the
combination of association and selection-based tests, we detect several loci asso-
ciated with drug resistance. These include the previously known signals at pfcrt,
dhfr, and pfmdrl, as well as many genes not previously implicated in drug resis-
tance roles, including genes in the ubiquitination pathway. Based on the success
of the analysis presented in this study, and on the demonstrated shortcomings
of array-based approaches, we argue for a complete transition to sequence-based

GWAS for small, low-LD genomes like that of P. falciparum.

3.1 INTRODUCTION

The malaria parasite Plasmodium falciparum imposes a tremendous disease burden
on human societies and is responsible for 1.2 million deaths annually [ 108]. Cur-
rent efforts to eradicate malaria depend on the continued success of antimalarial
drugs [94]; however, the emergence of drug resistant parasites threatens to ham-
per global health efforts to control and eliminate the disease. Understanding the
genetic basis of these adaptations will be necessary to maintain effective global

health policies in the face of an ever-changing pathogen.

A key to elucidating the genetic basis of drug resistance is identifying the spe-
cific genes associated with the phenotype. In human studies of this kind, the
genome-wide association study (GWAS) has overtaken the classic candidate gene
approach, made affordable by the use of genotyping arrays (or SNP arrays) that
measure only a subset of variants in the genome [5]. This optimization is only pos-
sible because of the extensive correlation between genetic markers (called “linkage
disequilibrium” or LD) in the human genome, which allows the subset of SNPs on
an array to act as proxies for other markers not present; this process is known as
“tagging” [42].

In P, falciparum, however, array-based GWAS is severely limited by the relatively
short extent of LD [107, 170, 176, 185]. Lacking that correlation between genetic
markers, genotyping arrays usually cannot detect associations with untyped mark-
ers, effectively limiting inferences to markers actually present on the array; even the

highest density P. falciparum array reported to date found that LD between adja-
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cent markers on the array was too weak for tagging in African populations [170].
Consequently, current P. falciparum arrays cannot confidently capture all causal

variants for important phenotypes.

The rapidly decreasing cost of whole-genome sequencing offers a promising so-
lution. In principle, working with whole genome sequence allows one to directly
assay all mutations segregating in the population, obviating the detection prob-
lems associated with short LD. Discovering mutations directly also avoids the as-
certainment bias inherent to arrays—bias that is exacerbated when SNP discov-
ery and genotyping are performed in different populations [2]. Additionally, the
small size of the P, falciparum genome (23Mb, roughly the size of a human exome),
makes it potentially a hundred fold cheaper than whole-genome sequencing in hu-
mans. As malaria sequencing projects become cost-competitive with genotyping
arrays, whole-genome sequencing has the potential to become the most effective

approach to performing association studies in malaria.

Here, we test the hypothesis that whole-genome sequencing will identify SNP
associations not detected by classic array-based approaches. We apply this method
to identify loci in the P. falciparum genome that are associated with antimalarial
drug resistance and compare the approach to a standard array-based GWAS. We
improve the statistical power of this analysis by adapting a commonly used selec-
tion test, the cross-population extended haplotype homozygosity (XP-EHH) test
[151], and utilize it as an association test for positively selected phenotypes. These
approaches identify a number of candidate loci associated with anti-malarial drug
resistance, including genes in the ubiquitination pathway, suggesting that alter-
ation of the parasite’s ability to modulate stress may contribute to evasion of drug

pressure and development of resistance in P. falciparum.

3.2 RESuULTS

3.2.1 4S5 PARASITE GENOMES AND THE ABSENCE OF LD

We chose a population in a West African region near Dakar, Senegal and culture-

adapted 45 Plasmodium falciparum parasites recently isolated from malaria
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infected patients. This population is particularly relevant for these studies as it has
recently been exposed to multiple, changing drug regimens as clinical resistance
to traditional drugs has emerged [104]. We obtained whole-genome sequence
data and generated high-quality consensus base calls for an average of 83% of each
genome. This produces 225,623 segregating single nucleotide polymorphisms
(SNPs), of which 25,757 met our call rate and minor allele frequency criteria for
further study (see Section 3.4). Sequence-based SNP calling in P. falciparum is
technically challenging due to its extremely AT-rich genome [98, 127]. In light of
this, we validated our sequence-based approach against array-based methods by
using a previously described SNP array [170] to genotype 24 of the 4S5 isolates.
Of the 74,656 SNPs assayed by the array, 4,653 meet our call rate and minor allele
frequency criteria. We observe nearly perfect concordance between Affymetrix

genotypes and sequence genotypes (see Section 3.4).
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Figure 3.1: Simulated P, falciparum arrays are unable to tag SNPs not present on the ar-
ray. (A) A histogram of LD between adjacent SNPs from sequenced P, falciparum (black).
The vast majority of markers have little to no LD with their neighbors (62% of SNPs have
* < 0.05, 76% have r* < 0.2, and 87% have r> < 0.8). This contrasts with human
studies where much more of the genome shows moderate to strong LD between neighbor-
ing SNPs (gray). (B) Simulated genotyping marker sets of various sizes are plotted against
the percentage of the entire sequenced marker set that they are able to tag (with 2 > 0.8).
The dashed, identity line depicts the theoretical scenario where all SNPs are in complete
linkage equilibrium and no SNP tags another. Since this is true of 87% of SNPs in the
malaria sequence data, the increase is almost linear (black dots). This contrasts with the
array tagging performance seen in human studies (gray dots), where only a small fraction of
markers are needed to tag the bulk of the genome—a principle that array-based GWAS de-
pends on. The open triangle depicts the actual performance of the Affymetrix-based Broad
Institute P, falciparum SNP array [170].
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Our data demonstrate that SNPs in P. falciparum have very little ability to tag
neighboring SNPs due to the short LD in the African population from which they
were sampled. While some portions of the genome exhibit significant LD, over
62% of the SNPs in the genome have no LD (r* < 0.05) between adjacent SNPs,
and 87% of the SNPs have insufficient LD to tag their neighbor (Figure 3.1A) us-
ing the criterion derived from human GWAS (* < 0.8) [42]. To measure tagging
ability directly, we simulate genotyping arrays of various sizes by sampling ran-
dom subsets of SNPs from our sequence data. We find that the simulated arrays
are not able to tag a significant portion of unassayed markers, a result in stark con-
trast to the performance of human arrays (Figure 3.1B). The tagging performance
of our own Affymetrix array (tagging only 22.6% of segregating SNPs in Senegal)
is even lower than simulated arrays of similar size (Figure 3.1B), most likely due to
population-based ascertainment biases [ 2] that were not modeled in our idealized
approach. These findings lead us to conclude that array-based studies in P. falci-
parum will rarely be able to detect signals resulting from mutations not present on

the array.

3.2.2 SEQUENCE-BASED GENOME-WIDE ASSOCIATION STUDIES

The goal of these studies is to identify genomic changes associated with changes
in parasite response to antimalarial drugs, as measured in the set of 45 indepen-
dent P, falciparum isolates. We assayed the cultured parasites for in vitro drug re-
sponses (measured by ICs) to twelve standard antimalarials: amodiaquine, arte-
misinin, atovaquone, chloroquine, dihydroartemisnin, halofantrine, lumefantrine,
mefloquine, piperaquine, primaquine, pyrimethamine, and quinine. These consti-
tute the twelve phenotypes used in our association studies (Figure D.1). Not sur-
prisingly, drugs with similar chemical structures (e.g. halofantrine, lumefantrine,
and mefloquine) show a strong correlation in responses (Figure D.2), as has previ-
ously been observed [ 170, 185], and provide the opportunity for cross-validation

of SNPs identified in association studies.

To test associations between SNP genotypes and drug response, we use effi-

cient mixed-model association (EMMA). EMMA is a quantitative association ap-
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proach well-suited for small sample sizes and partially inbred organisms, such as
the malaria parasite [ 79]. It is a commonly used tool among mixed-model GWAS
approaches [136] and has recently demonstrated effectiveness with P. falciparum
drug studies [170]. After correcting for multiple testing (Bonferroni correction
for 25,757 SNPs, P < 2 X 107¢), EMMA is able to detect a number of previ-
ously known markers of drug resistance, such as four non-synonymous SNPs in
pfert [54, 184] associated with chloroquine response (N7SE/K, K76T, Q271E,
R371I), one pfmdrl SNP [49, 120] associated with halofantrine, lumefantrine,
and mefloquine response (N86Y), and three dhfr SNPs [109] associated with
pyrimethamine response (NS11, CS9R, S108N). We note here that, although mi-
tochondrial and apicoplast genomes were also sequenced, no significant associa-
tions were found and the known mitochondrial mutations associated with atova-
quone resistance [48, 82] were fixed in all 45 individuals for the drug-sensitive
alleles (cytochrome b 268Y, 133M, 280G). In all, EMMA detects 34 significant
SNPs associated with parasite response to five drugs (Figure D.3). Most are in
or near previously known associations [176], and five are novel associations with

pyrimethamine response (Dataset 1).

While these sequence-based findings validate the previously known relation-
ship between the pfmdrl gene and parasite responses to halofantrine, lumefan-
trine, and mefloquine, it is notable that this association is not detectable by our
SNP array (Figure 3.2, Figure D.5), as the array lacks any markers in pfmdr1 with
a sufficiently high minor allele frequency. This exemplifies the type of association
that can be missed by arrays due to limited LD. Additionally, the agreement be-
tween these three drugs at this locus provides validation of this result with respect

to structurally related drugs.

3.2.3 USING HAPLOTYPE-BASED SELECTION TESTS FOR ASSOCIATION

To test the hypothesis that drug resistance is largely driven by positive selection, we
searched forlonghaplotypes associated with selection for drug resistance using the
XP-EHH test [151]. This selection test has not previously been used as a GWAS

tool, but it is well suited for this purpose when we presume that the phenotype
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Figure 3.2: Mefloquine association signals around the known drug resistance locus pfmadr1.
EMMA results are shown for all of chromosome 5 with P-values for each SNP on a — log,
scale against physical position. The array-based study (Array 24) does not detect any asso-
ciation at the known pfmdr1 locus due to a lack of marker coverage within the gene and suf-
ficient LD around the gene. The sequence-based study with the same 24 samples (Seq 24)
detects the expected hit at 0.96Mb. Including all samples from the sequence-based study
(Seq 45) increases the strength of this signal. The dashed line indicates the Bonferroni-
corrected significance threshold (P = 0.0S, genome-wide SNP counts are 7,068, 17,278,
and 25,159 respectively).

we are studying is under positive selection. While this assumption is not valid for
most human-based GWAS for non-communicable diseases, it is very likely to be
the case when studying parasite genomes for resistance adaptations to widely used
drugs, which represent a strong selective pressure. Used in this way, the XP-EHH
testidentifies areas in the genome where resistant parasites show much longer hap-
lotypes than sensitive parasites, indicative of recent positive selection on the resis-
tant population. In our data, the test detects a number of signals, including pfcrt
and dhfr, as well as a number of other hits spanning a total of 32 genomic regions
across eleven drugs (Figure 3.3, Figure D.4, Dataset 1). Seventeen of these re-
gions are indicative of selection in the drug resistant population, whereas fifteen
are consistent with selection in the drug sensitive population. With the exception
of the regions containing pfcrt and dhfr, none of these loci were detected by EMMA

alone.

While this approach does not detect the known pfmdrl locus, this is consis-
tent with our expectations, due to the nature of the test. The N86Y mutation in

pfmdrl confers increased susceptibility [49, 120] to many drugs when compared
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Figure 3.3: Significant signals of drug-associated selection across five antimalarial drugs.
XP-EHH results are shown using a Manhattan-inspired plot, with SNP Z-scores plotted
against genomic position, with each chromosome colored separately. Positive Z-scores
suggest selection in drug resistant parasites, negative Z-scores suggest selection in sensi-
tive parasites. The dashed lines indicate the two-sided Bonferroni significance thresholds
(P = 0.025 and 0.975). Only drugs with significant hits are shown here, Z-score and
quantile-quantile plots for all drugs are shown in Figure D.4.

to the wild-type allele. As such, this SNP would not be an expected candidate for
positive natural selection on a novel variant—the type of selection XP-EHH is de-
signed to detect. Moreover, the absence of a pfmdr1 signal from the XP-EHH test
is consistent with the lack of findings in this gene from previous genomic scans for
positive selection based on the REHH, iHS, and XP-EHH tests in multiple popu-
lations [31, 107, 170].

In searching for long haplotypes, the XP-EHH test typically identifies a large
number of significant SNPs in close proximity to each other. These regions often
span many tens of kilobases and several annotated genes. This is expected because
the process of positive natural selection increases the prevalence of both the se-
lected variant as well as of nearby variants, generating local regions of extended
haplotypes. Thus, while XP-EHH strongly implicates these 32 regions as areas of
phenotype-associated positive selection, by itself it is usually unable to localize the

source of this selection to a specific gene. We use P-values from EMMA to improve
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signal localization by identifying the strongest signals of association within each
region. This approach allows us to suggest a possible gene or mutation as a focus
of phenotype-specific positive selection for each identified region (Dataset 1) and
is reminiscent of earlier approaches that intersect selection and association results
[31, 84].

A more comprehensive examination of the regions under drug-associated se-
lection reveals discrete biological pathways and processes that may be particu-
larly important as mediators of drug response in P. falciparum (Section D.3). The
59 genes in these 32 regions can be functionally classified as: surface molecules
or transporters, genome maintenance or transcriptional regulation, metabolic en-
zymes including lipid metabolizers, and members of the ubiquitin proteasome sys-
tem. Most surface molecule associated mutations and intergenic mutations are lo-
calized to intra-chromosomal clusters containing var, rifin and stevor genes; and
a number of genes are found among molecules modulating ubiquitination, lipid
metabolism, or folate metabolism. Members of these pathways are also repre-
sented in the large region of pyrimethamine-specific selection on chromosome 6,
where it is difficult to localize the focus of selection. Collectively, these findings
argue that certain biological processes in general, and genes in the ubiquitination
and lipid metabolism pathways in particular, play important roles in modulating

drug responses in P. falciparum.

3.3 DiscussioN

Complete genome sequencing provides many advantages over array-based geno-
typing for association studies. These include the ability to directly type the causal
allele, the increased detection power from increased marker density, and the abil-
ity to overcome ascertainment biases that arise when studying different popula-
tions with a fixed marker set. In P. falciparum, the lack of tagging ability due to
the near absence of long-range LD limits the utility of arrays for association stud-
ies. Furthermore, the small genome size of P. falciparum brings the cost of whole
genome sequencing to approximate parity with traditional genotyping arrays, and

recent advances in pathogen-specific DNA-enrichment and host-specific DNA-
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depletion techniques for clinical samples makes the sequence-based GWAS ap-

proach more accessible and cost-effective than ever before [98, 171].

We introduce a selection-association approach based on the XP-EHH selection
test. While this approach may not be appropriate for many association studies,
it is sensible when the phenotype under study is under strong selection, which
is likely the case for drug resistance in pathogens. As a haplotype-based test that
takes advantage of multiple, adjacent SNPs, it has the advantage of being more
sensitive than single-marker approaches like EMMA, given the same sample size
[42]. In addition to detecting new signals of drug-associated selection, we also
find that the directional nature of the test statistic, a Z-score, provides useful in-
formation about whether the selection is associated with drug sensitivity or re-
sistance. Consequently, we also introduce an alternative visualization of the out-
put: a Manhattan-like plot of Z-scores, instead of — log,, P-values, to illustrate
the directionality of the signals (Figure 3.3). In our data, we observed a tendency
for many drugs (artemisnin, dihydroartemisnin, primaquine, halofantrine, lume-
fantrine, and mefloquine) to show highly significant signals of selection for drug
sensitivity at pfcrt, the gene known to be responsible for chloroquine resistance
(Figure D.4). While, in principle, this type of signal may result from selection to-
wards drug sensitivity, in this particular case, it most likely results from the general
pattern of anti-correlation between chloroquine and these six other drugs (Fig-
ure D.2). Additionally, the absence of a significant chloroquine sensitivity signal
at pfcrt is consistent with reports that the return of chloroquine sensitive para-
sites in Africa did not result from a classic selective sweep [87]. In either case,
the Manhattan-like Z-score plots allow us to note the presence of these drug sensi-
tivity signals while keeping them visually separate from the drug resistance signals

on which we wish to focus.

Our approaches identify a significant number of loci associated with changes in
drug response (Dataset 1). The strongest of these contain previously known medi-
ators of resistance, such as the mutations in pfcrt, pfmdr1, and dhfr. Curation of our
remaining results using a variety of gene and protein prediction algorithms and lit-
erature searches [ 14] point to several cellular processes and pathways of potential

interest, including the ubiquitin proteasome system, lipid metabolism, and folate
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metabolism (Dataset 1). We argue that these findings point to biological processes
used by the parasite to survive drug pressure or circumvent the action of anti-
malarial compounds. Other genes of interest include three ABC transporters—a
class of transporters known to modulate drug responses in other organisms [89]—
and genes proposed to modulate chromatin [33, 37], DNA repair [25, 162], or
RNA binding [99]—pathways that have been shown to potentially be altered in

response to drug pressure.

A number of the signals of recent positive selection are unique to pyrimethamine-
resistant parasites. While the known resistance locus, dhfr, is present among these,
there are even stronger signals of pyrimethamine-associated selection on chro-
mosome 6 and chromosome 12. The region on chromosome 6 contains two
previously uncharacterized genes proposed to participate in folate metabolism
(PFF1360w and PFF1490w), as well as six genes acting as either chaperones or in
ubiquitination (PFF1365c, PFF1485w, PFF1445c; PFF1415¢c; and PFF1505w),
and three molecules likely to modulate lipid metabolism (PFF1350c, PFF1375c-
a/b, and PFF1420w). In the chromosome 12 region, the XP-EHH test produces
significant P-values for eight SNPs over a 15kb region spanning five adjacent
genes. The extended haplotypes surrounding these SNPs continue even further,
spanning 28kb and fourteen genes in total (Figure 3.4A). These results present
challenges for experimental validation, as the goal of association studies is to
generate a small number of testable hypotheses about molecular mechanisms.
Fortunately, the use of EMMA P-values in this region can assist in localizing
the signal. We find that the strongest EMMA SNP coincides with the strongest
XP-EHH SNP, which is a non-synonymous mutation in PFL2100w, a putative
ubiquitin conjugating enzyme (E2) (Figure 3.4B). Additionally, a significant,
pyrimethamine-specific selection signal on chromosome 8 is entirely contained
within MAL8P1.23 (a putative HECT ubiquitin ligase E3) (Dataset 1), another
gene in the ubiquitin-mediated pathway [133]. Given the role of this pathway in
directing protein degradation and recycling, it is possible that alterations in these
genes create changes in stress responses or protein turnover of key resistance

modulators that allow the parasite to survive under drug pressure.

The evolution of drug resistance in the natural setting is likely to be a multistep
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Figure 3.4: Localizing the pyrimethamine-associated selection signal on chromosome 12.
(A) Defining the region: XP-EHH identifies eight genome-wide significant SNPs in close
proximity on chromosome 12. Each of these eight SNPs represents the center of an area
of extended haplotype homozygosity, as measured by the EHH statistic. Haplotype decay
for resistant parasites is plotted for each of these eight SNPs, which defines a larger region
from 1.807Mb to 1.835Mb in which the causal mutation may exist. This region spans 28kb
and 14 genes. (B) Localizing the signal: focusing within this region, we utilize single-
marker association signals from EMMA to localize the signal. The most significant EMMA
SNP coincides with the most significant XP-EHH SNP and localizes to an E398D mutation
in PFL2100w (ubiquitin conjugating enzyme E2).
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process and our work potentially identifies key pathways involved in this process.
Field-based evidence has demonstrated a reduced fitness for drug resistant para-
sites in the absence of drug pressure and laboratory-based work has demonstrated
the relative fitness of different mutational changes in target enzymes. Our findings
point to potential compensatory mutations in a pathway related to protein stabil-
ity and turnover and it is tempting to speculate that such adaptations enable the
“expression” of a resistant phenotype, such as has been observed in yeast [73]. Al-
though molecular approaches are required to validate the role of this pathway in
modulating drug response, these results demonstrate the potential for sequence-
based GWAS approaches to identify pathways, in addition to individual genes, that
may be responsible for the phenotype of interest.

Ultimately, all association results require experimental validation and follow-
up work to explore possible mechanisms of action. Association studies, even in
their ideal form, simply generate hypotheses based on correlations. However, im-
proved methods for association studies can significantly reduce the necessary val-
idation work by reducing false positive rates, increasing study detection power,
and improving localization ability. This study successfully pilots the use of whole-
genome sequence data for association studies in malaria and it demonstrates signif-
icant advantages in detection power over array-based studies. We strongly recom-
mend that future association studies in low-LD, small-genome organisms adopt
the sequence-based GWAS approach as well, given the relative costs. We addi-
tionally demonstrate the effectiveness of the XP-EHH selection test as an associ-
ation test for phenotypes under positive selection. Finally, we combine data from
both tests to localize long signals and reduce the number of hypotheses for follow-
up validation. This combined approach identifies more candidate loci than with

single-marker tests alone.
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3.4 METHODS

34.1 SEQUENCING

Parasites were obtained from patients with uncomplicated mild malaria in Senegal
from 2001 to 2009 under ethical approval with informed consent for the study.
Parasites were culture adapted by standard methods [ 165] and genomic DNA was
extracted from 45 single-clone samples. Samples were determined to be mono-
clonal and genetically distinct by a 24 SNP molecular barcode [39]. Genomic
DNA was sequenced using Illumina Hi-Seq machines. The first 12 parasites were
sequenced with 76bp single-end reads and the remaining 33 were sequenced with
paired-end reads ranging from 76bp to 101bp in length. The median sequence cov-
erage depth was 144.8 x after alignment (ranging from 32X to 400X ).

Reads were aligned with BWA v0.5.9-r16 against the 3D7 reference assembly
(PlasmoDB v7.1). A consensus sequence was called for each strain using the
GATK Unified Genotyper v1.2.3-g61b89¢2 [96] with the following parameters:
-A AlleleBalance -stand_emit_conf © --output_mode EMIT_ALL_SITES.
Bases were then removed if they exhibited poor quality (GQ less than 30 or
QUAL less than 60) or if they called a heterozygous genotype. This left consensus
calls for 56-91% of the genome (83% median) for each of 45 individuals. Of these
sites, 225,623 positions are polymorphic among the 45 individuals. Of these
SNPs, only 25,757 had genotypes in at least 36 individuals (80% call rate) and
were non-singletons (i.e. minor allele count > 1 or minor allele frequency > 4%).
All analyses are based on this set of 25,757 SNPs. SNP data is available in dbSNP
as batch Pf_0004 from submitter BROAD-GENOMEBIO. SNPs are being pro-
cessed at PlasmoDB [ 14] for release later this year. SNP data and consensus calls

for the whole genome are available as supplemental data files (Section D.2).

Principal component analysis was conducted using the program SMARTPCA
[130] in the EIGENSOFT 3.0 package. We applied a local LD correction (nsnpl-

dregress = 2) and found no significant eigenvectors in the population.
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3.4.2 TAGGING ANALYSIS

Tagging analysis in Figure 3.1B was generated by using PLINK [142] to find tag-
ging SNPs for each SNP that were within 10kb and at least > > 0.8. We then sim-
ulated genotyping arrays by randomly sampling subsets of SNPs of varying sub-
set sizes and calculating the fraction of total SNPs that are tagged by the subset.
We first reduced the sequence data to 40 random individuals to simulate ascer-
tainment bias against low allele-frequency markers, then randomly sampled mark-
ers that were still polymorphic among the smaller population size to simulate a
genotyping array. We simulated 19 different array sizes, ranging from 5% of the se-
quenced SNPs (1,227) to 95% of the sequenced SNPs (22,087). 200 simulations
per array size were run and the result was highly consistent: 95% confidence inter-
vals were too small to visualize on the figure. Simulations for the human genome
were based on 60 diploid individuals of European descent (CEU) from Hapmap
release 23a. Each iteration chose 54 random individuals to simulate ascertainment
bias, filtered SNPs to an 80% call rate and to non-singletons. Our Affymetrix array
was able to tag 5,508 SNPs in our sequence data using the 4,894 SNPs on the array
that overlapped with the 25,757 SNPs in our sequence data (open triangle in Fig-
ure 3.1B). Histograms in Figure 3.1A are binned into 20 evenly spaced bins of r*
from 0 to 1. The plot is normalized such that the sum of all bars in each histogram
is equal to 1 to show the relative proportions of SNPs in each bin. Simulation data

is provided in supplemental data files (Section D.2).

3.4.3 DRuUG ASSAYS

Drug assays were performed as described [ 132] with slight modifications for 384-
well format (Section D.4). The range of drug concentrations are shown in Fig-
ure D.1, and the ICs data, along with raw input data for all association tests, is

provided in supplemental data files (Section D.2).
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344 EMMA

Single marker association tests were run using EMMA [79]. Since not all drugs
have complete phenotype data for all 45 individuals, SNPs are additionally filtered
to those that met our previous call rate and minor allele criteria among the subset
of samples for which drug data exists. This results in 23,000 to 25,180 SNPs for
any given drug. log, (ICso) values were used for this quantitative test. Biologi-
cal replicates of drug data were presented to EMMA as multiple individuals from
the same genetic strain. This allows EMMA to use the additional data to discern
heritable phenotypic variance from non-heritable variance [ 136], and mimics the
use of clonally identical parasites in other studies [10, 11]. Significance was de-
fined as SNPs that exceeded a Bonferroni-corrected threshold of P < 0.05 while
also surviving 60% of jackknife simulations. EMMA results were jackknifed by
performing 200 random subsets of 38 samples and requiring an FDR-corrected
significance of Q < 0.1. SNPs that passed this threshold in 60% of jackknife sim-
ulations were considered to be robust against false positives due to small sample

size effects.

34.5 XP-EHH

Selection-association tests were run using the cross population extended haplo-
type homozygosity test (XP-EHH) [151]. Each drug defined a partitioning of
samples into two “subpopulations” (“sensitive” and “resistant”) based on cutoffs
shown in Figure D.1 and provided in supplemental data files (Section D.2). XP-
EHH requires a recombination map as input, which we constructed with LDhat
v2.1 [97] (Section D.4). XP-EHH also requires fully imputed genotypes. Impu-
tation was performed using PHASE 2.1.1 [156], producing 29,605 non-singleton
SNPs (Section D.4).

XP-EHH computes a significance value for each SNP in the genome, assuming
that SNP comprises the haplotype “core” of selection. Because the test identifies
long haplotypes, it results in a large number of genome-wide significant SNPs (de-
fined by Bonferroni-corrected P < 0.05) in clustered stretches of the genome. We

reduced the set of significant SNPs to a set of significant genomic regions by tak-
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ing each significant core SNP, computing a window around each one where EHH
decayed to 0.05, and merging overlapping windows. This resulted in a smaller list
of significant regions for each drug (Dataset 1). Regions were further filtered by
removing those which did not contain at least one core SNP that survived 50% of
jackknife simulations. XP-EHH results were jackknifed by performing 200 ran-
dom subsets of 38 samples and requiring a Bonferroni-corrected significance of
P <0.1.

3.4.6 GENOTYPING ARRAYS

A subset of 25 parasites was also hybridized to an Affymetrix array containing
74,656 markers [170]. SNPs were called using BRLMM-P from Affy Power Tools
v1.10.2 and filtered according to the same methods as Van Tyne et al. [170], re-
sulting in 15,075 validated SNPs, 8,778 of which were polymorphic among the
25 individuals from Senegal. SNP coordinates were converted from PlasmoDB
v5.0 coordinates to v7.1 coordinates using whole genome nucmer alignments
[85]. Concordance between array and sequencing data was measured for the set
of markers in which genotype calls existed by both methods. For 24 samples,
nearly perfect concordance between Affymetrix genotypes and sequence geno-
types was observed for the 24 samples (averaging 99.2% concordance, with all
24 samples above 98.2% concordance). This level of concordance is similar to
what is observed with technical replicate hybridizations of the same DNA sample
[170]. One sample, SenP19.04.c, reported a 28.2% mismatch rate, suggestive of a
sample identification error, and was removed from the analysis. EMMA analyses
were run on the array data using the same filters and procedures as for sequence
data described above, utilizing 4,514-4,653 SNPs per drug phenotype. Results are
shown in Fig D.5. Array data for these 24 samples are in supplemental data files
(Section D.2).
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Temporal Signatures of Selection

E FINAL CHAPTER OF THIS DISSERTATION explores an alternate ap-
proach at studying selection in the malaria parasite by examining
temporal signatures of selection in-progress. Here, we take advan-

tage of a fully sequenced set of 159 Senegalese samples spread out in time over
a dozen generations. Recently developed Hidden Markov-based methods allow
us to estimate the parameters for drift (N,) and selection (s) in this type of time-
series data. In particular, the estimation of s for every SNP in the genome allows us
to conduct highly specific scans for markers with extremely rapid changes in allele
frequency. These markers are candidates for very strong selection in an environ-
ment where malaria is currently subject to a strong eradication program. Finally,
this new approach provides a complementary view into the selective environment

of the parasite when combined with traditional tests for selection.
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4.1 INTRODUCTION

The study of natural selection has been a significant focus of methods development
in population genetics. These efforts have produced numerous statistical tests for
identifying selection based on genetic data [149]. Most of these tests—such as
long-haplotype tests or population differentiation tests—operate on data sampled
from a present-day snapshot of the population and make inferences about historic
selective events based on the telltale remnants in the genome that are produced by

historic natural selection.

Many large parasite sample sets that are currently being produced are spread out
in time over several years. As the sexual generation time of P, falciparum is thought
to be on the order of three generations per year, these data sets can easily span the
human-equivalent of several centuries in time. This breaks the contemporaneous
sampling assumption made by most selection tests, but more importantly, it misses
an opportunity to exploit time course data as evidence for selection. In this study,
we seek to use this type of data as a direct observation of the effects of selection in

action.

Studying selection using time series genetic data has gained recent attention.
Based on previous methods for inferring effective population size (N,) from time
series data, Bollback et al. pioneered the use of a Hidden Markov Model (HMM)
to jointly estimate both N, and the selection coefficient (s), at a single locus [19].
Intuitively, the model treats the observed allele frequencies at each time point as
noisy estimates of a hidden state, where the emission probabilities (measurement
errors) and transition probabilities (changes in frequency over time due to drift
and selection) of the HMM are well established probability distributions in pop-

ulation genetics.

Based on Bollback et al., a number of similar methods to estimate selection from
time series data have emerged recently [70-72, 93]. Some of these are specific to
asexual microbes, where the problem of clonal interference is a significant con-
founder. But these approaches have largely remained tests of a single marker or
a small number of markers. Scaling this test to whole-genome data requires both

speed optimizations and modified statistics. In this chapter, we adapt the original
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Bollback et al. method into a genome-wide test for selection, create new statistics
based on it, evaluate its behavior under simulated neutral conditions, and apply it
to a set of 159 parasites from a population where the introduction of artemisinin

drug pressure is relatively recent.

4.2 REesuLTts

We based our analyses on 139 sequenced samples collected from patients in Sene-
gal from 2008 to 2011 (19 samples from 2008, 52 from 2009, 46 from 2010, and
22 from 2011). From these genomes, we identified a set of 27,255 variants (SNPs
and small indels) that met a number of filtering criteria (Section 4.4.1). At each
of these variants, we estimated the selection coefhicient, s, using code based on the

Bollback et al. algorithm (see Section 4.4.2).

We fixed the drift parameter, N,, to 100, based on recent studies of drift in
the same population [40]. This represents extremely strong drift and, as a con-
sequence, suggests that we will only be able to detect the strongest signals of selec-
tion in this population. This should also result in a more conservative test, since

the model will attribute more changes to the effects of strong drift.

The distribution of estimated selection coeflicients across the genome is shown
in Figure 4.1A. This statistic is unimodal and centered at zero, though it does not
closely follow any standard distribution (Figure 4.1B). The distribution is asym-
metric with a large left tail, suggesting thousands of candidate variants for strong
negative selection. In order to compute significance of this statistic empirically,
we modeled the behavior of s under the null hypothesis by producing forward-
simulated time course data (drift only, no selection) and ran the HMM 27 million
times (methods in Section 4.4). The resulting distribution is similarly left-tailed
(Figure 4.1C). This suggests that the many variants under strong negative selec-
tion are artifacts of the HMM-based estimation (further analysis of this issue in
Section E.3). Indeed, if you calculate empirical significance values based on the
simulated null data, the resulting Z-scores are normally distributed with no sig-
nificant outliers (Figure 4.1D). This suggests that our data set is not sufficiently
powered to reject the null hypothesis.
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Figure 4.1: The genomic distributions of the two test statistics, s, at left, and the likelihood-
ratio test (LRT), at right, do not allow us to reject the null hypothesis of no selection. The
population size was fixed at N, = 100. (A) Distribution of s (calculated by HMM) over all
genomic markers. (B) QQ-plot showing the distribution of observed values of s against a
normal distribution. It shows a large left-tail of markers reporting strong negative selection.
(C) Distribution of s from null simulations. This displays a very similar distribution to the
observed values in panel (B). (D) Corrected s based on the empirical distribution in (C).
Observed values of s do not significantly depart from the simulated null distribution. (E)
Distribution of the likelihood ratio test (LRT), which tests against the null hypothesis (s = 0),
over all genomic markers. (F) QQ-plot showing the distribution of observed values of LRT
against the expected Xz distribution. This matches the neutral expectation very closely.
(G) Distribution of LRT from null simulations. This demonstrates that the neutral behavior of
this test statistic is xz distributed, as expected. (H) Corrected LRT based on the empirical
distribution in (G). Observed values of the LRT do not significantly depart from the simulated
null distribution.
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We additionally evaluated an alternate test statistic based on the likelihood ratio
test (LRT), a standard approach in statistical inference [182]. While estimating
the maximum-likelihood value for s, the [19] HMM additionally emits the log-
likelihood surface for all evaluated values of s. Using this, we can compute a test
statistic that should be y* distributed (with one degree of freedom) under the null
hypothesis of no selection (Figure 4.1E):

LRT = 2 [log L(s = sanp) — log L(s = 0)]

We find that the resulting distribution of LRT statistics across the genome
matches the expected x> null quite well (Figure 4.1F). As before, we also com-
puted an empirical distribution of the LRT using 27 million iterations of our
simulations of the null hypothesis and found an identical y* distribution (Figure
4.1GH).

This test provides a better measure of statistical significance than s since its dis-
tribution is well characterized. However, our data set remains underpowered after
correction for multiple-testing. It is likely that the overwhelming strength of ge-
netic drift in this population will mask the signal of all but the strongest selective
events, and that larger sample sizes and longer time spans of data would be required

to confidently detect weaker selection.

However, in an absolute sense, most variants in the genome exhibit what is tra-
ditionally considered to be strong selection (24,046 out of 27,255 variants show
|N,s| > 1, that s, the product of effective population size and the selection coeffi-
cient are above one). Although we cannot confidently rule out neutrality for these
markers, we can look at the tails of the distribution to understand the behavior of
our method and the types of signals it is more sensitive to. Table 4.1 highlights the

top candidates for strong selection.

Additionally, long-haplotype selection tests and GWAS tests were performed
on the same data and are shown in Sections E.4 and E.S but are not the focus of

this chapter and are not elaborated on here.
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4.3 DiscussioN

4.3.1 CANDIDATES OF STRONG SELECTION

The candidates described in Table 4.1 are indicative of atypically strong changes in
allele frequency over a relatively short time frame. Taken together, they describe
the types of genetic regions that our approach is most likely to detect selection in.
It is notable that all thirteen of these hits lie in coding regions of the genome (the
genome is roughly 50% genic). Roughly half of the hits lie in proteins of unknown
function—this is consistent with the proportion of unknown genes in the genome

as whole.

It is also notable that five of these thirteen hits are surface proteins (DBL,
CLAG2, MSP3, two unknown membrane proteins). These loci are typically
thought to be under balancing selection due to their exposure to the host immune
system (Section 1.4). Indeed, a number of these genes have been identified in
tests for balancing selection previously [7]. However, balancing selection can
behave like directional selection when observed over a relatively short time span.
Balancing selection on a gene as a whole may also look like directional selection
at individual SNPs within that gene. As such, though the HMM explicitly models
directional selection, it is sensible for our method to detect signals of balancing
selection as well. In our West African population, where many infections can be
asymptomatic, one can speculate that balancing selection due to host immune
pressure plays a stronger role than drug pressure in the short term: all parasites
must encounter the host immune system during its life cycle, but not all will

encounter drug treatment.

None of the major loci associated with chloroquine, pyrimethamine, or amino-
quinolone resistance are observed in these results, but intriguingly, three of our
hits occur within close proximity to pfcrt. Although these positions have previ-
ously been shown to reside within a long haplotype around this gene, the move-
ments in our three markers appear to be entirely decoupled from the compara-
tively static allele frequencies in the central chloroquine resistance mutations of

pfert (Figure E.2). This may simply represent the gradual breakdown of LD over
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time and the reintroduction of favorable genetic diversity previously suppressed

by the selective sweep S0 years ago.

The absence of well-characterized drug resistance loci in our findings suggests
that this test is not sensitive to historic strong selective events in the way long-
haplotype and other common selection tests are. Based on how selection is mod-
eled, one would expect that even recent historic events would go undetected and
that only selection currently in progress would produce a noticable signal. For this
reason, this approach provides a very complementary set of insights to existing se-

lection tests regarding the adaptive behavior of the parasite.

4.3.2 FuUTURE DIRECTIONS

In this chapter, we have demonstrated the concept of scaling a temporal test for
selection up to a genome-wide scale. We have established a number of useful ge-
nomic statistics based on this method originally developed by Bollback et al. in a
single-marker setting. We have explored the behavior of this type of approach and
the types of selective signals to which it is sensitive. And as an initial foray into
a new type of selection test, we have also learned a number of ways in which the
methods can be expanded upon in future work. These future directions are elabo-

rated upon here.

The drift parameter, N,, is currently set to a fixed value based on previous studies
in this population [40]. Although we did manually examine the behavior of this
statistic under several other values of this parameter (Figure E.4), this approach
would benefit if it were combined with methods that can estimate N, genome-
wide. The existing HMM is able to provide a maximum-likelihood estimate of
N, for a single marker, but it is not able to jointly estimate the parameter across
many markers. Additionally, recent evidence shows that effective population size
may be changing over time as malaria control efforts take effect [40]. It would be
ideal to be able to model a changing N, over time, though this would require some

significant changes to the underlying software.

Similarly, our model currently assumes a constant directional selection pres-

sure over the entire time period sampled. When studying samples from a country
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where the national drug treatment policies change over time (such as the introduc-
tion of a new standard of therapy in a certain year), this assumption does not hold.
For these types of studies, it would not be hard to model a stepwise change in s ata
given time point by splitting the data into two separate time intervals and running
the HMM to estimate s separately for each time interval. A likelihood ratio test
statistic can then be produced by testing against the null hypothesis of s7; = srs.
This would allow us to isolate regions of the genome where the selection coefh-

cient significantly changes at a given point in time.

We have previously described how this test provides a complementary view of
selection to existing long-haplotype-based selection tests. The natural next step is
to compute composite statistics based on this and other tests to leverage the dis-
tinct information provided by each. This can be done using a thoroughly modeled
approach as in Grossman et al. [63], or a more naive approach that simply com-

bines significance values from each test [ 181, 186].

Very recent work shows that the complex life cycle of the malaria parasite (with
multiple bottlenecks in the asexual and sexual stages) produces some impor-
tant departures from the standard coalescent and Wright-Fisher models that our
method is based on [27]. This is particularly true with regards to the strength
of drift and selection—the very forces that this model tries to estimate. This
complexity has often been overlooked in the past, but it is becoming clear that,
particularly in studies of selection, it can no longer be ignored. It would be prudent
to replace our forward simulations with the Chang et al. model while updating
the transition probabilities in the Bollback et al. HMM with one that more closely
matches those produced by the malaria life cycle.

Ideally, an expanded study would run forward simulations at a range of selection
coefficients (here, we only simulated the null: s = 0), drift rates, sample sizes,
number of time points, and total time spanned. This would produce a more formal
calculation of the test’s power and sensitivity to detect a certain level of selection

and evaluate possible study designs before collecting the data.

Going forward, Dan Neafsey at the Broad Institute has proposed future work to

utilize the methods developed in this chapter for a large scale study in Southeast
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Asia—a population where clinical phenotypes appear to be in motion [47, 124].
The study would use the hybrid-selection approach developed at the Broad [98] to
sequence 600 samples collected over 10 years from northwest Thailand in collab-
oration with Fran¢ois Nosten and Tim Anderson. The techniques developed here
in this chapter can help inform the design of this study and provide the software

framework on which to build that analysis.

The loci identified in Table 4.1 are biologically interesting and display some of
the most significant movement of allele frequencies in our short time frame. Be-
cause this is based on genome-wide data from only a handful of time points, Diana
Miao, a Harvard undergraduate, is presently validating these loci in the Wirth Lab
at the Harvard School of Public Health. Using single-marker PCR assays, she is
genotyping these top markers across a set of hundreds of unsequenced parasite
samples from the same Senegalese population, across roughly a decade of time
points. This will help determine whether these loci continue to show directional
movement over a longer period of time, or whether they exhibit more drift-like

behavior in the unsequenced years.

4.3.3 CONCLUSION

In the end, our time-series based approach is important for studying selection in
malaria because of the very recent introduction of artemsinin-based selective pres-
sures. From a disease control standpoint, it is also essential to detect the parasite’s
adaptations as close to real-time as possible, before resistance mutations become
widespread. This necessitates using and combining as many distinct types of se-
lection tests as possible to provide a clearer picture of the parasite’s evolutionary
responses. The approach piloted in this chapter provides a significant step in that

direction.

This work, taken together with the chapters before it, make significant contri-
butions to the field of malaria genomics. Each chapter of this dissertation demon-
strates a new application of population genomic methods to the study of malaria,
often adapting these methods in ways not originally foreseen. Each chapter also

produces a number of candidate genes and mutations that lend insight to parasite
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evolution, drug mechanisms, and point to possible genomic surveillance markers.
This dissertation provides timely advances to both methods and knowledge for a
field in need of innovative means to thwart the highly adaptable parasite responsi-

ble for one of the most prevalent human diseases.

44 METHODS

44.1 SamprLE COLLECTION AND SEQUENCE ANALYSIS

190 parasite samples were collected from patients in Senegal over a ten year span
from 2001 to 2011. Parasite DNA was isolated either by culture adaptation [165],
hybrid-selection enrichment [98], or direct sequencing of patient DNA, depend-
ing on sample quality. Genomic DNA was sequenced at the Broad Institute using
Iumina Hi-Seq machines using paired-end reads ranging from 76bp to 101bp in
length.

Reads were aligned with BWA v0.6.2 against the 3D7 reference assembly (Plas-
moDB v9.0). A consensus sequence was called for each sample individually using
the GATK Unified Genotyper 2.4-9 [96] using the EMIT_ALL_SITES option. Both
SNPs and indels were allowed. Bases were then removed if they exhibited poor
quality (QUAL less than 60) or if they called a heterozygous genotype. After this

filtering, all samples were merged into a single VCF file.

21 samples were then discarded that had genotype consensus calls for less than
50% of the genome (roughly 11.7Mb). After removing sites that were monomor-
phicin the remaining 159 samples, we had 631,032 variants. Of these, 62,599 were
biallelic and non-singleton (at least two samples with a minor allele). Functional

consequences of these variants were annotated using snpEft and PlasmoDB 9.0.

For this analysis, we further restricted our sample set to the 139 samples col-
lected between 2008 and 2011, as these were the only four years with large enough
sample sizes to reduce the errors in our estimate of annual allele frequencies. We
reduced our marker set to those that had non-missing genotype calls for at least 12

samples in each of the four years, had a minimum minor allele frequency of 0.02
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across all samples, had at least one year with a minor allele frequency of at least
0.05, and had a non-missing genotype call for the P. reichenowi genotype to infer
ancestral/derived status. This resulted in 27,255 variants, of which 25,807 were
SNPs and 1,448 of which were small indels.

In most selection studies (particularly with long-haplotype selection tests),
SNP and indel data cannot be jointly analyzed due to the differences in mutation
rates and, with some types of indels, recombination mechanisms. However, our
approach measures selection against genetic drift (instead of recombination)
which should affet both classes of variants equally. As such, we analyzed the data
set without separating SNPs and indels while recognizing that our ability to ascer-
tain indel variation with these methods (short reads, BWA, GATK) is restricted

to only smaller and simpler indels.

The derived-vs-ancestral status of each variant was determined from ge-
nomic sequence from P. reichenowi, the closest known outgroup for P. falci-
parum. Raw reads from the “Dennis” isolate sequenced by the Wellcome Trust
Sanger Institute were downloaded from the European Nucleotide Archive using
project accession ERP000299 (see http://www.ebi.ac.uk/ena/data/view/
ERP@00299 and http://www.sanger.ac.uk/resources/downloads/protozoa/
plasmodium-reichenowi.html). Reads were aligned to 3D7 with BWA and
variants were genotyped with GATK’s Unified Genotyper in the same manner as
the P. falciparum samples described earlier. The resulting derived allele frequency

distributions are shown in Figure E.1.

4.4.2 ESTIMATING THE SELECTION COEFFICIENT

To estimate selection coefficients from our time series data, we started
from the HMM implemented in Bollback et al. publicly available at http:
//www.simmap.com/bollback/software.html. This package, called sel2ns,
models a single marker when provided with derived and ancestal allele counts
for each time point. The user must specify a range of parameter space to explore
(for N, and s) and a resolution to explore it at (the number of intervals for each

parameter) and the program will emit log-likelihoods for each combination of
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parameter values in a linearly spaced grid within the specified boundaries. The
output can then be examined to determine which parameter values result in the

maximum likelihood.

This can result in many CPU-days of runtime when applied to a whole genome,
but significant optimizations can be made to the likelihood maximization ap-
proach. As this software was originally intended for single locus studies, such
optimizations were not a priority for the original authors. We wrapped the
sel2ns software with our own script that uses well-established algorithms to op-
timize relatively well-behaved objective functions using an implementation of
Brent’s algorithm in the SciPy package (scipy.optimize.minimize_scalar).
This approach efficiently finds the maximum likelihood estimate (MLE) of the

parameters with as few executions of the HMM as possible.

We used a fixed value of N, across the whole genome and, at each variant, esti-
mated values for s and also computed a likelihood ratio test to produce a measure
of significance against the null hypothesis of no selection. Effective population size
is a concept used for multiple purposes in population genetics. Because N, is used
here to simulate the strength of drift over a short span of time, it makes sense to
use a fixed value over the entire genome. Other interpretations of N, that allow for
varying values across the genome are used to describe how allele frequency spec-
tra are affected by recent population history. However, since this is not how N, is
used by the HMM, it is sensible to fix a single value, since the entire genome will

experience drift at the same rate within this period of time.

Forward simulations of the null model were produced with a simple implemen-
tation of the Wright-Fisher drift model using an initial allele frequency sampled
randomly from the distribution of derived allele frequencies observed in the whole
genome. Similar to the HMM, we introduced binomial sampling errors at each
sampling time point, using annual sample sizes equal to those used in our actual
data. The main difference between this model and the one described in Bollback
et al. is the use of the Wright-Fisher model for drift here vs. the Kolmogorov back-
ward equation used in sel2ns, but this difference should be negligible. These sim-
ulations are meant to model the behavior of the sel2ns output under the null hy-

pothesis. The simulations can easily be adapted to incorporate directional selec-
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tion by introducing a modification of the allele frequency at each Wright-Fisher

generation prior to binomial sampling with the following additive model:

p(2+ s+ ps)
2+ 2ps

P next —

Such a modification would allow for an examination of the sensitivity of sel2ns

to detect selection at various strengths.

4.4.3 ORTHOGONAL TESTS FOR SELECTION

Additional analyses were also performed on this data set that are shown in Ap-
pendix E. These include traditional long-haplotype based tests for positive selec-
tion (Section E.4) and drug resistance GWAS for a subset of phenotyped parasites
(Section E.S).

Long haplotype tests focused on sequence data from our Senegalese population
combined with two other West African parasite populations sequenced by Manske
etal. [95]: Burkina Faso and Mali. Raw reads from these samples were obtained
from the European Nucleotide Archive using the accessions listed in Manske et al..
Alignment and variant calling was performed as described previously with our

Senegalese and the P. reichenowi sample.

GWAS tests were performed exactly as in Chapter 3, with the exception that
parasite drug response is now assesed using an ex vivo drug assay (manuscript in

preparation) instead of the previous method relying on culture adaptation.
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This chapter describes thirteen recent manuscripts in which
I have played an assistive role. Nine of these have reached

publication, four more are in process.

Secondary Publications

During my time here, I also assisted with a number of publications led by other
researchers. The following manuscripts are interior-author publications of mine
from Fall 2010 to the present. Omitted from this listing is the Nature Reviews
Genetics paper that forms the basis of Chapter 1.

A.1 PUBLISHED MANUSCRIPTS, SEPT 2010 TO JULY 2013

[40] Rachel F Daniels, Hsiao-Han Chang, Papa Diogoye Séne, Daniel J Park,
Daniel E Neafsey, Stephen F Schaffner, Elizabeth ] Hamilton, Amanda K Lukens,
Daria Van Tyne, Souleymane Mboup, Pardis C Sabeti, Daouda Ndiaye, Dyann F
Wirth, Daniel L Hartl, and Sarah K Volkman. Genetic Surveillance Detects
Both Clonal and Epidemic Transmission of Malaria following Enhanced In-

tervention in Senegal. PLoS ONE, 8(4):e60780-e60780, April 2013.  doi:
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10.1371/journal.pone.0060780. ~ URL http://www.plosone.org/article/
info%3Adoi%2F10.1371%2F journal.pone.0060780—This paper describes the
use of a genetic barcode on a parasite sample set in Senegal spanning five years.
It finds an increase in parasite clonality over time, consistent with a reduction in
effective population size during a period of intense malaria control efforts. This
effort was led by Harvard graduate students Rachel Daniels (BBS) and Hsiao-
Han Chang (OEB). I played a minor role, providing some analysis for array-based

validations and was involved in some discussions around data analysis.

[63] Sharon R Grossman, Kristian G Andersen, Ilya Shlyakhter, Shervin
Tabrizi, Sarah Winnicki, Angela Yen, Daniel ] Park, Dustin Griesemer, Elinor K
Karlsson, Sunny H Wong, Moran Cabili, Richard A Adegbola, Rameshwar N K
Bamezai, Adrian V S Hill, Fredrik O Vannberg, John L Rinn, Eric S Lander,
Stephen F Schafiner, and Pardis C Sabeti. Identifying Recent Adaptations in
Large-Scale Genomic Data. Cell, 152(4):703-713, February 2013. doi: 10.1016/
j.cell.l2013.01.03S. URL http://dx.doi.org/10.1016/j.cell.2013.01.035—
This paper describes a genome-wide scan of selection in human populations
using composite statistics. I played a small role in this analysis, utilizing publicly
available RNA-seq data to infer transcriptional activity of non-coding regions

identified by this selection scan.

[28] Hsiao-Han Chang, Daniel ] Park, Kevin ] Galinsky, Stephen F Schaffner,
Daouda Ndiaye, Omar Ndir, Soulyemane Mboup, Roger C Wiegand, Sarah K
Volkman, Pardis C Sabeti, Dyann F Wirth, Daniel E Neafsey, and Daniel L Hartl.
Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal
reveals the demographic history of the population. Molecular Biology and Evo-
lution, 29:3427-3439, June 2012. doi: 10.1093/molbev/mss161. URL http:
//mbe.oxfordjournals.org/content/29/11/3427—This paper describes pop-
ulation genetic analyses and selection scans in 25 fully-sequenced Senegal para-
sites. They are a subset of the 45 parasites described in Chapter 3. This effort
was led by Harvard OEB graduate student Hsiao-Han Chang. I provided analy-
ses based on the iHS long-haplotype selection test and helped to analyze sequence
data.
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[6] Alfred Amambua-Ngwa, Daniel J Park, Sarah K Volkman, Kayla G Barnes,
Amy Bei, Amanda K Lukens, Papa Sene, Daria Van Tyne, Daouda Ndiaye, Dyann F
Wirth, David ] Conway, Daniel E Neafsey, and Stephen F Schaffner. SNP geno-
typing identifies new signatures of selection in a deep sample of West African P.
falciparum malaria parasites. Molecular Biology and Evolution, 29:3249-3253, June
2012. doi: 10.1093/molbev/mss151. URL http://mbe.oxfordjournals.org/
content/29/11/3249—This paper describes population genetic analyses and se-
lection scans in 75 parasites from Senegal and the Gambia genotyped on a high-
density SNP array. This effort was led by Alfred Ngwa and David Conway (MRC
Gambia) and Dan Neafsey and Steve Schaffner (Broad Institute). I processed and
filtered array genotype data for this project and performed long haplotype selec-
tion tests (REHH and iHS).

[175] Sarah K Volkman, Daouda Ndiaye, Mahamadou Diakite, Ousmane A
Koita, Davis Nwakanma, Rachel F Daniels, Daniel J Park, Daniel E Neafsey, Marc
AT Muskavitch, Donald J Krogstad, Pardis C Sabeti, Daniel L Hartl, and Dyann F
Wirth. Application of genomics to field investigations of malaria by the interna-
tional centers of excellence for malaria research. Acta Tropica, 121(3):324-332,
March 2012. doi: 10.1016/j.actatropica.2011.12.002. URL http://dx.doi.org/
10.1016/j.actatropica.2011.12.002—This paper is a review paper malaria ge-
nomics as well as a description of the new ICEMR project (International Cen-
ters of Excellence for Malaria Research). This was led by Sarah Volkman (Harvard

SPH). I played a minor role, and contributed small sections of text.

[101] Danny A Milner, Jimmy Vareta, Clarissa Valim, Jacqui Montgomery,
Rachel F Daniels, Sarah K Volkman, Daniel E Neafsey, Daniel J Park, Stephen F
Schaftner, Nira C Mahesh, Kayla G Barnes, David M Rosen, Amanda K Lukens,
Daria Van Tyne, Roger C Wiegand, Pardis C Sabeti, Karl B Seydel, Simon ]
Glover, Steve Kamiza, Malcolm E Molyneux, Terrie E Taylor, and Dyann F Wirth.
Human cerebral malaria and Plasmodium falciparum genotypes in Malawi.
Malaria Journal, 11:35, March 2012. doi: 10.1186/1475-2875-11-35. URL
http://www.malariajournal.com/content/11/1/35—This paper describes
the application of a 24 SNP PCR barcode assay to explore the association be-

tween multiplicity of infection and severity of disease outcome in children. It was
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led by Dan Milner (Harvard SPH). I played a minor role, mostly in the initial
population genetic analyses that led towards the selection of the 24 SNPs.

[21] Kate M Broadbent, Daniel ] Park, Ashley R Wolf, Daria Van Tyne, Jen-
nifer S Sims, Ulf Ribacke, Sarah Volkman, Manoj Duraisingh, Dyann F Wirth,
Pardis C Sabeti, and John L Rinn. A global transcriptional analysis of Plasmod-
ium falciparum malaria reveals a novel family of telomere-associated IncRNAs.
Genome Biology, 12(6):R56, June 2011. doi: 10.1186/gb-2011-12-6-r56. URL
http://genomebiology.com/2011/12/6/R56—This paper describes a transcrip-
tional scan and characterization of a family of long non-coding RNAs in the para-
site in vitro. This wasled by Harvard Systems Biology graduate student Kate Broad-
bent. I provided some statistical analyses and bridged the project from its initial

rotation student to its final owner.

[115] Daniel E Neafsey, Mara K N Lawniczak, Daniel ] Park, Seth N Redmond,
M B Coulibaly, S F Traoré, N Sagnon, C Costantini, Charlie Johnson, Roger C
Wiegand, Frank H Collins, Eric S Lander, Dyann F Wirth, Fotis C Kafatos, Nora ]
Besansky, George K Christophides, and Marc A T Muskavitch. Snp genotyping
defines complex gene-flow boundaries among african malaria vector mosquitoes.
Science, 330(6003):514—7, Oct 2010. doi: 10.1126/science.1193036. URL http:
//www.sciencemag.org/content/330/6003/514—This paper describes popula-
tion genetic analyses of the vector mosquito, Anopheles gambiae. It was led by Dan
Neafsey (Broad Institute), Mara Lawniczak (Imperial College London), and Marc
Muskavitch (Boston College). I designed the genotyping array used for this study,
and provided early-stage analysis of the array data.

[114] Daniel E Neafsey, Bridget M Barker, Thomas J Sharpton, Jason E Stajich,
Daniel J Park, Emily Whiston, Chiung-Yu Hung, Cody McMahan, Jared White,
Sean Sykes, David Heiman, Sarah Young, Qiandong Zeng, Amr Abouelleil, Lynne
Aftuck, Daniel Bessette, Adam Brown, Michael Fitzgerald, Annie Lui, ] Pendexter
Macdonald, Margaret Priest, Marc J Orbach, John N Galgiani, Theo N Kirkland,
Garry T Cole, Bruce W Birren, Matthew R Henn, John W Taylor, and Steven D
Rounsley. Population genomic sequencing of Coccidioides fungi reveals recent
hybridization and transposon control. Genome Research, 20(7):938-946, July
2010. doi: 10.1101/gr.103911.109. URL http://genome.cshlp.org/content/
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20/7/938—This paper has nothing to do with malaria. It describes the population
genetics and interspecific analyses of two related fungi: Coccidioides immitis and
Coccidioides posadasii. This was led by Dan Neafsey (Broad Institute). I played a

minor role, assisting with SNP discovery and gene annotation.

A.2 MANUSCRIPTS IN PREPARATION OR REVIEW

Additionally, I have a few more manuscripts currently in preparation or review:

Ulf Ribacke, Mackenzie Bartlett, Saurabh D Patel, Niroshini Senaratne, Daniel J
Park, Manoj T Duraisingh, Pardis C Sabeti, Sarah K Volkman, and Dyann F Wirth.
Adaptive evolution of a ubiquitin ligase is linked to altered drug sensitivity in plas-
modium falciparum. Science Translational Medicine. Manuscript under review.—I
played a minor role, assisting with the interpretation and reanalysis of results from
the REHH selection test in Van Tyne et al. [170] and incorporating derived allele

analyses for mutations of interest.

Hsiao-Han Chang, Eli L Moss, Daniel J Park, Daouda Ndiaye, Soulyemane
Mboup, Roger C Wiegand, Sarah K Volkman, Pardis C Sabeti, Dyann F Wirth,
Daniel E Neafsey, and Daniel L Hartl. The malaria life cycle intensifies both
natural selection and random genetic drift. Proceedings of the National Academy
of Sciences, USA. Manuscript in preparation.—I played a minor role, providing
helpful conversations and feedback on the population model used in this study
and guiding the protocols for the analysis of raw sequence data. This constitutes
the final chapter of Hsiao-Han’s OEB dissertation, submitted to Harvard in May
2013.

Awa B Deme, Amy K Bei, Ousmane Sarr, Daniel E Neafsey, Stephen F
Schaftner, Daniel J Park, Rachel F Daniels, Aida Sadikh Badiane, Papa El
Hadji Omar Gueye, Ambroise Ahouidi, Daouda Ndiaye, Souleymane Mboup,
Dyann F Wirth, and Sarah K Volkman. Analysis of the pthrp2 genetic diversity in
senegal and implications for rapid diagnostic test use. Malaria Journal. Manuscript
in preparation.—I played a minor role, providing some advice on population ge-

netic analyses and providing some summarized sequence data for the gene pfhrp2
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from sequenced parasites in Senegal. This effort was led by Senegalese graduate
student Awa Deme, who was a participant in a computational methods workshop

that I taught in Dakar, Senegal in 2010.

Daria Van Tyne, Daniel J Park, and Dyann F Wirth. Understanding malaria
drug resistance evolution in real-time. Trends in Parasitology. Manuscript in
preparation.—I provided edits to this review paper in the areas of GWAS and se-

lection studies.
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This is a final term paper assignment for OEB242 (Coales-
cent Theory), taught in Fall 2010 by John Wakeley (Harvard
University). See Section B.4 for details on author contribu-

tions.

Ascertainment Bias Corre&ions to
Sele&ion Studies in Plasmodium

falciparum

IS CHAPTER EXPLORES AND EXPANDS on a previous analysis of di-
rectional and balancing selection in the malaria parasite, Plasmod-
ium falciparum. This previous analysis was a visualization of P. fal-

ciparum gene diversity vs. divergence in Chapter 2 [170]. Here, I explore ways that
this analysis may have been affected by ascertainment bias and attempt to correct

for it and calculate measures of significance utilizing coalescent approaches.
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B.1 INTRODUCTION

Genomic studies of the Plasmodium falciparum parasite have advanced consider-
ably in the past decade. From the initial sequencing and assembly of the genome
to the characterizations of population diversity, and numerous studies since then,
we now have a growing understanding of P. falciparum’s population history, global
population structure, LD structure, and some of the strongest foci of selection
pressure. Despite the rapidly decreasing cost of high throughput sequencing, a
number of recent and continuing studies still rely on SNP genotyping chips to

measure individual parasites for genomic variation [e.g. 107, 113].

However, it has been long known that a number of population genetic analyses
from chip-derived data are sensitive to ascertainment bias [32, 117, 118]. This is
due to the fact that the arrays only assay a pre-specified set of SNPs obtained in
a smaller sample of individuals. This predisposes us to the detection of mostly
common polymorphisms and biases the allele frequency spectra. In the case of
P. falciparum, most current genotyping array designs are based on discovery data
from less than 20 haploid strains originally described by a trio of 2007 papers [ 74,
106, 174]. Most studies in P. falciparum manage to avoid analyses that would be
significantly affected by ascertainment bias, but some simply concede its possible
influence. For example, Neafsey et al. and Van Tyne et al. use the terminology
“SNP 7” to emphasize its departure from the usual population genetic parameter,

7, due to ascertainment bias.

In malaria genomics research, we ultimately wish to identify areas of the genome
that may be under selection due to host immune pressure, drug pressure, or other
factors. In this chapter, I wish to further explore a small analysis by Dan Neafsey
(Figure 2.1B in this dissertation). I reproduce it here as Figure B.1A. This visualiza-
tion plots the SNP 7 of a gene (within one subpopulation) against the gene’s Fsr
as a measure of within-population diversity vs. between-population divergence.
The visualization suggests that data points with high diversity and low divergence
may be candidates for genes under balancing selection. Conversely, genes with
low diversity and high divergence may be candidates for population-specific pos-

itive selection. It is similar to Figure 4 from Ochola et al. [125], though Ochola
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et al. use a interspecific metric of “divergence” (7/K and 6/K from a HKA test)
whereas Van Tyne et al. use a intraspecific divergence metric (Fsr). Ochola et al.
also does not suffer from ascertainment bias, as they PCR resequenced a set of can-
didate genes, whereas Van Tyne et al. utilizes the biased metric called “SNP 7.” In
this chapter, I attempt to examine and correct for the effects of ascertainment bias

in Figure B.1A and calculate measures of significance for the data.
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Figure B.1: Left: 650 genes in P, falciparum plotted by diversity within Senegal (SNP )
vs. divergence between Senegal and Thailand (Fs). Genes on the lower right are sugges-
tive of balancing selection and show an enrichment for known antigens, surface proteins,
and highly polymorphic genes (red). Genes on the upper left are suggestive of directional
positive selection and show an enrichment for known enzymes and transporters (blue).
A handful of genes of biological interest are labeled. This figure was originally shown in
Van Tyne et al. [170, Fig. 1B] (also Figure 2.1B in this dissertation) with a slightly different
rendering. Right: Senegal Tajima’s D vs. Fgr. Although Tajima’s D should provide a better
indication of balancing vs. positive selection, this graph fails to separate known antigens
and enzymes as clearly as the one based on SNP 7.

B.2 RESULTS AND DISCUSSION
Even after correcting the values of SNP = in Figure B.1A for ascertainment bias, it
would be helpful to give a measure of significance to genes at the extreme ends of

the plot. The Tajima’s D statistic can be thought of as an attempt to normalize the

amount of polymorphism in a gene, IT, against the amount expected based on the
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number of segregating sites, 0. This addresses some other concerns, such as the
idea that a distibution of 77 might be affected by variations in mutation rate or gene
age. Tajima’s D should help discern candidates of balancing selection (D > 0) and
positive selection (D < 0) from neutrality (D = 0). Unfortunately, this metric
does aworse job of visually separating genes that, based on annotation, are thought
to be candidates for balancing and positive selection (Figure B.1B). An alternate
visualization of Tajima’s D plots Oy against Or (Figure B.2A), where Tajima’s D
is the normalized deviation from the unity line. Both figures also demonstrate an

overall skew in the positive direction, which is characteristic of ascertainment bias.

Corrections for ascertainment bias were made based on Ramirez-Soriano and
Nielsen [ 144 ] to values for éT and éW and Tajima’s D (Section B.3). The corrected
values are shown in Figure B.2B. These corrections succeed in centering Tajima’s D
around zero for most values of 6. Oddly, for low values of O, Tajima’s D is shifted
quite negative. Although it has been long known that the Plasmodium falciparum
population has experienced multiple bottlenecks and population expansions [78,
158] such effects should not be limited to genes with lower polymorphism, so the

effect seen here is puzzling.

Ascertainment corrections to 7 and Tajima’s D (Figure B.3) do not drastically
change the overall picture from Figure B.1. Corrected = is a slightly better dis-
criminator between balancing and positive selection candidate genes than SNP 7,
but the corrected Tajima’s D is still unable to distinguish the two. Ultimately, we
can see that while both IT (Figure B.2B) and 7 (Figure B.3A) can visually sep-
arate balancing and positive selection candidates, Tajima’s D (Figure B.3B) can-
not, even after corrections for ascertainment bias. This may imply that our pre-
viously defined categories (known highly variable genes/surface proteins vs. en-
zymes/transporters) may not be the best control groupings for this test. Even
among the highly polymorphic genes where one might expect an enrichment for
positive Tajima’s D, many of these genes lie in large gene families (e.g. the vars,
rifins, stevors, etc.), often in the subtelomeres, that result from many gene duplica-
tion events. Speculatively, this may mean that the “demographic history” of these
gene copies vary widely and might confound a Tajima’s D analysis of these families.

Even so, since the resulting distribution of Tajima’s D values shows rough concor-
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Figure B.2: A visualization of Tajima’s D by plotting Watterson’s éw against Tajima’s éT.
Left: original data. Right: corrected for ascertainment bias. Genes to the right of the unity
line have positive D and genes to the left are negative. Circle size corresponds to the ab-
solute value of Tajima’s D. As before, red genes correspond to candidates for balancing
selection and blue genes correspond to candidates for positive selection. The SNP 7 plot-
ted in Figure B.1A differs from the SNP IT shown here in that the former equals the latter
divided by gene length.

dance with a normal distribution (Figure B.4C), we would not be too astray in

interpreting these corrected values as Z-scores, using 1-2 as a significance thresh-

old.

In the end, this chapter succeeds in correcting a number of parameters for ascer-
tainment bias for P. falciparum genes in a population of Senegal-derived parasites.
It uses these to correct and further explore and expand on a previous visualization
of this data: a diversity-divergence plot that was used to identify candidates of bal-
ancing and positive selection. Although the corrected Tajima’s D metric fails to
separate a control set of genes thought to be under difterent types of selection, we
are able to show that it provides a measure of significance. This chapter also shows
a foundation of a naive coalescent model used to compute significance, which can
be expanded upon in the future to account for confounding factors that are not cur-
rently addressed, such as demographic history. This model could also be used to
simulate structured populations with limited gene flow. In addition to providing

maximum likelihood estimates for migration rates between Senegal and Thailand,
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it could also begin to explore the other axis of Figure B.1A not addressed in this

chapter and possibly provide measures of significance for extreme Fgr values.
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Figure B.3: Ascertainment corrections applied to the plots in Figure B.1.

B.3 METHODS

Ascertainment bias corrections are derived from Ramirez-Soriano and Nielsen
[144]. Although their downloadable Java program did not run on my data, all of
the necessary equations for the corrections of O = S /a and O = II, are given

in their main text (Equations 3, S, and 7) and are implemented here.

Ascertainment bias corrections for Tajima’s D was slightly more complicated,
as the arithmetic for the denominator, the variance component of Tajima’s D, was
rather unwieldy [144, Eqn. 16]. As this author feared the possible programming
errors in the absence of thorough testing, and because the denominatoris based on
assumptions of an underlying beta distribution, I opted instead to calculate V(I1—
S/a) from the results of 1000 coalescent simulations per gene. The numerator for
Tajima’s D is still based on ascertainment corrections from Ramirez-Soriano and
Nielsen [144], so any remaining errors in my corrected Tajima’s D values would

be in magnitude, but not direction.

Simulations were performed using ms [68] using a simple, unstructured model.

To simulate a distribution of locus lengths that matched a realistic distribution
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of gene lengths, I run ms once for each gene with parameters scaled to the gene
length. I estimated 0 /L, where Lis the length of the gene in bp, as the mean S/ (aL)
and mean 7 = IT/L values, which were both approximately 4 x 10~*. A sample
size of 17 individuals was used, to match the Senegalese sample size of our empir-
ical data. A recombination parameter, p/L = 0.0057, is taken from Chang [26].
However, unlike Chang, I do not attempt to model population growth. The final

ms command line looks like this:

ms 17 1000*ngenes -t 0.0004*glen -r 0.0057*glen glen \

| sample_stats > outputfile

where glen is the simulated gene length and ngenes is the number of genes that
have the length glen. The results of this simulation is shown in Figure B.4A. The
variance of IT — S/a is calculated as a function of S/a and is shown to vary lin-
early with S/a (Figure B.4B). A linear fit is performed and used to extrapolate all
of V(IT — S/a) as a function of S/ a.

of (Pi- Sfa)

Corrected Tajima's D, actual

10 10 5 10 1 3 2 ' 0 >
Pi Sla Tajima's D, expected (normal distribution)

Figure B.4: Left: Watterson’s éW against Tajima’s éT for 650,000 simulated genes with
the same gene length distribution as the empirical data. Center: simulated data shows a
linear relationship between V(IT — S/a) and S/a. A best fit line is shown in blue. This
line is used to compute a simulated denominator of corrected Tajima’s D for all genes.
Right: quantile-quantile plot shows that the corrected Tajima’s D values roughly conform
to a normal distribution.

The square-root of this simulated variance is used as the denominator for the
corrected Tajima’s D, and the Ramirez-Soriano and Nielsen corrected values of
éT,C — éW,C are used as the numerator. The quantile-quantile plot in Figure B.4C

shows the goodness of fit between the final, corrected Tajima’s D values, and the
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normal distribution (4 = 0,0 = 1, which we use here as an approximator for
Tajima’s beta distribution) that might be expected under neutral, panmictic, con-

stant population size conditions.

Figures were rendered using the ggplot2 package in R. Analysis was done in
python, Java, and R (utilizing the plyr package).
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Supplemental Material for Chapter 2

C.1 AUTHOR CONTRIBUTIONS TO SUPPLEMENTAL MATERIAL

Most analyses and figures in this supplemental appendix were produced by me. In
the Supplemental Methods, I performed all SNP Discovery, Array Development
and Assessment, and the Genome-wide Association Study (GWAS). Copy Num-
ber Variation (CNV) Analysis of array data was performed by DEN. PCR Geno-
typing was peformed by numerous techs at HSPH.

Figure C.1 was produced by SES and PCS. Figure C.2 and Table C.2 were pro-
duced by SFS. Figures C.4 and C.11 were produced by DEN. Figures C.5 and C.6
and Table C.3 were produced by EA. Figure C.12 and Tables C.6 and C.4 were pro-
duced by DVT. Figure C.3 and Tables C.1, C.5, and C.7 were compiled by SKV.

Both Supplemental Data Files were produced by me. I produced Figures C.7,
C.8,C.9, C.10and C.13. L also produced all Figures and Tables Supporting Supple-
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mental Methods: Figures C.14, C.15, C.16, C.17, C.18, C.19, and C.20 and Table
CS8.

C.2 SUPPLEMENTAL METHODS

C.2.1 PARASITES

Parasites (Table C.1) were obtained from the Malaria Research and Reagent
Resource Repository (MR4, http://malaria.mr4.org/) or additional sources
noted (Table C.1, Acknowledgements). The following parasite lines were ob-
tained through MR4: parasite line 3D7 (MRA-151, deposited by D. Walliker);
parasite line 7G8 (MRA-152, deposited by D. Walliker); parasite line HB3 (MRA-
155, deposited by T.E. Wellems); parasite line Dd2 (MRA-156, deposited by T.E.
Wellems); parasite line K1 (MRA-159, deposited by D.E. Kyle); parasite line
V1/S (MRA-176, deposited by D.E. Kyle); parasite line RO-33 (MRA-200,
deposited by D. Walliker, U. Certa and R. Reber-Liske); parasite line D10 (MRA-
201, deposited by Y. Wu); parasite line TM90C2A (MRA-202, deposited by D.E.
Kyle); parasite line TM90C6A (MRA-205, deposited by D.E. Kyle); parasite line
TM91C235 (MRA-206, deposited by D.E. Kyle); parasite line WR87 (MRA-284,
deposited by D.E. Kyle); parasite line D6 (MRA-28S, deposited by D.E. Kyle);
parasite line Malayan Camp (MRA-330, deposited by L.H. Miller and D. Baruch);
parasite line Indochina I (MRA-347, deposited by W.E. Collins); parasite line
Santa Lucia (MRA-362, deposited by W.E. Collins); parasite line FCC-2 (MRA-
733, deposited by W. Trager); and parasite line T2-C6 (MRA-818, deposited
by X. Su). Patient samples were obtained as part of ongoing studies in Senegal
and Malawi described elsewhere in accordance with human subject guidelines.
Additional parasites were the kind gift of: Alejandro Miguel Katzin (51, 10_54,
36 _89, and 9_411); Christian Happi (APO41); Abdoulaye Djimde and Chris
Plowe (PS189); Joseph Smith (A4); Karen Day (MuzS1.1); Dennis Kyle and
Sodsri Thaithong (TD203, TD257, TM327, TM34S, GH2, and PR145); Sandra
do Lago Moraes (JST); and Xin-zhuan Su (MR24). DNA from P. reichenowi was
kindly provided by John Barnwell.
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C.2.2 PCR GENOTYPING

Genomic regions (458850-459204) surrounding the pfcrt (MAL7P1.27) lo-
cus was amplified using the polymerase chain reaction using oligonucleotide
primer sequences (CCITGTCGACCITAACAGATG, CTAITCCACCTAC-
CAATATAAAAC) and the resulting DNA sample was sequenced using stan-
dard methods. In a similar manner the genomic region (754984-755584)
surrounding the dhfr locus (PFD0830w) (oligonucleotide primer sequences:
CAAGATTGATACATAAAGATAATAT, TICITGATAAACAACGGAAC-
CTCCT); and the pfmdrl locus (PFE1150w) (oligonucleotide primer se-
quences: TGITGAAAGATGGGTAAAGAGCAGAAAGAG, TACII'TCT-
TATTACATATGACACCACAAACA) were utilized [49].

C.2.3 SNP DISCOVERY

The SNP discovery methodology was similar to those described in Volkman et al.
[174]. 1x ABI shotgun sequence was obtained for nine geographically diverse
parasite isolates that were previously sequenced to 0.25X coverage, bringing to-
tal coverage to 1.25X per isolate. These nine isolates include: 7G8, Santa Lucia
(El Salvador), V1/S, D10, FCC-2/Hainan, D6, RO-33, Senegal V34.04 and K1.
Three of the twelve previously sequenced isolates in Volkman et al. were excluded
from additional sequencing, as they were previously found to be nearly genetically
identical, suggesting possible contamination in culture [ 174]. Reads ends with low
quality (PHRED < 10) bases were trimmed. Reads less than 100 bases, contain-
ing greater than 3% internal N’s, or containing a mononucleotide repeat covering
greater than 80% of the read were discarded. Reads were aligned to the PlasmoDB
version S of the 3D7 genome using BLAT37 [81] requiring 95% identity, a min-
imum score of 100, less than 20% gaps, and coverage of at least half of the read.
Only the highest scoring alignment for each read was kept and paired reads which
aligned more than 10kb apart or in the wrong orientation were discarded. The
Neighborhood Quality Standard (NQS) algorithm was used to distinguish real
polymorphisms from sequence errors [4]. We required the SNP to have a mini-

mum quality score of 25, and the five base neighborhood to have a minimum score
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of 20. We allowed one mismatch and no indels in the neighborhood. We discarded
SNPs when another read from the same sample met the NQS criteria at that posi-

tion but did not have a sequence difference.

C.24 ARRAY DEVELOPMENT AND ASSESSMENT

Based on all 111,536 discovered SNPs [74, 106, 174] in P. falciparum, and given
design parameters and unique sequence constraints, we were able to design as-
says for 74,656 markers. Each of 74,656 SNPs is represented by a probe set of 12
to 84 probes, for a total of 4.4 million genotyping probes on the Affymetrix 49-
format array. These were hybridized to 63 unique samples (totaling 81 arrays with
replicates). Genotype calls were produced using the BRLMM-P algorithm [1], a
variant of the RLMM algorithm [143], included in Affymetrix Power Tools ver-
sion 1.8.5, and clustered over all 81 arrays. BRLMM-P was forced into a haploid
calling mode by setting assigning all SNPs to the “Y chromosome” and setting all

« »
arrays to “male”.

The array with sample TM93C1088 is eliminated immediately after clustering
(arbitrarily, since the chip claiming to be TM90CG6A and the chip claiming to
be TM93C1088 are identical). We also remove samples CF04.010 and Senegal
Th10.04, which were suspected to be multi-clonal based upon molecular barcode
analysis [39]. A halofuginone-resistant version of Dd2, a human-DNA sample,
and the P. reichenowi ancestral samples are also removed at this stage, leaving 57
unique samples (totaling 75 arrays with replicates) for analysis. We then calcu-
late a call rate for each SNP and remove 7,778 SNPs that have below an 80% call
rate, leaving 66,878 SNPs. Since technical replicates showed 99.9% repeatability
between chips, we merged replicate data for each of the 57 samples, producing a

no-call when the replicates indicated discordant genotypes.

Concordance against sequencing data was calculated in both major and mi-
nor alleles for 17 sequenced reference strains [113]. The following 17 samples
were compared against sequencing data for concordance: 3D7, Dd2, FCC-2,
Malayan Camp, D10, K1, V1/S,R0O33, D6, Senegal P31.01, Senegal P51.02, Sene-
gal V34.04, Senegal V35.04, 7G8, A4 (subclone of IT04 [147]), Santa Lucia,
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and HB3. These are the 18 parasites presented in Fig 1 of Volkman et al. [174],
removing the three found to be genetically identical, and adding the two strains
3D7 and A4. A total of 18,303 SNPs lacked call overlap between array geno-
types and sequencing genotypes in minor alleles and were thus removed, since
concordance in both alleles could not be fully calculated. Another 30,993 SNPs
were removed due to imperfect concordance, and of these discordant SNPs, most
(28,789) exhibited monomorphic behavior on the array, suggesting that much of
the discordance may be attributed to either a faulty assay or false discovery. The
remaining 17,582 perfectly concordant SNPs constituted the high confidence set

of assays used in our analyses.

C.2.5 Copry NUMBER VARIATION (CNV) ANALYSIS

We examined the ability to detect copy number variants (CNV) using the array
by first studying a known CNV using the hybridization intensity signal of the SNP
genotyping probes on the array. Kidgell et al. [83] reported that the pfmdr1 locus
was present in 3-4 copies in the Dd2 strain relative to a collection of other strains.
We compared Z-scores of the normalized hybridization intensity of perfect match
probes for SNPs in the neighborhood of pfmdrl for Dd2 and six parasites esti-
mated by Kidgell et al. to contain only 1 copy of the locus (3D7, 7G8, HB3, D10,
D6, K1). For each SNP assay we utilized the average hybridization intensity of all
perfect-match probes. Hybridization intensity values were background corrected
and normalized to reduce inter-array variation artifacts. SNPs with a hybridization
intensity standard deviation equal to or greater than half the magnitude of the av-
erage hybridization intensity across all arrays were excluded from analysis. Figure
C.11 illustrates that probes for many of the SNPs assayed within the pfmdr1 locus
exhibit notably higher hybridization intensity values in Dd2 relative to the other
parasites, with 13 assays exhibiting average intensities greater than 2 standard de-

viations higher than observed in the other parasites.
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C.2.6 GENOME-WIDE ASSOCIATION STUDY (GWAS)

We performed GWAS for drug resistance to thirteen antimalarials: amodiaquine
(ADQ), artemether (ARTM), artesunate (ARTN), artemisinin (ARTS), ato-
vaquone (ATV), chloroquine (CQ), dihydroartemisinin (DHA), halofuginone
(HFG), halofantrine (HFN), lumefantrine (LUM), mefloquine (MFQ), pipera-
quine (PIP) and quinine (QN). S0 out of 59 samples had drug phenotype data.
ICsp data are shown in Table C.4 and Figure C.13 for these 50 parasites against the
13 drugs.

The following drugs were obtained from Sigma Aldrich: artemisinin, dihydro-
artemisinin, chloroquine, mefloquine, and quinine. The following were obtained
from AK Scientific: artemether, artesunate, halofantrine, lumefantrine, and pi-
peraquine. The following were obtained from USP: amodiaquine and atovaquone.
Each drug was tested in triplicate for each parasite. Additionally, some parasites
were tested with multiple biological replicates: 3D7 (nine biological replicates per
drug, each in triplicate), Dd2 (three replicates) and RO-33, D10, and 207-89 (two

replicates).

SNPs were filtered down to a set that contained at least S strains with a mi-
nor allele as well as an 80% call rate under every phenotype condition. The final
data set includes 7,437 SNPs. This gives us a genome-wide significance threshold
of log,,(P-value) > 5.17 by Bonferroni correction for multiple testing. For bi-
nary phenotype tests (Fisher’s exact test, Fisher’s permuted, CMH, and HLR), we
used ICs cutoffs shown in Table C.4. For tests requiring defined geographic clus-
ters (CMH, HLR, Fisher’s permuted), the three population clusters are defined by
PCA, as in the LRH analysis, and the assignments are shown in Table C.1.

Pointwise P-values were computed using PLINK [142]. Quantile-quantile
plots (qq-plots) were used to examine the resulting P-value distributions for
inflating effects due to population structure (Figure C.7). Because most of the
genome is assumed to fit the null hypothesis (most of the genome should not be
in association with the phenotype), significant, early deviations from this expec-
tation may result in a high false positive rate. The null expectation is plotted as the

unity diagonal line in Figure C.7. Bonferroni significance is plotted as the dashed
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line and Benjamini-Hochberg significance is marked with the dotted line. Since
most Fisher’s results show evidence of inflation, we do not report these results in

Figure 2.2 or Table 2.1.

Permutations of Fisher’s exact test can be used to compute empirical pointwise
P-values based on a simulated null distribution. We used PLINK to perform this
permutation while respecting the phenotype frequencies present in our three pre-
defined population clusters. The resulting P-value distributions (Figure C.7) do
not show inflation due to population structure, however no significant hits were

found for any drug.

Similarly, the Cochran-Mantel-Haenszel (CMH) test can perform population-
stratified analyses for association. We used PLINK to compute P-values (Figure
C.7), and again, we see appropriate corrections for population structure, but no

hits reach genome-wide (Bonferroni) significance.

The Efficient Mixed-Model Association (EMMA) test was specifically designed
to handle quantitative trait associations to a data set with complex population
structure using a linear mixed model [79]. It calculates a genotype similarity ma-
trixinstead of discrete categories and does not require a priori specification of pop-
ulation structure. The resulting P-value distributions demonstrate little remaining
effect from population structure (Figure C.8) while retaining power to find a num-

ber of associations at genome-wide significance (Figure C.8, 2.2A, Table 2.1).

The Haplotype Likelihood Ratio (HLR) test is a multi-marker association test
[90]. Unlike a standard, y*-based multi-marker test which looks for differences in
haplotype frequencies in cases vs. controls, the HLR test specifically models the
likelihood that a single haplotype rose to dominance in cases while all other haplo-
types proportionally decreased. It produces a LOD score, which is the maximum
likelihood estimate for the haplotype frequencies observed in cases (O; . .. Oy),

given the distribution in controls (f; . . . fi):

P(O;...Oklae;+ (1 —a)(fi-..fi))

LODyy =1
ML = 108, P(Oy...0fs---fr)

where jis the haplotype on which the mutation arose, 1 —a is the recombination
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rate, and ¢; = 1 wheni = jand ¢; = 0 when i # j. The test produces maximum

likelihood estimates for j and a.

So while a y*-based association finds any significant differences in haplotype
frequencies, the HLR test models a specific scenario that is common in rapid selec-
tive events. The HLR test does not provide significantly more power than a single
marker test in regions of high LD—in extreme cases, these regions may only have
two haplotypes, and a multi-marker test will have the same power as a bi-allelic
SNP test. But in regions where LD is low in controls and a single, long haplotype
is prevalent in cases, the HLR test is highly sensitive. The HLR test is a one-sided
test and we ran separate tests for both drug resistance (called “risk”) and drug sen-
sitivity (“protect”). Results for drug sensitivity are available in Figure C.10, but
are not reported generally as we are more interested in selective events for drug

resistance.

We used PLINK to produce sliding window haplotypes across the genome and
calculate haplotype frequencies for input to the HLR test. We produced input
for all two, four and six-marker windows. The resulting LOD scores did not map
well to known distributions, such as the y* 1-degree of freedom distribution. We
instead converted the pointwise LOD scores to empirical pointwise P-values by
performing approximately 370,000 permutations of the null model for each test
condition. This allows us to calculate empirical P-values up to a significance of
about log,(P-value) = 5.6. Similar to the permuted Fisher’s test, we preserved
population-specific phenotype frequencies by only allowing permutations within
each of our three defined populations. Resulting P-value distributions fit expecta-
tions well for the vast majority of test conditions (Figures C.9, C.10) and the test
demonstrates power to detect a number of loci at genome-wide significance (Fig-
ure 2.2A, Table 2.1).
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C.3 SuPPLEMENTAL DATA FILES

1. Drug data, PF10_03S5S copy number data, and top GWAS and LRH hits.
Permanent URL (XLS, 60kB):
doi://10.1371/journal.pgen.1001383.s001

2. Genotype data. Tab separated text file containing genotype data for 57 iso-
lates across 17,582 SNPs. Additional information such as translation conse-
quences (based on PlasmoDB v5.0 annotations) are also provided. Perma-
nent URL (TXT, 3.3MB):
doi://10.1371/journal.pgen.1001383.s002

98


doi://10.1371/journal.pgen.1001383.s001
doi://10.1371/journal.pgen.1001383.s002
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Figure C.1: Principal components analysis of population structure within (A) Africa, (B)
the Americas, and (C) Asia. Plots of the first two principal components using Eigenstrat
[130] using the Affymetrix array. Each solid circle represents an individual, and the color is
assigned according to the reported origin.
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Figure C.2: Linkage disequilibrium (LD), measured by rz, for each of the three population
samples (Senegal, Thailand, Brazil). Plotted are 12 for linked markers (red lines) and for
unlinked markers (blue lines), as well as the level of background LD expected because of
small sample size (green lines).
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Figure C.3: Genes were classified by gene ontology (GO) functional categories and strati-
fied by level of nucleotide diversity (1) as estimated by Z-scores. Select categories (highest
five and lowest five categories along with categories in between that differ by incremental
Z-scores) are shown. The majority of genes in GO categories for molecules found at the
cell membrane have high levels of nucleotide diversity, while most of the genes classified
into GO categories for conserved molecules lack nucleotide diversity.

101



I

0.15-
I I SNP class
0410~ . Intergenic
o Intronic
=4
[%2] Synonymous
. Nonsynonymous
0.05-

0.00-

I I I
Senegal Thailand Brazil

0.5-
04- 1
0.3- I SNP class
I Intergenic
ur_'7> I I . Intronic
Synonymous
0.2-
. Nonsynonymous
0.1-
0.0-
I I I
Sen vs. Thai Thai vs. Brazil Sen vs. Brazil

Figure C.4: SNP diversity and divergence by translation consequence. Diversity at as-
sayed SNPs (SNP 7) and Divergence between different populations as assayed by Fgr,
for different classes of SNPs: intergenic (4,263 SNPs), intronic (584 SNPs), synonymous
(8,957 SNPs), and nonsynonymous (8,778 SNPs). Intronic SNPs have the widest error bars
due to their relative sparseness on the array. Non-synonymous SNPs are generally among
the least diverse and most differentiated class of SNPs.
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Figure C.5: Relative extended haplotype homozygosity (REHH) scores. Relative extended
haplotype homozygosity (REHH) scores prior to any normalization, plotted for each core
allele, (A) indexed by chromosome and position, and colored by chromosome, and (B) as
a function of core allele frequency.
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Figure C.6: Long-range haplotype (LRH) analysis yields genome-wide significant candi-
dates for recent positive selection. For each core allele, we calculated relative extended
haplotype homozygosity (REHH), and from the set of all REHH scores we calculated a cor-
responding distribution of Q-values. We plotted — log,,(Q), for all Q-values < 1, for
each core allele, indexed by chromosome and position, and colored by chromosome. The
red dotted line corresponds to the typical Q-value significance threshold of 0.05. Gene an-
notations from http://plasmodb.org for some significant scores are labeled. For com-
parison, the well-known sweeps around drug resistance loci pfcrt and dhfr are labeled. This
data is also shown in tabular form in Table C.3.
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Figure C.7: GWAS P-value distributions for Fisher’s exact test, permuted Fisher’s exact
test, and Cochran-Mantel-Haenszel (CMH) tests. Quantile-quantile plots (qg-plots) show
log P-values for every SNP on the y axis against the null expectation on the x axis. Fisher’s
exact test results generally show P-value inflation due to confounding effects from popu-
lation structure for many drugs (“Fish”). As such, no results from this test are reported. To
account for population structure, permutations of the null distribution were performed while
preserving phenotypic associations to three predefined population clusters (“Fishp”). CMH
also performs a stratified association test given predefined population clusters (“CMH”).
The permuted Fisher’s test and CMH test results show appropriate correction for popula-
tion structure, but show no hits at genome-wide significance to report.
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Figure C.8: GWAS results for the Efficient Mixed-Model Association (EMMA) test. QQ-plots
show little to no confounding effect from population structure, with the possible exception
of artesunate (ARTN). The significant ARTN result is not reported in Table 2.1 or Figure 2.2 for
this reason. Manhattan plots depict the genomic location of significant hits, also reported

in Table 2.1 and Figure 2.2.
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Figure C.9: GWAS P-value distributions for the Haplotype Likelihood Ratio (HLR) tests for
association to drug resistance. Population-sensitive permutations of the null model were
used to calculate P-values from LOD scores. Final distributions of P-values show little to
no confounding effect from population structure for most tests. Exceptions include the 6-
SNP artemether (HLR_risk_6_ARTM) test and the 4-SNP amodiaquine (HLR_risk_4_ADQ)
test—these results are not reported in Table 2.1 or Figure 2.2. Manhattan plots for other
tests that reached genome-wide significance are in Figure 2.2A.
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Figure C.10: GWAS P-value distributions for Haplotype Likelihood Ratio (HLR) tests for
association to drug sensitivity. Population-sensitive permutations of the null model were
used to calculate P-values from LOD scores. Final distributions of P-values show little to
no confounding effect from population structure. Genome-wide significant hits include pi-
peraquine (HLR_protect_4_PIP) on a haplotype that spans PF07_0126, PFO7_0127 and
MAL7P1_167 and amodiaquine (HLR_protect_4_ADQ) on a haplotype in PFL1800w. A
chloroquine hit on pfcrt just misses genome-wide significance. These results are not re-
ported in Table 2.1.
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Figure C.11: Intensity Z-score for the Affymetrix array across chromosome 5. The results
illustrate that probes for many of the SNPs assayed within the pfmdr1 (888-988k) locus
exhibit notably higher hybridization intensity values in Dd2 relative to the other parasites,
with 13 assays exhibiting average intensities greater than 2 standard deviations higher than
observed in other strains. This is consistent with the copy number variation reported in
the pfmdr1 locus, with 3-4 copies present in the Dd2 strain relative to a collection of other

strains.
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Figure C.12: PF10_0355 copy number variation measured by Southern blotting. Select
parasite isolates were digested with Afllll, EcCoRV and Xbal and fragments were detected
using probes to portions of the PF10_0355 and dhps genes. Primers used for making
probes were: dhps F: 5’-GTG ATT GTG TGG ATC AGAAGATGA ATAATC-3’; R: 5’-GGATTA
GGT ATA ACA AAA GGA CCAGAG G-3’; PF10_0355 F: 5’-GGG GAAAGC ATATAATAATAC
TAT AGA TGC-3’; R: 5°-CTT GGA GGA ACA AGA ACC CCC TTA TTA TCA-3’; Radioactivity
was measured using a phosphorimager plate and quantified using Quantity One software
(version 4.6.5). Halofantrine (HFN) response is listed as sensitive (S) or resistant (R) for each
strain.
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Figure C.13: Drug resistance phenotype classification for sweep and GWAS analyses.
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ICsq data were collected for thirteen antimalarial drugs against all genotyped parasite lines.
Quantitative ICsgs were converted into binary “sensitive” and “resistant” phenotypes at the
cutoffs shown (see also Table C.4). These binary phenotypes were only used for the Hap-

lotype Likelihood Ratio (HLR) test.

Drug abbreviations: amodiaquine (ADQ), artemether

(ARTM), artesunate (ARTN), artemisinin (ARTS), atovaquone (ATV), chloroquine (CQ), di-
hydroartemisinin (DHA), halofugi- none (HFG), halofantrine (HFN), lumefantrine (LUM), mef-
loquine (MFQ), piperaquine (PIP) and quinine (QN).
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Table C.1: 63 parasites used in the study with the name (parasite), geographic origin (region,
country), source, and molecular barcode [39], as well as which samples were included in
SNP discovery (SEQ), population characterization (POP), long-range haplotype (LRH), and
GWAS analyses. For GWAS, * indicates that the sample was used, but not included in any
population cluster for stratified or permuted analyses. The human control sample and the
ancestral P reichenowi sample were not used in any analyses reported here.

Sample Information Used in Analysis
Parasite Region | Country Source Barcode SEQ | POP_| LRH | GWAS
51 America__| Brazil Alejandro Miguel Katzin CATTGCAGACTXCACCTTAGATTG X X
608 America | Brazil Alejandro Miguel Katzin TACCCGGGATTACAAACTAGACTT X X
America | Brazil Alejandro Miguel Katzin CACTGCAGACTXTACACTAACCTG X b3
America | Brazil Alejandro Miguel Katzin TACTGCAGATCGCCCCTACGCCTG X b3
365_89 America | Brazil Alejandro Miguel Katzin TGCTCCGGATTACAAACAAGACTT X
3D7 Europe Netherlands MRA-151 TACTCCGGTCCGCACCCACGATGG X X "
7G8 America | Brazil MRA-152 TACCCCAGACTXTCAATTAACCTG | X X b3
9_411 America Brazil Alejandro Miguel Katzin CACTCCAGACTGCAACTACGACTG X X
A4 America Brazil J. Smith TATTCCGGTTCATACCCXAGATTG X X
APO41 Africa Nigeria Christian Happi CATTGGGGTCTACACCCAAGACTG X X
CF04.008_12G | Africa Malawi Dan Milner TACCCGGGACCGCCCACAAGATTG b3 X
CF04.008_1F Africa Malawi Dan Milner TATTCGGAACCGCACCCTAAATTG X X X
CF04.009 Africa Malawi Dan Milner TATTCCGAACCGTACCCTCGATTG X X X
D10 Asia PNG MRA-201 CACTCCAGATTGCAACTTAGCTTG | X X X X
D6 Africa Sierra Leone MRA-285 TACTGGAAACTGCAACCAAACTTG | X X X X
Dd2 Asia Indochina/Laos | MRA-156 CATCGCAATTCGCCCCTTAGACTG X X X
FCc2 Asia China MRA-733 TACCCCAAATCGCACATTAACCTG | X b3 b3 x
GH2 Asia Thailand S. Thaitong/D. Kyle CACTGCGGTTTATCAATTAGCCTG X X X
HB3 America Honduras MRA-155 TACTCCAGACTACACACTCACTTG X *
IGHCR14 Asia India Aditya Dash/Chetan Chitnis | TACCCCAGACCXCACACTAGACGG X *
Indochina_| Asia Indochina/Laos | MRA-347 TACTCGAGTCTACAACCACGATTG b3 b3 b3
JST America Brazil Sandra do Lago Moraes CACCGCGGTTTATAAACRAGATTG X x
K1 Asia Thailand MRA-159 TATTCGGATTTGTCCCTACGCCTG | X b3 b3 b3
M24 Africa Kenya X. Su CATTGCGGTTTACCCATAAGCCTG b3 b3 x
Malayan Camp | Asia Malaysia MRA-330 TATTCCGGATTGTCACTTAGACTG b3 b3 *
Muz51.1 Asia PNG Karen Day TACTCCAGATTATCACCTAGCCTG X X X
PR145 Asia Thailand S. Thaitong/D. Kyle CACTCCAGATCACAACCAAAACTG X X X
PS189 Africa Mali C. Plowe/Djimde CACTCCGGATTACAAACAAGCTTT X b3
RAJ116 Asia India Aditya Dash/Chetan Chitnis | CACTCCGAACTGCAACCACAACGG X "
RO33 Africa Ghana MRA-200 CACCCGGGATCGCAAACTARACTT | X X X
Santa Lucia America El Salvador MRA-362 CACCCGGGATTACAAACAAACCTT | X X
SenP05.02 i Senegal . Mboup CACCCGGGATTACAAACAAGCTTT X X X
|_SenP08.04 Senegal . Mboup TACCCCGGATCGCAAACAAACTTT X X X
[ SenP09.04 Senegal . Mboup CACTCGGGTTTATACATXCAACGT X X X
SenP11.02 Senegal . Mboup CGCTCGAGATTACAAACTAGACTT X X X
|_SenP19.04 Senegal . Mboup TGTTCCGGTCTACAAATTAACCGT b3 b3 b3
SenP26.04 Senegal S. Mboup TATCCGAATTTATCAATACAACGT X X X
enP27.02 enegal . Mboup TACTCCGGTTTATACACTCAACGT x x x
enP31.01 enegal . Mboup TACTGCGGTCCGCAAACAAGATTG X X X
enP51.02 enegal . Mboup TATCCGGGACTGCAACTTCGACGG X X X
enP60.02 enegal . Mboup TACTCGAAACCGCAAACTAACCTT X X X
enT15.04 enegal . Mboup TGCTCCAAATCGTACCCAAGCTGT X X X
SenT26.04 Senegal . Mboup CGCTCGGATTTATCCCTACGCCGT X X X
SenT28.04 Senegal . Mboup CAcccC CAAACTGT X X X
4 Senegal . Mboup TXCTCCAGATTATACCTAAACCTG | X X X X
SenV35.04 Senegal . Mboup CGCTCGAGTCCGTCCACACACTGT X X X
SenV42.05 Senegal . Mboup TGTTCCGATCTATCCACAAGACXT b3 X X
T2_C6 Thailand MRA-818 TACTCCGGATTATACACTAAACGT b3 X
TD203 Thailand . Thaithong/D. Kyle CGCCCCAGATCATAAATTAAACGT X X X
TD257 Thailand . Thaithong/D. Kyle TACTCGGGATCGTAACCACACTGT X X X
TM327 Thailand . Thaithong/D. Kyle TGTCCGAATCTATAAACACAACGT X X X
TM345 Thailand . Thaithong/D. Kyle CACCCCAGTCTATCACTACACCGT X X
TM90C2A Thailand MRA-202 TATTCCGATTTATCAACTCACCGT x x X
TM90C6A Thailand MRA-205 CACCCCAGTCTATCACTACACCGT b3 b3
TM91C235 Thailand MRA-206 CGCTCCGGACTGCACCCAAGATTG b3 b3 x
V1/S Vietnam MRA-176 TGCCCCAGATCACAACTAAGATTT | X X X X
WR87 Vietnam MRA-284 TACTGGAAATCACAACTAAGACTT X X X
CF04.010 Malawi Dan Milner mixed
Dd2_HFG_280 | Asia Indochina/Laos
Human Control
Preichenowi John Barnwell
SenT10.04 Africa Senegal S. Mboup NACTNGGGACTATAACCAAACCTG
TM93C1088 Asia Thailand MRA-207 CACCCCAGTCTATCACTACACCGT
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Table C.2: Analysis of the ability of SNPs on the array to act as a proxy for another. This
ability is measured using the standard correlation metric 2. In our data set, 28% of SNPs
in the Brazilian sample (which has the most LD) had a nearby SNP on the array in strong
LD (** > 0.5) with it, while in the Senegal sample the proportion was only 16%. Most of
the time, therefore, we will only be able to detect association with markers that have been
directly typed. The exception is strong selective sweeps, which affect many markers within

a region.

Fraction of SNPs | > 0.3 r*>0.5 r*>0.8

Senegal 26% 16% 10%
Thailand 34% 24% 18%
Brazil 33% 28% 24%
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Table C.3: Long Range Haplotype (LRH) hits. All REHH hits with Q-value < 0.25.

pos  core haplen
608790 G 14428
617743 T 16930
623146 C 22333
466483 A 35321
466610 A 35448
756220 T 15162
756243 C 15139
764100 G 50270
1042120 A 18768
1042527 A 18361
1056621 T 14545
1159412 C 12844
1159501 T 12755
1333609 G 5132
1333639 G 5102
1333690 T 5051
1333703 A 5038
1333716 G 5025
1333729 T 5012
1333741 G 5000
1333790 A 4951
741192 A 55183
741203 C 55082
741366 A 55009
1025852 A 17872
1065237 G 33215
1098314 C 26112
1114565 C 25158
1114929 G 23554
1115373 A 23098
1115454 C 23038
1116047 G 24531
1116171 G 24655
1116315 C 24799
1117520 G 26004
1124426 C 32010
1283916 G 13004
428373 C 39799
449953 C 31672
459787 T 21838
460216 G 21409
461218 T 20407
465826 G 39654
465826 G 16307
467846 G 41674
467846 G 14287
475935 T 46758
475935 T 26989
475948 A 46771
475948 A 26976
476288 G 47111
476305 C 47128
476305 C 26619

qvalue gene description chr  pos  core haplen qualue gene description
0.2071 PFBO675w _ hypothetical 7 476305 C 47128 0.0443 PF07_0037 _ Cg2 protein
0.2133 PFBOB8SC  acyl-CoA synthetase, PACS9 7 476305 C 26619 0.0443 PFO7_0037  Cg2 protein
0.0323 PFBO687c  RING zinc finger protein 7 482133 T 10978 00133 PF07_0038  Cg7 protein
0.0568 PFCO460w  hypothetical 7 482133 T 20791  0.0085 PFO7_0038  Cg7 protein
0.0133 PFC0460w hypothetical 7 485744 G 14589 0.0133 MAL7P1_28  ribonucleases p/mrp protein subunit
0.1236 PFDO830wW  dhfr 7 485744 G 17180  0.0085 MAL7P1_28  ribonucleases p/mrp protein subunit
0.2133 PFDO830wW  dhfr 7 488164 A 15424 0.0777 MAL7P1_28  ribonucleases p/mrp protein subunit
0.1528 PFD0840W  hypothetical 7 488164 A 14760  0.0535 MAL7P1_28  ribonucleases p/mrp protein subunit
0.0075 PFE1250w  acetyl-CoA synthetase, PtACS10 7 490748 C 18008  0.0323 PF07_0040  lysophospholipase-like protein
0.0085 PFE1250w  acetyl-CoA synthetase, PIACS10 7 490748 C 14664  0.0244 PF07_0040  lysophospholipase-like protein
0.0591 7 490877 T 18137  0.0323 PF07_0040  lysophospholipase-like protein
0.0085 PFE1400c  beta adaptin protein 7 490877 T 14535  0.0133 PF07_0040  lysophospholipase-like protein
0.0085 PFE1400c  beta adaptin protein 7 494285 A 21431 0.0551 MAL7P1_29 hypothetical
0.2341 PFE1640w  PfEMP1, truncated 7 505396 G 17088 02133 MAL7P1_30 hypothetical
0.2341 PFE1640w  PIEMP1, truncated 7 505412 G 17104 02133 MAL7P1_30 hypothetical
0.0664 PFE1640w PfEMP1, truncated 7 936167 A 15183 0.043 MAL7P1_105 hypothetical
0.2341 PFE1640w PfEMP1, truncated 7 940007 G 11940 0.2133 PF07_0085 ferrodoxin reductase-like protein
0.2341 PFE1640w  PIEMP1, truncated 7 940111 T 12044 02133 PFO7_0085 ferrodoxin reductase-like protein
0.2341 PFE1640w  PIEMP1, truncated 7 940147 A 12080 02133 PFO7_0085 ferrodoxin reductase-like protein
0.2341 PFE1640w  PfEMP1, truncated 8 336524 T 6205  0.193 MALBP1_135 hypothetical membrane protein
0.2341 PFE1640w  PIEMP1, truncated 8 452794 A 778 0.1492 PF0B_0105  rifin
0.2335 8 862485 A 33846 0.1239 PFO8_0054  heat shock 70 kDa protein
0.2133 PFF0855¢ rifin 8 866334 C 29997 0.0443 MAL8P1_64  hypothetical
0.2133 PFFO855c  rifin 8 1104023 T 8994  0.0591
0.2133 PFF1220w  hypothetical 8 1114567 A 8029  0.0873 MAL8P1_23  ubiquitin-protein ligase 1
0.1492 PFF1280w  hypothetical 8 1117372 G 10834  0.0905 MALSP1_23  ubiquitin-protein ligase 1
0.0905 PFF1325c  c3hd-type ring finger protein 8 1118090 T 11552 0.0622 MAL8P1_23  ubiquitin-protein ligase 1
0.0905 PFF1350c  acetyl-coenzyme a synthetase 8 1118190 T 11652 0.0091 MAL8P1_23  ubiquitin-protein ligase 1
0.0323 PFF1350c  acetyl-coenzyme a synthetase 9 272201 C 12632 0.1259 PFI0265c  RhopH3
0.0323 PFF1350c  acetyl-coenzyme a synthetase 9 282410 G 11553 0.0932 PFI0275w  hypothetical
0.043 PFF1350c  acetyl-coenzyme a synthetase 9 284833 T 12260  0.1492 PFI0280c  autophagocytosis associated protein
0.0244 PFF1350c  acetyl-coenzyme a synthetase 9 284842 T 12269  0.1492 PFI0280c  autophagocytosis associated protein
0.043 PFF1350c  acetyl-coenzyme a synthetase 9 284910 G 12337 01492 PFI0280c  autophagocytosis associated protein
0.043 PFF1350c  acetyl-coenzyme a synthetase 10 324964 G 45666  0.2335 PF10_0078  histone deacetylase, putative
0.043 PFF1350c  acetyl-coenzyme a synthetase 12 50106 T 288  0.0873 PFLO030c  PfEMP1
0.0535 PFF1365c  HECT-domain (ubiquitin-transferase)|| 12 947550 A 63271  0.2335 PFL1130c hypothetical
0.1978 12 954384 C 56437  0.225 PFL1130c  hypothetical
0.1269 PF07_0027  DNA-directed RNA polymerase 2 12 990296 T 43303 0.0103 PFL1170w  polyadenylate-binding protein
0.0443 12 1002740 T 55747  0.0568
0.0276 MAL7P1_27  pfert 12 1002741 A 55748 0.0568
0.0443 MAL7P1_27  pfert 14 279667 T 34730  0.0959 PF14_0074  hypothetical
0.0443 MAL7P1_27  pfert 14 960714 G 49486 0.0631 PF14_0228  hypothetical
0.0953 PF07_0035  cg1 protein 14 1225984 A 8890  0.0443 PF14_0291  hypothetical
0.158 PF07_0035  cg1 protein 14 1226019 T 8925  0.0443 PF14_0201  hypothetical
0.013 PFO7_0036  Cg6 protein 14 1226103 C 9009  0.1528 PF14_0291  hypothetical
0.019 PF07_0036 Cgé protein 14 1226130 C 9036 0.0443 PF14_0291 hypothetical
0.0664 PFO7_0037  Cg2 protein 14 1226242 A 9148 0.0314 PF14_0201  hypothetical
0.1009 PFO7_0037  Cg2 protein 14 1226303 T 9209  0.0248 PF14_0291  hypothetical
0.0664 PFO7_0037  Cg2 protein 14 1608531 A 54272 0.2133 PF14_0374  hypothetical
0.1009 PF07_0037  Cg2 protein 14 2812662 C 35145  0.1722 PF14_0653  hypothetical
0.0591 PF07_0037 Cg2 protein 14 2812679 T 35128 0.1722 PF14_0653 hypothetical
0.0443 PF07_0037 Cg2 protein 14 2838163 G 46456 0.2215 PF14_0660 hypothetical
0.0443 PFO7_0037  Cg2 protein
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Table C.4: ICsq drug resistance phenotype data (nM). ND: No data

sample ADQ ARTM ARTN ARTS ATV ca DHA HFG HFN LuMm | MFQ PIP. QN
Resistance

Threshold 20 5 5 10 3 50 2 1.5 5 50 20 30 100
10_54 16.48 1.551 3.079 2.002 3.335 63.57 0.7305 1.032 1.832 29.22 5.844 30.61 60.14
36_89 16.63 4.431 4.418 8.947 3.327 79.45 5.916 1.139 1.491 21.22 3.865 30.95 ND
3D7 6.8168 2.8094 3.6543 8.4817 2.6474 8.8972 2.5971 0.9846 6.6259 86.2639 20.8618 19.0066 24.5422
51 29.58 3.661 3.688 9.564 4.192 108.2 3.005 ND 2.509 20.59 7.559 41.53 125.9
608 15.16 3.089 3.07 4.351 6.978 93.25 2.784 1.155 1.198 10.09 5.83 10.47 104.9
7G8 18.37 1.464 31 2.988 4.161 56.18 2.789 0.7968 1.071 311 6.053 40.11 38.87
9 411 ND 1.158 1.66 5.99 ND ND 0.8257 ND 1.525 5.687 0.6979 54.52 ND
CF04.008_1F ND 3.718 3.035 6.777 0.8209 6.02 2.522 1.094 3.481 36.68 4.939 18.71 82.44
CF04.009 ND 4.1495 3.771 8.845 ND ND 1.7316 ND 9.792 72.48 10.356 29.865 ND
D10 16.2461 3.5656 7.2633 8.7383 2.3062 11.6735 4.4617 1.5121 10.5989 92.63 25.4271 38.127 18.1534
D6 14.92 2.076 3.138 6.612 0.6697 3.611 1.333 0.4141 6.201 29.56 6.216 3.999 4.898
Dd2 10.0602 3.4412 3.5525 9.2125 1.2793 73.4253 23138 0.8717 4.7277 74.7528 14.9576 26.21 78.8966
FCc2 9.687 3.165 3.202 8.728 1.213 9.47 4.096 1.48 7.74 156.3 35.99 24.36 27.95
GA3 15.11 3.591 3.203 6.281 2.391 102.1 3.674 1.495 6.49 ND 27.22 43.25 31.96
GH2 233 6.718 5.983 16.78 2.366 98.03 5.694 1.707 16.03 346.7 17.82 48.54 149.1
HB3 8.703 1.169 3.019 3117 1.181 9.78 0.9405 1.413 2764 71.51 11.18 31.22 20.28
IGHCR14 4.879 0.6559 1.416 1.202 0.4847 4.967 0.382 1.451 1.725 53.57 11.51 9.564 4.99
Indochina_I 12 20.57 19.6 ND ND 2431 ND 0.8852 4.0E-04 6.178 3.902 28.99 153
JST 30.02 235 5.658 3.838 2193 129.1 1.698 1.203 1.296 22,07 6.811 41.34 24.52
K1 16.07 1.902 3.124 3.176 2.442 86.42 3.509 1.52 1.907 30.84 13.57 35.78 77.81
M24 7.63 4.6 4.43 5.546 1.524 13.09 2.49 1.158 1.919 59.81 13.48 14.23 55.33
Malayan_Camp 7.944 2.887 1.811 1.775 1171 7.279 2319 1.126 1.283 ND 6.983 31.26 8.196
Muz51.1 19.64 3.29 3.18 7.449 1.939 60.44 2271 113 1.696 19.5 8.501 28.23 39.73
PR145 1111 15.79 13.66 29.7 6.59 51.24 12.02 1.106 16 140.8 53.43 31.58 149.1
RAJ116 19.23 1.075 1.805 1.367 1.315 68.59 1.035 1.546 0.0049 6.418 4.105 34.31 4.36
RO33 11.3737 26614 6.0825 6.9751 1.8615 11.0702 28762 1.6415 3.1416 69.66 8.094 34.0955 13.4901
Santa_Lucia 20.44 3.629 4.61 8.644 0.3903 11.76 3.567 1171 0.7153 30.34 5.822 38.02 260.1
SenP05.02 16.24 5.695 3.178 11.25 2.493 ND 3.518 1.52 0.9853 30.43 6.798 29 ND
SenP08.04 17.33 4.873 415 1112 1.19 14.85 3.015 0.4386 11.72 62.21 26.03 7.81 44.76
SenP09.04 4.517 5.332 4177 15.7 0.7054 8.312 5.092 1.404 9.234 174 25.44 14.78 54.86
SenP11.02 92.05 12.75 11.15 19.99 1.881 25.83 8.258 0.7377 17.35 88.75 44.76 14.44 94.63
SenP19.04 7157 11.66 10.98 24.04 ND 11.4 9.225 1.858 14.71 95.17 50.83 30.21 ND
SenP26.04 44.23 12.71 3.23 14.82 1.143 40.38 8.889 0.4341 20.6 57.79 84.86 5.288 ND
SenP27.02 9.269 3.232 3.635 8.222 ND 9.813 2.664 1.258 1.83 31.2 5.972 21.2 ND
SenP31.01 6.961 1.991 1.999 6.131 0.4997 8.854 2.966 1.214 3177 78.89 17.03 22.56 ND
SenP51.02 29.62 5.041 4.748 8.875 0.3225 62.05 3.398 1.627 3.319 48.55 8.601 34.89 50.08
SenP60.02 15.8 4.084 4.978 9.62 0.9355 99.93 3.854 1.255 1.616 21.99 11.93 21.19 47.78
SenT15.04 ND 3.595 3.016 6.9315 ND ND 3.3665 ND 5.262 51.32 3.948 49.53 ND
SenT26.04 16.05 3.149 3.116 4.827 119 79.98 2.991 1.43 2.905 30.92 7.877 24.72 121.1
SenT28.04 11.9 3.744 3.139 7.846 1.1 51.01 2.343 1.461 75 62.69 32.64 15.63 139.6
SenV34.04 21.39 5.1 4.645 6.781 0.5187 ND 3.024 1.627 237 30.34 4.018 28.48 ND
SenV35.04 5.567 3.078 3.68 4.706 0.8165 9.364 5.374 1.359 2761 45.52 20.6 26.28 ND
SenV42.05 6.456 1.06 1.565 1.717 0.7363 9.594 1.731 1.016 4.476 13.6 10.04 4.485 ND
TD203 15.63 8.15 4.736 20.56 8.49 52.86 8.507 1.071 7.938 156.2 30.32 39.2 67.53
TD257 11.68 11.88 8.532 24.53 2215 55.41 11.63 1.539 15.96 227.6 50.42 35.53 253.5
TM327 9.891 6.032 1.7 8.862 1.146 41.12 3.851 2.022 15.49 249.3 41.25 50.89 70.72
TM90C2A 18.85 16.17 10.31 28.32 3.704 58.94 5.376 1.086 12.51 264.5 28.04 30.04 209.1
TM91C235 ND 12.43 12.46 17.66 ND ND 7.409 ND 70.65 154.5 57.96 12.69 ND
vi/s 17.98 1.625 3.459 6.172 4.02 156.5 1.035 1.538 1.739 26.4 12.84 38.58 224.3
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Table C.5: Parasites used in the GWAS. Parasites used, indicating their nucleotide and
amino acid sequence for various positions (indicated by number) in the dhfr, pfcrt, and

pfmdr1 gene loci.

dhfr

pfert

pfmdr1

Nucleotide

Sequence at AA Amino Acid Nucleotide Sequence at AA Nucleotide Sequence Amino Acid

Position Sequence Position Amino Acid Sequence at AA Position Sequence
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Table C.6: PF10_0355 copy number summary for 38 parasites tested by gPCR using the
Delta Delta Ct method. Copy number (CN) was compared to the reference locus PFO7_0076
and 3D7 was used as a reference strain. A cut-off of 1.4 was used to define PF10_0355
copy number greater than 1; parasites with greater than 1 copy of PF10_0355 are shaded.
Parasites are ranked by Halofantrine (HFN) ICso: HFN-sensitive parasites are indicated by
an S and HFN-resistant parasites are indicated by an R.

Parasite CN HFN
Indochina_l 0.92 S
RAJ116 0.92 S
Santa_Lucia 1.03 S
SenP05.02 0.98 S
7G8 0.74 S
Malayan_Camp 0.94 S
JST 1.06 S
36_89 1.07 S
SenP60.02 1.19 S
Muz51.1 0.64 S
IGHCR14 1.63 S
V1/S 0.89 S
10_54 0.99 S
K1 0.87 S
M24 0.76 S
SenV34.04 4.92 S
51 0.77 S
SenV35.04 0.86 S
HB3 0.88 S
RO33 1.26 S
SenP31.01 0.77 S
SenP51.02 1.09 S
CF04.008_1F 0.95 S
SenV42.05 1.26 S
Dd2 1.07 S
SenT15.04 1.71 R
3D7 1 R
SenT28.04 0.73 R
FCC2 0.76 R
TD203 0.9 R
D10 1.06 R
SenP08.04 0.95 R
TM90C2A 1.43 R
SenP19.04 1.06 R
PR145 0.94 R
GH2 1.71 R
SenP11.02 714 R
SenP26.04 1.68 R
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Table C.7: Annotation and GenelD Information for identified genes in Figure 2.1B.

GenelD n Fsr Annotation Category Tag
MAL8P1_23 1.54E-04 0.646 ubiquitin-protein ligase 1, putative enzymes, ACS and UBQ Ligase
transporters
PF13_0201 6.39E-03 0.216  thrombospondin-related anonymous other TRAP
protein, TRAP
PFA0650w 4.37E-03 0.323  surface-associated interspersed gene antigens, var, rifin, SURFIN
pseudogene, (SURFIN) pseudogene stevor, surfin
PF08_0105 6.10E-03  0.204  rifin antigens, var, rifin, Rifin
stevor, surfin
PFB0960c 4.31E-03  0.036 P. falciparum Maurer’s Cleft 2 other Mauer’s Cleft
transmembrane domain protein 2.1,
PfMC-2TM_2.1
MAL7P1_27 6.36E-04 0.387  chloroquine resistance transporter enzymes, ACS and PFCRT
transporters
PF10_0345 6.52E-03  0.240 merozoite surface protein 3 antigens, var, rifin, MSP3
stevor, surfin
PFI1475w 1.95E-03  0.221 merozoite surface protein 1, precursor antigens, var, rifin, MSP1
stevor, surfin
PFB0972w 9.90E-03  0.077  hypothetical protein other *
PFL0030c 7.95E-083  0.050  erythrocyte membrane protein 1 (PfEMP1) antigens, var, rifin, Var2CSA
stevor, surfin
PFD0830w 5.96E-04 0.459  bifunctional dihydrofolate reductase- enzymes, ACS and DHFR
thymidylate synthase transporters
PF11_0344 6.46E-03  0.074 apical membrane antigen 1, AMA1 antigens, var, rifin, AMA1
stevor, surfin
PF10_0051 5.32E-03 0.215  ADP/ATP carrier protein, putative enzymes, ACS and ADP/ATP Carrier
transporters
PFB0685¢c 5.75E-04  0.497  acyl-CoA synthetase, PfACS9 enzymes, ACS and ACS9
transporters
PFF1350c 2.00E-03 0.584  acetyl-coenzyme a synthetase enzymes, ACS and ACS
transporters
PFE1250w 1.66E-03 0.602  acyl-CoA synthetase, PFACS10 enzymes, ACS and ACS10
transporters
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C.6 FIGURES AND TABLES SUPPORTING SUPPLEMENTAL METHODS
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Figure C.14: SNPs located in genes (28,576) were more likely to pass concordance filtering
than intergenic SNPs (19,999).
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Figure C.15: SNPs that were discovered from only one sequenced strain (35,727 SNPs)
show a higher rate of monomorphism on the array than those with higher minor allele counts
(12,848 SNPs). Any amount of this discordance may be explained by false discovery from
sequencing data.
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Figure C.16: To show the effect of GC composition, we took 16bp of flanking sequence on
each side of the SNP to construct a 3D7-based 33mer and calculated the percent GC. The
window boundaries for the graph below are chosen as the octiles of the GC distribution.
SNP performance appears to worsen at GC levels below 20%, which accounts for roughly
half of the SNPs.
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Figure C.17: The effect of unique sequences in flanking regions. Although the initial design
of the array excluded probes that had exact matches elsewhere in the genome, many of
the remaining SNPs are in neighborhoods that contain 1 or 2 base mismatch similarity to
other parts of the genome. We took 16bp of flanking sequence on each side of the SNP
to construct a 3D7-based 33mer and aligned it to 3D7 using SSAHA (word length 10, step
length 1, max gap 2, max insert 1, min hits 24) [119]. 28,352 SNPs aligned uniquely to
their location of origin. The 20,223 SNPs that aligned in multiple locations showed a much
higher rate of discordance.
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Figure C.18: A histogram of marker spacing. Most markers are spaced closely with a few

large gaps in coverage. The mean spacing of concordant markers is 1316bp with a median
spacing of 444bp.
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Table C.8: Statistics on marker spacing (gaps) by chromosome. The table gives the number
of gaps, as well as the median, mean gaps, 90% percentile (90% gap), and maximum gap
length (max gap) by chromosome (1 — 14).

number median mean 90% max sum

of gaps gap gap gap gap of gaps

all 17568 444 1316 3639 39535 23118100
chr1 644 150 957 2968 18798 616104
chr2 855 346 1103 3090 16236 942754
chr 3 825 485 1282 3300 24076 1057642
chr 4 1462 182 817 2042  3953S 1195109
chr$ 977 447 1344 3865 17583 1312630
chr 6 1088 422 1298 3801 24856 1412604
chr7 1599 225 935 2446 19341 1495349
chr8 1100 454 1284 3319 24320 1412004
chr9 1087 S§7 1415 3820 27661 1538216
chr 10 1113 533 1520 4121 34097 1691290
chr 11 1357 636 1497 4115 21921 2031460
chr 12 1678 463 1351 3737 17010 2266590
chr 13 1831 669 1562 4333 19966 2860436
chr 14 1952 768 1683 4516 23942 3285912
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Figure C.19: Final concordant marker density across all fourteen chromosomes.
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Figure C.20: Distribution of markers per gene: 59% of all P, falciparum genes contain at
least one concordant marker. Below is a plot of the number of markers per gene. Most
genes that have markers have only one or two (median marker count per gene is two).

Mean marker count per gene is 4.1.
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Supplemental Material for Chapter 3

D.1 AuTHOR CONTRIBUTIONS TO SUPPLEMENTAL MATERIAL

Most of the work in these Supplemental Materials (as in the main text of Chapter

3) are my own, though other authors made contributions in certain spots.

SKV and UR are jointly responsible for most of the text in Supplemental Results
which delves into the functional characterization and categorization of hits. AKL

performed the work described in Drug Assays.

I performed all XP-EHH and localization analyses described in Section D.4.2.
I produced all Supplemental Data Files and Supplemental Figures. Dataset 1 also

contains a number of code fragments that are also my work.
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D.2 SuprPLEMENTAL DATA FILES

1. PLINK-formatted input data files describing genotype and phenotype data
for sequence and array data. Recombination map and imputed genotype
data for XP-EHH. Outputs from EMMA and XP-EHH. R code for GWAS
figures. Permanent URL (ZIP, S7MB):
ftp://ftp.broadinstitute.org/pub/malaria/pnas-park-2012-suppfile-1.

zip

2. Consensus sequence calls for each of 45 strains and 23 million bases. VCF
file is bgzip compressed and indexed by tabix and vcftools. Permanent URL
(VCEGZ, 2GB):
ftp://ftp.broadinstitute.org/pub/malaria/pnas-park-2012-suppfile-2.

vcf.gz

D.3 SUPPLEMENTAL RESULTS

We identified 32 regions under selection using the XP-EHH test and identified top
candidate mutations within each region associated with drug resistance using the
EMMA test (Dataset 1). Of the 163 mutations, 48 (29%) were intergenic; 6 (4%)
were intronic; 33 (20%) conferred synonymous changes; and 76 (47%) conferred
non-synonymous changes. We evaluated the annotations for the 59 genes on this
list using gene and protein prediction algorithms through PlasmoDB.org [ 14] and
associated links, including predicted GO function, pathway, inter-pro domains or
user comments, combined with any published literature for each gene. The great
majority of the 59 genes (65%) can be collectively classified into the following cate-
gories: surface molecules or transporters (11/59 or 19%, of which 6/59 or 10% are
transporters) including pfcrt; molecules involved in genome maintenance or tran-
scriptional regulation (9/59 or 15%); metabolic enzymes (12/59 or 20%, of which
3/59 or 5% mediate lipid metabolism) including dhfr; and molecules involved in
ubiquitination (6/59 or 10%). Remaining genes were determined as mediators of
various other cellular functions including protein binding, invasion, and gamete

fertilization (12/59 or 20%) or unclassified (9/59 or 15%).
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We also analyzed all 35 genes within the chromosome 6 region (between
position 1,117,269 and 1,390,662) found to be under selection in pyrimethamine-
resistant parasites. This region contained a large stretch of intergenic mutations
and it was difficult to localize the signal to any one gene. It contains a large
number of metabolic genes (12/35 or 34%, of which 3/35 or 9% participate
in lipid metabolism; 2/3S or 6% mediate folate metabolism); chaperones and
genes involved in ubiquitination (5/35 or 14%); with additional genes classi-
fied as genome maintenance or transcription regulation (8/35 or 23%); surface
molecules or transporters (3/35 or 9%); other biological functions including
structural proteins (2/35 or 6%); and the remainder (5/35 or 14%) as unclassi-
fied.

Molecules implicated in the ubiquitination cascade were mainly associated
with resistance to pyrimethamine and include a putative E2 conjugating enzyme
(PFL2100w), which likely acts as a ubiquitin E2 variant (UEV) due to the lack
of a catalytic cysteine and a HECT E3 ubiquitin ligase (MAL8P1.23). Within
the chromosome 6 region there were several other molecules proposed to mod-
ulate ubiquitination including a HECT E3 (PFF1365c) and a Cullin-like E3
(PFF1445c). Two other molecules contain domains suggestive of a possible role
in ubiquitination, including PFO8 0080 that contains a PUB domain found in
proteins linked to the ubiquitin proteasome system [3], and PFF1485w, which
contains an ubiquitin interacting motif. Also in this region are two putative chap-
erones, including a protein containing a Dna ] domain (PFF1415¢c) associated
with heat shock molecules [38] and a TRP (PFF1505w) involved in RNA degra-
dation [41] with a proposed chaperone function. Finally, there is a putative RING

E3 (PFD0765w) in a region of selection associated with primaquine sensitivity.

Several genes putatively involved in lipid metabolism were identified in our
regions of drug associated-selection, including an acyl-CoA synthetase, PFACS8
(PFB0695c) [18] and a putative phosphopantothenoylcysteine synthetase

HECT—homologous to the E6-AP carboxyl terminus
PUB—peptide:N-glycanase/UBA or UBX

TRP —tetratricopeptide repeat protein
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(PFDO0610w, under selection in quinine-resistant parasites) proposed to be
involved in CoA biosynthesis. Other lipid-metabolism associated molecules
in the chromosome 6 region include an acetyl-CoA synthetase (PFF1350c)
[138]; an ethanolaminephosphotransferase (PFF1375c-a/b) [88, 172]; and a
phosphatidylcholine-sterol acyltransferase precursor (PFF1420w). Finally, the
PFDO0350w gene, predicted to play a role in isoprenoid biosynthesis [77], is in a

region under selection in artemisinin-sensitive parasites.

Folate pathway molecules in regions of selection specific to pyrimethamine-
resistant parasites include the dhfr locus (PFD0830w); PF14 0487 (aminomethyl-
transferase); as well as PFF1360w (6-pyruvolytetrahydropterin synthetase; and
PFF1490w (methenyltetrahydrofolate activity) found within the chromosome
6 region. Folate metabolism has been shown to be a target of pyrimethamine
resistance mechanisms, and specifically SNP changes in dhfr and dhps, as well as

copy number variants in gch1 [83] are associated with anti-folate resistance [110].

There are three ABC transporters among the gene lists including PF10 0049,
MALS8P1.97, and PF08_0078, which are intriguing since these molecules have
been shown to modulate drug responses in malaria (e.g. pfmdrl) and other or-
ganisms [89]. Finally, we believe that there are a large number of molecules from
among the genome maintenance or transcriptional regulation classification may be
candidates for drug modulation through changes in gene expression [103], chro-

matin or histone structure [33, 37], or RNA binding [99].

D.4 SUPPLEMENTAL METHODS

D.4.1 DRuG ASSAYS

Drug assays were performed as described [ 132] with slight modifications for 384-
well format. Synchronized ring-stage parasites were cultured in the presence of
serial dilutions of test compounds in 40uL of RPMI supplemented with Albu-
MAX II (Life Technologies 1021-045) at 1.0% hematocrit and an initial para-
sitemia of 1.0% in black clear-bottom plates (Greiner Bio-one 781090). Follow-

ing a 72 hour incubation under standard culture conditions, SYBR Green I dye
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(Invitrogen S7563) was added to a dilution of 1:5000 and plates were stored at
room temperature until the flourescence signal was read on a Spectramax MS plate
reader (Molecular Devices, ex 480nm, em 530nm). Raw flourescence data were
analyzed using the Prism v5.0 software package (GraphPad Software, Inc.). After
background subraction and normalization, ICs, values were determined based on

application of a nonlinear regression log(inhibitor)-response curve fit.

D42 XP-EHH

Selection-association tests were run using the cross population extended haplo-
type homozygosity test (XP-EHH) [151]. Replicate ICso data was geometrically
averaged (equivalently, log,,(ICso) data was arithmetically averaged) and then
converted to binary phenotypes (“sensitive” vs. “resistant”) according to cutoffs
shown in Figure D.1 and Dataset 1. For drugs with a bimodal distribution, binary
cutoffs were chosen at positions that clearly separated the sensitive and resistant
populations. For drugs with a more unimodal distribution, cutofts were manually
placed at a distribution minimum near the median ICs, since the XP-EHH test,
like many other tests, loses power when either of the two populations becomes too
small (when the cutoff is too far from the median). Although these may not rep-
resent samples that are especially sensitive or resistant in the traditional sense, it is
common in studies of quantitative phenotypes to simply compare the upper part

of a distribution against the lower part for binary tests [15].

The recombination map was constructed with LDhat v2.1 [97] using a block
penalty of 5.0, 10 million rjMCMC iterations, a missing data cutoff of 20%, min-
imum minor allele frequency of 8%, and otherwise default parameters. Since the
XP-EHH test does not tolerate missing data, SNPs with data in atleast 80% of indi-
viduals were imputed with PHASE 2.1.1 [156]. As PHASE requires “diploid” data,
we dropped the sample with the lowest call rate (SenP60.02) to create an even
number of haploid individuals, randomly paired together. 83,540 fully-imputed
SNPs were polymorphic among the remaining 44 individuals. We then filtered
out singleton SNPs and used only 29,605 SNPs that had at least two samples with

a minor allele (minor allele frequency of 4%).
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The XP-EHH test calculates haplotype decay separately for the resistant popula-
tion and sensitive population using the extended haplotype homozygosity statistic
(EHH). It then integrates these values with respect to genetic distance and com-
putes alog ratio of these areas for the resistant population over the sensitive popu-
lation. These log ratios, after normalization, are called XP-EHH scores or Z-scores,
as they are found to correspond to a normal distribution, with the exception of the
tails that diverge from the null expectation (Fig. D.4B). Other than its application
to a phenotypically-divided population (instead of a geographically-divided pop-
ulation), the original algorithms were used as published [ 151 ] without any modifi-
cations. Significantly positive Z-scores are indicative of positive selection amongst
resistant parasites. Negative scores are indicative of selection in sensitive parasites.
We used a two-sided conversion of Z-scores to P-values, but generally focused our
attention on positive Z-scores. It would be equally valid to do a one-sided, left- or
right-tailed conversion for studies that are interested in specific selection scenar-

ios.

We attempt to localize the signal in these regions by searching for the strongest
EMMA signal in that window for that phenotype. We use this SNP to suggest a
causal gene for the region (Dataset 1). We do not require significance from the
EMMA test, as the region has already been identified as genome-wide significant
by the XP-EHH test. We do not combine the results from these or any other statis-

tics.
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Figure D.1: Drug response distributions for the twelve drugs used in this study: histograms

of log10 (ICSO) across 45 strains. Dark gray lines indicate binary cutoff values used for the

XP-EHH test.
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Figure D.2: Drug response correlation heat map for the twelve drugs used in this study.
Pearson correlations are rendered for each pair of drugs, based on log, (ICsp) values for

each strain.

131



Amodiaquine Atovaquone Artemisinin Dihydroartemisnin

EMMA -logso(P-value)

genomic position

(B)
‘Amodiaquine Atovaquone Artemisinin Dihydroartemisnin
- — — . -
5 25 - 5 7 P ¥ )
4 — 4 — > 4— -t 4 —
3— 3— 3— 3—
2- 2- 2— 2-
1- 1—= 1- 1—=
Chloroquine Pyrimethamine Primaquine Piperaquine
°
2
5}
<
o
=
>
o
[
©
2
S
©
Lumefantrine Mefloquine Quinine
* 10— Sn U B P - —
8— 5-
___________ - . 4— .
- b — - - - - —— e P
4 - 2—
2— .
| | | | | | | | | | | I
1 2 3 4 1 2 3 4 1 2 3 4

expected —logio(P-value)

Figure D.3: EMMA GWAS plots (sequence data, 45 samples): (A) EMMA Manhattan plots
of — log10 (P) against genomic position. (B) EMMA P-P plots against the expected uniform
distribution. Dashed line indicates Bonferroni-corrected significance of 5%. The shaded
area indicates a 95% confidence interval around the null.
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Figure D.4: XP-EHH GWAS plots (sequence data, 45 samples): (A) XP-EHH Manhattan-like
plots of Z-scores against genomic position. (B) XP-EHH Q-Q plots of XP-EHH Z-scores
against the expected normal distribution. Dashed lines indicate a 95% confidence interval

around the null.
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Supplemental Material for Chapter 4

E.1 AUTHOR CONTRIBUTIONS TO SUPPLEMENTAL MATERIAL

I performed all analyses shown in this appendix and created all figures. Ex vivo
drug data for GWAS was generated by DVT.

135



E.2 SuprPLEMENTAL FIGURES
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Figure E.1: Derived allele frequency (DAF) spectra over all samples and by year.
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Figure E.2: DAF over time for major drug loci. This shows the estimated derived allele
frequency at each year (black line) for seven known drug loci. The first three loci on chro-
mosome 4 at left are dhfr mutations N511, C59R, and S108N. The last locus at left on chro-
mosome 5 is pfmdr1 N86Y. The three loci at right on chromosome 7 are pfcrt mutations
N75K, K76T, and R371l. 95% confidence intervals are drawn in gray for each estimate of
the DAF based on binomial sampling error. None of these loci show significant movements
over this time period.
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E.3 NULL MODELS OF THE SELECTION COEFFICIENT
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Figure E.3: HMM statistics are biased at extreme derived allele frequencies. This shows null
simulations of the LRT statistic against the expected XZ distribution. The data is plotted
separately for each of ten bins corresponding to deciles of the derived allele frequency
distribution shown in Figure E.1. The first three deciles (corresponding to DAF < 0.0365)
show significant departures from XZ. Most of the intermediate frequencies fit well, but the
final decile (DAF > 0.927) shows departures again. This suggests that the model has
difficulty with extreme allele frequencies.
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Figure E.4: HMM statistics at different drift strengths and time spans. This shows null
simulations of the LRT statistic against the expected xz distribution. Data is plotted sepa-
rately for two values of N, (100 on top, 1000 on bottom) and three thresholds for minimum
number of samples per year, resulting in 4, 5, or 6 years of data. The four year data set
comprises the years 2008-2011. The five year data set adds 2004. The six year data set
adds 2002.

139



-log10(P)

S

Figure E.5: Volcano plot. This visualization of statistical significance (— log10 D) vs. effect
size (s) is often used in RNA expression studies and allows one to visually prioritize selection

strength, given a threshold for significance.
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Figure E.6: Double-zero variants lead to inflated statistics. Many of the variants exhibiting
strong negative selection are due to loci that have time series data similar to the example
shown in (A). Small observations are seen in the first year, followed by complete absence
in the final two years. This is interpreted by the HMM as evidence for very strong negative
selection, but may simply be due to inaccurate estimates by the HMM at the edges of allele
frequency space. The distribution of s including all variants (B) is reduced to a significantly
smaller range when removing these “double zero” variants (C). A volcano plot colored by
double zero status (D) illustrates that nearly all of the most extreme negative values are due
to this artifact.
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E.4 LONG-HAPLOTYPE TESTS
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Figure E.7: Long-haplotype selection tests in three West African populations. The top
three panels depict signals from the iHS long haplotype selection test [173] in Burkina Faso,
Mali (both from Manske et al. [95]) and Senegal (described here). Positive values denote
selection for the ancestral allele, negative values denote selection for the derived allele.
The bottom three panels depict signals from the XP-EHH long haplotype differentiation test
[151] between the three populations. Positive values denote selection in the first named
sample, negative values denote selection in the second named sample.
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E.S Exvivo GWAS TESTS
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Figure E.8: EMMA results for GWAS on 125 Senegalese samples for resistance to chloro-
quine, pyrimethamine, mefloquine, artemisinin, artesunate, and dihydroartemisinin. Tests
show strong signals at previously known loci at pfcrt (chloroquine), dhfr (pyrimethamine),
and pfmdr1 (mefloquine), with no significant signals from any of the artemisnin-related

drugs.
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Figure E.9: XP-EHH GWAS results for drug resistance-associated positive selection. Drugs
tested include chloroquine, pyrimethamine, mefloquine, artemisinin, artesunate, and di-
hydroartemisinin. Positive signals indicate positive selection in drug resistant parasites.
Negative signals indicate positive selection in drug sensitive parasites.
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