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Large-Scale Networks in the Human Brain revealed by Functional Connectivity MRI 

 

Abstract 

 

The human brain is composed of distributed networks that connect a 

disproportionately large neocortex to the brainstem, cerebellum and other subcortical 

structures. New methods for analyzing non-invasive imaging data have begun to reveal 

new insights into human brain organization. These methods permit characterization of 

functional interactions within and across brain networks, and allow us to appreciate 

points of departure between the human brain and non-human primates.  

The purpose of this dissertation is to explore the properties of large-scale 

networks in the human brain. Functional connectivity MRI (fcMRI) is a technique that 

capitalizes on the slow, intrinsic activity fluctuations in the blood oxygen level dependent 

(BOLD) signal. Though its limitations are still being explored, fcMRI provides a 

powerful, if indirect, method for mapping brain circuits in humans. In the first part of this 

dissertation I use fcMRI to map cerebro-cerebellar networks (Paper I). These networks 

replicate known anatomical circuits from non-human primates. Other regions in the 

human cerebellum that are expanded relative to other primates appear to participate in 

distributed cerebral cortical association networks. 
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I next examine factors that affect functional connectivity profiles and the resultant 

topography of fcMRI networks (Paper II). While functional connectivity is constrained 

by anatomy, analysis considerations as well as transient contributions reflecting task or 

behavioral state are sufficient to change network topography. Despite this, broad features 

of organization are preserved across task states.  

Finally, I present our best estimates of the topography of functional networks in 

the cerebrum using resting-state data collected from 1000 participants (Paper III). These 

maps indicate that human association cortex is comprised of a set of large, interdigitated 

functional networks that span the frontal, parietal, temporal, cingulate and limbic 

cortices. These can be distinguished from sensory and motor networks that are dominated 

by local, hierarchical coupling. I discuss the promise of fcMRI to provide new insights 

into human brain organization, as well as the limitations and caveats that constrain its 

interpretation.



 v 

Table of Contents 

 

Acknowledgements...........................................................................................................vi 
 
Chapter 1. Introduction....................................................................................................1 
 
Chapter 2. Cerebro-cerebellar functional connectivity networks 
Abstract..............................................................................................................................12 
Introduction........................................................................................................................13 
Methods..............................................................................................................................16 
Results................................................................................................................................25 
Discussion..........................................................................................................................40 
References..........................................................................................................................47 
 
Chapter 3. Stability and instability of functional connectivity networks 
Abstract..............................................................................................................................55 
Introduction........................................................................................................................56 
Methods..............................................................................................................................59 
Results................................................................................................................................69 
Discussion..........................................................................................................................76 
References..........................................................................................................................83 
 
Chapter 4. Large-scale connectivity networks in the human cerebrum 
Abstract..............................................................................................................................95 
Introduction........................................................................................................................97 
Methods............................................................................................................................104 
Results..............................................................................................................................132 
Discussion........................................................................................................................190 
References........................................................................................................................211 
 
Chapter 5. Concluding remarks...................................................................................231 
 
References (Chapters 1 & 5).........................................................................................247 
 
Appendix 
Supplementary Materials for Paper I...............................................................................254 
Supplementary Materials for Paper II..............................................................................261 
 
 

 

 



 vi 

Acknowledgements 

Many people directly contributed to this work. I thank Angela Castellanos, Brian 

Yang, Marisa Hollinshead, Michelle Zad and Susanna Crowell for assistance with data 

collection, Tanveer Talukdar for development of the fcMRI processing stream, Jeremy 

Schmahmann, Avram Holmes, Justin Vincent, Justin Baker, Jorge Sepulcre, Hesheng Liu 

and Daisy Wang for useful discussion, and the Harvard Center for Brain Science 

Neuroimaging Core, the Athinoula A. Martinos Center and the Harvard Neuroinformatics 

Research Group (Gabriele Fariello, Timothy O’Keefe, and Victor Petrov) for imaging 

and data support. I was supported by fellowships from the Department of Defense, an 

Ashford Graduate Fellowship in the Sciences, and the Sackler Scholars Program in 

Psychobiology. I would like to thank the Ashford family and the Harvard Horizons 

program in particular for supporting and promoting the work of graduate students in 

GSAS. I thank Amitai Shenhav for helping me survive graduate school. I am indebted to 

Thomas Yeo, whose friendship and collaboration I continue to benefit from greatly. I 

thank my advisor, Randy Buckner, for inspiring me with his incredible scientific vision, 

guidance and mentorship. I thank Dan Schacter for his feedback and support over the 

years, as well as my other committee members, Josh Buckholtz and Dost Öngür. My 

mother Anneke and brother Frank were instrumental in keeping me grounded during this 

time, as was my fellow bower, Maude Baldwin. I thank 20 School St for general 

enlightenment but most importantly for my wonderful fiancé Ben, who has made my 

world a bigger place. This thesis is dedicated to the memory of my father, Frank Krienen 

Sr. (1917-2008), who certainly would have been proud and who might have expressed it 

thusly: “Niet slecht, kind.”



 1 

Introduction 

 

  “The investigation of the various areas of the brain by means of electrical 

stimulation is a method which is now very nearly exhausted.” This line appeared in a 

paper entitled, “Notes on Cortical Localization,” read by Gregory Jefferson before the 

Victoria Medical Society. Jefferson’s proclamation, made in 1915, was certainly 

premature. Nearly 100 years later, electrical stimulation and recording of electrical 

impulses continue to be a mainstay of the neuroscientific toolbox. However, Jefferson’s 

comment was not so much an objection against stimulation per se, but rather was to make 

the case that histology, not stimulation, would be the ‘final arbiter of the exact nature’ of 

cortical tissue (Jefferson 1916). At that time such a statement would not have been 

unreasonable. Much of the cerebrum, beyond the motor cortex and select sensory areas, 

was deemed ‘inexcitable’ using the stimulation techniques available at the turn of the 20th 

century (Ferrier 1874; Jefferson 1916). According to Jefferson, cortical localization 

should be left to the innovative histologists who were developing new ways of cutting 

and staining. These methods showed great promise in revealing new features of brain 

organization.  

Histologists were also engaged in protracted debates about which of the 

observable macro- and microscopic features of cortex were functionally relevant. These 

ranged from the significance of folding patterns (Jefferson 1916) to the relevance of 

cytoarchitectonic borders (Lashley & Clark 1946). While some of these theories have 

since gone out of favor, many of the early efforts to map the cytoarchitectural and 

morphological features remain relevant today, such as the work of Brodmann, Flechsig, 
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Campbell, Ramon y Cajal, Betz, the Vogts and others. While he was wrong to dismiss 

methods for stimulating the brain, Jefferson was certainly right to give histology its due. 

New techniques have given neuroscientists new entry points for addressing the 

question of brain organization. Brodmann area maps still greatly inform our 

understanding of the architectonic subdivisions of mammalian neocortex, but we now 

generally recognize three additional attributes as being important for areal parcellation: 

topography, function, and connectivity (Kass 1982; 1987). In practice, only a few areas 

have been interrogated in enough detail to satisfy the four-pronged definition, such as 

primary visual area V1.  

Standardizing the definition of a cortical area has been helpful in determining 

homologies across extant species in order to infer what the brains of the earliest mammals 

might have looked like. The present understanding is that the basic eutherian (placental) 

mammalian plan probably involved a small number of primary sensory fields and motor 

strip (Krubitzer & Kahn 2003), and comparative work in primates has suggested that the 

early primates probably had a relatively larger number of distinct cortical fields, 

including premotor areas (Kaas 2006; 2011). However, because the classical methods for 

interrogating cortical organization cannot be used in humans, making the jump from the 

general primate plan to the organization of the human brain and its early hominin 

antecedents remains an area of speculation (Kaas 2005). 

With the ever-increasing popularity of functional neuroimaging as a tool to 

understand the organization of the human brain, the need for accurate means of 

determining structure-function relationships in the brain remains paramount. In an article 

entitled, “In Praise of Tedious Anatomy,” Devlin and Poldrack eloquently argue that the 
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primary goal of cognitive neuroscience – functional localization – is hampered by a lack 

of adequate means and standards for determining the relevant structural features 

underlying functional responses (Devlin & Poldrack 2007). A fundamental complication 

is that the typical structural MRI scan only provides information about macroscopic 

features of an individual’s brain. Despite earlier assumptions (e.g. Jefferson 1916; 

Sanides 1969), folding patterns and gyral/sulcal landmarks do not correspond uniformly 

to underlying cytoarchitectural areas (Van Essen & Dierker 2007; Amunts, Schleicher & 

Zilles 2007). Boundaries between cortical areas are more consistent in the central sulcus 

(Geyer et al. 1999) than in parietal and lateral prefrontal cortex (Amunts et al. 1999).  

Properties of organization that can inform functional organization are therefore 

sought, and the work in this dissertation describes our efforts to use functional imaging to 

infer connectivity patterns in the human brain. That is, while Devlin and Poldrack focus 

on the need for better ways to identify structural features of discrete cortical areas, here 

we are interested in determining which discrete regions couple together to form 

functional networks, what the properties of those networks are, and how they might have 

evolved or become differentiated in the modern human. Without denying that localization 

and specialization occurs in discrete regions of the brain, this work seeks to shift 

emphasis away from characterizing the properties of isolated regions, and towards a 

better understanding of how interacting networks process information and support human 

cognition. 

Because characterization of connectivity and other intrinsic, functionally 

important properties of the brain have historically required invasive methods, studies of 

non-human primates (typically macaques) have been the best source for detailed 
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information about anatomy and connectivity. However there are numerous issues with 

assuming homology or correspondence between our brain and that of a single monkey 

species. For one, the expansion of the cerebral cortex in humans is not uniform relative to 

macaque brains (Hill et al. 2010). Humans diverged from a common ancestor with 

macaques over 25 million years ago, making differences and even similarities between 

the species difficult to model. When the goal is determining what kinds of specializations 

are ‘uniquely human’ in the brain or what is conserved in a particular clade versus part of 

a ‘general mammalian plan,’ comparison to a single out-group is insufficient (Preuss et 

al. 2004). Though the data are scarce, researchers working with chimpanzee brain tissue 

continue to make valuable insights into how much our brains differ from our closest 

living relatives (e.g. Sherwood et al. 2011). For example, quantitative assessment of 

myelination across development indicates that chimps achieve adult-like myelination 

density around sexual maturity. In comparison, humans experience prolonged 

myelination in infancy and adolescence that continues into early adulthood (Miller et al. 

2012). This observation contributes to a growing body of evidence that, from a 

comparative perspective, adolescence and young adulthood is a unique period in the 

development of human connectional architecture. 

This dissertation describes three studies we have undertaken to examine the 

macroscopic topography and dynamic properties of functional brain networks in humans. 

We have relied on a neuroimaging technique – functional connectivity MRI (fcMRI) – 

that measures the temporal correlation of slow, intrinsic fluctuations in the BOLD fMRI 

signal. This technique has proven a useful, if indirect, indicator of functional interaction 

between distant brain regions, and the results in many instances conform to broad 
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properties of underlying anatomic connectivity (Biswal et al. 1995; Beckmann et al. 

2005; Fox & Raichle 2007; Vincent et al. 2007; Petrides et al. 2009; Smith et al. 2011; 

Yeo et al. 2011).  

fcMRI reflects more than direct, monosynaptic connectivity. Temporal 

correlations are observed between regions that are indirectly connected or driven by 

common input (Vincent et al. 2007). Variability in the fcMRI signal across subjects is 

non-uniform across the cortical mantle and correlates with individual variability in 

aspects of cortical structure such as folding patterns (Mueller et al. 2013). The source of 

the slow, intrinsic fluctuations in neurovascular coupling captured by fcMRI, as well as 

their functional significance, remain an area of active inquiry (Lu et al. 2007; Nir et al. 

2008).  

Despite these limitations and ambiguities, fcMRI has provided new insights into 

functional coupling in the human brain. Our perspective is that fcMRI is a valuable, if 

indirect, means of inferring connectivity patterns in the human brain. The three papers in 

this dissertation describe our efforts to examine these patterns in the context of cerebro-

cerebellar coupling, as well as coupling across the cortical surface. A major theme (and 

the focus of the second paper) is exploring the extent to which we can use fcMRI to 

validate and extend our understanding of organizational features derived from the 

anatomical record – that is, what is known from non-human primate studies. In some 

cases the agreement is promising, for instance in the pattern of connectivity between the 

cerebrum and contralateral cerebellum (Kelley & Strick 2003) or in the connectivity 

between regions in the canonical visuomotor hierarchy (Felleman & Van Essen 1991). 

Other applications of fcMRI seem less fruitful. For example, our results do not support 
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the use of fcMRI to recover the boundaries between functional areas in the neocortex 

(Paper II).   

A more minor theme addresses the dynamic contributions to the fcMRI signal. 

The fact is that we do not really know how much the functional connectivity measures we 

use change across task states. For instance, we do not know whether, as a general rule, 

coactivation of different regions during a task is sufficient to induce an increase in the 

fcMRI correlation between them. If a task involves pressing a key in response to an 

auditory stimulus, will we observe an increased correlation between motor cortex and 

auditory cortex? Are there regions whose connectivity patterns remain stable regardless 

of behavioral state? These are questions we are still actively exploring. The answers have 

implications for how we conceptualize fcMRI measured in the resting state, which is 

currently the most prevalent way to measure functional coupling in the human brain. In 

each case, our understanding of the anatomy should constrain our predictions as much as 

possible.  

New methods are continually being developed for mapping gene expression 

patterns (http://www.brain-map.org), transmitter receptor types (Zilles et al. 2002), 

structural connectivity imaging, and even visualizing intact, anatomic connectivity of 

human brain tissue (Chung et al. 2013). We anticipate that the predictions generated by 

noninvasive imaging techniques such as fcMRI, both about the topography and the 

functional relevance of connectivity networks, will be revised and greatly refined. More 

generally, the development of tissue staining, genetic labeling, anatomical tracing and 

noninvasive imaging techniques allow the field of human neuroscience to progress 

towards multimodal atlases of brain organization (Toga et al. 2006).  
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Overview of the Dissertation 

 

Paper I. In 2001, Middleton & Strick identified multiple, segregated fronto-cerebellar 

circuits using viral tracing techniques in the cebus monkey. These techniques allowed 

them to trace the thalamic projections to prefrontal cortex, as well as the projections from 

the prefrontal cortex that terminated in the dentate nucleus. The dentate is the obligate 

step for projections from the cortex to enter the cerebellar cortex, and prefrontal channels 

were spatially distinct from motor cortex channels. This approach was later extended to 

map the precise locations in cerebellar cortex that received prefrontal input (Kelley & 

Strick 2003). The discovery of reciprocal loops between prefrontal cortex and the 

posterior cerebellar hemispheres challenged the traditional view that motor control 

comprises the complete repertoire of the cerebellum (Middleton & Strick 2001; Kelley & 

Strick 2003; see also Leiner et al. 1986).  

Little is known about the topography of human cerebro-cerebellar networks. 

Providing evidence for such circuits would provide a substrate for cerebellar 

contributions to cognition, as well as provide an initial map of human cerebellar network 

topography that serves as a foundation for further analysis. Motivated from nonhuman 

primate anatomy, Paper I (Krienen & Buckner 2009) mapped the topography of 

functional connectivity between frontal cortex and the cerebellum in humans using 

functional connectivity MRI. 

Of particular interest were the posterior lobes of the cerebellum that are expanded 

in apes and humans relative to other mammals (Macleod et al. 2003). The posterior lobes, 
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which include the major extent of the lateral hemispheres, were predicted to project to 

association areas of cortex and largely spare regions directly involved in motor function. 

We mapped human cerebellar topography using functional connectivity and 

demonstrated the presence of four separate frontal-cerebellar circuits, including three 

distinct posterior cerebellar circuits that associate with prefrontal cortex (Krienen & 

Buckner 2009).  

 

Paper II.  Sharp, reproducible spatial transitions in resting state functional connectivity 

suggest its ability to reveal meaningful differences in functional coupling between 

adjacent regions in the brain. However, a growing literature shows that functional 

coupling is sensitive to behavioral state as well as choices made in analysis. Here, we 

explored factors that affect functional connectivity profiles and the resultant network 

topography (Krienen, Yeo & Buckner in prep). We sought to determine how the spatial 

properties of networks change when factors such as the task performed and the weighting 

criteria used during analysis are manipulated.  

First, we demonstrated that rs-fcMRI computed in small (N=16) independent 

samples of passive rest scans produce highly replicable network boundaries. This 

corroborates earlier observations that suggest rs-fcMRI likely reflects stable properties of 

functional networks. Next, we showed that the particular choice of cost function when 

using a clustering algorithm changes network topography. Finally, we observed changes 

when comparing fcMRI derived from passive rest scans to fcMRI measured while 

participants were engaged in different behavioral states. We measured fcMRI patterns in 

several continuous task paradigm datasets, including a battery of passive behavioral tasks 
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that were perceptually identical to the often-used passive fixation paradigm. In some 

sense observing connectivity changes as a function of state is not unexpected, as the 

assumption that connectivity is dynamic and context-dependent follows from classic 

theories of information processing in the brain, particularly throughout association cortex 

(Mesulam 1998). Dynamic network structure also constitutes a basic premise for methods 

exploring effective connectivity such as dynamic causal modeling (Friston 1994, 2011; 

Friston et al. 2003).  

Task-related increases and decreases in coupling strength were observed both 

within and across networks defined from resting state data. Moreover, task-defined 

network borders better explained task activation patterns than did resting-state borders. 

Despite this, we show that several broad features of organization are preserved across 

task states. For example, multiple homotopic maps reflecting cerebral cortical network 

organization are preserved in the cerebellum, though the exact locations and topography 

of networks follows the task-induced changes in cerebral networks. Another broad 

principle that is maintained across task states is the general tendency for there to be 

multiple, interdigitated networks that span distributed portions of association cortex. 

Taken together, the analyses in Paper II suggest that while rs-fcMRI is 

constrained by underlying anatomical connectivity, it should not be expected to identify 

areal boundaries as traditionally defined (Kaas 1987). However, the replication of many 

general features of organization independent of task suggests the utility of fcMRI 

techniques for understanding properties of human neocortical organization. Moreover, 

the results from the task analyses highlight opportunities for discovery. Comparing 

measures computed from different task states rather than considering organization 
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derived from passive rest alone affords the opportunity to characterize the dynamic range 

of functional networks in the human brain. 

 

Paper III. Paper III uses a graph theoretic clustering approach to identify networks 

across the human cerebrum in a dataset of 1,000 passively resting subjects (Yeo, Krienen 

et al. 2011). With the caveats and complexities observed in Paper II in mind, we 

capitalized on the large data sample to explore the stable properties of resting state 

connectivity and their ability to inform current understanding of human brain 

organization. We found evidence for multiple parallel circuits that are interdigitated 

throughout association cortex, such that each cortical lobe contains components of 

multiple association networks. These networks were largely distinct from sensory and 

motor networks, which formed local clusters of connectivity and did not have a 

distributed topographic profile.  

In addition to the parcellations, we employed a series of seed-based analyses to 

quantify the relationships between regions that lie along a well-characterized 

sensorimotor processing hierarchy. These results demonstrate the utility of fcMRI as a 

tool for identifying functionally pathways in the cerebral cortex. We discuss the 

organization of these large-scale cerebral networks in relation to monkey anatomy, note 

consistencies and departures, and discuss their potential evolutionary expansion in 

humans to support cognition. 



 11 

 

 

 

 

 

 

 

Paper I 

Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity 

Krienen, FM & Buckner, RL. Cerebral Cortex, 2009 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

Abstract 

 

Multiple, segregated fronto-cerebellar circuits have been characterized in 

nonhuman primates using transneuronal tracing techniques including those that target 

prefrontal areas.  Here we used functional connectivity MRI (fcMRI) in humans (n=40) 

to identify four topographically distinct fronto-cerebellar circuits that target (1) motor 

cortex, (2) dorsolateral prefrontal cortex, (3) medial prefrontal cortex and (4) anterior 

prefrontal cortex. All four circuits were replicated and dissociated in an independent data 

set (n=40). Direct comparison of right- and left-seeded frontal regions revealed 

contralateral lateralization in the cerebellum for each of the segregated circuits. The 

presence of circuits that involve prefrontal regions confirms that the cerebellum 

participates in networks important to cognition including a specific fronto-cerebellar 

circuit that interacts with the default network. Overall, the extent of the cerebellum 

associated with prefrontal cortex included a large portion of the posterior hemispheres 

consistent with a prominent role of the cerebellum in non-motor functions. We conclude 

by providing a provisional map of the topography of the cerebellum based on functional 

correlations with the frontal cortex as well as a discussion of the strengths and limitations 

of fcMRI for making inferences about brain circuits.  
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Introduction 

 

 The identification of multiple, segregated fronto-cerebellar circuits using viral 

tracing techniques in nonhuman primates has challenged the traditional view that motor 

control comprises the complete repertoire of the cerebellum (Middleton & Strick 1994, 

2001; Kelly & Strick 2003; see also Leiner et al. 1986; Schmahmann,1991). The 

presentation of cerebellar patients with cognitive deficits in the absence of motor deficits 

similarly suggests cerebellar involvement in non-motor functions (Schmahmann 2004; 

Schmahmann et al. 2007a). Neuroimaging studies finding cerebellar activation in 

response to non-motor components of cognitive tasks have complemented this view 

(Petersen et al. 1998; Allen et al. 1997; Desmond & Fiez 1998; O'Reilly, Mesulam, & 

Nobre 2008; Stoodley & Schmahmann 2009).  

However, there has been no adequate technique to explore the existence of 

segregated cerebro-cerebellar circuits in humans. Characterizing such circuits would 

provide strong evidence of the anatomical substrate of cerebellar contributions to 

cognition as well as provide a mapping of cerebellar regions as a foundation for further 

analysis. Of particular interest are the posterior lobes of the cerebellum that are markedly 

expanded in apes and humans relative to other mammals (Macleod et al. 2003). The 

posterior lobes, which include the major extent of the lateral hemispheres, are predicted 

to project to association areas of cortex and largely spare regions directly involved in 

motor function.  

Functional connectivity based on intrinsic activity fluctuations provides a 

potentially powerful method for mapping fronto-cerebellar circuits (Biswal et al. 1995; 



 14 

see Fox & Raichle, 2007 for a review). Intrinsic fluctuations detected by fMRI are 

constrained by anatomic pathways such that connected brain regions show correlated 

fluctuations (Vincent et al. 2007; Johnston et al. 2008). Analysis of functional 

correlations, often referred to as functional connectivity MRI (fcMRI) analysis, has been 

used to map multiple brain systems linked to sensory, motor, and cognitive functions 

(e.g., Biswal et al. 1995; Greicius et al. 2003; De Luca et al. 2006; Fox et al. 2006; 

Vincent et al. 2006, 2008; Dosenbach et al. 2007; Margulies et al. 2007; Kahn et al. 2008; 

Zhang et al. 2008). There are strengths and limitations of the technique.  

Emerging evidence suggests that fcMRI reflects both monosynaptic and 

polysynaptic connections (Greicius et al. 2009; Honey et al. 2009). Sensitivity to indirect 

connectivity presents an opportunity for mapping fronto-cerebellar circuits because the 

cerebral cortex is anatomically connected to the cerebellum only through polysynaptic 

projections via the pons or thalamus (Schmahmann 1996; Middleton & Strick, 2001; 

Kelly & Strick 2003). However, sensitivity to indirect connections and the fact that 

fcMRI reflects coherence rather than direct anatomic projections also limits the 

specificity of the method (see Buckner et al., 2009 for discussion). For example, fcMRI 

does not permit recovery of information about the directionality of connections. Also, 

fcMRI results can lead to ambiguous interpretations of the specific structure of 

connectivity. When three regions show coherent fluctuations it is not possible to know 

whether they are all connected or whether two regions show correlation mediated by their 

common connections to the third region. Despite these limitations, the method is 

particularly useful for identifying segregated pathways even if the directionally of 

connectivity cannot be determined. Work on the cingulate (Margulies et al. 2007) and the 
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medial temporal lobe memory system (Kahn et al. 2008) provide examples where 

segregated brain pathways have been successfully characterized. 

  Here we use fcMRI to provide a detailed analysis of fronto-cerebellar circuits, 

taking advantage of the method’s ability to identify segregated pathways. Several prior 

studies have noted fluctuations in the cerebellum that correlate with the cerebral cortex 

(e.g., Allen et al. 2005; Fransson et al. 2005; Vincent et al. 2008). Allen et al. (2005) 

demonstrated the feasibility of using fcMRI to study the functional connectivity between 

the cerebral cortex and the cerebellar cortex (including the dentate nucleus) in humans, 

and provided evidence that fcMRI is sensitive to the anatomical constraints governing 

cerebro-cerebellar connectivity.  

The present work expands upon these observations. The full extent of the 

cerebellum and cerebral cortex was imaged across two independent data sets (each n= 40) 

to systematically map connectivity by seeding multiple frontal regions and exploring 

correlations in the cerebellum. We sought to determine whether correlations between the 

frontal cortex and cerebellum could be detected using fcMRI and whether the detected 

correlations would be consistent with circuit properties previously observed in nonhuman 

primates. Studies in the monkey demonstrate that cortical areas project to the 

contralateral cerebellum via efferents that cross hemispheres between the pons and the 

cerebellar cortex and afferents between the deep cerebellar nuclei and the thalamus.  

Furthermore, certain fronto-cerebellar connections are organized as closed, independent 

circuits, wherein neocortical areas receive input from the very same cerebellar regions 

that they project to (Middleton & Strick 2000). This connectional architecture, unlike 

projections between neocortical areas that show convergence and divergence, is ideally 
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structured to test the specificity of fcMRI. Thus, the monkey anatomy suggests there 

should exist multiple, parallel polysynaptic circuits between frontal cortex and the 

cerebellum and also that these circuits should exhibit crossed-laterality.  

 

 

Methods  

Participants.  

80 young adults participated for payment (ages 18 to 28, mean age = 21.5 yrs, 35 

male). All had normal or corrected-to-normal vision and were right-handed, native 

speakers of English with no reported history of a neurologic or psychiatric condition. 

Participants provided written informed consent in accordance with guidelines set by 

institutional review board of Partners Healthcare.  

 

Data acquisition.  

Scanning was conducted on a 3T TimTrio scanner (Siemens, Erlangen, Germany) 

using a 12-channel phased-array head coil. The functional imaging data were acquired 

using a gradient-echo echo-planar sequence sensitive to blood oxygen-level dependent 

(BOLD) contrast (TR = 3000 ms; TE = 30 ms; flip angle = 90º; 3 x 3 x 3 mm voxels; 0.5 

mm gap between slices; FOV = 256; interleaved acquisition). Whole-brain coverage 

including the entire cerebellum was achieved with 43 slices aligned to the anterior-

posterior commissure plane. Structural data included a high-resolution T1-weighted 

magnetization-prepared gradient-echo (MP-RAGE) image (TR = 2530 ms, TE = 3.44 ms, 
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FA = 7º, 1.0 mm isotropic voxels; FOV 256 x 256). Head motion was minimized by 

using a pillow and padded clamps, and earplugs were used to attenuate noise. 

 Two separate datasets were collected (Data Set 1: n = 40; Data Set 2: n = 40). 

Data Set 1 was used to identify, in an exploratory manner, the regions of frontal cortex 

that correlate with regions in the cerebellum. Data Set 2 was used to formally test for 

dissociation among fronto-cerebeller circuits generated from the findings in Data Set 1. 

During all runs of Data Set 1, participants engaged in a passive task state that was either 

(1) eyes closed rest, (2) eyes open fixating a visual crosshair, or (3) eyes open without 

fixating. These rest-state variants show minimal differences in functional connectivity 

(van Dijk et al., 2008) so, in order to optimize signal-to-noise, all variants were used 

when available. Between 2 (n=11) and 6 (n=29) runs of 104 timepoints were collected 

from each participant. For participants with 6 runs, two of each passive task variant were 

acquired. For participants with 2 runs, only visual fixation was acquired. One participant 

completed 4 runs of eyes closed rest. Participants completed various tasks unrelated to 

the present study before the rest runs analyzed here. The visual crosshair was generated 

on an Apple MacBook Pro (Apple Computer Inc., Cupertino, CA) using Matlab software 

(The Mathworks, Inc., Natick, MA) and the Psychophysics Toolbox extension (Brainard, 

1997) and projected onto a screen positioned at the head of the magnet bore. Participants 

viewed the screen though a mirror attached to the head coil. In Data Set 2, two runs were 

collected from each participant. During both runs of Data Set 2, participants engaged in 

eyes open without fixating. 

 

Data preprocessing.  
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Procedures previously optimized for fcMRI analysis were employed (Fox et al. 

2005; Vincent et al. 2006, Van Dijk et al. 2008) based on the method of Biswal et al. 

(1995). Preprocessing included: (1) removing the first four volumes to allow for T1-

equilibration effects, (2) compensation of systematic, slice-dependent time shifts, and (3) 

motion correction. Functional data were normalized to the Montreal Neurological 

Institute (MNI) atlas space using a T2-weighted EPI BOLD-contrast atlas (SPM2, 

Wellcome Department of Cognitive Neurology, London, UK) yielding a time series 

resampled to 2-mm cubic voxels. A low-pass temporal filter then removed constant 

offsets and linear trends over each run while retaining frequencies below 0.08 Hz. A 6-

mm full-width half-maximum Gaussian blur was used to spatially smooth the images. 

Sources of spurious variance, along with their temporal derivatives, were removed 

through linear regression including: (1) six parameters obtained by correction for rigid 

body head motion, (2) the signal averaged over the whole brain, (3) the signal averaged 

over the lateral ventricles, and (4) the signal averaged over a region centered in deep 

cerebral white matter. This regression procedure minimized signal contributions of non-

neuronal origin including respiration-induced signal fluctuations (Wise et al. 2004; Birn 

et al. 2006).  

 

Mapping cerebro-cerebellar circuitry using functional connectivity.  

To identify regions that are intrinsically correlated with distinct frontal regions, 

two sites of interest were selected: motor cortex (MOT) and dorsolateral prefrontal cortex 

(DLPFC). To identify whether the circuits exhibited crossed-laterality, separate right and 

left frontal regions were constructed for each site. Specifically, 8-mm radius spherical 
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seed regions were constructed separately for the right and left hemispheres (i.e. mirrored 

about the x-axis for each site; MOT coordinates: +/- 42, -24, 60; DLPFC coordinates: +/- 

42, 16, 36; coordinates reflect the centers of the regions, see Table 1). The particular 

regions were selected by visual inspection of the anatomical template (for instance, the 

MOT coordinates were selected so that they fell within the precentral gyrus). Correlation 

maps were computed for all four seed regions for each participant in Data Set 1, and a 

group-averaged, Fisher’s r-to-z transformed correlation map was generated for each seed. 

These were whole-brain maps, however here we focus only on the connectivity patterns 

in the cerebellum. In order to test for crossed-laterality, direct comparisons of the left and 

right MOT and DLPFC seed regions were computed by means of arithmetic subtraction 

of the z score correlation maps. In this manner, connectivity patterns were generated for 

each of the separate frontal sites that could reveal the lateralization of the cerebellar 

connectivity.  

 

Table 1.1: Locations of Frontal Seed Regions. Notes: Atlas coordinates (x,y,z) 
represent the Montreal Neurological Institute (MNI) coordinate system (Evans et al., 
1993) based on the MNI152/ACBM-152 target. MOT = motor cortex, DLPFC = 
dorsolateral prefrontal cortex, MPFC = medial prefrontal cortex, APFC = anterior 
prefrontal cortex. 

Frontal Seed  x y z 
MOT     
 L -42 -24 60 
 R 42 -24 60 
DLPFC     
 L -42 16 36 
    R 4  42 16 36 
MPFC     
 L -12 48 20 
 R 12 48 20 
APFC     
 L -32 40 28 
 R 32 40 28 
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Random effect analyses were then conducted to test for statistical significance. 

Specifically, paired t-tests on the generated r(z) maps were conducted for the left and 

right seeds of MOT and DLPFC. Only significant results were interpreted. We display 

the correlation maps (after r-to-z transform) and map differences because they represent 

the best estimates of the topography. Hypothesis-testing statistics slightly distort the maps 

due to differential variance across the image (e.g., the center of mass of an object tends to 

shift away from brain edges in t-maps because of increased variance). For completeness, 

we also display the full maps based on random-effects analysis in the Supplemental 

Materials. 

We next investigated whether the connectivity between a given frontal site and a 

cerebellar region is reciprocal and selective, that is, whether maps produced by cerebellar 

seed regions exhibit “closed-loop circuitry” by showing preferential correlations with 

those frontal sites that originally produced the cerebellar correlations. Note that this is not 

an obligatory property. It is possible that cerebellar seeds could correlate with widespread 

regions of the cerebral cortex. To test for closed-loop circuitry, we identified the peaks of 

functional connectivity in the cerebellum in the MOT map (CBMMOT) and in the DLPFC 

map (CBMDLPFC). Spherical regions of 2 mm radius were defined around these cerebellar 

peaks (CBMMOT coordinates, Right: 22, -52, -22, Left: -20, -50, -24; CBMDLPFC 

coordinates, Right: 10, -82, -26, Left: -12, -82, -28; see Table 2) and the corresponding 

correlation maps were computed for the cortex. The circuit properties were then tested by 

exploring to what degree the cerebellar regions projected to separate or overlapping 

regions of the cerebral cortex. Specifically, we predicted that the CBMMOT seed would 

result in selective correlations with motor cortex and would not correlate with prefrontal 
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regions, and that the CBMDLPFC correlated regions would project to prefrontal cortex and 

would spare the motor strip.  

It is important to emphasize again that fcMRI does not permit recovery of 

information about the directionality of connections (Allen et al. 2005). That is, seeding a 

region in the cerebellum will likely result in correlations with both the efferent and the 

afferent connections to it; functional connectivity analysis only assesses the degree of 

coherence between spontaneous activity in different regions, not the direction of 

influence. Nonetheless, fcMRI remains a valuable method for investigating the 

topography of connectivity between brain regions, especially when the circuits under 

consideration exhibit separable correlation profiles. 

 

Cerebellar topography.  

As the results of the preceding analysis will show, functional connectivity reveals 

distinct fronto-cerebellar circuits when comparing a dorsolateral prefrontal region to a 

motor cortex region. Based on this result, we next extended the approach to explore 

fronto-cerebellar topography more extensively. Tracing studies in the monkey suggest 

that there are multiple prefrontal zones that project to the pontine nucleus, as well as 

other zones that markedly lack pontine projections (Schmahmann & Pandya 1997; 

Middleton & Strick 2001). Importantly, previous diffusion imaging work has presented 

initial evidence that human prefrontal cortex may contribute relatively more projections 

to the pontine nucleus than does monkey prefrontal cortex (Ramnani et al. 2006), but the 

topography of fronto-cerebellar connectivity has not yet been characterized. Two 

additional frontal regions (for a total of four) were targeted: medial prefrontal cortex 
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(MPFC) and anterior prefrontal cortex (APFC), and again bilateral 8-mm  radius, 

spherical regions were drawn (MPFC: +/- 12, 48, 20; APFC: +/- 32, 40, 28) (Table 1). 

The corresponding correlational maps were computed for each participant and a z 

transformed, group-averaged map was generated. The subtraction method was again 

employed to assess the differential correlation patterns found in the cerebellum from each 

of the MOT, DLPFC, MPFC and APFC seed regions. Random effects analyses formally 

quantified the statistical significance of the correlation maps for selective pairs of the 

seed regions. Effects were interpreted only if they were significant (corresponding to p < 

.05 correcting for multiple comparisons using the False Discovery Rate method).  

Using the same approach that was applied to the MOT and DLPFC maps above, 

peak search was employed on the MPFC and APFC maps to obtain local maxima in the 

cerebellum (CBM_MPFC coordinates: 34, -80, -36 and -32, -76, -34; CBM_APFC 

coordinates: +/- 36, -52, -34) (Table 2). Spherical 2-mm  radius seed regions were created 

around them to compute correlation maps for the cerebral cortex. The previous analysis 

compared cortical networks resulting from seeding anterior and posterior cerebellar 

regions. This test enabled us to assess the extent to which different locations in the 

posterior cerebellum are functionally coupled with the similar or distinct cortical 

networks. 
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Table 1.2: Locations of Cerebellar Projections from Frontal Cortex. Atlas 
coordinates and abbreviations for cortical regions are similar to Table 1. R= right, L = 
left. Coordinates in bold correspond to the centers of seed regions that were drawn in 
cerebellar cortex in order to compute correlation maps for the cerebral cortex (see Figure 
2 and Figure 7). Labels represent approximate lobule locations based on the MRI atlas of 
the human cerebellum (Schmahmann et al. 1999; 2000). 
 

Frontal Seed Label Peak Cerebellar Coordinate  z(r) 

L MOT      
 Lobule V 22, -52, -22  0.26  
 Lobule VIIIB 20, -58, -54  0.23  
R MOT      
 Lobule V -20, -50, -24  0.28  
 Lobule VIIIB -19, -57, -53  0.21  
L DLPFC      
 Crus I 10, -82, -26  0.35  
 Crus II 36, -68, -44  0.32  
 Crus I -36, -66, -40  0.17  
R DLPFC      
 Crus I -12, -82, -28  0.36  
 VIIB -36, -70, -46  0.32  
 Crus I 12, -82, -28  0.19  
L MPFC      
 Crus I 34, -80, -36  0.29  
 Crus I -30, -78, -34  0.26  
R MPFC      
 Crus I -32, -76, -34  0.29  
 Crus I 24, -80, -32  0.20  
L APFC      
 Lobule VI/Crus I 36, -52, -34  0.21  
 Lobule VI -36, -52, -34  0.22  
R APFC      
 Lobule VI -36, -52, -34  0.29  
 Lobule VIIB/Crus II 38 -46, -48  0.23  

 

Control analyses.  

 An important internal control for our investigation is to show that seeding regions 

in cerebral cortex known to lack anatomic connections with the cerebellum will similarly 

fail to produce fcMRI correlations in the cerebellum. Research in the rhesus monkey 
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suggests that striate cortex does not have any projections to the pons—an obligatory step 

to the cerebellar cortex—although other regions in the occipital cortex do (Schmahmann 

& Pandya 1993). Accordingly, we placed bilateral 8-mm radius seeds in or near primary 

auditory and visual cortices (AUD: +/- 46, -18, 8; VIS: +/- 4, -88, 2). 

 As an additional control, we investigated the sensitivity of the overall pattern of 

cerebellar topography to our choice of particular seed locations in frontal cortex. 

Accordingly, we created new pairs of frontal seeds several millimeters away from the 

coordinates of the original seeds, taking care that the seed remained in the same general 

frontal zone (for instance, the new MOT seeds were moved approximately 8mm 

medially, while remaining in the precentral gyrus). Because we were interested in the 

overall cerebellar topography resulting from each region, the correlation maps from the 

left and right seed regions were averaged together to increase statistical power. 

 

Replication and dissociation of fronto-cerebellar circuits. 

 As the results will reveal, multiple distinct fronto-cerebellar circuits are observed. 

To formally test whether these circuits can be dissociated we extracted their 

corresponding seed regions in the cerebellum and frontal cortex and formally tested, in an 

independent dataset, whether differential correlation could be replicated. For this 

analysis, we asked whether each circuit demonstrated selective coherence that was 

greater between its cerebellar seed and frontal target than any of the other frontal targets. 

Specifically, the cerebellar topography generated by the different frontal seed regions 

(MOT, DLPFC, MPFC and APFC) in Data Set 1 was used to define cerebellar regions 

that were used as a priori seeds in Data Set 2 (Vincent et al. 2006; 2008; Kahn et al. 
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2008). Bilateral 2-mm radius spherical seeds were constructed around local maxima in 

the cerebellum maps generated from each bilateral frontal seed pair in Data Set 1. These 

regions were then used as seeds in Data Set 2 to test the prediction that four distinct 

fronto-cerebellar circuits exist. Two-way t-tests directly compared correlation strengths 

between each site in the cerebellum and each frontal region of interest, yielding 12 

comparisons in total.  

 

Results 

 

 Seed-based fcMRI was used to map fronto-cerebellar circuits in the human. We 

first provide evidence that the governing principles of these same pathways in nonhuman 

primates, for instance, the crossed laterality of the cerebro-cerebellar connections, are 

present in humans and can be detected using fcMRI. We next show that the human 

cerebellum contains at least four distinct fronto-cerebellar circuits, including three 

associated with distinct prefrontal regions. Importantly, control seeds placed in or near 

primary auditory and visual cortices do not produce correlations in the cerebellar 

hemispheres. In a final analysis, we directly demonstrate that the four dissociated fronto-

cerebellar circuits replicate in an independent data sample.  

Figures show connectivity maps overlaid onto an anatomical template generated 

by averaging the T1 structural scans of all of the participants in the present study. To 

assist visualization, the volumetric results are also projected onto the inflated cortical 

surface of the PALS (population-average landmark- and surface- based) atlases of the 

cerebrum (Figure 1.2) and of the cerebellum (Figure 1.8) using Caret software (Van 
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Essen 2005). Anatomic description of the cerebellum is based on Schmahmann et al. 

(2000). 

 

fcMRI reveals contralateral lateralization of fronto-cerebellar connectivity. 

 Cerebellar connectivity generated by subtracting the MOT and DLPFC maps from 

their contralateral counterparts is shown in Figure 1.1. Anatomically selective regions of 

the cerebellum reveal robust correlations with the two sets of frontal seeds. Cerebellar 

connectivity shows crossed-lateralization in relation to the cortex. 

 

Figure 1.1. Motor and prefrontal cortex project to distinct, preferentially 
contralateral regions of the cerebellum. Correlation maps for motor and prefrontal seed 
regions are displayed overlaid on the participants’ averaged T1 structural scan. (A) 
Bilateral spherical seed regions in motor cortex (MOT coordinates: +/- 42, -24, 60) 
correlate with regions in lobules IV-VI in the anterior cerebellum and with VIIIB in 
ventral aspects. (B) Bilateral seed regions in dorsolateral prefrontal cortex (DLPFC 
coordinates: +/- 42, 16, 36) correlate with distinct regions in Crus I and Crus II in the 
posterior cerebellum. In each map, red corresponds to preferentially greater correlations 
with seed regions in the left hemisphere and blue corresponds to preferentially greater 
correlations with seed regions in the right hemisphere. Maps are at a threshold of z(r) > 
0.1. All image sections and atlas coordinates are referenced to the Montreal Neurological 
Institute (MNI) coordinate system (Evans et al. 1993). Numbers refer to z coordinate of 
axial slices. Left is displayed on the left. 
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 From a technical perspective, these results provide further evidence that 

spontaneous BOLD fluctuations are constrained by anatomical projections (Biswal et al. 

1995; Fox & Raichle 2007; Vincent et al. 2007; Johnston et al. 2008). It is especially 

compelling in the present case as the contralateral connectivity pattern observed cannot 

be attributed to artifacts such as shared vasculature—the cerebellum is supplied by its 

own major arteries (Schmahmann 2007b)—or to head motion. Moreover, there are no 

direct anatomic projections between the cerebral cortex and cerebellum. Thus, the results 

reinforce that fcMRI correlations can reflect polysynaptic connectivity. 

 

Motor and prefrontal cortex form independent circuits with the cerebellum. 

Cerebellar correlations with MOT versus DLPFC seed regions reveal clear 

anatomic dissociation (Figure 1.1). MOT correlations recover the dual motor 

representations in the anterior/superior cerebellum and in the inferior cerebellum (Figure 

1.1A), consistent with the expected topography of primary and secondary representations 

(Snider & Eldred 1951; Grodd et al. 2001), while DLPFC correlations are found in the 

posterior hemispheres (Crus I/II, Figure 1.1B). The cerebellar regions associated with 

MOT correspond to lobules IV-VI and VIIIB (lobule locations estimated based on 

Schmahmann et al. 1999, 2000). Importantly, these lobules contain a preponderance of 

labeled neurons from viral injections to M1 in the cebus monkey (Kelly & Strick 2003). 

The DLPFC correlations (Figure 1.1B) appear in regions that correspond to Crus I and 

Crus II of the cerebellum (Schmahmann et al. 1999, 2000), which contain the majority of 

labeled neurons from viral injections in monkey prefrontal area 46 (Kelly & Strick 2003). 
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Random effects analyses comparing left and right MOT and DLPFC maps are displayed 

in Supplementary Figure S1.1. 

Further analysis revealed that seeding the peaks of the cerebellar regions 

recovered from the preceding analysis results in correlations with distinct cerebral 

networks. Figure 1.2A displays the two networks that are correlated with cerebellar seeds 

CBMMOT and CBMDLPFC (locations of seeds displayed in Figure 1.2B and listed in Table 

1.2,), projected onto the inflated cortical surface (peak frontal coordinates and z(r) values 

listed in Supplementary Table S1.1). Importantly, cortical regions correlated with these 

two cerebellar sites were non-overlapping, supporting the characterization of cerebral-

cerebellar circuits as closed, segregated loops (Kelly & Strick 2003). 

  
Figure 1.2. Projections from the cerebellum 
form closed-loop circuits. Regions in the anterior 
and posterior cerebellar hemispheres correlate 
with distinct, non-overlapping cerebral networks. 
(A) Regions correlated with CBMMOT (lobule V) 
are almost entirely restricted to motor cortex in 
the frontal lobe, while regions correlated with 
CBMDLPFC (Crus I) include lateral dorsal, ventral 
as well as medial prefrontal cortex. Note that the 
CBMMOT-correlated region at the base of the 
temporal lobe on the medial view is most likely 
actually correlated activation in the cerebellum 
that has “spilled over” into the cerebral cortex 
because of the cortical inflation and does not 
actually reflect correlations in the temporal lobe.  
Maps are at a threshold of z(r) > 0.1. The volumes 
are projected onto the left hemisphere cortical 
surface of the PALS atlas (Van Essen 2005). The 
right hemisphere produces indistinguishable 
results. Borders reflect approximate borders of 
relevant Brodmann areas encompassing the 
prefrontal cortex and motor cortex (see Fig 1.7). 
M1 = Primary motor cortex, PFC = Prefrontal 

cortex. (B) Locations of the seed regions are shown schematically (colored asterisks) on 
slices of the cerebellum.  
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The cerebellum contains (at least) four distinct projection zones from the frontal cortex.  

 Having established that fcMRI can map distinct fronto-cerebellar circuits, we next 

extended the approach to map the cerebellar targets of four separate frontal regions: 

MOT, DLPFC, MPFC and APFC. For these analyses, because between-circuit contrasts 

were the target and not evidence for lateralization, bilateral seeds were used to increase 

statistical power. Figure 1.3 displays subtractions between two given maps, effectively 

revealing the relative differences in connectivity patterns for different fronto-cerebellar 

connections.  

All comparisons show dissociations in the topography of the cerebellar 

correlations based on connectivity with the different frontal regions. Figure 1.3A exhibits 

the dissociation of cerebellar connectivity with MOT and DLPFC seeds, respectively, as 

discussed above. Figure 1.3B shows further fractionation of posterior cerebellum by 

comparing DLPFC to MPFC. Specifically, MPFC-correlated regions of the cerebellum 

localize to lobule Crus I, while DLPFC-correlated regions span Crus I as well as Crus II 

in its lateral and ventral extent (Schmahmann et al. 1999, 2000). APFC correlations, 

relative to MPFC correlations, appear largely in lobule VI (Figure 1.3C), and more 

ventrally in VIIIA. MOT and APFC correlations dissociate between lobules VIIIB and 

VIIIA/VIIB in ventral cerebellum (Figure 1.3D) and between lobules V and VI in dorsal 

cerebellum (not shown). The results from the random effects analyses comparing 

cerebellar connections with different frontal sites are shown in Supplementary Figure 

S1.2 (peak coordinates and t-scores summarized in Table S1.3). 

 



 30 

Table 1.3: Peak Cerebellar Coordinates from Frontal Seeds. Atlas coordinates and 
abbreviations for cortical regions are similar to Table 1.1. R= right, L = left. Labels 
represent approximate lobule locations based on the MRI atlas of the human cerebellum 
(Schmahmann et al. 1999; 2000). 

Contrast Label Coordinate   z(r) 
MOT-DLPFC       
 L Lobule VIIIB -24 -54 -56 0.33 
 L Lobule V -20 -52 -22 0.32 
 R Lobule VIIIB 20 -60 -56 0.28 
 R Lobule V 24 -54 -20 0.27 
DLPFC-MPFC       
 L VIIB -34 -68 -50 0.32 
 L Crus II -10 -76 -28 0.31 
 R Crus II 10 -78 -25 0.28 
 R Crus II 34 -70 -50 0.25 
MPFC-APFC       
 R IX 6 -54 -48 0.41 
 R Crus I 26 -82 -34 0.39 
 L Crus I -26 -82 -34 0.38 
APFC-MOT       
 L VI/Crus I border -34 -54 -34 0.43 
 L VI -30 -66 -28 0.41 
 R VI/Crus I border 36 -56 -32 0.32 
 L VIIB/VIIA border -38 -46 -46 0.31 
 L VI -34 -66 -26 0.31 
 L Crus I -46 -54 -36 0.29 
  R VIIB/VIIA border 38 -48 -48 0.26 
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Figure 1.3. The cerebellum contains at least four distinct zones associated with 
frontal cortex.  To illustrate the presence of multiple cerebro-cerebellar circuits, maps 
from distinct frontal seeds are directly compared. Each panel shows the regions being 
subtracted (left) and the resulting correlation map (right). Maps are at a threshold of z(r) 
> 0.1. (A) MOT – DLPFC results in preferential correlations with MOT in lobule V in 
the anterior hemisphere as well as in lobule VIIIB. Preferentially DLPFC correlated 
regions include Crus I, Crus II, VIIB and IX. (B) DLPFC – MPFC further divides the 
posterior cerebellum: MPFC has greater correlations with Crus I, while DLPFC has 
relatively greater with Crus II (C) MPFC – APFC dissociates in anterior cerebellum 
betweeen Crus I and lobule VI, respectively. In ventral cerebellum MPFC preferentially 
correlates with IX while APFC correlates with VIIIA. (D) APFC – MOT: APFC 
preferentially correlates with VI while MOT correlates with lobule V in the anterior lobe. 
APFC continues to correlate with the extent of VI moving ventrally and also appears to 
correlate with VIIB-VIIIA and Crus II at the ansoparamedian fissure, while MOT retains 
correlations in VIIIB. Numbers refer to z coordinate plane of the cerebellar slice. 
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We are cautious about claiming precise anatomical localization of our findings 

due to the smoothing and averaging of our functional data. However, in addition to the 

group-averaged maps we also inspected the maps of individual subjects to determine 

whether the same general patterns also holds at the single-subject level. Figure 1.4 shows 

the results of the above comparisons carried out in three subjects projected onto their 

respective anatomical volumes. The dissociations in the cerebellum are evident even at 

the individual-subject level.  

 

Figure 1.4. Gross 
topographical pattern is seen 
on the individual subject level. 
The same comparisons in Figure 
1.3 are computed individually 
for three representative subjects. 
Results are overlaid on each 
subject’s own anatomical 
volume. While the locations of 
the peak correlations vary 
somewhat, the overall pattern of 
connectivity is very similar to 
that seen at the group level. 
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Note also that the specificity of the cerebellar effect is particularly prominent 

when the background correlations that are common between the left and right seeded 

maps are removed via the subtraction method. As shown in Figure 1.5, raw correlation 

maps of the cerebellum without subtraction reveal bilateral functional connectivity (peak 

correlation coordinates in Table 1.2); the contralateral cerebellum shows relatively 

stronger connectivity that becomes prominent when the right and left hemisphere seeded 

maps are directly contrasted (as in Figure 1.1). These observations are consistent with the 

known contralateral, polysnaptic connections between cerebral cortex and the cerebellum 

(Schmahmann 1996; Middleton & Strick 2001; 

Kelly & Strick 2003). It should also be noted that 

in all of our analyses we saw robust connectivity 

with the thalamus, which is the obligatory 

anatomical step in projections from the 

cerebellum to the cerebral cortex (see also Zhang 

et al. 2008). We could also detect correlations in 

the pons but not in all instances (Figure 1.3).  

Figure 1.5. Raw correlation maps show some 
bilateral cerebellar connectivity from 
unilateral cortical seeds. While subtraction of 
left and right seeds in a given cortical region 
highlights the contralateral organization of 
cerebellar connectivity (see Figure 1.1), the raw 
left and right seeds show present, but weaker, 
ipsilateral connectivity with the cerebellum. This 
observation is consistent with the smaller 
percentage of cerebellar projections that cross 
back to the ipsilateral hemisphere (see text). Maps 

are at a threshold of z(r) > 0.1.  
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Cerebro-cerebellar circuits are not detected for primary auditory and visual cortices. 

 All of the frontal sites we tested resulted in robust functional correlation with 

different parts of the cerebellum. However, in order to interpret these differences it is 

equally important to demonstrate that cerebellar correlations are also selective. To this 

end we seeded regions in or near primary auditory (Heschl’s gyrus) and primary visual 

cortex, both of which do not appear to project to the cerebellar hemispheres 

(Schmahmann & Pandya 1993). The results of these analyses are displayed in Figure 1.6, 

which also includes correlation maps produced from MOT and DLPFC for comparison 

purposes. In keeping with expectations, although the auditory and visual seeds produced 

robust cortical correlations they failed to correlate with activity in the cerebellar 

hemispheres.  

Figure 1.6. Cerebellar 
hemispheres are not 
correlated with primary 
visual and auditory 
cortices. While seeding 
striate cortex (VIS) and 
Heschl’s gyrus (AUD) 
produces robust 
correlations in the cerebral 
cortex, no connectivity 
appears to be present in the 
cerebellum. Correlations 
with each of the four 
cerebral regions are 
displayed in successive 
coronal slices of the 
cerebellum. Maps are 
thresholded at z(r) > 0.1. 
MOT and DLPFC 

correlations are shown for comparison purposes. The location of the seed regions 
corresponds to the highest intensity values (white/yellow patches) in the first panel of 
each column. Numbers correspond to the y coordinate of each coronal slice. 
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A map of projection cortical zones from the cerebellum. 

Our final inquiry assessed the distribution of cortical connectivity resulting from 

seeding the dissociated regions in the cerebellum that were each linked to distinct 

prefrontal regions. We have already demonstrated that regions in lobule V and Crus I of 

the cerebellum are correlated with non-overlapping cortical networks (Figure 1.2). Figure 

1.7 displays the result of seeding different regions within the posterior lobe of the 

cerebellum (cerebellar seed coordinates in Table 1.2). While largely different cortical 

networks are obtained, there is also a good deal of overlap in the networks for the two 

most posterior seeds (located in Crus I and the Crus I/Crus II border of the cerebellum, 

see Figure 1.7B). Thus, cerebellar regions associated with prefrontal cortex are embedded 

within distinct cortical circuits but these circuits are not entirely independent at the 

resolution explored here.  
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Figure 1.7. Neighboring regions 
of the cerebellum participate in 
distinct, yet partially 
overlapping, cerebral networks. 
(A) Cortical connectivity with 
bilateral CBMDLPFC, CBMMPFC 
and CBMAPFC seeds did not show 
the same strict segregation that 
was seen in the comparison 
between CBMDLPFC and CBMMOT 
(Figure 1.2). These regions, 
especially CBMDLPFC and 
CBMMPFC appear to participate in 
distributed cortical networks 
which converge in dorso-, ventro- 
and medial prefrontal cortex, at 
the posterior midline, and in 
regions of the lateral parietal and 
temporal lobes. The CBMAPFC 
network appears to be segregated 
from the other two networks 
shown in the prefrontal cortex, 
though some convergence was 
also seen, for example in BA 47. 
Borders reflect approximate 
borders of relevant Brodmann 
areas encompassing the prefrontal 
cortex and motor cortex. Hatched 
regions represent overlap of the 
CBMAPFC correlation map with 
the two other networks. BA = 
Brodmann area. (B) Schematic 
representation of the seed 
locations (asterisks) on cerebellar 

slices. CBMDLPFC coordinates: +/- 12, -82, -28; CBMMPFC coordinates: 34, -80, -36 and -
32, -52, -34; CBMAPFC coordinates: +/- 36, -52, -34.  

 

 

A map of cerebellar topography. 

As a summary of our findings, a comprehensive map of the cerebellar correlations 

with the four frontal regions is shown in slice view as well as projected onto the cortical 
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surface of the cerebellum in Figure 1.8. While some overlap of correlated regions does 

occur—between DLPFC and MPFC and between DLPFC and APFC—the segregated 

topography of cerebellum is nonetheless impressive. Each of the four frontal regions 

correlates with distinct cerebellar regions. 

 
Figure 1.8. A provisional 
map of human cerebellar 
topography. All of the data 
in the present study were 
combined to provide an 
estimate of cerebellar 
topography based on the 
four dissociated regions 
illustrated in Figure 1.3. 
Correlations with the four 
frontal regions are 
illustrated for descending 
transverse sections of the 
cerebellum in the left panel. 
Each map is based on the 
averaged (N=40) z(r) 
correlation map (threshold 
= z(r)  > 0.1). Hatched 
regions represent overlap of 
two correlation maps. The 
z(r) correlation maps are 
projected onto the cortical 
surface of the cerebellum in 
the right panel to illustrate 
the topographical 
organization of the fronto-
cerebellar connectivity. 

This map provides a provisional (and certainly incomplete) characterization of the human 
cerebellum based on connectivity to the frontal cortex. The top projection is a superior 
view looking down on the rostral and dorsal faces of the cerebellum; the bottom 
projection shows the view from behind. The middle projection is a rotation between the 
other two (showing the entire dorsal face) to emphasize the relationships among all four 
dissociated cerebellar zones. Note that the majority of the mapped portion of the posterior 
cerebellum is associated with prefrontal (cognitive) regions of the neocortex. Anatomical 
labels and major divisions based on the MRI atlas of the human cerebellum 
(Schmahmann et al. 1999; 2000). 
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 The results of displacing each seed while remaining within the four frontal zones 

is displayed in Supplementary Figure S1.3. Note that despite moving the seeds at least 8 

mm from the original locations, the cerebellar topography remains remarkably similar to 

that shown in Figure 1.8. This implies that the overall topography of fronto-cerebellar 

connectivity we show here is not merely a product of the idiosyncratic choice of 

coordinates within the four frontal zones we investigated. On the other hand, it also 

implies that the resolution applied here may not be able to investigate fine-grained 

differences in connectivity with the cerebellum for proximal locations in cortex. 

The presence of segregated circuits that involve three distinct prefrontal regions 

confirms that the cerebellum participates in multiple different networks subserving 

cognition. Relevant to recent interest in the ‘default network,’ which includes MPFC 

(Gusnard et al. 2001; Raichle et al. 2001; Buckner et al. 2008), the cerebellar region 

correlated with MPFC (Figure 1.8) is a prominent component of the default network. In 

fact, seeding this region results in correlations in the cerebral cortex that nearly fully 

encompass the cortical regions that comprise the default network (Figure 1.7). Taken as a 

group, the regions of the cerebellum linked to prefrontal cortex occupy a significant 

portion of the posterior hemisphere suggesting that, in humans, a large portion of the 

cerebellum may be dedicated to supporting cognitive functions. 

 

Fronto-cerebellar circuits replicate and dissociate in an independent data sample.  

 The analyses above map four distinct fronto-cerebellar circuits. To formally 

explore whether the circuits dissociate we extracted seed regions in frontal cortex and the 
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cerebellum from Data Set 1 and tested for segregation in the independent Data Set 2. 

Specifically, we predicted a quadruple dissociation between cerebellar regions that 

preferentially correlate with four different zones in the frontal cortex. This is a stringent 

and conservative prediction: the correlation between each cerebellar region and its 

prefrontal target was predicted to be significantly stronger than any of the other three 

prefrontal targets. Results confirmed this prediction each of the four cerebellar regions 

(Figure 1.9): two-tailed t-tests between each frontal region and each cerebellar zone 

revealed that correlations between lobule V and MOT, between Crus I and DLPFC, 

between Crus II and MPFC, and between lobule VIIIA and APFC were significantly 

stronger than any other pairing of these cerebellar and frontal sites (all p’s < .001). These 

results demonstrate that the cerebellar regions under consideration reliably and 

preferentially correlate with different frontal regions within the cerebellum. 
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Figure 1.9. Frontal-cerebellar circuits dissociate in an independent data set. 
Spherical seed regions of 2-mm radius were drawn around local maxima in the cerebellar 
maps generated from Data Set 1. These regions were then carried forward and tested in 
the independent Data Set 2 to formally quantify the dissociation between the four fronto-
cerebellar circuits. Each graph depicts the mean z(r) between a given (bilateral) cerebellar 
region and each of the four bilateral frontal target regions. The cerebellar seed regions are 
depicted in the insets on each graph (coordinates: MOT cerebellar region: +/- 20, -50, -
24; DLPFC cerebellar region: +/- 12, -80, -24; MPFC cerebellar region: +/- 22, -86, -40; 
APFC cerebellar region: +/- 36, -46, -52). ** p < .001. 
 

Discussion 

 

 Leiner et al. (1986) proposed that the cerebellum exerts influence over non-

motor functions. Viral tracing and neurophysiological techniques in nonhuman primates 

(Middleton & Strick 1994, 2001; Schmahmann & Pandya 1997; Dum & Strick 2003; 

Kelly & Strick 2003) and neuroimaging and neuropsychological techniques in humans 
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(Fiez et al. 1992; Desmond & Fiez 1998; Schmahmann 2004; Ravizza et al. 2006; 

Schmahmann 2007a; O'Reilly et al. 2008; Schmahmann & Pandya 2008) all point 

compellingly to a role for the cerebellum in cognition. However, little is known about the 

topography of the human cerebellum in relation to frontal-cerebellar circuits. Here we 

map human cerebellar topography using functional connectivity and demonstrate the 

presence of four separate frontal-cerebellar circuits including three distinct circuits that 

associate with prefrontal cortex (Figure 1.6).  

 As a group, the regions of the cerebellum functionally coupled with prefrontal 

cortex occupy a significant extent of the posterior hemisphere. Interestingly, the 

prefrontal-coupled regions of cerebellum in particular appear to have undergone 

significant expansion in recent hominid evolution. We also note that the network of 

cortical regions correlated with a particular lobule in posterior cerebellum, Crus I, is 

similar to the default network (Raichle et al. 2001; Buckner et al. 2008). Thus, the human 

cerebellum contains multiple regions that are correlated with distinct areas of prefrontal 

cortex. Functional understanding of the cerebellum should consider these distinctions.  

Early anatomical work demonstrated that the dentate nucleus projects to regions 

of the thalamus with known connections to association areas of cerebral cortex (for a 

review see Leiner et al. 1986), providing an initial hint of the neural architecture that 

could support cerebellar influence on these areas. However, the application of both 

antereograde and retrograde viral tracers in the monkey provided the most compelling 

evidence for this hypothesis by showing that different areas of cortex participate in closed 

circuits with different regions of the cerebellum (Middleton & Strick 1999, 2001; Kelly 
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& Strick 2003). Our use of fcMRI produces results consistent with the known anatomy of 

cerebro-cerebellar connections.  

On the basis of the tracing work, we expected to find predominately crossed-

laterality in our fronto-cerebellar correlation maps. Though all cortical regions were 

preferentially correlated with contralateral cerebellum (i.e. MOT and DLPFC), bilateral 

connectivity was present for all regions tested to varying degrees (i.e. Figure 1.5).  While 

the connectional architecture is mostly crossed, a moderate number of projections from 

neocortex (20-30%) terminate—via the pons—on ipsilateral cerebellum. Similarly, the 

pathway from cerebellum to the thalamus is predominantly, but not wholly, crossed 

(Schmahmann 1996).  

Inspection of the raw correlation maps (Figure 1.5) suggests that the motor cortex 

seeds produce relatively few ipsilateral correlations compared to the more robust bilateral 

pattern seen for the 3 prefrontal seed regions. Future work on this topic can determine 

whether this is a meaningful functional or anatomic difference. It is also possible that the 

ipsilateral cerebellar correlations reflect correlations with the frontal site contralateral to 

the original neocortical seed. A neocortical seed in one hemisphere often produces robust 

correlations with the same region in the opposite hemisphere (Biswal et al. 1995), 

presumably reflecting strong interconnectivity of these regions via the corpus callosum 

(Johnston et al. 2008). Therefore ipsilateral cerebellar correlations could arise indirectly 

via the correlated ipsilateral neocortex.  

As predicted, we observed intrinsic, correlated activity between motor cortex and 

the anterior cerebellar hemispheres and lobule VIIIB and between DLPFC and the 

posterior cerebellar hemispheres. Examining our results in more detail reveals a 
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fractionation of the posterior cerebellum into regions that preferentially correlated with 

MPFC relative to DLPFC (such as Crus I) and vice versa (Crus II). Additionally, we 

found that placing a seed region in APFC resulted in correlated activity in dorsal lobule 

VI and ventral VIIB-VIIIA, defining a fourth zone (which can also be distinguished from 

MOT representations). The cerebellar topography resulting from motor and dorsolateral 

prefrontal cortex seeds is well in keeping with established anatomical connectivity in the 

monkey. We additionally provide strong evidence that there are at least two other circuits 

connecting the cerebellum to medial and anterior prefrontal cortices in humans. Studies 

in nonhuman primates suggest that there are some projections to the pons from 

dorsomedial prefrontal convexities but not from ventrolateral or orbitofrontal cortices (for 

a summary see Schmahmann & Pandya 1997). Our map of cortical correlations with the 

posterior cerebellar hemispheres (Figure 1.7) suggests the possibility that there exist 

cerebro-cerebellar circuits in human prefrontal cortex that may not find a homologue in 

nonhuman primates. Placing seeds in primary auditory and visual cortices did not 

produce correlations in the cerebellum, providing an internal control for our results. 

The observation that extensive portions of the posterior cerebellum are associated 

with putatively ‘cognitive’ networks is especially interesting in light of the suggestion 

that phylogenetic expansion of certain lateral and ventral aspects of the cerebellum and 

cerebellar nuclei has paralleled the expansion of the frontal cortex (Rilling & Insel 1998; 

MacLeod et al. 2003; Whiting & Barton 2003). The ventral half of the dentate nucleus, 

which comprises the fiber connections to frontal cortex, is more developed in humans 

than in great apes (Middleton & Strick 1994, 2001; Matano & Hirasaki 1997; Matano 

2001; Dum & Strick 2003; Akkal et al. 2007). Further, relative to cerebellar midline 
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(vermis), the lateral hemispheres of the cerebellum have undergone significant expansion 

in hominoids relative to monkeys (MacLeod et al. 2003). The thalamus and pons, relay 

stations between the cerebellum and the neocortex, have also displayed correlated 

evolutionary development (Whiting & Barton 2003). The preferential expansion of these 

particular cerebellar regions may contribute to cognitive functions particularly well 

developed in humans, such as language and reasoning (Leiner et al. 1991, 1993). 

Interestingly, seeding a region in Crus I resulted in a pattern of correlated cortical 

activity including MPFC that resembles the default network (Figure 1.5) – a network of 

cortical regions linked to social cognition, remembering, and planning the future 

(Gusnard & Raichle 2001; Svoboda et al. 2006; Buckner & Carroll 2007; Buckner et al. 

2008; Spreng et al. 2009).  

 

Caveats. 

 Several caveats and open questions must be considered when interpreting fcMRI 

connectivity results. A pertinent issue to the present study is to what degree functional 

connectivity reflects underlying structural connectivity. The observation that DLPFC and 

MOT seed regions produced correlated regions in the cerebellum that are predicted by the 

monkey tracing work suggests that fcMRI respects anatomical constraints. Additionally, 

our control seeds in striate and auditory cortex did not produce correlations in the 

cerebellum, consistent with known anatomy. However, fcMRI connectivity is inherently 

a more pervasive measure than anatomical connectivity because two regions can be 

correlated with one another just by virtue of the fact that they participate in a common 

functional network.  
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 One implication of the possibility of indirect correlations for the present study is 

that other regions outside of the frontal cortex may drive the coherence patterns observed 

between the neocortex and the cerebellum. For example, seeding the posterior cerebellum 

(Crus I) produced a distributed network of correlations similar to the default network, 

including medial prefrontal cortex, the inferior parietal lobule and the posterior cingulate 

(Figure 1.7). Although medial prefrontal cortex was identified as the neocortical region 

exhibiting the strongest correlations with Crus I, we cannot rule out the possibility that 

another region within that network, for example the posterior cingulate, could mediate the 

relationship between MPFC and the cerebellum or contribute to the correlations in the 

cerebellum. For instance, parietal cortex has known anatomical connections with the 

cerebellum (Clower et al. 2001). This may also explain why regions in inferior temporal 

cortex exhibit correlations with regions in the cerebellum (i.e. Figure 1.7) despite 

evidence from tracing work that few, if any, projections exist between the pons and 

inferior temporal cortex (Glickstein et al. 1985; Schmahmann & Pandya 1991). Similarly, 

neocortical regions contralateral to a seed region may be responsible for driving the 

ipsilateral cerebellar response (Figure 1.5). Functional connectivity in other animals for 

which anatomical pathways are well characterized may help to resolve these questions. 

However, it is important to note that while the issue of pervasiveness makes the overlap 

of two correlation maps difficult to interpret, it does not undermine the interpretation of 

correlated networks that are clearly segregated; fcMRI remains a powerful technique for 

detecting divergent networks and for characterizing the topography of regions 

participating in them. 
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Conclusions. 

Our main objectives in this study were to explore fronto-cerebellar connectivity 

using fcMRI and to provide a preliminary map of the resulting topography. The results 

identify patterns of correlated activity consistent with the principles derived from the 

foundational tract-tracing work on this subject (Kelly & Strick 2003). The results suggest 

that fcMRI is constrained by anatomy and that it detects polysynaptic connectivity 

between regions. Moreover, while we present functional topography from four distinct 

regions in frontal cortex, viral tracing techniques have also identified widespread 

cerebellar projections to other association cortices including parietal cortex (Clower et al. 

2001); clearly a great deal of cerebro-cerebellar connectivity remains to be explored. 

Direct comparisons with other primates may also be useful; for instance, in Cebus 

monkeys, ventral area 46 and lateral area 12 in prefrontal cortex do not appear to be 

anatomically connected with the cerebellum (Middleton & Strick 2001). Whether 

homologous areas in humans would also lack functional connectivity with the cerebellum 

is an open empirical question. Our provisional results suggest the intriguing possibility 

that the prefrontal cortex in humans is functionally coupled with a considerable extent of 

the cerebellum. 
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Abstract 

 

Sharp spatial transitions in resting state functional connectivity suggest its 

possible utility in delineating the borders of functional areas. Here, we explored factors 

that affect functional connectivity profiles and the resultant derived boundaries. We 

observed that, for a fixed clustering algorithm, borders obtained from resting scans are 

highly consistent even across small samples. Some borders shift when coarser or finer 

topographic solutions are estimated, suggesting that the exact border locations reflect 

both the weighting of the functional connectivity gradients and the intrinsic data 

properties. While functional connectivity is constrained by anatomy, we found that 

transient contributions reflecting task state are sufficient to shift measured borders. Task-

defined network borders better explain task activation patterns than do resting-state 

borders. However, some broad features of organization are preserved across task state. 

This resilience of certain features of network topography, despite substantial changes in 

the exact locations of borders, underscores the inherently graded nature of fcMRI 

connectivity patterns. We discuss the implications of these findings for making inferences 

about areal organization from functional connectivity. Our results underscore the 

importance of surveying functional connectivity across a broader range of behavioral 

states than is presently the norm. 
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Introduction 

 

In his classic work Korbinian Brodmann  (1909/1999) described architectonic 

properties across the human cerebral cortex that displayed sharp boundaries in some 

instances and smooth transitions of features in others. These microscopic features were 

sufficient to delineate the boundaries of certain areas. Definitive areal characterization 

eluded these early anatomic studies because architectonic analysis by itself, especially 

with limited staining techniques, is insufficient to unambiguously define areas (Kaas 

1982; Maunsell & Van Essen 1987). Chemoarchitectural stains that show regional 

distribution of transmitter receptor types (Zilles et al. 2002) and gene expression patterns 

(http://www.brain-map.org/) are becoming incorporated into multimodal brain atlases. 

Such sources diversify the type of information that can be used for areal mapping and 

refine current understanding of which cytoarchitectural features are most relevant (Toga 

et al. 2006). Still, direct anatomic information about brain connectivity is nearly entirely 

absent for humans except for limited cases in the fetus where tracing techniques have 

some utility (Burkhalter, Bernardo & Charles 1993) and in post-mortem examination of 

axonal degeneration following brain lesions (Di Virgilio & Clarke 1997; Wiesendanger et 

al. 2004). For these reasons, indirect neuroimaging approaches for identifying 

connectivity patterns are needed to study cortical organization. 

Resting state functional connectivity MRI (rs-fcMRI) has emerged as a widely 

used, non-invasive approach for estimating connectivity. The technique relies on slow (< 

1 Hz), intrinsic fluctuations in the BOLD (Blood Oxygen Level Dependent) signal.  

Biswal and colleagues first used the correlation structure inherent in these fluctuations to 

map a network of correlated regions across somatomotor cortex (Biswal et al. 1995). 

Other brain networks known to posses direct or indirect anatomic connectivity have 

similarly been explored using similar fcMRI techniques (e.g. Xiong et al. 1999; Krienen 

& Buckner, 2009). Brain lesions disrupt functional coupling in a pattern consistent with 

known anatomy (Lu et al. 2011; Johnston et al. 2008; but see also Tyszka et al. 2011). 

Given that functional connectivity is constrained by anatomic connectivity, 

mapping connectivity transitions has the potential to provide information about the 

functional organization of the human brain. Adjacent regions of cortex can show 
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markedly distinct connectivity profiles, suggesting the possible existence of meaningful 

boundaries (e.g., Cohen et al., 2008; Nelson et al. 2010; Yeo et al. 2011, see 

http://www.youtube.com/yeokrienen). Several recent reports have noted correspondence 

between network topography obtained from rs-fcMRI and task-induced activations 

measured across a range of cognitive domains (Smith et al. 2009; Nelson et al. 2010; but 

see Mennes et al. 2012). Some have proposed that rs-fcMRI techniques can be used to 

estimate areal topography in the living brain, thereby addressing a critical gap in human 

neuroscience (Cohen et al. 2008; Power et al. 2011; Wig et al. 2011; Hirose et al. 2012). 

However, there are sufficient caveats and complexities to indicate that rs-fcMRI (by 

itself) in most cases will not be suitable for detecting the exact locations of areal 

boundaries.  

For instance, functional coupling can change as a function of the current task or of 

recent experience (McIntosh et al. 2003; Hampson et al. 2004; Rissman et al. 2004; 

Hampson et al. 2006; Summerfield et al. 2006; Albert et al. 2009; Lewis et al. 2009; 

Hasson et al. 2009; Pyka et al. 2009; Sepulcre et al. 2010; Stevens et al. 2009; Tambini et 

al. 2010; Shirer et al. 2011; Vahdat et al. 2011; Mennes et al. 2012; Norman-Haignere et 

al. 2012). Intrinsic fluctuations of activity within as well as outside task-relevant brain 

regions affect subsequent behavior (e.g., Fox et al. 2006b; Hesselman et al. 2008; 

Baldassarre et al. 2011). These observations indicate that intrinsic fluctuations and 

changes in connectivity are functionally meaningful. However, they also complicate 

efforts to use fcMRI to map underlying areal topography.  

Specifically, state dynamics in the signal measured by fcMRI complicate areal 

mapping because estimated boundaries can shift locations. For example, using a pattern 

classification approach Shirer et al. (2011) distinguished functional connectivity patterns 

obtained from four covert cognitive task states that could even be reliably identified in an 

independent cohort of subjects. These stable changes in functional coupling patterns raise 

the question of which cognitive state(s) produces connectivity patterns most 

representative of underlying structural connectivity. One possibility is that networks 

derived from resting state data reflect a particularly unbiased estimate of functional 

anatomy (Cohen et al. 2008; Wig et al. 2011). An alternative is that passive rest is no 

more or less well suited for discerning border locations than are other active task states. 
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Under this view, we should not expect the borders extracted from resting state data to 

align with task activations or provide a privileged estimate of areal borders.  

Several issues regarding comparison of task data and resting-state network 

topography have been raised already, for example whether a given task contrast cleanly 

isolates a cognitive process or constitutes a ‘robust functional localizer’ (Cohen et al. 

2008) and whether group-averaged data are appropriate given underlying variability of 

individual brains (Uncapher et al. 2010; Fedorenko et al. 2010). However, rs-fcMRI may 

produce biased estimates of the underlying topography for more fundamental reasons. 

This is not incompatible with the qualitatively good correspondence between the 

topography of resting-state networks and meta-analysis of task-induced activations across 

cognitive domains broadly (e.g. Smith et al. 2009). We ourselves rely on descriptions of 

general functional response properties when referring to resting state networks (e.g. the 

“Dorsal Attention Network”; Yeo et al. 2011).  In our view, the question is rather to what 

extent resting state connectivity can be used to delineate exact borders of functional 

areas, and how rigidly borders from rs-fcMRI can be used as functional localizers. While 

resting-state functional borders align reasonably well with many aspects of task-based 

functional responses, the issue at hand is exploring the implications of the unaccounted 

variance.  

An additional issue to consider when interpreting fcMRI is whether different 

results are observed when different analytic techniques are employed. While sharp 

transitions in connectivity profiles do exist for adjacent regions of cortex (Nelson et al. 

2010; Yeo et al. 2011, see http://www.youtube.com/yeokrienen), often the pattern of 

connectivity varies in a manner more akin to smooth transitions of gradients (e.g. see 

Figure 18 of Yeo et al. 2011). The identification of boundaries between networks when 

the transition of connectivity patterns is inherently smooth is uncertain and therefore 

susceptible to change due to the particular parameters employed for the estimation. More 

generally, network identification algorithms always require some estimation of the 

relevant parameters of “exemplar” networks from existing estimated members of the 

networks. This means that borders or subdivisions can change depending on how 

parameters are weighted or specified.  
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Here we explored these issues by changing either the technical criteria used for 

analysis or the type of task that participants performed during data acquisition. 

Foreshadowing the main results, we found that network boundary locations remain 

relatively stable across small samples when holding analysis and behavioral state 

constant. However, changing either the technical criteria for analysis or the task 

performed is sufficient to induce changes in the resulting correlation maps. We discuss 

the implications of these results for how rigidly fcMRI boundaries should be viewed, as 

well as the hypothesis (or common assumption) that the resting state is the most 

appropriate behavioral paradigm for interrogating functional coupling between regions.  

 

Methods 

Datasets 

Analyses were performed on a core dataset of 480 healthy, young adults (ages 18-

35, mean age = 21.0, 38.5% male) from the Genomics Superstruct Project (GSP). 

Participants performed two runs of eyes open rest. Analyses of these data have been 

published previously (e.g., Yeo et al. 2011). In order to assess behavioral state influences 

on network organization, two additional datasets (Semantic Classification dataset and 

Passive Tasks dataset) were used.  

The Semantic Classification dataset consisted of 16 subjects (mean age 21.1 yr, 

25.0% male) who completed two runs of a semantic classification task in addition to 

several passive rest scans. Briefly, the semantic task was a continuous, self-paced 

paradigm that required participants to classify centrally presented words as either 

semantically “abstract” or “concrete” by pressing one of two buttons with their right 

hand. The task protocol was continuous and self-paced. A new trial was initiated as soon 

as the participants made their response to the previous trial. A brief (250 msec) inter-trial 

interval consisting of a central fixation cross was inserted between each trial to make the 

transition from one word to the next apparent. Analyses of these data have been 

published previously (e.g., Buckner et al. 2009; Sepulcre et al. 2010).  

The Passive Tasks dataset consisted of 54 subjects (mean age 21.1, 48% male) 

who completed one run each of four different passive tasks. Each run consisted of 79 

time points (3.95 min). Runs always began with a passive fixation period, which lasted 
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30 seconds. Then the word START appeared, indicating that participants should begin 

performing the task. Task blocks lasted 180 seconds. Participants were instructed to 

perform the task continually until the word STOP appeared, after which they returned to 

passively fixating until the end of the run.  A central fixation cross was present 

throughout all task portions.  

In one task, participants silently counted backwards from 1000 by threes (Count 

Backwards). At the end of the run they were asked to verbally report the number they 

reached. In a second task, participants were told to imagine living out the next day, 

starting from the time they woke up the following morning (Imagine Tomorrow). They 

were to continue imagining going through the day, in as much detail as possible and in 

the first person perspective, until the end of the task period. At the end of the run they 

were asked to report what time of day they had reached. A third task consisted of 

passively fixating the central crosshair for the duration of the run (Fixation Only). A final 

task required participants to continue to fixate the center cross, but to additionally 

broaden their attention covertly in order to monitor the whole screen (Monitor Screen). 

They were told to attend to the screen for the possible appearance of rare, brief (200 ms) 

small dots, and to mentally note if they did notice one. It was emphasized that there was 

no need to count, remember the location, or otherwise keep track of any dots they 

perceived. Before the run commenced they were shown a short (30 s) training 

presentation in which sample dots were flashed at several different locations on the 

screen at random intervals. At the end of the task run they were asked to report whether 

they had noticed any dots. In no case were dots actually presented during the run, 

rendering this task perceptually identical to the other tasks.  

Passive tasks were counterbalanced across participants. The Passive Task dataset 

was part of a battery of 14 tasks acquired in a single scan session. The order of the 

Passive Task set was also counterbalanced with the order of the other 10 tasks, which 

were grouped into two different sets (a set of 6 tasks using audiovisual stimuli, and a set 

of 4 tasks using word stimuli). Results from these other task sets will be reported 

elsewhere. 

 

MRI Data Acquisition and Preprocessing 
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Data were acquired on 3T Tim Trio scanners (Siemens, Erlangen, Germany) 

using a 12-channel phased-array head coil. Functional data consisted of gradient-echo 

echo-planar images (EPI) sensitive to blood oxygenation level-dependent (BOLD) 

contrast. Parameters for the resting data were: repetition time (TR) 3,000 ms, echo time 

(TE) 30 ms, flip angle (FA) 85°, 3 x 3 x 3 mm voxels, field of view (FOV) 216, and 47 

axial slices collected with interleaved acquisition. Slices were oriented along the anterior 

commissure-posterior commissure plane. Functional runs lasted 6.2 min (124 time 

points). Structural data included a multiecho T1-weighted magnetization-prepared 

gradient-echo image (van der Kouwe et al. 2008). Parameters for the Semantic 

Classification dataset were: TR 3,000 ms; TE 30 ms; FA 90°; 3 x 3 x 3 mm voxels; FOV 

288, and 43 axial slices. Functional runs lasted 5.2 min (104 time points). Parameters for 

the Passive Tasks were the same as for the Semantic Classification dataset, with the 

exception that functional runs lasted 3.95 min (79 time points). 

fMRI processing steps included 1) discarding the first four frames of each run, 2) 

correcting for slice acquisition-dependent time shifts in each volume with SPM2 

(Wellcome Department of Cognitive Neurology, London, UK), and 3) correcting for head 

motion using rigid body translation and rotation parameters (FSL; Jenkinson et al. 2002; 

Smith et al. 2004). Linear trends over each run were removed and a low-pass temporal 

filter retained frequencies below 0.08 Hz. Spurious variance was removed using linear 

regression with terms for head motion, whole brain signal, ventricle signal, white matter 

signal and their derivatives.  

Individual participants’ T1 scans were reconstructed into surface representations 

using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). Functional data were registered to 

structural images using FreeSurfer’s FsFast package (Greve & Fischl 2009; 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The structural preprocessing and 

structural-functional data alignment steps are detailed in Yeo et al. (2011). Functional 

data were smoothed on the surface using a 6-mm full-width half-maximum kernel and 

were downsampled to a 4-mm mesh.  

 

Clustering 
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Clustering of cerebral cortical data was performed as in Yeo et al. (2011). For 

each subject, the Pearson’s product moment correlation was computed between each 

surface vertex (N = 18,715) and 1,175 ROIs spread evenly over the cortical surface. The 

ROIs consisted of single vertices spaced approximately 16 mm apart.  The “connectivity 

profile” of each surface vertex is its functional coupling to these ROIs. Each participant’s 

18,715 x 1,175 matrix of correlations was binarized to retain the top 10% of correlations 

before averaging for the group estimates. The connectivity profiles were clustered using a 

mixture of von Mises-Fisher distributions (Lashkari et al. 2010; Yeo et al. 2011). For 

more details, we refer the readers to Yeo et al. (2011). Using this approach the number of 

clusters must be specified a priori. Because our previous analyses (Yeo et al. 2011) 

identified solutions with 7 and 17 network clusters to be particularly stable, we adopted 

these for the present study. 

 

Reliability of Network Boundaries in Small Data Samples 

To assess the stability of resting-state fcMRI border locations, the 480 participants 

were divided into 30 groups of 16 subjects. Clustering was performed on each 

independent sample. Clustering over all 480 participants served as the reference against 

which the smaller samples could be compared (Figure 2.1A). Overlap between the 

reference and each of the 30 samples was quantified as the percentage of vertices with the 

same network assignment as the reference solution. The worst, median and best scores 

are shown in Figure 2.1B. 

 

Sensitivity of Estimated Network Boundaries to Analysis Effects 

 The boundaries of the 7 and 17 network solutions were overlaid on the same 

surface in order to appreciate the sensitivity of boundary locations to the particular 

decisions made in the analysis, for instance whether seeking a 7-network or a 17-network 

solution (Figure 2.2).  

 

Sensitivity of Estimated Network Boundaries to Task State 

To assess the extent to which border locations shift as a function of task state, we 

contrasted clustering performed on passive rest scans with semantic task scans collected 
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in the same participants (Semantic Dataset; Figure 2.3). We computed the correlation 

between each vertex’s whole-cortex fcMRI maps derived from the two conditions, 

averaged across all subjects (Figure 2.4A). A seed-based approach was used to quantify 

salient aspects of the clustering results. Seed regions were either taken from our previous 

work (e.g., Figure 9 of Yeo et al. 2011) or selected post hoc to illustrate similarities and 

differences between connectivity profiles derived from the different task states (Figure 

2.4B-E). Each seed region was a single ~4mm vertex. Correlation maps were obtained for 

each individual seed as the Pearson’s product moment correlation between each seed 

region’s time course and the time courses of all other vertices on the cortical surface. 

Maps were transformed to z-maps using Fisher’s r-to-z transformation and group-

averaged. An inverse Fisher’s r-to-z transformation was applied to obtain group-averaged 

correlation maps. Borders derived from the passive rest scans and from the semantic task 

scans were then overlaid separately on a map of beta estimates for the semantic task to 

show how the functional connectivity borders conform to the task activity map (Figure 

2.6). 

We then compared the connectivity profiles of the four tasks comprising the 

Passive Task dataset (Figure 2.7B) to connectivity profiles from a dataset of 1000 

subjects performing eyes open rest (Yeo et al. 2011). Using seed-based analyses, we 

identified specific changes in whole-cortex connectivity as a function of task (Figures 

2.8-9). We selected seeds based on their network assignment “confidence.” This was 

quantified by comparing the degree of fit for the best-fit network of a given vertex to the 

fit of its next-best network by clustering each task independently into 7 networks (see 

Figure 8 in Yeo et al. 2011).  In this way, we choose seed regions whose correlation map 

expected to conform reasonably well to their assigned networks. We only chose seeds for 

which their confidence values were high for at least 3 of the 4 tasks. Regions selected in 

this way also tended to avoid border regions, where any observed connectivity 

differences might be difficult to interpret. We then plotted the correlation maps for those 

tasks that fit our criterion (Figures 2.8-9). 

 

Visualization 
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Parcellation and seed-based correlation maps were transformed from FreeSurfer 

surface space to the inflated PALS cortical surface using Caret (Van Essen 2005; Van 

Essen & Dierker 2007).  Network colors match Yeo et al. (2011). Boundary lines were 

smoothed to remove high spatial frequency jaggedness resulting from mapping the data 

to PALS space.  

 

Results 

 

Estimates of Network Boundaries Are Reliable Across Small Samples of Subjects 

Figure 2.1A displays the overlap of the borders obtained from the 7-network solution for 

the 30 samples of 16 participants. The worst, median and best overlap between the 

reference boundaries (computed from the full dataset of 480 participants) and the 30 

samples are depicted in Figure 2.1B. Overlap is defined as the percentage of vertices that 

share the same network assignment in the reference and sampled solution. The scores 

were 74%, 92% and 93% overlap for the worst, median and best overlap, respectively, 

indicating good agreement of border locations.  
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Figure 2.1. Network topography is reliable across small samples. The core dataset 
was divided into 30 independent samples of 16 subjects each. Borders were computed 
separately for each sample and plotted as a probability heat map in (A). Probability refers 
to the proportion of samples for which a border falls at each point across the surface. 
Black lines depict reference boundaries computed from the entire sample (N = 480). (B) 
Percent overlap between each sample and the reference networks were computed by 
counting the number of vertices that received the same network label. The worst, median 
and best-ranked percentages are shown below surface visualizations of the reference 
(black) and respective sample (teal) borders. 
 
Sensitivity of Network Boundaries to Analysis Criteria 
 The above analyses establish a high level of reliability in the estimation of 

boundary locations from resting data. However, are the boundaries valid representations 

of meaningful functional borders? While the ground truth is difficult to estimate, one can 

gain insight into the question of validity by comparing multiple reasonable solutions to 

boundary estimation. Figure 2.2 shows the 7-network and 17-network solutions derived 

from the core dataset. If the 17-network solution represents a purely (spatially) 

hierarchical decomposition of the coarser 7-network, then the 17-network map should 
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cleanly subdivide the 7 networks into finer parcellations such that the 7-network 

boundaries are also boundaries in the 17-network estimate. Such a hierarchical split was 

not observed. The exact positions of boundaries reflect features of the analysis procedure 

in addition to intrinsic properties of the data.  

 

 

Figure 2.2. Precise location of borders between networks can shift as a consequence 
of analysis procedure. The core dataset was clustered into 7 and 17 networks and 
borders are overlaid in the middle column. Asterisks identify examples of good spatial 
correspondence (along the post-central gyrus) as well as poor correspondence (occipital 
and posterior parietal cortex) between two solutions. See also Figure S2.1. 

 

 

While many borders do exhibit positional stability, for instance the post-central 

sulcus boundary between the Somatomotor and Dorsal Attention networks (asterisk in 

Figure 2.2), in other cases the 17-network solution produced shifted borders relative to 

the 7-network solution. For example, the border along parieto-occipital cortex dividing 

the Visual Network (purple) from the Dorsal Attention Network (green) shifts posteriorly 

in the 17-network solution (asterisk in Figure 2.2). The border also shifts in the posterior 

inferior parietal lobule (IPL) (asterisk in Figure 2.2).  The emergence of the dark blue 
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network in the 17-network estimate, which includes posterior IPL, retrosplenial cortex 

and parahippocampal cortex, shifts the boundaries relative to the 7-network estimate. 

 Such inconsistencies arise because network estimation algorithms invariably 

require the (explicit or implicit) estimation of the parameters of “exemplar” networks 

from existing estimated members of the networks, such as the “average” connectivity 

profiles of the networks in our clustering algorithm (Yeo et al. 2011), the time courses of 

the spatially independent components in Independent Component Analysis (ICA; 

Beckmann et al. 2004), or the gradients in coupling strength to specified target regions 

(Cohen et al. 2008). A toy example (Figure S2.1) illustrates how these shifts might occur. 

 

 
 

Figure 2.3. Network boundaries are sensitive to task. 7-network solutions for Rest and 
for the Semantic Classification task were computed in the same subjects and are shown in 
the first and third column. The borders for each are overlaid in the central column. 
 

 

Network Boundaries are Sensitive to Task State 

 The above results complicate the use of intrinsic functional connectivity for 

estimating areal boundaries. However, the analyses above are consistent with the 

possibility that functional coupling properties are always stable. To assess the extent to 
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which the locations of borders shift dynamically as a function of the state of the subject, 

we compared the resulting network topography from clustering performed on passive rest 

scans versus semantic classification scans (Figure 2.3). Visual inspection reveals that the 

7-network solutions are globally similar for the two conditions. Nonetheless, the precise 

locations of the boundaries vary across the two conditions (overlap = 71.8%). For 

comparison, the overlap between the eyes-open-rest and a passive fixation condition 

collected in the same participants in the same session was 91.9%.  

To quantify these differences, we computed the correlation between each vertex’s 

whole cortex fcMRI maps in the two task conditions. Average correlation values for the 

left hemisphere are plotted along with the reference network borders from the core 

dataset (Figure 2.4A). There is general agreement between the two conditions (average 

correlations are 0.76 and 0.77 for left and right hemispheres)1. Nonetheless, clear spatial 

variation exists that changes boundary estimates. Figure 2.4B-E depicts seed-based 

functional connectivity maps from 4 seeds computed separately for the semantic task and 

passive rest. Figure 2.4D and Figure 2.4C show regions of high and low correspondence, 

respectively, where correspondence is measured as the correlation between the task and 

rest fcMRI maps for each seed. Differences across these seed regions are further 

quantified in Figure 2.5, which shows the correlation strengths of each seed to a set of 

specified cortical target regions.  

                                                 
1"For comparison, we also computed the average correlation between the passive rest 
condition and fcMRI maps derived from two scans of resting fixation acquired in the 
same participants and session as the Semantic Classification dataset. We found the 
correlation to be 0.87."
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Figure 2.4. Spatial distribution of task-dependent changes in connectivity profiles. 
(A) Correlation between each vertex’s whole cortex fcMRI maps derived from the 
passive rest and semantic task conditions, averaged across all subjects. (B-E) Seed-based 
correlation maps for four seed regions (black circles) plotted on a lateral view of the left 
hemisphere. Seed regions were single surface vertices. Black borders show the 7-network 
boundaries computed in each dataset. Numbers reflect correlation between the 
connectivity profiles of each seed region across the two conditions. 
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Figure 2.5 Functional connectivity fingerprints are altered in different task states. 
(A) Target regions. (B-E) Polar plots depict pairwise correlations between target regions 
in (A) and the four seed regions depicted in Figure 2.4. The scale for (B, D, E) is -0.4 to 
0.6. The scale for (C) is -0.2 to 0.3.  

 

 

Figure 2.6 shows that fcMRI borders computed from task data show better 

correspondence to the beta estimates of an event-related version of the same task than do 

borders computed from resting-state data. For illustration, we computed the average of 

beta estimates for vertices that fell in each of the 7 networks estimated from the semantic 

task and the passive rest task. We found that the high beta values fell primarily within 

one network (orange network) when using the task fcMRI borders (average beta estimate 

= 0.49). The average beta estimate for the same network estimated from passive rest 

fcMRI was 0.32. This lower average primarily occurred because more of the task 

responsive regions fell within an additional network (red network; average beta estimate 

= 0.15) relative to the task fcMRI borders (average beta estimate for the homologous 

network in semantic task data was -0.07).  
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Figure 2.6. Resting state networks do not conform to activations from a canonical 
language task. Networks defined from performing functional connectivity analysis on 
semantic task dataset correspond well to the task activation pattern. Borders between 
resting-state networks are derived from a dataset of 1000 participants (black lines; data 
from Yeo et al. 2011). Plotted as a heat map are beta estimates from different dataset of 
the same semantic classification task (data from Liu et al. 2009). The table lists the 
average beta estimates for each network, estimated separately for the semantic task 
fcMRI 7-network solution and for the passive rest fcMRI 7-network solution (colors as in 
Figure 2.3).  
 

 

Figure 2.7A shows, for reference, the clustering solutions obtained from the 1000 

subjects eyes open passive rest dataset in Yeo et al. (2011) (GSP). The maps in Figure 

2.7B plot the correlation between each vertex’s whole cortex task-derived fcMRI map 

and that same vertex’s whole cortex map computed from the GSP dataset. Each 
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correspondence map is plotted with the GSP network borders for reference. 

Correspondence to the GSP dataset was on average 0.80 or greater for all four tasks, 

indicating that broad details of the connectivity maps were similar across passive task 

variants. The high correspondence also confirms that reasonably stable fcMRI results can 

be obtained with relatively short data acquisition periods (see also Shirer et al. 2011). 

Connectivity profile correspondence to the GSP results was highest for the Fixation Only 

task (0.89). This is reasonable given that passive fixation is the most similar to the 

passive eyes open rest paradigm employed in the GSP protocol. Low correspondence in 

certain regions, such as the anterior temporal lobes and orbital frontal cortices, are most 

likely due to low signal-to-noise or susceptibility artifacts. Some of the regions of lowest 

profile correspondence values consistently cluster around the (GSP-derived) network 

borders in all four tasks. However, other portions of cortex distant from border locations 

also show relatively low correspondence. The Count Backwards task in particular shows 

low correspondence to the GSP solution across distributed portions of the cortical mantel 

(Figure 2.7B). 
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Figure 2.7. Passive task variants are sufficient to change network topography. (A) 
Plotted for reference are clustering results from a dataset of 1000 participants (GSP; Yeo 
et al. 2011). (B) Correspondence map of the correlation between each vertex’s whole-
brain correlation map in each of the four tasks from the Passive Task dataset to its whole-
brain correlation map in the GSP data. Numbers in parenthesis refer to the average 
correlation across the cerebral cortex to the GSP data for each task. 

 

 

Figure 2.8A shows the effect of task on the connectivity of a seed region placed 

on the dorsal bank of the superior parietal lobule, while Figure 2.8B shows the effect of 

task on a region in dorsomedial prefrontal cortex. Additional examples of regions that 

have different connectivity across tasks are depicted in Figure 2.9.  
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Figure 2.8. Functional connectivity maps are altered across different passive task 
states. (A) Seed region on the dorsal bank of the intraparietal sulcus shows different 
connectivity profile across tasks. A prominent difference in this seed region’s 
connectivity between tasks is highlighted with the asterisk in lateral occipital cortex. (B) 
Seed region in the dorsomedial prefrontal cortex showing differential connectivity to 
medial prefrontal and posterior cingulate cortices as a function of task. Numbers in 
parentheses indicate the confidence with which regions are assigned to their networks.  
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Figure 2.9. Functional connectivity maps are altered across different passive task 
states. (A) Seed region in parietal operculum changes connectivity to regions, including 
lateral temporal cortex, as a function of task. Numbers in parentheses indicate the 
confidence with which this region is assigned to its best-fit network for each task. (B) 
Seed region in ventrolateral prefrontal cortex has different connectivity to other cortical 
locations, including the inferior parietal lobule, as a function of task. Numbers in 
parentheses indicate the confidence with which regions are assigned to their networks. 
Higher numbers indicate better fit (relative to the next-best network). 
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Discussion 

 

 rs-fcMRI is a tricky method to interpret because multiple sources contribute to 

observed correlations between fluctuations in the BOLD signal measured across different 

regions of the brain. Strong evidence suggests that coupling patterns are constrained by 

anatomic connectivity (Lu et al. 2011). Another major contribution is the dynamic 

functional state of the participant, as illustrated by the results in Figures 2.3-9. Given the 

broad interest of the field to use functional connectivity methods to understand stable 

features of cortical organization, including areal boundaries, these distinct signal 

contributions as well as technical features of the method need to be considered carefully. 

Several questions motivate our discussion: Can functional connectivity measures be used 

to infer borders of cortical areas? If not borders of cortical areas, can functional 

connectivity reveal any level of meaningful functional subdivision that reflects stable 

organizational features of cortex?  

 

Can functional connectivity measures be used to estimate areal boundaries? 

 Sharp transitions in coupling patterns of rs-fcMRI can be observed and are largely 

consistent across different subjects and data samples (e.g., Cohen et al. 2008). These 

sharp transitions raise the possibility that rs-fcMRI can be used to locate the borders 

between brain areas (Cohen et al. 2008). However, a complex set of factors contributes to 

functional coupling measured by fcMRI. The present results and review of prior literature 

identify four separate reasons why functional connectivity in general cannot be expected 

to reliably estimate areal boundaries. The first two reasons relate to the use of functional 

connectivity as a specific method to identify areal borders; the second two focus on 

details of anatomic connectivity that limit the potential of local connectivity gradients, in 

isolation, to define areal boundaries. 

Technical limitations of boundary assignment algorithms. Gradients across a 

region of cortex depend on which reference regions outside of the mapped region are 

used to delineate the gradients (and how the reference regions are weighted). This is 

particularly apparent when different criteria are applied to the same data. For instance 

when comparing a coarse 7-network parcellation with a finer 17-network parcellation 
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estimated from the same data, the locations of some of the borders shifted (Figure 2.2). 

Different correlation thresholds also shift boundaries (see Figure 1 in Power et al. 2011). 

As the underlying anatomical connectivity is fixed, shifts in the exact boundary locations 

due to weighting criteria raises the concern that the problem of specifying precise borders 

is underdetermined. 

The encroachment of the IPL-RSP-PHC network boundary into the Dorsal 

Attention Network (Figure 2.2) is likely a consequence of this kind of phenomenon. 

Specifically, the regions in question assigned to the Dorsal Attention Network in the 7-

network solution in truth have a more similar connectivity profile with the IPL-RSP-PHC 

subnetwork of the Default Network, which leads to the reassignment of those regions and 

subsequent shift of the Dorsal Attention border in the 17-network solution. This intrusion 

into the Dorsal Attention Network is particularly inconsonant since the IPL-RSC-PHC 

network is typically regarded as a component of the Default Network (Vincent et al. 

2006; Andrews-Hanna et al. 2010; Yeo et al. 2011), and the Default and Dorsal Attention 

Networks are often negatively correlated (Fox et al. 2005). Consequently, there exist 

cortical regions assigned to the Dorsal Attention Network in the 7-network solution that 

become assigned to a component of the Default Network in the 17-network solution. 

This kind of problem is not unique to particular algorithms or neuroimaging data; 

it is an issue any time the outcomes from different methods (e.g., different histological 

stains, different cost functions) are incommensurate, or when heuristics used are 

ambiguous (Kaas 1987; see also Figure 32 in Rosa & Tweedale, 2005; Liang et al. 2012 

and Figure S2.1). Inconsistencies between solutions containing different numbers of 

networks exist in other network estimation models, such as graph theory (e.g., Figure 1 of 

Power et al. 2011) and ICA (e.g., compare Figures 1 and 3 of Smith et al. 2009). We do 

not view this as an insurmountable problem as the underlying data exhibit regular and 

often stark transitions in functional gradients, but this issue needs to be explicitly handled 

in models that make use of coupling transitions, as well as in cases where sharp 

transitions are not readily observed.  

Dynamic functional connectivity changes influence border estimates. While many 

aspects of global topography were preserved, we found appreciable shifts in border 

location when comparing a passive task to an active semantic processing task (Figures 
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2.3-6). Several of the differences in network topography are consistent with network 

changes, likely reflecting processing in task-relevant regions. For example, the left 

inferior prefrontal cortex and lateral temporal cortex are both active in this task when 

analyzed with a conventional blocked task activation approach. These regions become 

more correlated in the semantic classification task and cluster in the same functionally 

coupled network (Figure 2.6) -- what might be thought of as a form of task co-activation. 

In some ways, this result might seem obvious, but it underscores the point that functional 

connectivity is not solely constrained by anatomical connectivity and will dynamically 

shift to reflect the task or behavioral state.  

The comparison of passive rest to an active task requiring an overt motor response 

may raise the concern that these task conditions are too dissimilar to be meaningfully 

compared. However, we also observed shifts in connectivity profiles when comparing 

variants of passive task conditions that were perceptually identical and did not require an 

overt response (Figures 2.7-9). While a given seed region produced connectivity patterns 

that bore general resemblance across tasks, connectivity changes were sufficient to 

change topographic details in the observed gradients. This underscores an important point 

to which we will later return: just as with active task states, different passive mental 

operations are sufficient to change fcMRI connectivity profiles. As others have argued, 

passive tasks additionally suffer from a lack of experimenter control (Morcom & Fletcher 

2007). Little can be measured behaviorally to indicate what participants were actually 

doing. Given these ambiguities, it cannot be assumed that a passive rest state such as 

visual fixation is the most accurate state with which to estimate the topography of 

functional networks (Buckner, Krienen, & Yeo 2013). 

 

Can functional connectivity reveal meaningful functional subdivisions that reflect stable 

organizational features of cortex? 

  We do not believe rs-fcMRI methods can generally reveal the locations of areal 

borders. However, the functional networks that arise may still reflect stable properties of 

brain organization. The tricky feature for interpreting rs-fcMRI is that it is constrained by 

anatomical connectivity but also sensitive to reconfigurations from dynamic processes. 

We suspect that selecting a constant low-level task demand (e.g., eyes closed rest or 
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passive fixation) does not mitigate this issue. All task states presumably encourage 

functional reconfigurations particular to their demands. Given these complexities, can we 

learn anything about stable properties of functional organization from rs-fcMRI? 

 While dynamical reconfigurations adjust details, certain broad properties of 

functional connectivity networks generalize across many contexts and analysis strategies 

(Buckner, Krienen & Yeo 2013). Regions at and near primary sensory and motor cortices 

tend to show local functional coupling, likely reflecting a fundamental organizational 

feature of these regions. By contrast, association regions tend to couple in large 

distributed networks with a prefrontal, parietal association, frontal midline, and temporal 

component (Figure 2.3). While the details of their exact borders change with different 

acquisition tasks, the general organization tends to remain. Certain networks also appear 

relatively robust to state changes – in particular the core regions of what has come to be 

known as the Default Network (e.g., Figure 2.4D, though see Figure 2.8C and Figure 

2.9B for examples of changes that affect certain components of the Default Network). 

Stable features of anatomy may provide sufficiently strong constraints such that across 

many tasks, and over enough sampling time, stable network configurations emerge. 

Typical analysis strategies for rs-fcMRI data likely emphasize these stable components. 

Another point is that rs-fcMRI should not be interpreted in isolation (Buckner, 

Krienen & Yeo 2013). The rich indirect data about functional organization accumulated 

in the human benefits from comparison to anatomical work in non-human primates – 

what Mesulam (2012) refers to as ‘hard data’. For example, the human rs-fcMRI data 

highlight that the inferior parietal lobule region contains subregions that are functionally 

coupled to limbic association regions including the parahippocampal cortex (e.g., Vincent 

et al. 2006). The parietal association regions involved in the Default Network are not 

functionally coupled to sensory or motor systems and thus distinguish themselves from 

extensively studied parietal areas in the monkey including LIP.  

Guided by the human data, one predicts that parietal association cortex will 

contain a heterogeneous cluster of areas with markedly different connectivity 

‘fingerprints’. That prediction is confirmed in the monkey anatomic literature. 

Specifically, the most caudal portion of macaque area 7a, labeled Opt by Pandya and 

Seltzer (1982), has a distributed connectivity pattern convergent with the human rs-
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fcMRI data. In the macaque, parietal association cortex is predominantly dedicated to 

vision and sensory-motor integration (but has protoforms of the distributed networks seen 

in the human). In the modern human, parietal association cortex is largely occupied by 

regions that do not obviously embed themselves within distributed sensory-motor 

systems. Thus, the ‘inferred connectivity’ based on rs-fcMRI makes a valuable 

contribution when taken in the context of direct anatomical data (e.g., Vincent et al. 2007; 

Margulies et al. 2009; Mantini et al. 2011; Mars et al. 2011; Hutchison et al. 2012a,b; 

Choi et al. 2012). Estimated homologies between the monkey and human builds 

confidence in which aspects of the networks are likely constrained by anatomy and help 

us to understand how the networks may be uniquely organized in the human.  

 Finally, functional connectivity estimates are sensitive to task state. Therefore, 

differences could arise from how individuals engage the passive states. A growing 

number of studies compare functional connectivity patterns between individuals, age 

groups, or control and patient populations. An implicit (and sometimes explicit) 

assumption across many of these studies is that resting state data are not sensitive to the 

performance confounds that challenge task-based neuroimaging studies of individual 

differences. Our present results do not support this assumption. We ourselves have noted 

subtle differences in functional coupling with the medial temporal lobe in relation to self-

report of passive thought content (Andrews-Hanna et al. 2010), but also that younger and 

older adults also tend to engage passive fixation differently: older adults are more likely 

to report focusing on the visual cross-hair than engaging in internal mentation (J. 

Andrews-Hanna & R.L. Buckner, unpublished observations). Levels of vigilance, eye 

movements, and internal thought processes could affect connectivity patterns. Though 

performance is not measured by traditional key press responses or verbal reports, relevant 

individual differences in behavior may nonetheless contribute to rs-fcMRI differences. 

Depending on the goal of the study, such differences may be of interest or, alternatively, 

act as a confound.  

 

What can be drawn from the dynamic contributions to the coupling patterns observed in 

fcMRI?  
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The assumption that cortical regions or neuronal subpopulations shift network 

affiliation in the service of task goals has been thoughtfully articulated in theoretical 

papers by Mesulam (1998), Dehaene (1998), Fries (2005), Friston (2011) and Bullmore 

& Sporns (2012), among others. It is an underlying assumption for techniques such as 

dynamic causal modeling (Friston 2003). A common thread that emerges from these 

works is that functional interactions (which are constrained by anatomical connections 

but not fully determined by them) are critically relevant when characterizing a network’s 

functional properties (Price & Friston 2005).  

Intuitively, when regions are not anatomically connected with one another, 

changes in their synchronization are likely either facilitated by regions lying on a 

common path between them or else are jointly driven by a common (upstream) input. In 

the former scenario, association cortex is thought to be particularly well situated for 

facilitating neuronal coherence due to its ability to dynamically interface with unimodal 

sensory and motor processing cascades (Bullmore & Sporns, 2012). Our results and 

others indicate substantial variability across the cortex, including in association regions, 

in the stability of correlation profiles as a function of changing task demands (Figure 

2.4A and Figures 2.7-9; Mennes et al. 2012; Hasson et al. 2009). A recent study further 

showed that intersubject variability of fcMRI patterns measured at rest is highest in 

heteromodal association cortex and correlates with variability in cortical folding patterns 

(Mueller at al. 2013). 

Relevant to this point, it is often noted (including in our papers) that functional 

connectivity largely remains topographically stable across levels of consciousness 

including wakefulness, sedation (Greicius et al. 2008), sleep (Horovitz et al. 2009; 

Larson-Prior et al. 2009) and vegetative state (Cauda et al. 2009). However, stability 

across states is often only assessed for a limited number of regions, or focuses on broad 

qualitative correspondence between only one or two well-established large networks. 

Similarly, the debate surrounding the functional relevance of fcMRI networks – whether 

they are sequalae of active cognitive processing such as introspection or merely reflect 

anatomy or physiological factors – is often framed around the Default Network. Whether 

the observed stability of the Default Network is the exception or the rule remains to be 

seen. In our view, functional interpretation of any network identified by fcMRI, including 
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the Default Network, remains incomplete without assessment of its behavior during a 

broader range of behavioral states (Figure 2.9B).  

An early hypothesis proposed that correlations between nodes in a functionally 

defined (i.e. task-evoked) network should increase during a task that recruits those nodes 

compared to a task that does not activate the network (Lowe et al. 2000). However, we 

observed a more complex relationship between task-evoked activity and fcMRI patterns. 

For example, while lateral prefrontal cortex and occipital regions are modulated by the 

semantic task (Figure 2.6), they do not increase coupling to each other during task epochs 

(e.g., Figure 2.4B and 2.4E). Changes in functional coupling do not always reflect task-

evoked activity. Further, ‘task-evoked’ coupling must always be interpreted as a relative 

difference between the tasks or states contrasted. This complicates assumptions of direct 

correspondence between task (and rest) evoked patterns and fcMRI; knowing which 

regions are modulated by a task does not always lead to a clear prediction about changes 

to their functional coupling. However, it also indicates that the information conveyed by 

each method is not redundant.  

 Functional coupling is often assessed by defining networks in resting state data 

and then exploring their dynamics in different tasks (e.g., Hampson et al. 2002; Greicius 

& Menon, 2004; Eckert et al. 2008; Kelly et al. 2008; Spreng et al. 2010; Gordon et al. 

2011; Huijbers et al. 2011; Leech et al. 2011). The emergent picture from this approach is 

one in which transient coupling occurs between networks whose “true” boundaries are 

measured from resting data (Deco & Corbetta 2011). That is, defining networks from 

resting scans and probing activity patterns within these networks during task assumes that 

rs-fcMRI networks are the most appropriate templates of network organization. Our data 

again challenge this assumption. Though broad organizational features were preserved, 

details of functional organization differed when they were estimated from different tasks 

(Figure 2.4, 2.7-9), and task fcMRI borders better captured task-evoked activation 

patterns relative to resting-state borders (Figure 2.6). Moving forward, comparing 

functional connectivity across task states without assuming that rs-fcMRI networks 

necessarily represent the ground truth promises to reveal novel aspects of brain 

organization. 
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Abstract 

 

Information processing in the cerebral cortex involves interactions among 

distributed areas. Anatomical connectivity suggests that certain areas form local 

hierarchical relations such as within the visual system. Other connectivity patterns, 

particularly among association areas, suggest the presence of large-scale circuits without 

clear hierarchical relations. Here the organization of networks in the human cerebrum 

was explored using resting-state functional connectivity MRI (fcMRI). Data from 1000 

subjects were registered using surface-based alignment. A clustering approach was 

employed to identify and replicate networks of functionally coupled regions across the 

cerebral cortex. The results revealed local networks confined to sensory and motor 

cortices as well as distributed networks of association regions. Within the sensory and 

motor cortices, functional connectivity followed topographic representations across 

adjacent areas. In association cortex, the connectivity patterns often showed abrupt 

transitions between network boundaries. Focused analyses were performed to better 

understand properties of network connectivity. A canonical sensory-motor pathway 

involving V1, putative MT+, LIP and FEF was analyzed to explore how interactions 

might arise within and between networks. Results showed that adjacent regions of the 

MT+ complex demonstrate differential connectivity consistent with a hierarchical 

pathway that spans networks. The functional connectivity of parietal and prefrontal 

association cortices was next explored. Distinct connectivity profiles of neighboring 

regions suggest they participate in distributed networks that, while showing evidence for 

interactions, are embedded within largely parallel, interdigitated circuits. We conclude by 
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discussing the organization of these large-scale cerebral networks in relation to monkey 

anatomy and their potential evolutionary expansion in humans to support cognition. 
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Introduction 

 

Complex behaviors are subserved by distributed systems of brain areas (Felleman 

and Van Essen 1991; Goldman-Rakic 1988; Mesulam 1990). The organization of these 

systems can be studied in non-human animals using invasive techniques including 

histology, anatomic tract tracing, electrophysiology, and lesion methods. The 

organization of brain systems in the human has been inferred by comparing 

cytoarchitectonically-defined homologies between species, and by noting similarities in 

neuropsychological deficits following accidental brain injury to deficits present in animal 

ablation studies. General agreement has emerged from these comparisons that the basic 

organization of brain systems is similar across mammalian species. However, there is 

also evidence that the human cerebral cortex, particularly association cortex, is not 

simply a scaled version of other species. 

 The German anatomist Korbinian Brodmann (1909) first emphasized that areas 

comprising the human inferior parietal lobule do not have clear homologues in the 

monkey -- an observation that continues to motivate contemporary debates (Orban et al. 

2004). Gross differences are also observed in the human brain when it is compared to our 

evolutionarily closest relatives. For example, the human brain is triple the size of modern 

great apes but motor and visual cortices are about the same absolute size (Blinkov and 

Glezer 1968; Frahm et al. 1984). This observation suggests that expansion of the human 

cerebrum disproportionately involves areas beyond those subserving basic sensory and 

motor functions. In a recent analysis of cortical expansion based on 23 homologous areas 

between the macaque and human, Van Essen and colleagues noted that the greatest 
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growth occurs in regions distributed across frontal, parietal, and temporal association 

cortices (Van Essen and Dierker 2007; Hill et al. 2010). Preuss (2004) came to a similar 

conclusion in a detailed review of comparative anatomy. Thus, in addition to expecting 

the human brain to show broadly similar organizational properties with other well-studied 

species, expansion and perhaps elaboration of association networks is also expected.  

In this paper we report results of a comprehensive analysis of networks within the 

human cerebral cortex using intrinsic functional connectivity MRI (fcMRI). The analysis 

was based on 1000 young adults who contributed uniformly collected MRI data. The data 

were brought into a common surface coordinate system to help preserve the surface 

topology of the cortical mantle. Analyses were motivated by two goals. First, we sought 

to provide reference maps that are a current best estimate of the organization of the 

human cerebral cortex as measured by functional connectivity. Second, we wanted to 

better understand how patterns of functional connectivity might give rise to the 

organizational properties that underlie distributed brain systems. Particular focus was 

placed on parietal and frontal association cortices. The foundations for the present work 

come from traditional anatomical studies of cortical organization. 

 

Organizational properties of the cerebral cortex in the non-human primate 

Distributed brain systems are organized to facilitate both serial and parallel 

processing (Felleman and Van Essen 1991; Mesulam 1998). The concept of serial 

hierarchies is embedded within early ideas about brain organization. For example, 

William James (1890) proposed that principles governing the reflex arc extend to the 

cerebral hemispheres. He hypothesized that excitement of sensory systems propagates 
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upwards from lower to higher cerebral centers governing “ideas”, then to centers 

producing (or inhibiting) movements. Hubel and Wiesel (1962) formally proposed the 

concept of serial processing across a hierarchy in cat visual cortex based on their 

observations of increasingly complex receptive field properties from the lateral geniculate 

nucleus (LGN) to the simple and complex cells of V1. Based on studies of corticocortical 

connections in the macaque, Pandya and Kuypers (1969) and Jones and Powell (1970) 

suggested that hierarchical processing across sensory systems converges on transmodal 

association areas.  

The discovery of widespread connections among multiple cortical areas, as well 

as extensive feedback projections from higher to lower sensory areas, suggested strictly 

serial processing is not the only organizational scheme in the cerebral cortex. Instead, it 

was proposed that hierarchical processing exists in a distributed fashion that can be 

inferred from the laminar distribution of anatomical connectivity (Friedman 1983; 

Maunsell and Van Essen 1983; Rockland and Pandya 1979). The comprehensive meta-

analysis of corticocortical connections in the macaque monkey by Felleman and Van 

Essen (1991) provided strong evidence that unimodal and heteromodal areas in both the 

visual and somatomotor systems are organized into separate distributed hierarchies (also 

see Ungerleider and Desimone 1986; Van Essen et al. 1992). Some projections between 

areas are organized as feedforward (ascending) projections, others as feedback 

(descending) projections, and still others as lateral projections. For example, consistent 

with serial processing, the primary visual area (V1) sends forward connections to and 

receives feedback connections from V2 in a topographic fashion that connects the 

corresponding receptive field representation in each area. In contrast to strictly serial 
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processing, these unimodal sensory cortical areas (V1 and V2) both project to higher 

sensory areas. Lateral projections between areas are also common (e.g., CIT and STPp). 

It becomes considerably more difficult to make inferences about the organization 

of circuits involving association cortex. Historically, of the four criteria – function, 

cytoarchitecture, connectivity and topography – used to define cortical areas and thereby 

constrain models of organization, topography (e.g., retinotopy) and function are difficult 

to discern in heteromodal association areas. Cytoarchitecture and connectivity thus 

become especially valuable for inferring brain circuit organization beyond the sensory 

and motor systems. However, as noted by Felleman and Van Essen (1991), the number of 

violated constraints to hierarchical connectivity increases in the progression from early 

sensory cortex up to association cortex (red lines near the top of the visual hierarchy in 

Fig. 4 of Felleman and Van Essen 1991).  

This raises the interesting possibility that the association areas may not follow as 

rigid a hierarchical organization as canonical sensory and motor areas. Violations of strict 

hierarchical arrangements are apparent in the visual system as noted above, but violations 

and alternative connectivity patterns become common in association areas. For example, 

paired tracer injections in association areas 7a and 46 lead to interdigitating columnar 

patterns of terminations in some areas and complementary (feedforward and feedback) 

patterns in other areas (Selemon and Goldman-Rakic 1988).  

While recognizing that convergence and integration of pathways occurs in the 

association cortex, Goldman-Rakic (1988) emphasized that primate association cortex is 

organized into parallel distributed networks (see also Mesulam 1981). There are two key 

features to her proposed organization that depart from hierarchical organizational models. 
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First, each distributed network consists of association areas spanning frontal, parietal, 

temporal and cingulate cortices. Networks are densely interconnected, such that two areas 

in the parietal and frontal cortices belonging to the same network are not just 

anatomically connected to each other, but they are also both connected with other 

components of the same network (Selemon and Goldman-Rakic 1988). Second, multiple 

distributed networks exist adjacent to each other: adjacent areas in the parietal cortex 

belonging to separate networks are differentially connected to adjacent areas of 

corresponding networks in the frontal, temporal and cingulate cortices (Cavada and 

Goldman-Rakic 1989a; 1989b).  

The possibility of parallel distributed circuits will be an important consideration 

in our analysis of fcMRI networks in the human, particularly within association cortices. 

An intriguing possibility is that the majority of the human cerebral cortex involves 

multiple parallel circuits that are interdigitated throughout association cortex, such that 

each cortical lobe contains components of multiple association networks. That is, the 

expansion of the cerebral association cortex in humans relative to the macaque may 

preferentially involve networks organized in the form outlined by Goldman-Rakic (1988) 

and anticipated by others (e.g., Mesulam 1981). To explore this possibility, analyses will 

focus both on evidence for hierarchical relations across regions as well as evidence for 

distributed networks that are interdigitated throughout association cortex. 

 

Insights into the organization of the cerebral cortex revealed through neuroimaging 

Noninvasive neuroimaging methods including positron emission tomography 

(PET; Raichle 1987) and functional MRI (fMRI; Kwong et al. 1992; Ogawa et al. 1992) 
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allow functional response properties to be measured in the human cerebral cortex. The 

measures are indirect, reflecting blood flow and oxygenation changes that are coupled to 

neural activity through incompletely understood mechanisms (Logothetis 2008), and the 

methods are presently limited to a spatial resolution of a few mm (e.g., Engel et al. 1997). 

Neuroimaging approaches have nonetheless been extremely valuable for providing 

insights into cortical organization. In some cases it has been possible to directly map the 

topography within (and borders between) cortical areas (Engel et al. 1994; Sereno et al. 

1995). More generally, differential response properties between regions are the source of 

information about cortical mapping. For example, the increase in the complexity of 

receptive field properties measured from primary to secondary sensory areas in visual 

(Wandell et al. 2007), somatosensory (Iwamura 1998), and auditory (Wessinger et al. 

2001) cortices suggest that serial hierarchical processing exists in human sensory cortex.  

Neuroimaging studies of a wide range of cognitive tasks reveal simultaneous 

activation in multiple regions in the parietal, frontal, temporal and cingulate cortices, 

suggesting distributed systems of brain areas are involved in cognition. However, it is 

difficult to assess the organization of these distributed systems based solely on task 

activity because these cognitive tasks likely tap into multiple, overlapping processes, 

some of which reflect the operation of distributed systems and others which reflect 

distinct processing demands of the tasks (see Mesulam 1990 and Posner et al. 1988 for 

relevant discussion). For these reasons, methods that can measure connectivity may 

provide novel insights into the organization of distributed brain systems. 

 

Functional connectivity and diffusion MRI provide tools to explore cortical organization  
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  Diffusion MRI (dMRI) and fcMRI have recently emerged as promising tools for 

mapping the connectivity of the human brain, each with distinct strengths and 

weaknesses. dMRI measures the diffusion of water thus allowing direct non-invasive 

mapping of white matter pathways (Basser et al. 1994). However, dMRI is presently 

limited to resolving major fiber tracts. By contrast, fcMRI measures intrinsic functional 

correlations between brain regions (Biswal et al. 1995) and is sensitive to coupling 

between distributed as well as adjacent brain areas (e.g., see Sepulcre et al. 2010 for 

discussion). While not a direct measure of anatomical connectivity, the functional 

couplings detected by fcMRI are sufficiently constrained by anatomy to provide insights 

into properties of circuit organization (for reviews, see Fox and Raichle 2007; Van Dijk 

et al. 2010). When describing these correlations, we use the term functional connectivity 

as coined by Karl Friston (1994) to denote “temporal correlations between remote 

neurophysiological events” for which the causal relation is undetermined. 

There are important limitations of fcMRI including sensitivity to indirect 

anatomical connectivity and functional coupling that changes in response to recent 

experience and the current task being engaged (Buckner 2010). For these reasons, some 

discussions of fcMRI have emphasized that intrinsic activity measured by fcMRI reflects 

the prior history of activity through brain systems and not simply static anatomic 

connectivity (Power et al. 2010). fcMRI also does not presently provide information 

about whether connections are feedforward (ascending) or feedback (descending). These 

limitations constrain how analyses are conducted and results can be interpreted.  

Directly relevant to the present study, prior investigations using fcMRI provide 

estimates of large-scale cortical networks that have generally (but not in all details) 
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converged across a variety of analytic approaches, including seed-based fcMRI (Biswal 

et al. 1995), independent component analysis (Beckmann and Smith 2004; Smith et al. 

2009), clustering (Bellec et al. 2010; Golland et al. 2007) and graph theory (Dosenbach et 

al. 2007). Because of uncertainties regarding their relation to underlying anatomic brain 

systems, networks identified using fcMRI have often been labeled based on their 

relations to task-based functional networks. Some of these networks, such as the default 

network (Greicius et al. 2003) and dorsal attention system (Fox et al. 2006), have been 

proposed to be related to anatomical tracing and task-based fMRI in the macaque 

(Buckner et al. 2008; Saleem et al. 2008; Vincent et al. 2007).  

Motivated by the usefulness of connectivity in establishing the organization of the 

cerebral cortex in non-human primates, this study analyzed fcMRI data from 1000 

subjects with two main goals. First, the analyses sought to provide reference maps that 

are a current best estimate of the organization of human cortical networks as measured by 

functional connectivity. Second, by using the power of a large data sample to 

quantitatively measure functional connectivity strength among many regions, the study 

explored the patterns of corticocortical functional coupling that give rise to these 

networks.  

 

Methods 

 

Overview 

The present study explored the organization of large-scale distributed networks in 

the human cerebral cortex using resting-state fcMRI. The main analyses were based on a 
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core dataset of 1000 healthy, young adults whose fMRI data were acquired using the 

same MRI sequence on the same hardware (3 Tesla field strength, 12-channel receive coil 

array). For several analyses the data were divided into Discovery (n = 500) and 

Replication (n = 500) data samples to test for reliability and for unbiased quantification 

of functional connectivity patterns. Additional supplementary datasets were used to 

address specific questions that arose during analysis. A first supplementary fMRI dataset 

(n = 16) contrasted different passive tasks engaged during resting-state functional data 

acquisition. A second supplementary fMRI dataset (n = 4) consisted of data acquired 

during visual stimulation optimized to define retinotopic boundaries of early visual areas 

(Hinds et al. 2009; Polimeni et al. 2005). A final supplementary dataset used human 

histological data to define a range of cytoarchitectonic areas including human V1 

(Amunts et al. 2000, Fischl et al. 2008) and the putative homologue to macaque MT+ 

(Malikovic et al. 2007, Yeo et al. 2010b). All data (fMRI and histological) were brought 

into a common surface coordinate system based on the cortical surface as reconstructed 

from each participant’s structural anatomy. Data analyses began by examining broad 

properties of cortical network organization and progressed to quantify the detailed 

patterns of functional connectivity within and between networks.  

In the first set of analyses, a clustering algorithm was used to parcellate the 

cerebral cortex into networks of functionally coupled regions. Parcellations were 

examined for a coarse solution that organized the cortex into 7 networks as well as a finer 

solution that identified 17 networks. As the results will reveal, the estimated networks 

were consistent across the Discovery and Replication data samples and confirmed by 
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region-based fcMRI analyses. The full dataset was used to construct a best-estimate 

parcellation of the human cerebral cortex to serve as a reference for future studies. 

The second set of analyses explored the coupling of regions that fell within 

sensory and motor pathways. Since these areas are relatively well understood in both 

humans and macaques, they provide the opportunity to evaluate the utility and limitations 

of functional connectivity methods. Analyses examined quantitative coupling properties 

between individual regions that were within the same network as well as coupling 

properties between networks focusing on a sensory-motor pathway that is the putative 

homologue of the well-studied system in the monkey involving MT+, parietal regions at 

or near LIP, and premotor regions at or near FEF. 

The final set of analyses characterized the organization of distributed networks in 

higher-order association cortex. The connectivity patterns of regions within frontal and 

parietal association cortices were quantified. These analyses involved constructing a 

series of small seed regions across frontal and parietal cortices and examining functional 

connectivity strength to multiple regions distributed throughout the cerebral cortex, 

allowing the ‘fingerprint’ of functional coupling to be identified for each region. For 

these analyses, regions were always defined in the Discovery data sample or some other 

source, such as histology, and functional connectivity quantified in the independent 

Replication data sample. 

 

Participants 

Paid participants were clinically healthy, native English speaking young adults 

with normal or corrected-to-normal vision (ages 18 to 35). Subjects were excluded if their 
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fMRI signal-to-noise ratio (SNR) was low (< 100; see below), artifacts were detected in 

the MR data, their self-reported health information indicated the presence of any prior 

neurological or psychiatric condition, or they were taking any psychoactive medications. 

The core dataset consisted of 1000 individuals imaged during eyes open rest (EOR) and 

was divided into two independent samples (each n = 500; labeled the Discovery and 

Replication samples). Age and gender were matched for the Discovery (mean age = 21.3 

yr, 42.6% male) and Replication (mean age = 21.3 yr, 42.8% male) datasets. These data 

are new data presented for the first time in this study and were acquired as part of a 

collaborative effort across multiple local laboratories all acquiring data on matched MRI 

scanners (at Harvard and at the Massachusetts General Hospital). Participants provided 

written informed consent in accordance with guidelines set by institutional review boards 

of Harvard University or Partners Healthcare.  

Two smaller supplementary datasets were also analyzed. The Task Effect dataset 

(n = 16, mean age = 21.1 yr, 25.0% male) consisted of fMRI data collected under 

different passive conditions (eyes closed rest, ECR; EOR; and fixation, FIX) and was 

analyzed previously (Van Dijk et al. 2010). The Visuotopic dataset (n = 4; mean age = 

34.5 yr, 100% male) consisted of previously published visuotopic data (Hinds et al. 2009; 

Polimeni et al. 2005). 

 

MRI data acquisition 

All data were collected on matched 3T Tim Trio scanners (Siemens, Erlangen, 

Germany) using a 12-channel phased-array head coil except for the Visuotopic dataset, 

which was acquired on a custom-built four-channel phased-array surface coil. A software 
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upgrade (VB15 to VB17) occurred on all scanners during the study. Validation studies 

that acquired structural and functional data on the same individuals before and after the 

upgrade could not detect an effect of the upgrade. The functional imaging data were 

acquired using a gradient-echo echo-planar imaging (EPI) sequence sensitive to blood 

oxygenation level-dependent (BOLD) contrast. Whole-brain coverage including the 

entire cerebellum was achieved with slices aligned to the anterior-commissure posterior-

commissure (AC-PC) plane using an automated alignment procedure ensuring 

consistency between subjects (van der Kouwe et al. 2005). Structural data included a 

high-resolution multi-echo T1-weighted magnetization-prepared gradient-echo image 

(multi-echo MP-RAGE; van der Kouwe et al. 2008). 

For the core dataset, subjects were instructed to remain still, stay awake and to 

keep their eyes open. EPI parameters were as follows: TR = 3000 ms, TE = 30 ms, FA = 

85º, 3 x 3 x 3 mm voxels, FOV = 216 and 47 axial slices collected with interleaved 

acquisition and no gap between slices. Each functional run lasted 6.2 min (124 time 

points). One or two runs were acquired per subject (average of 1.7 runs). Parameters for 

the structural scan (multi-echo MP-RAGE; van der Kouwe et al. 2008) were as follows: 

TR = 2200 ms, TI = 1100 ms, TE=1.54 ms for image 1 to 7.01 ms for image 4, FA = 7º, 

1.2 x 1.2 x 1.2 mm voxels and FOV = 230. The multi-echo MP-RAGE allows increased 

contrast through weighted-averaging of the four derived images. 

For the Task Effect dataset, subjects were instructed to remain still with their eyes 

open (EOR; two runs), eyes closed (ECR; two runs) or to passively fixate a centrally 

presented crosshair (FIX; two runs). For details see Van Dijk et al (2010). The order of 

rest conditions was counterbalanced across subjects. EPI parameters were as follows: TR 
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= 3000 ms; TE = 30 ms; FA = 90º; 3 x 3 x 3 mm voxels; FOV = 288 and 43 slices 

collected with interleaved acquisition and no gap between slices. Each functional run 

lasted 7.15 min (143 time points). Parameters for structural scans (MP-RAGE) were as 

follows: TR = 2530 ms, TI = 1100 ms, TE = 3.44 ms, FA = 7º, 1 x 1 x 1 mm voxels and 

FOV = 256. 

The Visuotopic dataset was collected using a custom-built four-channel phased-

array surface coil placed at the back of the head. During each functional run, subjects 

were presented with one of four visual stimuli: a clockwise rotating wedge, a 

counterclockwise rotating wedge, an expanding ring, or a contracting ring (DeYoe et al. 

1996; Engel et al. 1994; Sereno et al. 1995). Because the four-channel surface coil 

provided only partial brain coverage, structural data for these four subjects were collected 

separately on a 1.5T Allegra scanner (Siemens, Erlangen, Germany). Further details of 

the acquisition and data processing protocol can be found elsewhere (Hinds et al. 2009; 

Polimeni et al. 2005).  

Except where noted, the description of data processing and analysis below applies 

to the whole-brain data (the core dataset of 1000 subjects and the Task Effect dataset) and 

not the Visuotopic data. 

  

Functional MRI data preprocessing 

 The fMRI data were preprocessed with a series of steps common to fMRI 

analyses. Preprocessing involved (1) discarding the first four volumes of each run to 

allow for T1-equilibration effects, (2) compensating for slice-acquisition-dependent time 

shifts per volume with SPM2 (Wellcome Department of Cognitive Neurology, London, 
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UK), and (3) correcting for head motion using rigid body translation and rotation with the 

FSL package (Jenkinson et al. 2002; Smith et al. 2004).  

 The data underwent further processing using procedures adapted from Biswal et 

al. (1995) and optimized for fcMRI analysis (Fox et al. 2005; Van Dijk et al. 2010; 

Vincent et al. 2006). Briefly, constant offset and linear trend over each run was removed 

and a temporal filter was applied to retain frequencies below 0.08 Hz. Sources of spurious 

variance, along with their temporal derivatives, were removed through linear regression 

including: (1) six parameters obtained by correction for rigid body head motion, (2) the 

signal averaged over the whole brain, (3) the signal averaged over the ventricles, and (4) 

the signal averaged over the deep cerebral white matter. This regression procedure 

minimized signal contributions of non-neuronal origin including respiration-induced 

signal fluctuations (Van Dijk et al. 2010). Unlike previously established fcMRI 

preprocessing procedures, no spatial smoothing of the resting-state data occurred up to 

this point of the preprocessing stream.  

 

Structural MRI data preprocessing and functional-structural data alignment 

The structural data were processed using the FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) version 4.5.0 software package. The FreeSurfer 

software package constitutes a suite of automated algorithms for reconstructing accurate 

surface mesh representations of the cortex from individual subjects’ T1 images (Fig. 

3.1B-C) and the overlay of fMRI on the surfaces for group analysis (Fig. 3.1D-E). 

Briefly, the cortical surface extraction process (Fig. 3.1B-C) involved (1) correcting for 

intensity variations due to MR inhomogeneities (Dale et al. 1999), (2) removing extra-
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cerebral voxels through “skull-stripping” (Ségonne et al. 2004), (3) segmenting cortical 

gray and white matter voxels based on the intensity difference and geometric structure of 

the gray-white interface (Dale et al. 1999), (4) computing cutting planes to disconnect the 

two hemispheres and subcortical structures (Dale et al. 1999), (5) filling the interior holes 

of the segmentation using a connected-component analysis (Dale et al. 1999), (6) 

tessellating a triangular mesh over the gray-white boundary of each hemispheric volume 

and deforming the mesh to produce a smooth representation of the gray/white interface 

and pial surface (Dale et al. 1999), and (7) correcting topological defects in the surface so 

that the mesh achieves a spherical topology (Fischl et al. 2001; Ségonne et al. 2007).  
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Figure 3.1. Surface coordinate system for fMRI analysis. For each subject, the 
T2* images yielding BOLD-contrast fMRI data (A) were registered to the T1-weighted 
structural data (B). The cortical gray-white and pial surfaces were estimated from the 
structural data. The red lines show the estimated gray-white surface (A, B). Pial surface is 
shown in C. The gray-white surface was inflated into a sphere (D). The inflated spheres 
were then aligned across subjects using surface-based registration of the cortical folding 
pattern, resulting in a common spherical coordinate system (E). BOLD data of individual 
subjects (A) can then be projected onto the spherical coordinate system (E) in a single 
transformation step to reduce artifacts due to multiple interpolations. 
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After segmentation of the cortical surface, spatial correspondences among the 

subjects’ cortical folding patterns were established via the use of a spherical coordinate 

system (Fig. 3.1D-E). Briefly, the process involved (1) inflating each subject’s surface 

mesh into a sphere while minimizing geometric distortion of the original cortical surface 

as measured by geodesic distances among surface vertices and ensuring the inflation 

constituted a one-to-one mapping, and (2) computing a smooth, invertible deformation of 

the resulting spherical mesh to a common spherical coordinate system that aligned the 

cortical folding patterns across subjects (Fischl et al. 1999a; Fischl et al. 1999b). 

Once the common spherical coordinate system was established, the structural and 

functional images were aligned (Fig. 3.1A-B) using boundary-based registration (Greve 

and Fischl 2009) that is provided as part of FreeSurfer’s companion package, FsFast 

(http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The preprocessed resting state fMRI 

data were then propagated to the common spherical coordinate system via sampling from 

the middle of the cortical ribbon in a single interpolation step (Fig. 3.1A-E). The choice 

of sampling fMRI data from the middle of the cortical ribbon was motivated by the desire 

to reduce the blurring of fMRI signal across sulci or gyri and also by a recent study on the 

point-spread function of fMRI (Polimeni et al. 2010). The study showed that large 

draining vessels on the pial surface increased BOLD signal close to the pial surface but 

reduced spatial specificity of the hemodynamic response. Sampling fMRI data from the 

middle of the cortical ribbon therefore represented a trade-off between spatial specificity 

and signal sensitivity. Since our fMRI voxels were relatively large (3mm), we were not as 

concerned about laminar bias in the functional connectivity analysis. 
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The cerebral cortex is a thin sheet, with common organizational features along its 

radial axis. Along the dimensions parallel to this sheet is a mosaic of cortical areas that 

differ in function, cytoarchitecture, connectivity, and topography (Felleman and Van 

Essen 1991; Kaas 1987). The spherical representation of the cortex therefore affords a 

more accurate alignment of the cortical folding pattern and has the consequence of 

improving cytoarchitectonic (Fischl et al. 2008; Hinds et al. 2008; Yeo et al. 2010a) and 

functional (Fischl et al. 1999b; Van Essen 2005) correspondences across subjects 

compared with 3D volumetric registration even though cortical folds do not completely 

predict cytoarchitecture or function (Rajkowska and Goldman-Rakic 1995; Thirion et al. 

2007; Yeo et al. 2010b). The acquisition resolution and inherent limitations of the BOLD 

signal also provided restrictions on achievable resolution. 

A 6mm FWHM (full width at half maximum) smoothing kernel was applied to 

the fMRI data in the surface space and the data were downsampled to a 4mm mesh2. 

Smoothing after the fMRI data were projected onto the surface helped to minimize the 

blurring of fMRI signal across sulci or gyri. Since our algorithms are not perfectly 

accurate, any registration or segmentation errors will likely cause blurring of fMRI signal 

across sulci or gyri. Consequently, we did not expect to eliminate the blurring issues 

completely, which is important to keep in mind when interpreting the results. The steps 

taken could only minimize the problem. 

                                                 
2 It is not possible to generate a high resolution uniform mesh on the sphere. However, 
one can work with approximately uniform spherical meshes at different spatial 
resolutions by starting with a regular icosahedron mesh consisting of 20 equal faces and 
12 vertices and iteratively subdividing each mesh triangle into four smaller triangles. 
Here each cortical hemisphere is represented by a subdivided icosahedron mesh with 
20480 faces and 10242 vertices, where neighboring pairs of vertices are on average 3.8 
mm apart (max = 4.1 mm, min = 3.4 mm)."
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The processing of the Visuotopic dataset was broadly similar except that older 

versions of FreeSurfer and FsFast were used for the processing and so manual 

interventions were required to correct the T2* to T1 registration. Details of the processing 

can be found elsewhere (Hinds et al. 2009; Polimeni et al. 2005).  

 

Quality control 

Visual inspection of the registered data suggested that accurate representation of 

the cortical surface was extracted for each subject and that structural and functional 

image registration was successful. Figure 3.2 shows the results of cortical surface 

extraction from the T1 images and T2* to T1 registration of 3 randomly chosen subjects. 

These examples represent typical subjects. Note that functional data distortion remains in 

areas prone to susceptibility artifacts including anterior prefrontal regions, regions near 

lateral temporal cortex, and orbital frontal cortex.  
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Figure 3.2. Examples of intrasubject surface extraction and registration of 
structural-functional images. Examples of extracted cortical gray-white surfaces (red 
lines) are overlaid on T2* and T1 images of three random subjects in their native T1 
space. Imperfections are apparent in BOLD data especially in regions of susceptibility 
artifact (e.g., orbital frontal cortex).  
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Visualization 

While all subsequent analyses were performed in FreeSurfer surface space, for the 

purpose of visualization, all maps were transformed and displayed on the inflated PALS 

cortical surfaces using Caret software (Van Essen 2004; 2005; Van Essen and Dierker 

2007). In addition, this study also transformed and visualized the estimated networks in 

FMRIB Software Library (FSL) MNI152 space (Smith et al. 2004). The mapping 

between FSL MNI152 volumetric space and FreeSurfer surface space is detailed in our 

companion study (Buckner et al. submitted). 

 

Signal-to-noise ratio (SNR) maps 

Signal loss and distortion (susceptibility artifacts) occur as a result of magnetic 

field inhomogeneities. Field inhomogeneities are particularly pronounced in regions 

where the brain is adjacent to air, causing signal loss and distortion in T2*-dependent 

(BOLD) images (Ojemann et al. 1997). To estimate the effects of susceptibility artifacts 

in the present data, the signal-to-noise ratio (SNR) of the motion corrected fMRI time 

series was computed for each voxel in subjects’ native volumetric space by averaging the 

signal intensity across the whole run and dividing it by the standard deviation over time. 

SNR was also used as exclusionary criteria. If the SNR for the whole brain (mean SNR 

over all voxels within the brain mask) was <100 for an fMRI run, the subject was 

excluded. Thus, all 1000 subjects contributed data with SNR > 100 for each fMRI run. 

For subjects with two runs, the SNR was averaged across the runs. The SNR was then 

projected to FreeSurfer surface space, averaged across the 1000 subjects from the core 

dataset, and displayed in Caret PALS space (Fig. 3.3). As expected, low SNR is present 
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in the anterior portion of the inferior and medial temporal lobe, as well as in the orbital 

frontal cortex. There is also clear spatial variation in the SNR across the cortical mantle, 

which is important to keep in mind when interpreting the results, such as the absence of a 

cortical region of low SNR from a network.  

 

Figure 3.3 Signal-to-noise 
ratio (SNR) maps of the 
functional data from the 
full sample (N = 1000). The 
mean estimate of the 
BOLD fMRI data SNR is 
illustrated for multiple 
views of the left 
hemisphere in Caret PALS 
space. A = anterior, P = 
posterior, D = dorsal and V 
= ventral.  
 

 

 

 

Clustering 

We applied a clustering approach to define the boundaries of functionally distinct 

cortical regions and their relations to regions distributed throughout the cerebral cortex 

(forming networks). Distinguishing neighboring cortical regions by their pattern of 

connectivity has a long history in both non-human primate (e.g., Cavada and Goldman-

Rakic 1989a; Goldman-Rakic 1988; Passingham et al. 2002) and human (e.g., Cohen et 

al. 2008; Johansen-Berg et al. 2004; Nelson et al. 2010) research. Here we began our 

analyses by defining cortical networks to be sets of cortical regions with similar profiles 
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of corticocortical functional connectivity. The idea follows the empirical finding that in 

primates, regions of association cortex that are anatomically connected tend to have 

similar patterns of anatomical connectivity to other cortical and subcortical regions, thus 

forming a densely connected distributed network (Goldman-Rakic 1988). Note that this 

assumption about the organizational properties of corticocortical connectivity is probably 

neither a characteristic of all cortical regions nor a full characterization of the 

connectivity pattern of any cortical region. As will be shown, the procedure identified 

functionally coupled networks that could be verified with seed-based regional analyses 

that made no assumptions about the connectivity patterns. 

 For this initial analysis, we defined the connectivity profile of a cortical region to 

be its functional coupling to 1175 region of interest (ROI) vertices. The 1175 ROI 

vertices were uniformly sampled in FreeSurfer surface space (shown in Caret PALS 

space in Fig. 3.4) and consisted of single vertices spaced about 16mm apart. For each 

subject, we computed the Pearson’s product moment correlation between the fMRI time 

series at each spatial location (18715 vertices) and the 1175 ROI vertices. Each spatial 

location is therefore characterized by its functional coupling to the 1175 ROI vertices. 

We binarized the 18715 x 1175 matrix of correlations for each subject by keeping the top 

10% of the correlations and averaged the binarized matrices independently across each 

group of 500 subjects in the Discovery and Replication samples. If a subject had two 

runs, we averaged the correlation matrices across the two runs before binarization. As 

will be shown in the results, binarization of the correlation matrix leads to significantly 

better clustering results, although the algorithm appears robust to the particular choice of 

threshold. Visual inspection of the connectivity profiles (not shown) suggested that the 
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1175 ROI vertices were sufficiently dense to capture spatial variation in corticocortical 

connectivity given the limits of our acquisition procedures.  

 

Figure 3.4. Cortical regions utilized in 
constructing functional connectivity 
profiles. A total of 1175 regions are 
sampled uniformly on the surface-based 
representations of the left and right 
hemispheres within the FreeSurfer surface 
coordinate system and shown here in Caret 
PALS space, where each dark patch 
represents the location of a single regional 
vertex. Each vertex in the surface 
coordinate system is characterized by its 
profile of functional connectivity to the 
1175 regions. The visually non-uniform 

distribution of the regions in Caret PALS space is due to the non-linear deformation from 
FreeSurfer space to Caret PALS space. This image thus also serves to illustrate the subtle 
differences between the two surface space coordinate systems. 
 

 A clustering algorithm was then applied separately to the Discovery and 

Replication samples to estimate networks of cortical regions with similar connectivity 

profiles. The two independent datasets thus allowed exploration of the reliability of 

estimated networks. The idea behind clustering can be illustrated with a toy example. 

Figure 3.5A shows hypothetical points scattered in a structured fashion on a two-

dimensional canvas. Clustering aims to recover this structure by dividing the points into 

different groups so that points within a group are physically close, such as shown in 

Figure 3.5B.  
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Figure 3.5. Toy example illustrating clustering. (A) Hypothetical points are scattered 
in a structured fashion on a two-dimensional canvas. Clustering aims to recover the 
underlying structure. (B) Example solutions for M = 2, 3, 4 or 5 clusters are shown. The 
solutions for M = 2 or 5 clusters agree with visual assessment of the underlying structure 
and are therefore useful representations. On the other hand, seeking 3 or 4 clusters does 
not lead to satisfying solutions because solutions are ambiguous. For example, the M = 3 
solution is not unique in the sense that an “equally good” alternate solution is for one 
group of points in the red cluster to be grouped with the orange cluster. Seeking M = 3 or 
4 clusters is therefore unstable in the sense that different random initializations of the 
clustering algorithm lead to different “equally good” solutions. In the present study we 
employed a stability analysis to estimate the numbers of clusters and also examined both 
a relatively coarse solution (7-network) and fine-resolution solution (17-network) so as to 
survey the solution space broadly (see Fig. 3.6). 
 

 The clustering algorithm employed in this study modeled the data with a von 

Mises-Fisher distribution (Lashkari et al. 2010). More specifically, the data were modeled 

as 18715 points on an 1174-dimensional unit hypersphere embedded in an 1175-

dimensional Euclidean space, where distances between points were measured by their 
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geodesic distance on the hypersphere. Like the toy example, clustering aims to group 

vertices that are close together in this non-Euclidean canvas (i.e., have similar 

connectivity profiles) into the same cluster or network. Measuring distances between 

points by their geodesic distance is equivalent to defining the similarity between two 

correlation profiles to be the correlation between the correlation profiles. By using 

correlation as a measure of similarity, differences in correlation strength were normalized 

among points so that regions are clustered together based on their connectivity profiles 

(rather than their strengths of connectivity). In theory, this should mitigate the effects of 

spatial variation in SNR (Fig. 3.3).  

The algorithm operated by randomly assigning the 18715 points to different 

groups and then iteratively reassigning the group memberships of points to maximize the 

agreement of connectivity profiles among points of the same group. More details of the 

clustering algorithm can be found elsewhere (Lashkari et al. 2010).   

 

Stability analysis 

 A drawback of most clustering approaches is that one must choose the number of 

clusters a priori. In this instance, the question is how many clusters – cerebral networks  

–  are needed to correctly parcellate the cortex? We do not have an answer to this 

question or know if there is a single correct answer given that the cerebral cortex 

possesses complex patterns of diverging and converging connections among areas. As 

such, none of our conclusions will depend on a strong assumption that there is a single 

correct solution to parcellating the cortex. Nonetheless, we sought a principled approach 
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to identify parcellation solutions that captured significant portions of the correlation 

structure among cortical regions.   

One popular method for estimating the number of clusters is by analyzing the 

stability of the clustering algorithm (Ben-Hur et al. 2002; Lange et al. 2004; also see Fig. 

3.5). We employed two variations of the stability analysis on the full set of 1000 subjects. 

Both variations estimated the same numbers of clusters. The first variation involved 

(repeatedly and randomly) dividing the ROIs into two groups and measuring the 

reproducibility of the clustering algorithm’s results when applied separately to the two 

groups of ROIs. The second variation involved (repeatedly and randomly) dividing the 

18715 vertices into two groups and applying the clustering algorithm separately to the 

two groups of vertices. The model parameters learned from clustering one group of 

vertices was then used to predict the clustering results of the second group of vertices. 

The agreement between the prediction and clustering results of the second group 

measured the generalization power of the clustering results (Fig. 3.6). Further details of 

the stability analysis can be found elsewhere (Lange et al. 2004).  

The stability analyses (Fig. 3.6) suggested 7 and 17 networks were appropriate 

starting points for parcellating the cortex. As the results will reveal, these parcellation 

solutions were excellent for capturing significant components of the regional variation 

that could be replicated across datasets and independently revealed by seed-based 

analyses. However, the focus on 7- and 17-network solutions should not be taken to 

imply that meaningful properties are absent in alternative parcellation schemes. By 

focusing on both a relatively coarse solution (7-network) and fine-resolution solution (17-

network), we were able to survey the solution space broadly.  
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Figure 3.6. 7 and 17 networks can be stably estimated. Instability of the clustering 
algorithm is plotted as a function of the number of estimated networks for the vertex-
resampling variant of the stability analysis applied to 1000 subjects. The clustering 
algorithm is less stable with increasing number of estimated networks, which is an 
expected property since the number of estimated networks enlarges the solution space 
(and thus complexity) of the clustering problem. The local minima of the graphs (marked 
with asterisks) indicate the number of networks that can be stably estimated by the 
clustering algorithm. The stability analysis suggests that 7, 10, 12 or 17 networks can be 
stably estimated. Resampling the ROIs yields almost identical results and is not shown. 
Here we focus on the 7- and 17-network estimates to provide a broad survey of the 
solution space. 
 

Parcellation maps 

Parcellation maps of the cerebral cortex were generated for both 7-network and 

17-network solutions for the Discovery sample and replicated in the Replication sample. 

The reliability analysis was conducted to illustrate the stability of the topographic 

boundaries that the solutions converged upon. In this regard, a powerful feature of 

analyzing large data samples is that the analyses are able to detect the presence of stable 

cerebral networks and also to establish the boundaries of regions with a high degree of 

confidence, including contiguous regions that may be part of distinct networks. As a final 
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step the full sample (N = 1000) was used to compute parcellations that represent our best 

estimates of the networks (Figs. 3.11 and 3.13). 

 

Confidence maps 

A useful visualization of the cortical parcellation is to look at the confidence of 

each spatial location belonging to its assigned network. We used the silhouette measure 

(Rousseeuw 1987) from the clustering literature for this purpose (Figs. 3.8 and 3.10). The 

silhouette of a data point (spatial location in our case) measures the similarity (correlation 

in our case) of the data point to other data points of the same cluster (network in our case) 

compared with data points belonging to the next closest cluster. The resulting silhouette 

at each spatial location lies between -1 and 1, so that a larger value indicates higher 

confidence of the spatial location in belonging to its assigned network. A negative value 

indicates that the connectivity profile at the spatial location is on average closer to the 

next closest cluster than to its assigned cluster. A negative value is therefore unlikely, but 

is still possible because the clustering cost function is not equivalent to the silhouette 

measure.  

 

Correlation maps and correlations between regions 

Large-scale cortical networks can be reliably estimated. To better understand the 

meaning of the networks resolved by the clustering technique, all salient results were 

followed up with focused analyses using seed-based regional analysis. The coordinates 

for all seed regions used in these analyses can be found in Tables 3.1-5. For these 

analyses, group-averaged functional connectivity maps were used to inspect the validity 
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of clustering results and to visualize differences in connectivity patterns of regions in 

sensory and association cortices.  

Each region consisted of single surface vertex (~4 mm x 4 mm) but should be 

considered spatially more extensive because of the spatial smoothing and intersubject 

averaging. Correlation maps were obtained by computing the Pearson’s product moment 

correlation between the region’s preprocessed resting fMRI time course and the time 

courses of all other vertices across the cortical mantle. To obtain a group-averaged 

correlation z-map, the correlation map of each subject in the group was converted to 

individual subject z-map using Fisher’s r-to-z transformation and then averaged across all 

subjects in the group. The Fisher’s r-to-z transformation increases normality of the 

distribution of correlations in the sample. For subjects with multiple runs, the individual 

subject z-maps were first averaged across the runs before submitting to the group 

average. An inverse Fisher’s r-to-z transformation was then applied to the group-

averaged correlation z-map yielding a group-averaged correlation map. 

 To quantify functional connectivity among regions, Fisher’s r-to-z transformed 

correlations were computed among the regions for each subject within a group. For 

several targeted, a priori analyses, classical statistical tests, including t-tests (e.g., see 

Figs. 3.20 and 3.21) and ANOVA (e.g., see Figs. 3.22 and 3.27), were performed on the 

z-transformed correlations using Matlab 7.4 (Mathworks, Natick, USA) or SPSS 18.0 

(IBM, Armonk, USA). All tests survive Bonferroni correction for multiple comparisons. 

 

Selecting regions for functional connectivity analysis 
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 Throughout the analyses, seed regions for functional connectivity were selected 

using different criteria depending on the purpose of the analysis. In all cases, if a 

particular dataset was used for selecting the region (e.g., Discovery sample), functional 

connectivity was always computed with a different dataset (e.g., Replication sample), 

thus providing an unbiased measurement of correlation strength. We detail the method 

used for region selection in the results as they are implemented for each particular 

analysis in the Results section. The following procedures describe the general strategies 

adopted. 

 First, when testing for seed-based confirmation of resolved networks, the 

estimated network boundaries and confidence maps of the Discovery sample were used to 

derive regional vertices to be tested in the Replication sample (e.g., see Fig. 3.16). 

Regions were chosen for (1) maximal spatial coverage of estimated networks, (2) 

avoiding network boundaries, and/or (3) their confidence in network assignments. We 

also defined new regions based on the correlation maps from the Discovery sample. For 

example, new regions might be chosen to be at or near the peaks of the correlation maps.  

Second, for some analyses we utilized task-based fMRI to select regions. For 

example, visuotopic and functional characteristics revealed using fMRI can be used to 

estimate visual areas in the human (Hadjikhani et al. 1998; Sereno et al. 1995). The Caret 

software database provides estimated locations of multiple visual areas that were mapped 

into Caret PALS space using surface-based registration of an individual case in 

Hadjikhani et al (1998), although the foveal and peripheral extents of these areas are 

likely to be underestimated for technical reasons (Van Essen 2004). Landmark-based 

surface registration between FreeSurfer and Caret PALS allowed us to utilize these 
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fMRI-defined visuotopic regions for guiding our selection of regions in FreeSurfer 

surface space (e.g., V3A in Fig. 3.25). In addition, we also considered peak activation 

coordinates reported in fMRI literature (e.g., see Fig. 3.27). When the peak coordinates 

were reported in MNI space, we projected the coordinates to FreeSurfer surface space. 

The mapping between MNI152 volumetric space and FreeSurfer surface space is detailed 

in our companion study (Buckner et al. submitted). In cases where the peak activation 

coordinates were reported in the atlas space of Talairach and Tournoux (1988), the 

coordinates were first mapped to FSL MNI152 space (Lancaster et al. 2007) before being 

projected to FreeSurfer surface space.  

Third, probabilistic histological maps in FreeSurfer surface space allowed for the 

selection of regions within histologically-defined areas (e.g., see Fig. 3.22). Postmortem 

human brains of fifteen subjects with no history of neurologic or psychiatric diseases 

were processed and analyzed (Amunts et al. 1999; Schleicher et al. 1999; Schormann and 

Zilles 1998). The histological sections were aligned to postmortem MR volume of the 

same brain using nonlinear warping (Schormann and Zilles 1998) to build an undistorted 

3-dimensional histological volume. Cytoarchitectonic areas, including V1 (Amunts et al. 

2000) and hOc5/MT+ (Malikovic et al. 2007) were segmented using observer-

independent criteria (Schleicher et al. 1999). The MR volumes were segmented to 

separate white matter from other tissue classes, and the segmentation was used to 

generate topologically correct and geometrically accurate surface representations of the 

cerebral cortex using FreeSurfer (Fischl et al. 2008). The cortical surfaces of the fifteen 

subjects were registered to FreeSurfer surface space and the histological areas were 
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sampled onto the surface space. While there were fifteen subjects, each cytoarchitectonic 

area was only analyzed in at most ten subjects.  

Prior work has demonstrated good across-subject alignment of lower order 

cortical areas in the surface coordinate system, with average misregistration errors as 

small as 2-3 mm for V1 (Fischl et al. 2008; Hinds et al. 2008; Yeo et al. 2010a), which is 

around the spatial resolution of the present fMRI data. For higher-order regions such as 

BA44, BA45 and hOc5/MT+, intersubject agreement is worse, with average 

misalignment errors in the order of 6-12 mm (Fischl et al. 2008; Yeo et al. 2010a; 

2010b), but still an improvement from standard volumetric alignment (Amunts et al. 

1999). In the case of histologically defined hOc5, considered to be putative MT+ 

(Malikovic et al. 2007), we were able to verify (not shown) that the probabilistic map of 

hOc5 in FreeSurfer surface space (Yeo et al. 2010b) was consistent with that of MT+ 

defined in Caret PALS space (Van Essen 2004) and peak MT+ coordinates reported in 

fMRI attention literature (Shulman et al. 1999). Certain anatomical landmarks were also 

useful in the selection of regional vertices. For example, the calcarine fissure was used as 

a guide to select regions in the lower and upper visual field representations as well as in 

the central and peripheral visual field representations within V1 (e.g., see Fig. 3.22). 

 

Comparison of network boundaries with cytoarchitectonic areas 

 In addition to their utility for selecting regions, the probabilistic histological maps 

were useful in relating the estimated network boundaries to human cytoarchitectonic 

areas. Because the Statistical Parametric Mapping (SPM) Anatomy toolbox contained a 

more complete set of probabilistic histological maps of the same subjects in MNI Colin27 
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volumetric space (Eickhoff et al. 2005), we projected these probability maps to 

FreeSurfer surface space by establishing spatial correspondence between Colin27 and 

FreeSurfer surface space using the same procedure as that used for mapping between 

MNI152 volumetric space and FreeSurfer surface space (Buckner et al. 2011). 

Cytoarchitectonic areas common to both datasets were those of the primary motor cortex 

(areas 4a and 4p; Geyer et al. 1996), premotor cortex (area 6; Geyer 2004), primary 

somatosensory cortex (areas 3, 2 and 1; Geyer et al. 1999), early visual cortex (areas 17 

and 18; Amunts et al. 2000), hOc5/MT+ (Malikovic et al. 2007) and BA44/45 (Amunts et 

al. 1999). Consistent with previous discussion about surface-based versus volume-based 

registration, we found Eickhoff’s probabilistic maps in FreeSurfer space to be more 

diffuse than the maps obtained from the purely surface-based approach, implying poorer 

intersubject alignment. Consequently, for cytoarchitectonic areas common to both 

datasets, the surface-based probabilistic maps were used (Fischl et al. 2008; Yeo et al. 

2010b) (e.g., see Fig. 3.22). We were also able to verify reasonable overlap (not shown) 

between the projected Eickhoff’s maps and the purely surface-based probabilistic maps 

for areas common to both datasets, substantiating the validity of the mapping between the 

Colin27 space and FreeSurfer surface space.  

 

Effect of resting condition on functional connectivity 

 For certain analyses, it was important to check that findings were not the result of 

overt eye movements that might shift edges and visual boundaries in and out of the 

central field. The core dataset (N = 1000) employed an eyes open rest condition because 

it is comparable to visual fixation in terms of signal strength (Van Dijk et al. 2010) but 
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can be acquired in studies that do not employ a setup for visual display. To examine the 

effects of the task employed during the resting-state, the effect of condition was analyzed 

for certain key analyses (e.g., for analyses that quantified the functional connectivity 

strengths among visual regions). As the results will show, the type of resting condition 

(EOR, ECR or FIX) is not a significant factor influencing our results (e.g., see Fig. 3.17). 

 

Visuotopic fMRI data  

 The analyses of the visual cortex involved the visuotopic organization of the V1-

V3 complex. The fMRI data were analyzed in the native subjects’ volumetric space and 

the results sampled onto FreeSurfer surface space and averaged across subjects. The 

details of the analysis, which provided eccentricity estimates of the visual representation 

in the V1-V3 complex, are described elsewhere (Hinds et al. 2009). A 1mm smoothing 

kernel was applied to the averaged eccentricity estimate in FreeSurfer surface space. 

Because of the limited range of visual angle that could be stimulated in the MRI scanner, 

and because fixational eye movements that occur during visual stimulation prevent stable 

stimulation of the fovea, the eccentricity estimates did not cover the representation of the 

periphery or of the center of visual field within the V1-V3 complex (Hinds et al. 2009; 

Polimeni et al. 2005), but were sufficient for our analyses.  

 

Distribution of parcellations and raw data 

 A primary result of this study is the parcellation of cortical networks and the 

estimation of boundaries of regions within the networks. The parcellations of parietal and 

prefrontal cortices, in particular, represent demarcations of complex topographical 
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regions that have been perplexing to understand in relation to task-based functional 

neuroimaging studies. We have uploaded the parcellations in Caret PALS surface space 

into the Surface Management System Database (SumsDB) for open use (Dickson et al. 

2001) (sumsdb.wustl.edu:8081/sums/directory.do?id=8286317). The parcellations in 

FreeSurfer surface space are also available 

(http://www.freesurfer.net/fswiki/CorticalParcellation_Yeo2011). Movies of the region-

based functional connectivity estimates can be downloaded from 

http://www.youtube.com/yeokrienen. The raw fMRI data from the 1000 subjects will be 

made openly available to researchers using the procedures established by the OASIS data 

releases (Marcus et al. 2007; 2010) and the 1000 Functional Connectomes Project 

(Biswal et al. 2010). 

 

Results 

 

Estimates of cerebral networks are reliable 

The cerebral cortex was parcellated into multiple networks using clustering. The 

parcellations resulted in networks that involved primarily adjacent areas (e.g., visual 

cortex) and networks that involved areas widely distributed throughout the cortex (e.g., 

heteromodal association cortex). Figure 3.7 shows the 7-network estimates for the 

Discovery and Replication samples. A total of 97.4% of the vertices were assigned to the 

same networks across both datasets. Varying the particular choice of binarization 

threshold (ranging from 5% to 15%) and smoothing (ranging from no smoothing to 6mm 

FWHM) minimally affected the results (not shown). Figure 3.8 shows the confidence 
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(silhouette) value for each vertex with respect to its assigned network for the 7-network 

estimate. Regions close to the boundaries between networks were less confident in their 

assignment. Spatial variation within individual components of the estimated networks 

was also observed beyond the boundary regions. Often these low-confidence regions 

anticipated further fractionation of the networks into smaller subnetworks that emerged 

when larger numbers of networks were allowed (e.g., compare the lateral prefrontal 

extent of the orange network in Fig. 3.7 with its confidence map in Fig. 3.8, and then note 

subsequent fractionation of this region in Fig. 3.9). Figure 3.9 shows the 17-network 

estimates for the Discovery and Replication data samples, and Figure 3.10 shows the 

confidence map for the Discovery dataset. For the 17-network estimate, 97.0% of the 

vertices were assigned to the same networks across both datasets. 
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Figure 3.7 Discovery and Replication of a 7-network cortical parcellation. The 7-
network estimates are highly consistent across the Discovery (n = 500) and Replication (n 
= 500) datasets. 97.4% of the vertices were assigned to the same network. 
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Figure 3.8 Confidence of 7-network estimate in Discovery dataset. Confidence 
(silhouette) value for each vertex with respect to its assigned network is shown for the 
Discovery dataset. Regions close to the boundaries between networks were less confident 
of their assignment, although we also observed structured spatial variation within 
individual components of the estimated networks, such as lateral prefrontal cortex, which 
foreshadows its division in the 17-network estimate (Fig. 3.10). 
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Figure 3.9. Discovery and Replication of a 17-network cortical parcellation. The 17-
network estimates are highly consistent across the Discovery (n = 500) and Replication (n 
= 500) datasets. A total of 97.0% of the vertices were assigned to the same network. 
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. 
Figure 3.10. Confidence of 17-network estimate in Discovery dataset. Confidence 
(silhouette) value for each vertex with respect to its assigned network is shown for the 
Discovery dataset. Again, regions close to the boundaries between networks were less 
confident of their assignment, while structured spatial variation were observed within 
individual components of the estimated networks. 
 

 

Estimates of cerebral networks from 1000 subjects 

To provide the best estimates of the cerebral cortical networks, clustering was 

performed on the full sample of 1000 subjects. Figures 3.11 and 3.13 show the 7- and 17-

network parcellation estimates. Several results are notable. A salient feature of the 

estimated networks is the separation of the early sensory and late motor cortices (blue and 

purple) from association cortex, consistent with the observation that early sensory and 

late motor regions exhibit local anatomical connectivity in primates (Felleman and Van 

Essen 1991; Jones et al. 1978; Markov et al. 2010) and preferential local functional 

coupling in humans (Sepulcre et al. 2010). Sensory and motor cortices, whose functional 
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connectivity networks were preferentially local, comprised only 35% of the cerebral 

mantle and were the exception in terms of network structure. 

The majority of the human cerebral cortex is comprised of multiple, distinct 

networks of association areas. The association networks in the 7-network estimate 

converged and extended upon networks previously described in the resting-state 

literature, including those referred to as the dorsal and ventral attention (green and violet 

respectively; Fox et al. 2006), the frontoparietal control (orange; Dosenbach et al. 2007; 

Vincent et al. 2008) and the default (red; Buckner et al. 2008; Greicius et al. 2003) 

networks (Fig. 3.12). We also note that the 7-network parcellation of the parietal cortex is 

similar to those proposed using seed-based approaches (Vincent et al. 2008) and using the 

areal boundary detection method (Cohen et al. 2008; Nelson et al. 2010). The 

convergence of multiple different analysis approaches suggests that the parcellation is 

intrinsic to the resting-state data rather than an artifact of the algorithm used.  

Generally, the 17-network estimate fractionated the 7-network estimate into 

smaller subnetworks. Some aspects of the fractionation, such as the emergence of a 

parahippocampal-retrosplenial-lateral parietal network, are anticipated by other studies 

using hierarchical-clustering techniques (e.g., Andrews-Hanna et al. 2010). Other aspects 

of the fractionation were unexpected, such as the emergence of subnetworks within the 

visual and motor cortices that did not respect areal boundaries but rather appear to align 

with topographic organization. In the following sections, we quantify and further explore 

the patterns of functional connectivity that give rise to these networks. 
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Figure 3.11. A coarse (7-network) parcellation of the human cerebral cortex based 
on 1000 subjects. To provide the best estimates of the 7 cortical networks, clustering was 
performed on the fMRI data of the full 1000 subjects. A salient feature is the separation 
of the early sensory and late motor cortices (blue and purple) from the association cortex. 
The association networks converged and extended upon networks previously described in 
the resting-state literature, including the dorsal attention, ventral attention, frontoparietal 
control and the default networks. 
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Figure 3.12. Table of colors assigned to networks in the 7-network estimate. 
Common names associated with each network in the neuroimaging literature are included 
in the brackets. This should not be taken to mean that our estimated networks correspond 
exactly to those in the literature or that the networks code solely for functions associated 
with their assigned name. For example, components of the green network are implicated 
in spatial attentional tasks (Corbetta and Shulman 2002) and so we refer to the green 
network as the dorsal attention system. However, from the macaque literature, 
components of the green network have also been described in relation to the hierarchical 
processing of sensory information (e.g., Felleman and Van Essen 1991) and recruited in 
tasks involving sensory-guided decisions (e.g., Andersen and Buneo 2002).  As other 
examples of limitations of heuristic reference labels, the violet ventral attention network 
is likely an aggregate of (or closely adjacent to) multiple networks in the literature 
variably referred to as the salience (Seeley et al. 2007) and cingulo-opercular networks 
(Dosenbach et al. 2007), and the red default network can be fractionated (e.g., Andrews-
Hanna et al. 2010). Many of these details are reflected in Figure 3.13. 
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Figure 3.13. A fine-resolution (17-network) parcellation of the human cerebral 
cortex based on 1000 subjects. To provide the best estimates of the 17 cortical 
networks, clustering was performed on the fMRI data of the full 1000 subjects. The 17-
network estimate fractionated the 7-network into smaller networks. Some aspects of the 
fractionations have been previously noted in other studies.   
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A cautionary note about potential artifacts 

Before exploring the estimated networks in more detail, it is important to point 

out aspects of the data that are difficult to interpret because of potential fMRI signal 

blurring across gyri and signal loss associated with susceptibility (Ojemann et al. 1997). 

Figure 3.14A illustrates one example. Somatomotor, auditory and posterior insular 

cortices are correlated within a single network (also see Fig. 3.11). The ventral portion of 

somatomotor cortex is clustered with the auditory cortex in the 17-network parcellation 

(Fig. 3.13). While non-human primate tracing studies suggest auditory and somatomotor 

cortices are connected via multiple areas within the insular cortex (Disbrow et al. 2003; 

Mesulam and Mufson 1982), an equally likely explanation for the observed correlation is 

blurring of the BOLD signal across the Sylvian fissure (Fig. 3.14A). We could not find a 

way, in these data, to resolve whether the coupling was an artifact of limited resolution or 

a true, coupled network.  

Figure 3.14B illustrates a second example of how fMRI signal blurring might 

affect the interpretation of the results. In this case, the primary somatosensory cortex (S1) 

and primary motor cortex (M1) are clustered within the same network (Fig. 3.11). While 

there is anatomical evidence of direct connectivity between S1 and M1 in the macaque 

(Jones et al. 1978; Pons and Kaas 1986), we are unable to resolve whether the coupling 

was an artifact of limited resolution due to the close proximity of M1 and S1 in 

volumetric space.  

As an example of uncertainty occurring near regions of MR susceptibility, Figure 

3.14C illustrates a cream-colored network of regions in the temporal pole and orbital 

frontal cortex (also see Fig. 3.11). While there is anatomical evidence from the primate 
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tracing literature supporting the existence of this network (Carmichael and Price 1995; 

Kondo et al. 2003; Moran et al. 1987), the spatial distortion and signal loss caused by MR 

susceptibility creates uncertainty in the location of the network boundaries.  

 

Figure 3.14. Uncertain observations due to limited data resolution and MR 
susceptibility. When interpreting the clustering results, potential artifacts and 
uncertainties must be considered. Because of the close proximity of the somatomotor and 
auditory cortices (A) and the close proximity of the pre- and post-central gyri (B), we are 
unable to resolve whether the clustering of the somatomotor and auditory cortices (A) 
and the clustering of the primary somatosensory and primary motor cortices (B) are due 
to the result of fMRI blurring across sulci or a true, coupled network of distributed areas 
as predicted by macaque tracing studies. (C) The orbital frontal-temporopolar network 
(cream color) consists of temporopolar and orbital frontal regions that are affected by MR 
susceptibility. Since MR susceptibility spatially distorts the MR signal and reduces SNR, 
there is uncertainty in the exact boundary of the orbital frontal-temporopolar network and 
the true extent of the network is probably underestimated.  
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Sensory and motor cortices exhibit topographically-specific functional connectivity 

The sensory and motor cortices were clustered separately from the association 

cortex in the 7-network estimate (Fig. 3.11). This result by itself suggests that sensory 

and motor cortices distinguish themselves from distributed networks of association areas. 

Within the sensory and motor networks, there were a number of further observations. Of 

most interest, the 17-network parcellation fractionated the sensory and motor cortices into 

subnetworks (Fig. 3.13). Specifically, early visual regions formed two distinct 

subnetworks that did not respect areal boundaries. Somatomotor cortex was similarly 

fractionated along its lateral extent. Our hypothesis is that these fractionations reflect 

topographic organization – topographic representation of visual space in the visual 

regions and topographic representation of body space in the somatomotor regions. 

Visual topography. The visual network in the 7-network estimate (Fig. 3.11) was 

fractionated into two separate subnetworks (purple and bright red) in the 17-network 

estimate (Fig. 3.13). The boundary between the two visual subnetworks cut 

perpendicularly across the calcarine fissure, suggesting the division of the early visual 

areas into central and peripheral components. To evaluate this possibility, Figure 3.15 

overlays the eccentricity estimates of the Visuotopic dataset over the boundaries of the 

two separate visual subnetworks. The early visual areas were divided into two 

subnetworks along an isoeccentricity line of approximately 4o. We refer to these two 

subnetworks as “central” and “peripheral”, although an immediate question arises as to 

whether the division of lower visual areas into central and peripheral components extends 

to higher visual areas. The particular traveling wave paradigm used in the Visuotopic 

dataset was designed to estimate visual eccentricity within the V1-V3 complex and is 
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therefore unreliable outside the complex. To gain further clarification on visual areas 

outside the V1-V3 complex, we inspected the boundaries of the 17-network parcellation 

overlaid on the map of approximate human visual areas provided by Van Essen (2004). 

The boundary between the central and peripheral representations continues through the 

extrastriate visual areas consistent with the possibility that the division of lower visual 

areas into central and peripheral components generally applies to the extrastriate cortex 

with certain caveats that will be taken up in the Discussion.  

 

Figure 3.15. Eccentricity estimates quantify the division of the early visual cortex 
into central and peripheral systems. Eccentricity estimates in the early visual areas of 4 
subjects were averaged and overlaid on the boundaries (in black) of the 17-network 
estimate. The boundary between areas 18 and 19 estimated from the Histological dataset 
is overlaid in green. The 17-network estimate divides the early visual areas along an 
isoeccentricity line of approximately 4o. Note that the eccentricity estimates are not 
reliable outside the V1-V3 complex.  
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To assess the validity of the clustering analysis of visual cortex, six seed regions 

were selected from the Discovery sample (Table 3.1), and their fcMRI maps were 

computed using the Replication sample. The regions were selected to include V1 and V3 

regions that fell within the central and peripheral representations. Using the calcarine 

fissure, histological V1 estimates (Amunts et al. 2000; Fischl et al. 2008) and the network 

boundaries as landmarks, two regions labeled V1c and V1p were selected to correspond to 

central and peripheral V1 respectively. Using the probabilistic histological maps of the 

SPM Anatomy toolbox (Eickhoff et al. 2005), two regions labeled V3cv and V3pv were 

selected at or near visual area V3v (Rottschy et al. 2007; Wilms et al. 2010) 

corresponding to the central and peripheral representations respectively. The two 

remaining regions were selected from the extrastriate regions of the central and peripheral 

visual subnetworks. In all cases, the confidence (silhouette) map of the 17-network 

estimate from the Discovery sample (Fig. 3.10) was used as a guide.  

The fcMRI maps of the six seed regions confirm the network demarcations (Fig. 

3.16). Compared with the other seed regions of the central visual system, V1c 

demonstrated weaker correlation to the extrastriate regions of the central visual system. 

This is reflected by the lower confidence of V1c in its network assignment as shown in 

Table 3.1. Consistent with this observation, as the number of networks in the clustering 

analysis was increased (not shown), the central V1 region separated from the extrastriate 

component of the central visual system.  
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Table 3.1: Locations of Visual Cortex Seed Regions. Notes: V1c and V1p seed regions 
are selected from the central and peripheral regions of V1. V3cv and V3pv seed regions are 
selected from the central and peripheral regions at or near V3v. ExC and ExP are selected 
from the purple-colored “central” and bright red-colored “peripheral” visual systems 
respectively. The confidence of the seeds in their network assignment is computed from 
the Replication dataset. Coordinates reflect the approximate center location based on the 
atlas space of the Montreal Neurological Institute (MNI). 

 
Seed Region Coordinates Confidence 

V3pv (Rottschy et al. 2007; Wilms et al. 2010) -12, -67, -3 0.74 

ExP -3, -74, 23 0.81 

V1p (Amunts et al. 2000; Fischl et al. 2008) -16, -74, 7 0.78 

V3cv (Rottschy et al. 2007; Wilms et al. 2010) -23, -91, -15 0.67 

ExC  -32, -89, -1 0.75 

V1c (Amunts et al. 2000; Fischl et al. 2008) -13, -100, -8 0.48 
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Figure 3.16. Evidence that the fractionation of the visual system reflects fcMRI 
topography within the v isual cortex. Six left hemisphere seed regions were picked 
from the Discovery dataset: V1c and V1p correspond to central and peripheral visual field 
representation within V1 respectively; V3cv and V3pv correspond to central and peripheral 
V3v respectively; ExC and ExP correspond to two seed regions within the extrastriate 
visual cortex in the estimated locations of the central and peripheral visual fields (purple 
and bright red in center panel). The six seed regions are illustrated in the center panel and 
their coordinate locations are reported in Table 3.1. Their left hemisphere fcMRI maps 
were computed using the Replication dataset and arranged around the center panel. Note 
that the central visual seed regions are selectively correlated with the central visual 
representation, while the peripheral visual seed regions are selectively correlated with the 
peripheral visual representation. 
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To quantify the dissociation between the central and peripheral representations 

within the visual subnetworks, Figure 3.17A shows polar plots of the correlation of V1p 

and V1c with five regions in the Replication sample. Since the Discovery and Replication 

samples consist of resting data collected under the eyes open rest condition, the patterns 

of functional connectivity were also quantified for the Task Effect dataset (Fig. 3.17B). 

The results revealed that the central and peripheral V1 seed regions displayed distinct 

patterns of functional connectivity that generalized across multiple data acquisition 

conditions including eyes closed rest and visual fixation.  

. 
Although there are differences in visual field properties, such as magnification 

factors and receptive field sizes, between the central and peripheral regions of the V1-V3 

complex, these differences vary smoothly from central to peripheral vision within an area 

(Balasubramanian et al. 2002; Dow et al. 1981; Rovamo and Virsu 1979). To explore this 

further, functional connectivity was examined among seed regions spanning the 

eccentricity axes of V1 and V3v (Fig. 3.18). Results did not suggest a sharp transition in  
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Figure 3.17. Quantification of fcMRI topography within the visual cortex and 

independence of the topography from task condition. (A) Quantification measures of 
functional connectivity strength are plotted in polar form for V1c (central V1) and V1p 
(peripheral V1) seed regions for the Replication dataset. Note that V1 refers to V1c for 
the V1p polar plot (blue) and V1p for the V1c polar plot (red). Coordinate locations for all 
six seed regions (V1c, V1p, V3cv, V3pv, ExC, ExP) are reported in Table 3.1. (B) Polar 
plots of (A) replicated with the Task Effects dataset (EOR = eyes open rest; ECR = eyes 
closed rest; FIX = fixation) to ensure that the results obtained using the EOR Replication 
dataset were not due to overt eye movements that might shift edges and visual boundaries 
in and out of the central field. Left figure shows V1p polar plot. Right figure shows V1c 
polar plot. The polar plots quantify the differential functional coupling of central and 
peripheral V1 with higher visual areas. The polar scales range from r = -0.1 (center) to r 
= 0.7 (outer boundary) in 0.2-step increments
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functional connectivity between V1 and V3v seed regions moving from central to 
peripheral representations. The resulting division of the V1-V3 complex along the 
isoeccentricity line of 4o was therefore likely driven by the functional connectivity of 
visual regions outside the V1-V3 complex or may be an artifact of the small number of 
networks being mandated by the analyses. 

 

Figure 3.18. V1 and V3 
functional correlations display a 
smooth transition from the 
central to peripheral 
representations. Correlation of 
two series of seed regions spanning 
the eccentricity axes of V1 and 
V3v is shown for the full 1000 
subjects. V1 seed regions of low 
eccentricity are strongly correlated 
with V3 seed regions of low 
eccentricity. V1 seed regions of 
high eccentricity are strongly 
correlated with V3 seed regions of 
high eccentricity. There is a 
gradual transition in functional 
connectivity strength between the 
central to peripheral 
representations.  
 

  
 

Somatomotor topography. The 7-network parcellation estimate clustered the 

somatomotor cortex into a single network (the blue network in Fig. 3.11). Figure 3.19 

shows the boundaries of the 7-network estimate overlaid on the probabilistic histological 

maps of areas 6 (Geyer 2004), 2 (Grefkes et al. 2001) and 5L (Scheperjans et al. 2008a; 

2008b). The histological estimates of areas 1, 3 and 4 (Geyer et al. 1996; 1999) are 

sandwiched between areas 2 and 6 and are not shown. Recent work (Amunts et al. 2010) 

has delineated three additional premotor areas anterior to the ventral half of area 6 shown 

in Figure 3.19; the ventral half of area 6 in Figure 3.19 is therefore an underestimation. 
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Based on these areal references, the somatomotor network likely includes MI (area 4) and 

caudal premotor area 6, SI (areas 3, 1 and 2) and most, if not all of early somatosensory 

area 5L. The somatomotor network also includes a small portion of the mid-cingulate 

sulcus and possibly area 5M (not shown; Scheperjans et al. 2008a; 2008b). 

 

Figure 3.19. 7-network boundaries on probabilistic maps of areas 6, 2 and 5L. 
Boundaries of 7-network estimate based on the full 1000 subjects are overlaid on the 
surface-based probabilistic histological maps of areas 6, 2 and 5L. The somatomotor 
network includes most, if not all of areas 2 and 5L, but only caudal half of area 6. 

 

 

The 17-network parcellation divided the somatomotor strip into dorsal and ventral 

subnetworks across the axis that represents body space (Fig. 3.13). To investigate this 

division, the parcellations were compared to activation maps of 24 subjects who were 

instructed to move their tongue, hand or foot in response to a visual cue (for a detailed 

explanation of this dataset, see Buckner et al. 2011). As shown in Figure 3.20A, the 

boundary between the dorsal and ventral somatomotor subnetworks was roughly 
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positioned between the hand and tongue representations. To quantify this observation, 

seed regions were selected from the left hemisphere hand, foot and tongue activation 

maps and verified to fall within the probabilistic histological map of area 4 (Fischl et al. 

2008; Geyer et al. 1996). Figure 3.20B shows pairwise correlations computed among the 

hand, foot and tongue regions averaged over 1000 subjects (Hand coordinates: -41, -20, 

62; Foot coordinates: -6, -26, 76; Tongue coordinates: -55, -4, 26). The hand-foot 

correlation was significantly higher than the hand-tongue correlation (p < .001) and foot-

tongue correlation (p < .001). Thus, like the visual system, functional coupling forms 

networks within the somatomotor system that reflect topographic organization. 

There were two further results that must be interpreted cautiously because of 

volumetric signal blurring. The 7- and 17-network parcellations of somatomotor cortex 

included both the precentral and postcentral representations of body space thus forming 

networks that spanned areas (M1 and S1). This observation is difficult to interpret 

because precentral and postcentral gyri abut each other in volumetric space (see Fig. 

3.14B). Similarly, the ventral somatomotor network in the 17-network parcellation 

included parts of the insula and auditory cortex, perhaps reflecting a polysynaptic circuit 

of functional coupling linked to speech movements and hearing one’s own voice. We do 

not interpret this observation because of their volumetric proximity (see Fig. 3.14A). 
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Figure 3.20. Evidence that the 
fractionation of the somatomotor cortex 
reflects fcMRI topography within the 
somatosensory and motor cortex. (A) 
Average fMRI activation maps of 24 subjects 
instructed to move their tongue (blue), right 
hand (red) or right foot (green) across 
separate conditions. Black lines correspond to 
boundaries of the 17-network estimate. The 
dorsoventral split of the somatomotor 
network occurs spatially between the tongue 
and hand activations. (B) Quantification of 
correlation strength between the left 
hemisphere tongue, hand and foot seed 
regions selected from the activation maps. 
Hand coordinates = -41, -20, 62; Foot 
coordinates = -6, -26, 76; Tongue 
coordinates: -55, -4, 26. Hand-foot 
correlation is significantly higher than hand-
tongue correlation, which is in turn 
significantly higher than foot-tongue 
correlation.   
 

 

Asymmetry of functional coupling varies across somatomotor topography 

Analysis of asymmetries in functional coupling is beyond the scope of this paper. 

However, we observed an interesting variation in the asymmetry of functional coupling 

that reinforces the observation of functional differences along the somatomotor body 

representation. Specifically, pairwise correlations between homotopic pairs of hand, foot 

and tongue representations (Hand coordinates: ±41, -20, 62; Foot coordinates: ±6, -26, 

76; Tongue coordinates: ±55, -4, 26) were measured between the hemispheres (Fig. 

3.21A). The homotopic hand correlation was significantly weaker than that of the 

homotopic foot (p < .001) and tongue (p < .001) correlations. We are unable to rule out 
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the possibility that the higher correlation between homotopic tongue regions is an artifact 

of subjects moving their tongues during scanning. 

 
Figure 3.21. Evidence that the 
interhemispheric fcMRI of homotopic 
regions within the primary motor cortex 
is topographically organized. (A) 
Correlation strength of left hemisphere 
tongue, hand and foot seed regions with 
corresponding contralateral seed regions 
averaged over all 1000 subjects. Right 
hemisphere vertices were obtained by 
reflection across the midline. Hand 
coordinates = ±41, -20, 62; Foot 
coordinates = ±6, -26, 76; Tongue 
coordinates = ±55, -4, 26. The tongue 
representation has the strongest 
interhemispheric correlation, followed by 
the foot and then the hand. (B) Plot of 
interhemispheric correlation along the 
ventral (tongue) to dorsal (foot) extent of 
motor cortex. Maximal interhemispheric 
correlation is highest near the tongue 
representation and also peaks between the 
hand and foot representations, possibly 
corresponding to the trunk representation. 

 

 

To explore the somatotopy of interhemispheric fcMRI beyond the hand, foot and 

tongue representations, we estimated the sequence of vertices lying in the shortest path 

connecting the left tongue region with the left hand region and those lying in the shortest 

path connecting the left hand region with the left foot region. For each left hemisphere 

motor vertex, we found the corresponding right hemisphere vertex that was maximally 

correlated with it in the Discovery sample. Figure 3.21B plots the correlation between the 

left hemisphere vertices, arranged ventral to dorsal, and the corresponding right 
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hemisphere vertices in the Replication data sample. Defining the maximally correlated 

right hemisphere vertices in the Discovery sample avoided bias in the correlation values 

and the issue of picking truly homotopic representations in either hemisphere. Consistent 

with Figure 3.21A, the maximal tongue correlation was higher than that of the foot, 

which was in turn higher than that of the hand. The region in between the hand and foot 

representations, possibly corresponding to the trunk representation, also displayed higher 

maximal interhemispheric correlation than those of the hand or foot representations.  

The observed somatotopy of interhemispheric fcMRI is consistent with non-

human primate studies that have shown that the representations of midline structures in 

S1 and M1, such as the face and trunk, have denser callosal connections than those of 

distal limbs, such as the hand and foot (Gould et al. 1986; Jones and Wise 1977; 

Killackey et al. 1983, Pandya and Vignolo 1971).  

 

Hierarchical processing within a canonical sensory-motor pathway 

 Parcellation of the cerebral cortex into distinct networks will not capture 

information about interactions between regions that fall across separate networks. This is 

particularly problematic because the canonical system-level description of cortical 

processing involves interactions across hierarchical pathways of sensory and motor areas. 

The above analyses leave open the question of how the distinct networks interact as is 

expected for sensory-motor pathways.  

To explore this question, we selected the canonical sensory-motor pathway that 

extends from primary visual cortex to the precentral motor regions (including the putative 

homologue of FEF) via the motion-sensitive MT+ complex and posterior parietal cortex 
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at or near putative human LIP. In the macaque literature, this pathway has been 

extensively studied in relation to sensory-guided decisions resulting in eye movements 

and associated processes linked to spatial attention (e.g., Andersen and Buneo 2002; 

Colby and Goldberg 1999; Gold and Shadlen 2007; Shadlen and Newsome 2001). In the 

human literature, this pathway has been studied both in relation to spatially-directed 

movements and also in relation to spatial attention, with components of the pathway 

sometimes referred to as the dorsal attention system or network (Corbetta and Shulman 

2002). Most critically, the anatomic relations between the areas within the pathway have 

been extensively explored beginning with the seminal work of Maunsell and Van Essen 

(1983). 

Early visual cortex. Analysis focused initially on the bottom of the sensory-motor 

pathway by investigating functional connectivity between V1 and putative human MT+3. 

For this analysis, two V1 regions were selected in dorsal (V1cd) and ventral (V1cv) central 

V1 corresponding to the lower and upper visual field representations. Two additional V1 

regions were selected in dorsal (V1pd) and ventral (V1pv) peripheral V1 corresponding to 

the lower and upper visual field representations. Two MT+ seed regions (MT+d, MT+v) 

were selected following the dorsoventral extent of the surface-based probabilistic 

histological map of MT+ (Malikovic et al. 2007; Yeo et al. 2010b). The MT+d and MT+v 

seed regions likely correspond to peripheral and central visual field representations 

respectively (Huk et al. 2002; Maunsell and Van Essen 1987) and were analyzed to 

                                                 
3"In humans, the MT+ complex is used to denote the putative human homologue of 
macaque area MT and neighboring visual areas that are sensitive to motion stimuli 
(DeYoe et al. 1996). Here we are able to constrain the location of MT+ using surface 
based histological maps of hOc5 which is thought to be the cytoarchitectonic correlate of 
the human MT+ complex (Malikovic et al. 2007; Yeo et al. 2010b)."
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illustrate differential connectivity within MT+. Because of the over-representation of the 

lower visual field within macaque MT (Maunsell and Van Essen 1987), the distinct MT+ 

seed regions might also represent the lower visual field, although human fMRI studies 

have so far failed to yield strong evidence of this representational bias within MT+ 

(Amano et al. 2009; Kolster et al. 2010; Tootell et al. 1995). In the following analyses, 

MT+ was either analyzed as two regions using the extreme seed regions (MT+d and 

MT+v) or as a single region using the center seed region (MT+) for analyses that did not 

require the complexities of topographic distinctions. A single aMT+ (anterior MT+) 

region was chosen anterior to and outside the histological MT+4. The regions are shown 

in Figures 3.22A and 3.24; their coordinates are reported in Table 3.2. 

 

 

                                                 
4"Multiple seed regions are used throughout the paper.  The abbreviation of the names of 
these seed regions obeyed the following convention: the suffix following a region 
indicates relative spatial location within the region, while the prefix preceding a region 
indicates relative spatial location outside the region. Therefore, MT+d is a seed region 
within the dorsal aspect of the MT+ complex, while aMT+ is a seed region anterior to and 
outside the MT+ complex."
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Table 3.2: Locations of Seed Regions Utilized in the Sensory-Motor Pathway 
Analysis. Notes: Four V1 seed regions were selected using the calcarine fissure, 
histological V1 estimates (Amunts et al. 2000; Fischl et al. 2008) and the 17-network 
boundary estimate in the Discovery dataset. V1pd and V1pv were from the dorsal and 
ventral parts of peripheral V1, likely representing the ventral and dorsal peripheral visual 
fields respectively. V1cd and V1cv were from the dorsal and ventral parts of central V1, 
likely representing the ventral and dorsal central visual fields respectively. MT+d, MT+ 
and MT+v seed regions were selected from the dorsal, center and ventral parts of the 
histological map of the MT+ complex, so that MT+d and MT+v likely represented 
peripheral and central visual fields respectively. Based on the over-representation of the 
lower visual field within macaque MT (Maunsell and Van Essen 1987), it is possible that 
the three MT+ seed regions might also represent the lower visual field. aMT+ was 
selected to be anterior and outside the MT+ histological map. V3A and V4 were selected 
based on their high correlation with MT+ in the Discovery sample and named using the 
approximate map of human visual areas (Van Essen 2004) as reference. FEF and PrCv 
were selected from the caudal frontal cortex, while IPS2, IPS3m, SPL7A, SPL7P and 
IPS1 were at or near IPS. FEF, IPS2, SPL7A and SPL7P were derived from the meta-
analysis of fMRI studies (see Table 3.4). The PrCv region was selected based on its 
correlation with aMT+. IPS3m was chosen spatially between IPS2 and SPL7A. IPS1 was 
chosen on the lateral wall of rostral IPS. IPS2, IPS3m, SPL7A, SPL7P and IPS1 were 
named using the probabilistic histological maps of the parietal cortex as reference (Choi 
et al. 2006; Scheperjans et al. 2008a; 2008b). Coordinates reflect the approximate center 
location based on the MNI atlas space. 
 

Name Coordinates 

MT+d -44, -72, 8 

MT+ -45, -72, 3 

MT+v -45, -79, -1 

aMT+ -51, -64, -2 

V1pd -18, -70, 8 

V1pv -8, -63, 6 

V1cd -8, -95, 3 

V1cv -8, -92, -5 

V3A -17, -92, 20 
V4 -22, -65, -9 
FEF -26, -6, 48 

PrCv -50, 6, 30 

IPS2 -40, -37, 42 

IPS3m -31, -48, 46 

SPL7A -28, -61, 60 
SPL7P -14, -68,64 
IPS1 -46, -49, 51 
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Figure 3.22. Functional connectivity between MT+ and V1 is topographically 
organized. (A) Two MT+ seed regions, MT+d and MT+v, were selected in the dorsal and 
ventral portions of the histological MT+ estimate. aMT+ (anterior MT+) seed region was 
selected anterior to histological MT+. Four V1 seed regions were selected using the 
histological V1 estimate: V1cd and V1cv were selected in dorsal and ventral central V1; 
V1pd and V1pd were selected in dorsal and ventral peripheral V1. Coordinate locations of 
seed regions are reported in Table 3.3. (B) Correlation strength of aMT+ and MT+ seed 
regions with V1 in the Replication dataset. There are four observations to be noted: (1) 
V1-aMT+ correlation is weaker than V1-MT+ correlation, (2) MT+ correlation with the 
lower visual field is stronger than the upper visual field, (3) MT+d correlation with 
peripheral V1 is stronger than central V1 and (4) MT+v correlation with central V1 is 
stronger than peripheral V1.  
 

 Figure 3.22B quantifies the differential functional coupling of the four V1 regions 

with MT+ and aMT+ within the Replication sample. V1 showed strong functional 

coupling to MT+ and significantly weaker coupling to aMT+ (p < .001 for both MT+v 

and MT+d). The dorsal and ventral MT+ regions also demonstrated differential functional 

coupling with the four V1 regions, confirmed by a 2x2x2 ANOVA including eccentricity 
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(central or peripheral), polar angle (upper or lower visual field), and MT+ region (dorsal 

or ventral). Both MT+ regions were more strongly coupled with the lower visual field V1 

seed regions than the upper visual field V1 seed regions (p < .001). Furthermore, dorsal 

MT+ was more strongly coupled with peripheral V1 than central V1 (p < .001), while 

ventral MT+ was more strongly coupled with central V1 than peripheral V1 (p < .05).  

These results suggest the topographic pathways between V1 and the MT+ complex are 

largely consistent with the visual field representations of the two areas.  

Since V1 is a relatively large structure compared with MT+, to ensure the results 

were robust to the particular choice of the V1 seed regions, Figure 3.23 shows fcMRI 

maps of the aMT+, MT+ d  and MT+ v regions computed using the Replication dataset. By 

all accounts, V1 is functionally coupled to MT+ while aMT+ shows minimal coupling, 

leading to their separation into distinct networks in the cortical parcellation. 
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Figure 3.23. Functional connectivity maps of MT+ reveal topographic organization. 
Functional connectivity maps of aMT+, MT+v and MT+d are computed using the 
Replication dataset and shown with views focusing on V1. V1 showed little or no 
correlation to aMT+, but strong correlations with both MT+ seeds. In both MT+ fcMRI 
maps, there is stronger correlation with dorsal V1 (lower visual field) than ventral V1 
(upper visual field). There is also increasing correlation with central V1 as we proceed 
from MT+d to MT+v. Yellow line denotes areal boundary of V1. 

 

 
 

 Visual association and parietal association cortices. Moving up the sensory-

motor pathway, the functional connectivity of MT+ and aMT+ with parietal and frontal 

cortices was next examined. Figure 3.24 shows the fcMRI maps of MT+ and aMT+ seed 

regions computed using the Replication sample with views focusing on the parietal and 

lateral frontal cortices. In the parietal lobe, both MT+ and aMT+ demonstrated 

correlation with the SPL and IPS, but little or no correlation with the inferior parietal lobe 
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(IPL). In the frontal cortex, correlations were mostly limited to the precentral sulcus and 

gyrus. Compared with the MT+ seed region, the aMT+ seed region demonstrated 

stronger correlation with the parietal and frontal cortices. The MT+ and aMT+ seed 

regions were also maximally correlated with different parts of the parietal and frontal 

cortices, suggesting differential influence on nearby regions of sensory-association 

cortex.  

 
 

 

Figure 3.24. aMT+ and MT+ demonstrate differential functional connectivity with 
parietal and frontal cortices. Functional connectivity maps of aMT+ and MT+ seed 
regions computed using the Replication dataset. Coordinate locations of the regions are 
reported in Table 3.2. MT+ and aMT+ are more strongly correlated with SPL and IPS 
than with IPL. Correlation with frontal cortex is mostly limited to precentral sulcus and 
gyrus. aMT+ demonstrates stronger overall correlation with parietal and frontal cortices, 
compared with MT+. MT+ and aMT+ are maximally correlated with different parts of 
parietal and frontal cortices. 
 

 To quantify the pattern of differential functional coupling, we computed the 

correlation of the MT+ and aMT+ seed regions with four visual, four parietal and two 

frontal cortical regions (Fig. 3.25A). Two of the visual cortex regions, V1cd and V1pd, 



 164 

were previously used in the V1-MT+ connectivity analysis. V3A and V4 were selected 

based on their high correlation with MT+ in the Discovery sample and named using the 

approximate map of human visual areas (Van Essen 2004) as reference. The four parietal 

regions were chosen at or near the IPS. Three of the parietal regions (IPS2, SPL7A, 

SPL7P) were selected based on a meta-analysis of fMRI literature of tasks that reportedly 

activate the human homologues of macaque areas AIP (anterior intraparietal), LIP (lateral 

intraparietal) and PIP (posterior intraparietal) respectively. The final parietal region, 

IPS3m, was selected using the Discovery sample to be physically between IPS2 and 

SPL7A. The parietal regions were labeled based on their proximity to the probabilistic 

histological maps. In particular, IPS2 is at or near area hIP2 at the anterior most part of 

IPS (Choi et al. 2006), while SPL7A and SPL7P are at or near areas 7A and 7P of the 

SPL (Scheperjans et al. 2008a; 2008b). Finally, IPS3m is on the medial wall of IPS at or 

near area hIP3 (Scheperjans et al. 2008a; 2008b). The dorsal frontal region, putatively 

FEF, was selected based on the meta-analysis of fMRI literature of saccade tasks. The 

ventral frontal region PrCv (precentral ventral) was selected based on its high correlation 

with aMT+ in the Discovery sample. The locations of the visual, parietal and frontal 

regions are reported in Table 3.2. Table 3.3 summarizes the set of fMRI studies used to 

derive the coordinates of IPS2, SPL7A, SPL7P and FEF.  
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Figure 3.25. aMT+ and MT+ functional connectivity patterns generalize across task 
conditions. (A) Four visual, four parietal and two frontal seed regions were used to 
quantify the functional coupling of aMT+ and MT+ to distributed cortical regions. 
Coordinate locations of the seed regions are reported in Table 3.3 and were chosen either 
using the Discovery dataset or meta-analysis of fMRI studies (Table 3.4). (B) Polar plots 
of MT+ (blue) and aMT+ (red) connectivity with the visual, parietal and frontal seed 
regions are computed using the Replication dataset. MT+ is more strongly correlated with 
visual cortex as compared with parietal and frontal cortices. The converse is true for 
aMT+. (C, D) Polar plots of MT+ (blue) and aMT+ (red) connectivity replicated in the 
Task Effects dataset demonstrate that the functional coupling differences generalize 
across multiple data acquisition conditions. The polar scales range from r = -0.1 (center) 
to r = 0.6 (outer boundary) in 0.35-step increments. 
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Table 3.3: Summary of fMRI Meta-analysis to Obtain Coordinates for IPS2, SPL7A, 
SPL7P and FEF. Notes: For papers that only report right hemisphere coordinates, left 
hemisphere coordinates were obtained by reflection across the midline. Coordinates reflect 
the approximate center location based on the MNI atlas. For IPS2, tasks generally 
involved perception of 3D objects. Studies reporting responses at or near SPL7A used 
saccadic eye movement tasks. Studies reporting responses at or near SPL7P involved tasks 
requiring surface/orientation discrimination. FEF coordinates come from studies of 
saccadic eye movements.  
 
Name Coordinates Putative Macaque Homology Literature 
IPS2 -40, -37, 42 AIP (anterior intraparietal) Binkofski et al. 1999; Binkofski et al. 1998; 

Culham et al. 2003; Grefkes et al. 2002; Jäncke et 
al. 2001; Shikata et al. 2001; Shikata et al. 2003 

SPL7A -28, -61, 60 LIP (lateral intraparietal) Hagler et al. 2007; Heide et al. 2001; Koyama et 
al. 2004; Luna et al. 1998; Medendorp et al. 
2003; Sereno et al. 2001 (as reported in Table 1 
of Hagler et al. 2007); Shulman et al. 2003  

SPL7P -14, -68, 64 PIP (posterior intraparietal) Faillenot et al. 2001; Shikata et al. 2001; Shikata 
et al. 2003; Taira et al. 2001 

FEF -26, -6, 48 FEF (frontal eye fields) Connolly et al. 2000; Connolly et al. 2002; 
Corbetta et al. 1998; Heide et al. 2001; Koyama 
et al. 2004; Luna et al. 1998; Perry and Zeki 2000 

 
 
 
 Figure 3.25B shows the polar plots of the regional correlations using the 

Replication sample. To ensure that the results were not the result of overt eye 

movements, the polar plots were also replicated using the Task Effect dataset in Figures 

3.25C and 3.25D. In all cases, MT+ had significantly stronger correlation with early 

visual cortex as compared with aMT+. In contrast, aMT+ had significantly stronger 

correlation with the parietal and frontal regions compared with MT+.  MT+ and aMT+ 

are strongly coupled to one another (r = 0.30 in the Replication sample). Thus, 

consideration of functional coupling between these regions in detail suggests that early 

visual areas are coupled to regions at or near MT+, which are in turn directly (or 

indirectly through intermediate regions, such as aMT+) coupled to parietal and frontal 

regions associated with sensory-motor integration. The differential coupling of MT+ and 

aMT+ resulted in their inclusion into distinct cortical networks. 
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 Frontoparietal interactions. We next considered the differential functional 

coupling of FEF and PrCv with the parietal cortex. Figure 3.26 shows the fcMRI maps of 

FEF and PrCv computed using the Replication sample. While both FEF and PrCv 

demonstrated strong correlation with the SPL and IPS, differences in correlation patterns 

also emerged. Specifically, PrCv was strongly correlated with more ventral portions of 

rostral SPL and IPS, while FEF was strongly correlated with caudal SPL and IPS. To 

quantify this phenomenon, we computed the correlation of FEF and PrCv with five 

parietal regions at or near SPL and IPS. Four of the parietal regions (IPS2, IPS3m, 

SPL7A, SPL7P) were the same as those used in the previous analysis. Using the 

Discovery sample, a fifth parietal region was selected on the lateral wall of rostral IPS, 

within what is often termed the frontoparietal control network (orange; Fig. 3.11). Since 

the region was located at or near the histological map of hIP1 (Choi et al. 2006) projected 

to FreeSurfer space, we labeled the seed IPS1. The regions are displayed in Figure 3.27A 

and their coordinates reported in Table 3.2.  
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Figure 3.26. Differential connectivity of dorsal and ventral caudal frontal cortex 
with SPL and IPS. Functional connectivity maps of FEF and PrCv are computed using 
the Replication dataset and shown with view focusing on parietal cortex. Both FEF and 
PrCv demonstrate strong correlation with SPL and IPS. PrCv is more strongly correlated 
with ventral portions of rostral SPL and IPS, while FEF is more strongly correlated with 
caudal SPL and IPS. 
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 Figure 3.27. Evidence for segregated pathways linking caudal frontal cortex with 
SPL and IPS. (A) Five parietal seed regions were selected along the rostrocaudal extent 
of SPL and IPS. Two frontal seed regions, FEF and PrCv, were selected in dorsal and 
ventral precentral sulcus. All seed regions were selected using the Discovery dataset or 
meta-analysis of fMRI studies (Table 3.4). The coordinate locations are reported in Table 
3.3. (B) Functional connectivity of FEF and PrCv with the five parietal seed regions, 
arranged in rostral (lateral) to caudal (medial) order, from the Replication dataset. 
Rostrolateral IPS seed regions (IPS1, IPS2, IPS3m) were more strongly correlated with 
PrCv than FEF, while the mediocaudal SPL seed regions (SPL7A, SPL7P) were more 
strongly correlated with FEF than PrCv.  
  

Figure 3.27B shows the correlation of FEF and PrCv with the five parietal regions 

computed in the Replication sample, arranged in rostral (lateral) to caudal (medial) order. 

The rostrolateral IPS regions (IPS1, IPS2, IPS3m) were more strongly correlated with 

PrCv than FEF, while the caudomedial SPL regions (SPL7A, SPL7P) were more strongly 

correlated with FEF than PrCv. A 2x6 ANOVA including frontal regions (FEF, PrCv) and 

parietal regions (IPS1, IPS2, IPS3m, SPL7A, SPL7P) found a significant interaction (p < 

.001). In particular, FEF was more strongly correlated with the three IPS seeds (all p < 
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.001) while PrCv was more strongly correlated with SPL7A and SPL7P (both p < .001). 

These results reveal differential coupling between distinct parietal and frontal regions, 

likely reflecting multiple pathways involved in sensory-motor integration (Kurata 1991; 

Rizzolatti et al. 1998; Tanné-Gariépy et al. 2002). 

Hierarchical analysis. Assuming a visual hierarchy similar to that proposed by 

Maunsell and Van Essen (1983) exists in human cerebral cortex, V1 is expected to be 

near the bottom of the hierarchy and FEF to be near the top (also see Felleman and Van 

Essen 1991; Ungerleider and Desimone 1986). While there are uncertainties as to the 

exact homologies of our MT+ and aMT+ seed regions, they are likely to be in the middle 

of the hierarchy with aMT+ higher than MT+. In our analysis, we found that V1 and 

MT+, which are close together in the hierarchy, have stronger correlation than V1 and 

aMT+, which are farther apart in the hierarchy (Figs. 3.22 and 3.25). We also found that 

aMT+ and FEF, which are closer in the hierarchy, have stronger correlation than MT+ 

and FEF, which are farther apart in the hierarchy (Figs. 3.24 and 3.25).  

These results suggest that correlation between regions in the visual hierarchy may 

provide some insight into the organization of the pathways. To explore this hypothesis, 

we examined the arrangement of six seed regions (V1pd, V3A, MT+, aMT+, SPL7A, 

FEF) discussed earlier based on the assumption that stronger correlations are consistent 

with closer positioning in the processing hierarchy. By examining alternative 

arrangements of regions, the analysis was able to investigate which particular 

arrangement was most consistent with the functional connectivity pattern. Figure 3.28 

illustrates this approach. Figure 3.29 shows the two best hierarchical arrangements of the 

six regions when seeking a five-level hierarchy using the Replication sample. In both 
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cases, the relative ordering of the regions within the functional hierarchy agrees well with 

the previously proposed and refined models of macaque visual hierarchy (Felleman and 

Van Essen 1991; Maunsell and Van Essen 1983; Ungerleider and Desimone 1986). By 

contrast, alternative arrangements of the visual areas lead to large proportions of violated 

constraints (Figs. 3.29D and 3.29E).  

Control analyses using the Discovery set shows that the fcMRI strengths of all 

pairs of the six seed regions are inversely correlated (r = -0.78, p < .001) with respect to 

the hierarchical distance between the regions in the hierarchy as defined by Felleman and 

Van Essen (1991). By contrast, the fcMRI strengths of all pairs of the six seed regions are 

not correlated (p = 0.23) with respect to the physical distance between the seed regions. 

These results suggest that spatial proximity does not explain these correlations; rather, the 

pattern of correlations reflects relative positions of regions within the hierarchy. 

These findings converge on two main results. First, there are functional 

interactions between networks but the interactions are selective. V1 shows minimal 

coupling with association regions within parietal cortex but it does couple with MT+. The 

between-network interactions also do not typically violate the network organizations 

revealed earlier by the clustering approaches: regions show stronger functional coupling 

to other regions within their network as contrast to regions outside their network. Second, 

when examined together, the pattern of correlations between regions in different 

networks is consistent with a hierarchical organization by which sensory information 

could influence regions associated with motor control (Fig. 3.29). 
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 Figure 3.28. Examples of satisfied and violated 
constraints in estimating the functional hierarchy of 
cortical regions based on fcMRI. A functional hierarchy is 
estimated based on the assumption that regions closer in a 
hierarchy have stronger correlation. (A) Five cortical regions 
are arranged in a four-level hierarchy whose functional 
connectivity strengths satisfy both hierarchical and lateral 
constraints. (B) Identical arrangement of five cortical regions 
in a four-level hierarchy with different functional connectivity 
strengths that violate both hierarchical and lateral constraints. 
Thick lines correspond to strong correlations. Thin lines 
correspond to weak correlations. (i) Regions “a” and “c” are 
farther apart that regions “a” and “b”. In example (A), 
correlation of regions “a” and “c” is weaker than correlation of 
regions “a” and “b”, so a hierarchical constraint is satisfied. In 
example (B), correlation of regions “a” and “c” is stronger 
than correlation of regions “a” and “b”, so a hierarchical 
constraint is violated. (ii) Regions “c” and “d” are on the same 
hierarchical level. In example (A), correlation of regions “c” 
and “e” is approximately the same as the correlation of regions 
“d” and “e”, so a lateral constraint is satisfied. In example (B), 
correlation of regions “c” and “e” is stronger than the 
correlation of regions “d” and “e”, so a lateral constraint is 
violated. In the context of hierarchy estimation in this paper, 
we consider two correlations within 0.2 of each other to be 
approximately the same when assessing lateral constraints. 

Given the pairwise correlations of a set of seed regions and a known number of levels in 
the hierarchy, we can seek the best hierarchical arrangement of the seed regions with the 
following local optimization procedure: (1) randomly arrange the seed regions into a 
hierarchy, (2) consider swapping a pair of seed regions or shifting a single seed region to 
a different hierarchical level without changing the number of levels in the hierarchy such 
that the proportion of violated constraints is maximally decreased, (3) terminate when no 
further improvement in the proportion of violated constraints can be achieved and (4) 
repeat the preceding steps 20 times picking the solution with the least proportion of 
violated constraints. The best solution obtained using this optimization procedure is (in 
practice) the same as a brute-force search over all possible hierarchical arrangements of 
the seed regions. We note that we are generally unable to infer the number of levels in the 
functional hierarchy, since the number of possible constraints can be drastically different 
for hierarchies with different number of levels, and so the proportion of violated or 
satisfied constraints is not comparable across hierarchies with different levels. In practice 
however, the solution space is robust; for example, the best solution for a 5-level 
hierarchy typically differs from the best solution for a 4-level hierarchy by the collapsing 
of regions from two adjacent levels into one level. Uncovering the true hierarchical 
structure in the macaque visual hierarchy based on anatomical connectivity has also 
proved to be problematic (Hilgetag et al. 1996). 
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Figure 3.29. Functional connectivity estimates of the hierarchical organization of a 
canonical sensory-motor pathway. (A) Six seed regions are arranged into a five-level 
functional hierarchy using the Replication dataset. (B, C) Two best hierarchical 
arrangements of the seed regions as measured by the proportion of violated hierarchical 
and lateral constraints. A violation occurred when the ordering placed more strongly 
correlated regions farther apart in the hierarchy than more weakly correlated regions (see 
Fig. 3.28). (D, E) Two poor hierarchical arrangements of the seed regions as measured by 
the proportion of violated hierarchical and lateral constraints. Relative ordering of the 
seed regions (A, B) within the functional hierarchy agrees well with the proposed 
macaque visual hierarchy (see text). 
 

Parietal and prefrontal association cortices possess multiple regions with distinct 

connectivity profiles 

The analyses above describe separate sensory and motor networks, and address 

the question of how sensory and motor networks might interact through intermediate 

areas such as aMT+. However, these networks make up only a minority of the human 

cerebral cortex. Networks of widely distributed regions comprise the majority of the 

human cerebral cortex as illustrated by the violet, orange, and red networks in the 7-
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network solution (Fig. 3.11). The network complexity expands when the 17-network 

parcellation is considered (Fig. 3.13). These association networks will be the remaining 

focus of the results. First, we examined the topography of parietal and frontal association 

cortices to quantitatively illustrate that multiple neighboring regions possess markedly 

different functional connectivity fingerprints. Next we explored the relations between 

distributed regions to demonstrate that the association cortex is comprised of multiple, 

interdigitated association networks. 

Parietal association cortex. The basic approach employed to characterize the 

connectivity properties of parietal cortex was to extend the strategy applied in Figure 3.25 

to construct polar plots that quantify coupling with multiple, distributed cortical regions. 

Following the work of Passingham et al. (2002), we refer to these plots as “functional 

connectivity fingerprints” with the idea that the graphical representation will facilitate the 

visualization of similarities in connectivity properties between regions as well as any 

differences that make them unique. The plots are quantitative in that eccentricity displays 

the strength of functional coupling between each seed region and a single target region. 

For this analysis, multiple regions within parietal cortex were selected to cover 

the IPL and immediately adjacent portions of the SPL. Regions were further selected to 

survey distinct networks as revealed by the clustering maps. Some of the regions were 

used previously in the sensory-motor pathway analysis (IPS2, SPL7A). Other regions 

(PF, PGa, IPS3l, PGpd and PGpv) were selected using the Discovery dataset and then 

labeled according to the probabilistic histological maps. In particular, the PF and PGa 

seed regions were at or near human inferior parietal areas PF and PGa, respectively 

(Caspers et al. 2006; 2008), while the IPS3l seed region was on the lateral lip of the IPS 
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at or near human hIPS3 (Scheperjans et al. 2008a; 2008b). PGpd and PGpv corresponded 

to the dorsal and ventral aspects of area PGp in the IPL (Caspers et al. 2006; 2008). One 

additional seed region at or near the temporoparietal junction (TPJ) was selected based on 

the peak coordinates reported in a human fMRI study of mental state inference (Saxe and 

Powell 2006), which accords well with the predicted mean peak in a recent meta-analysis 

on the same topic (Van Overwalle and Baetens 2009).  

Twenty-two cortical target regions were distributed over the lateral and medial 

aspects of the cerebral cortex such that multiple regions covered each association 

network. Four of the cortical regions (aMT+, MT+, FEF and PrCv) were used previously 

in the sensory-motor pathway analysis. Many labels for the frontal seed regions reflect 

gross anatomical landmarks as atlas-based human histological references were not 

available; subscripts denote relative positions. It is worth noting that target region 6vr+ 

was selected to be anterior to the map of premotor area 6 (Geyer 2003) and labeled to 

reflect a new delineation of the ventral precentral sulcus (Amunts et al. 2010). Target 

region PFCv fell within the histological map of BA45 (Amunts et al. 1999). The 

coordinates of the parietal seed regions and cortical target regions are reported in Table 

3.4. 
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Table 3.4: Locations of Seed Regions Used for Analysis of Connectivity Fingerprints 
(Figs. 3.30 and 3.31). Notes: Where possible, seed regions were carried forward from 
previous analyses (i.e., IPS2, SPL7A, FEF, PrCv, aMT+ and MT+; see Tables 3.2 & 3.3). 
Seed regions PF and PGa were at or near human inferior parietal area PF and PGa, 
respectively (Caspers et al. 2006; 2008). The IPS3l seed region was selected to be on the 
lateral lip of the IPS at or near human hIPS3, while the 5Ci seed region corresponded to 
the human posterior cingulate sulcal region 5Ci (Scheperjans et al. 2008a; 2008b). PGpd 
and PGpv corresponded to the dorsal and ventral aspects of area PGp in the inferior 
parietal lobule (Caspers et al. 2006; 2008). The TPJ seed region was selected based on 
the peak coordinates reported in a human fMRI study of mental state inference (Saxe and 
Powell 2006) which accords well with the predicted mean peak in a recent meta-analysis 
on the same topic (Van Overwalle and Baetens 2009). Seed region 6vr+ was selected to 
be anterior to the map of premotor area 6 (Geyer 2003) and labeled to reflect a new 
cytoarchitectonic delineation within the ventral precentral region (Amunts et al. 2010). 
Seed region PFCv fell within the histological map of BA45 (Amunts et al. 1999; Fischl et 
al. 2008). The remaining seed regions were selected to provide comprehensive coverage 
of the lateral and medial aspects of the cortical surface and such that each association 
network was represented by multiple targets. Labels for the remaining seed regions were 
determined according to gross anatomical landmarks and given subscripts to denote 
relative positions: Cing = cingulate sulcus; pCun = precuneus; ITG = inferior temporal 
gyrus; PCC = posterior cingulate cortex; PFC = prefrontal cortex; PHC = 
parahippocampal cortex; RSP = retrosplenial cortex; STS = superior temporal sulcus. 
Subscripts a = anterior; p = posterior, l = lateral, m = medial, d = dorsal and v = ventral. 
Coordinates reflect the approximate center location based on the MNI atlas. 
 
Parietal Cortex Coordinates 
PGa -52, -50, 49 
IPS2 -40, -37, 42 
SPL7A -28, -61, 60 

IPS3l -35, -56, 42 

PGpd -49, -63, 45 

PGpv -49, -69, 28 
TPJ -51, -57, 27 
PF -60, -37, 38 
5Ci -16 -32 39 
PCC -3, -49, 25 
pCun -10, -57, 35 
Frontal Cortex  

PFCla -41, 55, 4 

PFCl -38,33,16 

PFCda -31,39,30 

PFClp -45, 29, 32 

PFCdp -44,15,48 

PrCv -50, 6, 30  
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Table 3.4. Locations of Seed Regions Used 
for Analysis of Connectivity Fingerprints 
(Continued) 
Parietal Cortex Coordinates 
FEF -26, -6, 48 

PFCy -55,24,13 
6vr+ -55, 6, 11 

PFCm -7, 46, -2 

PFCdm -4, 49, 32 

PFCmp -5, 22, 47 

Cinga -10, 13, 40 

Cingm -5, 2, 29 
Occipital/Temporal Cortex  

STSa -49, 5, -26  
STS -55, -10 -16  

STSp -49, -34, -4 
ITG -59, -53, -14 
aMT+ -51,-64,-2 
MT+ -45, -72, 3 
Limbic Cortex  
PHC -25, -31, -20 
RSP -7, -50, 7 

 

  



 178 

 
 

Figure 3.30. 
Adjacent 
parietal 
regions exhibit 
distinct 
functional 
connectivity 
fingerprints.  
Correlations of 
eight parietal 
seed regions 
(center panel) 
with 22 cortical 
target regions 
(top panel) from 
the Replication 
dataset and 
displayed as 
polar plots. 
Colors represent 
the 7-network 
segmentation 
(from Fig. 
3.11). The 
coordinate 
locations are 
reported in 
Table 3.4. 
Parietal seed 
regions that 

belong to the same network (e.g., TPJ, PGpv and PGpd) have generally similar functional 
connectivity fingerprints that are distinct from other parietal seed regions. Close 
inspection of the polar plots reveals distinct connectivity fingerprints even for parietal 
regions within the same network, some of which anticipate the further fractionation of the 
parietal cortex in the 17-network estimate (Fig. 3.13). Note that the cortical targets from 
Cinga to pCun on the left side of the polar plots are the same as that of the frontal polar 
plots (Fig. 3.31) to allow for comparison across the two sets of polar plots. The remaining 
cortical targets are different across the two sets of polar plots but are arranged so that 
cortical targets at the same location in the polar plots belong to the same network in the 
7-network estimate. The polar scales range from r = -0.4 (center) to r = 0.5 (outer 
boundary) in 0.3-step increments. 
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The results are illustrated in Figure 3.30. Parietal association cortex is comprised 

of multiple regions that can show similarities but often display markedly different 

functional connectivity fingerprints. Visual inspection of the plots allows appreciation of 

the resemblance of correlation patterns for parietal seed regions that cause them to fall 

within common networks. For example, the PGpd, PGpv, and TPJ seed regions all fall 

within the default network as defined in the extant neuroimaging literature. Their 

connectivity fingerprints are largely defined by their correlations with other association 

and limbic regions, and near complete absence of correlations with visual regions 

including MT+ and aMT+. This general fingerprint pattern can be directly contrasted 

with parietal regions such as those represented by IPS2 and SPL7A that are associated 

with distributed cortical regions linked to sensory and motor function (e.g., strong 

correlations with MT+ and aMT+). These distinct parietal regions (IPS2 and SPL7A) are 

likely at or near the putative human homologue to macaque AIP and LIP and fall within 

the functional network that has been discussed as the dorsal attention network in the 

human literature and described in detail above in Figures 3.22 to 3.29.   

There are also subtle differences across regions that fall within the same broad 

networks. For example, while parietal seed regions TPJ, PGpv and PGpd are strongly 

correlated with posterior cingulate cortex (PCC) and the precuneus (pCun), PGpv has 

comparatively stronger correlation to retrosplenial cortex (RSP) and parahippocampal 

complex (PHC). In contrast, TPJ has the strongest correlation with posterior superior 

temporal sulcus (STSp) and lower correlation with RSP and PHC. PGpd has the strongest 

correlation with medial prefrontal cortex (PFCm). These differential correlations account 
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for the fractionation of the posterior IPL into three components in the 17-network 

estimate (Fig. 3.13) and may be important to the functional properties of the region. 

Frontal association cortex. Analysis of frontal association cortex applied the 

same approach as for parietal association cortex. The 8 frontal seed regions selected for 

analysis were among the cortical targets in the parietal plots discussed previously. The 22 

cortical target regions selected for analysis were distributed throughout the cortex and 

selected so that multiple target regions covered each association network. Eleven regions 

were carried forward from the previous analysis of the parietal cortex (e.g., IPS2, SPL7A, 

FEF, PrCv, aMT+ and MT+) and these were arranged in the same spatial locations in the 

polar plots (Cinga clockwise to pCun). The remaining 11 cortical target regions were 

unique to analysis of frontal cortex but are arranged in the plots so that cortical target 

regions at the same location in the polar plots belong to the same network in the 7-

network estimate. The arrangement of the cortical target regions therefore facilitates the 

comparison of polar plots across the parietal and frontal figures. The coordinates of the 

frontal seed regions and cortical target regions are reported in Table 3.4. 
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Figure 3.31. Adjacent frontal regions exhibit distinct functional connectivity 
fingerprints. The format and plotting are the same as Figure 3.30 with regions tailored 
for exploration of frontal cortex. The coordinate locations are reported in Table 3.4. The 
polar scales range from r = -0.4 (center) to r = 0.5 (outer boundary) in 0.3-step 
increments. 
 

Figure 3.31 shows the polar plots of correlations for the 8 frontal seed regions 

with the 22 target regions in parietal, temporal, frontal and cingulate cortices. Many of 

the same properties observed for parietal association cortex were again apparent. Figure 

3.31 demonstrates that frontal seed regions in the same network generally share similar 
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functional connectivity fingerprints that are distinct from those of neighboring seed 

regions belonging to a different network. A simple posterior-to-anterior hierarchy is not 

present as might be expected from some models of frontal hierarchy based on anatomical 

connectivity (e.g., Petrides 2005). Rather, regions with similar functional connectivity 

fingerprints appeared at posterior and anterior locations as evidenced by PFCda, which is 

considerably rostral to most of its partner regions, and PFCdp which is considerably 

caudal to its partner regions. 

The arrangement of the cortical target regions also allows a key feature of 

connectivity to be appreciated when frontal Figure 3.31 is directly compared to parietal 

Figure 3.30: parietal and frontal seed regions from the same network, for instance PGpd 

and PFCm, have similar functional connectivity fingerprints. These similarities suggest 

that association cortex is made of parallel interdigitated networks of regions consistent 

with suggestions based on double-labeling analyses of monkey association cortex 

(Goldman-Rakic 1988; Selemon and Goldman-Rakic 1988). In our final analysis, we 

explored this possibility directly by comparing functional connectivity maps for multiple 

seed regions distributed across each association network. 

 

Association cortex is comprised of multiple, interdigitated large-scale networks 

The parcellations derived from clustering suggest that there are multiple, large-

scale networks interdigitated throughout association cortex. Thus, components of the 

green, violet, orange and red networks in the 7-network estimates are spatially adjacent in 

the parietal, temporal and frontal cortices (Fig. 3.11). A similar organization is observed 

in the 17-network estimate (Fig. 3.13). However, such an impression could be an artifact 
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of the winner-take-all implementation of clustering that assigned each cortical vertex to a 

single network. The complex functional connectivity fingerprints demonstrated that 

regions within the same networks showed similar functional connectivity fingerprints 

even when distributed across the cortex, consistent with their inclusion in common 

networks, but also revealed differences between regions that suggest subtler 

organizational properties. In our final analysis, we sought to explore patterns of 

functional connectivity using an exclusively seed-based approach in a comprehensive 

manner to contrast connectivity patterns for multiple regions embedded within the same 

networks. 

For this analysis, six left hemisphere seed regions from each of the four major 

association networks were analyzed beginning with the canonical sensory-motor network 

(known as the dorsal attention network in human neuroimaging literature). The ventral 

attention, frontoparietal control and default networks were subsequently explored. These 

four networks were identified in the 7-network estimate based on the Discovery dataset. 

Where possible we used the same seed regions as used by the other analyses in this paper. 

For this reason, the selected regions were not always the most confident in terms of 

network assignment as assessed by their silhouette plots or other means. Table 5 reports 

the coordinates of the seed regions. 

The left hemisphere fcMRI maps of the seed regions were computed using the 

Replication dataset and illustrated in Figures 3.32 to 3.35. Each seed region is 

functionally coupled primarily to regions within the same network, thus largely 

confirming the 7-network estimate and the existence of multiple, large-scale distributed 

networks in human association cortex. The network patterns were even reproduced when 
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target regions were isolated in relation to adjacent cortical regions (e.g., Fig. 3.33A). 

Thus, this verifies that the networks identified via clustering capture the predominant 

functional coupling patterns within association cortex. Note that this result is not 

obligated – the maps derived from the analysis of seed regions are not constrained to 

respect the borders of the networks defined by clustering. Furthermore, while the broad 

patterns confirmed the boundaries of the networks as expected, several exceptions were 

also observed. 
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Table 3.5: Locations of Seed Regions Used for Analysis of Parallel Networks in 
Association Cortex. Notes: The confidence of the seed regions in their network 
assignment is computed from the Replication dataset. Coordinates reflect the approximate 
center location based on the MNI atlas. 
 
Name Coordinates Confidence 
Dorsal Attention A -22, -8, 54 0.54 
Dorsal Attention B -34, -38, 44 0.53 
Dorsal Attention C -18, -69, 51 0.46 
Dorsal Attention D -51, -64, -2 0.55 
Dorsal Attention E -8, -63, 57 0.32 
Dorsal Attention F -49, 3, 34 0.49 
   
Ventral Attention A -31, 39, 30 0.49 
Ventral Attention B -54, -36, 27 0.63 
Ventral Attention C -60, -59, 11 0.27 
Ventral Attention D -5, 15, 32 0.65 
Ventral Attention E -8, -24, 39 0.57 
Ventral Attention F -31, 11, 8 0.67 
   
Control A -40, 50, 7 0.52 
Control B -43, -50, 46 0.51 
Control C -57, -54, -9 0.25 
Control D -5, 22, 47 0.43 
Control E -6, 4, 29 0.27 
Control F -4, -76, 45 0.25 
   
Default A -27, 23, 48 0.46 
Default B -41, -60, 29 0.63 
Default C -64, -20, -9 0.61 
Default D -7, 49, 18 0.60 
Default E -25, -32, -18 0.22 
Default F -7, -52, 26 0.61 
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Figure 3.32. Functional connectivity for regions within the canonical distributed 
cortical network. This network is often called the dorsal attention network. The five 
seed regions are displayed in the center overlaid on top of the 7-network parcellation 
from Figure 3.11. The coordinate locations are reported in Table 3.5. Each panel displays 
the functional connectivity map for one of the six seed regions for the Replication dataset 
overlaid on a surface that shows the 7-network boundaries (in light black lines) as 
reference. Each seed region displays functional coupling with all of the regions of the 
distributed network. However, there are important differences between regions. In 
particular the regions near aMT+ (panel D) and SPL7A (panel C) show strong functional 
coupling with earlier visual areas. The region at or near the putative homologue of FEF 
(panel A) shows minimal functional coupling with earlier visual areas but does show 
strong coupling with midline motor regions (see midline section of panel A). The color 
scale (bottom) shows the plotted correlation range for the maps. 
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Figure 3.33. Functional connectivity for distributed regions within a second large-
scale association network. This network is often called the ventral attention network. 
The format and plotting are the same as Figure 3.32 and coordinate locations are reported 
in Table 3.5. Each seed region is functionally coupled mostly with regions within the 
same network revealing that each component of the network recapitulates the others. 
There is a general absence of crosstalk between networks except for local correlation 
around the seed regions.



 188 

 
 

 
Figure 3.34. Functional connectivity for distributed regions within a third large-
scale association network. This network is often called the frontoparietal control 
network. The format and plotting are the same as Figure 3.32 and coordinate locations are 
reported in Table 3.5. In addition to a general absence of crosstalk between networks this 
network also shows no functional coupling to sensory and motor regions. Rather its 
topography reveals a distributed network that is interdigitated with the networks 
illustrated in Figures 3.33 and 3.35.
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Figure 3.35. Functional connectivity for distributed regions within a fourth large-
scale association network. This network makes up the prominent components of the 
network often called the default network. The format and plotting are the same as Figure 
3.32 and coordinate locations are reported in Table 3.5. Each seed region is functionally 
coupled mostly with regions within the same network again revealing that each 
component of the network recapitulates components the remaining network, with some 
exceptions. For example, the seed region in the parahippocampal cortex (panel E) shows 
functional connectivity with the retrosplenial cortex, ventral medial prefrontal cortex, and 
a specific region with the caudal IPL. These patterns of functional connectivity lead to 
the fractionation into subnetworks as illustrated in Figure 3.13. The fractionation of this 
particular network is largely to subdivide the broader network rather than to display 
functional coupling with regions in distinct networks. 
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Close inspection of the maps (Figs. 3.32 to 3.35) reveals evidence for crosstalk 

among the networks, consistent with the earlier analyses of the canonical sensory-motor 

pathway. For example, Figure 3.32C/D suggests interaction between the dorsal attention 

network and regions within the visual system, possibly related to the previously described 

hierarchical flow of information within the sensory-motor pathway (Fig. 3.29). In 

contrast, Figure 3.32F suggests functional coupling between the dorsal attention and the 

frontal components of the frontoparietal control and ventral attention systems.  

 A further observation is that the fcMRI maps of seed regions chosen from the 

same network anticipate fractionation of the networks in ways also suggested by the 

analysis of connectivity fingerprints. For example, the PHC seed region is strongly 

coupled with the RSP, but not with the full extent of the posterior cingulate (Fig. 3.35E). 

It is also strongly coupled to the IPL but not the anterior IPL. This suggests that the 7-

network estimate is likely insufficient to capture the full complexity of the functional 

couplings across different brain regions. As predicted by the fcMRI map of the PHC 

seed, the 17-network estimate differentiates the posterior IPL, RSP and the posterior PHC 

into an IPL-RSP-PHC system (dark blue in Fig. 3.13) distinct from the other regions of 

the default network.  

These collective results thus illustrate patterns of connectivity that are largely 

captured by a relatively small number of interdigitated, large-scale networks but also 

reveal more detailed properties that suggest crosstalk and fractionation within the major 

networks. 
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Discussion 

 

 The present results suggest association cortex comprises the majority of the human 

cerebral mantle and is made up of multiple, interdigitated association networks. The 

properties of association networks were found to be quite different from that of sensory 

and motor cortices. Sensory and motor areas are embedded within cerebral networks that 

are organized in a topographic fashion forming preferentially local networks – meaning 

that adjacent areas tend to show strong functional coupling with one another. Hierarchical 

relations progress from early visual areas to premotor areas. By contrast, multiple 

association networks involve areas distributed throughout the cortex, always including 

discrete regions within prefrontal, parietal, temporal and midline cortices. These 

distributed association networks are interdigitated in a manner that yields complex zones, 

particularly in parietal and prefrontal association cortices. Within these zones, nearby 

regions possess markedly different connectivity patterns that can be explained by their 

being embedded within distinct association networks. In the following sections we 

explore the details of these patterns and discuss what the connectivity patterns suggest 

about how the human cerebral cortex may have expanded during evolution. 

 

The cerebral cortex comprises multiple, distinct functionally coupled networks 

A primary result of our analyses is the cerebral maps depicted in Figures 3.11 and 

3.13. Figure 3.11 displays a coarse parcellation of the cerebral cortex into 7 functionally 

coupled networks, and Figure 3.13 displays a finer parcellation into 17 networks. These 

maps represent our current best estimate of the organization of the human cerebral cortex 
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based on fcMRI. The large number of contributing subjects (N = 1000) and surface-based 

alignment procedures helped to detect topographical details with considerable 

confidence. However, these maps are still limited in resolution owing to between-subject 

averaging and the acquisition resolution of the data, and will presumably be improved in 

the future. At their present resolution, they have been surprisingly informative for 

providing insights into cerebral organization and, as will be illustrated by our companion 

paper, they also provide a basis to explore the organization of subcortical structures 

(Buckner et al. 2011). 

Two broad properties are immediately apparent when examining the maps, which 

will be the focus of discussion. First, sensorimotor and visual cortices form their own 

networks in the coarse parcellation that are fractionated into subnetworks in the finer 

parcellation. The fractionations do not follow simple divisions such as between 

somatosensory and motor areas along the central sulcus, or between early (e.g., V1) and 

late (e.g., V3) retinotopic visual areas in the occipital cortex. We will discuss hypotheses 

about what these fractionations might represent in upcoming sections. Second, 

association cortex comprises multiple, interdigitated networks that are distributed 

throughout cortex. Multiple aspects of these networks, in particular the properties of the 

coarse networks displayed in Figure 3.11, have previously been described using seed-

based (e.g., Biswal et al. 1995; Greicius et al. 2003; Fox et al. 2006; Vincent et al. 2006) 

and independent component analysis (e.g., Beckmann et al. 2005; Damoiseaux et al. 

2006; De Luca et al. 2006) approaches. Many aspects of the organization, especially 

within the higher resolution parcellation (Fig. 3.13), are novel. We will discuss the details 

of the organization of association cortex in upcoming sections with particular focus on 
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zones of parietal and prefrontal cortices that represent nexuses of convergence among 

multiple, distinct networks. 

 

Visual cortex displays local, topographically organized functional coupling  

Early visual areas were strongly functionally coupled to one another and only 

minimally correlated to regions outside of visual cortex. Examining the coupling 

properties more closely revealed evidence for an intrinsic gradient within the early visual 

cortex that likely corresponds to the transition from the central to peripheral visual field 

representations (Figs. 3.15 to 3.17). The division is not absolute (Fig. 3.18) but appears as 

an abrupt division into central and peripheral networks when assignments into distinct 

networks are forced, providing a convenient way to map the topographical organization 

across visual areas. Inspection of the boundaries of the functionally coupled networks on 

visual areas suggests that the division of lower visual areas into central and peripheral 

components might extend to higher visual areas. The ventral boundary of the central and 

peripheral visual systems continued outside the V1-V3 complex and divided V4v in two. 

Since the eccentricity representation of the V1-V3 complex is continuous through V4v 

(Brewer et al. 2005; Hadjikhani et al. 1998), it is likely that V4v was also divided into 

central and peripheral components. Anterior to V4v, at least two hemifield maps have 

been found, all of which have a distinctly large foveal representation and respond 

strongly to central visual stimuli throughout their extent (Brewer et al. 2005; Wandell et 

al. 2005), and are therefore consistent with the inclusion of these regions within the 

central visual system (but see Hadjikhani et al. 1998).  
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However, there were inconsistencies as might be expected because of limited 

resolution and the inherent complexity of the visual cortex (see Wandell et al. 2007 for a 

review). Multiple hemifield maps have been found in the extrastriate cortex lateral to the 

V1-V3 complex (DeYoe et al. 1996; Larsson and Heeger 2006; Tootell and Hadjikhani 

2001), such as regions that are part of the object-selective lateral occipital complex 

(LOC; Malach et al. 1995) and motion-selective area MT+ (Huk et al. 2002; Malikovic et 

al. 2007; Tootell and Taylor 1995). The inclusion of these entire visual regions within the 

“central” visual system suggests a violation of the central-peripheral division in these 

areas, although we note that the ventral visual stream (of which human LOC is a part) is 

dominated by signals from the fovea in the macaque monkey (Baizer et al. 1991). The 

dorsal boundary of the central and peripheral visual networks continued outside the V1-

V3 complex and cut through the hemifield maps dorsal and lateral to V3v, possibly 

including V3A, V3B and V7 (Larsson and Heeger 2006; Swisher et al. 2007; Tootell et 

al. 1998). Because these regions have separate foveal representation from the V1-V3 

complex (Wandell et al. 2007) and because of the complex trajectory of the boundary 

through these regions, we were unable to judge whether the central-peripheral division 

applied to these regions.  

The central-peripheral functional coupling of the human visual system is 

consistent with many aspects of known anatomy. Anatomical studies in non-human 

primates have shown that the topography of connections between visual areas generally 

respects the visual field representation (Cragg 1969; Maunsell and Van Essen 1983; Van 

Essen and Zeki 1978; Zeki 1969). For example, a region of V1 that responds strongly to a 

particular eccentricity and polar angle will project to the region of V2 that responds 
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strongly to the same eccentricity and polar angle, presumably because of feedforward 

input (Van Essen and Zeki 1978). Because of the larger receptive field size of neurons in 

V2, the degenerated target area tends to be larger than that of the source lesion. Our result 

of higher functional connectivity strength between V1c and V3c (as well as between V1p 

and V3p) than between V1c and V1p may reflect the topography of anatomical 

connections within the visual system.  

If anatomical connectivity respects visuotopic representation and functional 

connectivity is constrained by anatomical connectivity, a question then arises as to why 

the clustering analysis divided the visual areas (especially the lower visual areas) into 

central and peripheral regions rather than into upper and lower visual fields? A split along 

the eccentricity axis is supported by proposals that higher visual areas are organized 

according to central versus peripheral field bias (Baizer et al. 1991; Grill-Spector and 

Malach 2004; Levy et al. 2001), although such an organization has also been disputed 

(Wandell et al. 2005; 2007). A more mundane and likely reason is that eccentricity 

representation runs in parallel across multiple visual areas in contrast with angular 

representation that alternates in visual field sign across multiple visual areas (see Fig. 1 in 

Larsson and Heeger 2006; Sereno et al. 1995). Because this study utilized smoothing and 

intersubject averaging to boost SNR, any topography in functional connectivity that 

respects the high spatial frequency of angular representation is likely to be washed out. 

The resulting limitation in spatial resolution might also explain why visual regions 

dominated by foveal signals are grouped entirely within the central visual system even 

though they possess quarterfield or hemifield representations spanning both central and 

peripheral vision.  
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Together these observations suggest that functional connectivity of the visual 

cortex followed the topographic organization of these areas up to a point. Certain 

observations, such as the lack of functional connectivity topography reflecting angular 

visual representation, could not be reconciled with prior anatomical observations. These 

differences may reflect the limitations of our approach, true differences between fcMRI 

and anatomical connectivity or novel connectivity findings that have yet to be revealed in 

anatomical studies. We will discuss these limitations and ambiguities later. 

 

Somatomotor cortex displays topographical organization 

Estimates of functional connectivity networks grouped multiple somatosensory 

and motor areas into a single functionally coupled network for the low-resolution 

estimate of cortical organization (Fig. 3.11) and into a dorsal-ventral division for the 

high-resolution estimate (Fig. 3.13)5. Like visual cortex, the somatomotor network was 

characterized by its strong functional coupling to nearby areas but absence of functional 

coupling to distributed regions across the cortex (barring regions across the insular 

cortex). Even when regional analyses were explored that did not constrain the topography 

to form separate networks, no evidence was found for functional coupling to distributed 

cortical regions. Figure 3.19 shows that the motor component of the somatomotor 

network included MI (area 4) and caudal premotor area 6, while the somatosensory 

component included SI and most, if not all of early somatosensory area 5L. The 

somatomotor network also included a small portion of the mid-cingulate sulcus and 

                                                 
5"Auditory cortex was also functionally coupled to the ventral somatomotor network. 
However, as illustrated in Figure 3.14, this may be an artifact of signal bleeding across 
the insula in volumetric space. For this reason, while the finding may reflect a meaningful 
functional interaction, we do not discuss it further in the present paper. 
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possibly part of area 5M. Within the somatomotor cortex of non-human primates, areas 1 

to 6 are densely, but not fully, connected (see meta-analysis in Felleman and Van Essen 

1991) by association fibers that enter the white matter and re-enter the cortex (Jones et al. 

1978).  

The non-human primate premotor area 6 has been subdivided into rostral and 

caudal areas that may provide further insight into the functional connectivity patterns 

(Barbas and Pandya 1987; Matelli et al. 1985; 1991; Zilles et al. 1995). The caudal 

premotor areas are densely and topographically connected to M1, but not to the prefrontal 

cortex. In contrast, the rostral premotor areas are connected to prefrontal cortex but not 

M1 (Barbas and Pandya 1987; Luppino et al. 1993; Matelli et al. 1986). The caudal 

premotor areas are also more densely connected to each other than the adjacent rostral 

premotor areas. While there are competing hypotheses over the exact homology between 

primate and human premotor areas (Geyer 2004; Petrides 2005; Rizzolatti et al. 1998), 

converging studies have suggested a rostrocaudal subdivision of human premotor cortex 

(see chapter 4.4 of Geyer 2004 for a review), which might reflect the absorption of caudal 

human area 6 into the somatomotor network as revealed by functional coupling. Despite 

evidence that the early somatosensory and late motor fields are densely integrated, we 

must be cautious of the possibility of fMRI signal blurring across the central sulcus, 

which may cause an overestimation of functional coupling between the parallel strips of 

SI, MI and premotor area 6. 

 Of most interest, the analysis also revealed a dorsoventral division of the 

somatomotor strip, which was confirmed by targeted regional analyses (Fig. 3.20). In 

non-human primates, the connections between the different somatosensory-motor areas 
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are generally topographic, so that for example, the hand region of area 2 receives 

projections from the hand region of areas 3 and 1 (Pons and Kaas 1986). In addition, the 

somatomotor association fibers have been reported to terminate in mediolaterally oriented 

strips (see for example Fig. 4 in Jones et al. 1978; Jones and Wise 1977), although others 

have raised questions concerning the strip-like nature of callosal connections (Gould et 

al. 1986; Killackey et al. 1983). Our observations of fcMRI correlations within the human 

somatomotor cortex, whose anteroposterior extents were shorter than their mediolateral 

extents, were therefore consistent with the observations of ipsilateral strip-like anatomical 

connections. One possibility is that the dorsoventral boundary revealed by our clustering 

analysis might correspond to the boundary of the face and body representations.  

  

Evidence for a prototype distributed cortical pathway 

The results discussed above reveal interesting organizational properties of local 

networks of areas within sensorimotor and visual cortices. In considering the organization 

of the cerebral cortex, an immediate question arises as to how information in the sensory 

systems might propagate to influence motor representations? Functional connectivity is 

limited in its ability to provide insight into this question, but some aspects of the results 

are informative and consistent with anatomical and physiological studies of sensory-

motor pathways. 

The canonical sensory-motor pathway that has been studied in the monkey is the 

pathway that includes retinotopic visual cortex, the MT+ complex, parietal area LIP, and 

the FEF (e.g., Andersen et al. 1990; Colby and Goldberg 1999; Gold and Shadlen 2007; 

Shadlen and Newsome 2001). The basic idea is that incoming visual information 
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propagates from early visual areas to MT+, which provides constraints on decision 

processes that arise from interactions with LIP and FEF. FEF, in turn, interacts with 

motor regions to generate motor signals. Hierarchical anatomic connections support such 

a pathway (Felleman and Van Essen 2001; Maunsell and Van Essen 1983). The question 

here is whether the human functional connectivity results also reveal evidence for such a 

pathway and, if so, what properties emerge? 

Of particular interest are the quantitative results presented in Figures 3.22 to 3.27 

that reveal interactions between distinct networks. While primary visual cortex is largely 

absent functional coupling to association or premotor cortices, it is topographically 

coupled to MT+ (Fig. 3.22), which is in turn strongly coupled to aMT+ as well as 

modestly coupled to parietal regions including SPL7A (Figs. 3.24 and 3.25). aMT+ is 

functionally coupled to PrCv and FEF (Fig. 3.25) completing the pathway. While the 

organization of the human MT+ complex is still unresolved, human MT+ is thought to 

include the human homologues of macaque MT, MST and FST (Amano et al. 2009; Huk 

et al. 2002; Kolster et al. 2010). Based on its location, aMT+ might correspond to 

macaque MST/FST (Maunsell and Van Essen 1983; Ungerleider and Desimone 1986) or 

TEO/PIT (Felleman and Van Essen 1991; von Bonin and Bailey 1947). Our observation 

that aMT+ is less correlated with V1 than MT+ (Figs. 3.22 and 3.23) is therefore 

consistent with multiple studies showing that macaque TEO/PIT or MST/FST is less 

densely connected with V1 compared with MT (Distler et al. 1993; Felleman and Van 

Essen 1991; Markov et al. 2010). Although there are uncertainties to using functional 

connectivity to infer hierarchical arrangements among areas, if one uses the simple 

assumption that the more strongly two areas are functionally coupled together, the closer 
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they are to one another in a processing hierarchy, a sensory-motor processing hierarchy 

emerges that is consistent with the extant literature (Figs. 3.28 and 3.29). 

Analysis of interactions among networks illustrates a number of further points. 

Most critically, the hierarchy across networks reveals how a distributed network might 

serve as a bridge between sensory and motor networks that themselves possess 

preferentially local interactions (resulting in their parcellation into their own networks in 

Figs. 3.11 and 3.13). One speculation is that the distributed cortical network illustrated as 

the green network in Figure 3.11 -- and known within the neuroimaging literature as the 

dorsal attention system -- is the prototype distributed cortical network. It possesses 

multiple properties that are common to all association networks. Specifically, its 

component regions are distributed throughout temporal, parietal, and frontal cortices and 

show strong functional couplings between all pairs of regions (Fig. 3.32). We speculate 

that this network is a prototype because it is more strongly functionally coupled to 

extrastriate sensory regions and premotor regions than the remaining association 

networks that will be discussed later and also because it is well represented in the 

macaque. The presence of similar networks in humans and macaques suggests that they 

are homologous, and thus were present in the last common ancestor, which lived about 

25-30 million years ago (Pilbeam and Young 2004).  As will be discussed in the next 

section, the remaining distributed association networks, which in the human represent the 

majority of association cortex, display the same general organization but appear to have 

lost direct functional coupling to sensory and motor regions, at least insofar as measured 

by intrinsic functional connectivity. 
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Another important feature of this hierarchy is apparent when one considers finer 

details of the functional coupling patterns. Within the broad hierarchy, there is evidence 

for specialization indicative of parallel hierarchical arrangements. This is perhaps best 

illustrated by the differential functional coupling of premotor regions FEF and PrCv with 

the multiple regions localized around the superior parietal lobule (Figs. 3.26 and 3.27). 

Anatomical tracing work in the macaque has suggested two segregated sensory-motor 

pathways from parietal cortex to dorsal and ventral aspects of frontal cortex, including 

premotor cortex (Kurata 1991; Rizzolatti et al. 1998; Tanné-Gariépy et al. 2002) and the 

frontal eye fields (Petrides and Pandya 2006; Stanton et al. 1995). These frontoparietal 

connections have a dorsomedial to ventrolateral axis: dorsal portions of caudal frontal 

cortex are preferentially connected to medial and dorsal parts of parietal cortex including 

the superior parietal lobule and medial parietal cortex, while caudal ventral frontal cortex 

preferentially communicates with lateral and ventral aspects of parietal cortex and largely 

lacks connections with dorsal and medial parietal areas. Our demonstration that PrCv was 

strongly correlated with more ventral portions of rostral SPL and IPS, while FEF was 

strongly correlated with caudal SPL and IPS (Figs. 3.26 and 3.27) is consistent with 

descriptions of frontoparietal sensory-motor circuits in the macaque. Thus, evidence for 

specialization of subpathways is present in this canonical sensory-motor pathway. Taking 

the speculation that this canonical pathway represents the prototype distributed 

association network, it is tempting to wonder whether the interdigitated association 

networks that comprise the remaining human association cortex are evolutionary 

expansions of this basic prototype with multiple, interdigitated pathways that have 

become nearly completely differentiated. 
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Association cortices are nexuses of regions with distinct connectivity fingerprints. 

 Association cortex, in particular parietal cortex near the inferior parietal lobule, 

has been challenging to characterize. Human association cortex shows disproportionate 

expansion in relation both to macaque and great apes (Preuss 2004; Van Essen and 

Dierker 2007; Hill et al. 2010). In a few instances, it is an open question as to whether 

homologies should be expected (Orban et al. 2006). For example, in his seminal work in 

1909, Korbinian Brodmann noted that the human inferior parietal lobule included two 

cytoarchitectonic areas that are absent in the monkey (areas 39 and 40). The possibility 

that these association areas are vastly expanded in hominid evolution, or are even novel 

areas altogether, figured prominently in the classic description of disconnection 

syndromes by Geschwind (1965). For these reasons anatomic connectivity in the monkey 

cannot uniformly be presumed to apply to the human. Adding further complication, 

nearby regions of association cortex are often active across quite distinct forms of tasks 

suggesting functional diversity (e.g., Culham and Kanwisher 2001). As extreme examples 

of functional diversity, parietal regions near the superior parietal lobule, including those 

discussed in the preceding section, respond during sensory-motor decision tasks 

(Corbetta and Shulman 2002). Regions near the temporoparietal junction respond during 

social tasks that require participants to infer what others are thinking (Saxe 2006; Van 

Overwalle and Baetens 2009), and regions within the caudal portion of the inferior 

parietal lobule respond during episodic remembering (Cabeza et al. 2008; Vilberg and 

Rugg 2008; Wagner et al. 2005). 
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Our results demonstrate that parietal association cortex includes multiple nearby 

regions that possess markedly different connectivity profiles that parallel similar 

distinctions in prefrontal cortex. The results in parietal cortex are anticipated by both 

anatomic studies in the monkey and prior studies using human functional connectivity. 

Specifically, the caudal portion of macaque 7a, labeled Opt by Pandya and colleagues 

(Pandya and Seltzer 1982), has connections to the parahippocampal cortex, retrosplenial 

cortex, and posterior cingulate (Seltzer and Pandya 1994; Andersen et al. 1990; Suzuki et 

al. 1994; Lavenex et al. 2002). Nearby areas, such as LIP, are preferentially connected to 

visual association cortex and premotor areas leading Andersen et al. (1990) to note that 

“area 7a appears to be very different from other visual areas in the inferior parietal lobule 

in that it is the only area that connects to some of the highest centers of the brain.” 

Examination of functional connectivity of parietal association cortex in the human has 

also revealed notable diversity. Vincent et al. (2006) illustrated that neighboring parietal 

regions are functionally coupled to distinct sensory-motor and limbic circuits. In later 

studies, parietal association cortex was found to possess between three (Vincent et al. 

2008) and four (Nelson et al. 2010) distinct zones distinguished by their functional 

connectivity profiles (see also Sestieri et al. 2011).  

 Differential functional coupling across parietal and prefrontal regions are 

displayed in Figures 3.30 and 3.31. Drawing from Passingham and colleagues (2002), we 

refer to these regional connectivity profiles as ‘fingerprints’ because they illustrate the 

connectivity patterns across regions that make them distinct. In examining the many 

fingerprints, several principles emerge that provide insight into cortical organization. 

First, nearby regions can show abrupt transitions in their connectivity fingerprints. The 
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transitions from SPL7A to IPS3l and from IPS3l to PGpd are such examples. SPL7A, 

which may be at or near the human homologue to macaque LIP, is functionally coupled 

to extrastriate (MT+ and aMT+) and premotor (FEF and PrCv) regions. IPS3l shows a 

fundamentally distinct connectivity fingerprint with coupling to prefrontal regions that 

are within dorsolateral prefrontal cortex (PFCl and PFClp) and amodal posterior temporal 

association regions (ITG). IPS3l is absent coupling to sensory or motor regions. PGpd is 

distinguished by prominent functional coupling to limbic regions including posterior 

cingulate (PCC), retrosplenial cortex (RSP), and the medial temporal lobe (PHC). This 

tripartite division separates the major parietal zones that form the dorsal attention, 

frontoparietal control, and default networks discussed extensively in the human 

neuroimaging literature (green, orange, and red networks in Fig. 3.11). 

 Second, within these broad divisions there are further distinctions that demarcate 

more subtle regional differences. Across these regions, most connectivity properties are 

shared but there are also key differences, forming ‘connectional families’ of regions (see 

Passingham et al. 2002 for discussion). These differences within connectional families 

lead to the finer parcellation observed in Figure 3.13 and are likely of functional 

importance. For example, the TPJ and PGpv possess similar connectivity fingerprints, and 

both fall within the broader network that is globally called the default network. However, 

the TPJ is preferentially coupled to medial prefrontal regions (PFCdm), the posterior 

cingulate cortex (PCC) and precuneus (pCun), and the superior temporal sulcus (STS and 

STSp). While PGpv possesses a broadly similar fingerprint, it is also prominently coupled 

to regions associated with the medial temporal lobe memory system (RSP and PHC). 

This is of particular interest because both of these parietal association regions have been 
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proposed to be involved with higher mental functions linked to internal mentation and 

social cognition (see Buckner et al. 2008 for review), but functional distinctions have also 

been noted (e.g., Rosenbaum et al. 2007).  

 The final organization principle that emerges is that association regions belonging 

to the same connectional families can always be found widely distributed across the 

cortical mantle. Contrasting the fingerprints of regions within prefrontal cortex (Fig. 

3.31) with those falling within parietal cortex (Fig. 3.30) illustrates this last principle. 

PFCdm and TPJ are prime examples. These regions possess nearly the same functional 

connectivity fingerprints that differ from nearby regions within their own lobes. This 

accounts for why these distributed regions form such tightly coupled functional 

connectivity networks and suggests that association cortex might be best conceptualized 

as a series of interdigitated, distributed networks. 

 

Association cortex is comprised of multiple, interdigitated large-scale circuits 

 The majority of the human cerebral cortex is made up of multiple large-scale 

networks that include functionally coupled regions distributed across the brain. Such 

organization is apparent in prior studies (e.g., Beckmann et al. 2005; Damoiseaux et al. 

2006; De Luca et al. 2006; Fox et al. 2006; Greicius et al. 2003; 2004; Vincent et al. 

2008) and is evident in all of the analyses presented here. By analyzing the complete 

topography of the cortical surface, we were further able to illustrate that the multiple, 

distributed networks are interdigitated with one another forming complex convergence 

zones in parietal and prefrontal association cortices (Figs. 3.32 to 3.35). What do these 

patterns suggest about the organization of the cerebral cortex? 
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At the broadest level, these observations emphasize the need to adopt network 

approaches when exploring cerebral function. By network approach, we refer to the idea 

that the relevant functional unit may be the interconnected network itself, as suggested by 

Mesulam (1981; 1986) and Goldman-Rakic (1988). Mesulam (1981) proposed a network 

approach as an alternative to centrist approaches to localization, in which complex 

functions relied on specific cortical areas exclusively devoted to that function. While 

recognizing that functional specializations exist among areas of the same network, the 

network framework emphasizes that functions arise as emergent properties of these 

reciprocally connected systems of brain areas (see Fig. 4 of Mesulam 1981; 1990). In 

other words, distributed systems of areas, spanning different cortical lobes and 

subcortical structures, form functional units via their dense interconnections. This is a 

quite different organization than is evident in sensory cortex, which is characterized by 

dense connectivity among local areas. The two frameworks are not entirely different 

because all areas are presumably embedded within systems of interacting brain areas; 

however, the focus in many theories is on processing specialization within areas and 

processing hierarchies among neighboring areas. The present analyses suggest that 

functional unit of interest may be the distributed network itself. 

Goldman-Rakic (1988) offered three specific anatomic observations that provide 

evidence for distributed cerebral networks. First, prefrontal and parietal areas that are 

directly connected to one another also tend to have convergent projections to additional 

temporal and limbic areas (see Fig. 3 of Goldman-Rakic 1988). Second, interconnected 

association areas are tied together by common thalamic connections. And third, arguing 

against a typical hierarchical model of cortical organization, interconnected association 
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areas tend not to have laminar projection patterns with clear feedforward and feedback 

relations (also see Felleman and Van Essen 1991). We suspect that the distributed 

networks that comprise the majority of human association cortex are networks of this 

type – highly interconnected, without strong hierarchical relations among areas, and 

integrated into a common functional unit of some form. This does not mean that areas 

within prefrontal and parietal cortices are making the same contributions to the network, 

but the emphasis does shift to asking how the separate networks make distinct functional 

contributions rather than asking how different areas within prefrontal or parietal cortices 

may be locally differentiated. That is, association cortex is characterized by multiple 

modules (Bullmore and Sporns 2009) that are each comprised of nodes distributed widely 

across the cortex. 

Of further interest, the distributed cerebral networks converge on regions of 

association cortex that are late to develop in terms of myelination (see Fig. 3 of Catani 

and ffytche 2005) and cortical surface area (Hill et al. 2010), and are expanded in the 

human brain relative to the modern macaque brain (Van Essen and Dieker 2007). For 

these reasons, it is likely that distributed association networks have been under strong 

selective pressure to expand in recent hominid evolution. The network parcellations 

presented in Figures 3.11 and 3.13 provide a current best estimate of the organization of 

the interdigitated networks that comprise human association cortex. 

 

Caveats and limitations 

Measuring functional connectivity is not the same as directly measuring 

anatomical connectivity. Functional connectivity is constrained by anatomic connectivity 
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(e.g., Johnston et al. 2008; Honey et al. 2009) but those constraints are not restricted to 

monosynaptic connectivity. For example, functional coupling is present between the two 

hemispheres for striate cortex in the macaque (Vincent et al. 2007) while 

interhemispheric connections are absent except at the border of V1 (Van Essen and Zeki 

1978). The pervasiveness of functional coupling is both a weakness and strength of the 

technique as it allows one to map large-scale polysynaptic circuits, but leaves ambiguities 

and uncertainties, which will require follow-up by other methods such as diffusion 

imaging techniques and detailed examination of homologies to non-human primates. 

Cerebrocerebellar circuits are a place that perhaps best illustrates that functional 

connectivity is constrained by anatomy but is more pervasive than monosynaptic 

connectivity. Cerebrocerebellar circuits – which are exclusively polysynaptic (Evarts and 

Thach 1969; Kemp and Powell 1971; Strick 1985) – demonstrate functional coupling that 

tracks the contralateral organization of anatomic projections and is topographically 

specific as described in our companion paper (Buckner et al. 2011). Thus, functional 

connectivity is informative but should not be considered a direct measure of anatomic 

connectivity. Functional connectivity also appears sensitive to other factors, including 

recent experience and the state of the subject during scanning (Fox and Raichle 2007; 

Moeller et al. 2009; Buckner 2010). An assumption made in the present paper is that the 

dominant contribution to the measured correlations reflect stable properties of cortical 

architecture – an assumption we believe is warranted but nonetheless needs to be made 

explicit as boundary conditions and violations of this assumption may emerge. 

A further limitation of the present work is resolution. Even at the relatively finer 

resolution of the 17-network estimate, discrete components of a given network likely 
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span multiple cytoarchitecturally distinct cortical areas. The association networks 

described in this paper are at a coarser resolution than the networks inferred by Goldman-

Rakic (1988) and others in the macaque. Our limited data resolution, as a result of voxel 

size, smoothing and intersubject averaging including potential errors in surface-based 

alignment, may miss important features of the cortical topography and the results should 

be interpreted accordingly. Future, high resolution studies of individuals may provide 

better estimates of cortical topography. 

A final limitation is our use of clustering to parcellate the cerebral cortex. The 

assumption made by the clustering approach is that each vertex belongs to a single 

network. Our seed-based analyses (Figs. 3.32-3.35) suggest that this is a reasonable 

beginning point for analysis even though crosstalk exists between networks. However, 

there are specific places where the parcellation results might be particularly sensitive to 

inaccuracies, including the characterization of cortical regions that serve as putative hubs 

of communication between networks (Buckner et al. 2009; Hagmann et al. 2008; 

Mesulam 1998). We also note that the 17-network estimate does not cleanly fractionate 

individual networks within the 7-network estimate, implying that cortical networks are 

not spatially organized in a strictly hierarchical fashion6, like that suggested in the toy 

example (Fig. 3.5). Our efforts to enforce strict subdivisions of coarser networks by using 

hierarchical clustering (not shown) failed to provide stable results across the Discovery 

and Replication datasets. Recent advances in graph theoretic clustering approaches are 

promising in providing the possibility for regions to belong to multiple networks or 

communities (e,g., Ahn et al. 2010). 

                                                 
6"Here “hierarchy” refers to the spatial organization of the networks rather than the 
concept of “hierarchical processing pathways”.""
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Conclusions 

Different regions of the cerebral cortex display distinct characteristics. Functional 

connectivity of retinotopic visual areas display dense local functional coupling that is 

organized across areas in a fashion that respects functional topography. Association 

cortex is comprised of multiple, interdigitated large-scale networks that, while exhibiting 

crosstalk, possess predominantly parallel organization. The map of these cerebral 

networks is provided as a reference for future functional characterization and 

confirmation by complementary approaches that can directly visualize anatomic 

connectivity.  
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Concluding Remarks 

 

Human brain expansion has not been proportional (Hill et al. 2010). For example, 

primary visual cortex (area 17) and motor cortex are both about the same size in humans 

and modern chimps (Blinkov & Glezer 1968; Frahm et al. 1984), yet our absolute brain 

size is about three times as large. From endocasts of preserved skulls, it seems the 

reduction in proportional size of primary visual cortex probably occurred early in the 

hominin lineage (Kaas 2006). Moreover, while larger brains generally have more 

subdivisions (Kaas 2008), it is not clear whether cortical fields that are late to evolve and 

develop are constrained by the same processes that anchor the early and highly conserved 

basic sensory areas (Rosa 2002; Rosa & Tweedale 2005). 

Because the human brain is not likely simply a scaled up prototypical primate 

brain, neuroscience has long awaited techniques for exploring long-range connections in 

human brains directly (Crick & Jones 1993). The latter half of the 20th century saw rapid 

progress in neuroanatomical mapping in the brains of laboratory animals. Anatomical 

tract tracing methods such as silver impregnation, pioneered by Walle Nauta and others 

(Nauta & Ryan 1952), made it possible to map connections from the site of a lesion by 

slowly and painstakingly following the trace of degenerating axons in the histological 

tissue. In the 1970s, a neuroanatomical revolution occurred with the development of 

tracers that were taken up by axonal anterograde or retrograde transport and enabled 

visualization of neuronal pathways (Mesulam 1976; a good review of early techniques is 

found in Kristensson 1978). However, anatomic tracing techniques have historically had 

limited utility in post-mortem human brains (Buckhalter, Bernardo & Charles 1993).  
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Detailed studies of the somatosensory and visual systems in cats and non-human 

primates were particularly influential for early models of the functional architecture of 

the neocortex (Mountcastle 1957; Hubel & Wiesel 1962; 1977). Serial, hierarchical 

processing stages as the basis for the sensory faculties were proposed well before circuit 

tracing methods were available (e.g. Walton & Paul 1901). Van Essen’s work with John 

Maunsell (Maunsell & Van Essen 1983) and his later, exhaustive meta-analysis 

(Felleman & Van Essen 1991) produced iconic diagrams of the visuomotor hierarchy for 

information flow in the monkey brain. These “wiring diagrams” are still considered the 

most comprehensive description of the visuomotor pathway in primates.  

Consequently, principles for brain organization derived from studying sensory 

systems have influenced ideas about the rest of the brain. For instance, some assumed the 

expanded portions of human cortex inherits the features of the early, evolutionarily 

conserved sensory processing areas, such as a modular organization with well-defined 

borders (Kaas 1987). Functionally, the concept of a hierarchy has moved beyond 

perceptual processing to other domains, leading to functional descriptions of “action” and 

“cognitive” hierarchies with corresponding physical realities in the frontal lobes (Fuster 

1993; Koechlin et al. 2003; Badre & D’Esposito 2007).  

Goldman-Rakic (1988), Mesulam (1990) and others challenged the assumption 

that hierarchical processing best characterized the organization of association cortex. In 

the classic view, the apex of sensorimotor hierarchies was often reserved for prefrontal 

cortex (Nauta 1971; Fuster 1993; but see Brutkowski 1965 for an earlier critique of this 
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view).7 Goldman-Rakic’s double-labeling experiments (e.g. Cavada & Goldman-Rakic 

1989a, 1989b) showed that the traditional definition for hierarchical organization was 

violated by the lateral interconnections between regions that spanned frontal, cingulate, 

temporal and parietal association cortex. The notion of convergence and reciprocal 

connections in areas beyond primary sensory cortices was articulated earlier (e.g. Jones & 

Powell 1970), but Goldman-Rakic’s experiments showed the precise laminar co-

localization of projections from different association areas onto a common target in a 

manner that violated the definition of a hierarchy. She further emphasized the parallel 

nature of circuits that interdigitate neighboring regions of association cortex (Goldman-

Rakic 1988). The organization of networks in the orbital and medial prefrontal cortices of 

non-human primates is consistent with the view that association cortex consists of 

complexes of distinct networks whose cortical constituents do not have an obviously 

hierarchical organization (Barbas et al. 1999; Öngür & Price 2000). In their seminal 

paper, Felleman & Van Essen mention Goldman-Rakic’s work as an important caveat to 

their estimate of the visuomotor hierarchy, since a large proportion of connections in the 

upper levels of their diagram are inconsistent with the purely hierarchical framework 

(Felleman & Van Essen 1991).  

The work presented in this dissertation seeks to assess these different 

organizational concepts in the human brain at the macroscopic level. The primary 

question we address is: do connectivity patterns in the expanded portions of human 

neocortex and cerebellum exhibit an organization reminiscent of early sensory-motor 

circuits (local, hierarchical), or rather of distributed networks of the form articulated by 

                                                 
7 This is an ironic recasting, given prefrontal cortex was historically considered the 
“silent” portion due to its inexcitability by electrical stimulation (e.g. Ferrier 1874). 
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Mesulam (1990) and Goldman-Rakic (1988)? Using non-invasive imaging and 

capitalizing on large data samples, we were able to interrogate stable features of 

organization that both confirm and extend our understanding of human brain 

organization. Some of these principles motivate us to revisit common assumptions of 

organization, such as the view that the prefrontal cortex and its associated white matter 

volume has unique status as a region of marked expansion and change in humans 

(Semendeferi et al. 2002; Schoenemann, Sheehan & Glotzer 2005), the view that the 

cerebellum is predominately connected to regions involved in motor control functions 

(Evarts & Thach 1969), and the view that brain expansion is associated with an increase 

in the number of modules (areas) similar in form to early sensory areas, i.e. they are 

rigidly specified and have clear and distinct borders (Kaas 1987). As I will discuss, each 

of these views have largely been extended to the human brain on theoretical grounds 

owing to the lack of techniques for assessing them in humans directly. Though indirect 

and suffering from poor resolution, neuroimaging methods have the potential to begin to 

address these questions. 

New advances for making large, intact sections of tissue optically and chemically 

transparent appear to be on the horizon for human systems neuroscience (e.g. Chung et 

al. 2013). There is at this moment a great deal of excitement in the neuroscience 

community surrounding large-scale projects and consortiums that seek to 

comprehensively map connections between every cell in the brains of laboratory animals 

(e.g. micro-connectomics, Lichtman, Livet & Sanes 2008), or between macroscopic 

portions of gray matter in the human brain (e.g. the Human Connectome Project, Van 

Essen & Ugurbil 2012). However, even with new techniques the connectivity of the 



 235 

human brain is by any measure dauntingly complex. Principles of connectivity derived 

from nonhuman primates provide important insights, both in the details and in the broad 

pattern of connections and organizational properties described at the macroscopic level.  

Advancements in in vivo imaging methods, such as diffusion imaging and 

functional connectivity MRI, have allowed us to begin to make inferences about 

connectivity (Johansen-Berg & Rushworth 2009; Behrens & Sporns 2012), as well as 

disruptions to connectivity (Buckholtz & Meyer-Lindenberg 2012), in human brains 

directly. In what follows I will discuss the contribution the studies described in this 

dissertation have made in mapping the macroscopic topography of functional 

connectivity in the human cerebral cortex and cerebellum. I will also discuss the 

empirical work we have done to understand the limitations of fcMRI. These limitations 

likely preclude its ability to identify boundaries between functional areas, but the general 

properties of network organization appear consistent across different applications, 

lending some confidence in the emerging picture of what is unique about human brain 

organization. I will then discuss other general conclusions from this body of work. 

 

Cerebro-Cerebellar Circuits  

In Paper I (Krienen & Buckner, 2009), we examined the strength of correlations 

between regions in frontal cortex and the cerebellum. In line with expectations from 

polysynaptic tract tracing results obtained in non-human primates (Middleton & Strick 

2001), we saw that the anterior hemispheres as well as lobule VIIIB of the human 

cerebellum was preferentially coupled to regions in somatomotor cortex. Conversely, we 

found that the posterior portions (Crus I and II) of the cerebellum are more correlated to 
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lateral and medial prefrontal cortex. This was also expected from the work of Strick and 

colleagues, who demonstrated that these portions of the posterior hemispheres of the 

cerebellum of non-human primates participate in closed, polysynaptic circuits with lateral 

prefrontal cortex (Kelley & Strick 2003). By choosing different seed regions in prefrontal 

cortex, we saw that there were at least 3 interdigitated and only partially overlapping 

patterns of correlation in the cerebellum. These patterns were first detected in a dataset of 

40 subjects and then replicated in a second sample of 40 subjects. We could also see 

evidence for the same patterns at the individual subject level.  

More recently we have refined and expanded our mapping of human cerebro-

cerebellar circuits (Buckner et al. 2011). We replicated the primary result described in 

Paper I, showing that the posterior lobules of the human cerebellum participate in 

functional networks that span portions of cerebral association cortex. Application of a 

clustering algorithm to group together portions of the cerebellum that share similar 

connectivity fingerprints to the cerebral cortex further revealed a complex interdigitation 

of networks across the cerebellar cortex. These analyses also revealed an intriguing 

patterning across the anterior-posterior axis of the cerebellum. Specifically, these results 

showed that the cerebellar regions linked to association cortex as well as somatomotor 

cortex form separate anterior and posterior representations that appear as mirror images 

in the sagittal or coronal planes (Buckner et al. 2011). There was also some indication 

that a third map might exist in the most posterior portions of the cerebellum (lobule X). 

In general, the extent of the cerebellum that participated in a network was predicted by 

the proportional size of the network in the cerebral cortex. Measured in this way, fully 
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more than half of the human cerebellum appears to participate in network involving 

association cortex.  

Interestingly, the lateral hemispheres of the cerebellum appear to have undergone 

significant expansion in recent hominid evolution. Although fcMRI likely does not have 

the ability to delimit precise areal boundaries nor distinguish direct from indirect 

connections, the roughly homotopic relationship between representations in the cerebrum 

and the cerebellum in humans recalls the coordinated scaling of the cerebro-cerebellar 

complex across the primate radiation (Whiting & Barton 2003). These demonstrations are 

particularly interesting as they point to coordinated scaling between subcortical structures 

and the neocortex, structures that originally evolved over phylogenetically different 

timescales (Striedter 2005).  

What remains unclear is the extent to which this coordination is due to hard-wired 

developmental programs, to population matching, or to experience-dependent refinement 

of connectivity (Striedter 2005). It is intriguing that the cerebellum develops in the 

anterior-posterior direction, with the lateral hemispheres appearing latest (Sillitoe & 

Joyner 2007). Cerebellar Purkinje cells and most interneurons also share a common 

germline with the cortical precursor cells originating in the ventricular zone (VZ) 

(Altman & Bayer 1997). Afferent connections from the cerebrum by way of the pontine 

nucleus target the anterior or posterior lobules with a chronometrically sequential 

topography along the anterior-posterior axis (Sillitoe & Joyner 2007). This 

developmental pattern is broadly consistent with the developmental sequence that occurs 

in cortex, in which the primary sensory and motor areas emerges before association 

cortex. However, it is not yet clear whether the cerebro-cerebellar connectivity patterns 
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generally achieve their orderly formation in temporal succession, whether the 

connectivity of the dual representation of each network would be achieved 

simultaneously, and the extent to which these networks are genetically or experientially 

determined. 

 

Relation of Functional Connectivity to Anatomic Connectivity 

 

To appreciate the topography of connectivity patterns, we have found it 

particularly informative to animate whole-brain connectivity maps of a small seed region 

as it is moved smoothly across the cortical surface (see www.youtube.com/yeokrienen 

and www.youtube.com/bucknerkrienen for examples of corticocortical and 

cerebrocerebellar connectivity movies). Abrupt transitions in the connectivity patterns of 

neighboring regions occur fairly often. The exact locations of these transitions are also 

reasonably stable across small samples of participants, if using the same analysis stream 

and data collected from the same behavioral state. These coupling transitions have been 

proposed to mark ‘functional boundaries’ between putative areas in the human brain at 

the level of individual subjects (Cohen et al. 2008). Though we do not hold this view, it is 

striking how abrupt some of the coupling transitions are. Similarly, it can be striking how 

uniform or gradual are the transitions in other regions of the neocortex.  

Connectivity-based parcellations of the human brain based on resting state 

functional connectivity or on structural connectivity have proliferated in recent years 

(Cohen et al. 2008, Nelson et al. 2010; Yeo et al. 2011; Power et al. 2011; Mars et al. 

2011). Broadly, parcellations are a means of reducing the whole brain voxel-to-voxel (or 

vertex-to-vertex) connectivity matrix into “networks” or “clusters” of regions that may be 



 239 

physically far apart but nonetheless share similarities in their connectivity fingerprints 

(Passingham et al. 2002). Parcellations and other ways of reducing and organizing 

coupling patterns have made vast datasets tractable, but have also allowed us to 

appreciate the general consistency of solutions across laboratories, data samples, and 

methods. 

In Paper II we examined two factors that can influence functional connectivity 

patterns and the resultant parcellations of fcMRI data. The first factor deals with technical 

aspects of fcMRI analysis. Specifically, choices made in the analysis and weighting 

criteria for defining functional networks or identifying coupling transitions can influence 

the exact locations of borders between adjacent regions. The second factor concerns the 

transient contributions to the fcMRI signal from the behavioral state of the participants. 

Since fcMRI is not fully determined by anatomical connectivity patterns, some portion of 

the variance in coupling patterns is due to the particular behavioral state of the 

participant.  

We found that task-derived fcMRI borders better conform to the pattern of 

responses derived from the task, compared to borders derived from resting data. This is 

important because it has been claimed that resting state networks correspond well with 

task-induced activations across a broad range of cognitive domains (Smith et al. 2009; 

Nelson et al. 2010; but see Mennes et al. 2012). However, while the number of resting 

state fMRI studies appears to be increasing exponentially (Snyder & Raichle 2012), 

functional connectivity parcellations are rarely performed in other types of task data. The 

predominance of studies that use passive rest data may reinforce the (implicit or explicit) 

assumption that passive rest states are the most appropriate states for fcMRI analyses. 
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This has been bolstered by observations that resting-state patterns conform well to task 

activation patterns across a wide range of behavioral tasks (e.g. Smith et al. 2009). 

However, we found that task-derived fcMRI patterns are equally good at predicting task 

coactivation patterns obtained from the Brainmap database (Thomas Yeo, unpublished 

observations).  

Going beyond technical and experimental considerations, a final reason not to 

expect fcMRI patterns to recapitulate areal boundaries is that anatomic connections 

themselves do not necessarily align uniformly with cytoarchitectural divisions. It is well 

known that some areas are distinguished by heterogeneous connections to other regions. 

For example, connections in early visual cortex link together regions that share similar 

visual field representation (Maunsell & Van Essen 1983). The fcMRI signal measured 

across V1-V3 is a graded pattern that preferentially links central (foveal) representations 

together, as distinct from peripheral visual field representations, across the V1-V3 

complex (Yeo et al. 2011).  

An additional complexity is that gradients may be a true feature of cortical 

connectivity. While the traditional definition of a brain area is often taken to mean that 

there are clear demarcations between areas, sharp connectivity-based borders may not 

always exist. While the borders of primary sensory and motor areas are determined by 

strong evolutionary and developmental constraints (Rakic 1988), and can therefore be 

identified clearly (Kaas 1987), brain areas that are later to evolve and develop may not be 

subject to the same rigorous molecular specification. For this reason, some argue that the 

demarcations between cortical areas, particularly those that subdivide association cortex, 
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may be better described as transitional gradients rather than clear, unequivocal borders 

(Rosa & Tweedale 2005; Barbas 2007).  

This important point was not lost to many of the early comparative 

cytoarchitectonists. The idea that the phylogenetic age of cortex might be related to its 

cytoarchitectonic stability can be found even in early works of comparative anatomy (e.g. 

Campbell 1904). Though contemporary reproductions of the maps of Brodmann (1909) 

and von Bonin and Bailey (1961) are often redrawn in a manner that depicts sharp 

delineations between areas, the original works emphasize suspected gradual transitions 

between neocortical fields as well as uncertainties in the locations of certain areal 

boundaries. With this in mind we should not expect fcMRI to produce hard boundaries 

that accurately reflect areal organization (Buckner, Krienen & Yeo 2013), particularly in 

regions of the brain that have undergone disproportionate expansion in hominins (Hill et 

al. 2010). 

Though fcMRI does not recover areal boundaries, it has shown its potential to 

reveal other important principles of organization. One example is the confirmation that 

the cerebellum participates in non-motor networks (Habas et al. 2009; Krienen & 

Buckner 2009; Buckner et al. 2011). Another is the characterization of circuits involving 

the cerebral cortex and the striatum, which reveals both the expected motor circuits as 

well as an orderly sequence of coupling to association regions (Choi et al. 2012). 

Investigating the circuit properties has also revealed new insights into how information 

propagates within networks. For example, association cortex exhibits relatively higher 

distant (as compared to local) connectivity (Sepulcre et al. 2009), consistent with the non-

human primate anatomy (Selemon & Goldman-Rakic 1998), as well as more recent 
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modeling of white matter imaging in humans (Hagmann et al. 2008). Graph theoretic 

techniques applied to fcMRI data have also yielded proposals for how information might 

be propagated or integrated across networks (He et al. 2009; Sepulcre et al. 2012). 

As a final illustration of how fcMRI has advanced understanding of brain 

organization, several studies have investigated functional connectivity in anesthetized 

macaques. Broadly, these find parallels for a number of the networks that have been 

characterized in humans (Vincent et al. 2007; Margulies et al. 2009; Hutchison et al. 

2011; 2012). For example, a recent paper by Hutchison et al (2012) shows that fcMRI of 

distinct clusters in the cingulate cortex reveals distinct fingerprints of connectivity that 

are broadly consistent both with the human imaging literature (e.g. Beckmann et al. 2009) 

and the anatomical tracing literature.  

Motivated by the view that characterization of cerebral cortex is incomplete 

without converging evidence that includes connectivity information, Paper III of this 

dissertation analyzed resting-state fcMRI data from 1000 subjects with two primary 

objectives. First, we sought to provide parcellations that are a current best estimate of the 

organization of human cortical networks as measured by functional connectivity MRI. 

Second, we took advantage of the power of a large data sample to quantitatively measure 

functional connectivity strength among many regions. We explored the patterns of 

corticocortical functional coupling that give rise to these networks, guided by the non-

human primate anatomy when available.  

The results revealed that parcellations of 7 and 17 networks were stable clustering 

solutions. We began by exploring the general properties of these parcellations. Networks 

in visual and motor cortices are comprised of regions whose functional coupling is 
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mainly restricted to local neighborhoods. Using knowledge of the hierarchical 

organization of connections from primary visual cortex up to premotor and parietal 

association areas in the monkey, we were able to show that connectivity strength predicts 

hierarchical distance within this canonical visuomotor circuit with human fcMRI data. In 

contrast, association cortex was found to consist of large, interdigitated networks that 

span frontal, parietal, temporal and cingulate cortices. Here, connectivity strengths and 

patterns are largely consistent across the distributed regions of a given network such that 

no clear hierarchy between them emerges (Figures 3.32-35). 

 

Summary, Caveats and Future Directions 

 

Several important points are worth revisiting from Paper II regarding the 

parcellations of resting-state data that were presented in Paper III. First, though the 

topography of functional connectivity networks is remarkably stable across large (Figures 

3.8-9) and small (Figure 2.1) data samples, we expect the details of the topography to 

change if different clustering approaches are applied, different task states are measured, 

or different populations are sampled. Though we have made these parcellations publicly 

available for the community to use, we caution against interpreting them as the ‘ground 

truth’ of functional networks in the cerebral cortex. At the very least, if applying these 

parcellations to other data, we expect the alignment to be most appropriate for datasets of 

passive rest in healthy young adults. 

Second, fcMRI is constrained by anatomy but is not fully determined by it. This 

places important limits on how the observed “connectivity” maps should be interpreted. 
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For example, fcMRI networks change as a function of analysis technique used (Paper II), 

as well as the current or past behavioral state of participants (McIntosh et al. 2003; 

Hampson et al. 2004; Rissman et al. 2004; Hampson et al. 2006; Summerfield et al. 2006; 

Albert et al. 2009; Lewis et al. 2009; Hasson et al. 2009; Pyka et al. 2009; Sepulcre et al. 

2010; Stevens et al. 2009; Tambini et al. 2010; Shirer et al. 2011; Vahdat et al. 2011; 

Mennes et al. 2012; Norman-Haignere et al. 2012).  

There is also a growing appreciation of the non-stationarity of the fcMRI signal 

over time. The typical fcMRI analysis measures average correlation of time series over 

the course of minutes. A growing body of literature points to the existence of shorter 

‘micro-state’ patterns that transiently emerge and dissolve on the order of seconds (Chang 

& Glover 2010; Kiviniemi et al. 2011; Allen et al. 2012; reviewed in Hutchison et al. 

2013). For example, Kiviniemi et al (2011) and Allen et al (2012) show that the Default 

Network transiently couples to other regions or networks at shorter timescales, and that 

there is some regularity in the progression of these brief states. In some cases this non-

stationarity may be attributable to the change in behavioral state, including the 

participants vigilance and drowsiness over the course of the scan. It will be interesting to 

see whether at least some of this non-stationarity has a non-conscious/experiential basis. 

Another important caveat to our parcellations (Paper III) is that while the vast 

majority of connectivity studies are performed on passive rest states, our current 

perspective is that passive rest is an ‘active’ task just like any other task. Therefore some 

portion of the coupling patterns measured during rest states are influenced by active 

cognitive operations. Others have advanced the argument that passive rest states are 

unique biological states (Deco & Corbetta 2011). We do not hold this view. Though 
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behavior is typically not measured during passive rest, mental operations clearly persist 

during passive states. Introspective thought-probes can even reveal the distribution of 

categories of mental content that participants typically experience during these states 

(Andrews-Hanna et al. 2010). The argument that rest is special would have to make an 

exception for regions that typically increase their BOLD response during passive states, 

such as those belonging to the Default Network. Our preliminary observations suggest 

little reason to believe that passive rest states stand out as exemplary states for measuring 

functional connectivity patterns. However, it is not yet clear what the full dynamic range 

of connectivity patterns actually is. While the details change, broad properties of 

organization seem to remain stable across task states. These include the interdigitation of 

networks in the cerebrum as well as the cerebellum (Paper II). 

In general, it is still not clear how to interpret the strength of temporal 

correlations, or rather, relative differences in the strength of correlations. For example, 

the correlation strength between a seed region in somatomotor cortex and its peak 

correlation in the cerebellum is generally lower than if the seed region is moved to medial 

prefrontal cortex and its corresponding peak in the cerebellum is found. It is unclear what 

mediates the difference in connectivity strength. The distance is the same in these two 

cases (both in terms of approximate physical distance as well as the number of synapses 

that separate the cortical seeds from their cerebellar counterparts), and the microstructure 

of the cerebellum is quite uniform. Possible candidate factors include differences in 

signal-to-noise, in intersubject variability in alignment or in locations of underlying 

cortical fields, in the size of the respective networks or regions, among other possibilities. 

This example shows that though the field has made compelling discoveries and advances 
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using functional connectivity, a great deal remains to be explored about the basic 

properties of the source and relevance of the signals measured by fcMRI. 

Occasionally, methods not only advance knowledge of a system, but also 

fundamentally constrain the way the system is conceptualized. For instance, conceiving 

the single neuron as the relevant functional unit of the nervous system may stem from a 

historical dependence on single-electrode recordings (Alivisatos et al. 2012; Logothetis, 

2012). Though fMRI provides whole-brain images, traditional localization and 

subtraction methods may ironically reinforce the assumption that isolated ‘areas’ (fMRI 

blobs) are the meaningful unit of functional processing (Smith 2012). All brain areas are 

presumably embedded within systems of interacting brain areas or subunits within areas. 

The work presented in this dissertation supports the view that the functional unit of 

interest might rather be the distributed network itself. At the same time, the limitations 

and ambiguities inherent to the methods I have used are readily acknowledged. 
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Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity 

 

Supplementary Materials 

 

Assessing the significance of fronto-cerebellar correlations.  

 The correlation maps illustrating fronto-cerebellar connectivity all employed a 

somewhat arbitrary threshold (r(z) > 0.1). In order to formally assess how robust these 

results are, we conducted random effects analyses on the un-thresholded maps. First, we 

performed two t-tests, one each for the left and right MOT- and DLPFC- correlated maps 

in order to test the finding that left neocortical seeds are preferentially correlated with 

right cerebellar regions (and vice versa). Supplementary Figure S1.1 below displays the 

seed regions (top row) and results (bottom two rows) of the MOT t-test (A) and DLPFC 

t-test (B) thresholded at p<0.001, corrected for multiple comparisons across the whole 

brain. The left (red) seed for both MOT and DLPFC maps results in significantly higher 

correlations with the right cerebellar hemisphere. Conversely, the right (blue) seed 

produces significantly higher correlations in the left cerebellar hemisphere. Notably, the 

topography of the effects is qualitatively very similar to the subtraction maps shown in 

Figure 1.1 in the text.  

 Figure 1.3 in the text shows the result of subtracting a correlation map generated 

from one frontal site with the correlation map generated from another. The purpose of 

this analysis was to assess the topography of different fronto-cerebellar connections. For 

instance, subtracting the DLPFC-correlated map from the MOT-correlated map resulted 

in a map which clearly dissociated the MOT correlations in lobule V from the DLPFC 
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correlations in Crus I/II. Here again, however, threshold for the correlation coefficient is 

difficult to interpret. Accordingly, our second random effects analysis computed the 

significance of these subtraction maps. The correlation maps submitted to this analysis 

were, as in the original analysis, averages of left and right seeds. T-tests were performed 

on four pairs of the averaged maps (MOT-DLPFC, DLPFC-MPFC, MPFC-APFC, 

APFC-MOT), as shown in Supplementary Figure S1.2. The first two columns represent 

the placement of the frontal seeds, while the final column shows a representative slice of 

the cerebellum t-score map. The results are color-coded such that warm colors on the 

statistical map were significantly more correlated with the seeds in the first column, while 

blue colors were more correlated with seeds in the second column. Here again the results 

are thresholded at p<0.001, corrected for multiple comparisons.  

 

Overall cerebellar topography is insensitive to the exact placement of frontal seeds.  

 We preformed an additional control analysis in order to determine whether the 

pattern of results that emerged from this study was sensitive to the choice of the 

particular seed coordinates in frontal cortex. To this end, we displaced each of our frontal 

seeds at least 8mm from their original locations and recomputed the correlation maps for 

each. This enabled us to assess whether slight variations of the seed regions would have 

an appreciable effect on the topography of cerebellar correlations.  

 The results are displayed in Supplementary Figure S1.3. Panel (A) shows the four 

pairs of new seeds in the MOT, DLPFC, MPFC and APFC regions. Each new seed 

location was generated by moving the old seed at least 8mm away from the original 

coordinate (coordinates of original seeds in Table 1.2 in the text) while remaining within 
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in the same approximate frontal region as the original. Panel (B) displays representative 

slices of the resulting cerebellar correlations. Comparing these maps to the original maps 

in Figure 1.8 reveals that the displacement appeared to have a negligible effect on the 

overall topography of the results. 

 

Estimated cytoarchitectonic targets of cerebellar projections. 

 Seeding lobule V and Crus I in the cerebellum produced distinct patterns of 

neocortical correlations. Figure 1.2A in the text displays the two networks projected onto 

the PALS inflated neocortical surface (Van Essen, 2005). We identified the peak 

coordinates of both neocortical networks and list them below in Supplementary Table 

S1.1 along with their estimated areal boundaries. These areal boundaries should be 

considered approximate and are primarily useful as heuristic landmarks. Note that in 

addition to the correlations with DLPFC, other PFC zones such as anterior PFC including 

part of pars opercularis also contain peak correlations with this cerebellar region. Lobule 

V contains peak correlations at or near bilateral premotor and primary motor cortices. 
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Supplementary Table S1.1. Peak Correlations in Frontal Cortex. 

Seed Region BA Description x y z z(r) 
Crus I (CBMDLPFC)       
 46 Dorsolateral PFC -42 50 0 0.3 
 10 Anterior PFC 34 62 2 0.29 
 9 Dorsolateral PFC 48 16 42 0.28 
 44 pars opercularis 50 26 54 0.28 
 44 pars opercularis -50 20 38 0.27 
 9 Dorsolateral PFC 40 12 54 0.27 
 46 Dorsolateral PFC 42 50 -8 0.24 
Lobule V (CBMMOT)       
 6 Premotor cortex 30 -14 75 0.22 
 6 Premotor cortex -36 -12 68 0.2 
 4 Primary Motor Cortex -40 -16 64 0.18 
 4 Primary Motor Cortex 38 -20 64 0.17 

Note: Atlas coordinates (x,y,z) represent the Montreal Neurological Institute (MNI) 
coordinate system (Evans et al., 1993) based on the MNI152/ACBM-152 target. CBM = 
seed region placed in cerebellar cortex, MOT = motor cortex, DLPFC = dorsolateral 
prefrontal cortex, BA = approximate Brodmann’s area. 
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Supplementary Figure S1.1. Statistical significance of cerebro-cerebellar fcMRI. 
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Supplementary Figure S1.2. Statistical significance of pairwise frontal seed 
comparisons. 
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Supplementary Figure S1.3. Patterns in cerebellum are robust to local displacement of 
seeds in frontal cortex. 
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Boundaries on Functional Connectivity Boundaries: Theory and Practice 

 

Supplementary Materials 

 

In the toy example (Supplementary Figure S2.1), two (spatially) close dots 

represent two cortical regions (possibly spatially far apart) that have similar time courses 

(e.g., high correlation or similar functional connectivity profiles). There is clear structure 

in the data such that clustering the dots produces reasonable solutions for both 2 and 3 

networks (Supplementary Figure S2.1B). As can be seen however, the boundary between 

the red and blue network shifts depending on whether a 2-network or 3-network solution 

is sought. In particular, the dot identified by the arrow was assigned to the red network in 

the 2-network solution, but to the blue network in the 3-network solution. This happens 

because in the 2-network case, the group of blue dots in the upper right corner of the 

canvas renders the blue network (on average) to be less similar to the dot compared with 

the red network. When seeking a 3-network solution, however, we see that the dot’s 

connectivity profile is now more similar to the blue cluster than to the red cluster because 

of the break-up of the original blue network into the green and blue sub-networks, and 

therefore the dot is reassigned to blue. As a result, the network boundaries will shift in the 

3-network case relative to the 2-network case.  

The encroachment of the IPL-RSP-PHC network boundary into the Dorsal 

Attention Network (Figure 2.2 in the text) is likely a consequence of this kind of 

phenomenon. Specifically, the regions in question assigned to the Dorsal Attention 

Network in the 7-network solution in truth have a more similar connectivity profile with 

the IPL-RSP-PHC subnetwork of the Default Network, which leads to the reassignment 

of those regions and subsequent shift of the Dorsal Attention border in the 17-network 

solution. This intrusion into the Dorsal Attention Network is particularly inconsonant 

since the IPL-RSC-PHC network is typically regarded as a component of the Default 

Network (Vincent et al. 2006; Andrews-Hanna et al. 2010; Yeo et al. 2011), and the 

Default and Dorsal Attention Networks are often negatively correlated (Fox et al. 2005). 

Consequently, there exist cortical regions assigned to the Dorsal Attention Network in the 
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7-network solution that become assigned to a component of the Default Network in the 

17-network solution. 

 

 
Supplementary Figure S2.1, related to Figure 2.2. Toy example illustrating border 
shifts resulting from changing analysis criteria. (A) A hypothetical arrangement of 
dots is shown on a 2-dimensional canvas. Dots positioned close together represent 
cortical regions (possibly spatially far apart) that have similar time courses (e.g., high 
correlation or similar functional connectivity profiles). Clustering is achieved by coloring 
the dots that share similarities. (B) Example solutions for M = 2 and M = 3 clusters are 
shown. These each depict reasonable solutions given the underlying structure in the data. 
However, the boundary between the red and blue network shifts depending on whether a 
2-network or 3-network solution is sought because one dot (gray arrow) adopts a 
different network affiliation for these cases. This happens because in the M = 2 case, this 
dot is on average more similar to the red dots than it is to the blue dots. In the M = 3 case, 
however, the further division of the blue cluster into blue and green subnetworks changes 
the profile of the blue cluster such that the dot is now more similar to blue than to red. 
This has the consequence of shifting the red border in the 3-network case relative to the 
2-network case. 
 


