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Analysis of Transcription Activation Distance as a Polygenic Trait in  
Saccharomyces cerevisiae 

 
Abstract 

 
 Much of the eukaryotic transcriptional machinery is conserved from yeast to 

human.  However, the distance over which transcriptional activation can occur differs 

between Saccharomyces cerevisiae and metazoans.  In S. cerevisiae, the upstream 

activating sequence (UAS) is generally found within 300 base pairs of the transcription 

start site; when the UAS is moved too far away, activation no longer occurs.  In contrast, 

metazoan enhancers can activate from as far as 100 kilobases from the start site.  In past 

work, our lab identified five genes that, when mutant, allow transcription activation to 

occur at a greater-than-normal distance from the GAL1 UAS.  As this long-distance 

activation phenotype was weak, we have now studied long-distance activation as a 

polygenic trait, isolating strains with multiple mutations that together confer a strong 

phenotype.  To do this, we constructed strains containing two reporters, HIS3 and URA3.  

For each reporter, the GAL1 UAS was placed approximately 800 base pairs upstream of 

the transcription start sites.  By iterative selection for stronger and stronger expression of 

HIS3, followed by screening for stronger expression of URA3, we isolated three strains, 

each containing multiple mutations that contribute to the strength of the long distance 

activation phenotype.  Causative mutations were identified in MOT3, GRR1, MIT1, 

PTR3, YOR019W, and MSN2 that contribute to the long distance activation phenotype. 

Strains containing multiple mutations were found to activate the reporter construct at 

distances up to 2 kilobases.  Microarray analysis revealed genome wide transcriptional 
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changes in the mutant strains.  Statistical analysis of the microarray results suggests other 

potential sites of long distance activation throughout out the genome.  These results have 

extended our understanding of mutations that allow long distance activation and have 

demonstrated the value of studying a phenotype as a polygenic trait. 
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Introduction 
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 The activation of transcription initiation is one of the most important steps in the 

regulation of gene expression.  Work over the past few decades has provided vast insight 

into the proteins and mechanisms governing this step.  In eukaryotes, most fundamental 

aspects of transcription initiation are conserved from yeast to humans.  This conservation, 

as well as the ability to perform high-resolution genetic and genomic studies, has made 

yeast a valuable organism for studies on transcription activation.  However, one striking 

difference between transcription activation in yeast and metazoans is the distance 

between the core promoter and the sites where transcription activators bind.  In yeast, 

activator binding sites (upstream activation sequences or UASs) are generally found 

within 600 base pairs (bp) of the transcription start site (Xue et al., 2004).  In contrast, in 

metazoans, the activator binding sites (enhancers) are sometimes located as far as one 

megabase away (Lettice et al., 2003).  This raises the intriguing issues of whether 

activation distance is regulated in yeast and, if so, by what factors. 

   

The focus of this dissertation was to take a genetic approach to study the factors 

that regulate transcription activation distance in yeast.  In this introduction, I will briefly 

review transcription initiation by discussing the trans-acting factors and the cis-

regulatory elements involved in initiation.  I will introduce the models for long-distance 

transcription activation and summarize previous studies on regulation of activation 

distance in yeast.  Finally, I will review the study of complex traits in yeast, as our 

genetic approach involved the isolation of polygenic mutants. 
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TRANS-ACTING FACTORS INVOLVED IN TRANSCRIPTION INITIATION 
 
 

General Transcription Factors 

 

 The set of factors involved in initiation of RNA polymerase II are referred to as 

general initiation factors (Hahn and Young, 2011; Sikorski and Buratowski, 2009; 

Thomas and Chiang, 2006).   These factors were originally biochemically purified from 

human cells and shown to be necessary for transcription initiation from the adenovirus 

major late promoter (Matsui et al., 1980; Samuels et al., 1982).  The general initiation 

factors, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, are named for the biochemical 

fraction in which they were isolated (Thomas and Chiang, 2006).  Together these factors 

are required for recognition of the promoter, start site selection, clearing of the template, 

and opening promoter DNA (Hahn and Young, 2011; Sikorski and Buratowski, 2009; 

Smale and Kadonaga, 2003; Thomas and Chiang, 2006). 

 

Transcription Activators 

 

 Transcription activation is regulated by the binding of activators to DNA in a site-

specific manor.  Once an activator binds a regulatory site, it must communicate this 

activating signal to RNA polymerase II to promote transcription.  Activators often have a 

role in the regulation of genes in response to an environmental or developmental change.  

Therefore, it is important that the activators themselves are regulated, either at the level 

of binding to DNA or at the level of activation once bound. Promoters often contain 
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multiple activator binding sites and multiple activators can function together to promote 

transcription (Hahn and Young, 2011). 

  

 There are several structural features shared by most activators.  Activators 

typically contain a DNA binding domain and an activation domain that contacts other 

proteins.  These domains usually function independently of each other and can in some 

cases be swapped between activators.  This was first demonstrated when the LexA DNA 

binding domain from E. coli was fused to the S. cerevisiae Gal4 activation domain.  The 

fusion protein was able to activate transcription in yeast, dependent on the presence of a 

LexA operator site (Brent and Ptashne, 1985).  DNA binding motifs contain several 

common conserved structural domains such as helix turn helix motifs, leucine zippers, 

and zinc fingers (Gill and Tjian, 1992).  Activation domains are less well structured than 

DNA-binding domains; however, there are several common motifs of activation domains 

(Hahn and Young, 2011).  One such motif is an acidic domain containing critical 

hydrophobic residues, seen in activators such as Gal4, Gcn4, and VP16 (Jackson et al., 

1996; Jonker et al., 2005).  Other common motifs are a glutamine rich domain seen in 

Sp1 and Oct2 and a proline rich domain seen in p53, CTF1, and AP2 (Mitchell and Tjian, 

1989; Tanaka and Herr, 1990; Williams and Tjian, 1991; Zarrinpar et al., 2003). 

 

Co-activators  

  

 Co-activators are an additional class of component required for activation-

dependent transcription (Sikorski and Buratowski, 2009; Smale and Kadonaga, 2003; 
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Thomas and Chiang, 2006).  Co-activators are generally recruited to the promoter 

through an interaction with the activation domain of activators.  Co-activators can 

function by bridging the signal from activators to RNA polymerase II or other 

components of the general initiation machinery, or by chromatin modification (Hahn and 

Young, 2011).  These activities are important for the formation of the pre-initiation 

complex.  The order of recruitment of factors to the promoter is dependent on the gene. 

For example, in yeast at GAL1, the SAGA co-activator complex helps recruit Mediator, 

although several studies found lower levels of Mediator are recruited in the absence of 

SAGA.  ((Bhaumik et al., 2004; Bryant and Ptashne, 2003; Larschan and Winston, 2005; 

Lemieux and Gaudreau, 2004).  In this example, co-activators are functioning 

cooperatively to promote transcription.  In contrast, at Gcn4 dependent promoters, SAGA 

and the Mediator co-activator complex are recruited independently (Govind et al., 2005; 

Qiu et al., 2005). 

  

Mediator 

 

 The Mediator co-activator complex is of particular interest to this study as two 

components of Mediator, Sin4 and Rgr1, were identified as factors involved in regulation 

of activation distance (Dobi and Winston, 2007; Dobi and Leeman, unpublished).  

Mediator is a co-activator that was originally identified in yeast using two approaches.  

The first was a genetic approach looking for suppressors of CTD-truncations of the Rpb1 

subunit of RNA polymerase II (Koleske et al., 1992; Koleske and Young, 1994; 

Thompson et al., 1993).  Mediator was also identified by biochemical purification based 
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on its ability to promote transcription activation in vitro (Kim et al., 1994).  Yeast 

Mediator can be purified as part of a holoenzyme complex with RNA polymerase II or on 

its own (Kim et al., 1994). 

 

 Mediator is a multi-subunit complex comprised of a head, middle, tail, and kinase 

module (Dotson et al., 2000).  The head module interacts with RNA polymerase II 

(Takagi 2006). The tail module is the site of activator binding; in yeast, the Med15 tail 

subunit has been shown to bind Gcn4 (Herbig et al., 2010).  The kinase module is 

comprised of the Srb8, Srb9, Srb10, and Srb11 subunits, where Srb10 is a cyclin 

dependent kinase and Srb11 is the cyclin.  This module is not always found associated 

with the complex (Borggrefe et al., 2002). 

 

 Mediator is an evolutionarily conserved co-activator.  However, mammalian 

Mediator is more complex ((Dotson et al., 2000).  For example, human Mediator can 

exist in a variety of forms, with the major forms known as PC2 and TRAP (Malik et al., 

2005).  Electron microscopy of yeast Mediator, murine Mediator, and human TRAP 

complex revealed that the structure of the head module is the most conserved of the 

modules, while greater differences are seen between yeast and mammalian Mediator in 

the middle and tail modules. (Asturias et al., 1999; Dotson et al., 2000).  In fact, Sin4, 

which is present in the yeast tail domain, is absent in the tail domain of murine Mediator 

and human TRAP complex (Asturias et al., 1999; Dotson et al., 2000). 
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 Sin4 and Rgr1 are components of the tail module of yeast Mediator.  Sin4 is non-

essential while Rgr1 is essential for viability.  Truncation of the Rgr1 C-terminus results 

in a decrease in Rgr1 function and has been used to study the role of Rgr1 in gene 

regulation (Sakai et al., 1988).  Sin4 and Rgr1 have been identified as negative regulators 

of a number of genes including HO, IME1, and SUC2 (Covitz et al., 1994; Jiang et al., 

1995; Jiang and Stillman, 1995; Sakai et al., 1988).  Sin4 is also involved in the positive 

regulation of several genes including HIS4, CTS1, Ty1, and MATα2. (Jiang and Stillman, 

1992, 1995)sin4 and rgr1 mutants display a similar spectrum of phenotypes including 

altered transcription and altered chromatin structure (Jiang and Stillman, 1992). 

 

CIS-REGULATORY ELEMENTS OF TRANSCRIPTION 

 

 In this section, I will introduce five classes of cis-regulatory elements that have 

been studied in eukaryotic promoters.  The first two classes, the TATA box and initiator 

element are common to yeast and metazoans.  The next class is the UAS, the site of 

activator binding in yeast.  Lastly, I will introduce the upstream promoter element, a 

component of the metazoan core promoter, and enhancers, the site of activator binding in 

metazoans. 

 

The TATA Box 

  

 The first eukaryotic core promoter element identified was the TATA box, which 

is the binding site of TATA binding protein.  Original studies of the TATA box suggested 



! 8!

that it was a conserved core promoter element (Sikorski and Buratowski, 2009; Smale 

and Kadonaga, 2003).  A genome-wide analysis indicates that only ~24% of human core 

promoters contain a TATA box (Carninci et al., 2006; Yang et al., 2007), and in yeast 

only ~20% of yeast core promoters contain a TATA box (Basehoar et al., 2004; Yang et 

al., 2007).  The same study of yeast TATA boxes also yielded a consensus sequence of 

TATA(A/T)A(A/T)(A/G).  Interestingly, 99% of the pre-initiation complexes at TATA-

less promoters are bound to a sequence that has two or less mismatches to the consensus 

TATA sequence (Rhee and Pugh, 2012).  These TATA-like elements seem to function 

similarly to the TATA box, suggesting very few yeast genes are truly TATA-less. 

 

 The position of the TATA box is well defined in metazoans and in 

Schizosaccharomyces pombe, occurring 25-30 bp upstream of the transcription start site; 

however, in S. cerevisiae, it is much more variable, occurring 40-120 bp upstream from 

the start site (Sikorski and Buratowski, 2009; Smale and Kadonaga, 2003).   This 

difference in distance is determined by TFIIB and RNA polymerase II.  When TFIIB and 

RNA polymerase II are purified from S. pombe and combined with S. cerevisiae general 

initiation factors, initiation occurs in vitro 25-30 bp downstream of the TATA box.  

Conversely, when S. cerevisiae TFIIB and RNA polymerase II are combined with S. 

pombe basal transcription factors, initiation occurs 40-120 bp downstream of the TATA 

box (Li et al., 1994). 
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Initiator Element 

  

 Another core promoter sequence is the initiator element, the sequence 

surrounding the site at which RNA polymerase initiates transcription.  5’-SAGE mapping 

or transcription start sites and subsequent sequence alignment defined the S. cerevisiae 

consensus initiator to be A(Arich)5NPyA(A/T)NN(Arich)6 (Zhang and Dietrich, 2005).  In 

metazoans, the initiator element is sufficient for determining the transcription start sites 

in TATA-less promoters and is able to enhance the strength of promoters containing a 

TATA box (Javahery et al., 1994). 

 

Upstream Activation Sequences 

 

 Upstream activation sequences (UASs) are the promoter elements in yeast that 

serve as the binding sites for activators.  UASs are required for activated transcription, 

function in either orientation, and are unable to function when placed downstream of the 

TATA box (Guarente and Hoar, 1984; Struhl, 1984).  Several genome-wide datasets, 

including global transcription factor binding site ChIP data, identification of conserved 

regulatory motifs, and nucleosome location data, have increased the ease of identifying 

UASs (Borneman et al., 2007; Cliften et al., 2003; Hu et al., 2010; Narlikar et al., 2007).  

Most UASs are present within 600 bp upstream of the transcription start site (Xue et al., 

2004) and in some cases, multiple UASs are present in the promoter of a gene (McBride 

et al., 1997; Simon et al., 2001).  Many UASs are bound by activators in response to a 

change in environment; for example, the CYC1 UAS is bound by Hap1 in the presence of 
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heme and the CUP1 UAS is bound by Cup2/Ace1 in response to increased copper 

concentrations (Guarente and Hoar, 1984; Thiele, 1988). 

 

 The first UAS identified, which has become one of the most well studied, is the 

GAL1 UAS (Guarente et al., 1982).  This UAS is a 108 bp region containing four 17 bp 

sequences that serve as binding sites for Gal4.  The binding sites have a consensus 

sequence of 5'-cggrnnrcynyncnccg-3'; the four binding sites display different degrees of 

variation from the consensus and are not functionally equivalent (Lohr et al., 1995).  At 

least two of these Gal4 binding sites are required for the promoter to function bi-

directionally.  The GAL1 UAS is able to function on heterologous genes, causing them to 

be induced by galactose (Guarente et al., 1982).  This trait has made the GAL1 UAS a 

useful tool for many genetic studies.  For example, the GAL1 UAS is able to function as a 

promoter element in metazoans; this ability allowed for the development of the Gal4 

UAS system in Drosophila, a system that has had a major impact in Drosophila studies 

(Brand and Perrimon, 1993).  Interestingly, the GAL1 UAS is able to function in 

metazoans when integrated downstream of the TATA box (Webster et al., 1988), 

suggesting yeast also has a mechanism for preventing activation from downstream UASs. 

 

Upstream Promoter Elements 

  

Upstream promoter elements are found in metazoans and share several features 

with yeast UASs.  They occur 100 to 200 bp upstream of the core promoter. These 

elements are typically recognition sites for a group of sequence specific transcription 
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factors such as Sp1, CTF, and CBF (Blackwood and Kadonaga, 1998).  They serve to 

increase the rate of transcription by promoting the formation of the pre-initiation complex.  

Upstream promoter elements may be necessary for some enhancers to act at a distance 

(Marsman and Horsfield, 2012).  The natural human IFN-β enhancer is located 

immediately upstream of the core promoter.  Placement of the IFN-β enhancer several 

kilobases upstream of a reporter gene does not allow activation unless an upstream 

promoter element is present upstream of the core promoter (Nolis et al., 2009).  This 

activation is dependent on looping of the DNA between the enhancer and the upstream 

promoter element.  Although this was an artificial system, it raises the question of what 

upstream promoter elements may tell us about long-distance activation. 

 

Enhancers  

 

 Enhancers are promoter elements similar to UASs in that they are binding sites 

for activators and function to promote transcription efficiency.  They were first identified 

as sequences that, in either orientation, increase transcription of reporter 

constructs(Banerji et al., 1981; Benoist and Chambon, 1981; Gillies et al., 1983; Lohr et 

al., 1995).  Like UASs, enhancers can be activated in response to environmental stimuli, 

but they are also activated during developmental changes and are involved in mediating 

tissue specific expression (Dickmeis et al., 2004; Kim et al., 2010; Maniatis et al., 1987).  

Enhancers differ from UASs in that they are able to activate transcription at greater 

distances, discussed in further detail below.  Additionally, enhancers are able to function 
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when positioned downstream or within a gene, in addition to functioning when upstream 

of the gene (Khoury and Gruss, 1983). 

  

 Extensive efforts have been made to identify and map enhancers genome-wide.  

Enhancers are typically in regions depleted of nucleosomes, and thus are hypersensitive 

to nucleases.  DNaseI and formaldehyde-assisted isolation of regulatory elements have 

used this trait to identify a number of enhancer sequences (Zentner and Scacheri, 2012).  

However, when applied on a whole-genome scale, these techniques will also identify 

other regulatory elements such as the core promoter and insulators.  The ENCODE 

project has helped to identify and map 400,00 enhancers to human cell lines using ChIP-

seq data on chromatin modification and transcription factor binding data (Calo and 

Wysocka, 2013; Zentner and Scacheri, 2012).  H3K4me1 is associated with active 

enhancers, while H3K27ac is associated with poised enhancers (Creyghton et al., 2010 

; Heintzman et al., 2009; Heintzman et al., 2007). 

  

Another striking difference between yeast UASs and metazoan enhancers is the 

ability of enhancers to activate over long-distance. For example, the five DNase I 

hypersensitive sites of the human β globin locus are spaced over a 15 kb region and are 

able to activate over approximately 50kb (Blackwood and Kadonaga, 1998; Bulger and 

Groudine, 1999).  In some cases, enhancers act on genes as far as a megabase away 

(Lettice et al., 2003).  The large distances over which enhancers can act raises the 

complication of determining the gene(s) on which each enhancer acts.  Detection of long-

range interactions may give some insight into this complication (Chepelev et al., 2012; 
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Sanyal et al., 2012).  The ability to act over such distances also requires regulation to 

prevent aberrant activation from enhancers.  Insulators serve as barriers to activation, thus 

helping to maintain the fidelity of activation (Krivega and Dean, 2012). 

 

MECHANISMS OF LONG-DISTANCE ACTIVATION 

 

 While many types of experiments have established that enhancers can activate 

transcription over distances as far as 1 Mb, the intriguing question is how this activation 

occurs.  There are three prevailing models  (Fig. 1-1) for how long-distance activation is 

mediated: linking, scanning (also called tracking), and looping (Blackwood and 

Kadonaga, 1998; Bulger and Groudine, 1999; Marsman and Horsfield, 2012).  In recent 

years, looping has become the favored model and has been shown to occur at many 

enhancers (Lenhard et al., 2012; Marsman and Horsfield, 2012).  However the majority 

of enhancers have not been examined.  It remains unknown if the same mechanism of 

activation occurs for every enhancer or if long-distance activation is enhancer specific 

and context dependent. 
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Figure 1-1. Models for long-distance transcription activation.  A.  The linking model.  A 

chain of proteins is formed along the DNA from the enhancer to the core promoter upon 

activation.  These proteins transduce the activation signal from the enhancer to the 

promoter.  Purple circles represent activators, green circles represent the proteins that 

bind and transduce signal, red oval represents RNA polymerase II, and teal ovals 

represent general transcription factors.  B.   The scanning model.  RNA polymerase is 

recruited to the enhancer, from which point it scans along the DNA to the core promoter.  

Purple circles represent activators, red oval represents RNA polymerase II, and teal ovals 

represent general transcription factors.  C.  The looping model.  The enhancer and core 

promoter are brought into close proximity by looping out the intervening DNA.  Purple 

circles represent activators, red oval represents RNA polymerase II, and teal ovals 

represent general transcription factors.    
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Figure 1-1. (Continued)  
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Linking 

  

 In the linking model of transcription activation, activation is mediated by the 

binding of proteins along the region between the enhancer and promoter.  Upon 

activation the activator binds the enhancer.  By this model, binding of the activator 

nucleates the formation of a chain of proteins along the chromatin to the transcription 

start site.  These bound proteins serve to propagate the signal from the activators bound to 

the general transcription machinery at the core promoter.  The core promoter would then 

act as a boundary to prevent further spreading of the signal (Bulger and Groudine, 1999). 

The linking model was proposed as a mechanism to explain activation at the human β-

globin LCR; however there is no experimental evidence to support the linking model.  

  

Scanning 

  

 The scanning model of activation involves linear tracking of the transcription 

machinery along the DNA from enhancer to core promoter.  The strongest evidence for 

the scanning model come from experiments with the bacteriophage T4 late genes 

(Herendeen et al., 1992).  Activation of the 40 T4 late genes requires three DNA 

polymerase accessory proteins.  These proteins recognize an enhancer that can function 

to activate transcription thousands of bp away.  This study used an in vitro transcription 

system to distinguish between activation by looping or scanning.  In this system, binding 

sites for a mutant form of EcoRI, Eco RI Gln-111, were introduced on a plasmid between 

the enhancer and the promoter.  This protein binds without cleaving the DNA.  If tracking 
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is occurring, the binding of Eco RI Gln-111 will prevent activation by preventing the 

progression of the transcription machinery along the template.  However, if looping is 

occurring, Eco RI Gln-111 binding should not impede the transcription machinery.  The 

investigators found that binding of Eco RI Gln-111 does indeed prevent activation, thus 

supporting the scanning model. 

 

  Additional support for the scanning model comes from studies of UAS function in 

S. cerevisiae.  Using a similar experimental approach to the Herendeen study, LexA 

binding sites were introduced between the GAL1 UAS and promoter.  Expression of 

LexA caused a six-fold loss of Gal4-dependent activation, suggesting that LexA acts to 

block progression of the transcription machinery (Brent and Ptashne, 1984).  Insertion of 

a CYC1 or ADH1 terminator also caused reduced levels of activation, the ADH1 

terminator displayed the strongest effect with a 100-fold loss of activation, while the 

CYC1 terminator displayed a 6-fold loss, similar to LexA binding.  

 

Looping 

 

 The favored model for long-distance activation in metazoans is the looping 

mechanism, in which the enhancer is brought close to the core promoter via the formation 

of protein-mediated chromatin loops. These loops are detectable using chromosome 

conformation capture (3C) (Dekker et al., 2002) and have been observed for multiple loci 

in organisms such as Drosophila, mouse, and human cells.  The first detection of long-

distance interactions by 3C was of the murine β-globin LCR, where the DNase I 
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hypersensitive sites are located 40-60 kb from the genes activated (Tolhuis et al., 2002).  

These chromatin loops only form when the gene is active.  Adaptations to 3C technology 

have allowed for increased identification of long-range enhancer promoter-interactions.  

One such modification identified 6,520 long-distance interactions between 2,067 putative 

enhancers and 1,619 target promoters in CDK+ T cells (Chepelev et al., 2012).  These 

results also suggested that 25% of promoters interact with two or more enhancers. 

  

 A limited number of studies have focused on the role of DNA looping mediating 

long-distance interactions in yeast, using artificial constructs.  Formation of a DNA loop 

via LexA binding sites positioned 5’ and 3’ of SNR6 allows activation of the gene by a 

downstream GAL1 UAS (Petrascheck et al., 2005).  Similarly, when linked to the 

telomere, URA3 can be activated by a GAL1 UAS 1.4 kb downstream, via the formation 

of telomere loops (de Bruin et al., 2001).  Although these systems both show that in yeast 

long-distance activation can occur by looping, looping has not been shown to mediate 

transcription activation at any wild-type yeast promoters. 

 

 Several factors have been identified that are involved in the formation of 

chromatin loops in metazoans. Some of these factors are cell-type specific, such as the 

erythroid specific EKLF, required for loop formation at the β-globin locus (Drissen et al., 

2004).  Two general factors that are involved in loop formation are CCCTC-binding 

factor (CTCF) and the Cohesin complex.  CTCF brings specific enhancers into contact 

with promoters, for example at the β-globin locus (Splinter et al., 2006).  Cohesin, which 

has another known role in sister chromatid-cohesion during mitosis, also functions to 



! 19!

promote loop formation (Hadjur et al., 2009; Mishiro et al., 2009).  CTCF and Cohesin 

cooperate to form loops at some loci, but also act independently of one another (Ross-

Innes et al., 2011; Rubio et al., 2008).  In embryonic stem cells, Mediator and Cohesin 

interact to promote formation of chromatin loops (Kagey et al., 2010).  Transcription 

factors can also act to prevent loop formation, providing an additional layer of gene 

regulation.  One example of this is OCT4, which prevents Cohesin binding at the HoxA 

locus (Kim et al., 2011). 

 

 The formation of chromatin loops to mediate long-distance interactions is well 

established, yet it is unknown how these loops form between the correct enhancer/gene 

pairings.  By one model, the facilitated tracking model, activators bind to the enhancer 

and recruit the transcription machinery (Blackwood and Kadonaga, 1998).  The 

transcription machinery then scans along the DNA until the promoter is found, at which 

point a stable DNA loop is formed. At the human β-globin LCR, the RNA polymerase II 

complex assembles at the HS2 enhancer and transcribes a series of short poly-adenylated 

RNAs across the 10kb between the enhancer and ε-globin gene (Zhu et al., 2007).  3C 

analysis demonstrates a loop forms between the enhancer and ε-globin, suggesting the 

loop may be formed after scanning has occurred.  This study suggests some overlap 

between the scanning model and looping model of activation; the extent of this overlap 

remains to be seen.  Wang et al. also observe looping and tracking at the human androgen 

receptor and propose a combined looping and tracking mechanism, in which polymerase 

continues to track along the DNA after the loop is formed (Wang et al., 2005). 

 



! 20!

ACTIVATION DISTANCE IN YEAST 

  

Early studies of UASs revealed that the ability to activate is dependent on the 

distance between the UAS and the transcription start site (Guarente and Hoar, 1984; 

Struhl, 1984).  Based on these results, a former graduate student in the Winston lab, 

Krista Dobi, constructed a series of reporters within a nonessential, long open reading 

frame, BPH1, that placed the GAL1 UAS varying distances 5’ of the TATA box of the 

HIS3 gene.  When the UAS was placed as far as 574 bp from the TATA box, activation 

occurred in inducing conditions (the presence of galactose), indicated by a His+ 

phenotype.  However, when the UAS was 799 bp from the TATA box, activation did not 

occur in galactose, as seen by a His- phenotype (Dobi and Winston, 2007).  These 

reporters were used to perform genetic studies on how activation distance is controlled in 

yeast.   

 

Using several screening and selection methods, mutants were identified that 

activation of the reporter at the normally non-permissive distance of 799 bp.  Mutants 

that allow transcriptional activation at a distance are referred to as having a long-distance 

activation (Lda-) phenotype.  Mutations in SIN4, RGR1, SPT2, SPT10, and HTA1-HTB1 

were demonstrated to cause an Lda- phenotype.  All of the factors identified have known 

roles in transcription regulation or chromatin structure.  Of these mutations, sin4Δ caused 

the strongest Lda- phenotype at 799 bp.  Furthermore, weak activation was observed in a 

sin4Δ mutant at a distance as great as 1995 bp. 
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The Lda- phenotype of sin4Δ and spt2Δ mutants was tested by Northern analysis.  

Interestingly, these strains were shown to have two HIS3 transcripts: a transcript that 

initiates adjacent to the UAS (long transcript), regardless of the position of the UAS, and 

a transcript the size of wild-type HIS3 (short transcript).  The 799 bp reporter strain in a 

wild-type produces only the long transcript, suggesting that it is nonfunctional for HIS3 

expression.  The level of short transcript in sin4Δ and spt2Δ correlated with strength of 

Lda- phenotype.  Using 5’-RACE, the transcripts in both the wild-type and sin4Δ strains 

were mapped.  Both strains contained transcripts initiating in the spacer region between 

the UAS and HIS3 open reading frame.  Only the sin4Δ strain shows a HIS3 transcript 

that initiates downstream of the TATA box. 

 

 Attempts were made to determine the mechanism by which long-distance 

activation occurs in a sin4Δ mutant.  The two proposed mechanisms of long-distance 

activation are scanning and looping.  To test the scanning model of activation, an ADH1 

terminator was inserted into the reporter region, between the UAS and the HIS3 ORF.  If 

activation is occurring in the sin4Δ mutant through scanning of the region between the 

UAS and HIS3, the sin4Δ ADH1 terminator strain should not display activation of the 

reporter.  The sin4Δ ADH1 terminator strain displays the Lda- phenotype, which suggests 

long-distance activation is not occurring by scanning.  To test the looping model of 

activation, 3C experiments were performed on the reporter for wild-type and sin4Δ 

strains.  The results of the 3C experiments were inconclusive.  Together, these 

experiments suggest long-distance activation of the reporter does not occur by the 

scanning mechanism, but there is no conclusive evidence for looping. 
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In an effort to identify additional regulators of activation distance, a mutation was 

identified that enhanced the long-distance activation phenotype of the sin4Δ mutant 

(Leeman and Winston, unpublished).  The mutation was identified as resistant to 1 mM 

3-aminotriazole (3-AT).  3-AT is a competitive inhibitor of the HIS3 gene product; 

increases in HIS3 expression correspond to increased 3-AT resistance.  The enhancer 

mutation and sin4Δ together result in higher HIS3 levels and therefore the double mutant 

has a stronger Lda- phenotype than a sin4Δ mutant alone.  Interestingly, the enhancer 

single mutant does not have an Lda- phenotype.  The isolation of the enhancer mutation 

demonstrated the existence of other factors that work with Sin4 to regulate activation 

distance. 

 

These experiments resulted in the identification of mutations in SIN4, RGR1, 

HTA1-HTB1, SPT2, and SPT10 that allowed long-distance activation of a reporter. The 

mechanism by which these changes to these factors allow long-distance remains 

unknown.  Isolation of the enhancer suggests the existence of other factors that are 

involved in regulating activation distance.  Additionally, the stronger Lda- phenotype of 

the enhancer sin4Δ double mutant suggests that only studying single mutants limits the 

strength of phenotype of the mutants isolated.  To isolate additional mutants with stronger 

long-distance activation phenotypes, we decided to study transcription activation distance 

by isolating polygenic mutants.   
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COMPLEX TRAITS  

 

 Classical genetic studies in model organisms usually focus on single mutations in 

order to facilitate gene identification and subsequent studies.  However many phenotypes 

in nature are the result of the combined effects of mutations in many genes (Glazier et al., 

2002; McCarthy et al., 2008; Womack et al., 2012).  A phenotype caused by multiple 

mutations is referred to as a complex trait.  Many human diseases that have a genetic 

basis, including Type 2 diabetes, schizophrenia, and hypertension, are complex.  

Genome-wide association studies (GWAS) are focused on determining the causes of 

complex diseases (Glazier et al., 2002; McCarthy et al., 2008).  There are two major 

challenges faced in performing GWAS analysis.  The first is generating large enough data 

sets to identify all loci involved.  The second challenge is, once a region has been 

identified as being associated with a trait, determining the causative single nucleotide 

polymorphisms (SNPs) within the region (McCarthy et al., 2008).  These challenges are 

far less daunting in yeast.  First, the short generation time of yeast allows for the 

generation of large numbers of progeny, and therefore large data sets. Second, the genetic 

tools available in yeast allow alleles to be tested for causality.  These characteristics have 

made yeast an ideal organism for understanding the mechanisms behind natural genetic 

variation.  

  

S. cerevisiae strains found in nature display a broad range of phenotypic variance, 

much of which is complex (Liti and Louis, 2012; Swinnen et al., 2012).  These 

phenotypes that vary in degree are quantitative traits; regions of DNA that are linked to 
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the genes causing the phenotype are quantitative trait loci (QTLs).   Studies of QTLs in 

yeast have been influential in development of strategies to study quantitative traits.  They 

have established techniques for identification of QTLs, for mapping of the SNPs within 

the QTL, and for establishing SNPs as causative (Liti and Louis, 2012; Swinnen et al., 

2012). 

 

 A significant amount of knowledge of quantitative traits has come from the 

generation of hybrid strains and the analysis of progeny; two landmark studies in yeast 

quantitative trait genetics were performed using this strategy.  In 2002, the Kruglyak lab 

performed microarrays on segregants derived from a cross of the distantly related BY and 

RM S. cerevisiae strains.  Measuring global changes in expression between segregants 

allowed for analysis of quantitative traits throughout the genome (Brem et al., 2002).  

Analysis of the microarrays revealed a subset of transcripts that show a much wider range 

of expression changes than observed for either parent.  Computational analysis of the 

expression changes suggests that at least 50% of transcripts are affected by at least five 

QTLs (Brem and Kruglyak, 2005).  A concurrent study analyzed the segregants derived 

from a cross of the YJM145 and S288c strains.  This study looked specifically at QTLs 

associated with high temperature growth.  Sequence analysis of the QTLs led to the 

identification of three SNPs associated with high temperature growth (Steinmetz et al., 

2002). 

 

 Analysis of hybrid strains has since led to the identification of QTLs, and in some 

cases causative SNPs, for a number of yeast quantitative traits.  Several studies have 
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identified SNPs associated with sporulation efficiency by the analysis of hybrids of high 

sporulating and low sporulating strains (Ben-Ari et al., 2006; Deutschbauer and Davis, 

2005; Gerke et al., 2006).  Similar analyses have been performed to study QTLs between 

more diverged S. cerevisiae strains (Cubillos et al., 2011) as well as between S. cerevisiae 

and S. paradoxus, a closely related Saccharomyces species, (Liti et al., 2009). 

 

 The study of quantitative traits has also been useful in understanding aspects of 

yeast biology.  In some studies, in-lab evolution experiments have been performed to 

select for a desired trait.  The evolved strains can then be used to identify the causative 

mutations conferring the selected trait.  Romano et al. used in-lab evolution to select for 

mutants able to grow on media with varying pH.  These strains were used to identify 

mutations that conferred ability to grow at high pH (Romano et al., 2010).  Mutations 

were established as causative through allele replacement or reciprocal hemizygosity, a 

method that tests the affect of each allele in the hybrid diploid background.  Recently, a 

yeast in-lab evolution experiment was performed to study the evolution of multi-

cellularity in unicellular organisms (Koschwanez et al., 2013).  Interestingly, the evolved 

strains had accumulated different sets of mutations.   

 

The study of a complex trait in yeast requires a method for determining the 

mutations that cause the phenotype of interest.  The mutation rate of yeast is 

approximately 5x10-10 mutations per base pair per generation (Lang and Murray, 2008) 

which means culturing of yeast strains results in the accumulation of mutations.  Simply 

sequencing a single yeast strain would not distinguish between mutations accumulated 
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through passaging of the strain and mutations causing the phenotype of interest.  A 

technique that has been used successfully to determine causative mutations is bulk 

segregant analysis (Brauer et al., 2006; Ehrenreich et al., 2009).  By this technique, a 

large numbers of mutant and wild-type isolates, generated through a back-cross, are 

analyzed.  This analysis allows for distinguishing between causative and non-causative 

mutations.   Candidate causative mutations can then be verified by allele replacement or 

reciprocal hemizygosity analysis.   

 

OVERVIEW OF DISSERTATION 

 

 Previous studies have shown that transcriptional activation distance is regulated in 

yeast (Dobi and Winston, 2007; Guarente and Hoar, 1984; Struhl, 1984).  The most 

systematic of these studies(Dobi and Winston, 2007)identified several factors that 

constrain activation distance.  However, additional results (Leeman and Winston, 

unpublished) suggested that additional factors contribute to this regulation and would 

only be identified by the isolation of complex, or polygenic mutants.  That is the focus of 

this dissertation.   

 

 In Chapter 2, I describe the isolation of polygenic mutants that allow strong 

transcriptional activation over a distance that is normally too great for any activation.  To 

isolate the mutants, we constructed a reporter system adapted from Dobi and Winston, 

(2007).  In the revised system, we constructed two reporters on different chromosomes, 

both with the GAL1 UAS approximately 800 bp upstream of the TATA box.  At one, the 
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reporter gene is HIS3 and at the other the reporter gene is URA3.  Beginning with strains 

with both reporters and a sin4Δ mutation, new mutations were selected using 3-

aminotriazole (3-AT), a competitive inhibitor of the HIS3 gene product.  We then 

screened all mutants for increased HIS3 and URA3 expression by Northern analysis.  By 

iteratively selecting for resistance to increased levels of 3-AT, we successfully isolated 

three lineages of strains, all showing a greatly increased Lda- phenotype compared to the 

sin4Δ parent.  Two of the final strains are genetically related and the third strain is 

unrelated.  Then by bulk segregant analysis followed by allele replacement tests, several 

mutations were demonstrated to be causative.  Interestingly, all three strains differ in their 

causative mutations and the unrelated lineages contain completely different sets of 

mutations, with the exception of the starting mutation sin4Δ.  Reconstruction experiments 

for each strain can account for some (in two cases) or all (in one case) of the Lda- 

phenotypes.   

 

 In Chapter 3, I describe additional analysis of the mutations isolated and 

identified in Chapter 2.  We first constructed combinations of mutations and found 

mutations isolated in different lineages in combination could give increased Lda- 

phenotypes to varying degrees.  Then, we constructed polygenic mutants strains with 

reporter distances of 1397 bp and 2027 bp.  We found that the polygenic mutants are able 

to activate transcription of the longer distance reporters more strongly than the sin4Δ 

single mutant. Next, we performed microarray analysis on a wild-type strain, our three 

original mutant isolates, and two reconstructed strains to investigate the overall 

transcriptional changes in the mutants.  We saw a significant overlap in genes with a two-
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fold expression change between all three original mutant isolates, as well as a significant 

overlap between the genes changed in the original mutant and the reconstructed strain. 

We then looked for potential regions of long-distance activation by analyzing tandem 

adjacent gene pairs showing an increased expression at both genes, all strains analyzed 

displayed a greater number of upregulated pairs than expected by chance.  Finally, we 

identified a site of long-distance activation outside of the reporter in the mutant strains. 

  

 Taken together, the results presented in this study provide an increased 

understanding of activation distance regulation in yeast.  By taking an alternate genetic 

approach, we were able to identify additional factors involved in the regulation of 

activation distance.  These mutants show an altered transcriptional profile and may allow 

long-distance activation at non-reporter regions of the genome.  Although the mechanism 

by which long-distance activation occurs remains elusive, we are still pursuing the idea 

that chromatin loops are formed between the UAS and transcription start site in the 

mutants.  
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Abstract 
 
 
 Most fundamental aspects of transcription initiation are conserved from yeast to 

humans; however a striking difference between transcription in yeast and metazoans is 

the distance over which transcription activation occurs. Relocation of the UAS too far 5’ 

of the transcription start site results in loss of transcription, indicating that in yeast 

activation distance is regulated.  Mutations in SIN4, RGR1, HTA1-HTB1, SPT2, and 

SPT10 have been identified as allowing long-distance activation in yeast, although this 

activation was weak. We have studied long-distance activation as a polygenic trait, 

isolating three strains with multiple mutations that together confer a strong phenotype.  

To do this, we constructed strains containing two reporters, HIS3 and URA3.  For each 

reporter, the GAL1 UAS was placed approximately 800 bp upstream of the transcription 

start sites. We have identified mutations in MOT3, GRR1, MIT1, PTR3, YOR019W, and 

MSN2 that contribute to the long-distance activation phenotype.  Additionally, we 

isolated two strains disomic for chromosome III, the site of the reporter containing HIS3.             
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Introduction 

 

 Among eukaryotes, much of the transcriptional machinery is conserved; however, 

the distance over which transcriptional regulation occurs differs between yeasts and 

metazoans.  In S. cerevisiae, where the genome is compact, the UAS is generally found 

within 600 bp 5’ of the transcription start site (Xue et al., 2004).  In contrast, metazoan 

enhancers can be spaced over a range from less than 1 kb to as far as 1 Mb from the start 

site and can be found upstream or downstream of the start site.  Previous studies on 

transcription activation distance in yeast revealed that relocation of a UAS too far 5’ of 

the transcription start reduces or abolishes initiation (Dobi and Winston, 2007; Guarente 

and Hoar, 1984; Struhl, 1984).  This suggests yeast has some mechanism for regulating 

the distance over which a UAS can activate transcription.  Without regulation of 

activation distance, UASs could aberrantly activate neighboring genes.   

 

 A previous study took a genetic approach to identify factors that control 

activation distance in yeast (Dobi and Winston, 2007).  In this study, a series of reporters 

were constructed within a nonessential, long open reading frame, BPH1, that placed the 

GAL1 UAS varying distances 5’ of the TATA box of the HIS3 gene.  When the UAS was 

placed as far as 574 bp from the TATA box, activation occurred under inducing 

conditions (the presence of galactose), indicated by a His+ phenotype.  However, when 

the UAS was placed 799 bp from the TATA box, activation did not occur in galactose, as 

seen by a His- phenotype.  Using a strain with this reporter, mutations were identified in 

HTA1-HTB1, SPT2, SPT10, RGR1, and SIN4 that allowed long-distance activation, albeit 
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only at a modest level (Dobi and Winston, 2007  and Dobi and Leeman, unpublished).  

Mutations that allow activation of the reporter are designated as having the long-distance 

activation (Lda-) phenotype.  

 

Attempts to isolate stronger mutants resulted in the isolation of strains containing 

more than one mutation contributing to the phenotype.  First, a mutation was identified 

that enhances the Lda- phenotype of a sin4Δ mutation (Leeman and Winston, 

unpublished).  Second, in an attempt to identify additional factors involved in the 

regulation of activation distance, mutations were selected that allow activation of the 

CUP1 UAS over a normally non-permissive distance.  This selection yielded multiple 

strains containing two mutations that both contribute to the Lda- phenotype.  These results 

suggest that additional factors involved in regulating activation distance may be 

identified by studying strains containing multiple mutations that contribute to the Lda- 

phenotype.   

 

S. cerevisiae has been established as an ideal organism to study complex traits.  

The short generation time allows for the isolation of large numbers of progeny for 

analysis.  This, combined with the genetic tractability of yeast, makes it feasible to 

identify the causative alleles for a given phenotype.  Complex traits that occur as natural 

variants have been studied in S. cerevisiae, including meiosis, oxidative stress response, 

and high temperature growth (Ben-Ari et al., 2006; Deutschbauer and Davis, 2005; Gerke 

et al., 2006; Sinha et al., 2006; Witten et al., 2007).  Experimental evolution experiments 

have successfully produced polygenic mutants by selecting for a specific trait.  In one 
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such study, they selected for strains resistant to varying pH levels and were able to 

identify genes involved in alkali stress (Romano et al., 2010).  In a more recent study, ten 

strains were selected that were able to grow at low levels of sucrose (Koschwanez et al., 

2013).  Interestingly, some of the identified causative mutations appeared in more than 

one of the ten evolved strains. 

 

The research presented in this chapter focuses on the isolation of three polygenic 

mutants that each show an increased Lda- phenotype compared to the strongest single 

mutants.  We identified candidate causative mutations using bulk segregant analysis and 

confirmed mutations as causative by allele replacement.  Our results show that the 

causative mutations differ between unrelated lineages.  For one of our strains, we have 

been able to reconstruct the phenotype from the identified causative mutations.  For the 

other two, the missing heritability not found by bulk segregant analysis is likely 

explained by a duplication of the reporter.  While the majority of the mutations identified 

contribute to the Lda- phenotype through loss of function, two are caused by altered 

function.  Taken together, this study has identified additional factors that are involved in 

the regulation of transcriptional activation distance and demonstrated the feasibility of 

polygenic mutant analysis to understand a fundamental aspect of gene expression. 

!
!
!
!
!
!
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Materials and Methods 

 

S. cerevisiae strains 

 

 The S. cerevisiae strains used in this study (Table 2-1, 2-2) are isogenic with a 

GAL2+ derivative of S288C (Winston et al., 1995).  In the course of the study, we isolated 

a number of strains by mutagenesis.  The two strain tables distinguish between strains 

that did not go through the selection process (Table 2-1) and the mutant strains and their 

derivatives (Table 2-2).  Rich (YPD) and synthetic complete (SC) dropout media were 

prepared as previously described (Rose et al., 1990).  SC Gal and SC-His Gal media 

contained 2% galactose as the carbon source.  YP Raffinose contained 2% raffinose as 

the carbon source.  Specified concentrations of 3-aminotriazole were added to SC-His 

Gal medium.  Strains were constructed by standard methods, either through crosses or 

transformation (Ausubel et al., 1991). 

 

 The strains with dual reporters that were used to select mutants allowing long-

distance activation were derived from previously described strains (Dobi and Winston, 

2007) by standard procedures.  The dual reporter strains contained the bph1::kanMX-

UASGAL1799-HIS3 and ybr281c::TRP1-UASGAL1806-URA3 reporters and sin4Δ0::LEU2.  

To construct the URA3 reporter, the HIS3 open reading frame (ORF) was replaced with 

the URA3 ORF using the oligos in Table 2-3.  Both reporters contain the HIS3 TATA 

element, transcription start sites, and transcription termination sequence.  These reporter 

strains were used in the selection of mutants. 
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Allele replacements, either to correct a mutant allele to wild-type or the reverse, 

were done by a two-step transformations method, using strains in which the URA3 ORF 

was deleted from the ybr281c reporter.  Allele replacements to correct mutant alleles to 

wild-type were made in strains CR101, CR109, and CR110.  Mutant reconstructions to 

replace wild-type alleles with mutations were done in sin4�0::LEU2 strains.  The first 

step in each case was the integration of URA3 at the relevant site, using the oligos listed 

in Table 2-3.  DNA containing URA3 were made by PCR using pRS406 as template 

DNA.  For replacement of URA3 by wild-type alleles, PCR fragments approximately 500 

bp in length were synthesized using DNA from strain CR70, the wild-type parental strain, 

as template.  PCR fragments were used to transform the URA3 transformants to 5-FOA 

resistance.  For replacement of URA3 by mutant alleles, PCR fragments approximately 

500 bp in length were amplified off CR98 (mot3 and sgm1), CR91 (mit1, ptr3, and 

yor019w), or CR92 (msn2) genomic DNA as template.  CR194, the grr1 sin4Δ0 

reconstruction strain was made by transformation of a 100 bp PCR fragment made with 

overlapping oligos.  Correct alleles were all verified by Sanger sequencing. 

 

 Construction of complete deletions of the MOT3, GRR1, MIT1, PTR3, and MSN2 

ORFs were constructed by replacement with URA3, using pRS406 as template DNA to 

generate PCR fragments with URA3.  CR101 was transformed with mot3Δ100::URA3 

and grr1Δ0::URA3.  CR109 was transformed with mit1Δ0::URA3 and ptr3Δ0::URA3.  

CR110 was transformed with msn2Δ0::URA3.  All strains were verified by PCR.  

!
!
!
!
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Table 2-1.  Strains used in this study not subjected to selection 
 
Strain Lineage Alias Genotype 
FY76  MATa lys2-128� 
CR70 2.0 MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mkc7-1307 

CR71 1.0 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806-URA3-natMX 

CR74  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
bph1Δ::kanMX-UASGAL1799 ybr281c Δ::TRP1-UASGAL1806-
URA3-natMX 

CR111  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mkc7-1307 

CR113  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 

CR169  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 mot3- 1162 

CR194  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 grr1-531 

CR204  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 

CR214  MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-
UASGAL1799 ybr281c Δ::TRP1-UASGAL1806 

CR217  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 mit1-560 ptr3-1088 mkc7-1307 
yor019w-1659 

CR218  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 msn2-1956 ptr3-1088 mkc7-1307 
yor019w-1659 

CR219  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
bph1Δ::kanMX-UASGAL1799 ybr281cΔ::TRP1-UASGAL1806 
mot3-1162 grr1-531 

 
!
!
!
 



! 47!

Table 2-2.  Selected strains and their derivatives used in this study 
 
Strain Lineage Alias Genotype 
CR76 2.1 MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mkc7-1307 yor019w-
1659 

CR79 1.1 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806-URA3-natMX grr1-531 

CR82 2.2 MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX ptr3-1088 mkc7-1307 
yor019w-1659 

CR91 2.3a MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mit1-560 ptr3-1088 
mkc7-1307 yor019w-1659 

CR92 2.3b MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mkc7-1307 

CR98 1.2 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806-URA3-natMX mot3-1162 
grr1-531 sgm1-1220 rim8-155 tma108-1374 sgf73-251 

CR101 1.2 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 sgm1-
1220 rim8-155 tma108-1374 sgf73-251 

CR109 2.3a MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 mit1-560 ptr3-1088 mkc7-1307 
yor019w-1659 

CR110 2.3b MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 msn2-1956 ptr3-1088 mkc7-1307 
yor019w-1659 

CR171  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mit1-560 PTR3 mkc7-1307 
yor019w-1659 

CR198  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806-URA3-natMX mit1-560 ptr3-
1088 mkc7-1307 YOR019W 
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Table 2-2. (Continued) 
 
CR200  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 GRR1 sgm1-1220 
rim8-155 tma108-1374 

CR201  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 MOT3 grr1-531 sgm1-1220 
rim8-155 tma108-1374 

CR202  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 SGM1 
rim8-155 tma108-1374 

CR221  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 MIT1 ptr3-1088 mkc7-
1307yor019w-1659 

CR224  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 MSN2 ptr3-1088 mkc7-1307 
yor019w-1659 

CR225  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3Δ::URA3 grr1-531 
SGM1 rim8-155 tma108-1374 

CR227  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1Δ::URA3 
SGM1 rim8-155 tma108-1374 

CR230  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mit1Δ::URA3 ptr3-1088 
mkc7-1307yor019w-1659 

CR231  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mit1-560 ptr3Δ::URA3 mkc7-
1307 yor019w-1659 

CR233  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 msn2Δ::URA3 ptr3-1088 
mkc7-1307yor019w-1659 

 
!
!
!
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Table 2-3.  Oligonucleotides used in this study 
 
Oligo Purpose Sequence (5’-3’) 
CRO168 Replace HIS3 ORF 

with URA3 ORF in 
YBR281c reporter 
 

TATACTAAAAAATGAGCAGGCAAGATAAAC
GAAGGCAAAGATGTCGAAAGCTACATATAA 

CRO169 Replace HIS3 ORF 
with URA3 ORF at 
YBR281c reporter 
 

TATATATATCGTATGCTGCAGCTTTAAATAA
TCGGTGTCATTAGTTTTGCTGGCCGCATC 
 

FO201 Northern probe of 
HIS3 
 

TGAGCAGGCAAGATAAAC 

FO609 Northern probe of 
HIS3 
 

GCCTCATCCAAAGGCGC 

FO481 Northern probe of 
URA3 
 

CCATGGAGGGCACAGTTAAGCCGC 

F0483 Northern probe of 
URA3 
 

CCCTTCCCTTTGCAAATAGTCCTC 

FO1324 Northern probe of 
SNR190 
 

GGCCCTGATGATAATG 

FO1325 Northern probe of 
SNR190 
 

GGCTCAGATCTGCATG 

FO3662 Delete URA3 from 
ybr281c reporter 
 

GTTGGTTGGGTGACCCAACAAATCAT 

FO3663 Delete URA3 from 
ybr281c reporter 
 

CTATTGAATACTTTAGACAAAATCTCA 

CRO388 Integrate URA3 at 
site of mot3 mutation 
 

TCGCAACAAAGACATTTTCTATGCCCTTGGT
GCTTAAGCAAGATTGTACTGAGAGTGCAC 

CRO389 Integrate URA3 at 
site of mot3 mutation 
 

AATTGTTGTAGTTAAAGATGATGTTGTTTTTC
TTGAGTTCCTGTGCGGTATTTCACACCG 

CRO232 Replace URA3 with 
mot3 allele 
 

ACGACAGCACCTAACCATCC 
 

CRO233 Replace URA3 with 
mot3 allele 

TCTTCATTTTCGGGAGCTGT 
 



! 50!

Table 2-3.  (Continued) 
 
CRO226 Integrate URA3 at 

site of grr1 mutation 
 

AAAAAAATCCAAGAGTTTCTGGTTGTTATAG
AGAAACGTAAGATTGTACTGAGAGTGCAC 

CRO227 Integrate URA3 at 
site of grr1 mutation 
 

TTTAAGGTTGTCTAGCTCAATTTCGTTCAGTA
TTTTTTTTCTGTGCGGTATTTCACACCG 

CRO228 Replace URA3 with 
WT GRR1 allele 
 

CGCTGAACGGGATTGACATA 

CRO229 Replace URA3 with 
WT GRR1 allele 
 

GCTTGGAATGGCAGTATGCA 
 

CRO300 Replace URA3 with 
grr1 mutation 
 

AATAGTGGGCAAAAAAATCCAAGAGTTTCT
GGTTGTTATAGAGAAACGTAAAAAAAAATA 

CRO301 Replace URA3 with 
grr1 mutation 
 

CTCCTTTAGTTTAAGGTTGTCTAGCTCAATTT
CGTTCAGTATTTTTTTTTACGTTTCTCT 

CRO220 Replace URA3 with 
mit1 allele 
 

GTACTGATTCCGCCGTCATT 

CRO221 Replace URA3 with 
mit1 allele 
 

TCAGGGGAGTGGAAGAGTTG 
 

CRO386 Integrate URA3 at 
site of ptr3 mutation 
 

AACTTCAACCAACTAACAGAGCAATCGTCAT
CTTCACTCTAGATTGTACTGAGAGTGCAC 

CRO387 Integrate URA3 at 
site of ptr3 mutation 
 

TATCAAGAAATCATTGGAAAGTTTGCAAAA
ACGTTGGCTCCTGTGCGGTATTTCACACCG 

CRO224 Replace URA3 with 
ptr3 allele 
 

GCACATGATCTGGACGAAGA 
 

CRO225 Replace URA3 with 
ptr3 allele 
 

ATGGGGAATCTCGACACGTA 

CRO352 Integrate URA3 at 
site of yor019w 
mutation 
 

CCAGCTTTAAGAATGCTTTGATAGGCAATGG
GTCGAAAAAAGATTGTACTGAGAGTGCAC 

CRO353 Integrate URA3 at 
site of yor019w 
mutation 
 

CTGAGGAAGAATATGGTATTAAAGATTTTCT
AAACTTTGTCTGTGCGGTATTTCACACCG 
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Table 2-3 (Continued) 
 
CRO318 Replace URA3 with 

yor019w allele 
 

CCCAGCATTCAAGAAGGAAG 

CRO319 Replace URA3 with 
yor019w allele 
 

GCACCGGCACTTTTAACTTT 

CRO408 Integrate URA3 at 
site of msn2 mutation 
 

AAGTGTCGTAATAGAATCAACAAAGGAACT
CGAGGAGAAAAGATTGTACTGAGAGTGCAC 

CRO409 Integrate URA3 at 
site of msn2 mutation 
 

GGTCGTTCGTTAGAGTGAACAGATCTCACAT
GCCTTTTCACTGTGCGGTATTTCACACCG 

CRO406 Replace URA3 with 
msn2 allele 
 

TATCACCATTTCCCACAGCA 
 

CRO407 Replace URA3 with 
msn2 allele 
 

TGACAAGCAAATGGTCGTTC 
 

CRO476 Delete PTR3 with 
URA3 
 

ACACATACATAGGTACGAAATACACAACTG
ATAGGCGTTCAGATTGTACTGAGAGTGCAC 

CRO477 Delete PTR3 with 
URA3 
 

GTATACCAGAACCTTAAACATACGTATATAT
TTAGATGCACTGTGCGGTATTTCACACCG 

FO7014 Delete MSN2 with 
URA3 
 

TTTTTCAACTTTTATTGCTCATAGAAGAACTA
GATCTAAAAGATTGTACTGAGAGTGCAC 

FO7015 Delete MSN2 with 
URA3 
 

TTATGAAGAAAGATCTATCGAATTAAAAAA
ATGGGGTCTACTGTGCGGTATTTCACACCG 

CRO416 Replace kanMX-
GAL1 with URA3 
 

ATTCACAACTTTGGTCAAACGCCTTTACAAA
TATTTCAGGAGATTGTACTGAGAGTGCAC 

CRO417 Replace kanMX-
GAL1 with URA3 
 

AAGATTGTCTTCTCAAATATTGGCTTCATTG
GAACCTTACCTGTGCGGTATTTCACACCG 

FO6826 Check transformation 
of bph1::kanMX-
UASGAL1 
 

TTACCCAGGCGCTGTAAATC 

FO6829 Check transformation 
of bph1::kanMX-
UASGAL1 
 

GGTTACCTGAAACCGAATGC 
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Table 2-3 (Continued) 
 
FO1311 Check transformation 

of bph1::kanMX-
UASGAL1 

TGATTTTGATGACGAGCGTAAT 
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Selection of polygenic mutants 
  

Starting with strains CR70 and CR71, each of which contain sin4Δ, we selected 

for mutants with stronger Lda- phenotypes using the selection scheme outlined in Fig. 2-1.  

For each round of selection, 10 independent cultures of each strain were grown in YPD 

overnight at 30°C.  From each culture, 200 μL of cells were plated onto two SC-His Gal 

3-AT plates, one of which was UV irradiated for two minutes at 5000μJ/cm3.  Plates were 

incubated at 30° and colonies that grew were purified on SC-His Gal 3-AT.  The first 

round of mutants were selected using1 mM 3-AT, the second round using 5 mM 3-AT, 

and the third round using 10 mM 3-AT.  CR76, CR79, CR82, and CR91 were identified 

as spontaneous mutants.  CR92 and CR98 were isolated after UV mutagenesis.  The 3-

AT phenotypes of mutants were verified after purification by dilution spot tests.  Spot 

tests were also used to test whether the His+ phenotype was dependent on galactose.  

Mutants showing stronger 3-AT resistance than the parent strains were then tested for 

HIS3 and URA3 mRNA levels by Northern analysis.  Only those mutants that showed 

increased mRNA levels for both reporters relative to the parent strain were used for 

further selection.   
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Figure 2-1.  Selection of polygenic mutants with an increased Lda- phenotype. 

Two sin4Δ strains, CR70 and CR71, each containing the two diagrammed reporters, were 

used for the first round of selection.  Mutants were selected for increased resistance to 3-

AT.  Northern analysis was used to check for increased reporter expression.  Mutants 

displaying increased expression of both reporters were used for the next round of 

selection.  The process was repeated using greater concentrations of 3-AT. 
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Bulk segregant analysis 

 

  Pools of strains were generated for bulk segregant analysis by backcrossing two 

of the polygenic mutants, CR91 and CR92, to CR71 and backcrossing the third one, 

CR98, to CR70.  For each cross, approximately 300 tetrads were dissected.  The Lda- 

phenotypes of the progeny were tested by replica plating to SC-His Gal media with 0 mM, 

1 mM, 5 mM, and 10 mM 3-AT.  The mutant pools for each cross were composed of 

segregants showing the same 10 mM 3-AT resistance seen in the polygenic mutant parent.  

The wild-type pools for each cross were composed of segregants that showed the 

phenotype of the sin4Δ single mutant, which is sensitivity to 1 mM 3-AT.  Each pool was 

required to contain at least 40 segregants, based on prior bulk segregant analysis studies 

(Brauer et al., 2006; Wenger et al., 2010).  CR98 segregants were all derived from 

complete tetrads. CR91 and CR92 segregants were from a mixture of complete and 

incomplete tetrads.  The mutant and wild-type pools from each backcross contained the 

same number of segregants: 48 segregants (CR91), 42 segregants(CR92), or 45 

segregants (CR98). 

 

Genomic DNA was isolated for each segregant pool to be used for library 

construction.  To do this, a saturated culture of each segregant was grown in YPD to 

saturation at 30°C.  For each pool, 1 ml of each culture was combined, the pooled culture 

was split into 6 fractions, and DNA was extracted from each fraction as previously 

described (Rose et al., 1990).  The 6 fractions of extracted DNA were pooled and 

submitted for library construction. 
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High-throughput sequencing of yeast segregant pools to identify SNP 

 

Genomic DNA was multiplexed using the Illumina TruSeq DNA PCR-Free 

Sample Preparation Kits.  Using PCR-free sample preparation prevents additional 

mutations from being introduced during library amplification.  The resulting libraries 

were run on a single lane of an Illumina HighSeq 2000.  The sequencing resulted in 108-

nucleotide single end reads. We had greater than 80 fold coverage (Table 2-4) for all of 

our pooled libraries, which is greater than the 50-fold coverage we hoped to get (Wenger 

et al., 2010).  The sequence reads, compiled in a FASTQ file, were mapped to the S. 

cerevisiae S288C genome using BWA (Li and Durbin, 2009) producing a SAM 

file.  Using SAMTools (Li et al., 2009), this SAM file was converted to a BAM file, 

which was searched for SNPs using Freebayes (Garrison and Marth, 2012).  Freebayes 

generated a VCF file containing the SNPs.  We then calculated, using a PERL script that 

is available upon request (M. Hickman, unpublished), the frequency of all SNPs in two 

matched pools:  1. segregants with the wild-type phenotype and 2. segregants with the 

Lda- phenotype.  SNPs with a higher frequency in pool 2 were further considered as 

candidate SNPs that might be causative for the Lda- phenotype.  There was no strict 

threshold cutoff, however SNPs were considered candidates if they were present at a 

frequency greater than 50%  in pool 2.  The SNPs were subsequently verified by 

observing their frequency and location in the BAM file containing all of the aligned reads, 

using IGV (Integrated Genome Viewer; James, 2011).  Once the SNPs were confirmed 

by these methods, they were further confirmed to be present in the Lda- parent and absent 

in the wild-type parent. 
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Table 2-4.  Sequencing of segregant pools 
 
 

 
 

Sequencing Pool 

 
Pool 
Size 

 
Number of  

Mapped Reads 

Number of 
Unmapped 

Reads 

 
 

Coverage 
1.2 mutant 
1.2 wild-type 

45 
45 

12,364,877 
12,115,678 

 

294,006 
263,008 

 

85x 
89x 

 
2.3a mutant 
2.3a wild-type 
 

48 
48 

14,174,495 
13,097,764 

 

258,696 
139,359 

 

97x 
101x 

2.3b mutant 
2.3b wild-type 

42 
42 

38,280,078 
11,391,104 

 

216,407 
225,478 

 

260x 
80x 
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Spot tests 

 

 Saturated cultures of indicated strains were grown in YPD at 30°C.  Cultures were 

adjusted to the same concentration by OD600 and serially diluted by 10-fold steps.  

Dilutions were spotted on the indicated media and incubated at 30°C.  Subsets of the 

media tested by spot tests are presented in figures within the chapter.  The 3-AT 

concentrations presented were chosen to best represent each experiment.  

 

Northern analysis 

 

 RNA isolation and Northern hybridization experiments were performed as 

previously described (Ausubel et al., 1991).  As indicated, strains were grown to mid-log 

in YP Raffinose and then shifted to 2% glucose or 2% galactose for one hour. Northern 

hybridization analysis was conducted with probes to the coding regions of HIS3 ( -27 to 

+376, where +1 is the ATG), URA3 (+206 to +727), and SNR190 (+1 to +190), which 

was used as a loading control. 

 

Stability tests 

 

 Three independent overnight cultures of CR91, CR92, and CR98 were grown in 

YPD at 30°C.  Cultures were serially diluted and, for each culture, 100 μL of a 10-5 

dilution was plated onto a YPD plate in duplicate, yielding approximately 100-150 

colonies per plate.  Each YPD plate was replica plated to SC Gal, SC-His Gal, SC-His 
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Gal 1 mM 3-AT, SC-His Gal 5 mM 3-AT, and SC-His Gal 10 mM 3-AT.  The percent 

stability was calculated for each strain on each medium relative to growth on SC Gal. 

 

Strain aliases 

 Throughout Chapters 2 and 3, strains isolated from the mutant selections are 

referred to by strain aliases that indicate their lineage and the round of selection in which 

they arose.  For example, CR91 and CR92, which were isolated independently in the 

third round of selection of lineage 2 are designated strains 2.3a and 2.3b, respectively.  

Multiple strains can have the same alias, as we use this designation for any progeny that 

have the same phenotype.  Alias designations are also used when referring to strains that 

were generated from that background.  For example, a mot3 allele replacement 

experiment, where the mot3 mutant allele is replaced with the MOT3 wild-type allele in 

strain 1.2, the resulting strain is designated 1.2 MOT3+.  Similarly, when MOT3 is deleted 

in strain 1.2, the resulting strain is designated 1.2 mot3Δ. 

 

Results 

 

Selection of polygenic mutants that allow long-distance activation 

 

To select for polygenic mutants, we started with two strains, each containing two 

reporters (Fig. 2-1) and sin4Δ.  We began the selection with sin4Δ because it displays the 

strongest Lda- phenotype of the previously identified mutants and sin4 mutants were the 
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most frequent class of single mutant isolated (Dobi and Winston, 2007).  The use of two 

reporters should reduce the number of cis-acting mutations isolated.   

 

We selected for mutations that strengthened the Lda- phenotype of a sin4Δ mutant 

using multiple rounds of selection for 3-AT resistance, as described in Materials and 

Methods.  This selection scheme resulted in the isolation of three strains showing an 

increased Lda- phenotype (Fig. 2-2).  Two of the three strains, 2.3a and 2.3b, were 

initially part of the same lineage and were only separated for the third and final round of 

selection.  Strain 2.3a was isolated as a spontaneous mutant and strain 2.3b was isolated 

using UV mutagenesis, so we suspected these strains contained different mutations.  The 

third strain, 1.2, was isolated independently of 2.3a and 2.3b.  Additional rounds of 

mutagenesis were attempted for each, but did not yield any strains with increased 

expression at both reporters.  
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Figure 2-2.  Isolation of polygenic mutants.  Starting with sin4Δ strains, two independent 

lineages were isolated that display increased Lda- phenotypes. Two independent 

mutations were isolated at the last step of selection of lineage 2.  This resulted in three 

final strains that were analyzed, 1.2, 2.3a, and 2.3b. Asterisks denote the use of UV 

mutagenesis. 
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We compared 3-AT resistance and reporter mRNA levels between the strains 

isolated at each round of selection.  The strains show an increase in 3-AT resistance with 

each round of mutagenesis, with one exception (Fig. 2-3).  In this one case, strain 1.1 

shows a similar phenotype to its sin4Δ single mutant parent; we originally scored this 

strain as resistant to 1 mM 3-AT and proceeded to the next round of selection.  However, 

a second test showed that it is actually 3-AT sensitive.  Regardless, it still gave rise to 

stronger mutants.  The three final strains are resistant to 10 mM 3-AT, but the growth of 

strain 1.2 is stronger than that of strains 2.3a and 2.3b.  In addition, all the mutants 

require the presence of galactose to grow on media lacking histidine, showing that the 

activation of the reporter is galactose dependent.  Finally, the 3-AT phenotype correlates 

with transcript levels at both reporters, as all three lineages show an increased level of 

HIS3 and URA3 mRNA as the number of mutations increases (Fig. 2-4).  In addition to 

the HIS3 and URA3 transcripts, we also see a long transcript for each probe hybridization.  

Previous 5’-RACE experiments indicate the long transcript initiates proximal to the UAS 

(Dobi and Winston, 2007).   This long transcript is at lower levels in 1.1 and 1.2 than in 

the sin4Δ, although remains  fairly constant in lineage 2 mutants. URA3 mRNA levels 

overall correlated well with HIS3 mRNA levels; however, strain 2.3a shows higher a 

HIS3 mRNA level than strain 2.3b, but the two strains show a similar level of URA3 

mRNA.    
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Figure 2-3.  Lda- phenotypes of lineages.  A.  Growth of strains in lineage 1.  The strains 

are SIN4+ (CR74), 1.0, 1.1, and 1.2.  Ten-fold serial dilutions were made of saturated 

YPD cultures.  The dilutions were spotted to the specified media and incubated for four 

days at 30°.  B.  Growth of strains in lineage 2. The strains are SIN4+ (CR74), 2.0, 2.1, 

2.2, 2.3a, and 2.3b.  Strains were grown and incubated as in panel A. 
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Figure 2-4.  Northern analysis of lineage 1 and lineage 2 strains.  A.  Northern analysis 

of BPH1 and YBR281c reporters in lineage 1.  A Northern blot was hybridized with a 

probe for HIS3 (top panel), URA3 (middle panel), and SNR190 (bottom panel).  Strains 

are as follows: lane 1 (FY76), lanes 2 and 6 (CR74), lanes 3 and 7 (1.0), lanes 4 and 8 

(1.1), and lanes 5 and 9 (1.2).  Strains in lanes 2-5 were shifted from growth in 2% 

raffinose to 2% glucose and strains in lanes 6-9 were shifted to 2% galactose.  B.  

Northern analysis of BPH1 and YBR281C reporters in lineage 2.  A Northern blot was 

hybridized with a probe for HIS3 (top panel) URA3 (middle panel), and SNR190 (bottom 

panel).  Strains are as follows: lane 1 (FY76), lanes 2 and 8 (CR74), lanes 3 and 9 (2.0), 

lanes 4 and 10 (2.1), lanes 5 and 11 (2.2), lanes 6 and 12 (2.3a), and lanes 7 and 13 (2.3b).  

Strains in lanes 2-7 were shifted to 2% glucose and strains in lanes 8-15 were shifted to 

2% galactose.   
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Figure 2-4.  (Continued)  
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Identification of candidate causative mutations by bulk segregant analysis 

 

We used bulk segregant analysis and whole-genome sequencing to identify 

candidate causative mutations (Fig. 2-5), as described in Materials and Methods.  Briefly, 

the final three polygenic mutant strains, 1.2, 2.3a, 2.3b were crossed to sin4Δ, sporulated, 

and approximately 300 tetrads were dissected and analyzed.  The progeny displayed 3-

AT resistance phenotypes ranging from sensitivity to 1 mM 3-AT (seen in the sin4Δ 

single mutant parent) to resistance to 10 mM 3-AT (seen in the polygenic mutant parent) 

(Fig. 2-5).   It is worth noting that mutants grow more quickly when replica plated to 3-

AT (as in Fig. 2-5) than when they are spotted to 3-AT (as in Fig. 2-3).  Resistance to 10 

mM 3-AT was present in 6.8% (1.2), 6.4% (2.3a), 4.1% (2.3b), and of the segregants 

(Table 2-5), frequencies consistent with the polygenic mutants containing five causative 

mutations, including the sin4Δ.  The crosses generated a high frequency of incomplete 

tetrads (Table 2-5), particularly the 2.3a and 2.3b backcrosses.  The number of viable 

progeny in tetrads appeared random.  Due to the lack of complete tetrads, it is difficult to 

access the accuracy of the 3-AT resistance frequencies.  

 

We identified a set of candidate causative mutations for each of the mutant strains 

by two main criteria.  First, mutations were candidates to be causal if the mutant allele 

frequency was greater than 50% of the sequence reads in the mutant pool.  Frequencies of 

50% are consistent with random segregation of mutations.  We set the threshold below 

100%, reasoning the final strains might contain distinct combinations of causative 

mutations that are sufficient to confer the strong mutant phenotype.  By this reasoning,  
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Figure 2-5.  Bulk segregant analysis of mutants.  A. Schematic of identification of 

causative mutations by bulk segregant analysis and whole genome sequencing.  Adapted 

from Koschwanez et al. 2013.  B.  Growth of segregants isolated from the cross of 2.3a x 

2.0.  Each set of four strains is the progeny from a complete tetrad.  The strains at the 

bottom of the plate, 2.3a and 1.0, are the parents for the cross.  Strains were grown on 

YPD, incubated overnight at 30°, and replica plated to the indicated media.  Replica 

plates were incubated for four days at 30°. 
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Table 2-5.  Backcross of 1.2, 2.3a, and 2.3b 
 
  

Segregants with 
strong phenotype 

 
Total number 
of tetrads 

 
Frequency of 
strong phenotype 

Percentage 
complete 
tetrads* 

1.2 66 282 6.8% 61% 

2.3a 59 297 6.4% 45% 

2.3b 42 340 4.1% 38% 

 

*Numbers of viable spores were: 969 (1.2), 920 (2.3a), and 1018 (2.3b) 
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every mutation might not be required in every segregant to produce the strong mutant 

phenotype.  Setting the threshold lower than 100% should also account for any technical 

errors.  Second, we required that the mutant allele be present in the mutant parent strain 

and wild-type allele to be present in the sin4Δ single mutant parent.  Using these  

requirements, we established a list of genes to be tested for causality by allele 

replacement (Table 2-6). 

 

Lineage 1contains mutations in MOT3, GRR1, and SGM1.  Mot3 is a site-specific 

DNA-binding transcription factor that represses ergosterol biosynthetic genes during 

hypoxic and osmotic stress (Grishin et al., 1998; Hongay et al., 2002; Madison et al., 

1998; Martinez-Montanes et al., 2013).  Mot3 is also able to act as a transcription 

activator and contains a prion domain (Abramova et al., 2001; Grishin et al., 1998).  Grr1 

is one of two yeast F-box components of the SCF ubiquitin ligase complex (Li and 

Johnston, 1997).  It is involved in the turnover of the G1 cyclins Cln1, Cln2, and Cln3 

(Barral et al., 1995; Landry et al., 2012).  Grr1 also has an established role in glucose 

transport (Bailey and Woodword, 1984; Conklin et al., 1993; Flick and Johnston, 1991).  

Sgm1 is a protein of unknown function required for wild-type growth on galactose and 

mannose (Entian et al., 1999). 

 

The lineage 2 strains, 2.3a and 2.3b, share mutations in PTR3 and YOR019W, but 

differ in that strain 2.3a contains a mutation in MIT1 and 2.3b contains a mutation in 

MSN2.  Mit1 is a transcription activator necessary for the regulation of haploid invasive  
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Table 2-6.  Candidate causal mutations 

 
*Note: rim8 tma108 and sgf73 were not determined to be non-causative by allele 

replacement, but were eliminated as causative during mutant reconstruction.  This is 

described in more detail in the text.  

 

 

  

 
 
Strain 

 
 
Gene 

 
 

Causative 

Amino 
Acid 

Change 

 
Mutant Reads/ 

Total Reads 

 
 
Protein Function  

1.2 MOT3 Yes N388H 
 

73/74 Transcription factor 
 

GRR1 Yes L181stop 
 

67/79 Ubiquitin ligase 
component 
 

SGM1 No L407S 
 

79/95 Required for growth 
on galactose 
 

SGF73* No P84L 
 

46/69 Component of 
SAGA complex 
 

TMA108* No A458V 42/67 Ribosome 
biogenesis 
 

RIM8* No P52L 
 

46/68 Processes a 
transcription factor 

2.3a 
only 

MIT1 Yes H187R 
 

81/81 Transcription factor 

2.3b 
only 

MSN2 Yes C652stop 
 

252/252 Transcription factor 

Both 
2.3a 
and 
2.3b 

PTR3 Yes S363stop 
 

68/68 (1.3a) 
231/235 (1.3b) 

Nutrient sensing 

YOR019W Yes N553K 48/97 (1.3a) 
62/259 (1.3b) 

Unknown function 
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growth and diploid pseudo-hyphal growth (Cain et al., 2012).  It is conserved among 

yeasts, and in Candida albicans it is a regulator of white-opaque switching, a fungal 

morphological change (Zordan et al., 2006).  Msn2 is a transcription factor involved in 

the response to a range of stresses, including heat shock, osmotic stress, and oxidative 

stress (Martinez-Pastor et al., 1996).  Msn2 has a paralog, Msn4, and the two  

transcription factors are partially redundant (Berry and Gasch, 2008; Martinez-Pastor et 

al., 1996).  Ptr3 is a component of the Ssy1p-Ptr3p-Ssy5p plasma membrane bound 

sensor.  The sensor is involved in signal response to extracellular amino acids (Forsberg 

et al., 2001; Forsberg and Ljungdahl, 2001).  YOR019W encodes a protein of unknown 

function.  

 

Identification of causative mutations in lineage 1 

 

 We identified two causative mutations in strain 1.2 by replacement of the mutant 

allele with the wild-type allele in the mutant strain background.  For causative alleles, we 

expect this change to weaken or abolish the Lda- phenotype.  For both grr1-531 and 

mot3-1162, replacement with the wild-type alleles causes a reduction in 3-AT resistance, 

indicating these mutations are causative (Fig. 2-6).  In contrast, replacement of sgm1-

1220 with the wild-type allele does not alter 3-AT resistance.  This result was surprising 

because sgm1-1220 is present at a similar frequency of reads in the mutant pool as grr1-

531.  SGM1 is linked to GRR1 by a genetic distance of approximately 20 cM.  We expect 

the two mutations to be linked in the mutant pool, however at this genetic distance we 

expect crossovers.  An alternate explanation for the high frequency of sgm1-1220 is the  
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Figure 2-6.  Lineage 1 tests for causality by allele replacement.  Spot tests of strains in 

which the candidate causal allele has been replaced with the wild-type allele. Allele 

replacements were constructed in strain 1.2.  Strains are SIN4+(CR214), sin4� (CR111), 

1.2, 1.2 GRR1+ (CR200),  1.2 MOT3+ (CR201),  and 1.2 SGM1+ (CR202).  Dilutions 

were spotted onto the indicated media and incubated for four days at 30°.   
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mutation confers a growth benefit unrelated to the Lda- phenotype.  Sanger sequencing of 

these three genes revealed that the grr1-531 arose in the first round of selection while 

mot3-1162 and sgm1-1220 arose in the second round. 

 

Reconstruction of lineage 1 mutant strains 

 

As an independent test of the role of each causative mutation in lineage 1, we combined 

them to test whether together they would recapitulate the original phenotypes of 

polygenic mutant 1.2.  For lineage 1, we constructed the sin4Δ mot3-1162 grr1-531 triple 

mutant, as well as all possible double mutants, and analyzed the strains for their Lda- 

phenotypes by growth and Northern analysis.  Significantly, the sin4Δ0 mot3-1162 grr1-

531 triple mutant is resistant to 10 mM 3-AT (Fig. 2-7A) and shows a similar level of 

HIS3 mRNA expression as 1.2 (Fig. 2-7B, compare lanes 3 and 4), suggesting that these 

three causative mutations can account for most or all of the 1.2 mutant phenotype.  We 

note that in the figure, the triple mutant shows slightly less growth than strain 1.2 on 10 

mM 3-AT.  This growth difference is within the variation normally seen for the triple 

mutant. Additionally, we observe slight variation in growth of this mutant on galactose-

containing media.  

 

We eliminated rim8-155, tma108-1374, and sgf73-251 as candidate causative 

mutations based on the ability of the sin4Δ 0 mot3-1162 grr1-531 triple mutant to 

recapitulate the strain 1.2 phenotype.  The sin4Δ0 mot3-1162 tma108 and sin4Δ0 mot3-

1162 sgf73 triple mutants both display the same 3-AT resistance as the  
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Figure 2-7.  Analysis of strains constructed with lineage 1 causative mutations.  

Causative mutations were constructed in a sin4Δ strain.  A.  Growth of reconstructed 

mutant strains.  Strains are: SIN4+ (CR214), sin4Δ (CR111), 1.2 (CR101), sin4Δ mot3 

grr1 (CR204), sin4Δ mot3 (CR169), sin4Δ grr1 (CR194), 2.1 (CR79), and SIN4+ mot3 

grr1 (CR219).  Dilutions were spotted to the indicated media and incubated for four days 

at 30°.  B.  Northern analysis of reconstructed strains.  A Northern blot was hybridized 

with probes for HIS3 (top panel) and SNR190 (bottom panel).  Strains are: lane 1 

(CR214), lane 2 (CR111) lane 3 (1.2) lane 4 (CR204), lane 5 (CR169) lane 6 (CR194) 

lane 7(CR79). Strains were shifted from 2% raffinose to 2% galactose. 
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Figure 2-7. (Continued) 
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sin4Δ0 mot3-1162 double mutant.  Additionally, the sin4Δ0 rim8-155 tma108-1374 

sgf73-251 quadruple mutant is sensitive to 3-AT, the same phenotype as the sin4Δ0 

single mutant.   

 

Comparison of the double mutants to strain 1.1, the intermediate strain identified 

results in an interesting observation.  The sin4Δ0 grr1-531 mutant does not show the 

same level of 3-AT resistance or HIS3 mRNA expression as 2.1.  Sanger sequencing of 

strains isolated over the course of the selection revealed grr1-531 as the only candidate  

mutation in the strain isolated in the first round.  The disparity in phenotype between 

sin4Δ 0 grr1-531 and 2.1 suggests the presence of an additional mutation in this strain 

that was not uncovered by bulk segregant analysis and genome sequencing.   

 

Identification of causative mutations in lineage 2 

 

In strain 2.3a, we individually replaced mit1-560, ptr3-1088, and yor019w-1659 

with wild-type alleles to test their possible causality; similarly, in strain 2.3b we replaced 

msn2-1956 with the wild-type allele.  Our results show that both mit1-560 and ptr3-1088 

are causal, as replacement of each with its wild-type allele abolishes 3-AT resistance (Fig. 

2-8).  Our results also indicate that yor019w-1659 contributes only weakly to the Lda- 

phenotype, as replacement with the wild-type allele causes a very modest, but 

reproducible reduction in growth on 3-AT media. Replacement of msn2-1956 with the 

wild-type allele causes a reduction in 3-AT resistance (Fig. 2-8).  In addition, this strain 

grows poorly on media containing galactose.  These results indicate the msn2 mutation  
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Figure 2-8.  Lineage 2 tests for causality by allele replacement.  Spot tests of strains in 

which the candidate causal allele has been replaced with the wild-type allele. Allele 

replacements were constructed in strain 2.3a or 2.3b.  Strains are SIN4+(CR214), sin4� 

(CR111), 1.2, 2.3a MIT1+ (CR221),  2.3a PTR3+ (CR171), 2.3a YOR019W+ (CR198), 

2.3b, and 2.3b MSN2+ (CR224).  Dilutions were spotted onto the indicated media and 

incubated for four days at 30°.   
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allows increased growth on galactose in the 2.3b background in addition to causing a 

stronger Lda- phenotype.  To determine the order in which the mutations arose, we used 

Sanger sequencing of each relevant gene in strains 2.1, 2.2, 2.3a, and 2.3b.  This showed 

that yor019w-1659 arose in the first round of selection, ptr3-1088 in the second round, 

and mit1-560 or msn2-1956 in the third and final round. 

 

Reconstruction of lineage 2 mutant strains 

 

We sought to determine if the identified causal mutations can account for the 

phenotypes of strains 2.3a and 2.3b.  To do this for 2.3a, we generated a strain containing 

sin4Δ0, mit1-560, ptr3-1088, and yor019w-1659.  For 2.3b, we constructed a strain 

containing sin4Δ0, msn2-1956, ptr3-1088 and yor019w-1659.  Our results show that each 

reconstructed strain has only modest resistance to 3-AT, weaker than the original 2.3a 

and 2.3b strains (Fig. 2-9).  By Northern analysis, the reconstructed strain sin4Δ0 mit1-

560 ptr3-1088 yor019w-1659 also has a weaker phenotype than 2.3a (Fig. 2-9B, compare 

lanes 5 and 6).  In contrast, the sin4Δ msn2-1956 ptr3-1088 yor019w-1659 strain shows 

similar HIS3 mRNA levels to 2.3b.  Given the weak level of 3-AT resistance of this strain, 

we speculate that this strain may be producing non-functional transcript similar in size to 

the functional HIS3 transcript.  A similar transcriptional effect was previously reported 

(Dobi and Winston, 2007).  Our results, then, show that we are able to partially 

recapitulate the phenotype of 2.3a and 2.3b from the known causative mutations,  
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Figure 2-9.  Analysis of strains constructed with lineage 2 causative mutations.  

Causative mutations were made in a sin4Δ strain (CR111).  A.  Growth of reconstructed 

mutant strains.  Strains are WT (CR214), sin4Δ (CR111), 2.3a, sin4Δ mit1 ptr3 yor019w 

(CR217), 2.3b, and sin4Δ msn2 ptr3 yor019w (CR218).  Dilutions were spotted to the 

indicated media and incubated for four days at 30°.  B.  Northern analysis of 

reconstructed strains.  A Northern blot was hybridized with probes for HIS3 (top panel) 

and SNR190 (bottom panel).  Strains are: lane 1 (CR214), lane 2 (CR111) lane 3 (2.3a) 

lane 4(CR217), lane 5 (2.3b), and lane 6 (CR218).  Strains were shifted to 2% galactose. 
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Figure 2-9. (Continued) 
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although there is still missing heritability.  This missing heritability is likely caused by 

disomy of chromosome III (the location of our reporter), described in a later section. 

 

mit1-560 and mot3-1162 are not simply loss-of-function mutations 

 

 To test whether the mutations we identified confer their phenotypes by loss of 

function, we deleted each causal gene in the mutant backgrounds.  From these results,  

grr1Δ0, ptr3Δ0, and msn2Δ0 display the same level of 3-AT resistance as the original 

alleles (Fig. 2-10).  In contrast, when mot3Δ100 and mit1Δ0 replace their original alleles, 

each results in reduced 3-AT resistance.  This result demonstrates the mit1-560 and mot3-

1162 are not simply loss-of-function alleles. However, the mot3Δ100 replacement of 

mot3-1162 displays a stronger 3-AT resistance than replacement of mot3-1162 with the 

wild-type allele (Fig. 2-6).  This suggests the mot3-1162 allele increases the Lda- 

phenotype through altered function as well as loss of function.  Both mutations are in the 

DNA binding domains of these transcription factors (Cain et al., 2012; Madison et al., 

1998), as mot3-1162 causes an N-H change in a position that directly contacts DNA 

(Grishin et al., 1998), while mit1-560 causes an H-R change at a position that likely 

causes a conformational change of the DNA binding domain (Lohse and Johnson, 

personal communication).  
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Figure 2-10.  Deletion analysis of Lda- mutants.  A.  Growth of deletions of MOT3 and 

GRR1 in 1.2.  Strains are SIN4+ (CR214), sin4Δ (CR111), 1.2 , 1.2 mot3Δ (CR225), and 

1.2 grr1Δ (CR227).  Dilutions were spotted to the indicated media and incubated for four 

days at 30°.  B. Growth of deletions of MIT1 and PTR3 in 2.3a and MSN2 in 2.3b.  

Strains are SIN4+ (CR214), sin4Δ (CR111), 2.3a mit1Δ (CR230), 2.3a ptr3Δ (CR231), 

2.3b (CR110), and 2.3b msn2Δ (CR233).  Dilutions were spotted to the indicated media 

and incubated for four days at 30°.   
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Lineage 2 strains are unstable for the Lda- phenotype 

 

 During standard analysis of our strains, we noticed that the level of 3-AT 

resistance was unstable.  To test this more quantitatively, we measured stability for all 

three original polygenic mutants, 2.3a, 2.3b, and 1.2 (Table 2-7).  Our results showed that 

2.3a and 2.3b are unstable for resistance to 10 mM 3-AT, while 1.2 is stable.   

 

Strains 2.3a and 2.3b are disomic for chromosome III 

 

 We suspected strains 2.3a and 2.3b contained a BPH1 reporter duplication 

because of the instability of their phenotypes and our inability to fully recapitulate the 

phenotype of by strain reconstruction.  Analysis of the DNA sequencing results for 

strains 2.3a and 2.3b suggests that they are disomic for chromosome III, the chromosome 

that contains the BPH1 reporter.  The mutant sequencing pools for these two strains 

contain approximately twice the number of reads for chromosome III as the 

corresponding wild-type pools (Fig. 2-11).  In addition to chromosome III disomy, strain 

2.3a is disomic for chromosome XIV. 

 

The BPH1 reporter duplication was further tested by transformation.  Strains 2.3a 

and 2.3b were transformed with a fragment encoding URA3 that, by homologous 

recombination, should replace the GAL1 UAS region of the reporter, including the 

adjacent kanMX marker, which confers G418 resistance.  However, for these strains, all  
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Table 2-7. Stability of Lda- phenotype of 1.2, 2.3a, and 2.3b,  
 

 -His Gal 1 mM 3-AT 5 mM 3-AT 10 mM 3-AT 
1.2 
 

100% +/- 0% 100% +/- 0% 100% +/- 0% 100% +/- 0% 

2.3a 100% +/- 0% 
 

100% +/- 0% 99.7% +/- 0.5% 65.9% +/- 54.9% 

2.3b 100% +/- 0% 100% +/-  0% 99.7% +/- 0.6% 63.9% +/- 50.8% 
 

All percentages are calculated as growth on indicated media relative to growth on SC Gal. 
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Figure 2-11.  Analysis of number of sequence reads.  A.  The average number of 

sequence reads across each chromosome was normalized to the average number of 

sequence reads across the genome of the following segregant pools: 2.3a wild-type, 2.3a 

mutant, 2.3b wild-type, and 2.3b mutant.  B. The average number of sequence reads 

across the HIS3 ORF was normalized to the average number of sequence reads across the 

genome of the following segregant pools: 2.3a wild-type, 2.3a mutant, 2.3b wild-type, 

and 2.3b mutant.   
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Ura+ transformants were still resistant to G418.  PCR of the reporter region 

produce two products, consistent with both the GAL1 UAS region and URA3 being 

present (Fig. 2-12).  These results are consistent with a duplication of the reporter. 

  



! 87!

 

 

 

 

Figure 2-12.  Confirmation of reporter duplication.  A.  Diagram of kanMX-GAL1 UAS 

cassette in parent strains (2.3a and 2.3b) and predicted transformant.  Predicted PCR 

products for parent or transformant are listed next to reporter diagrams.  B.  PCR 

products resulting from primer 1 (FO6826) and 2 (FO6829).  Lanes are: lane 1 (1 kb 

ladder), lane 2 (2.3a), lanes 3-5 (2.3a Ura+ transformants), lane 6 (2.3b), and lanes 7-9 

(2.3b Ura+ transformants).  C.  PCR products resulting from triplex PCR with primer 1, 3, 

and 4.  Lanes are:  lane 1 (1 kb ladder), lane 2 (2.3a), lanes 3-5 (2.3a Ura+ transformants), 

lane 6 (2.3b), and lanes 7-9 (2.3b Ura+ transformants).   
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Discussion 

 

 In this study, we have  isolated three strains that show an increased Lda- phenotype 

compared to the sin4Δ0 parent.  All three strains contained multiple mutations that when 

combined with sin4Δ0 contribute to the phenotype.  We identified candidate mutations by 

bulk segregant analysis and genome sequencing, and demonstrated that several of them 

are causal.  We found that the lineage 1 mutant contains mutations in MOT3 and GRR1 

that contribute to the Lda- phenotype.  The lineage 2a mutant contains mutations in that 

contribute to the Lda- phenotype, while lineage 2b contains mutations in PTR3, 

YOR019W, and MSN2.  Identification of causative mutations revealed that the unrelated 

strains contain a distinct set of mutations.   

 

 At the onset of these experiments we hypothesized there would be some overlap 

in the mutations that arose among the strains, as this has been seen in experimental 

evolution experiments (Koschwanez et al., 2013; Romano et al., 2010).  We might have 

seen some overlap if we had isolated a larger number of mutant strains.  Our selection 

scheme limited the number of strains we were capable of processing because of the 

requirement to analyze reporter expression in every strain by Northern analysis.   

 

 We have not yet uncovered how each of the mutations specifically affects the 

ability of these strains to activate transcription at a distance.  The previous study of 

mutants with Lda- phenotypes resulted in mutations in genes encoding factors that are 

involved in chromatin structure.  It was somewhat surprising that none of the factors we 
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identified are known to have a role in chromatin structure.  We did not expect to isolate 

mutations in SPT2, as the sin4Δ spt2Δ double mutant does not show a greater phenotype 

than the sin4Δ single mutant.  However, three of the factors we identified, Mit1, Mot3, 

and Msn2, are transcription factors.  Our finding that the mit1-560 and mot3-1162 

mutations cause amino acid changes within their DNA binding sites and that these 

mutations do not cause loss of function, suggests that they may cause altered functions.  

One possibility is that mit1-560 and mot3-1162 cause altered binding specificity that in 

some way increases transcriptional activation distance.  The change in transcription factor 

binding specificity could act indirectly, resulting in altered levels of other factors 

involved in the regulation of activation distance.  Alternatively, these altered transcription 

factors could function directly by binding the reporter to mediate long-distance activation.  

The use of two reporters argues against this possibility, unless the transcription factors 

with altered binding specificity are now binding the GAL1 UAS directly.  The msn2-1956 

mutation affects the Lda- phenotype through loss of function, suggesting it may regulate 

other factors involved in regulating activation distance.   

 

 Additionally, we identified two factors, Grr1 and Ptr3, that are not known to be 

directly involved in transcription.  Both mutations, grr1-531 and ptr3-1088, cause loss of 

function mutations.  Grr1 is a component of the SCF ubiquitin ligase complex.  The 

complete range of degradation targets of the SCF ubiquitin ligase is unknown; thus, it is 

possible that loss of Grr1 results in the accumulation of protein(s) that allow long-

distance activation.  We suspect that ptr3-1088 may not actually be enhancing the Lda- 

phenotype, but rather causes an altered sensing response to media containing 3-AT and 
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lacking histidine.  This would require ptr3-1088  to have been selected in the same round 

as an additional mutation that results in increased expression of URA3 mRNA.  

 

 Our original backcrosses of strain 1.2 suggested that the strain contained four 

mutations, in addition to sin4Δ0, that contribute to the Lda- phenotype.  We were 

surprised to learn that only two mutations, grr1-531 and mot3-1162, are required with 

sin4Δ0 to recapitulate the strong Lda- phenotype of strain 1.2.  The mutant parental 

phenotype (strongly resistant to 10 mM 3-AT) is present at a frequency of 6.8%; however, 

re-analyzing the segregant data to include progeny that are resistant either strongly or 

modestly to 10 mM 3-AT results in a frequency of 21%, consistent with the phenotype 

requiring two causative mutations in addition to sin4Δ0.  This also fits with the variation 

in growth on galactose containing media that has been observed for the sin4Δ0 grr1-531 

mot3-1162 triple mutant.  We suspect the sgm1-1220 mutation may contribute to the 

suppression of this variation, which would explain the high frequency of sgm1-1220 

allele reads in the mutant pool. 

 

 Interestingly, we found the sin4Δ0 grr1-531 has a weaker phenotype than strain 

1.1, the first-round mutant in which grr1-531 arose.  This suggests the presence of an 

additional mutation that was in strain 1.1 that was not identified by bulk segregant 

analysis.  One possibility is that the final strain, 1.2, does not contain this mutation 

because it was lost during second round of selection.  This is probably not the case 

because replacement of grr1-531 with the wild-type allele in strain 1.2 results in stronger 

3-AT resistance than the sin4Δ mot3-1162 double mutant.  Alternatively, the mutation 
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does not contribute to the Lda- phenotype in the context of both grr1-531 and mot3-1162.  

In this event, this missing mutation would not appear to be causative by bulk segregant 

analysis.  This scenario has precedence as previous studies have highlighted the 

importance of genetic background on the effect mutations have on a phenotype (Brem et 

al., 2005; Romano et al., 2010; Sinha et al., 2006). 

  

We suspect that loss of the chromosome III disomy is causing the instability of 

strains 2.3a and 2.3b.  If this is true, loss of the disomy, and therefore the second copy of 

the reporter, causes strains 2.3a and 2.3b to be resistant to up to 5mM 3-AT.   In contrast, 

the reconstructed strains are only resistant to 1mM 3-AT.  This still leaves a missing 

component of the heritability.  Strain 2.3a is also disomic for chromosome XIV; it is 

possible another missing component is this disomy, although that cannot explain strain 

2.3b, which contains only one chromosome XIV.  Possibly, the missing heritability is 

explained by many mutations that each contribute mildly to the phenotype, similar to the 

contribution of yor019w-1659.  If different subsets of these mutations are sufficient to 

confer 10mM 3-AT resistance, the different combinations of causative mutations between 

segregants could cause causative mutations to have similar frequencies as non-causative 

mutations.   

  

Strains 2.3a and 2.3b are disomic for chromosome III, resulting in a duplication of 

the BPH1 reporter that presumably confers resistance to higher levels of 3-AT.  This 

supports the idea that chromosomal aneuploidies can be advantageous when they confer a 

selective advantage (Tang and Amon, 2013).  A recent study suggests formation of 
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aneuploidies as a transient method for yeast to respond to evolutionary stress (Yona et al., 

2012).   

 

 In this chapter, we have identified five additional mutations that affect long-

distance activation in yeast.  These mutations would not have been identified using a 

more traditional genetic approach because all mutations require the presence of at least 

one other mutation in order to affect the Lda- phenotype.  Additionally, by performing 

multiple rounds of selection on two lineages of strains, we were able to isolate a range of 

mutations broader than could be identified by simply isolating enhancers through only 

one round of selection.  Two of the mutations identified result in predicted changes in 

binding specificity of transcription factors.  How does this change in binding specificity 

allow long-distance activation?  How does the change in binding specificity affect 

genome-wide transcription levels?  
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Chapter 3 

Additional insight into the role of polygenic mutants in  

long-distance activation 
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Attribution of experiments in Chapter 3 

 

 Combinatorial mutant analysis and reporter distance experiments were performed 

by Caitlin Reavey.  RNA samples for microarrays were prepared by Caitlin Reavey and 

microarrays were performed by Caitlin Reavey in collaboration with Dr. Patrick Gibney 

and Dr. David Botstein.  Clustering and GO-term analysis were performed by Caitlin 

Reavey.  Statistical analysis of expression change overlap between strains and statistical 

analysis of tandem adjacent gene pairs were performed by Dr. Burak Alver.  Verification 

of tandem gene pair expression and analysis of YBR281C/SAF1 were performed by 

Caitlin Reavey. 
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Introduction 

 

 To understand how transcriptional activation distance is regulated in yeast, we 

isolated polygenic mutants that are able to activate transcription over a longer distance 

than is normally non-permissive in yeast.  The isolation and initial analysis of these 

mutants raised several questions, some of which we address in Chapter 3.  In these 

experiments, we further investigate the transcriptional effects of the individual causal 

mutations isolated in our polygenic mutants.  We find that combining mutations isolated 

from the different lineages gives a range of phenotypes.  In addition, we show that 

several mutant strains are able to activate transcription at distances up to at least 2 kb.  

Finally, we performed microarray analysis to analyze the global transcriptional affects of 

mutants.  By this analysis, all strains display transcriptional changes and, surprisingly, 

there is a significant overlap in the changes between strains.  Furthermore, the microarray 

results suggest that long-distance activation may be occurring at endogenous genes in 

addition to our reporter, as pairs of genes are affected at a significant frequency.   

  

Materials and methods 

 

S. cerevisiae strains 

 

 The S. cerevisiae strains used in this study (Table 3-1, 3-2) are isogenic with a 

GAL2+ derivative of S288C (Winston et al., 1995).  As is Chapter 2, strains are 

distinguished by those that were not subject to selection (Table 3-1) and those that were 
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(Table 3-2).  Rich (YPD) and synthetic complete (SC) dropout media were prepared as 

previously described (Rose et al., 1990).  SC Gal and SC-His Gal contained 2% galactose 

as the carbon source.  YPRaffinose contained 2% raffinose as the carbon source.  

Specified concentrations of 3-aminotriazole were added to SC-His Gal medium.  Strains 

were constructed by standard methods, either through crosses or transformation (Ausubel 

et al., 1991). 

 

Northern Analysis  

 

 RNA isolation and Northern hybridization experiments were performed as 

previously described (Ausubel et al., 1991).  Strains were grown to mid-log in YP 

Raffinose and then shifted to 2% galactose for 1 hour.  Northern hybridization analysis 

was conducted with probes to the coding regions of HIS3 ( -27 to +376, where +1 is the 

ATG), YBR281C(+2102 to 2450), SAF1 (+310 to 629), ACT1(+533 to +722)  and 

SNR190 (+1 to +190) (Table 3-3). 

 

Culturing of strains 

 

 Two replicates of wild-type (CR219), 1.2(CR101), 2.3a (CR109), 2.3b (CR110), 

sin4Δ mot3-1162 grr1-531 (CR204), and sin4Δ mot3-1162 mit1-560 (CR205) were 

grown in YP Raffinose to an OD600 of 0.4.  At this point a sample was taken and cells 

were washed and frozen in a dry ice ethanol bath.  The remaining culture was split in two 

and shifted to either 2% glucose or 2% galactose for 1 hour.  At the conclusion of the  
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Table 3-1.  Strains used in this study not subjected to selection 
 
Strain 

 
Lineage Alias 

 
Genotype 

FY76  MATa lys2-128δ 
FY2574  MATα his3Δ200 lys2-128d leu2Δ0 trp1Δ63 

bph1Δ::kanMX-UASGAL1397-HIS3 sin4Δ0::LEU2 
CR111  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806-URA3-natMX mkc7-1307 

CR113  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 

CR204  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 

CR205  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 mit1-560 

CR213  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 mit1-560 msn2-
1956 

CR214  MATα his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-
UASGAL1799 ybr281c Δ::TRP1-UASGAL1806 

CR234  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 msn2-1956 

CR236  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mit1-560 msn2-1956 

CR238  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
bph1Δ::kanMX-UASGAL1799 ybr281cΔ::TRP1-UASGAL1806 
put4Δ0 

CR242  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 put4Δ0 

CR243  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
bph1Δ::kanMX-UASGAL11397 

CR245  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL11397 mot3-1162 
grr1-531 

CR246  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL11397 mot3-1162 
mit1-560 
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Table 3-1. (Continued) 
 
CR247  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

bph1Δ::kanMX-UASGAL12027 
CR248  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::TRP1 
bph1Δ::kanMX-UASGAL12027 

CR250  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 mot3-1162 
grr1-531 

CR251  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 mot3-1162 
mit1-560 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 102!

Table 3-2.  Selected strains and their derivatives used in this study 
!
 
Strain Lineage Alias Genotype 
CR101 1.2 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 

sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 sgm1-
1220 rim8-155 tma108-1374 sgf73-251 

CR109 2.3a MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 mit1-560 ptr3-1088 mkc7-1307 
yor019w-1659 

CR110 2.3b MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 msn2-1956 ptr3-1088 mkc7-1307 
yor019w-1659 

CR240  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 sgm1-
1220 rim8-155 tma108-1374 sgf73-251 put4Δ0 

CR241  MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL1799 ybr281c 
Δ::TRP1-UASGAL1806 mit1-560 ptr3-1088 mkc7-1307 
yor019w-1659 put4Δ0 

CR244  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL11397 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 sgm1-
1220 rim8-155 tma108-1374 sgf73-251 

CR249  MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ 
sin4Δ0::LEU2 bph1Δ::kanMX-UASGAL12027 
ybr281cΔ::TRP1-UASGAL1806 mot3-1162 grr1-531 sgm1-
1220 rim8-155 tma108-1374 sgf73-251 
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Table 3-3.  Oligonucleotides used in this study 
 
Oligo Purpose Sequence (5’ to 3’) 
FO201 Northern probe of 

HIS3 
 

TGAGCAGGCAAGATAAAC 

FO609 Northern probe of 
HIS3 
 

GCCTCATCCAAAGGCGC 

FO481 Northern probe of 
URA3 
 

CCATGGAGGGCACAGTTAAGCCGC 

F0483 Northern probe of 
URA3 
 

CCCTTCCCTTTGCAAATAGTCCTC 

FO1324 Northern probe of 
SNR190 
 

GGCCCTGATGATAATG 

FO1325 Northern probe of 
SNR190 
 

GGCTCAGATCTGCATG 

FO961 Northern probe of 
ACT1 
 

TGTCACCAACTGGGACGATA 

FO962 Northern probe of 
ACT1 
 

GGCTTGGATGGAAACGTAGA 

CRO416 Replace kanMX-
GAL1 with URA3 
 

ATTCACAACTTTGGTCAAACGCCTTTACAAA
TATTTCAGGAGATTGTACTGAGAGTGCAC 

CRO417 Replace kanMX-
GAL1 with URA3 
 

AAGATTGTCTTCTCAAATATTGGCTTCATTG
GAACCTTACCTGTGCGGTATTTCACACCG 

FO6666 Integrate kanMX-
GAL1 at 2027 bp 
  

CGCAAGAATCACGGGGATATGACGGTTAGC
TGAATTCGAGCTCGTTTAAAC 

FO6667 Integrate kanMX-
GAL1 at 2027 bp 
 

AGTTTCCAAACAAAGACTTCGTGCTTTAGG 
TCATCGCTTCGCTGATTAATTACCC 

CRO430 Delete PUT4 
promoter with URA3 
 

GATTGAAGGGTGTAAAGTGCGTGTGGTGGC
GTTCTTTCCAAGATTGTACTGAGAGTGCAC 

CRO431 Delete PUT4 
promoter with URA3 
 

TGTGTCTATTGTTCTTGTGGAAGGGCAGTAT
ATTTACCATCTGTGCGGTATTTCACACCG 

CRO440 TDA6 RT primer GGTATTCCGCCTTCAAGTCA 
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Table 3-3. (Continued) 
 
CRO441 TDA6 RT primer 

 
CCGAATACGGAACAGGCTAC 

CRO444 CUR1 RT primer 
 

TCCACCCCTTCGAGAGAATA 

CRO445 CUR1 RT primer 
 

TCTGCAATGAGTTGGCATGT 

CRO448 Clean deletion of 
PUT4 promoter 
 

TATTGTTCATGATTGAAGGGTGTAAAGTGCG
TGTGGTGGCGTTCTTTCCAATGGTAAATA 

CRO449 Clean deletion of 
PUT4 promoter 
 

ACTCCCGCGCTGTGTCTATTGTTCTTGTGGA
AGGGCAGTATATTTACCATTGGAAAGAAC 

FO6145 ACT1 RT primer 
 

TTTTGTCCTTGTACTCTTCC 

FO6146 ACT1 RT primer 
 

CTGAATCTTTCGTTACCAAT 

CRO450 PUT4 RT primer 
 

CGAGCCGCACAAACTAAAAC 

CRO451 PUT4 RT primer 
 

ATGAAGCGTGGATGAAGTCC 

CRO454 PYK2 RT primer 
 

GTTATCGTTCCGGGGAGATT 

CRO455 PYK2 RT primer 
 

TAACCCGAGTTTACCGCTTG 

CRO460 BDS1 RT primer 
 

TAGGGAAAGCTGCCTCTCAC 

CRO495 NIT1 RT primer 
 

CAAAGTTCGATCCCTTTGGA 

CRO496 YIL165C RT primer 
 

AGATTATTGCAGGGCCATTG 

CRO497 YIL165C RT primer 
 

AATGTCCGACAGGGTCAAGA 

CRO498 DLD3 RT primer 
 

CCCATTGGATCTGCCTTCTA 

CRO499 DLD3 RT primer 
 

ATCTCACCGTTGGGTAGCAC 

CRO500 DSF1 RT primer 
 

GAAAAGATGGCCAATCCAGA 

CRO501 DSF1 RT primer 
 

GCTTTTCTGGGTGGTTCAAA 

CRO506 TIP1 RT primer 
 

TCATCATCTGCCGAATCATC 

CRO507 TIP1 RT primer 
 

AACAACAGCACCGAAAGAGG 
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Table 3-3 (Continued) 
 
CRO508 NRG2 RT primer 

 
GGGCTGTGGACAGAGGTTTA 

CRO509 NRG2 RT primer 
 

CTGCTAGCCTCCCTCCTCTT 

CRO510 Northern probe of 
YBR281C 
 

CCGAGCTTGCAAATATCGAC 

CRO511 Northern probe of 
YBR281C 
 

GGTTCTACGTCCCATGCAGT 

CRO504 Northern probe of 
SAF1 
 

TTACGGGCATATGATGCAAA 

CRO512 Northern probe of 
SAF1 

GATCCGCTGCTGTAAAGGTT 
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hour, cells were washed and frozen.  All three samples were then used for RNA 

extraction. 

 

Microarrays 

  

 RNA was extracted from cells grown as described above, labeled, and hybridized 

to Agilent expression microarrays as previously described (McIsaac et al., 2011).  RNA 

was extracted using standard phenol-chloroform extraction and purified with RNEasy 

columns (Qiagen).  mRNA was converted to cDNA, then cRNA, using Agilent Quick-

Amp Labeling Kit (Part No. 5190-0424).  Reference RNA was labeled with Cy3 and 

experimental RNA was labeled with Cy5.  Labeled cRNA was hybridized to Agilent 

8x15k custom printed yeast arrays (AMADID 017566) for 17h at 65° on a rotisserie at 20 

rpm.  Each gene on the array contains 2-3 identical probes.  RNA from CR219 cultured in 

YP Raffinose was used for the reference for all arrays.  After washing, arrays were 

scanned using Agilent Feature Extractor Software version 9.5.  Genes that had flagged 

features marked as unreliable were excluded from data analysis; this resulted in the 

analysis of 5610 genes.  The raw signal intensity values were floored to a value of 350 

(values <350 were set to 350).  Flooring the data makes genes with very low signal 

intensity less sensitive to small fluctuations in reference signal intensity. The log2 ratio 

was calculated using the floored data values.  

 

 For each microarray, an experimental sample was compared to RNA from the 

wild-type strain CR219.  Each microarray was performed twice for wild-type (CR219), 
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1.2 (CR101), 2.3a (CR109), 2.3b (CR110), sin4Δ mot3-1162 grr1-531 (CR204), and 

sin4Δ mot3-1162 mit1-560 (CR205).  The wild-type array values were used as the 

reference array and the log2 values for each mutant array were normalized to the 

reference array.  Analysis of the log2 ratios revealed that one of the 1.2 replicates and one 

of the 2.3a replicates were unusable, so these were discarded from analysis.  These 

replicates varied from the usable replicates and more specifically, these replicates did not 

show induction of any of the GAL genes in the galactose samples.  For the remaining 

replicates, the log2 ratios were averaged and these averages were used for subsequent 

analysis. The complete list of Log2 ratios normalized to the wild-type raffinose reference 

array are found electronically in Table 3-9.  The Log2 ratios of the mutant samples 

shifted to glucose were normalized to wild-type glucose and the Log2 ratios of the mutant 

samples shifted to galactose were normalized to wild-type galactose; these values can be 

found electronically in Table 3-10. 

 

Microarray analysis 

 

 Analysis of RNA levels was performed for all carbon sources.  Changes in the 

mutants in glucose and galactose were normalized to wild-type expression changes for 

glucose and galactose, respectively.  We used a two-fold cutoff for calling genes as up or 

downregulated (log2 value of 1 or -1).  Hierarchical clustering was performed using 

Cluster 3.0 with average linkage using the Pearson correlation distance as the metric of 

similarity between genes (de Hoon et al., 2004).  K-means clustering was performed with 

MultiExperiment Viewer using a setting of 10 clusters and using Euclidean distance as 
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the metric of similarity between genes (Saeed et al., 2006; Saeed et al., 2003).  GO-term 

enrichment was performed using the Saccharomyces Genome Database Gene Ontology 

Term Finder.  Overlap of upregulated and downregulated genes between different strains 

was compared by Venn diagrams, which were created using the Whitehead Venn 

diagram generator (http://jura.wi.mit.edu/bioc/tools/).  Fisher's exact test was used to 

calculate the p-value for the Venn diagram analysis.  All p-values were lower than the 

numerical precision of the hypergeometric function implementation in Microsoft Excel, 

which is 10-14. 

 

Analysis of tandem adjacent gene pairs 

 

 To identify possible cases of long-distance activation in the genome, we examined 

the microarray data to look for possible cases where the activator for one gene was able 

to activate an adjacent, tandem gene.  We considered two possible circumstances.  In the 

first circumstance (case 1), the expression of both genes in the pair is elevated in the 

mutant compared to wild-type.  In the second circumstance (case 2), the 5’ gene is 

activated in either glucose or galactose (relative to raffinose) in wild-type and, in the 

mutant, the 3’ gene is also activated.  

 

 Statistical analysis of the tandem adjacent gene pairs was performed on log2 

values that had been normalized to wild-type by respective carbon source.  Neighboring 

genes represented on the array with no other annotated transcripts in between were 

annotated as gene pairs, with the one with the smaller genomic coordinate denoted the 
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first gene and the one with the larger coordinate denoted the second gene. For all gene 

pairs in tandem the null model expected number of co-upregulated pairs (both >two fold 

change) was calculated as the number of upregulated first genes, multiplied by the 

number of upregulated second genes divided by the number of tandem adjacent gene 

pairs.  The number of tandem adjacent gene pairs was assumed to display a Poisson 

distribution, with the expected number of co-upregulated pairs the mean.  The p-value for 

the actual observation was calculated based on this Poisson distribution with parameter 

lambda given by the null expectation. 

 

Quantitative real time PCR (qRT-PCR) analysis 

 

 RNA was converted to cDNA using Supercript III reverse transcriptase 

(Invitrogen) and oligo dT primer (Invitrogen).  cDNA was analyzed using the primers 

listed in table 3-. and Brilliant III SYBR green reagent (Agilent).  qRT-PCR was 

performed on a Stratagene MX3000P.  The following gene pairs were analyzed after 

being shifted to glucose: TDA6/CUR1, DLD3/DSF1, BDS1/YOL163W, GPD2/ARG1, 

NIT1/YIL165C, TIP1/NRG2.  The PUT4/PYK2 gene pair was analyzed after being shifted 

to galactose.  The values presented are the average of two experiments. 
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Results 

 

Combinatorial analysis of transcription factor mutations  

 

 To test for genetic interactions between mutations isolated in the different 

polygenic mutants, we constructed a new series of mutant strains and tested them for 

activation of the long-distance reporter.  We focused on combinations of the mot3, mit1, 

and msn2 mutations, each of which arose in a separate lineage.  Our results (Figure 3-1) 

show that combining the mutations in a sin4Δ background increases 3-AT resistance, 

ranging from a modest effect, for sin4Δ mit1-531 msn2-1956, to an intermediate effect 

for sin4Δ mot3-1162 mit1-531, to a strong effect for sin4Δ mot3-1162 msn2-1967  and 

sin4Δ mot3-1162 mit1-560 msn2-1967.  We compared HIS3 mRNA levels of sin4Δ 

mot3-1162 mit1-531 and sin4Δ mot3-1162 mit1-560 msn2-1967 by Northern analysis; 

both mutants show increased HIS3 mRNA levels compared to the sin4Δ single mutant 

(Fig. 3-1).   

 

Effect of increasing reporter distance 

 

 To test if the mutant strains are able to activate transcription at a distance greater 

than in our reporter, 799 bp, we constructed and tested longer reporters of 1397 bp and 

2027 bp, testing these differences in three of the multiple mutants.  All three strains tested 

show a stronger Lda- phenotype relative to sin4Δ at these greater distances, as shown  
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Figure 3-1.  Lda- phenotypes of mutant combinations.  A.  Growth of combined mutants. 

The strains are: SIN4+ (CR214), sin4Δ (CR111), sin4Δ mot3 grr1 (CR204), sin4Δ mot3 

mit1 (CR205), sin4Δ mot3 msn2 (CR234), sin4Δ mit1 msn2 (CR236), and sin4Δ mot3 

mit1 msn2 (CR213).  10-fold serial dilutions were made of saturated YPD cultures that 

had been normalized for cell number by OD600. The dilutions were spotted to the 

specified media and grown for four days at 30°.  B.  Northern analysis of combined 

mutants. A Northern blot was hybridized with probes for HIS3 (top panel) and SNR190 

(bottom panel). Lanes are: lane 1 (FY76), lanes 2 and 3 (CR214), lanes 4 and 5 (1.2), 

lanes 6 and 7 (2.3a), lanes 8 and 9 (2.3b), lanes 10 and 11 (CR204), lanes 12 and 13 

(CR205), and lanes 14 and 15 (CR213).  Strains were shifted from growth in 2% 

raffinose to 2% galactose. 
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Figure 3-1. (Continued) 
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by growth on SC-His Gal for both the 1397 and 2027 bp reporters (Fig. 3-2).  

Surprisingly, strains 1.2, sin4Δ mot3-1162 grr1-531, and sin4Δ mot3-1162 mit1-560 

display a stronger Lda- phenotype with the 2027 reporter strain than with the 1397 

reporter strain.  This is in contrast to the sin4Δ single mutant, which shows a weaker Lda- 

phenotype with increased reporter distances.   

 

Genome-wide expression analysis of the polygenic mutants 

 

 To determine possible changes in transcription genome-wide, we performed 

microarrays.  For these studies, we included three classes of polygenic strains.  First, we 

analyzed the three original polygenic mutants, 1.2, 2.3a, and 2.3b.  In addition, we 

analyzed the reconstructed strain sin4Δ mot3-1162 grr1-531, which recapitulates the 1.2 

phenotypes with our long-distance reporter.  Finally, we included sin4Δ mot3-1162 mit1-

560 to analyze a strong polygenic mutant that combines mutations from different lineages.  

To increase the scope of the analysis, we determined changes in transcription for these 

strains grown in three carbon sources:  raffinose, glucose, and galactose. 

 

 Our microarray analysis revealed extensive transcriptional changes in the mutant 

strains in all three carbon sources (Table 3-4).  For all strains, a large number of genes 

had increased RNA levels and a large number had decreased RNA levels, demonstrating 

that the Lda- phenotype is not a general upregulation of transcription.   
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Figure 3-2.  Polygenic mutants strengthen activation at distances up to 2 kb.  A.  Growth 

of strains with the 799 bp reporter.  The strains are: SIN4+ 799(CR214), sin4Δ 799 

(CR111), 1.2 (CR101), sin4Δ mot3 grr1 799(CR204), and sin4Δ mot3 mit1 799(CR205).  

Ten-fold serial dilutions of saturated YPD cultures were spotted to the specified media 

and grown for four days at 30°.  B.  Growth of strains with the 1397 bp reporter.  The 

strains are: SIN4+ 799(CR214), sin4Δ 799 (CR111), SIN4+ 1397(CR243), sin4Δ 1397 

(FY2574), 1.2 1397 (CR244) sin4Δ mot3 grr1 1397 (CR245), and sin4Δ mot3 mit1 

1397(CR246).  Plates were incubated for four days or six days (the one indicated) at 30°.  

C.  Growth of strains with 2027 bp reporter.  The strains are: SIN4+ 799(CR214), sin4Δ 

799 (CR111), SIN4+ 2027 (CR247), sin4Δ 2027 (CR248), 1.2 2027 (CR249) sin4Δ mot3 

grr1 2027 (CR250), and sin4Δ mot3 mit1 2027 (CR251).  Plates were incubated for four 

or six days at 30°.   
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Figure 3-2. (Continued) 
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Table 3-4.  Numbers of genes displaying a two-fold or greater change 
 
 
Carbon 
Source 

 
1.2 

 
2.3a 

 
2.3b 

sin4Δ mot3-
1162 grr1-531 

sin4Δ mot3-1162 
mit1-560 

Raffinose  313 up 
135 down 

180 up 
123 down 

172 up 
141 down 

152 up 
84 down 

86 up 
50 down 
 

Glucose  416 up 
158 down 

145 up 
62 down 

167 up 
82 down 

182 up 
79 down 

38 up 
37 down 
 

Galactose 474 up 
426 down 

146 up 
78 down 

184 up 
133 down 

133 up 
139 down 

82 up 
40 down 
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Hierarchical clustering of the microarray results revealed several general trends 

among the data sets.  First, there is a noticeable overlap in the expression changes of 

genes for the mutants between carbon sources (Fig. 3-3).  As expected, strains 2.3a and 

2.3b, which arose from the same lineage, display similar profiles of expression changes. 

However, there are also clusters of genes with similar expression changes between most 

of the mutants.    

 

We performed k-means clustering to identify clusters of genes that are either 

upregulated or downregulated in the majority of mutants (Fig. 3-4).  Using these two 

clusters, we performed GO-term enrichment to determine if any of the GO-terms could 

give insight into particular classes of genes that are affected, perhaps identifying 

regulators now able to activate at an increased distance.  The upregulated genes (Table 3-

5) are enriched for genes involved in sulfur metabolism and a variety of biosynthetic 

processes.  The downregulated genes are enriched for genes in serine catabolism and 

amino acid transport (Table 3-6).  Although not enriched by GO-term, we did notice the 

mutants are upregulated for multiple arginine biosynthetic genes and proline utilization 

genes.  A recent proteomic study indicated proteins in these pathways are upregulated in 

response to various stress conditions (Grady, 2013).  Unfortunately the GO-terms did not 

give any mechanistic insight to long-distance activation. 

 

 Lineage 1 and lineage 2 mutations were isolated independently of one another, yet 

have similar effects on the Lda- phenotype, so we were interested in transcriptional 

changes common among 1.2, 2.3a, and 2.3b.  We compared genes that showed a two-fold  
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Figure 3-3.  Analysis of transcriptional changes by microarray.  Hierarchical clustering 

of gene expression changes was performed on the microarray datasets from mutant 

strains cultured in raffinose, glucose, and galactose.  The strains are 1.2 (CR101), 2.3a 

(CR109), 2.3b (CR110), sin4Δ mot3 grr1 (CR204), and sin4Δ mot3 mit1 (CR205).  

Values used for clustering were normalized to expression of SIN4+ (CR214). 
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Figure 3-4.  Identification of genes upregulated or downregulated in mutants.  K-means 

clustering was performed using a parameter of 10 clusters.  The strains are: 1.2 (CR101), 

2.3a (CR109), 2.3b (CR110) sin4Δ mot3 grr1 799(CR204), and sin4Δ mot3 mit1 

799(CR205).  Values used for clustering were normalized to expression of SIN4+ 

799(CR214).  A. Clustering of 47 genes upregulated two-fold or more across majority of 

mutants.  B.  Clustering of 23 genes downregulated two-fold or more across majority of 

mutants. 
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Table 3-5.  GO-Term enrichment for genes upregulated in mutants 
 

 

*Cluster frequency is defined as the percentage of genes in the cluster with the indicated 
function.  Background frequency is the percentage of genes in the genome with the 
indicated function 
 

 

 
GO-Term 

Cluster 
Frequency* 

Background 
Frequency* 

 
P-value 

Sulfur amino acid 
metabolic process 

7.4% 0.5% 6.06 x 10-09 
 

Sulfur compound metabolic 
process 

21.7% 1.3% 3.46 x 10-08 
 

Sulfate assimilation 10.9% 0.1% 3.23 x 10-07 
 

Organic acid metabolic 
process 

32.6% 4.9% 3.60 x 10-07 
 

Organonitrogen compound 
metabolic process 

37.0% 7.5% 2.01 x 10-06 
 

Carboxylic acid metabolic 
process 

30.4% 4.8% 2.19 x 10-6 
 

Cellular amino acid 
metabolic process 

26.1% 3.4% 3.71 x 10-6 
 

Sulfate reduction 6.5% 0.0% 3.73 x 10-5 
 

Small molecule metabolic 
process 

34.8% 9.3% 0.00028 
 

Sulfur amino acid 
biosynthetic process 

8.7% 0.3% 0.00081 
 

Organic acid biosynthetic 
process 

17.4% 2.4% 0.00155 
 

Carboxylic acid 
biosynthetic process 

17.4% 2.4% 0.00155 
 

Single-organism metabolic 
process 

39.1% 13.4% 0.00178 
 

Cellular amino acid 
biosynthetic process 

15.2% 1.8% 0.00259 
 

Serine family amino acid 
metabolic process 

8.7% 0.4% 0.0041 
 

Small molecule 
biosynthetic process 

19.6% 3.9% 0.00775 
 

Single-organism 
biosynthetic process 

19.6% 3.9% 0.0082 
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Table 3-6.  GO-Term enrichment for genes downregulated in mutants 
 
 
GO-Term 

 
Cluster Frequency 

Background 
Frequency 

 
P-value 

Serine catabolic 
process 

18.8 0.1 1.03 x 10-5 

Amino acid 
transport 

25.0 0.7 1.90 x 10-4 

 

Mating factor genes were excluded from analysis, as they were down as a result of 
mating type difference between reference and experimental strains. 
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or greater change relative to wild-type for each of the carbon sources in 1.2, 2.3a, and 

2.3b (Fig. 3-5).   Each strain displays a significant overlap (p-value <10-14) of upregulated 

and downregulated genes with the other strains for all carbon sources.  The overlap 

between 2.3a and 2.3b is greater than the overlap between 1.2 and 2.3a.  The overlap 

between 1.2 and 2.3b is more dramatic than the overlap between 1.2 and 2.3a.  This may 

be a result of overlapping functions of Mot3 and Msn2, as both are involved in activation 

of osmotic stress response genes (Martinez-Montanes et al., 2013). 

 

 We compared the genes that show two-fold or greater changes in RNA levels 

between the original polygenic mutant, 1.2, and the strain reconstructed from its causal 

mutations, sin4Δ mot3-1162 grr1-531 (Fig. 3-6).  Our results show that a larger number 

of genes have changed RNA levels in 1.2 than in the reconstructed strain, suggesting that 

1.2 contains additional mutations that contribute to transcriptional changes, but that do 

not necessarily affect expression of our long-distance reporter.  In spite of the difference 

in the number of genes affected, there is a significant (p-value <10-14) overlap between 

1.2 and the reconstructed strain.  Interestingly, a subset of genes is changed in sin4Δ 

mot3-1162 grr1-531 that remains unchanged in 1.2.  This suggests the presence of 

genetic modifiers in 1.2 that are not present in the reconstructed strain.  

 

 We also asked whether known targets of Mot3 and Mit1 regulation are altered in 

our mutant strains.  The ergosterol biosynthetic genes ERG2, ERG6, and ERG9 are 

increased in mot3Δ, but remain unchanged in mot3-1162 strains (Hongay et al., 2002).  
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Figure 3-5.  Comparison of genes changed two-fold or more in original mutant isolates.  

Venn diagrams depict the overlap in the genes that are upregulated and downregulated in 

the original mutant isolates.  The strains are in blue 1.2 (CR101), in purple 2.3a (CR109), 

and in yellow 2.3b (CR110).  Analysis was performed for raffinose (A.), glucose (B.), 

and galactose (C.). 
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Figure 3-6.  Comparison of genes changed two-fold or more in the original mutant (1.2) 

isolate and the reconstructed strain, sin4Δ mot3 grr1.  Venn diagrams depict the overlap 

in the total number of genes that are either upregulated or downregulated in the mutants.  

Analysis was performed for raffinose (A.), glucose (B.), and galactose (C.). 
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FLO11, which is downregulated in the mit1Δ strain is significantly up in all mutant 

strains, including those containing mit1-560 (Cain et al., 2012).  All other genes 

displaying a two-fold or greater change in the mit1Δ remain unchanged in mit1-560 

strains.  These results suggest the mot3-1162  and mit1-560 mutant proteins allow normal 

regulation of some of their known targets. 

 

We were also curious if the genes containing mutations themselves display 

changes in expression, as several of the mutations identified are loss-of function-

mutations.  GRR1, MIT1, PTR3, MSN2, and YOR019W RNA levels remain unchanged in 

the mutant strains.  MOT3 expression is down two to three-fold in both 1.2 and 2.3b in all 

carbon sources as well as in sin4Δ mot3-1162 grr1-531 in galactose.  MOT3 expression 

remains unaffected in sin4Δ mot3-1162 mit1-560.  The lowered MOT3 expression 

supports the hypothesis that mot3-1162 affects the Lda- phenotype through loss-of-

function as well as altered function.  We speculate loss of MOT3 expression in strain 2.3b 

may contribute to the Lda- phenotype. 

 

Analysis of adjacent gene pairs 

 

 One of the goals of the microarray experiments was to determine if long-distance 

activation occurs in the genome beyond the reporters.  We first looked specifically at 

genes downstream of galactose-activated genes, but did not see aberrant galactose-

dependent activation.  Then, to identify candidate regions for long-distance activation, we 

identified tandem adjacent gene pairs whose RNA levels are increased comparison to 
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wild-type.  We looked for gene pairs where both genes have increased levels (called class 

1) and for gene pairs where the upstream gene is normally elevated in glucose or 

galactose in wild-type, but the downstream gene is only activated under the same 

condition in the mutant (class 2).  Of the 70 gene pairs identified, 66 fell into class 1.  

  

 A total of 70 tandem adjacent gene pairs are elevated two-fold or more in 

comparison to wild-type in at least one of the mutants, for at least one carbon source.  A 

subset of these pairs is presented in Table 3-7 and the complete set is presented in Table 

3-11.  The subset in Table 3-7 fits two requirements: the gene pairs are up in at least two 

mutants, one of which is a reconstructed mutant.  The number of upregulated tandem 

adjacent gene pairs is significantly greater than one would expect by chance, with p-

values lower than 0.05 (Table 3-8).  The most striking p-values were observed for strains 

2.3a, 2.3b, 1.2, and sin4Δ mot3-1162 grr1-531.!!There were no significant increases in 

convergently or divergently transcribed gene pairs.!!These results suggest long-distance 

activation may be occurring at other genomic loci beyond the reporter.!!

 

Verification of adjacent gene pair expression by RT PCR 

 

 We chose a set of eight tandem adjacent gene pairs based on the microarrays to 

verify by quantitative RT-PCR.  For this set of eight gene pairs, we compared RNA 

levels in 2.3a, 2.3b, and sin4Δ mot3-1162 grr1-531 to the wild-type strain (Fig. 3-6).  We 

found that the qRT-PCR of DLD3/DSF1, BDS1/YOL163C, GPD2/ARG1, TIP1/NRG2, 

and PUT4/PYK2 follows the same trends of expression as the microarray, although there  
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Table 3-7.  Tandem adjacent gene pairs identified from microarray analysis 
 
+ Indicates gene pair belongs to class 1 
++Indicates gene pair belongs to class 2 
 
 
Gene Pair 

 
Carbon 
Source 

 
 

1.2 

 
 

2.3a 

 
 

2.3b 

 
mot3 grr1 

sin4Δ 

 
mot3 mit1 

sin4Δ 
TIP1/NRG2 Raffinose 

Glucose 
Galactose 

+ 
+ 
 

+ + 
 

+ 

+ 
+ 
 

 
 
 

YBR281C/SAF1 Raffinose 
Glucose 
Galactose 

 
 

++ 

 
 

++ 

 
 

++ 

 
 

++ 

 
 

++ 
GPD1/GPM2 Raffinose 

Glucose 
Galactose 

+ 
 

+ 

 
 
 

  
 

+ 

 

DLD3/DSF1 Raffinose 
Glucose 
Galactose 

+ 
+ 

+  
 

+ 

+ 
+ 
+ 

 

PAU13/ARN2 Raffinose 
Glucose 
Galactose 

+ 
+ 
+ 

  + 
+ 
+ 

 
+ 

NIT1/YIL165C* Raffinose 
Glucose 
Galactose 

+ 
+ 
+ 

 
 

+ 

+ 
 

+ 

 
 

 

DAL4/DAL2 Raffinose 
Glucose 
Galactose 

 
+ 

 
+ 

 
+ 

 
+ 

 

DAL3/DAL7 Raffinose 
Glucose 
Galactose 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

 
+ 
+ 

 

YKL151C/GPM1 Raffinose 
Glucose 
Galactose 

+ 
 
 

  
 

+ 

  
 

+ 
GPD2/ARG1** Raffinose 

Glucose 
Galactose 

 
++ 

 
++ 

+ 
++ 

 
++ 

 

BDS1/YOL163W 
(Incomplete array 
data) 

Raffinose 
Glucose 
Galactose 

 
+ 

 
+ 

 
 

 
+ 

 

PUT4/PYK2 Raffinose 
Glucose 
Galactose 

+ 
+ 

+ 
 

+ 

+ 
 

+ 

+ 
+ 
+ 

+ 
 

+ 
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Table 3-7.  (Continued) 

TDA6/CUR1* Raffinose 
Glucose 
Galactose 

 
++ 
+ 

 
++ 

 
++ 

 
++ 

 

 
++ 

* These gene pairs were removed from consideration after qRT-PCR analysis revealed 
they are not both up 
**qRT-PCR validation resulted in the reclassification of this gene pair as class 1 
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Table 3-8.  Statistical analysis of adjacent gene pairs 
 
 
 
Strains 

 
Carbon 
Source 

 
Expected number 
of tandem pairs 

Observed 
number of 

tandem pairs 

 
 

P-value 
1.2 Raffinose 6.06 22 1.2 x10-7 
2.3a Raffinose 1.85 11 6.3x10-7 
2.3b Raffinose 1.91 9 3.2 x10-5 
sin4Δ mot3-1162 
grr1-531 

Raffinose 0.94 5 4.4x10-4 

sin4Δ mot3-1162 
mit1-560 

Raffinose 0.46 2 0.012 

1.2 Glucose 11.89 24 6 x10-4 
2.3a Glucose 1.39 8 1.6x10-5 
2.3b Glucose 2.77 10 2.7 x10-6 
sin4Δ mot3-1162 
grr1-531 

Glucose 2.24 9 1.2 x10-4 

sin4Δ mot3-1162 
mit1-560 

Glucose 0.09 1 0.004 

1.2 Galactose 14.99 35 2.9 x10-6 
2.3a Galactose 1.40 11 1.1 x10-8 
2.3b Galactose 2.08 16 1 x10-10 
sin4Δ mot3-1162 
grr1-531 

Galactose 0.75 4 0.0011 

sin4Δ mot3-1162 
mit1-560 

Galactose 0.42 2 0.0089 
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Figure 3-7.  Verification of microarray results of tandem gene pairs.  qRT-PCR was 

performed to measure RNA levels using the primers listed in Table 3-3.  Shown are the 

fold increases for the mutant strains normalized to the wild-type value.  The values are an 

average of two experiments.  The wild-type strain is CR214.  The mutants are as follows: 

1.2, 2.3a, and sin4Δ mot3 grr1 (CR204).  In each panel, the upstream gene is shown on 

the left. 
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are some differences in fold changes.  NIT1/YIL165C and TDA6/CUR1 do not show 

increased expression levels above the two-fold cutoff at both genes in the mutant strains.   

 

 To test whether the activation of the downstream gene is dependent upon that of 

the upstream gene, we will delete the UAS of the upstream gene.  If downstream 

activation is dependent, this deletion should abolish the activation we observe in the 

mutants.  To date, we have performed this test for the PUT4/PYK2 pair.  Our results show 

that deletion of the PUT4 promoter abolishes PUT4 expression as expected, but does not 

impair PYK2 expression (Figure 3-8), indicating long-distance activation does not occur 

at PUT4/PYK2.  

 

Analysis of the YBR281C/SAF1 adjacent gene pair 

  

 Analysis of the microarray data revealed galactose dependent expression of 

YBR281C, the site of the remnant of one of our long-distance reporters, and of the tandem 

adjacent gene SAF1.  In the strains used for the microarrays, YBR281C no longer contains 

the URA3 reporter, but it still contains the GAL1 UAS followed by the 3’ 699 bp of the 

YBR281C ORF and the normal YBR281C termination sequence.  The activation of SAF1 

downstream in the mutants suggests long-distance activation.  However, we wanted to 

determine if the SAF1 transcript in our mutants is a wild-type length transcript or if it is a 

read-through transcript from YBR281C, similar to the long transcript seen at the reporter 

(Dobi and Winston, 2007).  We performed Northern analysis and probed for YBR281C 

and SAF1 to determine transcript sizes (Fig. 3-9).  The YBR281C probe hybridizes to an  
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Figure 3-8.  Effect of a PUT4 promoter deletion on PYK2 RNA levels.  PYK2 expression 

was measured by qRT-PCR using the primers in Table 3-3.  The strains are PUT4+ SIN4+ 

(CR214), PUT4+ 1.2 (CR101), PUT4+ 2.3a (CR109), PUT4+ sin4Δ mot3 grr1 (CR204), 

put4Δ SIN4+ (CR214), put4Δ 1.2 (CR240), put4Δ 2.3a (CR241), and put4Δ sin4Δ mot3 

grr1 (CR242).  PUT4+ strain values are normalized to PUT4+ SIN4+ and presented as fold 

enrichment.  put4Δ strain values are normalized to put4Δ SIN4+ and presented as fold 

enrichment. 
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Figure 3-9.  Northern analysis of YBR281C/SAF1 gene pairs.  A.  Schematic diagram of 

the GAL1 UAS in YBR281C and downstream SAF1 ORF.  B.  Fold changes in expression 

of YBR281C and SAF1.  YBR281C values are normalized to WT raffinose.  SAF1 values 

are normalized to WT galactose.  C.  Northern analysis of mutant strains.  Northerns were 

probed for SAF1 (top) YBR281C (middle) and ACT1 (bottom) as a loading control. Lanes 

are: lanes 1 and 6 (CR214), lanes 2 and 7 (CR111), lanes 3 and 8 (1.2), lanes 4 and 9 

(2.3a), and lanes 5 and 10 (CR204).  Strains were shifted from growth in 2% raffinose to 

2% galactose. 
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mRNA approximately 700 bp in size, consistent with transcription initiating proximal to 

the UAS and terminating at the endogenous YBR281C termination sequence.  The SAF1 

probe hybridized to an RNA of approximately 2 kb, which is consistent with the 1914 bp 

SAF1 ORF.  The sin4Δ, 1.2, 2.3a, and sin4Δ mot3-1162 grr1-531 strains all have 

increased SAF1 RNA levels relative to wild-type.  This is the first clear example of long-

distance activation in our mutant strains of a gene outside of our reporter.  

 

Discussion 

  

 The data presented in this chapter provide greater insight into the transcriptional 

effects of the mutations isolated in our selections for mutants that allow long-distance 

activation.  We found that mutations within the genes encoding the transcription factors 

Mot3, Mit1, and Msn2 interact to give stronger Lda- phenotypes.  These mutations are 

also able to increase the Lda- phenotype in strains carrying reporters with increased 

distance between the UAS and reporter gene.  Microarray analysis revealed genome-wide 

transcriptional changes in the mutants; interestingly, there is significant overlap between 

mutants that were isolated independently.  Statistical analysis of the number of tandem 

adjacent gene pairs that are upregulated in the mutants suggests that long-distance 

activation may be occurring at other locations throughout the genome in addition to the 

reporter.  Finally, we have strong evidence that the endogenous SAF1 gene is activated 

from the GAL1 UAS present in the upstream YBF281C ORF. 
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 When we tested for activation of long reporters, we were surprised to discover 

that these strains displayed stronger activation over 2027 bp than over 1397 bp.  One 

possible explanation for this result is that the 2027 bp reporter might contain transcription 

factor binding sites that are not present in the 1397 bp reporter.  In fact, the 2027 reporter 

contains one additional Mot3 binding site not present in the 1397 reporter. However, we 

do not know what binding sequence the altered Mot3 recognizes, so we do not yet know 

if the presence of this binding site is relevant to the phenotype.  An alternate explanation 

is that activation is occurring in the mutant strains via looping of the UAS to the core 

promoter.  By this model, loop formation would be more favorable at a distance of 2027 

bp because of DNA flexibility or chromatin structure.  3C experiments will be used to 

directly test whether loops are formed at the reporter, and if so whether loop formation is 

more favorable for certain distances. 

 

 We analyzed the number of tandem adjacent gene pairs that are upregulated in the 

mutant strains in an effort to determine if long-distance activation is now occurring 

throughout the genome in the mutant strains.  We did not see increases in genes 

downstream of Gal4 regulated genes, so we decided to look at tandem adjacent gene pairs.  

We saw that all the mutant strains analyzed by microarray show a greater number of 

tandem gene pairs upregulated in the mutants than one would expect by chance.  Greater 

numbers of adjacent gene pairs were up in 1.2, 2.3a, and 2.3b than in the reconstructed 

strains, sin4Δ mot3-1162 grr1-531 and sin4Δ mot3-1162 mit1-560.  We had expected 

sin4Δ mot3-1162 grr1-531 would have a greater amount of overlap with 1.2 for 

upregulated adjacent gene pairs because the reconstructed strain recapitulates HIS3 
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mRNA expression of the reporter seen in 1.2.  Data presented in chapter 2 suggests the 

presence of a mutation in strain 1.2 that was not identified by bulk segregant analysis. 

Perhaps long-distance activation occurs at each UAS only if a specific set of mutations is 

present.  sin4Δ does not allow long-distance activation in a reporter where the CUP1 

UAS is the regulatory sequence, indicating there is not one genome-wide mechanism for 

regulating activation distance (Dobi, 2007). 

 

 Although our analysis of upregulated tandem adjacent gene pairs suggests long-

distance activation may be occurring in the mutant strains, there may be other cases that 

would be missed by this analysis.  In isolating mutants that more closely resemble 

metazoans in their ability to activate over longer distances, we have created a problem 

also faced by metazoans: how to match the regulatory element with the gene it regulates?  

It is conceivable that in the mutant strains, long-distance activation does not result in 

activation of the adjacent gene, but instead results in activation of genes further away.  

We have not observed activation farther than 2 kb for our reporter strains, but that does 

not mean activation can’t occur over greater distances for other regulatory elements.  

Additionally, in the mutant strains, distant UASs could act to enhance transcription in 

combination with more proximal UASs. They may act similarly to transcription of the 

HO promoter, which contains a regulatory region at -1000 to -1800 bp that is required for 

regulation in addition to the proximal regulatory region (McBride et al., 1997). 

 

 There are several potential mechanisms to explain how the MOT3, MIT1, and 

MSN2 mutations could be allowing long-distance activation.  The first possibility is the 
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transcription factors directly bind the reporters; the mutations prevent binding and 

therefore allow long-distance activation.  Neither reporter contains the Mit1 or Msn2 

binding site, although both reporters contain one Mot3 binding site. We think this 

mechanism is unlikely because it would predict the mutations are loss-of function.  A 

second possibility for the MOT3 and MIT1 mutations is that a change in binding 

specificity now allows binding of the transcription factor to the reporter.  The use of two 

reporters makes this mechanism less likely; although, it is possible the reporter spacer 

regions could both contain binding sites recognized by the altered transcription factors.  

The third possibility is that the mutations act indirectly to allow long-distance activation 

by causing altered expression of factors required to regulate activation distance.  Analysis 

of genes showing a two-fold or greater expression change did not give any insight into 

what these potential factors could be.  However, it is possible an unpredictable factor may 

play a role in regulation of activation distance in yeast.  Cohesin is involved in regulating 

sister chromatid separation during cell division, but it also has a secondary role in the 

formation of chromatin loops to mediate long-distance interactions in metazoans (Hadjur 

et al., 2009; Mishiro et al., 2009).  Perhaps the mutations result in altered expression of a 

protein in yeast that has dual functions, one of which is regulating activation distance.   

  

 It still remains unclear if the long-distance activation at the reporter occurs 

through the looping or scanning mechanism.  Northern analysis of YBR281C and SAF1 

show long-distance activation past a terminator, which suggests looping could be 

mediating this activation.  The only way to directly test for looping is 3C of the region.  

The increased activation of mutants in the 2027 bp reporter relative to the 1397 bp 
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reporter is consistent with looping of the reporter.  Previous studies demonstrate that in 

yeast when loop formation is forced, long-distance activation does occur (de Bruin et al., 

2001; Petrascheck et al., 2005).  If long-distance activation occurs at other regions of the 

genome, as the microarray results suggest, the activation could be occurring by different 

mechanisms at different locations.    
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Chapter 4 

Summary and perspectives 
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While a few studies have demonstrated that activation distance is regulated in 

yeast (Dobi and Winston, 2007; Guarente and Hoar, 1984; Struhl, 1984), only one has 

attempted to understand how this regulation occurs (Dobi and Winston, 2007).  

Following up on this study, we sought to gain a more complete understanding of how 

activation distance is regulated by identifying the factors involved.  To do this, we 

isolated polygenic mutants that display increased activation of a long-distance reporter.  

Using bulk segregant analysis and whole-genome sequencing, we identified mutations in 

MOT3, GRR1, PTR3, MIT1, MSN2, and YOR19W that each contribute to the Lda- 

phenotype. 

 

 In Chapter 2, we isolated independent lineages of strains that display long-

distance activation by the GAL1 UAS.  Previous selections for yeast polygenic mutants 

have been performed, though these experiments select for growth under a specific 

environmental condition by in lab evolution (Koschwanez et al., 2013; Romano et al., 

2010).  Our selection differs in that we are using a reporter-based system to select for 

mutants.  The use of a reporter system allows for study of processes beyond 

environmental growth conditions, in our case long-distance activation.  The reporter 

system was constructed with two reporters to reduce the number of cis-acting mutations.  

The second reporter used in this study requires Northern analysis to look for increases in 

URA3 mRNA, which limits the number of mutants that can be processed.  A potential 

adaptation of this reporter would be to use the Cryptococcus neoformans ILV2 gene, 

which makes C. neoformans highly resistant to sulfometuron methyl (SM), an 

acetolactate synthase inhibitor (Kingsbury et al., 2004).  Expression of C. neoformans 
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ILV2 in S. cerevisiae also confers resistance to high levels of SM.  If increasing 

expression of C. neoformans ILV2 can be correlated to increasing SM resistance, a 

second reporter could be constructed where increased resistance to SM was the readout.  

Adaptation of the reporter system could allow for the isolation of more mutations that 

increase long-distance activation.  More broadly, the dual reporter system could be 

adapted to study other aspects of gene regulation as polygenic traits. 

 

 Bulk segregant analysis and whole-genome sequencing of strains 1.2, 2.3a, and 

2.3b resulted in identification of five mutations that cause a marked increase in long-

distance activation.  Additional analysis of the sequence data for strains 2.3a and 2.3b 

revealed these strains are disomic for chromosome III.  This disomy is likely contributing 

to the Lda- phenotype.  However, there is still an unaccounted for component of 

heritability in strains 2.3a and 2.3b.  Additionally, as described in Chapter 2, strain 1.2 

appears to contain a causative mutation that was not identified by bulk segregant analysis, 

most likely because it does not enhance the Lda- phenotype of the sin4Δ mot3-1162 grr1-

531 triple mutant.  One potential method for identifying these missing components of 

heritability is to perform bulk segregant analysis on strains 1.1 and 2.2, the intermediate 

strains isolated in each lineage.   

 

 In Chapter 3, we identified transcriptional changes in the original polygenic 

mutants and some reconstructed polygenic mutants by microarray.  From these data, we 

attempted to identify other instances of long-distance activation occurring in the genome 

by analyzing tandem adjacent gene pairs where both genes had increased mRNA levels.  
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A greater number of tandem adjacent gene pairs were up than are expected by random 

chance.  We focused on gene pairs that were found in at least one of the reconstructed 

mutants to increase the chance that they are affected by the identified causative mutations.  

While one of the genes pairs tested, PUT4/PYK2, did not prove to be an example of long-

distance activation, there are several other candidates to test.  BDS1/YOL163W and 

DLD3/DSF1 are two additional candidate pairs worth testing by deletion of the 5’ gene 

promoter, as the mutants show the greatest increases in expression for both genes in each 

pair.  Additional analysis of the tandem adjacent gene pairs will reveal if they are 

upregulated as a result of long-distance activation.  Along with this analysis, it could be 

informative to perform expression analysis on the mutants using different environmental 

conditions, particularly stress conditions.  These experiments could reveal other candidate 

sites of long-distance activation as well as identify how stress-response differs in the 

mot3-1162 mutant.  

 

 Two of the mutations isolated, mot3-1162 and mit1-560, may cause altered DNA 

binding specificity, it would be of interest to determine the binding patterns of the mutant 

Mot3 and Mit1 proteins.  We looked for expression changes at several genes known to be 

regulated by Mot3 or Mit1 and found these genes are unaffected in the mutants based on 

our microarray data, so we speculate these mutant proteins are still able to bind to their 

known binding sites.  ChIP-seq experiments would reveal if the factors are binding 

normally across the genome, including the possibility that they are acting at our reporters.  
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 The mechanism for how the mutations allow long-distance activation is currently 

unknown; however, an attractive model is that in the mutants, the GAL1 UAS is able to 

activate the reporter via looping.  Currently the strongest evidence for looping in the 

polygenic mutants is galactose-dependent activation of SAF1.  At SAF1, long-distance 

activation occurs past a terminator, which is inconsistent with a scanning mechanism of 

activation REF.  The method of 3C can be used to determine if looping is occurring either 

at this locus or at our long-distance reporters. Analysis of increased reporter distances 

revealed that in the polygenic mutants, the GAL1 UAS activates the reporter more 

strongly at a distance of 2027 bp than 1397 bp.  We speculate that the distance of 2027 bp 

may be more permissive to loop formation than 1397 bp, thus resulting in stronger 

activation.  When performing these experiments it is important to keep in mind that 3C 

experiments are only semi-quantitative.  If loops form at a low frequency that is sufficient 

to allow long-distance activation, we may not detect them by 3C.  While we hope to 

determine if chromatin loops form in the mutants, a negative 3C result does not 

conclusively rule looping out as a possible mechanism. 

 

 Taken together, our results provide a more comprehensive view of long-distance 

activation in yeast.  Our method of isolation allowed us to identify mutations that would 

not have been found using traditional screening and selection experiments.  Analysis of 

genome-wide transcriptional changes suggests long-distance activation occurs at regions 

other than the reporter.  Additional analysis will determined if candidate regions of long-

distance activation are truly regions of long-distance activation or if these regions reflect 

other transcriptional changes.  Finally, 3C analysis of the BPH1 reporter as well as 
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YBR281C/SAF1 will examine the possibility long-distance activation is occurring by 

looping of the UAS to the core promoter. 
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Appendix 1 

Isolation and identification of sin4 and rgr1 mutations that allow 

activation over a UAS-TATA distance of 1397 basepairs 
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Introduction 

 

 To understand how activation distance is regulated in yeast, we isolated mutants 

that allow activation over a UAS-TATA distance that is normally non-permissive in yeast.  

A previous study resulted in isolation of mutations in SIN4, RGR1, SPT2, SPT10, and 

HTA1-HTB1 that allowed activation of a reporter with a UAS-TATA distance of 799 bp 

(Dobi and Winston, 2007, Dobi and Leeman, unpublished).  In an attempt to isolate 

stronger mutants, we selected additional mutants that allow long-distance activation using 

a reporter with a spacer distance of 1397 bp.  We found that every strain with a single 

recessive mutation contained a mutation in either SIN4 or RGR1. 

 

Materials and methods 

 

S. cerevisiae strains 

 

 The S. cerevisiae strains used in this study (Table 5-1) are isogenic with a GAL2+ 

derivative of S288C (Winston et al., 1995).  Rich (YPD) and synthetic complete (SC) 

dropout media were prepared as previously described (Rose et al., 1990).  SC Gal and 

SC-His Gal media contained 2% galactose as the carbon source.  Strains were constructed 

by crosses (Ausubel et al., 1991). 
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Table 5-1.  Strains used in this study  
 
Strain Genotype 
CR1 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASGAL11397 
CR2 MATα his3Δ200 ura3Δ0 trp1Δ63 lys2-128δ bph1Δ::kanMX-

UASGAL11397 
lda5 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASGAL11397 rgr1-5  
lda6 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASGAL11397 rgr1-6 
lda12 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASGAL11397 rgr1-12 
lda13 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASGAL11397 sin4-13 
lda25 MATα his3Δ200 ura3Δ0 trp1Δ63 lys2-128δ bph1Δ::kanMX-

UASGAL11397 rgr1-25 
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Selection of mutants 

 

 Five independent cultures of CR1 and CR2 were grown up grown in YPD 

overnight at 30°C.  From each culture, 200 μL of cells were plated onto SC-His Gal and 

the plates were UV irradiated at 5000μJ/cm3.  Plates were incubated at 30° and colonies 

that grew were purified on SC-His Gal and then on YPD.   

 

Plasmid complementation 

 

 Mutant strains were transformed with pM1387 (SIN4 URA3 CEN4 ARS1) and 

pM2597 (RGR1, URA3, 2 micron).  Transformants were tested for growth on SC-Ura His 

Gal.  

 

Diploid complementation 

 

 MATa mutants were crossed by MAT�  mutants and diploids were selected on 

SC-Leu Trp media.  Diploids were tested for complementation by growth on selective 

SC-His Gal media. 

 

Results 

 

 A total of 52 mutants were isolated after UV mutagenesis.  UV mutagenesis 

enhanced the mutation frequency; plates that had been UV mutagenized contained 4-5 
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fold more colonies than plates containing spontaneous mutants.  Of these mutants, 29 

were recessive single mutants and showed a similar phenotype to the sin4Δ.   Mutant 

strains were tested for mutations in SIN4 or RGR1 by plasmid complementation.  These 

strains were transformed with three plasmids: a SIN4 plasmid, an RGR1 plasmid, and a 

vector control.   Complementation of the Lda- phenotype with the SIN4 or RGR1 plasmid 

is indicated by loss of growth on selective SC-Ura His Gal media.  Examples of mutants 

complemented by either RGR1 or SIN4 plasmid are shown in Figure 5-1.  Using plasmid 

complementation, we identified 16 strains with sin4 mutations and 13 strains with rgr1 

mutations.  

 

 We performed diploid complementation tests on the rgr1 mutant strains.  We 

found that while some of the diploids resulted in non-complementation, as would be 

expected for mutations in the same gene, a subset of the diploids displayed 

complementation of the Lda- phenotype.  We hypothesized that the complementation 

could be the result of mutations in different domains of the protein.  We were particularly 

interested in this hypothesis because all previously isolated rgr1 mutations result in 

changes to the C-terminus of the protein (Sakai et al., 1990; Wang and Michels, 2004).  

We chose three mutants to sequence, two that fell into one of the rgr1 complementation 

groups and one that fell into the other rgr1 complementation group.  All three strains 

contain nonsense mutations in RGR1 that result in truncation of the C-terminal domain of 

the protein (Table 5-2).    
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Figure 5-1 Plasmid complementation of sin4 and rgr1 mutants.  Strains were 

transformed with SIN4, RGR1, and vector only plasmids.  Transformants were purified 

on SC-Ura media and replica plated to SC-Ura His Gal.  Plates were incubated at 30° for 

2 days.  A.  lda13 SIN4, RGR1, and vector transformants.  B.  lda5 SIN4, RGR1, and 

vector transformants. 
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Table 5-2.  rgr1 mutant sequencing 

Mutant DNA change Protein change 
lda6 A2202AT Q734H, premature stop 737 
lda12 C2690T Q897stop 
lda25 C2179T K726stop 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 153!

References 

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and 
Struhl, K., eds. (1991). Current Protocols in Molecular Biology (New York, Greene 
Publishing Associates and Wiley-Interscience). 
 
Dobi, K.C., and Winston, F. (2007). Analysis of transcriptional activation at a distance in 
Saccharomyces cerevisiae. Mol Cell Biol 27, 5575-5586. 
 
Rose, M.D., Winston, F., and Hieter, P. (1990). Methods in Yeast Genetics 1990: A 
Laboratory Course Manaual (Cold Spring Harbor, New York, Cold Spring Harbor 
Laboratory Press). 
 
Sakai, A., Shimizu, Y., Kondou, S., Chibazakura, T., and Hishinuma, F. (1990). Structure 
and molecular analysis of RGR1, a gene required for glucose repression of 
Saccharomyces cerevisiae. Mol Cell Biol 10, 4130-4138. 
 
Wang, X., and Michels, C.A. (2004). Mutations in SIN4 and RGR1 cause constitutive 
expression of MAL structural genes in Saccharomyces cerevisiae. Genetics 168, 747-757. 
 
Winston, F., Dollard, C., and Ricupero-Hovasse, S.L. (1995). Construction of a set of 
convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53-55. 
!
 

  



! 154!

 

 

 

 

 

 

 

Appendix 2 

Identification of polygenic mutant strains containing  

reporter duplications 
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Introduction 

 

 We decided to study the regulation of activation distance as a polygenic trait 

based on preliminary results seen with several mutant selection experiments.  In order to 

isolate mutants with stronger long distance activation phenotypes, we performed 

selection experiments using a reporter with a spacer distance of 2027 bp.  This 2027 

reporter was chosen because sin4Δ strains show a very weak Lda- phenotype at this 

distance.  We found that several of the mutants isolated contained a partial or complete 

chromosomal duplication that resulted in duplication of the reporter.  Isolation of strains 

containing chromosomal aneuploidies led to the decision to use strains with two reporters 

for the multiple mutant selections.   

 

 Materials and methods 

 

S. cerevisiae strains 

 

 The S. cerevisiae strains used in this study (Table 6-1) are isogenic with a GAL2+ 

derivative of S288C (Winston et al., 1995).  Rich (YPD) and synthetic complete (SC) 

dropout media were prepared as previously described (Rose et al., 1990).  SC Gal and 

SC-His Gal media contained 2% galactose as the carbon source.  Strains were constructed 

by crosses (Ausubel et al., 1991). 
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Table 6-1.  Strains used in this study  
 
Strain Genotype 
FY23 MATα his3Δ200 ura3Δ0 trp1Δ63 arg4-12 lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 
CR24 MATa his3Δ200 ura3Δ0 trp1Δ63 leu2Δ0  lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027  
CR31 MATα his3Δ200 ura3Δ0 trp1Δ63 arg4-12 lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh1 
CR32 MATα his3Δ200 ura3Δ0 trp1Δ63 arg4-12 lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh2 
CR33 MATα his3Δ200 ura3Δ0 trp1Δ63 arg4-12 lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh3 
CR34 MATα his3Δ200 ura3Δ0 trp1Δ63 arg4-12 lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh4 
CR35 MATa his3Δ200 ura3Δ0 trp1Δ63 leu2Δ0  lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh5 
CR36 MATa his3Δ200 ura3Δ0 trp1Δ63 leu2Δ0  lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh6 
CR37 MATa his3Δ200 ura3Δ0 trp1Δ63 leu2Δ0  lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh7 
CR38 MATa his3Δ200 ura3Δ0 trp1Δ63 leu2Δ0  lys2-128δ 

sin4Δ0::TRP1 bph1Δ::kanMX-UASGAL12027 enh8 
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Selection of polygenic mutants 

 

Starting with strains CR23 and CR24, each of which contains sin4Δ, we selected 

for mutants with stronger Lda- phenotypes.  10 independent cultures of each strain were 

grown in YPD overnight at 30°C.  From each culture, 200 μL of cells were plated onto 

two SC-His Gal 1 mM 3-AT, one of which was UV irradiated for 5000μJ/cm3.  Plates 

were incubated at 30° and colonies that grew were purified on SC-His Gal 1 mM 3-AT.  

Spot tests were also used to test whether the His+ phenotype was dependent on galactose.   

 

CHEF gel and Southern blot analysis 

 

 CHEF gel analysis was performed as previously described (Libuda and Winston, 

2006).  Southern hybridization analysis was conducted with a probe to the coding regions 

of HIS3 (-27 to +376, where +1 is the ATG). 

 

Comparative genome hybridization (CGH) analysis 

 

 Genomic DNA was extracted from each strain as previously described (Rose et al., 

1990).   CGH analysis was performed as previously described (Torres et al., 2007).  

Reference RNA was labeled with Cy3 and experimental RNA was labeled with Cy5.  

Genomic DNA from CR23 was used as a reference.  
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Results 

 

 Eight strains were isolated that showed growth on SC-His Gal 1 mM 3-AT, on 

this media the sin4Δ parent strains do not grow.  These strains were retested for growth 

on SC-His Gal 1 mM 3-AT by replica plating.  Replica plating revealed that some single 

colonies lost the ability to grow on selective media.  We suspected this instability could 

be due to changes in copy number of the reporter. 

 

 We first tested for altered copy number of the reporter by CHEF gel, which 

separates chromosomes by size, and Southern blot analysis.  An increase in reporter copy 

number could be caused by chromosomal rearrangements, which may be visible by 

CHEF gel.  Probing the Southern for HIS3 should result in hybridization to chromosome 

III, the site of the reporter.  Interestingly, the HIS3 probe hybridizes to a larger than 

expected chromosome in the mutant strains CR34 and CR36 (Fig. 6-1).  Additionally, the 

HIS3 probe hybridizes to two different sized chromosomes in a third mutant strain (Fig. 

6-1). 

 

 We performed CGH analysis to determine if the chromosomal rearrangements 

resulted in changes in copy number to the reporter.  We found that the three strains that 

showed abnormal HIS3 hybridization also displayed a partial or complete duplication of 

chromosome III that results in duplication of the reporter (Fig. 6-2).  Additionally, we 

performed CGH analysis on a strain that had lost resistance to 1 mM 3-AT.   
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Figure 6-1.  Southern blot of CHEF gel analysis.   Southern blot was probed for HIS3, 

which is expected to hybridize to chromosome III, roughly 316 kb in size.  Strains are as 

follows: CR23 (lane 1), CR24 (lane 2), CR31 (lane 3), CR32 (lane 4), CR33 (lane 5), 

CR34 (lane 6), CR35 (lane 7), CR36 (lane 8), CR37 (lane 9), and CR38 (lane 10).  
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Figure 6-2. CGH analysis of mutant strains.  Reference DNA (CR23) and query DNA 

were labeled and hybridized to an array.  Reads across each chromosome are presented.  

Duplications of query DNA are represented by a two fold increase in red signal intensity.  

A.  CGH analysis of CR24 compared to CR23.  B.  CGH analysis of CR24 compared to 

CR31.  C. CGH analysis of CR24 compared to CR36.  D.  CGH analysis of CR24 

compared to CR37.  E. CGH analysis of CR24 compared to CR37 strain that is no longer 

resistant to 1 mM 3-AT.   
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Figure 6-2. (Continued) 
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Figure 6-2. (Continued) 
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Figure 6-2. (Continued) 
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This strain no longer contained the chromosome III duplication, suggesting that the 

reporter duplication causes the 3-AT resistance phenotype.  These results indicate that 

using only one reporter will result in a high proportion of cis-acting elements if the 

selection is conducted in a strain with only one reporter.  These results led us to use a 

strain with two reporters for the polygenic mutant selection.  
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Appendix 3 

Isolation and identification of long-distance activation mutants in a 

CUP1 reporter strain  
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Introduction 

 

 The majority of the work done on the regulation of transcriptional activation 

distance has been done using a reporter containing the GAL1 UAS; however, we are also 

interested in how activation distance is regulated with other regulatory elements.  

Previous results suggest that selection for Lda- mutants using a CUP1 UAS reporter may 

identify different factors than those identified using the GAL1 UAS reporter (Dobi, 2007).  

Using the GAL1 UAS 799 reporter, sin4Δ and spt2Δ were found to cause the strongest 

Lda- phenotype.  However, sin4Δ and spt2Δ do not confer an Lda- phenotype with respect 

to the CUP1 UAS 326 bp reporter.  We therefore performed a selection to identify factors 

that allow long distance activation of the CUP1 UAS; these mutants were placed into 

three different complementation groups.  Two of the complementation groups have been 

identified as containing mutations in SPT10 or HTA1-HTB1.  Interestingly mutations in 

these genes also result in long distance activation of the GAL1 UAS reporter.  The 

mutation present in the third complementation group remains unidentified. 

 

Materials and methods 

 

S. cerevisiae strains 

 

 The S. cerevisiae strains used in this study (Table 7-1) are isogenic with a GAL2+ 

derivative of S288C (Winston et al., 1995).  Rich (YPD) and synthetic complete (SC)  
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Table 7-1.  Strains used in this study  
 
Strain Genotype 
FY76 MATa lys2-128� 
CR12 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASCUP1326 
CR13 MATα his3Δ200 ura3Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 

bph1Δ::kanMX-UASCUP1326 
lda201 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASCUP1326 lda201 
lda211 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASCUP1326 lda211 
lda228 MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-

UASCUP1326 lda228 
CR16 MAT α ybr281cΔ::hphMX-UASCUP1-HIS3 his3Δ200 

leu2Δ0 trp1Δ63 can1Δ::STE2pr-LEU2 lda211 
CR17 MAT α ybr281cΔ::hphMX-UASCUP1-HIS3 his3Δ200 

leu2Δ0 trp1Δ63 can1Δ::STE2pr-LEU2 lda201 
CR18 MAT α ybr281cΔ::hphMX-UASCUP1-HIS3 his3Δ200 

leu2Δ0 trp1Δ63 can1Δ::STE2pr-LEU2 lda211 
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dropout media were prepared as previously described (Rose et al., 1990).  SC Gal and 

SC-His Gal media contained 2% galactose as the carbon source.  Strains were constructed 

by crosses (Ausubel et al., 1991). 

 

Selection of CUP1 mutants 

 

 Five independent cultures of CR12 and CR13 were grown up grown in YPD 

overnight at 30°C.  From each culture, 200 μL of cells were plated onto two SC-His 

CuSO4 plates, one of which was UV irradiated for two minutes at 5000μJ/cm3.  Plates 

were incubated at 30° and colonies that grew were purified on SC-His CuSO4.   

 

Synthetic genetic array (SGA) analysis 

 

 SGA analysis was performed as previously described (Tong and Boone, 2005).   

SGA analysis was performed with CR16 to look for additional mutants that allow long 

distance activation of the CUP1 UAS.  Additionally, SGA analysis was performed on 

group 1 and group 3 mutants to look for deletion set mutations that fail to complement 

these mutations. 

 

High-throughput sequencing of yeast segregant pools 

 

 A yeast segregant pool was created for the group 3 mutant lda211 as described in 

Chapter 2.  Similar analysis was used to identify the mutation present in this strain. 
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Results 

 

 Selection for CUP1 Lda- mutants resulted in the isolation of 80 recessive mutants 

that were placed into three different complementation groups (Table 7-2).  The Lda- 

phenotype of a representative mutant from each group is shown in Figure 7-1.  

Complementation groups 2 and 3 both display Spt- phenotypes in addition to the Lda- 

phenotype.  We originally attempted to clone these strains by transformation with a CEN 

plasmid library; however, these attempts were unsuccessful. 

 

 We next attempted to clone groups 2 and 3 by testing if these strains contained 

mutations in known SPT genes.  We found that transformation of group 2 mutants with a 

plasmid containing wild-type SPT10 results in loss of the Lda- phenotype.  Additionally, 

crosses revealed the group 2 mutant is linked to SPT10.  These results led us to conclude 

the group 2 strains contain mutations in SPT10.  Similar techniques were unsuccessful in 

identifying the identity of the group 3 mutants. 

 

 In the effort to identify the mutations present in complementation groups 1 and 3, 

we crossed a mutant from each complementation group to a copy of the deletion set 

containing the CUP1 reporter.  We then screened the resulting diploids for strains that 

failed to complement the mutations, which would result in diploids with an Lda- 

phenotype.  All of the strains in the deletion set complemented the group 1 and group 3  
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Table 7-2. CUP1 complementation groups 

 Number of 
mutants 

Additional 
phenotypes 

 
Gene 

Group 1 64 n/a Unknown 

Group 2 15 Spt- SPT10 

Group 3 11 
 

Spt- HTA1-HTB1* 

 

* This result requires further verification 
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Figure 7-1 Lda- phenotypes of CUP1 mutants.  Ten-fold serial dilutions were made of 

saturated YPD cultures.  The dilutions were spotted to the specified media and incubated 

for four days at 30°.  Strains are as follows: WT HIS3 (FY76), CUP1 reporter (CR12), 

lda201, lda228, and lda211. 

SC-His 
 CuSO4 

YPD 

Group 1 

Group 3 

WT HIS3 
CUP1 reporter 

lda201 

Group 2 
WT HIS3 

CUP1 reporter 
lda228 

WT HIS3 
CUP1 reporter 

lda211 
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mutants, making this cloning attempt unsuccessful.  This result could indicate the group 1  

and group 3 mutations are in essential genes. 

 

We also screened the haploid deletion set for additional mutants that allow long-

distance activation of the CUP1 reporter.  We identified mrc1Δ, tof1Δ, hst3Δ, and hst4Δ 

strains as allowing long distance activation.  We were interested to see a different set of 

mutations than those identified using the GAL1 UAS reporter.  Further study of these 

mutants indicated the Lda- phenotypes were not stable, so we decided not to follow up on 

any of these mutants. 

 

 We used whole-genome sequencing to identify a candidate mutation for 

complementation group 3.  This mutation is in HTA1 and is present in 100% of the reads 

for the mutant sequencing pool, giving strong support for this mutation as the causative 

mutation.  This result should be verified by sequencing HTA1 in other members of group 

3.  Additionally, these strains should be transformed with a wild-type HTA1-HTB1 

plasmid. 

 

Discussion 

 

 The results presented in this appendix suggest that some of the factors involved in 

regulating activation distance have this role at multiple regulatory elements.   spt10 and 

hta1-htb1 mutants allow long-distance activation at both the GAL1 and CUP1 UASs.  

However, some mechanisms of long-distance activation appear to be UAS specific, as the 
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sin4Δ mutant does not allow activation of the CUP1 reporter.  Further work is required to 

determine the different requirements for long-distance activation between UASs. 
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