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Toward Multiplex Genome Engineering in Mammalian Cells 

ABSTRACT 

 

Given the explosion in human genetic data, new high-throughput genetic methods are 

necessary for studying variants and elucidating their role in human disease. In Chapter I,  I will 

expand on this concept and describe current methods for genetically modifying human cells. In 

E. coli, Multiplex Automatable Genome Engineering (MAGE) is a powerful tool that enables the 

targeting of multiple genomic loci simultaneously with synthetic oligos that are recombined at 

high frequencies in an optimized strain. MAGE as a method has two components: organism-

specific optimization of oligo recombination parameters and a protein capable of increasing 

recombination frequencies.  

In Chapter II, I describe my work in determining and optimizing the parameters for oligo 

recombination in human cells using a HeLa-based EGFP-rescue reporter system. I show that 

modified base analogs increase oligo recombination frequencies by avoiding the mismatch repair 

machinery. With an optimized oligonucleotide design, stably EGFP-corrected cells were 

generated at a frequency of ~0.05%. In addition, I investigate oligonucleotide toxicity and 

provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by 

the oligonucleotides might contribute to the low viability of oligo-corrected cells. I tested several 

proteins that could potentially increase oligo recombination frequencies, but no such activity was 

found. 
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Chapter III describes my characterization of the single-strand annealing protein (SSAP) 

Beta, capable of enhancing oligo recombination frequencies 10,000-fold in E. coli, with the goal 

of translating its function to human cells. This protein is the most important factor mediating 

MAGE in E. coli, but currently not much is known about it beyond its biochemical DNA 

annealing activity. One fundamental question is how Beta interacts with the E. coli machinery. I 

show that Beta interacts with the E. coli Single-Strand Binding Protein (SSB) in an interaction 

that requires the C-termini of both proteins, further supporting a mechanism of oligo 

incorporation during DNA replication.  

Finally, in Chapter IV I discuss future directions for this work, including further 

dissection of the biochemical function of Beta, and screens for SSAPs that enhance oligo 

recombination in any organism of interest.  
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CHAPTER ONE 

 INTRODUCTION: WHY WE NEED MULTIPLEX GENOME ENGINEERING IN 

MAMMALIAN CELLS 

 

 

Next-generation sequencing technologies have revolutionized biomedical research, 

decreasing the cost of sequencing projects several orders of magnitude (Metzker 2010). This has 

led to a dramatic increase in the amount of human genetic data available.  Soon it will be 

possible to sequence full human genomes for $1,000(Mardis 2006; von Bubnoff 2008), further 

accelerating the growth of data. Already, exome sequencing projects are revealing many novel 

variants, including some responsible for rare Mendelian disorders (Bamshad et al. 2011). 

Unfortunately, our current ability to sequence and identify genetic variants greatly 

outpaces our ability to characterize their functional significance. Genome-wide association 

studies (GWAS) have revealed many single-nucleotide polymorphisms (SNPs) linked to disease 

phenotypes, most of which are ‘tag SNPs’ in the context of large genomic regions where the 

actual causal variants remain unknown (Freedman et al. 2011). It has been suggested that rare 

variants with large effects could be significant contributors to common human diseases 

(McClellan & King 2010). Because they are rare, such variants would be underpowered in 

GWASs, although full genome sequencing of family cohorts can help narrow the possibilities. 

Cancer genomics, another field producing huge amounts of sequencing data(Meyerson et 

al. 2010), would also greatly benefit from improved methods for functionally testing genetic 
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variants. Comparison of the genome sequence of a lung cancer tumor with adjacent normal tissue 

revealed 50,675 SNP differences between these(Lee et al. 2010). In addition, studies on tumor 

evolution and responsiveness to drug can reveal hundreds or thousands of gene copy number 

changes(Jones et al. 2010). Demonstrating the power direct functional studies can have in this 

field, deletion of an enhancer region of the MYC gene containing a SNP long associated with 

tumorigenesis proved to be protective for intestinal tumorigenesis in mice (Sur et al. 2012). 

However, this was a case where the variant had been heavily studied for years. It remains a 

daunting challenge to identify new functionally relevant cancer mutations, let alone mutations 

directly responsible for tumor growth and malignancy. 

There are several complementary approaches used to sift through the data generated by 

GWAS studies. Computational models (Schaub et al. 2012) and other high-throughput 

technologies such as ChIP-Seq (McLean et al. 2010) can help prioritize SNP functional studies. 

In one case, an expression quantitative trait loci (eQTL) study of 95 primary human osteoblast 

cell lines combined with GWAS data on bone density helped narrow down SNPs to a specific 

eQTL in the SRR gene, considered a key player in chondrogenesis (Grundberg et al. 2009). 

However, this work failed to conclusively identify the causal SNP.  

Regulatory region variants are of particular interest, since expression variability of ~5% 

of all human genes is linked to SNPs located within 200kb of the gene (Pickrell et al. 2010). 

Although they have smaller effects than protein-coding variants, these variants are important 

because they are more common (Vernot et al. 2012). Massively parallel reporter studies of cis-

regulatory regions can provide a high-throughput way to study these variants (Patwardhan et al. 

2012; Melnikov et al. 2012). However such studies still miss the effects of chromosome structure 

and context. Ultimately, in order to prove causality variants need to be experimentally tested, the 
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gold standard being traditional genetics, where variants are modified in their native locus to 

determine what effects, if any, the modification has. 

Traditionally, targeted genetic modifications have been generated by selecting for rare 

homologous recombination (HR) events after introducing a donor DNA that carries the desired 

mutation along with a selectable gene marker. After selection, the marker may be removed using 

a targeted recombinase such as Cre. However, the throughput of this approach is limited by the 

extremely low frequency of HR and the high frequency of random integration events in human 

cells (Vasquez et al. 2001). In addition, selection markers or residual recombinase sequences 

could confound subtle phenotypes, such as those caused by variants in regulatory regions.  

Custom nucleases such as zinc-finger nucleases (ZFNs) (Urnov et al. 2005), transcription 

activator-like effector nucleases(TALENs) (Hockemeyer et al. 2011), and more recently 

CRISPR/Cas9(Mali et al. 2013; Cong et al. 2013) can create site-specific DNA double strand 

breaks that increase homologous recombination rates several orders of magnitude, allowing 

screening of seamlessly-modified cells. These targeted nucleases can be used with synthetic 

single-stranded oligonucleotides as donor, which increases efficiencies and eliminates the donor 

DNA preparation step (Soldner et al. 2011). Showing their potential for both therapeutics and 

biomedical research applications, ZFNs have been used to study the effects of reverting 

Parkinson’s disease in patient derived induced pluripotent stem cells (Reinhardt et al. 2013). 

Using CRISPR/Cas-mediated genome engineering, it is now possible to simultaneously target up 

to eight alleles in mouse embryonic stem cells, allowing the one-step generation of mouse 

models with homozygous changes(Wang et al. 2013). 
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However, production of custom nucleases for each new locus is dependent on knowledge 

of protein-DNA binding specificities, laborious design and optimization methods or expensive 

commercial licensing(Maeder et al. 2009; Chandrasekharan et al. 2009; Anon 2011). These 

limitations have been quickly eliminated, first by simplified TALEN construction methods 

(Reyon et al. 2012; Briggs et al. 2012) and more recently by adapting the bacterial CRISPR/Cas9 

system to work in human cells, whose DNA biding specificity is provided by an easily 

synthesized guide RNAs complementary to the target site (Cong et al. 2013; Mali et al. 2013). 

However, the potential for multiplexing custom targeted nucleases may be limited since multiple 

double strand breaks could lead to gross genome rearrangements or deletions(Şöllü et al. 2010; 

Doyon et al. 2010) In addition, these targeted nucleases have specificity problems, with off-

target binding leading to unwanted double-strand break-mediated mutagenesis(Pattanayak et al. 

2011; Fu et al. 2013). Thus, there is still a need for improved genome engineering methods that 

can keep up with the impending demand for functional characterizations of genetic variants. 

Oligonucleotide-mediated recombination is an attractive alternative strategy for genome 

engineering(Carr & Church 2009) in which mutation-encoding oligonucleotides modify the 

genome without the need for site-specific DNA-binding proteins. Oligo recombination methods 

have been developed in mammalian cells with reported gene targeting frequencies of up to 2% 

(M. Aarts & te Riele 2010; Olsen, Randøl, Luna, et al. 2005; Wu et al. 2005; Papaioannou et al. 

2009). There is strong evidence suggesting a mechanism where the oligo is incorporated(Olsen, 

Randøl, Luna, et al. 2005) in a strand-biased manner(Olsen, Randøl & Krauss 2005; Radecke et 

al. 2006). The endogenous mismatch repair (MMR) machinery has been found to inhibit oligo 

incorporation in mammalian cells(Papaioannou et al. 2009; Dekker et al. 2003; Olsen et al. 2009) 

and oligos modified with phosphorothioate (PTO) bonds, which prevent degradation by 
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nucleases, have been found to increase recombination frequencies(Papaioannou et al. 2009). The 

main limitation of oligonucleotide-mediated recombinations in mammalian cells is the low 

survival of modified cells, with only a few studies having demonstrated long-term survival and 

proliferation of corrected clones. To increase survival, the use of unprotected oligos has been 

suggested(Olsen, Randøl, Luna, et al. 2005; Marieke Aarts & te Riele 2010), however this also 

makes recombination frequencies too low for the method to be useful. 

In Chapter II, I evaluate oligo-mediated recombination in human cells in order to 

elucidate its specific requirements and limitations. Using a previously established broken EGFP 

reporter cell line, I verified that transfecting short, heavily phosphorothioated (PTO) oligos can 

achieve high (up to ~5%) recombination frequencies in this cell line. However, after culturing for 

a few days, the frequency of these modified cells quickly dropped to undetectable levels. 

Corrected EGFP+ cells were single-cell sorted and this revealed cells recombined using highly 

PTO-protected oligos were unable to proliferate and establish stably modified clonal populations. 

Allele-specific qPCR genotyping showed that the EGFP+ cells had at least one copy of the 

corrected EGFP ORF, suggesting the oligos had successfully modified their target.  

Published results suggested PTO-protected oligos might induce DNA damage. I 

attempted to mitigate this potential DNA damage response using drugs such as ATR/ATM 

inhibitors and apoptosis inhibitors, but these had no effects on oligo correction frequencies or the 

proliferation of corrected cells. Eventually, I found that having a high number of PTO 

modifications in the targeting oligo led to high toxicity and poor proliferation of modified cells. I 

determined that there is an optimal level of PTO bonds that minimize oligo toxicity while still 

increasing stable oligo recombination frequencies.  
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Using this reporter system I was able to test whether chemically modified bases capable 

of avoiding mismatch repair in E. coli would work similarly in human cells. As in E. coli, I 

found that 2’-Fluorouracil produced a ~2-fold increase on oligo recombination frequencies, and 

this increase was significantly reduced by transiently silencing the mismatch repair machinery. 

This suggests a mechanism where modified bases increase oligo recombination frequencies at 

least in part by avoiding mismatch repair.  

The main limitation of this method was generating stably modified cells. During the 

extensive troubleshooting I determined that DNA damage might not be the main cause of the 

toxicity seen in cells recombined with PTO-modified oligos. Although higher number of PTO 

bonds correlated with higher levels of DNA damage, corrected EGFP+ cells actually have lower 

gamma-H2AX phosphorylation levels than EGFP- cells. This finding was surprising, since most 

oligo toxicity studies have focused on the potential role of PTO modifications in DNA damage. 

To follow-up on this observation we performed RNA-seq and compared the transcription profiles 

of corrected and uncorrected cells. This showed a large number of differentially expressed genes, 

especially genes involved in cellular immunity and viral responses. This observation was 

validated by qPCR. Oligo-modified cells tend to have higher amounts of oligos in them. If the 

oligos are invoking cellular immunity and modified cells have higher amounts of oligo, then it is 

possible that the reason modified cells have a proliferation defect might be due to the 

aforementioned immune response. It is possible that decreasing the half-life of the oligo by 

reducing the number of PTO bonds would in turn decrease the signaling through cellular immune 

ssDNA sensors. Alternatively, the observed phenotype might be due to a cellular immune 

response induced by abnormal backbone of PTO-modified oligos. Regardless, these observations 

may explain why reducing the number of PTO bonds reduced their toxicity enough to allow 
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oligo-recombined cells to proliferate. Cellular immunity in the context of oligo recombination in 

human cells had not been previously described. It might be possible to use this observation to 

find ways of suppressing the toxicity of more heavily PTO-modified targeting oligos in order to 

increase oligo recombination frequencies.  

The reporter system described in this chapter enabled some improvement in oligo 

recombination. However, the method achieves stable oligo correction frequencies of only 

~1/1,000 in HeLa cells. Further improvements are necessary for this to be a useful method for 

characterizing human variants. In E. coli, the most important factor for high oligo recombination 

frequencies is the single-strand annealing protein Beta, increasing oligo recombination 

frequencies by four orders of magnitude. I tested if expressing Beta and similar proteins in 

human cells would have any effect in oligo-recombination frequencies. Even when trying 

different oligo sizes and verifying expression and nuclear localization of the protein, I was 

unable to detect any effect in oligo recombination frequencies. 

This result led me to the study in Chapter III, where I characterize the Beta protein 

biochemically in order to elucidate how it enables multiplex genome engineering in E. coli 

(MAGE). Optimization of this method by knocking out the mismatch repair pathway and 

enhancing the stability of the ssDNA oligo with phosphothioate bonds led to oligo recombination 

frequencies as high as 20-50% (Wang et al. 2009). The inherent simplicity and scalability of this 

method makes it particularly well-suited for generating a large number of genetic variants. When 

performed with multiplexed degenerate oligos, MAGE can generate >4x10
6
 combinatorial 

genomic variations. 
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Currently, the exact mechanism of Beta-mediated oligonucleotide recombination is not 

understood. It is known that an oligo that anneals with the lagging strand is more efficiently 

recombined than one targeting the leading strand(Ellis et al. 2001). This suggests a mechanism of 

oligo incorporation where the discontinuously synthesized lagging strand would be more 

accessible for the invading oligo, and after annealing to its target sequence the oligo gets 

incorporated as a pseudo-Okazaki fragment (Ellis et al. 2001; Court et al. 2002). Very little is 

known about Beta’s biochemical ability beyond annealing, strand invasion and limited strand 

displacement activities (Mythili et al. 1996; Li et al. 1998; Rybalchenko et al. 2004).  

The fact that I and others(van Kessel & Hatfull 2007; Swingle, Bao, et al. 2010; Binder et 

al. 2013) have observed that Beta is not capable of significantly enhancing oligo recombination 

in other organisms suggests that it may interact with a specific component of the host’s 

machinery. In eukaryotic cells, the SSAP RAD52 is capable of DNA annealing in the presence 

of its single-strand binding protein RPA (Sung 1997; New et al. 1998; Shinohara & Ogawa 

1998). Similarly, in E. coli and other bacteria RecO anneals DNA in the presence of SSB 

(Kantake et al. 2002). 

 I hypothesized that Beta acts in a similar fashion, removing the annealing inhibition of 

SSB in an interaction requiring the C-terminus of the Beta protein, a domain previously shown to 

be dispensable for Beta’s DNA annealing activity (Wu et al. 2006). I show that deleting the C-

terminus of the protein greatly reduces oligo recombination. Using a His-tag purification strategy 

I measured the effects of different Beta mutations in an in vitro DNA annealing assay. In this 

assay two complementary 90mer oligos, one with a 3’-Fluorescein and the other with a 5’-Iowa 

Black FQ dark quencher are mixed and the annealing reaction can be measured on a plate reader 

as the fluorescein is quenched. Using this assay I found that Beta is capable of annealing 
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complementary ssDNA oligos coated with SSB in a reaction requiring magnesium. Only full-

length Beta is capable of annealing SSB-coated oligos, with deletions and single-amino acid 

substitutions abolishing function. When using a SSB with a C-terminal eight amino acid deletion 

Beta is no longer capable of annealing the oligos. There is growing evidence suggesting that the 

SSB C-terminus interaction is fairly species-specific(Manfredi et al. 2010). This terminal domain 

sequence is known to be required for SSB to interact with other cellular partners such as 

RecO(Hobbs et al. 2007), DNA polymerase IV(Furukohri et al. 2012) and ExoI(Lu & Keck 

2008). Similarly, in the SV40 in vitro eukaryotic DNA replication assay only human and not 

yeast RPA is able mediate replication(Wang et al. 2000). Thus, one possible reason for Beta 

having no activity in human cells might be that it cannot interact with human RPA. 

Future work will focus on expanding and validating these observations. I will compare 

Beta to other SSAPs using the in vitro annealing assay to search for any specific biochemical 

properties of Beta that might explain its high activity in oligo-mediated recombination. For 

example, it would be interesting to compare Beta with RecT, another E. coli phage-derived 

SSAP that is 1,000-fold less efficient than Beta in oligo-mediated recombination(Datta et al. 

2008). In addition, I will expand this by creating a library of phage-derived SSAPs,  select for the 

most active members in oligo recombination and characterizing them biochemically. Insights 

from this characterization may lead to a rational design of SSAPs capable of enhancing oligo 

recombination rates in human cells. 
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INTRODUCTION 
 

As discussed in the previous chapter, there has been an explosion in the amount of human 

genetic data available (Mardis 2006; von Bubnoff 2008). Unfortunately, our current ability to 

sequence and identify genetic variants greatly outpaces our ability to characterize their functional 

consequences. Genome-wide association studies (GWAS) have revealed many single-nucleotide 

polymorphisms (SNPs) linked to disease phenotypes in the context of large genomic regions 

(Freedman et al. 2011). Ultimately, potential causal variants linked to these SNPs need to be 

experimentally tested. Traditionally, targeted genetic modifications are achieved by selecting for 

rare homologous recombination(HR) events using a donor DNA that carries the desired mutation 

as well as a selectable gene marker. However, the throughput of this approach is limited by the 

extremely low frequency of HR in human cells (Vasquez et al. 2001).  

Custom targeted zinc-finger nucleases (ZFNs)(Urnov et al. 2005), and more recently 

transcription activator-like effector nucleases(TALENs)(Hockemeyer et al. 2011) and 

CRISPR/Cas9(Mali et al. 2013; Cong et al. 2013)  have shown great promise by increasing 

homologous recombination rates, allowing screening of seamlessly-modified cells. However, the 

potential for multiplexing custom targeted nucleases is limited, since multiple double strand 

breaks could lead to gross genome rearrangements or deletions(Şöllü et al. 2010; Doyon et al. 

2010). In addition, these proteins tend to have high off-target mutagenesis rates(Pattanayak et al. 

2011; Fu et al. 2013), which would confound functional studies. Thus, a different genome 

engineering technology will be necessary to keep up with the demand for post-GWAS functional 

characterizations. 
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Oligonucleotide-mediated targeting is an alternative strategy for genome 

engineering(Carr & Church 2009), in which mutation-encoding oligonucleotides modify the 

genome without the need for custom-designed DNA-binding proteins. The inherent simplicity 

and scalability of this method makes it particularly well suited for generating a large number of 

genetic variants. In E. coli lambda Red-mediated oligonucleotide recombineering, an oligo 

preferentially anneals to the lagging strand of the genome during DNA replication and 

incorporates into the daughter strand(Ellis et al. 2001). This has been optimized to achieve 

targeting efficiencies as high as 20%, and when performed with multiplexed degenerate oligos 

can generate >4x10
6
 combinatorial genomic variations(Wang et al. 2009). A similar method has 

been developed in mammalian cells, with reported gene targeting frequencies of up to 2%(M. 

Aarts & te Riele 2010; Olsen, Randøl, Luna, et al. 2005; Wu et al. 2005; Papaioannou et al. 

2009). There is strong evidence showing oligo incorporation(Olsen, Randøl, Luna, et al. 2005) 

and strand bias(Olsen, Randøl & Krauss 2005; Radecke et al. 2006). Similarly to E. coli, the 

endogenous mismatch repair (MMR) machinery has been found to inhibit oligo incorporation in 

mammalian cells(Dekker et al. 2003; Papaioannou et al. 2009; Olsen et al. 2009), and oligos 

modified with phosphorothioate (PTO) bonds to prevent nuclease degradation have been found 

to increase targeting efficiencies(Papaioannou et al. 2009). 

The main limitation of oligonucleotide-mediated targeting in mammalian cells is the low 

survival of modified cells, with only a few studies having demonstrated long-term survival and 

proliferation of corrected clones. To increase survival, the use of unprotected oligos has been 

suggested(Marieke Aarts & te Riele 2010; Olsen, Randøl, Luna, et al. 2005), however this also 

makes corrections too low for multiplexed genome engineering. Here I describe our progress 

towards surpassing these limitations. Using an EGFP-rescue based reporter system in HeLa 
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cells(Wu et al. 2005), I found that the use of commercially available chemically modified base 

analogs to encode the mismatch in the targeting oligo increase its frequency of incorporation, 

similar to results in E. coli (Wang et al. 2011). I also found that the number of PTO 

modifications correlate with both the toxicity of oligo transfection and the proliferation of oligo-

modified cells, and having 3-5 PTO bonds 3’ to the mismatch produced a >10-fold increase in 

stable targeting compared to an unmodified oligo. Applying these oligo design principles I was 

able to stably correct a mutant EGFP with an efficiency of ~0.05% in HeLa cells. Finally, by 

comparing the transcription profiles of EGFP-corrected and -uncorrected cells via RNAseq, I 

found upregulation of many genes associated with cellular immunity. I propose a new model 

explaining the toxicity in oligo-mediated recombination in human cells, where cells that uptake 

more oligo are more likely to become corrected, and likewise these cells are more likely to 

activate cellular immune responses. Future exploration of this cellular response to transfected 

oligos may lead to novel strategies for reducing their toxicity and eventually enable multiplexed 

genome engineering in human cells. 

 

RESULTS 

Mismatch-specific EGFP correction 

To improve human genome engineering with oligonucleotides, I  worked with a well-

characterized reporter system(Wu et al. 2005) consisting of a HeLa cell line with two stably 

integrated copies of a modified EGFP gene (mEGFP). This version of EGFP has a non-

functional start codon (TTG) which can be rescued by integration of targeting oligos (Figure  
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Figure 2.1.Oligo-mediated targeting reporter system.  (a) Reporter consists of a 

HeLa cell line with two stably integrated copies of EGFP with a mutated TTG start 

codon and a second potential start codon (AAG)  downstream, both shown in red.  

Each mutated start codon can be targeted by sense or antisense oligos.  

Representative oligos used in this study are highlighted, in duplex form, with the 

mismatch shown by an asterisk.  Further detail can be found on Table 1.   (b) 

Sample flow cytometry dot plot of cells with no oligo (left) or transfected with F5-

8 (right, Table 1).  The frequency of oligo-induced correction of a start codon can 

be estimated as the %EGFP+/Propidium Iodide- cells (c) %EGFP+ cells generated 

after different oligo transfections,  with and without 20mM thymidine, assayed 36h 

post transfections.  Oligo sequences are shown 5’ to 3’ , and the PTO bonds are 

highlighted in gray.  The control oligos F5-1 and F5-6 did not produce any 

significant proportion of EGFP+ cells, neither did F5-2, which is complementary 

to the transcribed strand and encodes an ATG-restoring mutation. The oligos 

targeting the  first and second potential start codons on the non-transcribed strand, 

F5-3 and F5-5 respectively, did produce EGFP+ cells. Lipo=lipofectamine only 

control.  n=4 technical replicates 
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Figure 2.1 (Continued) 
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2.1a, Table 2.1) encoding for a functional ATG, thus the oligo-mediated targeting efficiency can 

be determined by flow cytometry as the percentage EGFP+ cells (Figure 2.1b). I confirmed 

previous findings(Yin et al. 2005) where targeting mEGFP with a 25bp long oligo 

complementary to the non-transcribed strand and carrying a centrally located mismatch and six 

PTO bonds at each end (F5-3, Figure 2.1c) delivered with Lipofectamine 2000 yielded a 

substantial proportion of EGFP+ cells after 48 hours (~0.5%), and this efficiency was further 

increased to ~2% by slowing down DNA replication with thymidine treatment. Other cationic 

lipid transfection reagents resulted in lower efficiencies, possibly due to low nuclear 

accumulation of the oligo (Supplementary Figure 2.1). Alternative delivery methods, such as 

electroporation and nucleofection failed to produce any significant proportion of EGFP+ cells 

(not shown). An oligo complementary to the transcribed strand, F5-2, did not produce any 

EGFP+ cells significantly different from background. Transfection of an oligo encoding an 

alternative ATG-restoring mutation 9bp away from the first site resulted in ~0.4% EGFP+ cells 

(F5-5, Figure 2.1a,c), whereas an oligo carrying a non-coding mismatch (F5-6, Figure 2.1c) did 

not produce EGFP+ cells, demonstrating that the expression of EGFP depends on the targeting 

oligo sequence restoring the ORF. To further verify that EFGP+ cells had undergone the desired 

genomic modification, EGFP+ and – cells were sorted out by fluorescence-activated cell sorting 

(FACS) and genotyped by allele-specific qPCR (AS-qPCR). The EGFP+ population was 

estimated by AS-qPCR to carry 11-13% converted DNA, which matches the 12.5% expected if 

these cells have undergone a single oligo incorporation at one of the two genomic mEGFP  

during DNA replication (1/8 strands at the end of S phase) but not yet proceeded through cell 

division. In the EGFP- population, the proportion of corrected alleles was estimated to be ~1%,  
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Table 2.1.  Oligonucleotides used in this study.   

Oligo name Sequence 

Corresponding 

Fig. 2.1 

strand 

F5-1 C*C*T*T*G*C*TCACCAAGGTGGC*G*G*A*A*T*T F5-1 

F5-2 A*A*T*T*C*C*GCCACCATGGTGA*G*C*A*A*G*G F5-2 

F5-3 C*C*T*T*G*C*TCACCATGGTGGC*G*G*A*A*T*T F5-3 

F5-4 A*G*C*T*C*C*TCGCCCTTGCTCA*C*C*A*a*G*G F5-4 

F5-5 A*G*C*T*C*C*TCGCCCATGCTCA*C*C*A*A*G*G F5-5 

F5-6 A*G*C*T*C*C*TCGCCCGTGCTCA*C*C*A*A*G*G F5-3 

F5-7 C*C*T*T*G*C*TCACCAdUGGTGGC*G*G*A*A*T*T F5-3 

F5-8 C*C*T*T*G*C*TCACCAFuGGTGGC*G*G*A*A*T*T F5-3 

F5-9 A*G*C*T*C*C*TCGCCCFaTGCTCA*C*C*A*A*G*G F5-4 

F5-10 A*G*C*T*C*C*TCGCCCAmTGCTCA*C*C*A*A*G*G F5-4 

F5-11 C * C * T * T * G * C * T C A C C A T G G T G G C G G A A T T F5-3 

F5-12 C C T T G C T C A C C A T G G T G G C * G * G * A * A * T * T F5-3 

F5-13 C * C * T * T G C T C A C C A T G G T G G C G G A * A * T * T F5-3 

F5-14 C*C*T*T*G*CTCACCATGGTGGCG*G*A*A*T*T F5-3 

F5-15 C*C*T*T*G*C*T*CACCATGGTGG*C*G*G*A*A*T*T F5-3 

F5-16 C*C*T*T*G*C*T*C*A*CCATGGT*G*G*C*G*G*A*A*T*T F5-3 

F5-17 C C T T G C T C A C C A F u * G * G * T G G C G G A A T T F5-3 

F5-18 C C T T G C T C A C C A F u * G * G * T * G * G * C G G A A T T F5-3 

F5-19 C*C*T*T*G*C*TCACCAFuGGTGGC*G*G*A*A*T*T F5-3 

F5-20 C C T T G C T C A C C A A * G * G * T G G C G G A A T T F5-1 

F5-21 C C T T G C T C A C C A F u G G T G G C G G A A T T F5-3 

F5-22 C C T T G C T C A C C A F u * G G T G G C G G A A T T F5-3 

F5-23 C C T T G C T C A C C A F u * G * G T G G C G G A A T T F5-3 

F5-24 C C T T G C T C A C C A F u * G * G * T * G G C G G A A T T F5-3 

F5-25 C C T T G C T C A C C A F u * G * G * T * G * G C G G A A T T F5-3 

F5-26 C C T T G C T C A C C A F u * G * G * T * G * G * C * G G A A T T F5-3 

F5-27 CCTTGCTCACCAFu*G*G*T*G*G*C*G*GAATT F5-3 

F5-28 CCTTGCTCACCAFu*G*G*T*G*G*C*G*G*AATT F5-3 

F5-29 C C T T G C T C A C C A T * G * G * T G G C G G A A T T F5-3 

F5-30 C C T T G C T C A C C A F u G G T G G C G G A * A * T * T F5-3 

F5-31 A A T T C C G C C A C C A * T * G * G T G A G C A A G G F5-2 

F5-32 A A T T C C G C C A C C A m * T * G * G T G A G C A A G G F5-2 

F5-33 C C T T G C T C A C C A F u * A * G * T G G C G G A A T T F5-3 

F5-34 C C T T G C T C A C C A F u * A * G * G T G G C G G A A T F5-3 

F5-35 C C T T G C T C A C C A T * A * G * T G G C G G A A T T F5-3 

F5-36 C C T T G C T C A C C A T * A * G * G T G G C G G A A T F5-3 

F5-37 C y 5 - G G C T C C T T C A G C T * G * T * G A G A C T A C G T n/a 

F5-38 C C T T G C T C A C C A F u * G * G * T G G m C G G A A T T F5-3 

 

Sequences shown 5’ to 3’.  PTO bonds shown as asterisks (*).  dU=deoxyUridine, Fu=2’-

Fluorouracil, Fa= 2’-Fluoroadenine, Am=2-Aminopurine, mC= 5-Methyl deoxyCytidine 
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which may either represent corrected cells that had not yet produced functional EGFP protein or 

PCR artifacts caused by residual targeting oligonucleotides in the cells(Disterer et al. 2009). 

 

Modified bases increase efficiency in part by avoiding mismatch repair in mammalian cells 

Previous work has shown that the MMR machinery plays a significant role recognizing 

and removing the mutation caused by the oligo incorporation event. Currently, the only way 

around this is by either completely knocking down one of the main MMR proteins (e.g. MSH2) 

or by transient silencing with RNAi(Aarts et al. 2009). Our group recently showed an alternative 

strategy in E. coli, where the oligo contains chemically modified bases that avoid mismatch 

repair recognition(Wang et al. 2011). I tested oligos complementary to the non-transcribed 

strands of the two potential start codons of mEGFP while varying the mismatched base (Figure 

2.2). The best replacement for the T-T mismatch on the first start codon was 2’-Fluorouracil 

(FU), while for the A-A mismatch on the second start codon 2-Aminopurine (AM) was best, 

each giving a ~2-fold increase in mEGFP correction efficiency (Figure 2.2a,b). To test whether 

the increased efficiency in mEGFP correction by the modified bases was due to avoidance of 

MMR, I transfected cells with validated shRNAs plasmids targeting MSH2 and 

MLH1(Table2.2),then tested the mEGFP correction efficiency using oligos with the different 

modified bases.  
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Figure 2.2 Chemically-modified  base analogs.  (a-b)Modified base-containing oligos 

complementary to the non-transcribed strand’s (a)first potential start codon TTG and (b) second 

potential start codon AAG, where each mismatched base X in the targeting oligo is shown in 

parenthesis.  (c-d) RNAi targeting key mismatch repair proteins MLH1 and MSH2 for the 

(a)TTG and (b)AAG start codon targeted by oligos containing modified bases.  Data was 

normalized relative to scr shRNA, thus in (c) each MMR component silencing produced a 2-fold 

improvement for the natural T base, while the improvement for FU was reduced.  This is seen to 

a lesser degree in (d) comparing A and AM, while FA was further improved, suggesting it is 

more strongly recognized by MMR.  n=4 technical replicates 
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Table 2.2 shRNAs sequences 

Name Target Sequence  

TRCN0000040056 MLH1 CCGGCCAAGTGAAGAATATGGGAAACTCGAGTTTCCCATATTCTTCACT

TGGTTTTTG 

TRCN0000039670 MSH2 CCGGGCCTTGCTGAATAAGTGTAAACTCGAGTTTACACTTATTCAGCAA

GGCTTTTTG 

#1864 (Addgene) scramble CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGG 

 

Table 2.3  PCR primers sequences 

PCR primers 

Name Sequence 

N1 TCAATGGGCGTGGATAGCGG 

N3 CGTTGTGGCTGTTGTAGTTG 

EGFP(-)-specific forward primer CGCTGAATTCCGCCACCt 

EGFP(+)-specific forward primer CGCTGAATTCCGCCACCa 

EGFP  Reverse primer CAGGGTCAGCTTGCCGTAGG 

qPCR primers 

Name/Target Sequence 

POLR2B Fwd(housekeeping) GCGGATGAGGATATGCAATATGA 

POLR2B Rvs ACCAAGCCTTTCTCGTCAAAA 

IL32 Fwd ATGTGCTTCCCGAAGGTCCTC 

IL32 Rvs TCATTTTGAGGATTGGGGTTC 

HLAB Fwd CAGTTCGTGAGGTTCGACAG 

HLAB Rvs CAGCCGTACATGCTCTGGA 

OAS3 Fwd TCTGAGACTCACGTTTCCTGA 

OAS3 Rvs CACTGTTGAGGAGGGTAGAGTA 
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Downregulating either MSH2 or MLH1, as confirmed by western blotting (Supplementary 

Figure 2.2a), led to a ~2-fold increase in mEGFP targeting efficiency in both the T-T and the A-

A mismatched oligos (Figure 2.2c,d). However, this increase was significantly lower for FU-T 

(Student t-test p-val=1.26E-5 for MLH1, 3.42E-5 for MSH2) and somewhat lower for AM-A 

mismatch (p-val=0.07 for MLH1). Interestingly, FA seems to benefit more from MMR silencing 

than the natural base, suggesting an alternate mechanism is producing the increase in targeting 

efficiency observed. These results were verified by targeting MSH2 and MLH1 with siRNAs 

(Supplementary Figure 2.2b,c). Thus, silencing MSH2 and MLH1 decreased the gap in targeting 

frequencies seen between the natural and modified bases, suggesting that the increase in 

targeting efficiency by oligos containing modified bases can be explained in part due to 

avoidance of MMR.  

 

Phosphorothioate modifications correlate with oligo transfection toxicity 

By integrating an oligo into the transcribed strand of mEGFP during DNA replication, 

oligo incorporation can be quantified early, since transcription and translation of EGFP can 

already take place before cell division. It has been shown that post-replication/pre-division 

corrected cells each contain only one out of four strands corrected at the individual target locus, 

so upon two rounds of cell division only 25% of cells stemming from the original EGFP+ 

population will still be EGFP+ (Marieke Aarts & te Riele 2010). However, I tracked the 

percentage of EGFP+ cells generated with oligo F5-3 over time and found an even greater 

decrease than expected; after 5 days EGFP+ cells had dropped to undetectable levels (not 

shown). This indicates that the corrected cells were either proliferating slower than the non-

corrected cells or dying. To distinguish these possibilities I sorted corrected single cells 48hrs 
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post F5-3 oligo transfection into 96-well plates. After multiple attempts, no EGFP+ clones were 

detected even when using oligos with the FU base analog, suggesting that corrected cells were 

unable to proliferate after oligo incorporation. This is in agreement with previous results(Liu et 

al. 2009), that were also unable to generate stably corrected clones with this HeLa F5 cell line. 

PTO modifications are used to protect oligos from nuclease degradation, however this 

modification has been reported to be toxic to cells(Liu et al. 2009). To quantify this toxicity in 

relationship to mEGFP targeting efficiency I varied the number of PTO modifications in the 

targeting oligos and measured the effects on both cell survival and correction efficiency after 

48hrs. I found a clear trend where increased number of PTO bonds results in lower survival of 

cells 48hrs after oligo transfection (Figure 2.3a), consistent with PTOs being toxic. In addition, 

an oligo with PTOs only at the 3’ end (F5-12) led to higher correction efficiency than one with 

PTOs only at the 5’ end (F5-11, Fig. 2.3a). Interestingly, mEGFP correction steadily decreased 

with additional PTOs when there were more than six at each end. These results suggested that 

finding a balance between toxicity and efficiency might be necessary for generating stably 

corrected cells.  

 

Cells corrected with less-protected oligos are more likely to proliferate 

I hypothesized that reducing the number of PTO bonds might increase the number of 

proliferating EGFP+ cells. However, since reducing the number of PTO bonds also decreases 

targeting efficiency, I decided to concentrate on protecting the 3’ end. Furthermore, I decided to 

test internally protected oligos, since these have been found to lead to higher oligo survival 

rates(Papaioannou et al. 2009). I designed two new oligos with three or six PTO bonds 3’ to the 

centrally located mismatch, all using a FU base analog (Table 2.1, Fig. 2.3b). 
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Figure 2.3 Varying PTOs in targeting oligos. All oligos in this figure are complementary to 

the non-transcribed strand’s first potential start codon TTG, similar to F5-3 in Fig. 1. (a) Oligo 

toxicity and targeting efficiency as a function of PTO modifications.  PTO bond position shown 

in gray.  ‘Total alive cells’ was estimated as the total gated PI- cells in 200uL from a 24-well 

plate 48hrs post oligo transfection.  (b) Correction efficiencies of new oligo designs with reduced 

PTO bonds and using FU modified base.  n=4 

Previous work has described the defect in oligo-corrected cells as a G2/M cell cycle 

arrest(Olsen, Randøl & Krauss 2005; Papaioannou et al. 2009; Olsen et al. 2009), with few cells 

moving past it. In order to generate a more detailed view of the effects of oligos on proliferation, 

I tracked cells using the CellTrace Violet dye(Efimova et al. 2003; Hawkins et al. 2007) (Figure 

2.4a). This allowed following the relative proliferation rate of the corrected (EGFP+) and 

uncorrected (EGFP-) cell populations by flow cytometry as the inverse dilution rate of the  

CellTrace dye’s Mean Fluorescent Intensity (MFI) (Figure 2.4b). First, we observe that in  
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Figure 2.4  Proliferation defect in corrected cells. Proliferation is inversely 

proportional to the MFI of the CellTrace Violet dye. Cells were treated with 

CellTrace Violet dye, then split and transfected with oligos 48hrs later.  Cells 

were fixed at each time point and run together on a LSRfortessa cell analyzer at 

the end of the time course (a)  Flow cytometry dot plots showing relative 

proliferation of EGFP+ and EGFP- cells generated with different targeting 

oligos, at four different time points post-transfection.  %EGFP shown as 

average±s.d. n=6. (b) Proliferation index is calculated as the inverse MFI of 

CellTrace x10
6
  for each population. (c) Cells treated with anti-microtubule 

drugs Taxol and Vincristine 24h after transfection with a 24h exposure time, 

checked at 48h and 96h post-transfection. n=4 technical replicates 
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Figure 2.4 (Continued) 

 

EGFP

C
e

llT
ra

ce
V

io
le

t
F5-17(3pto-FU) F5-18(6pto-FU) F5-8(12pto-FU)

48h

96h

144h

192h

0.002±0.002 

0.001±0.000 

0.003±0.001 

0.002±0.001 

0.570±0.055

0.147±0.014

0.044±0.005

0.033±0.004 

3.519±0.166 

0.309±0.031 

0.058±0.004 

0.014±0.003 

0.225±0.022

0.055±0.003

0.026±0.004

0.023±0.003 

F5-20(ctr)

0

50

100

150

200

250

300

350

400

450

500

48 96 144 192

P
ro

lif
e

ra
ti

o
n

 (
a.

u
.)

Time post-transfection (hrs)

F5-17 GFP+
F5-18 GFP+
F5-8 GFP+
F5-20  GFP-
F5-17 GFP-
F5-18 GFP-
F5-8 GFP-

0.0%
0.1%
0.2%
0.3%

0.4%
0.5%
0.6%
0.7%

0.8%
0.9%
1.0%

10 100 200 500 25 100 200

DMSO Taxol (nM) Vincristine (nM)

%
EG

FP
+

 c
e

lls

48 hrs

96 hrs

(a)

(b) (c)



 

26 

 

general EGFP+ cells proliferate slower than corresponding EGFP- cells. Second, the 

proliferation of EGFP+ cells inversely correlates with the number of PTO bonds of the oligo 

used to generate them, with the EGFP+ cells from the F5-8 (12 PTO) oligo hardly proliferating 

as expected, and the F5-18(6 PTO) having an intermediate phenotype. The proliferation rate of 

corrected cells depended on the number of PTO bonds on the oligo, suggesting it is the 

correcting oligo itself and not the expression of EGFP the cause of their proliferation defect. To 

functionally validate this observation, I treated F5-17 transfected cells with anti-microtubule 

drugs, which are preferentially toxic to proliferating cells(Engstrom et al. 2009), 24hrs post-

transfection (Fig. 2.6c). This produced an increase of EGFP+ cells at 48 and 96hrs, suggesting 

that non-corrected cells had been preferentially inhibited, and therefore that corrected cells 

experience delayed proliferation. To verify that the effects of the anti-microtubule drugs were not 

due to endosome destabilization leading to increased oligo release, cell were treated with 

chloroquine, which instead slightly decreased targeting frequencies (not shown). 

In the case of the F5-17 oligo, the EGFP+ cells seemed to achieve a proliferation rate 

similar to the uncorrected EGFP- cells eight days post-transfection, since the percentage of 

positive cells remained constant between 144 and 192hrs (Figure. 2.4a) and when checked again 

a few weeks of passaging (not shown). By doubling the amount of lipofectamine:oligo complex I 

was able to double the frequency of corrected cells to ~0.05% eight days post-transfection 

(Supplementary Figure 2.3). I chose this time point to retry their single-cell sorting assay and 

found that EGFP+ cells generated with the F5-17 oligo easily generated clonal populations. 

These clones were verified by sequencing and found to have the desired genome modification 

(Supplementary Figure 2.4). To verify that this modification was not due just to spontaneous 

mutations, I repeated the experiment with oligos that introduced two adjacent nucleotide 
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changes, one of which would restore the ATG start codon of mEGFP (using either a T or FU 

base) and other of which would introduce either a second substitution or a single-base insertion 

(Figure 2.5). As expected, efficiency of incorporation of double-mutant oligos was significantly 

lower than for single-substitution oligos, with the double-substitution being more efficient than 

the single-substitution-and-insertion. Interestingly, using the FU base had an adverse effect in the 

double-substitution, suggesting a more complex mismatch recognition effect when more than 

one substitution is involved. Although the correction efficiencies were low, it was possible to 

sort EGFP+ cells generated with all four oligos, and all clones proliferated normally and were 

verified by sequencing to be correctly modified (Supplementary Figure 2.4b,c).  

 

To further elucidate oligo design principles, I checked for long-term survival of EGFP+ 

cells while varying the number of PTO bonds 3’ to the mismatch (Figure 2.6a). This showed 3-

5PTO bonds as optimal, resulting in at least ~10-fold increase in targeting efficiency compared 

to unmodified oligos. I also varied the position of the PTO bonds, the strand polarity of the oligo 

used and the presence of modified bases (Figure 2.6b). When using an oligo complementary to 

the transcribed strand (F5-31, -32) I was able to detect some EGFP+ cells, but only slightly 

above the control oligo F5-20, suggesting the strand bias against the transcribed strand observed 

in this cell line is not just due to the additional DNA replication necessary to express the 

corrected gene when targeting this strand. Comparing the presence of 3PTO bonds at the 3’ 

terminus (F5-30) vs. 3’ internal to the mismatch (F5-17) produced a ~4-fold reduction  
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Figure 2.5. Generating double-mutants.  Oligos complementary to the first start codon in the 

non-transcribed strand and containing a second mismatch, either an insertion (^A) or substitution 

(-A), with silenced MSH2 and assayed 36hrs after transfection.   Targeting oligos shown in 

duplex 3-’to 5’-, with PTO highlighted in gray and mismatches shown with an asterisk.  F5-20 

was used as non-correcting control. n=4 technical replicates. Fu: 2’Fluorouracil. 

 

in EGFP+ cells, confirming that internal PTO modifications result in higher stable targeting 

frequencies. Comparing the natural (F5-29) and modified (F5-17) base oligos resulted in a 

similar 2-fold increase for the modified base as when assayed 48hrs after transfection. Thus, 

optimizing the oligo design with modified base analogs and reducing the number of PTO bonds 

enabled the generation of stable, isogenic populations genetically modified with oligos. 
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Figure 2.6. Effects of PTO in long-term survival of corrected cells.  (a) Varying numbers of 

PTO bonds 3’ to the mismatch, shown in gray, suggest 3-5 PTO bonds as optimal for balancing 

toxicity and stable targeting frequencies, assayed 14-days after oligo transfection.  (b) Testing 

the position of PTO bonds, strand targeted and use of modified bases in long term survival.  F5-

20 used as non correcting control,  F5-17, -29 and -30 are complementary to the non-transcribed 

strand, while F5-31, -32 are complementary to the transcribed. n=4 technical replicates 

 

The proliferation defect in corrected cells may be associated to a cellular immune response to 

transfected oligos 

These results suggest that the PTO modification in the oligos is the main reason corrected 

cells proliferate slower, rather than the mismatch generated by the oligo incorporation. Currently, 
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double-strand breaks. To check this I measured the levels of γH2AX phosphorylation in oligo 

transfected cells by flow cytometry (Supplementary Figure 2.5), and find that reducing the 

number of PTO bonds reduced the levels of γH2AX phosphorylation. Interestingly, this also 

showed that EGFP+ cells had lower levels of γH2AX phosphorylation when compared with the 

non-corrected EGFP- cells treated with the same oligo. This suggests that although γH2AX 

phosphorylation may be a general marker of oligo toxicity, DNA double-strand breaks might not 

be the cause of decreased proliferation of oligo-modified GFP+ cells, or at least not the only 

cause.   

To further explore the proliferation defect in corrected cells, I sorted EGFP+ and EGFP- 

cells 36hrs after transfection with the F5-17 oligo and performed RNA-seq to compare the two 

populations. This revealed a surprisingly high number of modestly differentially regulated genes 

(400 genes, p<10
-70

) between corrected and uncorrected cells (Appendix 1). We analyzed this top 

400 gene list with ToppFun(http://toppgene.cchmc.org) to look for enrichment on any Gene 

Ontology categories. Interestingly ‘viral reproduction’ and 'viral infectious cycle’ were among 

the most highly represented (Table 2.4).  

Table 2.4  Enriched GO categories.  Top 400 genes based on p-value were analyzed with 

Toppgene, showing strong representation of viral process category. 

GO ID Name P-value 

GO:0006415  translational termination  5.45E-33  

GO:0016032  viral reproduction  1.26E-30  

GO:0019058  viral infectious cycle  1.43E-30  

GO:0022415  viral reproductive process  2.85E-30  

GO:0006414  translational elongation  2.98E-30  

GO:0034623  cellular macromolecular complex disassembly  8.34E-30  

GO:0019083  viral transcription  9.65E-30  

GO:0019080  viral genome expression  9.65E-30  

GO:0032984  macromolecular complex disassembly  2.01E-29  

GO:0031018  endocrine pancreas development  7.36E-28  

GO:0071845  cellular component disassembly at cellular level  1.56E-27  
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Table 2.4 (continued) 

GO:0022411  cellular component disassembly  2.92E-27  

GO:0043624  cellular protein complex disassembly  5.63E-27  

GO:0043241  protein complex disassembly  1.35E-26  

GO:0006412  translation  2.06E-26  

GO:0031016  pancreas development  4.57E-25  

GO:0034621  cellular macromolecular complex subunit organization  2.81E-21  

GO:0035270  endocrine system development  3.43E-21  

GO:0048610  cellular process involved in reproduction  1.10E-18  

GO:0071822  protein complex subunit organization  5.58E-16  

GO:0043933  macromolecular complex subunit organization  1.50E-15  

GO:0022414  reproductive process  3.49E-08  

GO:0000003  reproduction  4.03E-08  

GO:0006396  RNA processing  3.82E-07  

GO:0016071  mRNA metabolic process  5.80E-05  

GO:0007093  mitotic cell cycle checkpoint  1.44E-03  

GO:0008380  RNA splicing  2.34E-03  

GO:0042274  ribosomal small subunit biogenesis  2.93E-03  

GO:0012501  programmed cell death  7.88E-03  

GO:0006364  rRNA processing  1.01E-02  

GO:0006260  DNA replication  1.14E-02  

GO:0002576  platelet degranulation  1.25E-02  

GO:0016072  rRNA metabolic process  1.39E-02  

GO:0031575  mitotic cell cycle G1/S transition checkpoint  1.50E-02  

GO:0071779  G1/S transition checkpoint  1.50E-02  

GO:0006090  pyruvate metabolic process  1.50E-02  

GO:0046034  ATP metabolic process  1.82E-02  

GO:2000045  regulation of G1/S transition of mitotic cell cycle  1.97E-02  

GO:0042273  ribosomal large subunit biogenesis  2.02E-02  

GO:0072431  

signal transduction involved in mitotic cell cycle G1/S transition DNA 

damage checkpoint  

2.14E-02  

GO:0072395  signal transduction involved in cell cycle checkpoint  2.14E-02  

GO:0072413  signal transduction involved in mitotic cell cycle checkpoint  2.14E-02  

GO:0072404  signal transduction involved in G1/S transition checkpoint  2.14E-02  

GO:0072474  signal transduction involved in mitotic cell cycle G1/S checkpoint  2.14E-02  

GO:0006977  

DNA damage response, signal transduction by p53 class mediator 

resulting in cell cycle arrest  

2.14E-02  

GO:0072422  signal transduction involved in DNA damage checkpoint  2.14E-02  

GO:0072401  signal transduction involved in DNA integrity checkpoint  2.14E-02  

GO:0006096  glycolysis  2.38E-02  

GO:0000075  cell cycle checkpoint  3.43E-02  
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Table 2.4 (continued) 

GO:0071158  positive regulation of cell cycle arrest  3.59E-02  

GO:0006457  protein folding  3.59E-02  

GO:0006915  apoptosis  3.77E-02  

GO:0006397  mRNA processing  4.25E-02  

GO:0031571  mitotic cell cycle G1/S transition DNA damage checkpoint  4.79E-02  

 

To further explore this observation, we choose three highly differentially expressed genes 

known to be involved in antiviral/cellular immune responses:  HLAB, IL32 and OAS3. I validated 

these genes by RT-qPCR, which allowed us to normalize the expression levels of corrected and 

uncorrected cells to untransfected cells (Figure 2.7a). This revealed much higher induction  

levels for both populations relative to untransfected cells. The difference between transfected and 

untransfected cells was much higher (8-30 fold) than between EGFP+ and EGFP- cells (2-4 

fold), suggesting that both non-corrected and corrected cells share an ‘oligo-transfected’ 

transcription profile. To verify that the gene changes were not due to EGFP itself, I checked the 

expression levels of EGFP+ and EGFP- cells after transfection with the F5-18 oligo. Like F5-17, 

F5-18 also generates EGFP+ cells, but F5-18 is a more toxic oligo as it contains three additional 

PTO bonds. If the upregulation of the three immune response genes observed were due to the 

EGFP protein and not oligo toxicity, EGFP+ or EGFP- cells should have similar expression of 

these genes whether they had been transfected with F5-17 or F5-18. In contrast, however, the F5-

18 transfected cells showed proportionally higher levels of induction of the three genes relative 

to F5-17, with EGFP+ cells still ~2-4 fold higher than EGFP- cells. One possible explanation for 

the difference between corrected and uncorrected cells would be that corrected cells got more 

oligos during transfection. I tested this by co-transfecting a targeting oligo along with a Cy5-

labled one (F5-37). This showed that EGFP+ cells consistently had 2-5 times higher levels of 
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oligos at varying oligo concentrations (Figure 2.7b), suggesting that corrected cells may be 

proliferating less due to relatively higher oligo concentrations inducing a stronger immune 

response. Oligos with higher number of PTO modification have increased half-lives, which 

might lead to higher immune stimulation.  
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Figure 2.7. Induction of immune-related genes in oligo-transfected cells. (a)RT-qPCR 

relative quantification was performed for key immune-related genes, normalizing oligo-

transfected to untransfected cells.  (b) Mean Fluorescence Intensity (MFI) of total and 

EGFP+cells transfected with both F5-17 and F5-38 (Cy5-labeled) oligo at varying 

concentrations.  Transfections were done in 24-well plates. n=4 (c) Methylation of the CpG 

sequence present in the targeting oligo has no effect on the %EGFP+ cells.  (d) Small-molecule 

inhibitors against key immune effector proteins, with DMSO as control, added 24 h after F5-17 

oligo transfection assayed for EGFP+ cells at 48h and 96h. n=4  technical replicates 
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One possible cause for the immune response to the transfected oligos would be the presence of 

an unmethylated CpG in the oligo sequence(Table 2.1). I tested an oligo with a methyl-C 

modification (F5-38), but this had no effect on the percentage of EGFP+ cells after oligo 

transfection (Figure 2.7c). This is not unexpected however, since non-CpG-containing oligos 

have also been found to activate inflammatory responses(Senn et al. 2005). Additionally, I tested 

small-molecule inhibitors targeting key immune signaling pathways, out of which NEMO 

inhibition produced a ~2-fold increase in the percentage of EGFP+ cells (Figure 2.7d). This 

increase, however, did not translate to higher survival eight days post-transfection(not shown). 

Further work is needed to determine the specific immune signaling pathway that might be 

induced in oligo-mediated targeting. Inhibiting such pathway may reduce the toxicity of PTO-

modified oligos, leading to further improvements in targeting efficiencies.  

Beta and related proteins do not improve oligo recombination in human cells 

In E. coli, the SSAP Beta increases oligo recombination rates by four orders of 

magnitude(Ellis et al. 2001).  I used the reporter system validated here to check if expressing 

Beta in human cells would have any effect in oligo-recombination frequencies. Even when trying 

different oligo sizes and verifying expression and nuclear localization of the protein we were 

unable to detect any effects in oligo recombination frequencies (Figure 2.8a,b). I expanded the 

search and tested related proteins, but none was found to significantly affect recombination 

frequencies (Figure 2.8c). 
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Figure 2.8. Testing Beta in human cells. (a) Oligo recombination frequencies in cells 

expressing Beta or Beta-NLS, transfected with targeting oligos of varying length. Ctr=empty 

plasmid. (b) Protein expression and cellular localization. Cells were transfected with Beta or a 

Beta with a nuclear localization signal. Beta protein had an added FlAsH N-terminal peptide to 

detect expression and cellular localization. (c) Fold effects of different overexpressed proteins 

in oligo recombination frequencies. 
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Figure 2.8 (Continued) 
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DISCUSSION 

 

In this work I describe our progress towards oligo-mediated genome engineering in 

human cells. An efficient version of this technology would be highly desirable since it does not 

require the site-specific nucleases or involve double-strand breaks, simplifying experimental 

design and reducing time and costs. Currently, however, oligo-mediated genome engineering in 

human cells is severely limited by both low oligo incorporation efficiency and the low survival 

of modified cells. The nature of this limitation is likely multifactorial, with DNA damage being 

the most studied so far (Olsen et al. 2009). Recent evidence in bacterial and mammalian systems 

suggests a model of oligo incorporation during DNA replication. Thus, when the oligo carrying 

the desired genetic change gets incorporated, it can be detected as a DNA replication error by the 

MMR machinery. The cause of low survival of corrected cells is unknown, but is at least partly 

caused by the cytotoxicity of the oligos. 

To reduce the impact of MMR on oligo-mediated recombinations, I tested if using 

chemically modified base analogs capable of avoiding MMR recognition in E. coli would have a 

similar effect in human cells. As in E. coli, I found that FU and AM outperform thymine and 

adenine, respectively, in creating T-T or A-A mismatches leading to A/T transversions. By 

transiently silencing MSH2 and MLH1 I found that, at least for FU, the increased targeting 

efficiency of these modified bases is in part due to avoidance of the MMR machinery. This 

effect, however, seem to be complex since adding a second mismatch produced variable results, 

likely due to sequence context effects(Mazurek et al. 2009). Because our reporter assay is limited 

to restoring the start codon of mEGFP, I was only able to study modified bases substituting A 

and T, but I expect that other modified bases found to work in E. coli will have a similar effect. 



 

39 

 

Further work is required to fully elucidate the mechanism by which modified bases increase 

targeting frequencies in human cells. These include testing the effects of a complete MMR 

knockout and the role of other DNA repair pathways such as base excision and nucleotide 

excision repair on different cell types. An advantage of using modified bases rather than 

suppressing the endogenous MMR machinery to increase oligo incorporation efficiency is the 

avoidance of unwanted mutations elsewhere in the genome that MMR suppression is likely to 

lead to(Dekker et al. 2011), an essential feature for functional genomics applications.  

Using FU for MMR-avoidance in an oligo containing 6PTO bonds on each end lead to a 

substantial number (~3-5%) of EGFP+ cells shortly after transfection, however this EGFP+ 

population did not proliferate further. This suggests that a process other than MMR-mediated 

DNA damage signaling may be causing the low survival of corrected cells. Since PTO bonds 

have been previously implicated in oligo cytotoxicity, I tested varying the number and position 

of PTO bonds. There was a clear trend where a higher the number of PTO bonds lowers the total 

number of cells surviving after transfection. Additionally, protecting only the 3’ end yielded a 

higher percentage of corrected cells than a similarly protected and similarly toxic 5’ end. Based 

on this, I designed two new oligos with a reduced number of PTO bonds 3’ to the mismatch and 

used these to examine cell proliferation after transfection in more detail. Using a cell tracking 

dye I found that the proliferation of corrected cells was consistently lower than that of 

uncorrected ones, and that the proliferation of corrected cells was increased when the targeting 

oligo contained a lower number of PTO bonds. Oligo F5-17 oligo allowed isolation of stably 

modified EGFP+ cells with the correct genotype. This oligo’s three PTO bonds are situated 

immediately 3’ to the mismatch base and are therefore internal to the oligo. The oligo would be 

reduced to only 16 bases long by 3’-to-5’ exonucleases, which might make annealing inefficient. 
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We speculate instead that internal-3’ protection might prevent removal of oligos by proofreading 

polymerases after annealing while still allowing sufficient clearance of excess oligo by 

autonomous exo- and endonucleases. Supporting this, F5-30, a similar oligo but with the 3 PTO 

bonds at the 3’ terminus resulted in a ~4-fold decrease in survival compared to F5-17.  

To try to elucidate the cause of oligo toxicity in relation to PTO bond number I measured 

the levels of γH2AX phosphorylation. I found that the number of PTO bonds directly correlates 

to the levels of  γH2AX phosphorylation, but EGFP+ cells have consistently lower levels than 

EGFP- cells. The fact that HeLa cells have abnormal p53 signaling might account for the 

observation that EGFP+ cells have lower levels of γH2AX phosphorylation. This would be the 

case, for example, if the observed double-strand breaks are general marker of oligo toxicity 

inducing apoptosis rather than directly causing double-strand breaks. Future investigation into 

the mechanisms of PTO toxicity and targeting oligo protection would be desirable.  

Cell proliferation experiments showed that modified cells are not an outlier but rather a 

subset of the population. To get a better understanding of this growth phenotype I did RNA-seq 

comparing the transcription profiles between corrected and uncorrected cells. This revealed a 

large number of mildly differentially expressed genes between the two populations, especially 

genes involved in immune/viral processes, based on GO category enrichment. Interestingly,  

DNA damage-associated GO categories had a much less significant p-value (~10
-2

 vs. ~10
-30

), 

further arguing against DNA damage causing the low survival of corrected cells. I validated the 

differential expression of HLAB, OAS3 and IL32 to use as immune response markers by RT-

qPCR, which in addition allowed us to compare expression levels to those of untransfected cells 

and of cells treated with different targeting oligo designs. This uncovered two important clues: 

first, both corrected and uncorrected cells showed a much higher fold induction of immune genes 
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than untransfected cells and second, more oligo PTO modifications led to proportionally higher 

expression levels. Since cells that get more oligos during transfection are presumably more likely 

to become EGFP+,  that higher oligo concentrations within corrected cells may be inducing a 

stronger cellular immune response. A similar effect may also explain the toxicity of PTO 

modifications, since PTO modifications stabilize oligos and will therefore lead to higher 

sustained oligo concentrations after transfection, which in turn may lead to higher immune 

signaling. Alternatively, it is possible that cellular DNA sensors might recognize the abnormal 

PTO backbone itself(Burckstummer et al. 2009). The model of oligo-mediated immune response 

seems plausible, especially in light of the growing list of cellular immune DNA sensors 

(Burckstummer et al. 2009; Zhang et al. 2011; Barber 2011)  and the role of 3’ exonucleases in 

inflammatory diseases(Coscoy & Raulet 2007). It is possible that the immune response triggered 

in oligo corrected cells might affect cellular phenotype in such a way that it confounds the effects 

of the targeted mutation itself. This could be assayed by comparing transcriptional profiles of 

modified clonal populations with the unmodified ‘parental’ lines. If necessary and depending on 

the intended study, mutations of interest could be evaluated in parallel with silent mutations to 

control for the modification process. Further work is necessary to better understand the roles of 

DNA double-strand breaks and cellular immunity in oligo-mediated toxicity, including testing 

these observations in different cell lines. 

The wealth of sequencing projects will necessitate novel methods for experimentally 

testing human genetic variants. For modeling a few high-interest single-loci isogenic changes by 

targeted manipulation of human cell genomes, the current state-of the-art method of targeted 

nucleases may be sufficient. However, screening of hundreds of polymorphisms and their 

potential combinatorial interactions for phenotypic effects is not currently feasible with this 
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method. An oligo-mediated genome engineering method as used in E. coli(Wang et al. 2009) is 

far better suited for this, where up to ten simultaneous oligo incorporations are possible (Carr et 

al. 2012) and experimental design is trivial. We estimate our current targeting frequency to be 

~0.05% for HeLa cells. This level of targeting efficiency should easily allow the generation of 

isogenic cells by using a pooled genotyping serial enrichment strategy(Aarts et al. 2009; Dekker 

et al. 2011). The cellular immune response to transfected oligos described here represents a novel 

and exciting avenue which might lead to further reduction of toxicity and thus improved 

targeting efficiencies in multiple cell types. Development of oligo-mediated genome engineering 

in human induced pluripotent stem cells could enable combinatorial testing of genetic variants in 

multiple tissues simultaneously, greatly expediting the study of human genetic variation and the 

genetic basis of human disease.  

Here I describe a validated reporter system used to study and improve oligo 

recombination frequencies in human cells. I used this reporter to test if the E. coli SSAP beta 

would enhance recombination rates. However I found the protein not to be active in the HeLa-F5 

cell line, even after verifying expression and nuclear localization. In the next chapter I describe 

my efforts trying to elucidate how this protein works in E. coli, with the goal of eventually 

adapting its activity to human cells. 

MATERIALS AND METHODS 

 

Cell culture and transfections 

The HeLa F5 cell line was kindly provided by Dr. Depei Liu. These were cultured in 

DMEM with GlutaMAX and HEPES, supplemented with 10% HI-FBS, 100 mg/ml streptomycin 
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and 100 U/ml penicillin (Invitrogen) at 37
o
C and 5% CO2  in a humidified incubator. Cells 

densities were determined using the Countess Automated Cell Counter (Invitrogen). For 

subculturing, cells were washed with PBS pH 7.4, trypsinized with TrypLE Express(Invitrogen) 

and neutralized with 10% HI-FBS DMEM. 

Oligo transfections 

HPLC-purified oligos were ordered from Integrated DNA Technologies, resuspended in 

distilled water and their concentrations verified by NanoDrop (Thermo Scientific). Cells were 

pre-seeded at 3x10
6
 cells per 10cm plate two days before transfection. Pre-seeded cells were split 

to 100,000 cells/well for a 24-well plate or at 3x10
6
 cells for a 10cm plate. The next day, cells 

were washed with PBS and 10% HI-FBS with no antibiotics was added. Transfections were done 

with Lipofectamine 2000 (Invitrogen) using a 3:1 ratio of μL lipofectamine to μg oligo. For 24-

well plates, 0.5μg of oligo and 1.5μL lipofectamine were diluted in 25μL OptiMEM(Invitrogen) 

each, incubated at room temperature for 5 mins, combined by pipetting, then incubated again for 

20 mins. The oligo complexes were added to cells dropwise and cultured continuously for 36-

48hrs. Unless otherwise noted, 20μM thymidine was added to the cells two hours prior 

transfection. 

Flow cytometry analysis 

After 36hrs, oligo-transfected cells were washed with PBS, trypsinized, neutralized with 

10% HI-FBS DMEM and transferred to 96-well U-bottom plate. Death exclusion was done with 

10% propidium iodide (Roche), and total surviving cells were estimated as the total number of 

living cells counted at a determined volume. The plate was run on a five-laser BD LSRFortessa 

HTS with FACS Diva 6.1 software. EGFP was detected with the 488nm laser, 530/30 nm filter; 

CellTrace Violet with the 405nm laser, 450/50 nm filter; propidium iodide with the 561nm, 
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610/20 nm filter; Cy5 with 640nm laser, 670/30 nm filter. Cell sorting was performed on a BD 

FACSAria II SORP equipped with 375nm, 405nm, 445 nm, 488nm, 561 nm, and 633nm lasers. 

Genotyping and sequencing 

We used allele-specific realtime PCR to quantify corrected versus uncorrected mEGFP 

DNA in cells after oligo targeting. A 152bp amplicon was amplified using a forward primer 

whose 3’ terminal base matched either the uncorrected or corrected mEGFP target site. Using 

standard curves for each primer pair, a ratio of corrected to non-corrected template strands could 

be estimated for each cell population. EGFP+ and EGFP- cells were sorted by FACS and 

pelleted. To lyse the cells, ~1,500 cells resuspended in 8.9μl water were added to 1μl 10X gold 

buffer and 0.1μL prepGEM enzyme (ZyGEM) and incubated for 75
o
C for 5 min then 95

o
C for 5 

min. The reaction was split into 2 x 5μL and each aliquot was mixed with 20 μL PCR mix 

containing the corrected-specific or non-corrected-specific primer pair. PCR mix: 18.8μL 1.1X 

Platinum Taq Supermix (Invitrogen), 0.5μL each primer (stock solution 10uM), 0.2μL SYBR 

green I (stock solution a 1:500 dilution of original tube). Realtime PCR was carried out on an 

Opticon 2 DNA Engine (MJ Research), under the following cycling conditions: 95
o
C for 3 min 

followed by 40 cycles of 95
o
C 30 sec, 62

o
C 30 sec, 72

o
C 30 sec. To sequence the mEGFP target 

site in stable non-corrected and corrected cell clones, a similar PCR protocol was used except 

with primers N1 and N3 from (Yin et al. 2005) that span the targeted region. PCR products were 

sequenced by Genewiz, inc. All PCR primer sequences used can be found in Supplementary 

Table 1.  

RNA interference 

HeLa F5 cells were seeded 3x10
6
 cells per 10cm plate. The next day, media was changed 

to 4mL 10% HI-FBS with no antibiotic. Transfection of validated shRNA plasmids (Sigma-
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Aldrich) or scramble control (Addgene) was done with FuGENE HD, diluting 15μg of HiSpeed 

Maxi-Prep(QIAGEN) purified plasmid and 60μL of FuGENE HD(Roche) in 500μL OptiMEM 

each. The dilutions were mixed by pipetting and incubated for 15mins before adding complexes 

dropwise to plates. After overnight transfection, cells were washed, trypsinized and re-seeded in 

10cm plates with 10% HI-FBS DMEM and 3μg/μL puromycin (Sigma-Aldrich)  After two days 

of puromycin selection, cells were split into 24-well plates 100,000 cells/well for oligo 

transfections. shRNA target sequences can be found in Supplementary Table 2. 

Cell Proliferation assay 

HeLa F5 cells seeded at 3x10
6
 cell per 10cm plate were washed and incubated in 5mL 

PBS with 10μM CellTrace Violet(Invitrogen) for 10 mins at 37
o
C, washed and grown in 10% 

HI-FBS DMEM overnight. Cells were split and pre-seeded at 3x10
6
 cell per 10cm plate, then the 

next day seeded in 24-well plates for oligo transfection. At each timepoint, cells were trypsinzed, 

centrifuged at 500g for 5 mins and fixed in 4% PFA (Biolegend) for 20 min in the dark at room 

temperature. After another centrifugation, cells were resuspended in Cell Staining Buffer 

(Biolegend) and kept at 4
o
C. After the last timepoint samples were run together on a BD 

LSRFortessa HTS. 

Anti-microtubule drug treatment 

Twenty-four hours after cells were transfected with oligos, media was changed and cells 

were exposed to varying concentrations of either Taxol or Vincristine (EMD) for 24 hours, then 

washed and assayed with the BD LSRFortessa HTS immediately or two days later (96 hours 

after oligo transfection). 

RNA-seq and qPCR 
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HeLa F5 cells plated at 3x10
6
 cells on a 10cm plate were washed and 4mL of OptiMEM 

with 20μM thymidine was added two hours prior transfection with 15μg oligo/45μL 

lipofectamine. Thirty-six hours after transfection cells were trypsinized, filtered through a 35μm 

cell strainer (BD Bioscience #352235), counted and centrifuged at 250g for 5 mins. Cells were 

resuspended at a density of 1x10
7
 cells/mL in 20% HI-FBS DMEM and sorted into EGFP+ and 

EGFP- directly into Trizol LS(Invitrogen). Extracted RNA was precipitated and concentrated on 

a RNAeasy Micro kit column (QIAGEN ), and the quality of RNA was determined in an Agilent 

2100 Bioanalyzer. Each sorting was done from 15 10-cm plates of transfected cells and the RNA 

of three independent sorting sessions was pooled to ~2μg of total RNA. RNA-seq was performed 

as described(Christodoulou et al. 2011) with some modifications, i.e. there was no normalization 

of the library. Reads were aligned using TOPHAT and reads mapping to each gene were 

analyzed for differential expression with a Bayesian statistic(Audic & Claverie 1997). For RT-

qPCR, first-strand synthesis was done with the SuperScript III kit (Invitrogen), and qPCR with 

the KAPA SYBR Fast Universal 2X mix following manufacturer’s protocol. The sequence of the 

IDT-synthesized qPCR oligos can be found in Supplementary Table 2. The reaction was assayed 

in a DNA Engine Opticon2 instrument (MJ Research). 

Small molecule Immune inhibitors drug treatment 

After cells were transfected with oligos for 24 hours, media was changed and cells were 

exposed 5μM IKK inhibitor VI, 50μM IRAK1/4 inhibitor, 20μM Cell-Permeable NEMO-

Binding Domain Binding Peptide, NF-κB SN50, 36μM Cell-Permeable Inhibitor Peptide and 

10μM JNK Inhibitor II (EMD) for 24 hours  then assayed with the BD LSRFortessa HTS 

immediately or two days later (96 hours after oligo transfection). 
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INTRODUCTION 

 

Oligo-mediated recombination as a powerful genome engineering tool 

In the previous chapter I showed that it is possible to generate genetically modified cells 

using ssDNA oligonucleotides. However, the recombination frequencies achieved were low, on 

the order of ~1/1000 cells. Thus making multiple changes, such as homozygous mutations, 

would require an ability to detect events happening with a frequency of 10
-6

. In this chapter, I 

describe our work on characterizing the single biggest contributing factor for MAGE in E. coli: 

the SSAP Beta, enhancing recombination by four orders of magnitude(Ellis et al. 2001), with the 

goal of translating its activity to human cells. There are many similarities between oligo 

recombination in E. coli and human cells, suggesting a common recombination pathway. For 

example, both methods show strong dependence on DNA replication, both methods are inhibited 

by the endogenous mismatch repair machinery and both methods show strong strand bias. 

One of the best example demonstrating the power of oligo-mediated recombination is 

MAGE, Multiplexed Automatable Genome Engineering (Wang et al. 2009). This powerful 

technology optimizes lambda Red recombineering in E. coli to dramatically improve 

oligonucleotide-mediated recombination. Recombineering, or lambda Red recombination-

mediated genetic engineering, uses the lambda phage’s recombination machinery normally 

expressed from the Red operon during the phage’s lytic growth phase (Poteete 2001). The Red 

machinery promotes recombination between the bacterial chromosome and linear dsDNA 

molecules, such as PCR products introduced into the cell via electroporation, with far more 

efficiency than previously used methods for making gene replacements in E. coli (Court et al. 

2002). The Red operon was discovered from lambda phage recombination defective mutants 
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isolated from recA
-
 E. coli strains that otherwise had WT recombination phenotypes. The mutant 

genes were initially described as Red α, β and γ. Red α, also known as lambda Exo, is a 5’3’ 

exonuclease, Red β is a single strand annealing protein (SSAP) and Red γ inhibits the RecBCD 

nuclease complex. The putative biological functions of the Red operon in the lambda phage may 

include (1) stimulation of lambda DNA replication, since DNA repair and replication systems are 

closely intertwined, (2) a DNA repair system against host restriction enzymes, (3) an alternative 

DNA repair pathway for when the lytic cycle is induced by DNA damage and (4) generating 

genetic diversity for phage evolution (Poteete 2001). 

One of the most attractive features of oligo-mediated recombination is its inherent 

simplicity, since it is ultimately based on the fundamental property ssDNA has of being both an 

information carrier and an effector. Oligo recombination appears to be innate in many bacteria 

even in the absence of phage proteins: P. syringae has an native recombination rate of 2400/10
8
, 

while in E. coli, S. flexneri and S. typhimurion the native oligo recombination frequency is about 

10-fold lower (Swingle, Markel, et al. 2010). Without a SSAP, just 20 nt of homology length 

nearly achieve maximal recombination frequencies. This is in contrast with Beta, which has been 

found to have an optimal homology length of 90 nt. In addition, they find that in innate 

recombination 15-19 bp oligos can be recombined, below the size limit of what Beta can. Further 

supporting the hypothesis of just ssDNA oligo effectors mediating recombination by annealing, 

the shorter the oligo is, the more significant its melting temperature becomes, with higher GC 

content leadings to higher frequencies(Swingle, Markel, et al. 2010). 

The single-strand annealing protein Beta 

Out of the three lambda Red proteins, the SSAP Beta is the only one required for oligo-

mediated recombination, where expressing this protein alone increases recombination 
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frequencies by four orders of magnitude (Ellis et al. 2001). The Beta protein promotes the 

renaturation of complementary DNA strands (Kmiec & Holloman 1981). A single monomer 

binds a minimal ssDNA sequence 28-36bp long, with a KD of 1.8 μM for a 36-mer. Adding 10 

mM Mg
+2

 increased affinity to a ssDNA 36-mer, while 250 mM NaCl abolished it (Mythili et al. 

1996). Renaturation of complementary DNA strands was most efficient when ssDNA was pre-

annealed with Beta (Karakousis et al. 1998), and linear ssDNA is a more efficient substrate than 

circular ssDNA, suggesting a preference for annealing ssDNA ends.  

Phylogenetic analysis suggests that SSAPs belong to one of three families: RecT/Beta, 

Rad52 and ERF, which seem to have evolved independently from DNA bacteriophages (Iyer et 

al. 2002). Rad52 is part of eukaryotic homologous recombination machinery (Mortensen et al. 

1996, p.52). The ERF SSAP can also mediate oligo recombination, although with lower 

efficiency than RecT and Beta (Zhang et al. 2003). The RecT/Beta superfamily can be further 

subdivided into three groups: the Beta group is present in a large number of bacterial species, 

while the RecT family is predominantly seen in low-GC Gram-positive bacteria. The third group, 

EHAP1-like, is more divergent and only present in E. coli and Salmonella.  

Single-strand annealing proteins can mediate strand exchange 

RecT is an E. coli phage-derived SSAP functionally and structurally related to Beta. The 

presence of Mg
2+

 reduces RecT binding to both ss- and dsDNA, with dsDNA affected more 

(Noirot & Kolodner 1998). RecT’s affinity to dsDNA is higher than for ssDNA with no Mg
2+

, 

but slightly higher for ssDNA in the presence of it. Like Beta, high salt concentrations reduce 

DNA binding. In addition to strand annealing, RecT is known to catalyze limited strand 

exchange leading to the formation of D-loops, a reaction inhibited at Mg
2+

 concentrations above 

5 mM, high RecT concentrations and high GC-content (Noirot et al. 2003). D-loops are formed 



 

51 

 

when ssDNA is pre-coated with RecT then added to dsDNA. This reaction is hypothesized to be 

driven by a stronger binding to the product of the oligo annealing reaction than to either ss- or 

dsDNA substrates (Hall & Kolodner 1994). 

Beta is also capable of limited strand exchange and D-loop formation with low GC-

content targets in a reaction inhibited by Mg
2+

 (Li et al. 1998; Rybalchenko et al. 2004). There is 

polarity to the strand exchange, with  3’-overhangs in dsDNA being more efficient than 5’ ones, 

although the difference disappears with excess amounts of Beta-bound oligo. Similarly to RecT, 

the order of annealing matters, with ssDNA preannealed with Beta being more efficient 

(Karakousis et al. 1998). It has been suggested that proteins such as RecT and Beta condense 

DNA leading to accelerated renaturation (Sikorav & Church 1991). This property, possibly 

combined with more stable binding of RecT and Beta to the final annealed products, could 

explain the limited, ATP-independent strand exchange activity observed. However, it is unclear 

how physiologically relevant the strand displacement activity of these proteins is, especially 

since it is only efficient with sequences with very low GC-contents. In MAGE, oligos with ∆G < 

-12.5 kcal/mol have lower recombination frequencies, which the authors attribute to potential 

secondary structures (Wang et al. 2009). However, they show that oligo recombinations can take 

place within broad GC-content range. It is possible that sequences with GC-content low enough 

to allow strand exchange have abnormally high oligo recombination rates, although this remains 

to be tested. 

Structure-function model for SSAPs 

Currently, the three-dimensional atomic structure of Beta is not known. Electron 

micrographs revealed three quaternary states of the Beta protein (Passy et al. 1999) (Figure 3.1). 

In the absence of DNA but requiring Mg
2+

, Beta formed a 12-unit small ring quaternary 
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structure. In the presence of a ssDNA 30mer and Mg
2+

 the ring structure had 15 units, while 

longer ssDNA formed 18-unit rings. The small rings were ~145Å in diameter, while the larger 

ones were 185-210Å . In the presence of dsDNA, long, left-handed helical filaments were seen. 

Circular dsDNA did not form large rings or filaments, while linear dsDNA did form filaments, a 

process enhanced with exposed ssDNA overhangs regardless of polarity. The helical filaments 

had the diameter of the larger rings. In the absence of Mg
2+

, no rings were seen in the absence of 

DNA or with 30mers, and with longer 1.2 kb ssDNA the rings observed tended to be incomplete 

and more heterogeneous structures. Mg
2+

 was not required for dsDNA filament formation, but it 

enhanced it when denatured complementary ssDNA products were used. Based on these 

observations, the authors propose a model where the large rings bind to one DNA strand end and 

initiate its annealing to the complementary strand. Once initiated, the annealing can proceed 

spontaneously, followed by the formation of a ring-nucleated filament on the duplex DNA. 

Supporting their hypothesis, under reannealing conditions rings are the first Beta structure to 

form on the ssDNA overhangs or on the ends of linear dsDNA, followed by filament assembly as 

the renaturation progresses.  
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Figure 3.1. Small (left), medium (middle) and large (left) ring structures formed by Beta 

(Passy et al. 1999). Copyright © 1999, The National Academy of Sciences. 

A recent study using atomic force microscopy proposed slightly different Beta quaternary 

structures(Erler et al. 2009). In this study a single monomer was found to bind ~11bp, and the 

minimum annealed complex was 16-20 bases consisting of two Beta monomers. In the absence 



 

54 

 

of DNA, Beta formed an 11-unit gapped ellipses, as opposed to a closed ring, and it seemed that 

the shallowness of the helix prevented the extension of additional Beta monomers. In the  

presence of ssDNA (140mer) Beta formed heterogeneous and disordered complexes in 

monomeric form, suggesting the binding of ssDNA is driven by an increase in entropy. More 

specifically, the transition from gapped ellipses to disordered monomers induced by Beta’s weak 

affinity to ssDNA may be explained by the intrinsic instability of a helical structure, as opposed 

to the ring structure proposed previously (Passy et al. 1999). With annealed dsDNA, Beta formed 

a left-handed helical filament, similar to the electron microscopy structures. Monomer spacing in 

the dsDNA helical structure was found to be essentially the same as the gapped ellipses in the 

absence of DNA. In this model, the left handedness of the helix might compensate for the torsion 

created by right-handed B-DNA helix after annealing, suggesting that DNA annealing drives the 

nucleoprotein filament formation (Figure 3.2).  

 

Figure 3.2 Atomic force microscopy-based model for Beta’s annealing (Erler et al. 2009). 
Copyright © 2009 Elsevier B.V. 
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Both models agree on the final structure formed in the presence of annealed dsDNA 

being a left-handed helix. In addition, both have similar structures in the absence of any DNA: 

EM showed rings while AFM revealed gapped ellipses, both of  ~11 monomers in length. The 

main difference between the models is the Beta-ssDNA intermediate. EM images show ring 

structures larger than the ones seen in the absence of DNA, while AFM shows disassembled 

monomers coating the DNA. The AFM study required some fixing for the Beta-only elliptical 

structure, while the rest were done in solution with no fixing. It is possible that the EM images 

are showing hyper-stabilized ring structures. This difference in structures led to two different 

mechanism for Beta-mediated annealing. A large ring annealing intermediate suggests a more 

prominent role for Beta in exposing the DNA bases for homology search, whereas the disordered 

monomer would support a condensation/crowding effect, although these two are not mutually 

exclusive. The ring model fails to explain how the helix is formed along annealed dsDNA, while 

the gapped ellipses model suggests that the helix is a direct extension of the ellipses, with 

inverted handedness induced by the right hand helix formed by B-DNA as it is annealed. 

Electron microscopy data revealed that the presence of Mg
2+ 

also stabilizes RecT 

filaments (Thresher et al. 1995). Combining this with the fact that Mg
2+

 also reduces DNA 

binding and D-loop formation, it has been proposed that the oligomeric structure might not be as 

proficient as the free monomeric RecT at DNA binding (Noirot & Kolodner 1998). Interestingly, 

the RecT/Beta protein family has two highly conserved C-terminal acidic residues, which may be 

involved in the coordination of Mg
2+

 (Iyer et al. 2002). This implies that the metal ion-dependent 

conformational switching is likely to be a general feature of the Beta/RecT protein family. 

Supporting this, the recently described mycobacteria phage SSAP gp61 showed a similar Mg
+2

-

dependent decreased affinity to dsDNA and ssDNA(van Kessel & Hatfull 2007).   
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Figure 3.3. Multiple alignment of the RecT/Beta protein family of SSAP. © 2002 Iyer et al; 

licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and 

redistribution of this article are permitted in all media for any purpose, provided this notice is 

preserved along with the article's original URL. http://www.biomedcentral.com/1471-2164/3/8 

 

Domain structure of Beta 

Complementing the EM and AFM studies, limited proteolysis revealed further details on 

Beta’s structure (Wu et al. 2006). In the presence of DNA, the N-terminus (1-177 aa) is a stable 

fragment involved in DNA binding, in the absence of DNA a 1-131 fragment is more stable, and 

with annealed dsDNA 1-177 and 1-230 stable fragments were generated. NHS-biotinylation 

bonding experiments revealed that many N-terminus lysines were involved in DNA binding, 

with a K172A mutation abolishing binding completely. The Beta 1-177 truncation was further 

characterized and based on its elution mass it still had an oligomeric structure of ~17 subunits. 
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Redβ_lambda_137511       19 DSVDPQELITTLRQ--------TAFKGDASD-AQFIALLIVANQYGLNPWTK---EIYAFPDKQN-------------GIVPVV---------GVDGWSRIINENQQFD--GMDFEQDNE------------------------------- 

Beta_Sd_6759957          19 DSVDPQELITTLRQ--------TAFKGDASD-AQFIALLIVANQYGLNPWTK---EIYAFPDKQN-------------GIVPVV---------GVDGWSRIINENQQFD--GMDFEQDNE------------------------------- 

lin1755_Li_16414242      24 GEEVKLSGNIIRDYL-------VSGNAEVTD-QEIIMFLQLCKYQKLNPFLN---EAYLVKFKNTKGPDK--------PAQIIV---------SKEAFMKRAETHEQYD--GFEAGIIVERN------GEVVEIEGAVS------------ 

mll7977_Ml_13476603       7 YTHSPRQLALIQKT----------VAKDCNT-DEFNLFVEVARAKGLDPF-----LGQIIPMIFSKGDSNKR------KMTIIISRDGQRVIAQRCGDYRPASKPPSYE---FDAELKSETNPQ----GIVSATVYL-------------- 

SPy0958_Strpy_13622119   15 TTDPTLLTGADIKKY-------FDPQNLLSE-KQVGQALALCKGRNLNPFAN---EVYIVAYKNNSGT----------DFSLIV---------SKEAFMKRAERCEGYD--GFEAGITVMRN------GEMVEIEGSLK------------ 

BPphi31.1_Orf245_7239201  7 IFSVDNLNMTTIKQY-------LDGGGKASD-AELVLLINLCKQNNMNPFMK---EVYFIKYGNQ-------------PAQIVV---------SRDFYRKRAFQNPNFV--GIEVGVIVLNKD-----GVLEHNEGTFK------------ 

XF1648_Xf_9106705        15 MTAEYQQSIRTALK--------TSLYPGASD-TSVDMVLSYCQAADLDPMTK---PVHIVPMWIPEKKVDGRVVSSAGMRDVIM--------PGIELYRTKAHRTGEYA--GQDEAVFGD--------TLCETLGGVQIR----------- 

UU154_Uu_14195377        29 EINQI-TRAVLTIQ---------GIDLKAIDLNQAAQIIYFCQANNLNPLNK---EVYLIQMGN--------------RLAPIV---------GIHTMTERAYRTERLV--GIVQSYNDVNKSA--------------------------- 

PF161_Borhercp_9836834    1 -NSSNIYEVWEAYKS--------MHGLKSMDTQSEREILTLLQVNNLNPFKK---EAYIIPFNG--------------RYAVVV---------AYQTLLIRAYEAGYSKY-SLEFKEEMVKTIKIDSKGNKMV------------------ 

RecT_Ec_16129310         52 AERMIRIATTEIRK---------VPALGNCDTMSFVSAIVQCSQLGLEPGS-ALGHAYLLPFGNKNEKSGKK------NVQLII---------GYRGMIDLARRSGQIA--SLSARVVREGDEFSFEFGLDEK-LIHRPGE---------- 

lin2413_Li_16801475      49 APQFLTSLLNLYNG---------DDYLQKTDPMTVVTSAMVAATLDL-PIDKNLGYAWIVPYKG--------------RAQFQL---------GYKGYIQLALRTGQYK--SINVIEVREGELLKWNRLTEEIELDLDN------------ 

ORF48_BPA118_16798835    49 APQFLTSLLNLYNG---------DDYLQKTDPMTVVTSAMVAATLDL-PIDKNLGYAWIVPYKG--------------RAQFQL---------GYKGYIQLALRTGQYK--SINVIEVRDGELLKWNRLTEEIELDLDN------------ 

BH3543_Bh_15616105       51 APQFMTSIINLYSN---------DSGLQKCDPMTVISSAMVAASLDL-PIDKNLGYAWIVPYYDRKTKSY--------RAQFQL---------GYKGYIQLALRSGQYR--YINAIPVRKGELIKWDPLTEEIEIDFEA------------ 

yqaK_Bs_16079681         48 ATQFTASILSLYNS---------EQMLQKTDPMSVISSAMVAATLDL-PIDKNLGYAWIVPYGG--------------KAQFQL---------GYKGYIQLALRTGQYK--SINCIPIHEGELQKWNPLTEEIEIDFEK------------ 

RecT_BPbIL309_13095817   29 TEGFVASLLSVV-G---------NSNLKNADANSVMTAAMKAATLDL-PIEPSLGFAYVIPYGR--------------EAQFQI---------GYKGFIQLALRSGQLT--GLNCGIVYESQFVSYDPLFEELELDFSQ------------ 

ORFC_Lp_13186144         40 PERMARIAMTELRK---------TPKLQECDPLSFIASIMQAAQLGLEPGIL--GSCYLIPFWNSKLGKF--------ECTFMP---------GYRGFLDLARRSGQIV--SLVARSVYENDEFSYEFGLKEN-IIHKPAM---------- 

gene35_SPP1_540750       52 ADRLSRIAMNVIRT---------NPKLLECDTASLMGAVLESAKLGVEPGLL--GQAYILPYTNYKKKTV--------EAQFIL---------GYKGLLDLVRRSGHVS--TISAQTVYKNDTFEYEYGLDDK-LVHRPAPFG-------- 

orf43_BPPVL_9635208      45 PSNAMKQAWLQISQ---------DNKLMSCNDTSKANALLDMVTQGLNPAK---NQCYFIPYGN--------------KMQLQR---------SYHGNVMMLKRDAGAQ--DVVAQVIYKGDTFKQEMGETGR-IKAIKHEQDFFN----- 

SA1794_SaN315_15927560   37 PENAMKSAMLQLQELKGSKKDGYKPALEFATSTSIANALMDMVVQGLNPAK---NQGYFIMYGD--------------KVQFQR---------SYHGTMAVTKRVAGAE--EINAEVIFEGDEVKYKTKNGKI-VELEHTQSFGN------ 

ORF10_BPR1T_1353527      37 AEGALGYTALAI-----------VNSGFTVSKEVIVDTLIKVASKGLDPRK---DQLYVIPNKK--------------GQVMLME--------SYFGYEKLAYDIPEIERGSVFAEVVRQGETVSFQGRTLEHEKAFEAIDNDIIGAYAKV 

SPy1477_Strpy_15675383   31 AEQFTTSLLSIISN---------NNLLAKATSESIMGAAMKAAVLNL-PIEPSLGFAYVVPYNRNYKDG---------NRWITVNEAQFQI--GYRGLIQLAQRSGQVR--NIEHGIIYEEEFLGYDKIRGQL-KLTGDY----------- 

EHAP1_Ec_484496           4 LVRFAELMSQSKATV--------PKHLESKP-ADCLAVTMQAAQWGMNP--------LPVAQ-----------------KTHVVN--------GTLGYEAQLVNAVVSSS-SLLATRLNYRWSGDW------------------------- 

STY2074_Salent_16760818  25 IQTFSQVMASGMATV--------PEHLRGNP-SDCMAITMQAMQWQMNP--------YAVAQ-----------------KTFVVN--------GVLGYEAQLVNAVISTR-GPLTGRIEYDWFGPWEKIIGKFEIRKNDK----------- 

STM2633_StLT2_16765953   48 LTAFANLMADSQVTV--------PAHLAGKP-ADCMAIVMQAMQWGMNP--------YAVAQ-----------------KTHLVN--------GVLGYEAQLVNAVIASS-SAIHGRFHYRYGGDWERCTRTQEITRDKNGKNGKY----- 
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Redβ_lambda_137511          ---SCTCRIYRKDRNH----PICVTEWMDECRREPFKTREGRE--------------------ITGPWQSHPKRMLRHKAMIQCAR--L-AFGFA----GIYDKDEAERIVENTAYTAERQPERDITPVN----DETMQEI    205 

Beta_Sd_6759957             ---SCTCRIYRKDRNH----PICVTEWMDECRRAPFKTREGRE--------------------ITGPWQSHPKRMLRHKAMIQCAR--L-AFGFA----GIYDKDEAERIVENTAYTTERQPERDITPVN----EETMSEI    205 

lin1755_Li_16414242         LDKDKLLGGWAKVFRKDR--SRPVSVRISEREFNKRQ----------------------------STWNAMPLTMMRKTAVVNAMREAF-PDNLG----AMYTEEEQGSLQNN--ETSVQEEIKQNANTE----MLDIPAQ    226 

mll7977_Ml_13476603         WKQDAKTAAWFEVAGQSYWDEFAPISYYDAYKMVDTGETWEDSGKPKKKRVLRDGATPQLD--DSGNWCRMPRLMIAKCAEMQALRAGW-PEQFT----GLYDEAEMDRAKV---------LEMAASEIV----AHEQEEN    237 

SPy0958_Strpy_13622119      LPDDVLIGGWAIVYRKDRSHRYKVTVDFNEYVKLDKYGN------------------------PRSTWKSMPGTMIRKTALVQTLREAF-PDELG----NMYTDIDGGDTFD---------AIKDVTPQE----TQEEVRA    214 

BPphi31.1_Orf245_7239201    THEQELVGAWARVHLKNTEIPVYVAVSYDEYVQMKD-GH------------------------PNKMWTNKPCTMLGKVAESQALRMAF-PAEFS----GTYGEEEYPEPEKEP---REVNGVKEPDRAQ----IESFDKE    209 

XF1648_Xf_9106705           YPSWCRVAVYRMVAGQRV--RFAATVYWLEAYATARKDSPA----------------------PNSMWQKRPFGQLEKCAEALALRKAF-PEAVG----AQPTAEEMDAGRHTI------EGETIHVAPI----PVNQDVR    226 

UU154_Uu_14195377           -KTILTIRSPGLKGLG----TVEAEVFLSEYSTNK------------------------------NLWLTKPITMLKKVSLAHALR--LSGLLAFK-GDTPYIYEEMQQGEAVP-------NKKMFTPPV----AEVIEPA    206 

PF161_Borhercp_9836834      -QEDWQCTAYFKSEHGN---IYSFSVLFNEYYKNS------------------------------PIWREKPVFMLRKCAVSCLCRT-LPGAGLE---SMPYIREELGDTDDL--------YEAHKVQQI----GHTETEK    188 

RecT_Ec_16129310            -NEDAPVTHVYAVARLKD--GGTQFEVMTRKQIEL-VRSL-SKAG------------------NNGPWVTHWEEMAKKTAIRRLFK--YLPVSIE---QRAVSMDEKEPLTIDP---------ADSSVLT--GEYSVIDNS    267 

lin2413_Li_16801475         -NTSEKVVGYCGYFQLIN--GFEKTVYWTRKEIEA-HKQK-FSK-------------------SDFGWKKDYDAMAKKTVLRNMLSK-WGILSID---QTAVTEDEAEPRER-----------KDVTEDE--SIPDIIDAP    253 

ORF48_BPA118_16798835       -NTSEKVIGYCGYFQLIN--GFEKTVYWTRKEIEA-HKKK-FSK-------------------SDFGWKKDYDAMAKKTVLRNMLSK-WGILSID---QTAVTEDEAEPRER-----------KDVTEDE--SIPDIIDAP    253 

BH3543_Bh_15616105          -RESDEVIGYAAFFELLN--GFRKTVYWRKEDVEA-HRQK-YSK-------------------SGFGWENDWDAMALKTVIKSLLSR-WGILSVE---QKAVIEDDEERLNPP----------ADNVVE---IEPEKPEVP    261 

yqaK_Bs_16079681            -RESDAVIGYAAYFELIN--GFRKTVYWTKAQVEK-HKKK-FSK-------------------SDFGWKNDWDAMALKTVLKAVLSK-WGILSVE---QKAVIEEDETR-ER-----------IDITNEA--DSSEIIDSE    251 

RecT_BPbIL309_13095817      -QASGDAVGYFASMKLAN--GFKKVTYWSKEQVLA-HKKK-FVKS------------------ANGPWRDHFDAMAQKTVLKAMLTK-YAPASIESKMQTAITEDDSERFENA----------KDVTPDEPVISIDESMTS    239 

ORFC_Lp_13186144            -DNKGQLIAVYAVAILKD--GGHQFDVMSKEEVDT-VRET-SKSK------------------DNGPWVTHYEEMAKKTVLRRLFK--WLPCSVE---QKAVSLDEMQEAGMQ--------NIKVAASEE-FDIDFVIDAD    254 

gene35_SPP1_540750          -TDRGEPVGYYAVAKMKD--GGYNFLVMSKQDVEK-HRDA-FSKSKNREGV------------VYGPWADHFDAMAKKTVLRQLIN--YLPISVE---LSGVAADERTGSEL------------HNQFAD---DDNIINVD    268 

orf43_BPPVL_9635208         -IDKENIIGAYCTIVFND--GRDNYIEVMTIEQIKQAWMQ-SSMIKDEKALQ-----------NSKTHNNFKEEMAKKTVINRAAKR-YINTSTD---NLFKYAQESEQRQR-----------KEVLDAE---VEENANQE    261 

SA1794_SaN315_15927560      -RNTQNIIGAYATVVFKD--ESRNYTEIMTFEEIEEAWKQ-SQMVYNGVFK------------EDGTHRRFPQEMAKKTVINRACKK-ILNSTDDA--SLSNQIKESEQRQR-----------KEVLDAE---VEENANQE    261 

ORF10_BPR1T_1353527         KIGDEEIAHYMSVYQISK--SWSKTNSLDKNFVEE-QRHNNYGKSWTVKVADTSKIEKGKLTAFNKNQEDFPEEMSKRTVIKALLKP-IIKSYAE---TSAAALDNNEEGTVI--------KEAEVLDDDFVLEEAETKQV    278 

SPy1477_Strpy_15675383      -VDSGVVKGYFASLELIS--GFYKMIFWPKEKVYE-HAKK-YSKTFDKKTGDFK---------PGTPWATEFDPMAIKTLLKELLSK-YAPLSVE---QDALEADNADSTIVIP---------KDVTPQETNSLDDLIGTQ    261 

EHAP1_Ec_484496             ----SNVNGKTDKSP-----NLTVTVSAVLKGEAEPRELT-ISMAQAGVR-------------NSPLWEQDPRQQLAYLCTKRWARL-HAPDVLL----GVYTPDELQETAPR--------VERDITPQT----TTAAGMN    187 

STY2074_Salent_16760818     -GKEYRVPGWKLADEN----GIGVRVQATLRGESKPRVLE-LLLAQARTR-------------NSTLWADDPRQQLAYLALKRWARL-YCPEVIL----GVYTRDELDEP-----------QEKIINPVQ----EHKNTSA    223 

STM2633_StLT2_16765953      -TVTERVRGWTDEDEI----GLFVQVGAILRGESEITWGEPLYLSGVVTR-------------NSPLWVSNPKQQIAYLGVKYWARL-YCPEVIL----GVYSPDEVEQR-----------EEREINPAP----VQRMSVQ    253 
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This truncation bound ssDNA more strongly than full-length Beta, demonstrating that the C-

terminal domain is not required for DNA binding, although it might be involved in controlling its 

affinity to ssDNA. In these experiments Mg
+2

 had no effect in the proteolysis of either Beta or 

Beta+33mer, suggesting it does not cause any major changes in the protein.  

Mechanisms of Red-mediated recombination 

Beta prefers to bind 3’ single-strand overhangs on dsDNA, which is the product of Exo’s 

5’3’ exonuclease action (Li et al. 1998). This observation led to an elegant mechanism of 

DNA recombination and double-strand break repair for Beta/Exo mediated single-strand 

annealing (Figure 3.4). This single-strand annealing double-strand repair mechanism, however, 

may not explain the high frequencies observed in oligo-mediated recombination. Instead, 

emerging studies point towards a mechanism of oligo incorporation during DNA replication as a 

pseudo-Okazaki fragment (Court et al. 2002). One of the earliest pieces of evidence supporting 

this mechanism is the strand bias observed, where the oligo complementary to the lagging strand 

incorporates at significantly higher frequencies than the leading strand (Ellis et al. 2001). 

Additionally, inactivation of the mismatch repair protein MutS enhances oligo recombination up 

to 100-fold(Costantino & Court 2003). This suggest that at some point during oligo 

recombination a mismatched dsDNA is generated and recognized by the repair machinery. 

Similar results are seen in native oligo recombination in the absence of phage-derived SSAPs 

(Swingle, Markel, et al. 2010). As with Beta-mediated recombination, mismatch repair 

contributes about a 100-fold effect, and the lagging strand is preferred 10-fold, suggesting these 

are intrinsic features of the oligo recombination mechanism.  

 



 

58 

 

 

Figure 3.4. Beta/Exo single-strand annealing DNA repair (Li et al. 1998).  In this model, two 

pieces of dsDNA are resected by Exo, leading to the loading of Beta to the exposed 3’ 

overhangs. The Beta-ssDNA nucleoprotein filaments eventually find a complementary region to 

anneal, followed by strand exchange, displacing 5’- overhangs from the junction. These 5’ 

overhang can then be trimmed by Exo, leaving nicks that can be sealed by DNA ligase. 

Copyright © 1998, Elsevier. 

A replication-repressible plasmid system and oligos with modified dideoxynucleotide 

ends provided direct evidence suggesting that oligos incorporate(Huen et al. 2006). This study 

also found that β-clamp mutations enhanced oligo recombination rates. Further supporting a 
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direct role of DNA replication, mutations in DNA polymerases had significant effects in oligo 

recombination (Li et al. 2013). Examining mutation incorporation at the ends of the ssDNA oligo 

revealed that mutations at the 5’ end are more likely to be lost. If oligos are incorporated during 

DNA replication, replicative polymerases with exonuclease activity are likely to affect the 

mutation loss on the homology arms of the oligos. DNA Pol I has 3’5’ proofreading and 

5’3’ nick translation to remove RNA primers on the 5’ end of Okazaki fragments. A mutation 

on DNA Pol I that removed the 3’5’ exonuclease and polymerase activities but kept 5’3’ 

exonuclease had no effects on overall oligo recombinations or the distribution of mutation loss 

relative to WT. Mutating the 5’3’ function reduced recombination frequencies 9-fold for 

lagging and 5-fold for the leading strand. Sequence loss at the 5’end of the lagging strand was 

completely eliminated, while mutation losses of the leading strand remained unchanged. 

Deleting the 3’-5’ exonuclease activity of DNA Pol III reduced recombination of both strands 

40-fold. In this mutant, 5’ marker loss in the lagging strand oligo is increased while 3’ loss is 

unaffected.  Loss at the 5’ end is increased in the leading strand oligo as well, perhaps from an 

increased role for Pol I. DNA Pol III, the main replicative polymerase, has 3’5’ proofreading 

and it is released from the lagging strand after it encounters an Okazaki fragment, leaving only a 

nick. DNA Pol I then removes the RNA primer by nick translation and the resulting nick is fixed 

by DNA ligase. Due to its low displacing ability, Pol III might be released after encountering an 

oligo annealed to the lagging strand. Thus, the 5’3’ exonuclease  from Pol I is responsible for 

all mutations lost observed at the 5’ end of the lagging strands. Furthermore, a temperature 

sensitive DNA ligase mutant reduced recombination frequencies 100-fold for the lagging-strand 

and 260-fold for the leading-strand oligos, implicating that ligase activity is necessary for oligo 

recombination. This would also explain why mutations at the 5’ of the oligo reduce 
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recombination frequencies, since they would interfere with the ligation of the oligo, while the 3’ 

end mutations can prime off further DNA synthesis before ligation is required.  

Further highlighting the importance of lagging strand replication in oligo recombination, 

mutations in DnaJ primase increased consecutive incorporation of oligo pools (Lajoie et al. 

2012). These mutations reduce primase interaction with DNA helicase and increase both the 

amount of ssDNA available and length of Okazaki fragments. The effect of these mutations in 

oligo recombination was magnified in a strain with exonucleases ExoI, ExoVII, ExoX, RecJ and 

lambda Exo were deleted. Deleting the nucleases increased oligo recombinations, but only at low 

oligo concentrations (Sawitzke et al. 2011). In experiments where multiple oligos are 

transformed at once, such as the primase experiment from above, each individual oligo 

concentration gets diluted and thus more likely to be affected by nucleases (Mosberg et al. 2012).  

Finally, independent reports describe that knocking out endogenous DNA repair 

machinery genes such as recA, recBCD, recORF, or ruvABC  had no effect on oligo 

recombination, further arguing against alternative recombination models(Huen et al. 2006; 

Sawitzke et al. 2011). Although there is data associating almost every component of DNA 

replication to oligo recombination, ultimately in vitro replication experiments are needed to 

conclusively prove oligo incorporation during DNA replication, due to the intrinsic limits of 

studying replication in vivo. 

 

Recombineering beyond E. coli 

There is significant interested in developing recombineering methods in other organisms 

besides E. coli. There is evidence that SSAPs from bacteriophages can mediate recombineering 
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in their bacterial hosts, suggesting a host-specific interaction. One of the most successful 

examples of this is Lactobacillus, where up to 19% oligo recombination frequencies were 

achieved (Van Pijkeren & Britton 2012). Interestingly, although a SSAP derived from L. leuteri 

achieved these high recombination frequencies, a RecT-like protein from E. faecalis had similar 

activity, while other lactobacilli-derived SSAPs were significantly worse (van Pijkeren et al. 

2012). Similarly, although both Beta and RecT are E. coli phage-derived SSAPs, Beta is 100-

fold better at oligo recombination than RecT, and the E. faecalis RecT is almost as good as Beta 

even though E. faecalis is a Gram-positive bacterium (Datta et al. 2008). The mycobacterial  

RecT/Beta protein gp61 was 10- to 100-fold better than Beta and RecT (van Kessel & Hatfull 

2007; van Kessel & Hatfull 2008). Similarly, in Pseudomonas, a RecT derived from P. syringae 

produced a 25-fold improvement while Beta had no effect (Swingle, Bao, et al. 2010). In 

Corynebacterium, RecT from E. coli was the most efficient SSAP mediating oligo recombination 

compared to a Corynebacterium phage SSAP and to the mycobacteria gp61, while Beta had no 

effect at all (Binder et al. 2013). Taken together, these results suggest a although a host-specific 

interaction is likely necessary, it is not sufficient for finding SSAPs that mediate oligo 

recombination with high frequencies. 

 

Potential SSAP interaction partner 

Understanding Beta’s species-specific activity is desirable in order to transfer this activity 

to other organisms. Potential insights on this host-specific interaction can be derived from the 

eukaryotic SSAP Rad52. In addition to mediating the annealing of complementary DNA 

strands(Mortensen et al. 1996), Rad52 is able to interact the eukaryotic single-strand binding 

protein RPA and anneal RPA-coated ssDNA(Sung 1997; New et al. 1998; Shinohara & Ogawa 
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1998). The interaction of Rad52 with RPA seems to be species specific, yeast Rad52 cannot 

efficiently anneal DNA pre-coated with human RPA or E. coli SSB (Sugiyama et al. 1998; 

Shinohara et al. 1998). Similarly, in E. coli and other bacteria RecO is able to anneal SSB-coated 

DNA (Kantake et al. 2002), suggesting an analogous species-specific interacting partner for 

Beta. RecO binds both ss- and dsDNA, and promotes the renaturation of complementary DNA in 

a reaction stimulated by Mg
2+

 and inhibited at high NaCl concentrations (Luisi-DeLuca & 

Kolodner 1994). Like Rad52, RecO can only anneal ssDNA coated with its cognate SSB protein 

and not RPA-coated DNA (Kantake et al. 2002).  

The RecO interaction with SSB requires the C-terminal domain of SSB(Hobbs et al. 

2007). The crystal structure of RecO showed the SSB C-terminal peptide within a hydrophobic 

pocket of RecO surrounded by a positively charged surface, with phenylalanine and arginine 

residues mapped to the region strongly abolishing the interaction when mutated to alanine 

(Ryzhikov et al. 2011). The last 10 aa of the SSB C-terminal domain are not required for DNA 

binding but are essential in vivo (Curth et al. 1996). This C-terminal peptide may interact with 

the DNA binding domain of SSB, and upon binding of ssDNA it might become exposed and 

available to interact with other proteins involved in DNA metabolism (Kozlov et al. 2010; 

Shereda et al. 2008), including DnaG primase (Naue et al. 2013). Further supporting the 

existence of species-specific interactions of SSB, chimeric proteins between the E. coli and 

Mycobacterium tuberculosis SSB C-terminal domain showed that the C-terminal domain alone 

could increase the binding of Uracil DNA Glycosylase to a heterologous SSB (Handa et al. 

2001). SSB forms a homotetramer independently of the C-terminal domain, and small amounts 

of otherwise lethal C-terminal domain mutants can functionally complement N-terminal domain 

mutants, likely forming functional mixed tetramers (Curth et al. 1996).  
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Interestingly, SSB is frequently part of the Beta/RecT operons, supporting the hypothesis 

that SSB might be important for their activity in vivo. To test the hypothesis that Beta interacts 

with SSB, I tested if Beta could remove the annealing inhibition of SSB-coated oligos in vitro. I 

further describe this interaction by mutating the C-terminal domain and find that it is required for 

in vivo oligo recombination and for Beta to anneal SSB-coated oligos in vitro. In addition, I 

found that Mg
2+

 has a key role in the Beta-SSB interaction. Based on these observations I 

propose a model explaining the quaternary structures of Beta and the implications of its 

interaction with SSB for developing efficient oligo recombinations in other organisms. 

 

RESULTS 

  

I hypothesized that Beta must interact with SSB, an interaction that may explain its  

species-specific activity. To test this, I added a 6x His tag to the N-terminus of the protein and 

verified the tag had no effect in its oligo recombination activity in E. coli (not shown). Beta and 

SSB were then expressed and isolated with nearly 100% purity. To test Beta’s activity in vitro, I 

developed an oligo annealing assay. In this assay two complementary 90 mer oligos, one with a 

3’-Fluorescein and the other with a 5’-Iowa Black FQ dark quencher are mixed and the 

annealing reaction can be measured on a plate reader as the fluorescein is quenched. (Figure 

3.5a). To test the Beta-SSB interaction, I pre-coated the oligos with SSB, which will prevent 

annealing unless additional factors are included. We find that Beta is capable of overcoming the 

annealing inhibition of SSB in a somewhat cooperative manner (Figure 3.5b). Interestingly, the 

ability of Beta to remove the SSB-mediated annealing inhibition is strongly dependent on the 
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Mg
2+

 concentration; in its absence the inhibition is barely affected (Figure 3.5c). To confirm this 

Mg
2+

 dependency, we repeated the experiment in the presence of EDTA (Figure 3.5d). To 

further confirm the Beta-SSB interaction, we tested the effects of deleting the last eight amino 

acids of the C-terminal domain of SSB, previously shown to be not required for DNA binding 

but essential for its interaction with other proteins (Curth et al. 1996; Shereda et al. 2008). We 

find that Beta is no longer able to anneal oligos pre-coated with SSBΔC8 (Figure 3.5d), 

suggesting that similar to other SSB-interacting proteins, Beta’s interaction with SSB requires 

the C-terminal domain of SSB. 

 

Figure 3.5. Beta interacts with SSB in a Mg
2+

-dependent reaction. (a) Normally (1), two 

complementary oligos with compatible FITC fluorophore and quencher anneal, leading to a 

decay in the fluorescence intensity that can be tracked over time. Thus the fluorescence intensity 

will be proportional to the amount of starting substrate, while the remaining fraction will be the 

annealed product.  If the oligos are coated with SSB prior mixing (2), they will be prevented 

from annealing unless additional factors are able to remove the inhibition. (b) Steady state 

annealed fraction products of SSB-coated oligos at varying amounts of Beta protein. Trend 

estimates a Hill slope of 2.3, SE 0.46. (c)Effects of Mg
2+

 concentration in Beta-mediated 

annealing of SSB-coated oligos. (d) Specificity of the Beta-SSB interaction. Neither EDTA or 

SSBΔC8 allow the annealing reaction. 
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Our experiments show that Beta can anneal SSB-coated oligos. Next we tested if, similar 

to analogous proteins, the interaction with SSB is mediated by the C-terminus of Beta. We 

serially truncated the protein, generating fragments 1-245, 1-228, 1-211, 1-194 and 1-177, the 

smallest fragment previously found to be sufficient for DNA binding  (Wu et al. 2006). Only 

full-length Beta is capable of achieving oligo recombinations at high frequencies, while deleting 

just the last 21 amino acids of the protein (truncation 1-245) decreased function at least ~77-fold  

 

 

Figure 3.6 Characterizing the C-terminal domain of Beta. Oligo recombination frequencies of Beta C-

terminal domain truncations (a) and single amino acid substitutions (b) N=2 biological replicates,  ctr: 

glucose-suppressed WT Beta (c )Oligo annealing assay in the absence of SSB show that Beta and the C-

terminal domain mutants accelerate annealing in the absence of Mg
2+

 relative to the no protein control. 

(d)However, in the presence of Mg
2+

, all proteins seem to have reduced activity. Error bars: S.D. 
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 (Figure 3.6a). The serial truncations revealed that even though the C-terminal domain is not 

required for DNA binding, even small deletions significantly reduce its activity in vivo. To 

further evaluate the domain, we mutated the lysine, arginine and phenylalanine amino acids, 

since these might be essential for interacting with the negatively charged C-terminal domain of 

SSB, as is the case of RecO (Ryzhikov et al. 2011). Some of the mutations severely reduced 

recombination frequencies, especially mutations in the 192-228 aa segment (Figure 3.6b). The 

negative control mutant K172A, previously shown to abolish DNA binding (Wu et al. 2006) also 

had reduced recombination rates.  

 

Figure 3.7. The C-terminal domain of Beta is involved in its interaction with SSB. (a) WT 

Beta and the C-terminal domain mutants were compared in their ability to anneal SSB-coated 

oligos in the presence of 10mM MgCl2 (b) The same mutants were tested in the presence of 

EDTA, confirming that Mg2+ is required for the interaction.  

 

The mutation screen revealed that single amino acid substitutions in the C-terminal 

domain of Beta dramatically reduced oligo recombination frequencies in vivo. A subset of these, 

along with all the truncations and the WT protein were further characterized in vitro. Out of the 
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five truncations tested in vivo, only Beta 1-194 was stable under our purification conditions, 

while there was no problem purifying the point mutants. The purified mutated proteins were 

compared to the WT in terms of their oligo annealing kinetics, absent SSB (Figure 3.6c-d). In the 

absence of Mg
2+

, all mutants behave very similarly to WT Beta in their annealing kinetics, 

suggesting their strand annealing activity was unaffected. (Figure 3.6c). Unexpectedly, when the 

assay was repeated in the presence of 10 mM MgCl2, all proteins have reduced annealing (Figure 

3.6d). However, the 1-194 truncation and all the point mutants tested show lower annealing than 

WT Beta. In the absence of Mg
2+

 the K172A mutation had no effect on DNA annealing when 

compared to the no protein control, however in the presence of Mg
2+

 it inhibited annealing, 

similar to the 1-177 fragment and the other point mutants. Thus, the C-terminus of Beta is only 

important for DNA annealing at high Mg
2+

 concentrations. 

Mg
2+

 inhibits the strand annealing activity of Beta, and this inhibition is exacerbated by 

deleting its C-terminal domain or disrupting it with single amino acid substitutions. Since Mg
2+

 

is required for Beta to anneal SSB-coated oligos, we hypothesize the C-terminal domain 

mutations will alter this Beta-SSB interaction. Compared to WT Beta, the 1-194 truncation is 

unable to break the SSB inhibition, behaving very similarly to the SSB-only control (Figure 

3.7a). The K172A mutation is also unable to anneal SSB coated oligos, suggesting that DNA 

binding might be required for Beta to remove the annealing inhibition of SSB. The K192A 

mutant had reduced activity, while K214A was more severely affected, being indistinguishable 

from the SSB only control. In the presence of EDTA instead of Mg
2+

, none of the Beta mutants 

is able to anneal SSB coated oligos while WT Beta seems to still have some activity (Figure 

3.7b)  Thus, the C-terminus of Beta plays a significant role in the interaction with SSB, in a 

reaction strongly enhanced by Mg
2+

. 
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DISCUSSION 

 

The lambda phage SSAP Beta is the single-most important factor enabling multiplex 

genome engineering in E. coli, mediating highly efficient oligo recombination. There have been 

several attempts to develop similar methods in other bacteria, with mixed results. There seems to 

be a species-specific interaction, since SSAPs from phages tend to be active in their 

corresponding bacterial hosts, although there are many exceptions to this. In this work I decided 

to characterize Beta biochemically, with the goal to elucidate this host-specific interaction and 

ultimately use this knowledge to export its functions to human cells. 

I hypothesized that like the prokaryotic RecO and the eukaryotic SSAP Rad52, Beta 

would be able to anneal DNA in the presence of SSB. I tested this in vitro by tracking the 

annealing of two complementary oligos coated with SSB, since in the absence of additional 

factors SSB prevents this annealing. In these experiments I discovered that Beta can be one of 

these factors and is able to anneal SSB-coated oligos in a somewhat cooperative reaction. This 

activity is dependent on the concentration of Mg
2+

, with EDTA strongly inhibiting annealing. I 

found 10 mM MgCl2 to be the optimal concentration for Beta to interact with SSB, which is also 

the optimal concentration for  RecA activity (Lusetti et al. 2003). This concentration is higher 

than the free 1-2 mM Mg
2+

 thought to be available intracellularly (Alatossava et al. 1985). It is 

possible that this deficiency might be compensated in vivo by crowding effects (Lavery & 

Kowalczykowski 1992; Lusetti et al. 2003). Alternatively, the subtle activity detected at 1 mM 

Mg
2+ 

might be sufficient for its in vivo activity. 
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After SSB binds DNA, its negatively charged C-terminal tail becomes available to SSB-

interacting proteins (Kozlov et al. 2010; Shereda et al. 2008). As expected, this C-terminal tail is 

essential in vivo, given the fundamental function of SSB. I tested whether Beta requires this C-

terminal domain for its ability to anneal SSB-coated ssDNA oligos, and found that deleting the 

last 8 amino acids of SSB abolishes its interaction with Beta. This suggests that the Beta-SSB 

interaction is a specific protein-protein interaction and not just competition for DNA binding. 

Moreover, this protein-protein interaction has been shown to be species-specific. Thus SSB 

might be the factor that constrains phage SSAPs like Beta to have activity only in bacteria with 

compatible SSBs. 

To further dissect this Beta-SSB interaction I decided to study the C-terminal domain of 

Beta. First, I tested if this domain was required in vivo for oligo recombination even though it 

has been previously shown not to be required for DNA binding. I found that just deleting the last 

24 amino acids reduces oligo recombinations frequencies to levels indistinguishable from 

background. Further characterization of the domain focused on single-amino acids substitutions 

targeting residues known to be important for SSB-interacting proteins, specifically lysine, 

arginine and phenylalanine residues. This revealed several single amino acid substitutions caused 

dramatically reduced oligo recombination, thus confirming that the C-terminal domain of Beta 

has a crucial role in oligo recombination.  

To expand this observation, I characterized the DNA annealing kinetics of naked ssDNA 

oligos in the presence of WT Beta and the C-terminal domain mutants. In the absence of Mg
2+

, 

the annealing activity of the Beta truncation and the point mutants was largely unaffected. 

Surprisingly, in the presence of Mg
2+

 the truncation and the point mutations inhibit oligo 

annealing, behaving like SSB. The fact that the C-terminal domain mutants have this dominant 
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negative activity in the presence of Mg
2+

 suggests that their ability to interact with magnesium 

remains. The K172A mutation had no annealing activity relative to the no protein control in the 

presence of Mg
2+

, but it also had a dominant negative effect in the presence of it. This residue is 

adjacent to negatively charged residues strongly conserved in the Beta/RecT class of SSAPs, 

predicted to be involved in coordinating magnesium binding (Iyer et al. 2002). The dominant 

negative activity seen suggests that the conformational change induced by magnesium may alter 

DNA binding in a way that the K172 residue is no longer required.  

The amino acid substitutions tested seem to strongly affect DNA annealing in the 

presence of magnesium. This result is surprising, since the positively charged amino acids tested 

should not be directly interacting with Mg
2+

, although they could still be essential for the folding 

of the domain. Alternatively, the loss of positively charged residues might increase the affinity to 

Mg
2+

, perhaps stabilizing a Mg
2+ 

-induced conformational intermediate resulting in the dominant 

negative phenotype. It would be interesting to test other C-terminal domain mutations that 

showed reduced activity in vivo, especially the F228A mutation since it would not affect the 

charge. In addition, testing the Mg
2+

 responsiveness of shorter truncations might help confirm 

the presence of a Mg
2+

 binding domain. 

The Beta C-terminal domain mutants were also tested on their ability to anneal SSB-

coated oligos. In the absence of Mg
2+

, only WT Beta seems to have some activity. In the 

presence of Mg
2+

, all mutants behave fairly similarly to the SSB-only control. The exception is 

the K192A mutant, which showed some activity, although lower to Beta. The fact that these 

mutants had defective DNA annealing in the naked-oligo assay means that I cannot tell if their 

lack of activity in the SSB-coated oligo annealing assay is because these residues are directly 

interacting with SSB or if they are causing a defect in the Mg
2+

-dependent conformational 
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change. The fact that K192A partially works in the presence of SSB but not in its absence 

suggest that the interaction with SSB is active in this mutant and the SSB interaction induces a 

different DNA binding mode. This could be mediated by altering SSB binding and forming a 

Beta-SSB-ssDNA complex, similar to what has been suggested for RecO (Ryzhikov et al. 2011). 

If this was the case, it may be expected then that K172A would have a similar effect, yet this 

protein has no activity in the presence of Mg
2+

, with or without SSB. If there is a magnesium-

binding domain in the central part of the protein, mutations closer to it might have a stronger 

effect, while perhaps the C-terminal domain tail might contain the residues directly interacting 

with SSB. This might also explain why the longer  truncations are slightly more active than the 

shorter ones. These proteins might still be able to have normal magnesium-induced 

conformational changes while losing the specific SSB interacting domain, and thus are behaving 

solely as annealing proteins. Further mutagenesis is required to elucidate this, although it is 

likely that the magnesium-binding domain and the SSB-interacting domain are interdependent, 

which may complicate the analysis. Ultimately, crystal structures of all the different 

conformations might be required to describe the domains with certainty. 

The mutations evaluated seem to all have defects that highlight the importance of 

magnesium concentration for this protein class. Similarly, deletion of RecA C-terminal domain 

residues significantly alters the effects Mg
2+

 has on this protein’s strand exchange activity 

(Lusetti et al. 2003). Wild-type RecA has optimal activity at Mg
2+

 concentrations of 10 mM, and 

this dependency decreases progressively with truncations of the C-terminal domain, which is 

negatively charged. A RecA E343K mutation similarly decreased the Mg
2+

 dependency. 

Interestingly, both C-terminal domain deletions and high Mg
2+

 enhance RecA’s ability to 
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displace SSB (Eggler et al. 2003). This suggests that magnesium plays a common role in these 

proteins modulating their interaction with SSB through their C-terminal domain.  

In this study I showed that the Lamba phage SSAP Beta is capable of interacting with 

SSB and override its annealing inhibition, in a reaction greatly enhanced by the presence of 

Mg
2+

. This Mg
2+

 requirement for Beta to interact with SSB, combined with the electron 

microscopy images that revealed Mg
2+

 had a significant role stabilizing the polymeric forms of 

Beta (Passy et al. 1999) suggests that this form, either rings or ellipsis, is the active conformation 

required for interacting with SSB and removing its annealing inhibition. We find that amino acid 

substitutions that remove positive charges near conserved negatively charged residues predicted 

to coordinate magnesium binding create a dominant negative phenotype when annealing naked 

oligos in the presence of magnesium. One explanation for it could be that with these mutants the 

ssDNA oligo is bound by a hyper-stabilized Beta ring or ellipsis, unable to transition to the 

annealed helical conformation. This might explain why these mutants effectively behave like 

SSB. 

An alternative explanation might be that the ssDNA is binding Mg
2+

, which in turn 

decreases the protein’s affinity for it. In this case, however, one would expect that the protein 

mutants would have behaved similar to the no protein control in the naked DNA annealing assay 

instead of the dominant negative effect seen. It is also possible that the magnesium is activating 

DNases in the proteins, releasing the fluorophore, but this was verified not to be the case (not 

shown). 

The Beta-SSB interaction described here further solidifies the role of DNA replication in 

oligo recombinations, supporting the model of oligo incorporation on nascent DNA as pseudo-
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Okazaki fragments. During DNA replication, DNA helicase and DNA polymerase closely 

interact, allowing for continuous synthesis of the leading strand(Langston et al. 2009). The 

ssDNA generated on the lagging strand is bound by SSB, which protects it from nucleases. Thus 

Beta interacting with SSB would help explain the strand bias observed in oligo recombination, 

since the SSB-coated lagging strand would be accessible for annealing by a ssDNA-Beta oligo 

complex, while the leading strand would be more inaccessible. If the whole chromosome is 

replicated in the traditional continuous/discontinuous model, strand bias against the leading stand 

might be expected to be higher. However, recent evidence suggests that this model 

oversimplifies in vivo replication and that both strands can be discontinuous, due to for example 

DNA lesions or collisions with RNA polymerase(Langston et al. 2009). 

After Beta mediates the incorporation of a mutation-carrying oligo, it may form a 

dsDNA-Beta helical complex that might temporarily protect the oligo from degradation by 

proofreading polymerases and the mismatch repair system. However, at some point this structure 

would have to be removed, in order to allow transcription or subsequent DNA replication. At this 

point a mismatched duplex could be recognized by the mismatch repair machinery, until a 

second round of replication copies the mutated strand and effectively removes the mismatch.  

The Beta-SSB interaction might be generalizable to the rest of the Beta/RecT family of 

phage-derived SSAPs. This protein family has strongly conserved negatively charged residues 

predicted to bind magnesium, suggesting they might have a similar response to the divalent 

cation. Future work comparing different SSAPs biochemically is needed to verify this. It will be 

interesting to compare RecT with Beta. Since both are derived from  E. coli phages, it is 

expected that RecT might also be able to interact with SSB. In fact, our preliminary experiments 

seem to support this (not shown). However, Beta is about 100-fold better at oligo recombination 
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than RecT, suggesting there are significant differences between these closely related proteins. 

Supporting this, electron micrographs revealed that RecT ring formation does not require DNA 

(Thresher et al. 1995), while ssDNA is essential for Beta to form larger rings. Further comparing 

Beta to RecT and other SSAPs will help further dissect how Beta mediates oligo recombinations 

at such high frequencies.  

The interaction with SSB might in part explain the variable activity seen in efforts using 

phage-derived SSAPs to increase oligo recombination frequencies in different bacteria. Closely 

related species have similar SSB’s and thus might be able to interact with the same SSAP. 

However, the C-terminal domain of these SSAPs tends to be not well conserved, so the protein-

protein interaction might be easily changed, or it might not the right kind of interaction. There 

might need to be a balance, for example if the SSAP is too effective at displacing SSB it might 

be too toxic to cells, perhaps causing replication fork collapses. Conversely, if the interaction is 

not strong enough it might not be sufficient to allow the annealing of the mutation-carrying oligo 

to its target strand. However, different organisms may have specific requirements, be it the 

magnitude of the interaction with SSB, specific intracellular ionic environments or differences in 

chromosome structure and the DNA replication machinery. In their phages, these proteins are 

likely to have the role of DNA repair and recombination machinery, a function that involves an 

exonuclease and possibly other factors. Thus, it is possible that even a protein as efficient as Beta 

is not optimized for oligo recombination. Exploring the functional landscape with a library of 

evolutionarily diverse SSAPs and their mutants may yield improved activities in E. coli. This 

might be a way to discover natural SSAPs with properties specifically suited for organisms of 

interest. In turn, this could also lead to a deeper understanding of their mechanisms, and may 
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eventually lead to rationally designed SSAP libraries from which highly active candidates could 

be selected for any organism of interest.  

MATERIALS AND METHODS 

 

Protein purifications 

An arabinose inducible expression vector was chosen for expressing the proteins 

described in this work(Choe et al. 2005). After cloning via isothermal assembly(Gibson et al. 

2009) and adding an N-terminus 6x His tag, the arabinose-inducible vector with the constructs of 

interest were transformed into NiCo21(DE3) competent E. coli (NEB). 50 mL LB media with 25 

μg/mL chloramphenicol were inoculated with 1:100 overnight confluent cultures ground under 

glucose repression. The 50 mL cultures were grown for 6 hours at 37 C, then induced with a final 

arabinose concentration of 0.1%. The cultures were spun down 10 mins 5,000 g,  4 C and the 

pellets were frozen in a dry ice ethanol bath.  

The pellets were lysed with P-BER with Enzymes (Thermo scientific) for 10 mins at 

room temperature following the manufacturer’s instructions. The lysates were mixed 1:1 with 

binding buffer (40m M Imidazole, 500 nM NaCl, 50 mM Tris pH 7.4), spun down 10 mins 5,000 

g, 4 C and the soluble fraction was added to a 20 mL column with 2 mL His GraviTrap (GE 

Healthcare) pre-equilibrated with binding buffer. After binding, the columns were washed twice 

with 20 mL of wash buffer (100 mM Imidazole, 500 nM NaCl, 50 mM Tris pH 7.4), then eluted 

with 4mL of elution buffer (500 mM Imidazole, 500 nM NaCl, 50m M Tris pH 7.4), collecting 

the flow-through in 1.5mL tubes, ~1mL each. 
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The protein concentration of the eluted fractions was checked with a Qubit (Invitrogen), 

and their stability and purity checked by SDS-PAGE. The purest, most concentrated fractions 

were pooled and buffer exchanged with Zeba desalting columns 7K MWCO (Piercenet) to 

storage buffer (200 nM NaCl, 50 mM Tris pH 7.4, 1 mM DTT). If required, buffer exchanged 

protein preps were concentrated with Amicon Ultra-4 10K centrifugal filters (Millipore). 

 

Oligo annealing assay 

 Fluorophore/quencher complementary oligos were ordered from IDT (5’- 

AGCAAGCACGCCTTAGTAACCCGGAATTGCGTAAGTCTGCCGCCGATCGTGATGCTG

CCTTTGAAAAAATTAATGAAGCGCGCAGTCCA/6-FAM/-3’ and 5’-

/IABkFQ/TGGACTGCGCGCTTCATTAATTTTTTCAAAGGCAGCATCACGATCGGCGGC

AGACTTACGCAATTCCGGGTTACTAAGGCGTGCTTGCT-3’. For the SSB annealing 

assays, the 10 nM oligo solutions with 20 nM NaCl, 1 mM DTT, 50 mM Tris pH 7.4 were 

separately incubated with 500 nM SSB or SSBΔC8 for 20 mins at 37 C. The reactions were 

tracked in a Synergy H4 Hybrid Microplate Reader (Biotek) in half-area, low-bind black 96 well 

plates. The oligos were serially added to the plate, followed by the SSAP in the same buffer. 

 

Fluorescence quenching-based annealed fraction estimate: 

  = Fluorescence intensity at a given time is 

            

Where    = Free fraction,    =  Free intensity,   = Bound fraction,     = Bound fraction. For a 

DNA annealing assay,    is the substrate, and    is the product 

At                
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       ;          so  

                

   
    

     
   

    
     

 

This calculation is independent of experimental background (B)from the reader: 

   
            

             
 

    

     
 

 

   was estimated from the minimal steady-state fluorescence of annealed oligos in the presence 

of protein, while    was measured in parallel for each reaction using an unlabeled oligo instead 

for the quencher. This helped control for the variable background fluorescence of different 

protein solutions and the fluorescence decay of the FITC fluorophore over the time course 

measured. The reactions were tracked for an hour, measuring every 7 s. The naked-oligo 

experiments were done in a similar way, except no SSB was added during the pre-incubation 

step. Annealing and steady-state graphs were generated using GraphPad Prism 5. 

Oligo recombination 

 The different SSAPs cloned into the arabinose-inducible vectors were transformed into a 

ΔmutS MG1655 E.coli strain with a frameshift mutated copy of GFP integrated. Overnight 

cultures were grown under 0.1% glucose repression to confluence. The next day, these were 

diluted 1:100 in 2 mL LB 25 μg/mL chloramphenicol and grown at 32 C for two hours. At this 

point 0.1% arabinose was added and cultures were grown for an additional 30 mins. After 

induction, 1 mL of cultures were spun down 1min 15,000 g at 4 C, washed twice with 4 C 

deionized water and resuspended in 50 uL 50 μM oligo in deionized water. This was transferred 
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to chilled 0.1 mL cuvettes, and the cells were elecroporated on a BioRad Gene Pulser1.78 kV, 25 

μF, 200 Ω. After electroporation, cells were recovered overnight in 1 mL LB with 0.1% glucose. 

For measuring recombination frequencies, overnight cultures were grown 1:100 in LB, then 

diluted 1:100 in water and analyzed in an LSR Fortessa with a 488 nm laser, 530/30 nm filter. 
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CHAPTER FOUR 

CONCLUDING REMARKS AND FUTURE WORK 
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Next generation sequencing technologies have revolutionized biomedical research. 

Current sequencing projects are producing massive amounts of data on human genetic 

variability, and as cost keep decreasing sequencing whole genomes will become routine (Mardis 

2006; von Bubnoff 2008). In order to fully make sense of all this new data, new experimental 

tools will be required. The goal of this dissertation is to contribute to the development of one of 

such tools, multiplex genome engineering in mammalian cells. This method, originally 

developed in E. coli, allows oligonucleotide pools to be recombined at very high frequencies 

(Wang et al. 2009). 

 The first part of this project, described in Chapter II, focused on studying and validating 

an oligo recombination reporter system in human cells (Rios et al. 2012). Using this reporter I 

found that chemically modified base analogs can increase oligo recombination frequencies by 

avoiding the mismatch repair machinery. In addition, I discovered that part of the toxicity seen in 

oligo recombination in human cells might be in part from a cellular immune response to the 

oligo. It is likely that modifications such as PTO bonds increase the half-life of the oligo leading 

to increased immune signaling and higher toxicity. It might be possible to identify the sensors 

starting this immune response and knock them out to reduce toxicity and increase recombination 

frequencies. 

By optimizing the oligo design with modified bases and reduced number of PTO bonds I 

was able to generate stably-modified cells, an accomplishment that eluded the original creators 

of this reporter cell line (Liu et al. 2009). The frequencies achieved, however, are not nearly 

good enough for this method to be practically useful, especially compared with methods such as 

CRISPR/Cas9. The biggest factor contributing to the high oligo recombination frequencies seen 

in MAGE is the SSAP Beta, capable of increasing recombination rates four orders of magnitude 
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in E. coli (Ellis et al. 2001).  I tested whether expressing Beta in human cells had any effect in 

oligo recombination. After verifying expression, adding a nuclear localization signal tag and 

testing various oligo lengths, I was unable to detect any activity. Additionally, I tested similar 

proteins such as RAD52 and ICP8, but these also had no effect in oligo recombination 

frequencies. 

Despite the fact that Beta has such a key role enabling oligo recombination at high 

frequencies and the numerous attempts of developing MAGE in other organisms, very little is 

known about how this protein works. This inspired Chapter III, where I study Beta with the goal 

of eventually translating its activity to human cells. I hypothesized that Beta must be interacting 

with SSB, a component of the host DNA replication machinery, via a species-specific interaction 

requiring the C-terminal domain of Beta, analogous to the eukaryotic SSAP RAD52 (Sung 1997; 

New et al. 1998; Shinohara & Ogawa 1998). 

By purifying and characterizing Beta in vitro, I was able to prove it is capable of 

interacting with SSB in a cooperative manner. Surprisingly, this interaction with SSB is strongly 

dependent on the presence of magnesium, even though magnesium was found to have no effect 

in its conformational changes (Wu et al. 2006). I further delineate the SSB-interaction domain to 

the C-terminal domain of Beta. This domain is not required for DNA binding in vitro, however I 

found that truncations and even single amino acid substitutions are capable of  dramatically 

decreasing Beta’s oligo recombination activity. These C-terminal domain mutants anneal 

complementary oligonucleotides similarly to the WT protein in the absence of magnesium. 

However, in the presence of magnesium these mutants behave more like SSB, preventing the 

annealing of complementary oligos. In addition, these mutants have reduced or completely 

abolished capacity of annealing SSB-coated oligos, suggesting that the C-terminal domain is 
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required for the Beta-SSB interaction. In addition, I show the Beta-SSB interaction requires the 

negatively charged C-terminal tail of SSB, suggesting this interaction is likely to be a species-

specific protein-protein interaction and not just direct competition for DNA binding. This datum 

suggest that the reason the C-terminal domain Beta mutants are defective at oligo recombination 

is because they have lost the ability to properly interact with SSB. 

 

Figure 4.1. Serial Evolutionary Enrichment of Recombinases. Abarcoded library of 87 

codon-optimized, naturally occurring SSAP was synthesized and cloned into an arabinose-

inducible expression vector. This complex library was transformed into a reporter strain 

containing a broken antibiotic resistance marker.After a single round of oligo recombination the 

library is enriched for SSAP activity. This enriched library is mini-prepped, re-transformed and 

the next round of selection is performed. After several rounds of selection, the enriched libraries 

are quantified by deep sequencing of the barcodes. 
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Further biochemical 

characterization of Beta’s C-terminal 

domain will help determine which 

residues are directly involved in the 

Beta-SSB interaction. The mutants 

studied so far seem to have a defective, 

dominant-negative phenotype in the 

presence of magnesium. Thus Beta 

might have three domains: an N-

terminal domain DNA binding 

domain, a C-terminal SSB-interacting 

domain and a central magnesium-

coordinating domain, although more 

data is needed to confirm this.  

Even though we now know that 

Beta interacts with SSB, this does not 

explain why it is such a powerful 

catalyzer of oligo recombination in E. 

coli. To further elucidate this, I will 

compare Beta with RecT, another E. coli 

phage-derived SSAP with significantly 

lower activity than Beta. In addition, I will characterize additional highly active SSAPs. For this, 

we synthesized a library of 87 barcoded, codon optimized SSAPs, which was submitted to 
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Figure 4.2. Sample results from SSAP library enrichment. (a) 

After rounds of selection the relative frequencies for each SSAP is 

determined by sequencing their corresponding barcodes. (b) The 

top most abundant SSAPs were tested for their oligo 

recombination activities. Some of the hits seem to have 2-3 fold 

higher activity than Beta, which is remarkable given Beta’s already 

has frequencies in the 10
-1

 range.  
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multiple rounds of selection for oligo recombination activity in E. coli (Figure 4.1). Deep 

sequencing of the barcodes will determine the relative activities of the selected proteins (Figure 

4.2a). Preliminary results revealed several candidates with activities similar or higher than Beta 

(Figure 4.2b). Biochemical characterization of these candidates will provide additional data on 

what parameters correlate best with in vivo activity.  

This method of selecting SSAPs from a large library might prove useful for developing 

MAGE in other bacteria and possibly eukaryotic cells. Alternatively, it might be necessary to 

combine Beta with RAD52. A library of chimeric Beta-RAD52 proteins could be used to select 

for a SSAP with the catalytic activity of Beta and the RAD52-RPA interaction. Specifically, the 

protein motif used by RPA-interacting proteins has been described (Mer et al. 2000). It might be 

possible to create a library of variations of this motif in Beta’s C-terminal domain followed by 

rounds of selection in human cells. 

It is possible that using a SSAP for improving oligo recombination in human cells might 

not be the best approach, perhaps due to fundamental differences between prokaryotic and 

eukaryotic genome structures or DNA replication machineries. Overexpressing Rad52p in yeast 

seems to have no effect in oligo recombination(Liu et al. 2002). However, it is possible that 

RAD52 is not the right kind of SSAP, just like RecT is not very efficient at oligo recombination 

in E. coli. In addition, RAD52 is functionally analogous to RecO, and overexpressing RecO did 

not enhance oligo recombination in E. coli (not shown), further supporting the idea that only 

certain kinds of SSAPs have high oligo recombination activities. The biochemical studies 

developed described in this dissertation may help identify this activity. 
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An alternative approach for improving oligo recombination in human cells could be 

based on the homologous recombination proteins RAD51 and RAD54. These proteins can 

mediate chromatin remodeling and strand invasion(Zhang et al. 2007), potentially a more 

versatile strategy for genome-wide oligo recombination in eukaryotic cells. Supporting this, 

overexpressing RAD51 and RAD54 together in yeast enhanced oligo recombination (Liu et al. 

2002; DiCarlo, personal communication). In addition, these proteins are well characterized, 

making them attractive targets for engineering. A good starting point could be testing the I287T 

and K284E mutations in human RAD51, whose equivalent yeast Rad51p mutations I345T and 

K342E, respectively, have been shown to increase oligo recombination rates(Liu et al. 2002). 

Depending on these results, the mutant library screen might be expanded to the rest of the 

RAD51 L2 loop and adjacent region (327–344 aa in yeast). It would also be interesting to test for 

any synergy from co-expressing RAD51 and RAD54.   

Even then, it is possible that oligo-mediated recombination might not be the optimal 

pathway for achieving highly efficient genome engineering in eukaryotic cells. An alternative 

strategy could involve nuclease-mediated oligo recombination. Although the nuclease approach 

has intrinsic multiplexing limits, this method would still be useful for testing human variants. 

Double-strand break mediated recombination might benefit from engineered SSAPs, especially 

one that is able to outcompete the endogenous non-homologous end joining pathway. In 

addition, improvements in targeted nucleases may translate to targeted nickases(Wang et al. 

2012), an alternative method that could be multiplexed but is currently limited by low 

frequencies. 

For this dissertation, it was my goal to develop a genome engineering method for human 

cells comparable to MAGE. This proved to be quite challenging, but in the process several useful 
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discoveries were made. I hope in the future these discoveries will contribute to the development 

of improved methods for engineering human cells and testing human genetic variants. The speed 

in which this field has progressed has been dazzling. The time is ripe for fundamental advances 

in our understanding of the genetic basis of human disease leading to significant improvements 

in healthcare. 
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APPENDIX ONE 

RNAseq top 400 differentially regulated genes 

Gene Chromosome Description 
GFP+ 

/GFP- 

SPINK5 chr5 serine peptidase inhibitor, Kazal type 5 0.178708 

RLIM chrX ring finger protein, LIM domain interacting 0.224445 

EIF5B chr2 eukaryotic translation initiation factor 5B 0.280111 

CR602933 chr5 full-length cDNA clone CS0DC022YF01 of 

Neuroblastoma Cot 25-normalized of Homo sapiens 

(human). 

0.308464 

MT-TS1 chrM tRNA serine 1 0.311688 

TOP2A chr17 Homo sapiens topoisomerase II alpha-2 (TOP2A) 

mRNA, partial cds. 

0.325499 

HSPCA chr14 SubName: Full=Full-length cDNA clone 

CS0CAP007YF18 of Thymus of Homo sapiens 

(human); 

0.325829 

IRS2 chr13 insulin receptor substrate 2 0.330785 

EIF2S2 chr20 eukaryotic translation initiation factor 2 beta 0.361353 

RPL17 chr18 ribosomal protein L17 0.362738 

HSP90AA1 chr14 heat shock 90kDa protein 1, alpha 0.365069 

RPS26P11 chrX Homo sapiens ribosomal protein S26 pseudogene 11 

(RPS26P11), non-coding RNA. 

0.366195 

MT-TK chrM tRNA lysine 0.376643 

DDX21 chr10 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 0.392613 

RPL32 chr3 ribosomal protein L32 0.429197 

NUCKS1 chr1 nuclear casein kinase and cyclin-dependent 0.430597 

RPL26 chr17 ribosomal protein L26 0.462271 

FTH1 chr11 ferritin, heavy polypeptide 1 0.497557 

RPS24 chr10 Homo sapiens full length insert cDNA clone 

YB24C12. 

0.499453 

RPL10 chrX SubName: Full=Ribosomal protein L10; Flags: 

Fragment; 

0.517146 

PPIA chr7 peptidylprolyl isomerase A 0.558573 

RPL35 chr9 ribosomal protein L35 0.577786 

OK/SW-cl.46 chr16 RecName: Full=60S ribosomal protein L13; 0.582919 

EC45 chr3 RecName: Full=Ribosomal protein L15; 0.585559 

RPL13 chr16 ribosomal protein L13 0.589934 

RPS14 chr5 ribosomal protein S14 0.592602 

AlphaTFEB chr11 Homo sapiens clone alpha1 mRNA sequence. 0.596378 

RPL15 chr3 ribosomal protein L15 0.604601 

MT-RNR2 chrM 16S ribosomal RNA 0.609288 

RPL11 chr1 SubName: Full=Ribosomal protein L11; Flags: 

Fragment; 

0.617396 
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RNAseq top 400 differentially regulated genes (Continued) 

MT-ND4 chrM NADH dehydrogenase subunit 4 0.652922 

BC018860 chr1 Homo sapiens, clone IMAGE:3141568, mRNA. 0.654636 

AB055772 chr17 Homo sapiens mRNA for ribosomal protein S2, partial 

cds. 

0.665313 

MT-CO2 chrM Cytochrome c oxidase subunit II 0.677766 

MT-ND6 chrM NADH dehydrogenase subunit 6 0.698534 

MT-CO1 chrM Cytochrome c oxidase subunit I 0.700384 

MT-CYB chrM Cytochrome b 0.713237 

MT-TF chrM tRNA phenylalanine 0.72074 

OK/KNS-cl.6 chr16 Homo sapiens OK/KNS-cl.6 mRNA for ribosomal 

protein S2, complete cds. 

0.732352 

MT-RNR1 chrM 12S ribosomal RNA 0.733956 

ACTG1chr7- chr7 actin, gamma 1 propeptide 0.736113 

RPS2 chr16 ribosomal protein S2 0.736594 

ACTB chr7 SubName: Full=cDNA FLJ32030 fis, clone 

NTONG2000040, highly similar to Actin, alpha 

cardiac; 

0.746562 

MT-ATP6 chrM ATP synthase F0 subunit 6 0.766903 

EEF2 chr19 eukaryotic translation elongation factor 2 1.481708 

RPLP1 chr15 ribosomal protein P1 1.53848 

DKFZp686L04275 chr12 SubName: Full=Putative uncharacterized protein 

DKFZp686L04275; Flags: Fragment; 

1.586871 

TMSB10 chr2 thymosin, beta 10 1.615865 

FDPS chr1 farnesyl diphosphate synthase 1.65258 

TUBBchr6_cox_hap2+ chr6_cox_hap2 tubulin, beta 1.662456 

UBBchr17+ chr17 ubiquitin B precursor 1.668873 

TUBA1B chr12 tubulin, alpha, ubiquitous 1.672522 

C17orf45 chr17 Homo sapiens cDNA FLJ25777 fis, clone TST06567. 1.741873 

ACTG1chr17- chr17 actin, gamma 1 propeptide 1.744692 

TUBBchr6+ chr6 tubulin, beta 1.755095 

TUBBchr6_dbb_hap3+ chr6_dbb_hap3 tubulin, beta 1.755194 

TUBBchr6_mann_hap4+ chr6_mann_hap4 tubulin, beta 1.755194 

TUBBchr6_mcf_hap5+ chr6_mcf_hap5 tubulin, beta 1.755194 

TUBBchr6_ssto_hap7+ chr6_ssto_hap7 tubulin, beta 1.755194 

TUBBchr6_apd_hap1+ chr6_apd_hap1 tubulin, beta 1.755353 

TUBBchr6_qbl_hap6+ chr6_qbl_hap6 tubulin, beta 1.755353 

A121/SUI1 chr17 Homo sapiens SUI1 isolog mRNA, complete cds. 1.986967 

EIF1 chr17 eukaryotic translation initiation factor 1 1.999534 

TUBB2Cchr6_cox_hap2+ chr6_cox_hap2 tubulin, beta, 2 2.087218 

TUBB2Cchr6+ chr6 tubulin, beta, 2 2.087372 

TUBB2Cchr6_dbb_hap3+ chr6_dbb_hap3 tubulin, beta, 2 2.087485 
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RNAseq top 400 differentially regulated genes (Continued) 

TUBB2Cchr6_mann_hap4+ chr6_mann_hap4 tubulin, beta, 2 2.087485 

TUBB2Cchr6_mcf_hap5+ chr6_mcf_hap5 tubulin, beta, 2 2.087485 

TUBB2Cchr6_ssto_hap7+ chr6_ssto_hap7 tubulin, beta, 2 2.087485 

TUBB2Cchr6_apd_hap1+ chr6_apd_hap1 tubulin, beta, 2 2.087752 

TUBB2Cchr6_qbl_hap6+ chr6_qbl_hap6 tubulin, beta, 2 2.087752 

EEF1A2chr20- chr20 eukaryotic translation elongation factor 1 alpha 2.137521 

EDARADD chr1 EDAR-associated death domain 2.690573 

FLNA chrX filamin A, alpha 2.823647 

AK307158 chr16 Homo sapiens cDNA, FLJ97106. 2.936142 

TAIF chr16 Homo sapiens cDNA FLJ55649 complete cds, highly 

similar to Homo sapiens interleukin 32 (IL32), 

transcript variant 6, mRNA. 

2.965964 

HLA-Bchr6_qbl_hap6+ chr6_qbl_hap6 SubName: Full=MHC class I antigen; Flags: 

Fragment; 

3.510968 

DDTchr22- chr22 D-dopachrome tautomerase 0.530275 

RPS6 chr9 ribosomal protein S6 0.531476 

RPS4X chrX ribosomal protein S4, X-linked X 0.574014 

AF113016 chr11 Homo sapiens clone alpha_est218/52C1 mRNA 

sequence. 

0.558622 

RPL21 chr13 SubName: Full=Ribosomal protein L21 variant; Flags: 

Fragment; 

0.450594 

HSPA1Achr6_qbl_hap6+ chr6_qbl_hap6 heat shock 70kDa protein 1A 2.603675 

AK298056chr6_qbl_hap6- chr6_qbl_hap6 Homo sapiens cDNA FLJ54370 complete cds, highly 

similar to Heat shock 70 kDa protein 1. 

2.604717 

HSPA1Achr6_cox_hap2+ chr6_cox_hap2 heat shock 70kDa protein 1A 2.596007 

AK298056chr6_cox_hap2- chr6_cox_hap2 Homo sapiens cDNA FLJ54370 complete cds, highly 

similar to Heat shock 70 kDa protein 1. 

2.597032 

RPS8 chr1 ribosomal protein S8 0.557759 

FASN chr17 fatty acid synthase 2.417843 

BAT2D1 chr1 HBxAg transactivated protein 2 0.329105 

HLA-Achr6_qbl_hap6+ chr6_qbl_hap6 SubName: Full=MHC class I antigen; 2.184954 

ZNF90 chr19 zinc finger protein 90 0.492887 

RPS16 chr19 SubName: Full=cDNA FLJ56786, moderately similar 

to 40S ribosomal protein S16; 

0.690873 

BAZ1B chr7 bromodomain adjacent to zinc finger domain, 1B 0.349469 

HSPA1Achr6_apd_hap1+ chr6_apd_hap1 heat shock 70kDa protein 1A 2.50454 

AK298056chr6_apd_hap1- chr6_apd_hap1 Homo sapiens cDNA FLJ54370 complete cds, highly 

similar to Heat shock 70 kDa protein 1. 

2.50539 

XTP2 chr1 Homo sapiens BAT2-iso mRNA, partial cds. 0.264456 

HSPA1Achr6_dbb_hap3+ chr6_dbb_hap3 heat shock 70kDa protein 1A 2.523019 

AK298056chr6_dbb_hap3- chr6_dbb_hap3 Homo sapiens cDNA FLJ54370 complete cds, highly 

similar to Heat shock 70 kDa protein 1. 

2.523943 

IL32 chr16 interleukin 32 1.866555 

THOC2 chrX Homo sapiens Tho2 mRNA, complete cds. 0.280104 
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RNAseq top 400 differentially regulated genes (Continued) 

HSPA1Achr6+ chr6 heat shock 70kDa protein 1A 2.506691 

AK298056chr6- chr6 Homo sapiens cDNA FLJ54370 complete cds, highly 

similar to Heat shock 70 kDa protein 1. 

2.507582 

TUBA1Cchr12+ chr12 tubulin alpha 6 1.480362 

C1orf104 chr1 Homo sapiens cDNA FLJ35976 fis, clone 

TESTI2013427. 

0.483526 

DL491750 chr8 DL491750 2.587952 

SCD chr10 stearoyl-CoA desaturase 1 1.841176 

MT-ND2 chrM NADH dehydrogenase subunit 2 0.840077 

ENO1 chr1 RecName: Full=Alpha-enolase;          EC=4.2.1.11; 

AltName: Full=2-phospho-D-glycerate hydro-lyase; 

AltName: Full=Non-neural enolase;          Short=NNE; 

AltName: Full=Enolase 1; AltName: 

Full=Phosphopyruvate hydratase; AltName: Full=C-

myc promoter-binding protein; AltName: Full=MBP-

1; AltName: Full=MPB-1; AltName: 

Full=Plasminogen-binding protein; 

1.356919 

GOLGA4 chr3 SubName: Full=GOLGA4 protein; 0.204172 

BC009321/IMPDH2  chr3 Homo sapiens cDNA clone IMAGE:4123521, **** 

WARNING: chimeric clone ****. 

3.914188 

RPL41 chr12 ribosomal protein L41 0.745043 

HSPA1Bchr6_qbl_hap6+ chr6_qbl_hap6 heat shock 70kDa protein 1B 1.931597 

HSPA1Bchr6_cox_hap2+ chr6_cox_hap2 heat shock 70kDa protein 1B 1.934707 

KIAA1532 chr19 SubName: Full=Putative uncharacterized protein 

ENSP00000371624; 

3.021056 

MT-ND5 chrM NADH dehydrogenase subunit 5 0.812256 

MAN1A2 chr1 SubName: Full=Putative uncharacterized protein 

MAN1A2; 

0.317346 

TUBA1Achr12+ chr12 Synthetic construct Homo sapiens gateway clone 

IMAGE:100019466 3' read TUBA1A mRNA. 

1.450076 

CR610533 chr8 SubName: Full=Class IVb beta tubulin; 2.848917 

RPLP0chr2+ chr2 SubName: Full=RPLP0 protein; 1.464575 

LOC401308 chr11 SubName: Full=Similar to Chain , Heat-Shock 

Cognate 70kd Protein (44kd Atpase N-Terminal) 

(E.C.3.6.1.3) Mutant With Asp 206 Replaced By Ser 

(D206s); 

2.002414 

MT-ND3 chrM NADH dehydrogenase subunit 3 1.164973 

RPLP2 chr11 ribosomal protein P2 1.440421 

RAC1 chr7 ras-related C3 botulinum toxin substrate 1 0.436073 

HSPA1Bchr6_apd_hap1+ chr6_apd_hap1 heat shock 70kDa protein 1B 1.918542 

DQ597482 chr11 full-length cDNA clone CS0DM002YL19 of Fetal 

liver of Homo sapiens (human). 

0.581733 

RPL14 chr3 ribosomal protein L14 0.562145 

YWHAB chr20 tyrosine 3-monooxygenase/tryptophan 0.409504 

HSPA1Bchr6_dbb_hap3+ chr6_dbb_hap3 heat shock 70kDa protein 1B 1.921091 

CR624826 chr1 Homo sapiens cDNA: FLJ20887 fis, clone 

ADKA03276. 

0.378406 
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RNAseq top 400 differentially regulated genes (Continued) 

EDF1 chr9 endothelial differentiation-related factor 1 1.5108 

hCAP-C chr3 Homo sapiens hCAP-C mRNA for chromosome-

associated polypeptide-C, complete cds. 

0.260651 

HSPA1Bchr6+ chr6 heat shock 70kDa protein 1B 1.910128 

SFRS11 chr1 splicing factor, arginine/serine-rich 11 0.298836 

DCI chr16 dodecenoyl-Coenzyme A delta isomerase precursor 0.389571 

SSRP1 chr11 structure specific recognition protein 1 0.462444 

RPN2 chr20 ribophorin II 0.509197 

RBM12 chr20 RNA binding motif protein 12 3.08718 

KTN1 chr14 kinectin 1 0.29067 

KCP chr7 Homo sapiens cDNA FLJ33365 fis, clone 

BRACE2005460, moderately similar to Xenopus 

laevis mRNA for Kielin. 

2.692518 

ANXA2chr9+ chr9 annexin A2 1.694536 

HMGA1 chr6 SubName: Full=cDNA FLJ54188, moderately similar 

to High mobility group protein HMG-I/HMG-Y; 

1.740566 

C15orf63 chr15 chromosome 15 open reading frame 63 1.549347 

LOC100129034 chr9 Homo sapiens mRNA full length insert cDNA clone 

EUROIMAGE 685610. 

0.453213 

DHCR7 chr11 7-dehydrocholesterol reductase 2.788704 

SMC4 chr3 SMC4 structural maintenance of chromosomes 0.344823 

EIF4A1 chr17 eukaryotic translation initiation factor 4A 0.585821 

ALDOA chr16 fructose-bisphosphate aldolase A 1.372598 

FAM166A chr9 hypothetical protein LOC401565 0.506966 

HSPA8 chr11 heat shock 70kDa protein 8 1.524636 

BBX chr3 HMG-BOX transcription factor BBX 0.358123 

MRPS5 chr2 Homo sapiens MRPS5 mRNA for mitochondrial 

ribosomal protein S5, complete cds. 

0.440919 

ARF1 chr1 ADP-ribosylation factor 1 2.145166 

RPL10A chr6 ribosomal protein L10a 0.604428 

TARG1 chr8 Homo sapiens TARG1 mRNA, 3' untranslated region. 0.274394 

MAGED2 chrX melanoma antigen family D, 2 2.742964 

MDH2 chr7 mitochondrial malate dehydrogenase precursor 1.972453 

rpl10a chr6 SubName: Full=HCG1787790; SubName: 

Full=Putative uncharacterized protein 

ENSP00000344077; 

0.6073 

GPI chr19 glucose phosphate isomerase 1.852699 

LASP1 chr17 SubName: Full=cDNA FLJ51834, highly similar to 

LIM and SH3 domain protein 1; 

2.397447 

SNORD49B chr17 Homo sapiens small nucleolar RNA, C/D box 49B 

(SNORD49B), non-coding RNA. 

2.121228 

JUP chr17 junction plakoglobin 2.144249 

KIAA0391 chr14 mitochondrial RNase P protein 3 precursor 0.341218 

EBP chrX emopamil binding protein (sterol isomerase) 1.468221 
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RNAseq top 400 differentially regulated genes (Continued) 

MTDH chr8 metadherin 0.316266 

POLR2A chr17 DNA-directed RNA polymerase II A 2.373159 

SLC25A5 chrX adenine nucleotide translocator 2 2.074109 

CHD4 chr12 chromodomain helicase DNA binding protein 4 0.498823 

ACLY chr17 ATP citrate lyase 1.991025 

DDX46 chr5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 0.351844 

TMSB4X chrX thymosin, beta 4 0.726951 

FASN variant protein chr17 Homo sapiens mRNA for FASN variant protein, 

partial cds, clone: ae00014. 

2.234287 

ASS1 chr9 argininosuccinate synthetase 1 0.737727 

CSRP1 chr1 cysteine and glycine-rich protein 1 1.713545 

METAP2 chr12 methionyl aminopeptidase 2 0.440387 

VARSchr6_qbl_hap6- chr6_qbl_hap6 SubName: Full=Valyl-tRNA synthetase; SubName: 

Full=Valyl-tRNA synthetase 

3.845343 

GAPD chr12 RecName: Full=Glyceraldehyde 3-phosphate 

dehydrogenase;          EC=1.2.1.12; Flags: Fragment; 

0.822593 

EIF4G2 chr11 eukaryotic translation initiation factor 4 1.877482 

SNX22 chr15 Homo sapiens cDNA FLJ13952 fis, clone 

Y79AA1001068. 

0.541472 

GAPDH chr12 glyceraldehyde-3-phosphate dehydrogenase 0.823469 

GOLGB1 chr3 golgi autoantigen, golgin subfamily b 0.236078 

MT-TE chrM tRNA glutamic acid 0.478702 

COPA chr1 Synthetic construct DNA, clone: pF1KB9459, Homo 

sapiens COPA gene for coatomer subunit alpha, 

complete cds, without stop codon, in Flexi system. 

2.170367 

SNORD101 chr6 Homo sapiens cDNA FLJ38828 fis, clone 

MAMGL1000017. 

0.350372 

MRPS15 chr1 mitochondrial ribosomal protein S15 precursor 0.465634 

MAP7D3 chrX MAP7 domain containing 3 0.255073 

HSPA1Lchr6_cox_hap2- chr6_cox_hap2 heat shock 70kDa protein 1-like 4.734759 

HLA-Cchr6_mann_hap4- chr6_mann_hap4 Homo sapiens HLA-C class I antigen (HLA-C) 

mRNA, HLA-Cw*05DZ allele, complete cds. 

2.107054 

HSPA1Lchr6_qbl_hap6- chr6_qbl_hap6 heat shock 70kDa protein 1-like 4.719672 

EPRS chr1 glutamyl-prolyl tRNA synthetase 0.530624 

CENPF chr1 centromere protein F 0.348649 

CCT7 chr2 chaperonin containing TCP1, subunit 7 1.931585 

NDUFC2 chr11 NADH dehydrogenase (ubiquinone) 1, subcomplex 2.056072 

ARF3 chr12 ADP-ribosylation factor 3 1.956623 

hCG_1994130 chr16 SubName: Full=HCG1994130 0.689145 

OK/SW-cl.82 chr16 Homo sapiens OK/SW-cl.82 mRNA, complete cds. 0.689441 

SURF4 chr9 surfeit 4 1.884385 

QM chrX Homo sapiens mRNA expressed only in placental villi, 

clone SMAP26. 

2.269846 

TM4SF1 chr3 transmembrane 4 superfamily member 1 0.750015 
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RNAseq top 400 differentially regulated genes (Continued) 

CBX3 chr7 SubName: Full=Chromobox homolog 3 (HP1 gamma 

homolog, Drosophila) 

0.638467 

AK303306 chr17 SubName: Full=cDNA FLJ51427; 3.142034 

RPS15A chr16 ribosomal protein S15a 0.693197 

RPSAchr3+ chr3 ribosomal protein SA 0.601876 

M37726 chr1 M37726 0.401813 

LYRIC chr8 Homo sapiens astrocyte elevated gene-1 AEG1 

mRNA, complete cds. 

0.279476 

RPL29 chr3 ribosomal protein L29 0.659075 

CPNE1 chr20 Homo sapiens mRNA for copine I variant protein. 1.86948 

SLC3A2 chr11 solute carrier family 3, member 2 1.83348 

EEF1Gchr11- chr11 eukaryotic translation elongation factor 1 0.717383 

DDB1 chr11 damage-specific DNA binding protein 1 2.231589 

PABPC1 chr8 Synthetic construct DNA, clone: pF1KB5695, Homo 

sapiens PABPC1 gene for polyadenylate-binding 

protein 1, complete cds, without stop codon, in Flexi 

system. 

0.601032 

TAX1BP1 chr7 Tax1 (human T-cell leukemia virus type I) 0.46841 

FSCN1 chr7 fascin 1 1.793611 

KRT80 chr12 keratin 80 2.548215 

NOSIP chr19 nitric oxide synthase interacting protein 1.911829 

VPS72 chr1 transcription factor-like 1 2.614315 

CCT4 chr2 RecName: Full=T-complex protein 1, delta subunit; 1.90837 

TIMP1 chrX SubName: Full=cDNA FLJ60276, weakly similar to 

Metalloproteinase inhibitor 1; 

1.559861 

KIAA0765 chr20 Homo sapiens mRNA for KIAA0765 protein, partial 

cds. 

1.86527 

BAT3chr6- chr6 HLA-B associated transcript-3 2.476822 

EIF4H chr7 eukaryotic translation initiation factor 4H 1.969434 

UBXD2 chr2 SubName: Full=cDNA FLJ38083 fis, clone 

CTONG2016408, highly similar to UBX domain-

containing protein 2; 

0.29811 

OK/SW-cl.110 chrX Homo sapiens OK/SW-cl.110 mRNA for 

phosphoglycerete kinase 1, complete cds. 

1.776271 

PGK1 chrX phosphoglycerate kinase 1 1.776271 

BAT3chr6_mcf_hap5- chr6_mcf_hap5 HLA-B associated transcript-3 2.480334 

BAT3chr6_dbb_hap3- chr6_dbb_hap3 HLA-B associated transcript-3 2.478902 

BAT3chr6_mann_hap4- chr6_mann_hap4 HLA-B associated transcript-3 2.478902 

CLSPN chr1 claspin 0.339279 

CALU chr7 calumenin 0.58209 

NDUFB4 chr3 SubName: Full=Putative uncharacterized protein 

ENSP00000244249; Flags: Fragment; 

1.734517 

SMC3 chr10 structural maintenance of chromosomes 3 0.355898 
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RNAseq top 400 differentially regulated genes (Continued) 

PSMA6 chr14 SubName: Full=cDNA FLJ52022, highly similar to 

Proteasome subunit alpha type 6 (EC 3.4.25.1); 

SubName: Full=cDNA, FLJ79122, highly similar to 

Proteasome subunit alpha type 6 (EC 3.4.25.1); 

0.41919 

HLA-Cwchr6_mann_hap4- chr6_mann_hap4 SubName: Full=MHC class I antigen; 2.050767 

SFRS2IP chr12 splicing factor, arginine/serine-rich 2 0.307262 

CTSZ chr20 cathepsin Z preproprotein 0.423975 

GHITM chr10 growth hormone inducible transmembrane protein 1.981593 

HLA-Bchr6_mcf_hap5- chr6_mcf_hap5 SubName: Full=HLA-B protein; Flags: Fragment; 1.700477 

DDX27 chr20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 0.425882 

HLA-Cchr6_mcf_hap5- chr6_mcf_hap5 Homo sapiens HLA-C class I antigen (HLA-C) 

mRNA, HLA-Cw*05DZ allele, complete cds. 

2.159621 

SEC62 chr3 translocation protein 1 0.3955 

CTSD chr11 cathepsin D preproprotein 1.975589 

HSP90B1 chr12 SubName: Full=HSP90B1 protein; 0.555335 

MT-ND1 chrM NADH Dehydrogenase subunit 1 0.861913 

LARP7 chr4 La ribonucleoprotein domain family, member 7 0.279 

PRDX6 chr1 peroxiredoxin 6 1.630754 

SND1 chr7 staphylococcal nuclease domain containing 1 1.792087 

ATRX chrX transcriptional regulator ATRX 0.283264 

BRD2chr6_dbb_hap3+ chr6_dbb_hap3 SubName: Full=Bromodomain containing 2; 

SubName: Full=Bromodomain containing 2 

0.448596 

CALR chr19 calreticulin precursor 1.378053 

TAF1D chr11 Homo sapiens cDNA: FLJ23363 fis, clone HEP15507. 0.481044 

FUS chr16 fusion (involved in t(12;16) in malignant 1.994501 

BAT2chr6_cox_hap2+ chr6_cox_hap2 HLA-B associated transcript-2 2.079076 

DYNLL1 chr12 dynein light chain 1 1.78614 

GARS chr7 glycyl-tRNA synthetase 0.5643 

RBM25 chr14 RecName: Full=RNA-binding protein 25; AltName: 

Full=RNA-binding motif protein 25; AltName: 

Full=RNA-binding region-containing protein 7; 

AltName: Full=Arg/Glu/Asp-rich protein of 120 kDa;          

Short=RED120; AltName: Full=Protein S164; 

0.431193 

9-Sep chr17 septin 9 2.284401 

FUS/CHOP chr16 SubName: Full=cDNA FLJ57206, moderately similar 

to RNA-binding protein FUS; 

1.989927 

PTP4A2 chr1 protein tyrosine phosphatase type IVA, member 2 0.401035 

LRRFIP1 chr2 leucine rich repeat (in FLII) interacting 0.288969 

AKAP9 chr7 A-kinase anchor protein 9 0.197231 

DNAJC2 chr7 SubName: Full=DNAJC2 protein; 0.349298 

SON chr21 Homo sapiens SON DNA binding protein 0.515389 

UBXN4 chr2 UBX domain containing 2 0.353071 

RPS26 chr12 ribosomal protein S26 0.605091 
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RNAseq top 400 differentially regulated genes (Continued) 

GPR56 chr16 SubName: Full=G protein-coupled receptor 56; 2.908283 

DEK chr6 DEK oncogene 0.417318 

SPOP chr17 speckle-type POZ protein 0.304696 

UBA1 chrX ubiquitin-activating enzyme E1 1.582153 

Y16709 chr9 Homo sapiens mRNA from HIV associated non-

Hodgkin's lymphoma (clone hl1-98). 

0.435839 

RPL27A chr11 ribosomal protein L27a 0.795919 

RSF1 chr11 remodeling and spacing factor 1 0.270706 

PRDX5 chr11 peroxiredoxin 5 1.775891 

BAT2chr6_dbb_hap3+ chr6_dbb_hap3 HLA-B associated transcript-2 2.068963 

BAT2chr6_mann_hap4+ chr6_mann_hap4 HLA-B associated transcript-2 2.079904 

CDKN1A chr6 cyclin-dependent kinase inhibitor 1A 1.890415 

RNASEK chr17 ribonuclease kappa 1.630251 

L01117 chr17 L01117 3.367235 

PRPF8 chr17 U5 snRNP-specific protein 1.814369 

BSG chr19 Homo sapiens mRNA for CD147, complete cds. 1.478747 

hEMMPRIN chr19 Homo sapiens mRNA for EMMPRIN, complete cds. 1.478107 

RPL12 chr9 Homo sapiens mRNA for ribosomal protein L12 

variant protein. 

1.327549 

PKM2 chr15 Homo sapiens Opa-interacting protein OIP3 mRNA, 

partial cds. 

1.293158 

PLEC1 chr8 plectin 1.998906 

NDUFB9 chr8 NADH dehydrogenase (ubiquinone) 1 beta 1.549053 

AB209575 chr19 SubName: Full=Glucose phosphate isomerase variant; 

Flags: Fragment; 

3.185948 

C6orf21 variant 

proteinchr6_ssto_hap7+ 

chr6_ssto_hap7 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

3.998911 

GPATCH4 chr1 G patch domain containing 4 0.384625 

RIOK1 chr6 RIO kinase 1 0.228556 

C6orf21 variant 

proteinchr6_cox_hap2+ 

chr6_cox_hap2 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

3.972842 

C6orf21 variant 

proteinchr6_qbl_hap6+ 

chr6_qbl_hap6 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

3.972842 

RPL13AP20 chr12 SubName: Full=Ribosomal protein L13a variant; 

Flags: Fragment; 

0.558796 

TUBA1Cchr12- chr12 Synthetic construct Homo sapiens gateway clone 

IMAGE:100017296 3' read TUBA1C mRNA. 

1.300839 

KIF5B chr10 kinesin family member 5B 0.380245 

HSPA1Lchr6_apd_hap1- chr6_apd_hap1 heat shock 70kDa protein 1-like 4.323363 

HSPA1Lchr6- chr6 heat shock 70kDa protein 1-like 4.30745 

HSPA1Lchr6_dbb_hap3- chr6_dbb_hap3 heat shock 70kDa protein 1-like 4.30745 

POLR2J4 chr7 Homo sapiens cDNA FLJ58900 complete cds, weakly 

similar to Uroplakin-3B precursor. 

2.069547 

NDUFS6 chr5 NADH dehydrogenase (ubiquinone) Fe-S protein 6 1.382241 
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RNAseq top 400 differentially regulated genes (Continued) 

C6orf21 variant 

proteinchr6_mann_hap4+ 

chr6_mann_hap4 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

4.124384 

ATP2B1 chr12 plasma membrane calcium ATPase 1 0.340601 

ARHGEF18 chr19 Rho/Rac guanine nucleotide exchange factor 18 3.080219 

BC015662 chr6 Homo sapiens high mobility group AT-hook 1, mRNA 

(cDNA clone IMAGE:4844539). 

1.562596 

RPS19 chr19 ribosomal protein S19 0.731287 

BAT2chr6_mcf_hap5+ chr6_mcf_hap5 HLA-B associated transcript-2 2.031376 

MESDC2 chr15 mesoderm development candidate 2 0.355542 

C6orf21 variant 

proteinchr6_mcf_hap5+ 

chr6_mcf_hap5 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

4.044016 

EEF1A2chr6- chr6 RecName: Full=Elongation factor 1-alpha 2;          

Short=EF-1-alpha-2;          Short=Elongation factor 1 

A-2; AltName: Full=eEF1A-2; AltName: Full=Statin 

S1; 

1.18096 

COX7A2L chr2 cytochrome c oxidase subunit VIIa polypeptide 2 1.929161 

DUSP1 chr5 dual specificity phosphatase 1 2.294448 

C6orf21 variant 

proteinchr6_dbb_hap3+ 

chr6_dbb_hap3 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

4.068955 

WBP2 chr17 WW domain binding protein 2 1.95577 

NFKB2 chr10 nuclear factor of kappa light polypeptide gene 2.126312 

BAT3chr6_cox_hap2- chr6_cox_hap2 HLA-B associated transcript-3 2.112236 

BC078172 chr10 Homo sapiens cDNA clone IMAGE:5760022, partial 

cds. 

3.254654 

HLA-Cchr6_dbb_hap3- chr6_dbb_hap3 SubName: Full=MHC class I HLA-C allele; Flags: 

Precursor; Fragment; 

1.799672 

COPG chr3 SubName: Full=Gamma1-COP; SubName: 

Full=Coatomer protein complex, subunit gamma 

1.777813 

KIAA1783 chr17 Homo sapiens mRNA for KIAA1783 protein, partial 

cds. 

2.111385 

TPR chr1 SubName: Full=TPR protein; Flags: Fragment; 0.314363 

CR596118 chr5 full-length cDNA clone CS0DF026YI08 of Fetal brain 

of Homo sapiens (human). 

0.700465 

pp7704 chr1 Homo sapiens HT031 mRNA, complete cds. 3.135332 

DKFZp434C119 chr17 SubName: Full=cDNA FLJ50246, highly similar to 

Mitochondrial carrier protein CGI-69; 

2.417396 

SOD1 chr21 superoxide dismutase 1, soluble 1.344646 

RPS27A chr2 ubiquitin and ribosomal protein S27a precursor 0.660693 

PLSCR3 chr17 phospholipid scramblase 3 1.688149 

ATP5G3 chr2 ATP synthase, H+ transporting, mitochondrial F0 1.719891 

ARPC4 chr3 actin related protein 2/3 complex subunit 4 1.862117 

BC033739 chr16 Homo sapiens cDNA FLJ43590 fis, clone 

SMINT2001818. 

2.785728 

ZCRB1 chr12 zinc finger CCHC-type and RNA binding motif 1 0.38508 

HLA-Bchr6_dbb_hap3- chr6_dbb_hap3 SubName: Full=MHC class I antigen; Flags: 

Fragment; 

1.85576 

PEA15 chr1 phosphoprotein enriched in astrocytes 15 2.127349 
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RNAseq top 400 differentially regulated genes (Continued) 

SMARCC1 chr3 SWI/SNF-related matrix-associated 0.423784 

TTC3 chr21 tetratricopeptide repeat domain 3 0.312403 

HIST1H4C chr6 histone cluster 1, H4c 0.265631 

NAP1L1 chr12 nucleosome assembly protein 1-like 1 0.634602 

BAT3chr6_ssto_hap7- chr6_ssto_hap7 HLA-B associated transcript-3 2.070073 

BAT3chr6_qbl_hap6- chr6_qbl_hap6 HLA-B associated transcript-3 2.070565 

CD63 chr12 CD63 antigen 0.686107 

C6orf21 variant 

proteinchr6+ 

chr6 Homo sapiens mRNA for C6orf21 variant protein, 

partial cds, clone: hj06729. 

4.072186 

PSMA7 chr20 proteasome alpha 7 subunit 0.61336 

ARSDR1 chr14 SubName: Full=cDNA FLJ53708, highly similar to 

Retinol dehydrogenase 11 (EC 1.1.1.-); 

0.435169 

VARSchr6_cox_hap2- chr6_cox_hap2 valyl-tRNA synthetase 1.862007 

VARSchr6- chr6 Homo sapiens cDNA FLJ54383 complete cds, highly 

similar to Valyl-tRNA synthetase (EC 6.1.1.9). 

1.860792 

VARSchr6_dbb_hap3- chr6_dbb_hap3 valyl-tRNA synthetase 1.860792 

LUC7L3 chr17 LUC7-like 3 0.396992 

C17orf49 chr17 hypothetical protein LOC124944 1.556997 

ANKRD11 chr16 ankyrin repeat domain 11 0.395629 

TRIM33 chr1 tripartite motif-containing 33 protein 0.339539 

VARSchr6_apd_hap1- chr6_apd_hap1 valyl-tRNA synthetase 1.858637 

VARSchr6_mcf_hap5- chr6_mcf_hap5 valyl-tRNA synthetase 1.858637 

DNAJC21 chr5 DnaJ homology subfamily A member 5 0.326358 

MSN chrX moesin 1.738963 

CROP/Luc7A chr17 SubName: Full=cDNA FLJ59548, highly similar to 

Cisplatin resistance-associated overexpressed protein; 

0.381183 

TMEM214 chr2 transmembrane protein 214 2.144868 

PYCR1 chr17 pyrroline-5-carboxylate reductase 1 1.93347 

SNRPA chr19 small nuclear ribonucleoprotein polypeptide A 1.962597 

MT-ND4L chrM  NADH dehydrogenase subunit 4L 0.832684 

RDX chr11 radixin 0.399575 

KDM5A chr12 retinoblastoma binding protein 2 0.29715 

SDHAchr5- chr5 Homo sapiens cDNA FLJ58919 complete cds, 

moderately similar to Succinate dehydrogenase 

(ubiquinone) flavoprotein subunit, mitochondrial 

precursor (EC1.3.5.1). 

0.327777 

TTF1 chr9 transcription termination factor, RNA polymerase 0.319229 

RDH11 chr14 retinol dehydrogenase 11 0.44709 

PPIG chr2 peptidylprolyl isomerase G 0.30318 

GOLGA2 chr9 SubName: Full=Golgi autoantigen, golgin subfamily a, 

2; Flags: Fragment; 

0.542955 

PHIP chr6 pleckstrin homology domain interacting protein 0.296799 

DYNC1H1 chr14 cytoplasmic dynein 1 heavy chain 1 0.632998 
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RNAseq top 400 differentially regulated genes (Continued) 

TOP1 chr20 DNA topoisomerase I 0.429615 

SLTM chr15 modulator of estrogen induced transcription 0.296135 

DKFZp762G052 chr15 SubName: Full=cDNA FLJ30633 fis, clone 

CTONG2002418, highly similar to Homo sapiens 

modulator of estrogen induced transcription, transcript 

variant 1, mRNA; SubName: Full=cDNA FLJ78261; 

0.282457 

EIF5A chr17 eukaryotic translation initiation factor 5A 1.29188 

TPP1 chr11 tripeptidyl-peptidase I preproprotein 2.997457 

SNRNP48 chr6 U11/U12 snRNP 48K 0.253156 

GRP94cchr12+ chr12 SubName: Full=Heat shock protein 94c; 0.572111 

PSIP1 chr9 PC4 and SFRS1 interacting protein 1 0.310453 

EIF3J chr15 SubName: Full=cDNA FLJ57599, moderately similar 

to Eukaryotic translation initiation factor 3 subunit 1; 

0.514275 

ALPP chr2 placental alkaline phosphatase preproprotein 2.295661 

CCDC25 chr8 Homo sapiens cDNA FLJ10853 fis, clone 

NT2RP4001502. 

0.411721 

RHOB chr2 ras homolog gene family, member B precursor 1.843297 

RPL7 chr8 ribosomal protein L7 0.666566 

AK093299 chr1 Homo sapiens cDNA FLJ35980 fis, clone 

TESTI2013546. 

4.902144 

PSMD7 chr16 SubName: Full=cDNA FLJ51373, highly similar to 

26S proteasome non-ATPase regulatory subunit 7; 

0.485288 

C16orf88 chr16 hypothetical protein LOC400506 0.374755 

LYAR chr4 Ly1 antibody reactive homolog 0.301411 

TUBB2Achr18+ chr18 SubName: Full=TUBB2A protein; Flags: Fragment; 2.041709 

SRPK2 chr7 Synthetic construct DNA, clone: pF1KB3384, Homo 

sapiens SRPK2 gene for SFRS protein kinase 2, 

without stop codon, in Flexi system. 

0.373769 

OAS3 chr12 2'-5'oligoadenylate synthetase 3 3.613097 

P2RY11 chr19 purinergic receptor P2Y11 0.302701 

RPN1 chr3 ribophorin I precursor 1.622207 

PQBP1 chrX polyglutamine binding protein 1 1.696782 

PSMB4 chr1 proteasome beta 4 subunit 1.66446 

PRPF40A chr2 formin binding protein 3 0.364652 

NUP188 chr9 nucleoporin 188kDa 2.012372 

S QSTM1 chr5 sequestosome 1 1.488766 

UPF3B chrX UPF3 regulator of nonsense transcripts homolog B 0.256973 

HLA-Bchr6- chr6 SubName: Full=MHC class I antigen; 1.8586 

RPL37 chr5 ribosomal protein L37 0.87647 

ERGIC1 chr5 RecName: Full=Endoplasmic reticulum-Golgi 

intermediate compartment protein 1; AltName: 

Full=ER-Golgi intermediate compartment 32 kDa 

protein;          Short=ERGIC-32; 

1.931334 

EEF1A1chr6- chr6 eukaryotic translation elongation factor 1 alpha 1.153656 
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TRAF7 chr16 TNF receptor-associated factor 7 2.000212 

PTMS chr12 parathymosin 1.346629 

ATP5O chr21 Homo sapiens full length insert cDNA clone 

ZD90F06. 

0.594704 

PSMB3 chr17 proteasome beta 3 subunit 1.436605 
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CHAPTER 2 SUPPLEMETARY FIGURES  
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Supplementary Figure 2.1. Nuclear localization of transfected oligos. Cells were grown in 

glass-bottom 24-well plates and stained with Hoechst 33342 10ug/mL. The next day, cells 

were transfected with 500ng Fluorescein-labeled oligo using various cationic lipid reagents 

following manufacturer instructions and imaged 24 hours after transfection. Scale bar=10μm 
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Supplementary Figure 2.1 (Continued) 
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Supplementary Figure 2.2. Validation of RNAi experiments (a) Western Blotting confirming 

knockdown of MMR components. Primary antibodies anti-MSH2 (ab52266, 1:5,000), anti-

MLH1 (ab92312, 1:2,000)  and anti-Actin (ab3280, 1:10,000), and secondary antibodies anti-

rabbit IgG (ab6721, 1:25,000) and anti-mouse IgG (ab6728 1:25,000) were obtained from 

Abcam.  (b), (c)  siRNA targeting mismatch repair components have a lower effect with 

modified bases.  A 24-well plate was treated with 80nM siRNA, 1uL RNAiMax following 

manufacturer’s protocol.  siRNA-treated cells were transfected with targeting oligos 72hrs later.  

N=4  siRNAs sequences can be found in Table 2.2 
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Supplementary Figure 2.3. Increased transfection reaction leads to higher stable 

frequencies with a less toxic oligo.  HeLa F5 cells transfected with F5-17 oligo, either 1x 

or 2x DNA:lipofectamine complexes, assayed for %EGFP+ cells eight days after 

transfection. 
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Supplementary Figure 2.4. Sequencing corrected EGFP+ clonal cells.  Single-cells 

were sorted into a 96-well plate 8 days post-transfection with (a) F5-17,(b)F5-34, (c)F5-

35,  grown for two weeks and then sequenced.  Sequence spectrum overlap shows one 

of the two mEGFP copies was modified. 

(a)

(b)

(c)
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Supplementary Figure 2.5. γ-H2AX phosphorylation  staining. Cells were plated 

500,000/well on a 6-well plate, then transfected with the corresponding oligos.  After 36hrs, cells 

were washed, fixed in 4%PFA, then stained with Alexa Fluor 647 anti-H2A.X-Phosphorylated 

Antibody (1:25, Biolegend). Cells permeabilized with 10% saponin, shaking for 20 mins at room 

temperature. 
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