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Functional Studies of Candidate Oncogenes in Non-Small Cell Lung Cancer 

 

ABSTRACT 

Cancer is a set of complex genetic diseases driven by diverse genomic alterations. The 

genomic study of cancer has enabled the discovery of novel, targetable events in almost all 

cancer types and in turn, has led to the development of new, targeted cancer therapies benefiting 

patients; however, the recent explosion of genomic datasets has also resulted in huge lists of new 

oncogenic factors of unknown biological relevance, and uncertainty over how best to use the 

data appropriately to influence patient care. Some of the most pressing questions surround the 

use of statistical methods to identify actionable genomic alterations in cancer and the 

identification of driving oncogenes in the context of the genomic evolution of cancer cells, 

undergone before, during, and after prolonged treatment regimens. 

Few cancers are in greater need of study than non-small cell lung cancer. Lung cancer is 

responsible for more deaths per year than any other cancer type in both men and women and in 

up to half of cases of non-small cell lung cancer, no driving alteration is known. Here, we 

describe approaches to identify new oncogenic targets in lung squamous cell carcinoma that did 

not rise to the level of statistical significance using standard algorithms but nonetheless represent 

a promising target for therapy in patients who present with this disease, and secondary drivers 

that arise when lung squamous cell carcinoma is treated with prolonged exposure to targeted 

therapy. In addition, we examine a statistically significant alteration in lung adenocarcinoma that 

did not validate as a likely driver in our functional studies, despite strong computational evidence 
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suggesting its role as a lung cancer target. These studies together demonstrate both the promise 

and limitations of in silico approaches to target identification in cancer and the need for 

functional validation of alterations in preclinical models to best inform the development of 

clinical trials and patient selection for targeted therapy. It is our hope that these studies will 

contribute to a more complete understanding of the complex use of cancer genome 

characterization data, as well as improved treatment options for patients who develop non-small 

cell lung cancer. 
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SUMMARY 

 The completion of the Human Genome Project in 2003 permanently altered the way that 

disease research was performed. The project, and its counterpart from the Celera Corporation, 

physically mapped the ~21,000 genes in the human genome and enabled their systematic study 

for the first time, launching an area of research now formally referred to as the field of genomics. 

Within a few years, the cost of genome sequencing and characterization precipitously dropped, 

while at the same time, its speed and accuracy skyrocketed, enabling not only the routine 

sequencing of the genes and genomes of many people, and of many non-human organisms, but 

also the systematic genomic characterization of cancer compared to its corresponding normal 

tissue across populations of patients. The large datasets generated then enabled the use of 

statistical methods to identify significant events, a subset of which were driving, functional, 

targetable alterations.  

 These alterations spurred the development of targeted therapies, far superior to 

conventional therapies such as chemotherapy and radiation, for appropriately selected tumors in 

many tumor types. Patients who previously received dismal prognoses were living progression-

free for months or years, with minimal side effects. However, as genome characterization 

became more sensitive to detect alterations, it became clear that many cancers are highly altered, 

and most alterations are likely non-functional passenger events that simply occur in the course of 

tumor evolution. Thus it has become necessary to study not just the genomes of cancer, but to 

evaluate candidate drivers functionally in the lab in order to identify those most likely to respond 

to targeted therapy. Here, we focus on functional genomic studies in lung adenocarcinoma and 

lung squamous cell carcinoma, two subtypes accounting for the majority of non-small cell lung 

cancer diagnoses. We will describe the identification and characterization of functional 
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candidates in these diseases, as well as clinical successes with targeted therapies and the 

development of resistance. 

 

BACKGROUND 

 Lung cancer is a prevalent and deadly disease that accounts for more deaths per year than 

any other cancer type in both men and women in the United States (1). The most common 

subtype of lung cancer is non-small cell lung cancer (NSCLC), which accounts for ~85% of lung 

cancer diagnoses (1). This subtype can be further broken down into categories, lung 

adenocarcinomas, which are most common, lung squamous cell carcinomas, and large cell 

carcinomas of the lung (1). NSCLC is widely studied, and genomic analyses of both lung 

adenocarcinoma and lung squamous cell carcinoma have been undertaken in recent years, 

resulting simultaneously in an excess of candidate oncogenic events and a dearth of preclinical 

functional data that might recommend new drug development studies and clinical trials for 

patients harboring driving, targetable events (2-5). Thus, the functional study of candidate 

oncogenes, in both academia and industry, has become a sub-field in the study of almost every 

cancer type, and perhaps none more so than non-small cell lung cancer. 

 

Clinical aspects of non-small cell lung cancer 

Behavioral and environmental risk factors 

 It is well established that cigarette smoking directly causes many non-small cell lung 

cancers, with one recent study putting the proportion of current or former smokers diagnosed 

with NSCLC at 85% (6). It has also been demonstrated that second-hand smoke has a small 

causal role in lung cancer development (7), as does the smoking of pipes or cigars (8). Air 
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pollution is also correlated with increased development of lung cancer and other lung diseases 

(9). 

 Non-smokers who develop lung cancer very frequently develop lung adenocarcinoma (6). 

These individuals are more likely to be women and more likely to be of East Asian descent (10), 

and some of the risk has been attributed to frequent use of cooking oil in East Asian cooking 

(11). Population-based genetic studies have also identified risk loci that increase lung cancer risk 

irrespective of smoking status (12, 13). 

 

Histology and staging 

 Lung adenocarcinoma arises peripherally from glands within the lobe of the lung. It tends 

to grow at a reduced rate compared to other subtypes of lung cancer, which makes it more likely 

to be diagnosed prior to metastasis, and its external location makes it amenable to surgical 

removal, particularly if identified early (14). In contrast, squamous cell carcinoma of the lung 

arises centrally, near the bronchial junction connecting the trachea to the lung. These tumors 

resemble squamous epithelia, similar to the epithelial layers lining the oral cavity and trachea, 

but cell of origin is unknown as no squamous epithelia is found in the normal lung. Squamous 

tumors metastasize more frequently than adenocarcinomas and are less amenable to surgical 

removal due to their central location in the lungs (15).  

 Both subtypes are staged using the TNM staging system (16). T indicates the size and 

spread of the tumor into immediately surrounding tissue. N indicates involvement of lymph 

nodes, a preliminary identifier of spreading disease, and M indicates metastasis, i.e. whether the 

tumor has been identified at distant sites (16). As expected, prognosis deteriorates as stages 

increase.  
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Conventional therapy 

 Standard of care for patients presenting with NSCLC varies with stage. For example, 

patients with T1 or T2 tumors, indicating a smaller tumor size, frequently benefit from surgical 

resection (17), while larger tumors, indicating more advanced disease, often recommend non-

surgical treatment (18, 19). Primary radiation is the most beneficial option for patients with early 

stage, unresectable disease, and adjuvant chemotherapy is recommended for patients with stage 

II tumors in addition to surgery (17). Patients with stage III tumors are treated primarily with 

chemoradiation therapies (18), and for patients with stage IV tumors, treatments ranging from 

platinum-based chemotherapy regimens to immunotherapy are utilized, recognizing that such 

advanced tumors are treatable, but no therapy will be curative (19). 

 

Genomics of non-small cell lung cancer 

Lung adenocarcinoma 

 The first recurrent genomic alteration formally identified in lung adenocarcinoma was 

KRAS mutation (20), now known to occur at a 15-20% frequency (21). This remained the only 

known recurrent driver for more than 15 years, until the identification of EGFR mutations by 

several groups in 2004 (22-24). EGFR events occur preferentially in non-smokers at a rate of 

~10% in tumors of Caucasian patients and up to more than half of lung cancer patients of East 

Asian decent (21). Since the identification of EGFR driving events, many large-scale genomic 

characterization studies have been performed in lung adenocarcinoma patients (2, 3, 5), enabling 

identification of many recurrent low-frequency oncogenic alterations such as mutations and 

amplifications in ERBB2, mutations in BRAF, PIK3CA, AKT1, MEK1, and NRAS, and fusions 
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and translocations activating ALK, ROS, and RET (21, 25). With the exception of alterations in 

PIK3CA, these events are very frequently found to be mutually exclusive (21).  

 Beyond kinase drivers, amplified transcription factors have also been implicated in 

driving lung adenocarcinoma. Predominant among these is NKX2-1 (26), a lineage-specific 

transcription factor that directs alveolar development in the lung (27). Other amplified 

transcription factors include MYC (5, 26). 

 Genomic studies have also identified recurrent events in lung adenocarcinoma that are 

likely tumor suppressors. The most common alteration in lung adenocarcinoma is missense or 

nonsense mutation of TP53 in more than 50% of cases (2, 5). Statistically significant alterations 

also occur in CDKN2A/B, RB1, ATM, NF1, and U2AF1 in high percentages of tumors (2, 5, 26), 

demonstrating the frequent co-occurrence of gain-of-function and loss-of-function alterations. 

 Despite the identification of many driving events in lung adenocarcinoma, almost half of 

all diagnosed tumors are still considered “oncogene negative”—that is, they express no identified 

driving event (25). It has also been demonstrated that several receptor tyrosine kinases identified 

as significantly mutated in genomic studies of lung adenocarcinoma, including FGFR4, EPHA3, 

ERBB4, NTRK2, and NTRK3, do not score in assays designed to evaluate oncogenic potential (2, 

28), supporting the suggestion that statistics alone are not sufficient to define oncogenic drivers 

in cancer. Thus, functional studies of alterations identified in genomic characterizations of lung 

adenocarcinoma are ongoing. 

 

Lung squamous cell carcinoma 

 The first identification of a driving oncogene in NSCLC was in lung squamous cell 

carcinoma, when a patient’s tumor was found to harbor a KRAS G12C mutation that was not 
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present in normal tissue (29). A study screening 15 squamous tumors several years later did not 

identify any RAS mutations (20), and it has since been demonstrated that lung squamous tumors 

rarely mutate RAS family members (30).  

 Genomic characterization in lung squamous cell carcinoma has not experienced the 

breakthrough discoveries observed in lung adenocarcinoma, such as identification of driving 

kinases like EGFR and ALK. The few that were known, such as SOX2 amplification and FGFR1 

amplification (31-33), had little influence over treatment or prognosis, and with the exception of 

a case study implicating mutations in DDR2 as drivers in up to 4% of squamous tumors (34), no 

kinases were known to be mutated in this disease. 

This changed with the publication of research from The Cancer Genome Atlas in 2012 

(4). This study identified kinase alterations including amplifications in EGFR, ERBB2, and 

AKT3, as well as mutations in ERBB2-4, JAK2, ABL1, ABL2, MET, and FGFR2-3. Many of 

these mutations occur in known cancer genes but at novel loci, thus requiring functional 

characterization in order to determine their contribution to oncogenesis in lung squamous 

cancers. 

 The analysis from TCGA also identified many non-kinase alterations in lung squamous 

cell carcinoma that likely contribute to tumor growth and progression. TP53 mutation is 

observed in over 80% of tumors, and events in CDKN2A, PTEN, and RB1 are also significant (4, 

35). SOX2 amplification was confirmed, as was TP63 amplification, while NOTCH pathway 

family members were often mutated, indicating a role for squamous differentiation in 

oncogenesis (4). In as many as 34% of cases, amplifications or mutations were observed in 

NFE2L2, KEAP1, or CUL3—three proteins that form a complex to mediate the oxidative stress 
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response (36). Studies are ongoing to identify how the loss of the oxidative stress response might 

influence the development or sustain growth of lung squamous cancers. 

  

Targeted therapy and successes with tyrosine kinase inhibitors in NSCLC 

 In contrast to surgery, radiotherapy, and chemotherapy, targeted therapy is most 

successful in patients with tumors in which a targetable genomic alteration has been identified 

and an appropriate clinical inhibitor of that target can be applied (37). For the percentage of 

patients whose tumors harbor a targetable alteration, these treatments can induce complete, if 

temporary, responses with minimal side effects in sensitive tumors (37). 

 In NSCLC, the therapeutic approach most often taken has been to target oncogenic 

receptor tyrosine kinases (RTKs) with chemical small molecules or monoclonal antibodies (35, 

38). This is the case for two approved targeted therapies in lung adenocarcinoma, erlotinib 

targeting EGFR mutations and crizotinib targeting ALK translocations (38, 39). Other inhibitors 

are in clinical development or have shown promise for clinical development in lung 

adenocarcinoma, including targeting MAPK pathway genes such as MEK alone or in 

combination with PI3K inhibitors for KRAS-mutant tumors (40, 41), targeting ROS fusions (42), 

and targeting ERBB2 mutations (28).  

In lung squamous cell carcinoma, aside from the unexpected case study of DDR2-mutant 

tumors (34), no therapies targeting a known prognostic factor have shown benefit to patients; 

however, treatment with monoclonal antibody cetuximab in combination with chemotherapy did 

improve survival compared to chemotherapy alone (43). With the completion of the TCGA 

analysis, many more targets have been identified. Several of these targets have shown promise as 

targets in preclinical studies (4, 33, 35, 44, 45).  
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A visualization of observed NSCLC alterations for which inhibitors are already approved 

or in clinical development is presented in Figure 1-1 for lung adenocarcinoma and lung 

squamous cell carcinoma. It is the hope of this author that functional genomic validation will 

demonstrate that many putative drivers in these diseases are targetable using these and other 

targeted therapies. 

 

Inhibitor resistance 

 It is an unfortunate fact, however, that a subset of tumors expressing demonstrated 

targetable events will not respond to targeted therapy, and even tumors that respond will 

eventually acquire resistance (46, 47). It is expected that any kinase targets in lung cancer will 

follow this universal trend, and it is of great clinical interest to study resistance in this context in 

order to improve quality of life and time to progression for patients diagnosed with this 

aggressive disease.  

 

Resistance mediated by mutation of the original target kinase 

 Resistance to kinase inhibition generally arises in one of two ways. First, in the case of 

kinase inhibitors considered “ATP-competitive,” i.e., inhibitors that bind to the ATP-binding 

pocket of the kinase domain, resistance can arise via mutation within the exonic sequence 

encoding the ATP-binding pocket such that the mutant protein product renders therapy 

ineffective (48, 49). This sort of mutation, colloquially referred to as the “gatekeeper” mutation, 

can arise especially in response to Type 1 kinase inhibitors, which are designed to bind to the 

active conformation of the kinase (48). Gatekeeper mutations have been identified that confer 

resistance in patient tumors in response to approved therapies for chronic myeloid leukemia 



Chapter 1. Introduction 

10 

 

Figure 1-1. Genomic characterization identifies putative targetable alterations in non-small 

cell lung cancer.  

Putative oncogenic drivers for which targeted therapies are available have been described in 

more than half of NSCLC cases. Approximate percentages of tumors observed with alterations in 

each potential target are shown for lung adenocarcinoma (left panel, adapted from (25)) and lung 

squamous cell carcinoma (right panel, adapted from (35)). 
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(CML) driven by the BCR-ABL translocation (50) and in some EGFR-driven lung 

adenocarcinomas (51), among others. In the case of CML, second line therapies designed to 

overcome gatekeeper-mediated resistance have been successful in the clinic (52, 53), and similar 

strides are being made against gatekeeper-mutated lung cancers driven by EGFR (54).  

 Not all kinases develop gatekeeper mutations in response to targeted therapy. A notable 

example is BRAF-driven melanoma, for which resistant gatekeeper mutants can be generated in 

the laboratory (55), but where extensive efforts to identify such mutations in clinical disease 

have failed to detect gatekeeper mutations when acquired resistance arises (56, 57). It therefore 

cannot be assumed a priori that kinases targeted by Type 1 kinase inhibitors will develop 

gatekeeper mutations to mediate acquired resistance. 

 

Resistance mediated by alteration of a parallel effector to the original target kinase 

 The second common mechanism of resistance is the activation of another molecule 

whose signaling can replace or augment that of the original driving kinase. This is often 

accomplished through amplification, mutation, or other methods of activation of a kinase that 

can drive a signaling network parallel to that of the original target.  

 Amplification of a second factor as an acquired resistance response is observed in a 

subset of EGFR-mutant tumors that have developed resistance to EGFR inhibitors by 

amplification of MET and co-activation of ErbB3 in both lung adenocarcinoma and colorectal 

carcinoma (58, 59). In both cancer types, preclinical models and clinical tumors exhibiting this 

genotype respond to MET targeted therapy, suggesting that targeting resistance mechanisms 

driven by a secondary molecule might be a promising second-line strategy (58, 60).  
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 Resistance driven by secondary mutation has been described to mediate acquired 

resistance in clinical samples of BRAF-mutant melanomas resistant to BRAF inhibitors by NRAS 

mutation (56). This is of particular interest because NRAS mutation is also identified as a primary 

driver of melanoma, indicating that it can contribute to the disease both as an original oncogenic 

factor as well as a mechanism of acquired resistance after BRAF inhibition (61). Melanomas 

driven by primary or acquired NRAS mutation have been targeted with inhibitors of downstream 

mitogen-activated protein kinase (MAPK) pathway signaling molecules such as MEK1, with 

some success (62). 

 

Conclusions and context for the current work 

 With the generation of genomic datasets and suggestions of novel, targetable alterations, 

more validation of putative genomic targets is required for the treatment of non-small cell lung 

cancer. In the following work, we describe the successful characterization of oncogenic 

mutations in fibroblast growth factor receptors 2 and 3 (FGFR2 and FGFR3) identified in 

genome sequencing data from lung squamous cell carcinoma, as well as their sensitivity to 

therapies targeting FGFR family members. We go on to describe acquired resistance that arises 

in fibroblast growth factor receptor 1 (FGFR1)-amplified lung squamous cell carcinoma after 

treatment with FGFR inhibitors that are currently seeing responses in patients enrolled in clinical 

trials. Finally, we demonstrate the necessity of functional characterization of statistically 

significant genomic alterations prior to their development as therapeutic targets with the 

preliminary characterization of EphA3 mutations identified in lung adenocarcinoma genome 

sequencing data, which were not found to promote gain-of-function oncogenesis upon functional 

inquiry.  
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SUMMARY 

A comprehensive description of genomic alterations in lung squamous cell carcinoma 

(lung SqCC) has recently been reported, enabling the identification of genomic events that 

potentially contribute to the oncogenesis of this disease. In lung SqCC, one of the most 

frequently altered receptor tyrosine kinase families is the fibroblast growth factor receptor 

(FGFR) family, with amplification or mutation observed in all four family members. Here, we 

describe the oncogenic nature of mutations observed in FGFR2 and FGFR3, which are each 

observed in 3% of samples, for a mutation rate of 6% across both genes. Using cell culture and 

xenograft models, we show that several of these mutations drive cellular transformation.  

Transformation can be reversed by several small molecule FGFR inhibitors currently being 

developed for clinical use. We also show that mutations in the extracellular domains of FGFR2 

lead to constitutive FGFR dimerization. Additionally, we report a patient with an FGFR2-

mutated oral squamous cell carcinoma who responded to the multi-targeted tyrosine kinase 

inhibitor pazopanib. These findings provide new insights into driving oncogenic events in a 

subset of lung squamous cancers, and recommend future clinical studies with FGFR inhibitors in 

patients with lung and head and neck SqCC. 

 

BACKGROUND 

Two goals of comprehensive next-generation sequencing studies of human cancers are to 

discover novel somatic alterations that can be targeted therapeutically and to identify new targets 

in cancers for which targeted therapies are already available. Genome-scale analyses of large 

cohorts of tumors representing many cancer types, including lung cancer, have been recently 
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completed (1-6), enabling the discovery of previously undetectable novel genomic alterations 

and identification of novel areas for application of targeted therapeutics.  

Historically, targetable oncogenic alterations in cancer were discovered on an individual 

gene basis due to the prior inability to perform genome-scale analysis. This was the case for 

cancer-causing alterations observed in several tyrosine kinases, including EGFR and ALK in lung 

adenocarcinoma (7-9), BRAF in melanoma (10), FGFR2 in endometrial carcinoma (11, 12), and 

FGFR3 in urothelial carcinoma (13). These studies and others informed the global understanding 

of cancer genetics prior to the current genomics era and have led to several demonstrations of the 

successful application of targeted therapeutic agents and their superiority to conventional 

chemotherapy (14, 15). These studies have nominated a core set of somatic alterations which 

drive a fraction of cancers and thus have enabled prioritization of mutated genes from next-

generation sequencing datasets for study as therapeutic targets.  

Lung squamous cell carcinoma (lung SqCC) is a prevalent and deadly disease for which 

few targets are known and no targeted therapies are approved. Recent data reported by The 

Cancer Genome Atlas (TCGA) lung SqCC project ((4), tcga-data.nci.nih.gov/ and https://tcga-

data.nci.nih.gov/docs/publications/lusc_2012/) demonstrated that the Fibroblast Growth Factor 

Receptor (FGFR) tyrosine kinases are one of the most frequently altered tyrosine kinase families 

in this disease. Amplification of FGFR1 was observed, a finding in agreement with prior reports 

that identified focal amplification of FGFR1 in approximately 10-20% of lung SqCC samples 

and demonstrated that FGFR1 amplification is associated with FGFR1 dependency in a subset of 

lung cancer cell lines (16, 17). Furthermore, mutations in all four FGFR kinases, and in 

particular FGFR2 and FGFR3, were reported. While the frequency of these FGFR mutations did 

not reach statistical significance for enrichment at the cohort size examined by TCGA, several 
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features including recurrence, prior observation in other cancer types and congenital syndromes, 

and lack of other dominant oncogenic alterations in tumors with FGFR mutations, suggested 

they might be driving, targetable events in a subset of patients presenting with this disease. 

Mutations in the FGFR tyrosine kinase family were described in human disease prior to 

being implicated in cancer, specifically in craniofacial and skeletal syndromes (18). Somatic 

point mutations identical to these germline events have also been observed in malignancies (19), 

confirming the importance of genomic alterations to this family in both germline and somatic 

disease. The FGFR family is made up of four active members and one member (FGFR5) without 

kinase activity, which is posited to be a negative regulator of the signaling pathway. FGFR1-4 

each contain an extracellular domain (ECD) made up of two or three IG-like domains and a 

cytoplasmic kinase domain. Activation is stimulated by binding fibroblast growth factor (FGF) 

and heparan sulfate proteoglycan (HSPG) in the ECD, and subsequent dimerization of two 

receptor-ligand complexes, leading to transphosphorylation of the kinase domains of both 

receptors in the dimer. This leads to phosphorylation of intracellular binding partner FRS2 and 

downstream activation of Ras/MAPK and PI3K/AKT pathways, among others (20).  

Alternative splicing regulates FGFR signaling through differential use of exons that alter 

the binding specificity of the third IG-like domain for its preferred FGF ligand. The FGF family 

is made up of more than 20 members, all of which retain specificities for both different FGFR 

family members and different transcript isoforms of each receptor (21). In addition, tissue types 

vary in which receptors, isoforms, and ligands are expressed, adding further levels of regulation 

and complexity to the system—and dysregulation can lead to oncogenesis, as has been shown 

with altered expression of receptors (16, 17, 22), altered isoform expression (23, 24), and altered 

ligand specificity (25) driven by somatic genomic events. 
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Aberrant FGFR signaling has been implicated in the development of several cancer types. 

In addition to lung SqCC, FGFR1 amplification is observed in 10% of breast cancers (22) and 

risk alleles in FGFR2 have been identified in genome-wide association studies of breast cancer 

patients (26). Oncogenic point mutations in FGFR2 are observed in 12% of endometrial 

carcinomas (11) and mutations in FGFR3 are observed in more than 30% of urothelial 

carcinomas (13). Furthermore, in multiple myeloma, t(4:14) translocations frequently fuse the 

IgH locus with FGFR3, resulting in an active overexpressed FGFR3 kinase domain, and in a 

subset of cases, FGFR3 also acquires an activating kinase domain mutation, rendering it an even 

more potent oncogene (27, 28). Cell lines harboring these events have demonstrated sensitivity 

to inhibition by FGFR small molecule inhibitors, and some clinical trials have begun to test 

FGFR inhibitors in patient populations harboring mutations or amplification of FGFR family 

members (19).  

Here, we characterize FGFR2 and FGFR3 mutations observed in lung SqCC sequencing 

data and demonstrate the ability of these mutations to drive oncogenic proliferation using models 

of both transformation and dependency, thus establishing their role as putative oncogenes. We 

also demonstrate that cells harboring these mutations are sensitive to inhibition by several 

clinically relevant FGFR-specific and multi-kinase inhibitors. In addition, we report a first case 

of a patient with an FGFR2-mutated squamous cell carcinoma of the tongue, and who responded 

to pazopanib, an inhibitor of multiple tyrosine kinases, including the FGFR family. Together, 

these data identify a promising new therapeutic target for patients with lung SqCC and other 

squamous epithelial tumors. 

 

RESULTS 
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FGFR2 and FGFR3 are recurrently mutated in lung squamous cell carcinoma  

We analyzed solution-based hybrid capture (whole-exome sequencing) data generated by 

The Cancer Genome Atlas ((4), https://tcga-data.nci.nih.gov/docs/publications/lusc_2012/) for 

mutations in the FGFR2 and FGFR3 genes. We identified 5 FGFR2 and 6 FGFR3 mutations in 

analysis of exome sequencing data of 178 tumor/normal pairs, as well as an FGFR2 K660N 

mutation in a sample that was excluded from the TCGA report due to poor RNA quality (TCGA-

21-1083), for a total of 12 mutations. This number is slightly higher than the prevalence reported 

by the TCGA Network in the discussion of potential therapeutic targets because the TCGA 

restricted reporting of mutations to those detected by both exome and RNA sequencing of a 

given tumor. We also queried the data from the targeted hybrid-capture validation sequencing to 

identify FGFR2 or FGFR3 mutations that may have been missed in the original exome 

sequencing.  

Patients in the reported TCGA cohort with FGFR mutations (n=10, as one subject had 

two FGFR mutations) ranged from 58 to 81 years old with a median age of 73. All patients were 

current or former smokers with a pack year history of 9 to 63 pack years (median 49). Tumors 

were obtained from resected specimens with a T stage of 1 (n=3) or 2 (n=7) and N stage of 0 

(n=8) or 1 (n=2). More extensive patient data are available in Table 2-1 and complete data are 

available for download from the TCGA. 

 The observed mutations fell in both the extracellular domain and kinase domains of 

FGFR2 and FGFR3, and in codons in which mutations have been previously reported in 

endometrial carcinoma (11, 12) and urothelial carcinoma (13), and also at novel residues (Figure 

2-1). In the samples containing FGFR2 or FGFR3 mutations, the IIIb isoforms of each protein 

were overexpressed compared to the IIIc isoforms (Figure 2-2) FGFR kinase alterations were  
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Table 2-1. Clinical characteristics of patients whose lung squamous tumors harbored 

FGFR2 or FGFR3 mutations. 

 

 

Figure 2-1. Recurrent mutations in FGFR2 and FGFR3 are observed in lung squamous cell 

carcinoma.  

Sequencing data from The Cancer Genome Atlas (TCGA) Research Network were analyzed and 

recurrent missense mutations were observed along the length of the FGFR2 and FGFR3 proteins. 

The mutation S320C in FGFR2, in red, is located in the alternatively spliced exon in the IG-3 

domain of FGFR2 IIIb; the remaining mutations are annotated to the IIIc isoform. FGFR3 

mutations were tested in the IIIc isoform only; all annotations refer to that isoform. 
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Figure 2-2. Integrated display of FGFR kinase alterations in the 178 lung squamous cell 

carcinomas reported by the TCGA Network.  

Tumor samples are represented by columns and the presence of FGFR1 amplification or FGFR2 

or FGFR3 mutation is depicted by the shading. For each of the FGFR genes, relative expression 

is displayed. Transcript isoform usage is displayed for FGFR2 and FGFR3, with higher values 

(pink shading) favoring expression of the IIIb isoforms. Expression subtypes as previously 

described (29) are shown as the bottom track. Abbreviations: mut, mutations; amp, amplified; 

expr, expression. 
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significantly enriched in the basal expression subtype (29) when compared to samples without 

FGFR kinase alteration (Fisher’s Exact test on FGFR alteration and subtype; P=0.016) (Figure 2-

2). 

FGFR mutations co-occured with likely activating mutations in known oncogenes in 

three cases. LUSC-21-1078 had a high somatic mutation rate and harbored mutations in HRAS at 

codon 61 and PDGFRA at codon 842, both previously reported to be sites of oncogenic 

mutation, as well as a novel ERBB2 E1021Q mutation (Figure 2-3). LUSC-21-1078 contained a 

non-canonical KRAS mutation G118S and LUSC-21-5485 had a previously unreported ERBB2 

mutation G1075V. FGFR2 and FGFR3 mutations commonly co-occurred with mutations in 

TP53 (8/10) and PIK3CA (3/10), the latter a gene with mutations that commonly co-occur with 

driving oncogenes. Four of ten samples with FGFR mutation harbored 3q amplification of SOX2 

and two samples CDKN2A homozygous deletion (Figure 2-3).  

 

FGFR2 and FGFR3 mutations drive anchorage-independent growth of NIH-3T3 cells 

 FGFR2 and FGFR3 mutations can promote transformation in cellular model systems (11, 

27, 30). To determine whether the mutations identified in lung SqCC were oncogenic, we 

established NIH-3T3 cells which stably expressed each mutation to assess for anchorage-

independent growth in soft agar, a commonly used cellular assay to determine the oncogenic 

potential of a transgene. NIH-3T3 cells stably expressing each FGFR2 or FGFR3 transgene were 

seeded in soft agar in triplicate. After three weeks, we observed colony formation in cells 

expressing the majority of observed FGFR2 and FGFR3 mutations (Figure 2-4A). We 

determined that extracellular domain mutations W290C and S320C in FGFR2, and R248C and 

S249C in FGFR3, significantly increased colony formation compared to wild type FGFR2 or  
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Figure 2-3. Lung squamous cell carcinoma tumors with mutations in FGFR2 or FGFR3 do 

not commonly co-occur with other genomic alterations, except TP53 mutation. 

TCGA samples containing FGFR2 and FGFR3 mutations underwent analysis for co-occurring 

somatic copy number alterations and mutations. FGFR mutations overwhelmingly co-occurred 

with TP53 mutations; otherwise no obvious other recurrently co-occurring mutated genes were 

observed. In the left panel of SCNA events, blue indicates deletions and red indicates 

amplifications. In the right panel of somatic mutations, black indicates a missense point mutation 

and orange indicates a predicted loss-of-function nonsense, splice site, or frameshift mutation. 
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Figure 2-4. A subset of lung SqCC mutations in FGFR2 and FGFR3 are transforming in 

anchorage independent growth assays and xenograft assays.  

(A) NIH-3T3 cells stably expressing each mutation were seeded into Select agar in triplicate at a 

density of 50,000 cells per well. After three weeks, each well was photographed and cells were 

counted. The colony formation compared to wild type was calculated for each isoform and 

graphed. EGFR insNPG was included as a positive control, and the pBabe-puro Gateway empty 

vector was included as a negative control (pBp GW). P-values were calculated with the student’s 

t-test and significance is indicated by asterisks; * < 0.05, ** < 0.01, *** < 0.001.  
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Figure 2-4 continued 

(B) Nude mice injected with transforming FGFR2 mutant cells from (A) developed tumors, 

which were then treated with BGJ398 (dashed lines) or vehicle (solid lines).  

(C) Tumors were dissected from the mice for visual inspection comparing treatment with vehicle 

or drug. Top panel, FGFR2-W290C tumors; bottom panel, FGFR2-S320C.  
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FGFR3, as did kinase domain mutations K660E and K660N in FGFR2 (p<0.05 by Student’s t-

test). In contrast, FGFR2 mutations E471Q and T787K, and FGFR3 mutations S435C and 

K717M did not form colonies above wild type. There was also no colony formation observed in 

cells expressing the empty vector, while robust formation of colonies was observed in NIH-3T3 

cells expressing an activating EGFR insertion mutation, as expected. FGFR2 mutations were 

generated in both common isoforms of FGFR2 with similar results obtained for all assayed 

mutations with the exception of FGFR2 T787K, which was very modestly transforming only in 

isoform IIIc (Figure 2-4A). 

 

FGFR2 and FGFR3 mutations drive tumor formation in xenograft models 

 A second model of transformation was employed for ECD FGFR2 mutations due to the 

novelty of their characterization. NIH-3T3 cells expressing transforming FGFR2 mutations or 

wild type were injected into nude mice. Tumors had reached approximately 200-300 mm3 in all 

mice injected with mutant cells by day 13 to begin treatment with a pan-FGFR inhibitor, 

BGJ398, or vehicle, with ECD mutations driving particularly strong tumor formation (Figure 2-

4B, solid lines). Tumors formed by cells expressing wild type FGFR2 grew more slowly, and 

began treatment on day 16 (Figure 2-4B). We posit that this tumor formation in the presence of 

overexpressed wild type receptor may be due to the presence of ligand in the tumor stroma 

sufficient to activate the WT receptor. 

 Tumors treated with BGJ398 slowed or reversed their growth compared to vehicle 

(Figure 2-4B, dashed lines), so that by the end of the study, tumor burden in vehicle-treated 

versus BGJ398-treated mice was noticeably distinct (Figure 2-4C). 
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Extracellular domain mutations form ligand sensitive intermolecular disulfide bonds 

 A common mechanism of activation of the FGFR2 and FGFR3 kinases is through the 

formation of covalently bound receptor dimers (30, 31). This has been also observed in other 

receptor tyrosine kinases (RTKs), including members of the ErbB family (32). While wild type 

RTKs maintain precise extracellular structure required for ligand binding and receptor 

dimerization through the formation of intramolecular disulfide bonds, mutant receptors can form 

intermolecular disulfide dimers due through a novel cysteine residue created by the mutation 

itself, or through instability created by a mutated residue near a structural intramolecular 

disulfide bond (31). Indeed, this mechanism was previously established for the transforming 

FGFR3 mutations that we have observed in lung SqCC, R248C and S249C (30).  

To assess whether mutations in the extracellular domain of FGFR2 and FGFR3 lead to 

increased dimerization, and whether these covalent bonds could be increased by ligand 

stimulation, we serum starved cells in the presence of PBS for eight hours, 5 nM FGF1 and 2 

µg/mL heparin for eight hours, or 5 nM FGF1 and 2 µg/mL heparin for 30 minutes, followed by 

washing with PBS and serum starving in the presence of PBS for the remaining 7.5 hours. Cells 

were lysed and we performed electrophoresis in both reducing and non-reducing conditions 

followed by immunoblotting for FGFR2 and FGFR3. FGFR2 ECD mutations were sufficient to 

drive covalent dimerization in the absence of ligand, but dimerization was increased in the 

presence of even 30 minutes of ligand stimulation (Figure 2-5A). In FGFR3 mutations, on the 

other hand, dimerization was observed but not increased under ligand-stimulation conditions 

compared to PBS (Figure 2-5B). As has been demonstrated previously (33), FGFR proteins 

typically form highly glycosylated folded protein products. While FGFR2 W290C appears to 
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Figure 2-5. Mutations in the extracellular domains of FGFR2 and FGFR3 form covalent 

dimers in the absence of ligand, but are sensitive to ligand stimulation.  
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Figure 2-5 continued 

(A) & (B) NIH-3T3 cells expressing the indicated point mutations in FGFR2 (A) or FGFR3 (B) 

were serum starved and stimulated with PBS or FGF1 and heparin for 8 hours, or with FGF1 and 

heparin for 30 minutes, washed, and then with PBS for 7.5 hours. Unreduced and reduced lysates 

were probed for the formation of covalently bonded receptor-dimers. Dimers formed by cells 

expressing FGFR2 mutations and visualized by immunoblot, could be increased by the addition 

of ligand (A). For cells expressing mutations in FGFR3, dimer formation was not changed when 

visualized by immunoblot (B) (30).  

(C) Cells from (A) and (B) were seeded into Select agar as in Figure 2-4A in the presence of 

PBS (+PBS), heparin alone (+hep), or FGF1 and heparin (+FGF/hep) and colonies were counted 

after three weeks. In both FGFR2- and FGFR3-expressing cells, extracellular domain mutations 

segregated with increased colony formation response in the presence of FGF1 and heparin, while 

controls were unchanged. 
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 undergo a glycosylation defect contributing to its lower molecular weight, this mutant form still 

retains the capacity to dimerize. 

We then seeded the same cells into soft agar in the presence of PBS, 2 µg/mL heparin 

alone, or 5 nM FGF1 and 2 µg/mL heparin. After three weeks, we observed greater colony 

formation in response to FGF1 and heparin treatment than in heparin alone or PBS treated cells 

(Figure 2-5C). 

 

FGFR2 and FGFR3-driven cellular transformation is blocked by clinically relevant FGFR 

inhibitors 

 Having established that FGFR2 and FGFR3 mutations in lung SqCC drive anchorage-

independent growth in NIH-3T3 cells, we next asked whether this transformation could be 

blocked by small molecule inhibitors of FGFRs currently in clinical development. NIH-3T3 cells 

expressing each mutation were again seeded into soft agar in the presence or absence of the 

multi-kinase inhibitor AP24534 (ponatinib) (34). Ponatinib targets imatinib-resistant BCR-ABL 

harboring the T315I mutation in chronic myeloid leukemia (34), and has activity against FGFR 

family members (35). We observed that colony formation was inhibited in the presence of 

ponatinib in cells harboring activating FGFR2 or FGFR3 mutations, but not in cells harboring an 

activating EGFR insertion mutation (Figure 2-6A, left panel). Cells expressing different 

mutations demonstrated differential sensitivity to ponatinib. All extracellular domain mutations 

in FGFR2 and S249C in FGFR3 lost colony forming potential when exposed to 100 nM of drug, 

whereas kinase domain mutations lost colony formation potential at 10 nM of drug. Exceptions 

were FGFR2 K660E expressed in the IIIc isoform, which behaved similarly to the FGFR2 ECD 

mutations, and FGFR3 R248C, which had a ten-fold higher inhibitory concentration than any  
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Figure 2-6. Anchorage independent colony formation and downstream signaling are 

abrogated in the presence of anti-FGFR inhibitors.  

(A) NIH-3T3 cells expressing each transforming mutation were seeded into Select agar as in 

Figure 2-4A, in the presence of increasing concentrations of ponatinib (AP24534) (left panel) 

and BJG398 (right panel), and similar analysis was performed. For ponatinib, different mutation  
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Figure 2-6 continued 

constructs, and also different isoforms, as in the case of K660E, exhibited a loss of colony 

formation on the order of 10-100 nM drug, except for FGFR3 R248C, which lost colony 

formation at 1 µM drug. All mutations were inhibited to greater than 50% of the DMSO control 

at 10 nM of drug for BGJ398.  

(B) Cells were serum starved and exposed to the indicated concentrations of ponatinib for four 

hours and ligand stimulated for 30 minutes with FGF1, after which cells were lysed and probed 

for known downstream signaling molecules via immunoblot. Phosphorylation is lost by 100 nM 

drug in all cases except pFGFR in FGFR3-R248C-expressing cells, an observation consistent 

with the results of the colony formation assay in (A).  
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other mutation, at 1 µM. By comparison, colony formation driven by EGFR was not lost until 

cells were exposed to 10 µM of drug. 

 To determine whether ponatinib was targeting and inhibiting colony formation driven by 

mutant FGFR2 and FGFR3, we assessed phosphorylation of several proteins in the FGFR 

signaling pathway by immunoblotting. As expected, levels of phospho-FGFR, phospho-FRS2, 

and phospho-Erk all decreased in response to increasing concentrations of ponatinib (Figure 2-

6B), suggesting that colony formation was lost due to a decrease in FGFR-mediated signaling. 

 In order to evaluate whether ponatinib was acting by specific inhibition of FGFR kinases, 

and also to explore cellular response to several clinically relevant FGFR inhibitors, the NIH-3T3 

assays were also performed with BGJ398, a selective FGFR kinase inhibitor (36) as well as 

pazopanib (GW786034) (37) and dovitinib (TKI-258) (38), two multi-kinase inhibitors with 

specificity for FGFR family members. Colony formation was inhibited by at least 50% in the 

presence of 10 nM BGJ398 for all cells expressing FGFR mutations, while cells expressing the 

activating EGFR insertion did not lose the capacity for colony formation until 1 µM BGJ398 

(Figure 2-6A, right panel), and wild type phosphorylation was lost at 10 nM under ligand 

stimulation conditions (Figure 2-7A). Dovitinib also inhibited colony formation in cells 

expressing mutant FGFR compared to activated EGFR, but with less uniformity across 

mutations. FGFR2 ECD mutations lost 50% colony formation between 100 nM and 1 µM 

dovitinib. In contrast, colony formation was inhibited by 50% between 10 nM and 100 nM for 

FGFR2 kinase domain mutations excluding K660E IIIc, which behaved similar to the FGFR2 

ECD mutations. Cells expressing FGFR3 R248C and S249C were sensitive between 10 nM and 

100 nM. Again, cells transformed by mutant EGFR did not lose colony formation until exposed 

to 10µM drug (Figure 2-7B, left panel). Mutant EGFR-expressing cells had sustained  
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Figure 2-7. Anchorage independent colony formation and downstream signaling are 

abrogated in the presence of anti-FGFR inhibitors. These experiments were performed 

similarly to those documented in Figure 2-6.  
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Figure 2-7 continued 

(A) NIH-3T3 cells expressing FGFR2 IIIb or IIIc wild type were serum starved in indicated 

concentrations of BGJ398 overnight and then stimulated with FGF1 and heparin for 30 minutes 

prior to lysis. FGFR-dependent phosphorylation decreased in the presence of BGJ398 as 

concentrations increased. 

(B) NIH-3T3 cells expressing each transforming mutation were seeded into Select agar as in 

Figure 2-4A, in the presence of increasing concentrations of dovitinib (left panel) or pazopanib 

(right panel), and resulting colonies were quantified. Dovitinib demonstrated a trend similar to 

ponatinib, in which the extracellular domain FGFR2 and FGFR3 mutations were inhibited to 

50% of control at 100-1000 nM, while kinase domain mutations lost colony formation at 10-100 

nM drug except for K660E IIIc, which resembled the ECD mutational response. Pazopanib was 

somewhat less potent in the inhibition of colony formation due to FGFR mutations, with colony 

formation being inhibited to 50% of DMSO control at 100-1000 nM drug.  

(C) & (D) Cells were serum starved and exposed to indicated concentrations of dovitinib (C) or 

pazopanib (D) for four hours and then ligand stimulated for 30 minutes with FGF1, after which 

cells were lysed and probed for known downstream phosphorylated signaling molecules via 

immunoblot. FGFR-dependent phosphorylation decreased in the presence of inhibitors as 

concentrations increased. 
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phosphorylation at AKT T308 up to 10µM dovitinib, as detected by immunoblot, while 

detectable AKT phosphorylation was lost by 100 nM to 1 µM dovitinib in cells expressing 

FGFR mutations (Figure 2-7C). Pazopanib similarly inhibited colony formation in cells 

expressing all FGFR2 and FGFR3 mutations at concentrations of 100 nM-1 µM drug, while cells 

expressing mutant EGFR formed colonies even in the presence of 10 µM drug (Figure 2-7B, 

right panel). Consistently, biochemical studies revealed sustained AKT T308 phosphorylation in 

mutant EGFR cells exposed to 10 µM pazopanib, while detectable AKT T308 phosphorylation 

was lost in mutant FGFR cells at 100 nM to 1µM pazopanib (Figure 2-7D). 

In NIH-3T3 cells expressing the extracellular domain mutations of both FGFR2 and 

FGFR3 and in the kinase domain mutation FGFR2 K660E IIIc, we observed that low 

concentrations of ponatinib (10 nM) conferred a growth promoting phenotype above control, 

which was abrogated at higher concentrations of drug (Figure 2-6A, left panel). We believe that 

this could be due to the multi-kinase inhibitory properties of ponatinib, which may inhibit a 

second kinase that could impact FGFR2 or FGFR3 signaling. This phenomenon was also 

observed when these experiments were performed with the two other multi-kinase inhibitors with 

anti-FGFR activity, pazopanib and dovitinib (Figure 2-7B), but not with BGJ398, a more 

selective FGFR kinase inhibitor (Figure 2-6A, right panel).   

 

Analysis of FGFR2 and FGFR3 inhibition in IL-3 independent Ba/F3 cells 

 The Ba/F3 cell system is a useful in vitro model to assess oncogenic dependency. 

Expression of a transforming oncogene in this system and subsequent depletion of interleukin-3 

(IL-3), on which the parental cells depend, results in cellular dependency on ongoing activity of 

the oncogene. To test whether cellular transformation driven by mutated FGFR2 could be 
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abrogated in a second system by small molecule FGFR inhibitors and to test the relative efficacy 

of these compounds, we generated Ba/F3 cells expressing the FGFR2 mutations that had 

demonstrated significant colony formation in the NIH-3T3 anchorage-independence assay. These 

cell lines were dependent on FGFR signaling in the presence of FGF and heparin, and in the 

absence of IL-3. Phosphorylation of the FGFR kinase domain and FRS2 were measured by 

immunoblot, and interestingly, cells expressing FGFR2 K660E IIIc showed a greater degree of 

phosphorylation of both molecules despite similar expression levels as compared to cells 

expressing other mutations (Figure 2-8A). 

Ba/F3 cells expressing wild-type and mutated FGFR2 transgenes were first seeded into 

media containing increasing concentrations of ponatinib in quadruplicate. We observed that 

ponatinib inhibited IL-3 independent proliferation of Ba/F3 cells expressing the FGFR mutations 

at about 10 nM of drug treatment, but cells expressing an EGFR activating insertion or parental 

Ba/F3 cells grown in the presence of IL-3 were only inhibited by 10 µM of drug (Figure 2-8B, 

left panel). IC50 values for Ba/F3 cells expressing each mutant were also calculated and plotted 

(Figure 2-8C, left panel). These assays were also performed on cells seeded into media 

containing BGJ398, and similarly, cells expressing FGFR mutations, but not the EGFR insertion 

or parental Ba/F3 cells, were inhibited at about 10 nM inhibitory concentrations of drug (Figure 

2-8B, right panel and Figure 2-8C, right panel). Interestingly, insensitive controls in the presence 

of ponatinib appeared to gain a growth advantage in the presence of drug at concentrations in the 

range of 10-100 nM (Figure 2-8B), similar to our observations in the anchorage independence 

colony formation assay (Figure 2-6A, Figure 2-7B).  

To further assess the potency of small molecule FGFR kinase inhibitors in the Ba/F3 

system, we assembled a panel of FGFR kinase inhibitors described in the literature (Table 2-2)  
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Figure 2-8. Ba/F3 cells that are dependent on FGFR2 and FGFR3 signaling are sensitive to 

FGFR inhibitors.  

(A) Ba/F3 cells that expressed each transforming mutation were generated in the presence of IL-

3, and cells dependent on FGFR signaling were isolated by exchanging IL-3 with FGF-7 or FGF- 
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Figure 2-8 continued 

9 and heparin. These cells were lysed and probed for FGFR2 or FGFR3 expression, phospho-

FGFR, FRS2, and phospho-FRS2 Y436. Actin was used as a loading control.  

(B) Ba/F3 cells expressing each mutation construct were seeded into 96-well plates at a density 

of 5,000 cells per well, in the presence of increasing concentrations of ponatinib (left panel) or 

BGJ398 (right panel). After four days, proliferation was measured by adding Cell Titer Glo and 

assaying resulting luminescence. 

 (C) Individual IC50 values were calculated for each mutation and plotted on a log scale.  

 

Table 2-2. Clinically relevant kinase inhibitors with activity against FGFR family members 

assembled for this study. 
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and tested the Ba/F3 inhibitory response in the presence of each, as with ponatinib and BGJ398. 

The panel included one inhibitor specific to the kinase domain of the FGFR family, AZD4547 

(39), and five multi-kinase inhibitors with FGFR inhibitory potential: E7080 (40), pazopanib, 

dovitinib, cediranib (AZD2171) (41), and brivanib alaninate (42). Each of these inhibitors 

demonstrated similar trends to those seen for ponatinib and BGJ398: a multi-log increase in drug 

sensitivity in cells expressing FGFR mutations compared to controls (Figure 2-9). IC50 values for 

each mutation in the presence of each drug were also calculated (Figure 2-9). Strikingly, FGFR2 

K660E expressed in the IIIc isoform (in yellow) repeatedly exhibited a 5-10 fold higher IC50 

concentrations as compared to the IIIb isoform and either isoform of the K660N mutation in the 

FGFR2 kinase domain (Figure 2-9). This observation was consistent with the concentrations at 

which anchorage independent growth observed for FGFR2 K660E IIIc was lost in the presence 

of several inhibitors (Figure 2-6A and Figure 2-7B). 

 

Case report of a head and neck SqCC patient who responded to an FGFR inhibitor 

We recently identified an individual with squamous cell carcinoma of the head and neck 

who was found to harbor a known oncogenic extracellular FGFR2 mutation (p.P253R) in a 

biopsy specimen (Figure 2-10A). This mutation was initially identified in RNA sequencing data 

from the tumor and then confirmed by Sanger sequencing in a CLIA-certified laboratory (Figure 

2-10B). FGFR2 mutations have previously been observed at low frequencies in head and neck 

cancer (43, 44), and confirmed by initial reports from the TCGA for head and neck squamous 

cell carcinoma, where seven mutations were observed in exome sequencing data of 279 

individuals as of October 1, 2012 (data obtained from the TCGA Data Coordinating Center; 

https://tcga-data.nci.nih.gov/tcga/). FGFR2 P253R has previously been observed in endometrial  
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Figure 2-9. Ba/F3 cells that are dependent on FGFR2 and FGFR3 signaling are sensitive to 

FGFR inhibitors. These experiments were performed similarly to those documented in 

Figure 2-8.  
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Figure 2-9 continued 

(A-F) Ba/F3 cells expressing each mutation construct were seeded into 96-well plates at a 

density of 5,000 cells per well, in the presence of increasing concentrations of the indicated 

drugs. After four days, proliferation was measured by adding Cell Titer Glo and assaying 

luminescence. Individual IC50 values were calculated for each mutation and plotted on a log 

scale (corresponding values are located below each inhibitory curve). Briefly, (A) AZD4547, a 

specific pan-FGFR inhibitor, demonstrates an inhibition pattern favoring ECD mutations over 

kinase domain mutations, and inhibits cells at about 1-10 nM drug. (B) Pazopanib and (E) 

dovitinib inhibit cells expressing mutations similarly, at about 100 nM drug. (C) AZ2171 and (D) 

E7080 inhibit cells expressing mutations similarly, at 10-100 nM drug. (F) Brivanib alaninate 

showed less inhibitory potential in this model, inhibiting mutation-expressing cells at 100-1000 

nM drug.  
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Figure 2-10. A head and neck squamous cell carcinoma patient harboring a somatic 

FGFR2 P253R mutation demonstrates a partial response to an FGFR inhibitor.  
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Figure 2-10 continued 

(A) A schematic shows the location of the P253R mutation in the FGFR2 extracellular domain.  

(B) mRNA sequencing was performed and a somatic mutation in the FGFR2 gene was 

identified, shown in the IGV viewer (http://www.broadinstitute.org/igv/). Antisense reference 

and mutant sequences for cDNA and protein are shown below with nucleotide and protein 

changes indicated.  

(C) Prior to beginning treatment with pazopanib, a multi-kinase inhibitor with anti-FGFR 

activity, the patient exhibited large metastatic tumor growth in his left neck (left images). After a 

daily regimen of pazopanib for two weeks, his tumor had considerably receded (right image).
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carcinoma and has been shown to be oncogenic in cellular model systems and to sensitize cells to 

FGFR kinase inhibitors (11). Cellular and biochemical analysis of the FGFR2 P253R mutation 

suggest that this event is transforming and sensitive to targeted therapies in our assays, similar to 

the events observed in lung SqCC (Figure 2-11). 

The patient was diagnosed with locally advanced (T2N1M0, stage III) squamous cell 

carcinoma of the right tongue in 2008 at the age of 52. He had no history of tobacco use or 

alcohol abuse and was initially treated with a right hemiglossectomy, supra-omohyoid neck 

dissection, and free-flap reconstruction. He received post-operative radiation therapy, which 

completed in early 2009. He subsequently developed recurrences in the right and left neck over a 

period of three years and was treated with surgery, two additional courses of radiation therapy 

and multiple courses of chemotherapy including carboplatin, paclitaxel, cisplatin and cetuximab. 

In early 2012, he had further progression with biopsy proven squamous cell carcinoma in the 

right neck and left axilla. He unfortunately did not qualify for a clinical trial and the decision was 

made to treat him with pazopanib, characterized for its anti-FGFR activity above, and which has 

been approved by the Food and Drug Administration for other indications. He began daily 

treatment with 800mg pazopanib starting on April 12, 2012. At this time, he had significant gross 

disease in the right neck (Figure 2-10C, left panels). A follow up visit 12 days later showed a 

marked reduction in tumor size (Figure 2-10C, right panel). No side effects were encountered 

except for grade 1 fatigue. He continued on pazopanib for two months, when he presented with a 

right carotid hemorrhage that required emergent surgical repair. Pazopanib was discontinued at 

that time, and the patient remains alive as of March 15, 2013 under hospice care. This correlative 

observation does not definitively identify FGFR2 as the target of pazopanib, but we believe that  
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Figure 2-11. FGFR2-P253R is transforming in anchorage independent growth assays and 

Ba/F3 assays.  
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Figure 2-11 continued 

(A) NIH-3T3 cells stably expressing FGFR2-P253R, FGFR2 wild type, or EGFR insNPG, were 

seeded into Select agar as in Figure 2-4A and subsequent colonies were counted.  

(B) Anchorage independent colony formation driven by P253R is abrogated in the presence of 

anti-FGFR inhibitors BGJ398 or AP24534. Experiments were performed as in Figure 2-6A.  

(C) Cells dependent on FGFR signaling through P253R can be targeted with anti-FGFR targeted 

therapies. FGFR2-P253R, EGFR insNPG, or parental Ba/F3 cells, assayed as in Figure 2-8B, 

show divergent responses to BGJ398 (left panel) or AP24534 (right panel). Individual IC50 

values were calculated for each mutation and plotted on a log scale below the respective curves. 
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this result provides compelling rationale to continue to pursue treatment of FGFR2-mutated 

tumors with anti-FGFR targeted therapies. 

 

DISCUSSION 

Lung squamous cell carcinoma is a poorly characterized disease that leads to 

approximately 40,000 new deaths per year in the US. Recent large-scale genomic 

characterization efforts conducted by the TCGA Network have described the general landscape 

of genomic alterations in squamous cell lung cancer and have suggested that many tumors harbor 

targetable somatic alterations. One of the most provocative findings is that of recurrent FGFR2 

and FGFR3 mutations, which are significant given that germline FGFR mutations are known to 

lead to craniofacial syndromes (18), that these mutations have been described in other 

malignancies (19), and that focal FGFR1 amplification is known to occur in lung SqCC and 

appears to be a therapeutic target (16, 17). It is also of particular interest in lung cancer, given the 

role of FGFR2 IIIb signaling in lung development (45, 46). This knowledge led us to generate 

and assay mutations harbored by both the IIIb and IIIc isoforms of FGFR2, as the expression 

levels of each isoform were varied across the samples containing mutations (Figure 2-2). In 

FGFR3, on the other hand, we generated and assayed mutations only in the IIIc isoform, as the 

extracellular domain mutations observed in lung SqCC have been studied in depth in both 

isoforms previously (47, 48) and the intracellular mutations did not map to sites of predicted 

functional necessity in the protein (Figure 2-12), nor did the IIIc isoform of either transform cells 

in our anchorage independence assay (Figure 2-4C). Isoform expression differences have the 

ability to vastly alter protein function in the cellular context (46, 49), and the contribution in 

patients harboring FGFR-mutant lung SqCC is worth pursuing in greater detail. 
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Figure 2-12. Known protein structures support mutational phenotypes.  

(A) The FGFR2 IIIb ECD physical interaction with FGF10 demonstrates that W290 and S320 

are integral to the maintenance of the protein structure and ligand binding (left panel, (50)). 

FGFR2 kinase domain interacting with ACP (an ATP analog) and Mg2+ shows that K660 falls 

in a somewhat unstructured region, but this residue is known to participate in a “molecular 

brake” region that acts as a regulatory hinge in the kinase domain (right panel, (51)). Both E471 

and T787 fall outside of the two structured domains, suggesting that their functional impact is 

minimal.  
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Figure 2-12 continued 

(B) FGFR3 IIIc ECD interacting with FGF1 demonstrates that R248 and S249 are located at the 

junction between two IG-like domains, with the high potential to regulate structure and ligand  

binding (left panel, (52)). FGFR3 kinase domain interacting with BGJ398 shows that K717 is 

located on the outside of the protein structure and far from the binding pocket, rendering it 

unlikely to influence function (right panel, (36)). S435 falls outside of the two structured 

domains, suggesting its functional impact is minimal. All structures were generated using the 

MMDB viewer (53). 
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We have confirmed that a subset of observed mutations drive transformation in NIH-3T3 

cells in an anchorage independent growth assay, and that this transformation is reversible by 

several clinically relevant FGFR-specific and multi-kinase inhibitors. Not all FGFR2 and 

FGFR3 mutations scored as transforming in our assays, but given the very high somatic mutation 

rate in lung SqCC, this observation is not surprising as several mutations are likely non-

functional passengers. We found that two extracellular domain mutations in FGFR2 are able to 

form disulfide bonds between receptors, leading to constitutive dimers, as has been observed in 

other FGFR2 ECD mutations (31) and in FGFR3 mutations that have been described previously 

in urothelial carcinoma, and which we also observe here in the lung SqCC data (30). This finding 

is especially relevant given that the FGFR2 W290C mutation has been observed independently 

in lung SqCC sequencing on two previous occasions (11, 54), demonstrating that it is a recurrent 

activating event in this disease. It is also possible that the glycosylation deficiency that we 

observed in the expressed protein harboring this mutation impacts protein function, a 

phenomenon with precedence in this receptor family (33). The precise functional implications 

rendered by this genomic event thus warrant further study. 

We found that the FGFR mutations also exhibited sensitivity to inhibition by FGFR-

specific and multi-kinase inhibitors in the Ba/F3 cell system, which models dependency on 

oncogenic pathways. In this case, cells were generated that were dependent on FGFR-mediated 

signaling, requiring expression of the introduced mutant transgene and the addition of FGF and 

heparin to the media, a strategy that has been adopted previously to study perturbations 

contributing to altered FGFR signaling (21). Many drugs in the panel of inhibitors that we tested 

are already approved for clinical use in other malignancies, and clinical trials are underway to 

test sensitivity to FGFR inhibitors in patients harboring FGFR amplification or mutation 
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(NCT01004224, NCT01457846, NCT00979134). While we cannot infer in vivo sensitivity to 

these inhibitors from our models, we do believe that this study provides a compelling rationale 

for extending trials of FGFR kinase inhibitors to patients with lung and head and neck SqCC 

harboring FGFR2 or FGFR3 mutations, particularly given our demonstration of in vitro 

sensitivity and demonstration of observed clinical benefit from therapy targeting FGFR 

alterations in a patient with an FGFR2 P253R mutation.  

This study represents one of the first functionally validated novel recurrent targets to 

emerge from analysis of the systematic genomic profiling of lung SqCC by the TCGA Research 

Network. It is our hope and expectation that findings of this nature will continue with the 

analysis and publication of more large genomic studies of different malignancies, and that 

ultimately this will lead to informed and improved clinical treatment options for patients 

suffering with this disease. 

 

MATERIALS AND METHODS 

Patient samples and genomic analysis 

 We manually reviewed FGFR2 and FGFR3 exome sequencing data generated by the 

Broad Institute Genome Characterization Center from pathologically-confirmed lung SqCC and 

matched normal controls as part of the TCGA research network.  The TCGA research network 

reported on 178 of these cases (4) based on data availability at the time.  Exome sequencing data 

were generated and analyzed at the Broad Institute using methods described previously (4). 

Additionally, we queried publically available sequencing data generated from 18 samples that 

were excluded from the initial TCGA report (as of November 2011) due to lack of available data 

for one or more of the other genomic platforms (mRNA, miRNA, DNA copy number, DNA 
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methylation). All data were de-identified and obtained in accordance with patient protection 

standards set by the TCGA and were obtained from the TCGA Data Portal (https://tcga-

data.nci.nih.gov/tcga/).   

 For the individual with a clinical response to pazopanib, total RNA was extracted using 

the AllPrep DNA/RNA Mini Kit (Qiagen, Cat#80204). Briefly, a pea-size frozen tumor tissue 

was homogenized in 600µl of RLT butter using a TissueRuptor (Qiagen, Cat# 9001271) for ~30 

seconds on ice. The tissue homogenate was transferred to an AllPrep spin column and total RNA 

purified according to the manufacturer’s recommended protocol (AllPrep DNA/RNA Mini Kit, 

Qiagen, Cat#80204). Poly-adenylated mRNA was enriched using the Ambion 

MicroPoly(A)Purist kit starting from 30 µg of total RNA as an input according to the 

manufacturer’s recommended protocol.  

Illumina transcriptome sequencing libraries were prepared as previously described (55) 

from both mRNA and from total RNA and were subjected to 76bp paired-end sequencing on a 

single lane of an Illumina GAIIx sequencer. Sequencing reads were first aligned to all curated 

protein-coding transcripts from RefSeq (downloaded on March 1, 2009 from NCBI RefSeq 

human mRNA FTP site [ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/]) and were mapped back 

to reference human genome, hg18 as previously described (55). Potential mutations and small 

nucleotide polymorphisms (SNPs) were called using the Unified genotyper from the GATK tool 

using default settings (56). 

This individual was consented for the analysis according to Institutional Protocol 94138 

at the Dana-Farber Cancer Institute. The FGFR2 P253R mutation was found in both the total 

RNA-seq data and mRNA-seq data, and it was confirmed from genomic DNA by Sanger 
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sequencing in a CLIA-certified laboratory (GeneDx, www.genedx.com). The patient was treated 

with pazopanib at the FDA-approved dose of 800 mg once daily. 

 

Cell lines, antibodies, ligands, and inhibitors 

NIH-3T3 cells and Ba/F3 cells were maintained as described previously (11, 21). 

Antibodies against FGFR2 (C-8) and FRS2 (H-91) were purchased from Santa Cruz 

Biotechnology, Inc. Antibodies against FGFR3 (C51F2), p-FGFR, p-FRS2 (Y436), AKT 

(C67E7), p-AKT (T308, 244F9), Erk 1/2 (137F5), p-Erk 1/2 (E10), and beta-actin (8H10D10) 

were obtained from Cell Signaling Technology, Inc. 

For FGFR stimulation experiments, the FGF1 ligand was obtained from Abcam. FGF7 

and FGF9 were obtained from Life Technologies. Interleukin-3 (IL-3) was purchased from VWR 

and heparin from StemCell Technologies, Inc. 

 Ponatinib (AP24534), dovitinib (TKI258), and cediranib (AZD2171) were obtained from 

Selleck Chemicals. Brivanib alaninate (BMS-582664) was obtained from Fischer Scientific. 

Pazopanib (GW786034) was obtained from Axon Medchem. AZD4547 was obtained from 

Active Biochem. E7080 was obtained from American Custom Chemicals Corporation. BGJ398 

was a generous gift from Novartis Pharmaceuticals Corporation (Basel, CH).  

 

Mutagenesis and cellular transfection and infection 

 Mutagenesis primers developed for each mutation were generated using the Agilent 

QuikChange Primer Design tool (www.genomics.agilent.com). FGFR2 isoforms IIIb and IIIc, 

and FGFR3 isoform IIIc were cloned into the pDONR223-Gateway entry vector and mutated by 

site-directed mutagenesis with the QuikChange Lightning Site-Directed Mutagenesis Kit from 
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Agilent Technologies. Sequence-verified constructs were cloned into the pBabe-puro Gateway 

expression vector and transfected into HEK-293T cells with Fugene-6 (Promega) as described 

previously (11). NIH-3T3 and Ba/F3 cells were infected with the resulting virus and after two 

days and mutation-expressing cells were selected with 2 µg/mL puromycin.  

 

Western blot analysis and visualization of unreduced dimers 

 Cells were lysed in buffer containing 0.5% NP-40, 50 mM Tris pH 8, 150 mM MgCl2, 

and phosphatase and protease inhibitors, and proteins were separated by SDS/PAGE and 

transferred to nitrocellulose membranes via the iBlot dry transfer system (Invitrogen). Antibody 

binding was detected using the fluorescence-based LI-COR Odyssey IR imaging system (LI-

COR Biosciences). 

 To visualize receptor dimers formed by extracellular domain mutations to cysteine 

residues, NIH-3T3 cells expressing the appropriate mutations were serum starved for eight hours 

in the presence of PBS or FGF1 and heparin, as indicated in the text, washed with PBS 

containing 10mM iodoacetamide, and lysed in lysis buffer containing 1% Triton, 10% glycerol, 

50mM Tris pH 7.4, and 10 mM iodoacetamide. Two 100 µg aliquots of each protein sample 

were prepared, one with reducing agent and one without. Electrophoresis was performed using 4-

12% Tris-glycine SDS/PAGE gels (Invitrogen)  

To confirm loss of phosphorylation of relevant kinases in the presence of inhibitor, NIH-

3T3 cells expressing mutated FGFR2 or FGFR3 were washed with PBS, serum starved for four 

hours in the presence of indicated concentrations of inhibitor, and ligand stimulated with FGF1 

for 30 minutes before lysis using western blot analysis as described above.  
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Soft agar colony formation assays 

 Two mL of 0.5% Select agar (Gibco) and media were plated to each well of a non-tissue 

culture-treated 6-well plate and allowed to solidify. 5x104 cells were suspended in 330 µL media 

and mixed with 770 µL 0.5% Select agar and media, for a final concentration of 0.4% agar, and 

plated onto the solidified bottom layer. Plates were incubated at 37C for three weeks, 

photographed using QuickCapture (Logitech), and quantified via ImageJ for colony formation. 

Soft agar colony formation assays were performed in triplicate. Statistical comparison of colony 

counts was performed using the Student’s T-test.  

 To evaluate the effect of clinical inhibitors on soft agar colony formation, the above 

protocol was performed with the following alteration: 5x104 cells were suspended in 330 µL 

media plus relevant concentration of inhibitor prior to addition of 0.5% agar solution and plating.  

 

Xenograft studies 

All animal experiments were performed according to institutional guidelines regarding 

animal safety. Immuno-compromised mice were injected with NIH-3T3 cells stably expressing 

exogenous FGFR2-IIIb WT, W290C, S320C or K660N mutant isoforms.  Cohorts of 7 mice 

were injected at 3 sites for each cell type with two million cells per site, and mice were observed 

until tumor volume reached approximately 200-300 mm3. Mice were then treated with BGJ-398 

at 15 mg/kg or vehicle (PEG-300) control daily for 2 weeks, and tumor size was measured 

during the treatment period.   

 

Ba/F3 dependency and inhibitor studies 
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 Ba/F3 cells expressing each mutation construct were selected in media containing IL-3 

and puromycin until stable cell lines were established. To establish cells dependent on FGFR 

signaling, three million cells were washed twice with PBS and seeded into 2 mL of media 

containing FGF7 (for FGFR2 IIIb mutations) or FGF9 (for FGFR2 IIIc) and heparin. These cells 

were maintained until IL-3 independent cells emerged. FGFR-dependent cells were seeded into 

96-well plates in 100 µL media containing FGF and heparin at a density of 5,000 cells per well. 

10 µL of drug was added in quadruplicate for final concentrations of 0.3nM-10 µM in half logs, 

with two DMSO controls, and incubated for three or four days. 50 µL of Cell Titer Glo 

(Promega) was added to each well and luminescence was measured on the SpectroMax 5 imager. 

Percent survival compared to DMSO controls was calculated and plotted in Prism (GraphPad 

Software, Inc).  
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SUMMARY 

Genomic studies of lung squamous cell carcinoma (lung SqCC) have identified the 

fibroblast growth factor receptor (FGFR) kinases as the most frequently altered receptor tyrosine 

kinase family in this disease. Inhibitors targeting FGFRs have recently entered into clinical trials 

and responses to this class of drugs have been reported in patients with FGFR-driven lung SqCC. 

However, as with other tyrosine kinase inhibitors, acquired resistance is anticipated. Here, we 

describe the characterization of resistance mechanisms acquired in a non-small cell lung cancer 

cell line dependent on a focal FGFR1 amplification, in response to prolonged treatment with two 

selective FGFR inhibitors currently in clinical trials, AZD4547 and BGJ398. We identify MET 

amplification and NRAS mutation as mechanisms of acquired resistance to these compounds. We 

also demonstrate that FGFR signaling may be maintained in a MET-dependent manner in 

inhibitor-resistant cells. These findings provide insight into acquired resistance to FGFR targeted 

therapies in lung SqCC and suggest potential clinical studies in patients whose tumors develop 

resistance to FGFR inhibitors. 

 

BACKGROUND 

 The genomic study of human cancer has led to the discovery of many driving oncogenic 

kinases, resulting in the development and clinical use of specific kinase inhibitors (1-3). These 

inhibitors often demonstrate dramatic anti-cancer effects and modest side effects as compared to 

conventional chemotherapy in genomically selected tumors (4). Invariably, however, acquired 

resistance to these inhibitors develops, rendering tumors insensitive to inhibition of the primary 

driving event and often leaving patients with few treatment options (5).  
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In vitro studies of mechanisms of acquired resistance have been undertaken to identify 

therapeutic targets in resistant tumors. In many cases these studies have elucidated relevant 

secondary driving events that are later observed in the clinic. For example, mutagenesis screens 

in chronic myelogenous leukemia identified secondary mutations in the BCR-ABL translocated 

protein such as T315I that render the protein insensitive to first line therapies (6). These second-

site mutations in BCR-ABL are found in patients resistant to therapy and have been successfully 

targeted with newer kinase inhibitors (7). In EGFR-mutant lung adenocarcinoma, both secondary 

mutation, often at the gatekeeper site (T790M), and MET amplification have been identified in 

cellular models following long-term drug treatment and were later observed in resistant patient 

tumors (8-10). Similarly, in BRAF-mutant melanoma, secondary activation of COT and other 

factors have been identified in screens of overexpressed kinases, and later found in patient 

tumors (11).  

The fibroblast growth factor receptor (FGFR) kinases are a receptor tyrosine kinase 

(RTK) family that possess the capacity to drive oncogenesis by constitutive activation of 

downstream signaling pathways (12). Mutations, amplifications, and translocations in these 

genes leading to dependency on their downstream signaling have been described in several 

cancer types, and in particular, lung squamous cell carcinoma (13-18). Only recently have 

inhibitors targeting these proteins entered into clinical development. Currently patients are being 

screened for FGFR genomic alterations in their lung squamous tumors, and if identified, they can 

be consented to clinical trials for FGFR targeted therapies (19, 20)—a clinical success in a 

disease with few treatment options. 

Resistance to FGFR inhibitors has recently been observed in several instances. Gastric 

and bladder cancer cell lines dependent on FGFR2 or FGFR3 and coexpressing MET could be 
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rescued with hepatocyte growth factor (HGF) stimulation in the presence of FGFR inhibition 

(21). A multiple myeloma cell line with overexpressed, mutant FGFR3 developed a gatekeeper 

mutation in the FGFR3 gene after long-term exposure to FGFR targeted therapy (22). Three 

bladder cancer cell lines with mutant or translocated FGFR3 increased expression of EGFR upon 

FGFR inhibition, suggesting a class-switching rescue mechanism that was not observed in 

FGFR1- or FGFR2-altered tumors (23). 

There have been no reports to date describing mechanisms of acquired resistance to anti-

FGFR therapy in lung cancer. Given that clinical responses to anti-FGFR therapy have been 

observed in FGFR1 amplified lung SqCC, we sought to establish potential mechanisms of 

acquired resistance in this setting using a cell line model. We expect resistance to develop in 

lung SqCC patients after prolonged treatment with FGFR inhibitors. We therefore believe that 

the study of resistance in a cellular context has the potential to benefit patients whose tumors 

have stopped responding to FGFR therapies. Here, we describe the observation of acquired 

resistance in FGFR1-driven lung cancer cell lines and characterize two mechanisms through 

which this resistance arises, providing potential new therapeutic options in tumors with acquired 

resistance to FGFR inhibitors. 

 

RESULTS 

Generation of cells with acquired resistance to FGFR inhibition 

 The cell line NCI-H2077 is a non-small cell lung cancer cell line with a focal 

amplification of the 8p11 locus (1.2 Mb in length), which includes the FGFR1 gene. The cell 

line is genomically identical to the cell line NCI-H1581, as shown by genome fingerprinting of 

both lines (15), but morphologically divergent. Both lines show a high degree of sensitivity to 
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FGFR inhibition by kinase inhibitor treatment and FGFR1 knockdown (15, 24), indicating a 

dependency on FGFR1 signaling.  

 Over several months, populations of cells from this cell line were separately maintained 

in increasing concentrations of two specific, pan-FGFR small molecule inhibitors, BGJ398 (25) 

and AZD4547 (26), such that populations emerged that were resistant in ~5 µM of each 

respective drug, hereafter referred to as H2077R-BGJ and H2077R-AZD respectively (Figure 3-

1).  Both H2077R-BGJ and H2077R-AZD are resistant to BGJ398 and AZD4547 as well as 

ponatinib (Figure 3-1). Genomic DNA was isolated from the sensitive (hereafter referred to as 

H2077S) and resistant cells and analyzed by the Center for Cancer Genome Discovery (CCGD) 

at the Dana-Farber Cancer Institute (Boston, MA) and to the Partners Laboratory for Molecular 

Medicine (Cambridge, MA) for DNA copy number changes and acquired mutations in the 

resistant cells. 

 

Resistant cell lines have upregulated MET and H2077R-AZD is sensitive to treatment with 

MET targeted therapy 

 The results of the copy number analysis from CCGD paired-end Illumina sequencing 

identified acquired copy number variants (CNVs) in H2077R-BGJ and H2077R-AZD (Figure 3-

2A, Table 3-1). Most events were designated “CN Gain” or “CN Loss,” indicating a low-level, 

likely arm-length copy gain or loss. One “High Copy Gain” event was also observed in each 

resistant line, indicating a more focal amplification of >1 copy per cell (Table 3-1). The High 

Copy Gain in H2077R-AZD occurred on chromosome 7 and was made up of a low, arm-level 

copy gain of the q arm, in addition to a focal high copy gain, which included the known 

oncogene MET (Table 3-1, Figure 3-2A, inset). Droplet digital PCR analysis was performed on a  
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Figure 3-1. Drug treatment responses differ between sensitive and resistant cell lines. 

NCI-H2077 parental cells (H2077S) are sensitive to pan-FGFR and multi-kinase small molecule 

inhibitors BGJ398, AZD4547, and ponatinib (top panel). NCI-H2077 cells grown over time in 

BGJ398 (H2077R-BGJ, left) or AZD4547 (H2077R-AZD, right) are insensitive to these small 

molecule inhibitors (bottom two panels). 

H2077R-AZD

-2 -1 0 1 2
0

50

100
BGJ398
AZD4547
ponatinib

Log uM drug

G
ro

w
th

 in
hi

bi
tio

n

H2077R-BGJ

-2 -1 0 1 2
0

50

100 BGJ398
AZD4547
ponatinib

Log uM drug

G
ro

w
th

 in
hi

bi
tio

n

-2 -1 0 1 2
0

50

100 BGJ398
AZD4547
ponatinib

H2077S

Log uM drug

G
ro

w
th

 in
hi

bi
tio

n

Liao et al. Figure 1



Chapter 3. Independent mechanisms lead to acquired resistance to FGFR inhibitors in lung 
squamous cell carcinoma 

76 

 

Figure 3-2. MET is expressed and phosphorylated in resistant cell lines and H2077R-AZD 

cells are MET-amplified and sensitive to MET targeted therapy.  

(A) Copy number analysis by Illumina sequencing identifies a high copy gain of the MET locus 

only in H2077R-AZD cells, visualized on chromosome 7 (inset).  

(B) Droplet digital PCR validates MET copy number as well as other known oncogenes in the 

three cell lines.  
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Figure 3-2 continued 

(C) Phospho-RTK arrays (R&D Systems) incubated with lysates from H2077S, H2077R-AZD, 

and H2077R-BGJ cell lines show that, while sensitive cells show no measurable MET 

phosphorylation, resistant cells show high levels of phospho-MET (arrows), and neither resistant 

cell line has other obvious phospho-RTKs.  

(D) Lysates from sensitive cells and resistant cells were probed for FGFR1, MET, and phospho-

MET expression, demonstrating by immunoblot that both resistant lines had acquired MET 

expression and phosphorylation.  

(E) H2077R-AZD cells are sensitive to crizotinib, an FDA-approved MET inhibitor (IC50 ~100 

nM), while both H2077S and H2077R-BGJ have an IC50 >1 μM (left panel). Combination 

treatment of crizotinib and 300 nM BGJ398 results in an IC50 of about 40 nM for H2077R-AZD 

cells, while the IC50 for H2077R-BGJ cells is unchanged (right panel).  
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Table 3-1. Acquired statistically significant copy number gains and losses in resistant cells 

compared to parental sensitive cells, identified by analysis of paired-end Illumina 

sequencing reads.  

Table S1
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validation set of 13 genes (Table 3-2) and confirmed an amplification of the MET locus to an 

average of six copies per cell in H2077R-AZD cells only (Figure 3-2B). Cells were then lysed 

and probed for phosphorylated RTKs using a phospho-RTK array (R&D Systems) in order to 

assess for increased p-MET and to identify any co-occurring phosphorylation of other RTKs. 

Using this technique, we observed an increase of phospho-MET in both resistant cell lines 

compared to the sensitive cell line (Figure 3-2C). This observation was confirmed by 

immunoblot using the same lysates used for the phospho-RTK array, which demonstrated 

increase of total MET and phospho-MET in both resistant cell lines compared to H2077S, with a 

larger increase observed in H2077R-AZD cells (Figure 3-2D). However, when cells were treated 

with increasing concentrations of crizotinib, an FDA-approved inhibitor of MET activity, only 

H2077R-AZD cells showed sensitivity as compared to H2077S cells, indicating a divergent 

response between the two resistant lines based on acquired amplification status of the HGFR 

locus (Figure 3-2E, left panel). Only a slight increase in sensitivity was observed when H2077R-

AZD cells were treated with crizotinib in combination with a non-lethal concentration of 

BGJ398, indicating a distinct resistance response from the one observed in MET-amplified lung 

adenocarcinoma, in which cell growth could be inhibited only under combined treatment 

inhibiting MET and ErbB kinases (8) (Figure 3-2E, right panel). Interestingly, no cell line 

responded to BKM120 (27), a selective pan-PI3K inhibitor, as a single agent or in combination 

with FGFR inhibitors or crizotinib, suggesting that sensitivity to MET inhibition was not being 

driven exclusively through the PI3K/AKT pathway (Figure 3-3). 

 

Resistant line H2077R-BGJ has a secondary NRAS mutation and arrests upon inhibition of 

the MAPK pathway
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Table 3-2. Droplet digital PCR validates amplification of MET in H2077R-AZD cells. 

Thirteen genes were queried by ddPCR for raw copy number (CN) and then corrected as 

described in the materials and methods section. 
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Figure 3-3. Sensitive and resistant cell lines are not inhibited by a PI3K inhibitor alone or 

in combination with FGFR or MET inhibitors.  

BKM120, a pan-PI3K inhibitor, does not inhibit cells as a single agent (top image) or in 

combination with 300 nM BGJ398, AZD4547, AP24534 (ponatinib), or 30 nM crizotinib 

(bottom four images).  
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Illumina sequencing analysis identified five non-synonymous variants in each resistant 

line compared to the control sensitive line (Table 3-3), four of which were events in MUC2 that 

were observed at the same loci in both resistant cell lines, suggestive of sequencing artifacts. One 

low-allelic-fraction (15.3%) novel event was observed in XPO1 in H2077R-AZD, and one 

NRAS Q61R mutation was identified in H2077R-BGJ at an approximate 30% allelic fraction 

with 148x coverage, an observation that was confirmed by a manual review of the sequencing 

reads (Figure 3-4A). NRAS Q61R is a known driver of cancer and a strong activator of the 

MAPK pathway (28). When treated with trametinib (29), a MEK inhibitor used to target MAPK 

pathway signaling, H2077R-BGJ cells were inhibited to a similar degree as H2077S cells, which 

showed a moderate sensitivity consistent with the predominance of FGFR signaling through the 

MAPK pathway. In contrast H2077R-AZD cells were substantially less sensitive to MEK 

inhibition, alone or in the presence of crizotinib, BGJ398, or AZD4547 (Figure 3-4B). No cell 

line was growth inhibited to zero, as would be expected with a cytotoxic effect of therapy, and 

indeed, previous research has shown a cytostatic effect of trametinib in vitro (30). We therefore 

treated cells with DMSO vehicle or trametinib at 5 nM and 500 nM for three days, fixed and 

stained with propidium iodide, and analyzed by flow cytometry to determine whether the cells 

treated with trametinib were predominantly in G1 phase, as would be expected if the drug had a 

cytostatic effect. As expected, more than 85% of H2077S and H2077R-BGJ cells were arrested 

in G1, with 2% or fewer cells in S phase, after treatment with 500 nM drug (Figure 3-4C, left and 

center panels). H2077R-AZD cells bearing MET amplifications, in contrast, still maintained 

more than 5% of cells in S phase even at 500 nM trametinib (Figure 3-4C, right panel), 

indicating a reduced dependence on the MAPK pathway as compared to the other cell lines. 

Treatment of cells with increasing concentrations of trametinib followed by lysis and 
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Table 3-3. Illumina sequencing of a panel of ~700 cancer and cancer-related genes reveals 

five acquired mutations in each resistant cell line.  

Four mutations in each line are in MUC2, and are likely sequencing artifacts. H2077R-BGJ (R-

BGJ) cells acquired an NRAS Q61R mutation and H2077R-AZD (R-AZD) cells acquired a low 

allelic fraction (15.3%), novel XPO1 mutation.  
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Figure 3-4. H2077R-BGJ cells have a secondary NRAS mutation, rendering them sensitive 

to inhibition of the MAPK pathway.  
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Figure 3-4 continued 

(A) Illumina sequencing analysis of ~700 cancer and cancer-related genes in each cell line 

reveals a canonical NRAS Q61R mutation in H2077R-BGJ cells, present at about 30% allelic 

fraction (indicated by the red and blue bars over the sequencing reads). A schematic of the 

altered DNA and protein sequences is indicated below the three sequencing images.  

(B) Trametinib, a specific MEK inhibitor used for MAPK pathway inhibition, preferentially 

inhibits H2077R-BGJ cells, with intermediate inhibition of H2077S cells and much less potent 

inhibition of H2077R-AZD cells (top panel). The observed inhibition is unchanged with 

combination treatments of crizotinib (second panel), BGJ398 (third panel), or AZD4547 (bottom 

panel).  

(C) Trametinib arrests H2077R-BGJ cells in G1 at low concentrations, H2077S cells at 

intermediate concentrations, and H2077R-AZD cells incompletely even at higher concentrations, 

as measured by flow cytometry. Percentages of cells in each stage of the cell cycle after each 

treatment are indicated below the bar graphs.  

(D) Trametinib inhibits phospho-ERK 1/2 at similar levels of drug in all three cell lines as 

measured by immunoblot. NRAS is expressed at similar levels in all three cell lines. 
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immunoblot demonstrated that MAPK activity was lost at the same concentration when all cell 

lines are treated with trametinib (Figure 3-4D), suggesting that unlike H2077S and H2077R-BGJ 

cells, H2077R-AZD cells have substantially decreased dependence on the MAPK pathway for 

survival.  

 

Downstream signaling confirms MET and NRAS dependence in each respective resistant 

cell line and suggests a novel mechanism of MET-dependent FGFR1 activation 

 To biochemically confirm the results observed in the cell proliferation assays, we 

assessed regulation of downstream signaling in sensitive and resistant cells in the presence of 

BGJ398, AZD4547, and crizotinib. Cells that were treated with increasing concentrations of each 

drug were lysed and probed by immunoblot for phospho-MET, phospho-FRS2 (a downstream 

signal and readout for FGFR-dependent signaling (31)), phospho-AKT, and phospho-ERK.  

 Results were consistent with previous observations. MET and p-MET were upregulated 

in both resistant cell lines, but undetectable in sensitive parental lines, and p-MET activity was 

insensitive to both FGFR inhibitors (Figure 3-5A, B) but decreased at 10-100 nM to crizotinib 

(Figure 3-5C). p-AKT similarly was not detected in sensitive cells but was upregulated in 

resistant cells and showed dependence on MET signaling, consistent with the role of MET in 

stimulating signaling via the PI3K/AKT pathway (32). 

 p-ERK signaling differed between the three cell lines. p-ERK decreased at 10 nM as 

expected in the sensitive cell lines treated with FGFR inhibitors (Figure 3-5A, B) but not until 10 

µM in crizotinib treatment (Figure 3-5C). Similarly, p-ERK was sustained in the presence of 

FGFR inhibitors for both H2077R-BGJ and –AZD (Figure 3-5A, B). However, under crizotinib 

treatment, p-ERK was lost in H2077R-AZD cells at 100 nM but sustained in –BGJ resistant cells  
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Figure 3-5. Downstream signaling demonstrates MET and NRAS dependence in each 

respective resistant cell line and suggests a novel mechanism for FGFR1-dependent MET 

activation.  

(A) BGJ398 treatment alters downstream signaling of H2077S cells, but not resistant cells.  

(B) AZD4547 treatment alters downstream signaling of H2077S cells but not resistant cells.  

(C) Crizotinib treatment alters all downstream signaling in H2077R-AZD cells, and all signaling 

molecules except for p-ERK 1/2 signaling in H2077R-BGJ cells.  

(D) Co-immunoprecipitation of FGFR1 and MET suggests a novel physical interaction between 

the two molecules, which is especially strong in H2077R-AZD cells. 
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through 10 µM of crizotinib; i.e., to an even greater extent than in parental cells insensitive to 

crizotinib treatment (Figure 3-5C). This is consistent with an NRAS oncogenic mutation that is a 

strong driver of MAPK signaling. 

In contrast, H2077S cells showed loss of p-FRS2 by 100 nM of BGJ398 and AZD4547 

(Figure 3-5A, B) but sustained signaling until 10 µM crizotinib (Figure 3-5C) as expected. 

However, we were surprised to observe that p-FRS2 signaling was restored in resistant cells, 

where activation was sustained during treatment with either FGFR inhibitor but lost at 10 nM 

crizotinib treatment (Figure 3-5A, B, C). This suggested a switch in p-FRS2 dependency to MET 

signaling from FGFR signaling, and was particularly strong in H2077R-AZD cells. 

This switch appeared to be occurring at the receptor level. Screens for MET substrates 

have not identified FRS2 as a potential downstream signaling substrate for MET (33). 

Furthermore, we were unable to detect phospo-FGFR1 in sensitive parental cells (Figure 3-6A); 

however, in both resistant cell lines treated with AZD4547, p-FGFR1 is observed strongly, 

suggesting that phosphatase activity is being inhibited in the resistant cells no longer responsive 

to FGFR inhibition (Figure 3-6A, top panel). Indeed, crizotinib treatment abrogated the p-

FGFR1 signal at 10 nM, suggesting that not only is FGFR1 no longer susceptible to FGFR 

targeted therapies, it is also dependent on MET signaling (Figure 3-6A, bottom panel).  

This is consistent with previous observations of MET-driven resistance mediated through 

another RTK. For instance, MET amplification as a resistance mechanism in EGFR-mutant lung 

adenocarcinoma after erlotinib treatment was driven by MET-dependent activation of ErbB3 (8). 

In another study, HER2-positive breast cancer responses to trastuzumab were found to be 

dependent on MET signaling in preclinical models (34). A further report demonstrated that 

phosphorylation of EGFR, ErbB2, ErbB3, and RET were dependent on MET activity in several 
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Figure 3-6. Phospho-FGFR signaling is dependent on MET signaling, possibly through a 

physical interaction.  

(A) Resistant cells have upregulated phospho-FGFR1, which is unaffected by treatment with 

AZD4547 (top panel) but sensitive to crizotinib at 10 nM (bottom panel).  

(B) Co-immunoprecipitation with a different anti-FGFR1 antibody from that used in Figure 3-5D 

demonstrates that MET and FGFR1 can interact in a manner that is not antibody specific. 
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lung cancer cell lines (35). No MET-associated dependency has been described for FGFR family 

members. 

Several of these studies and others have gone on to suggest that the mechanism by which 

this dependency arises is through the formation of a complex, e.g., heterodimerization, between 

MET and the other RTK (8, 35-39). Indeed, taken together these studies suggest that MET has 

the capacity to activate diverse RTKs in the context of both development and oncogenesis 

through complex formation.  

We therefore hypothesized that in MET may similarly interact with FGFR1 and is doing 

so in our resistant cells. We performed a coimmunoprecipitation of FGFR1 and MET in which 

we immunoprecipitated FGFR1 and immunoblotted for MET and FGFR1, and observed strong 

pulldown of MET in complex with FGFR1, particularly in H2077R-AZD cells (Figure 3-5D). 

Despite multiple attempts, we were unable to perform the reverse pulldown; however, we were 

able to repeat the FGFR1 pulldown with MET using a different antibody against FGFR1, 

indicating that our results are not antibody-specific (Figure 3-6B). These results are preliminary 

and additional work is required to clarify this relationship; however, we believe that they suggest 

a novel mechanism of activation of FGFR family members and further study may reveal this to 

be a novel mechanism of resistance to FGFR targeted therapies in resistant tumors with 

dependence on MET signaling. 

 

DISCUSSION 

 Lung squamous cell carcinoma is a prevalent and deadly disease that until recently had 

few known targets and no targeted therapies available. With the completion of whole genome 

characterization studies of large cohorts of these tumors (16, 40), targets are being elucidated and 
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clinical trials are beginning for patients harboring relevant genomic events, many of which are 

activated kinases. One of the most promising targets at this time is alterations of FGFR kinases 

and multiple trials are underway of anti-FGFR therapy in this disease.  

 As almost universal resistance to kinase inhibitors eventually occurs in patients with solid 

organ cancers who respond to targeted therapies, it is of great clinical importance to elucidate 

resistance mechanisms in vitro. Here, we describe a new model of resistance to FGFR targeted 

therapies, which have recently been introduced in the clinic. Using a non-small cell lung cancer 

cell line with a focal FGFR1 amplification and sensitive to FGFR inhibitors, NCI-H2077, we 

generated resistant clones in the presence of two specific, pan-FGFR inhibitors currently in 

clinical trials, BGJ398 and AZD4547. Contrary to our expectation that the resistant cells would 

develop gatekeeper mutations in FGFR1, we found that cells resistant to AZD4547 had acquired 

an amplification and upregulation of the MET protein and phospho-MET, and were sensitive to 

the MET inhibitor crizotinib, while cells resistant to BGJ398 had acquired a canonical NRAS 

Q61R mutation and were sensitive to MAPK pathway inhibition by the MEK inhibitor 

trametinib. Interestingly, NRAS-mutant cells also upregulated MET and phospho-MET levels, 

but were neither amplified at the MET locus nor sensitive to crizotinib treatment, alone or in 

combination with FGFR inhibitors or a MEK inhibitor.  

 MET is a receptor tyrosine kinase stimulated by hepatocyte growth factor (HGF) and 

known to influence signaling through the PI3K/AKT and MAPK pathways, among others (32). It 

has recently been reported that activation of either FGFRs or MET by ligand stimulation can 

rescue inhibition of cells dependent on MET or FGFRs, respectively (21). This is consistent with 

our observation that MET can act as a resistance mechanism in the context of FGFR targeted 

therapy; however, our model identifies an upregulation of MET, undetected in sensitive cells, 
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specifically in response to treatment with FGFR targeted therapies, suggesting a more complex 

role than simple rescue—that the expression and/or amplification of MET is itself a response to 

drug treatment. This is supported by the observation that both resistant cell lines had upregulated 

expression and phosphorylation of MET. It also suggests that initial MET expression may sustain 

drug-treated cells transiently, enabling long-term resistance to arise and be maintained by the 

eventual gain of a MET amplification or other stochastic event, such as secondary mutation of 

NRAS. 

MET upregulation has been identified as a resistance mechanism to other therapies 

targeting receptor tyrosine kinases, in particular members of the ErbB family (8, 41), but unlike 

those cases, in which resistant cells are sensitive only upon inhibition of both MET and an ErbB 

family member, in our cell lines, MET inhibition alone is sufficient to inhibit cell growth. 

However, in these cells, we do observe MET-dependent FGFR signaling, including an increase 

in phospho-FGFR1 in resistant cells, and crizotinib-dependent loss of FGFR1 and FRS2 

phosphorylation. FRS2 constitutively binds FGFR family members (42) and although it is known 

to bind other RTKs besides FGFRs, such as TrkA/B and RET (42-44), it has not been identified 

in screens for novel MET substrates (33), suggesting that it is unlikely that the switch in 

signaling is due to an association between FRS2 and MET.  

Phospho-FGFR1 is not detected in sensitive parental cells, in which FGFR1 is the driving 

molecular alteration. This observation is likely due to the fact that normal FGFR signaling 

through the MAPK pathway leads to autoinhibition of receptor phosphorylation by phosphatases 

that are stimulated by MAPK signaling (45). This is why phospho-FRS2 is often used as a 

readout of FGFR signaling activity and is likely the reason that we were unable to detect p-

FGFR1 in unstimulated sensitive cells. Indeed, we only observe p-FGFR1 after MET expression 
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arises in the resistant cells, suggesting that MET activity may be inhibiting normal phosphatase 

activity taking place during FGFR signaling while at the same time inhibiting the FGFR 

inhibitors from decreasing p-FGFR1.  

These details suggest a model under which resistance emerges in NCI-H2077 cells. 

Under this model, normal FGFR-mediated signaling takes place in the absence of inhibition, 

driving oncogenic growth. During acute treatment with an FGFR tyrosine kinase inhibitor, 

FGFR1 activity is lost, and downstream signaling is abrogated. However, under prolonged drug 

treatment, MET expression is stimulated, resulting not only in activated MET, but also reinstated 

FGFR signaling by interaction between MET and FGFR1 and inhibition of the activity of the 

anti-FGFR compound. Then, this transient drug-resistant state enables cells to select for stable 

secondary genomic events, such as amplification or mutation, in order to maintain the resistance 

phenotype, as observed in both of our resistant cell lines. 

Mechanisms of resistance have been identified previously after FGFR inhibitor treatment 

in FGFR2- or FGFR3-driven cancers including gastric, bladder, and multiple myeloma (21-23), 

and these studies suggest that a variety of mechanisms will be encountered in response to FGFR 

targeted therapy. Since FGFR1-dependent lung SqCC patients are now being treated with FGFR 

inhibitors in the clinic, models are required to study the resistance that will inevitably arise after 

prolonged drug treatment.  

With this study, we therefore propose mechanisms of resistance that may arise in patients 

with FGFR-driven lung squamous cell carcinoma. It is our hope that these findings will improve 

treatment options for these patients once resistance to therapy occurs, thereby improving 

experience and outcomes for patients with this disease. 
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MATERIALS AND METHODS 

Cell lines, inhibitors, and antibodies 

 NCI-H2077 cells were obtained from Drs. John D. Minna and Adi Gazdar, UT 

Southwestern Medical Center. Cells were maintained in RPMI containing 10% Fetal Bovine 

Serum and passaged every 3-4 days. 

 BGJ398, crizotinib, and ponatinib (AP24534) were purchased from Selleck. AZD4547 

was purchased from Active Biochem. Trametinib was a generous gift from Dr. Cory 

Johannessen at The Broad Institute of Harvard and MIT (Cambridge, MA) and BKM120 was a 

generous gift from Dr. Mohamed Abazeed at Dana-Farber Cancer Institute (Boston, MA).  

 Antibodies used to detect FGFR1 by immunblot were obtained from Cell Signaling 

Technologies, Inc. (9740) and Santa Cruz Biotechnology, Inc. (sc-7945). Antibodies against 

MET (L41G3), p-MET (3077), p-FGFR (3471), p-FRS2 Y436, AKT (C67E7), p-AKT S473 

(4060), ERK 1/2 (9107), p-ERK 1/2 (9101), and beta-actin (8H10D10) were obtained from Cell 

Signaling Technologies, Inc. Anti-FRS2 (H-91) was obtained from Santa Cruz Biotechnology, 

Inc.  

 Antibodies used for immunoprecipitation (IP) of FGFR1 are as follows. For the IP shown 

in Figure 3-5D, anti-FGFR1 was obtained from Santa Cruz Biotechnologies, Inc. (sc-121 AC). 

For the IP shown in Figure 3-6B, anti-FGFR1 was obtained from Cell Signaling Technologies, 

Inc. (3472).  

 

The generation of resistant cells 

 NCI-H2077 cells were maintained in complete growth media at about 70% confluence. 

BGJ398 or AZD4547 were added to the media on one 10 cm plate of cells starting at 10 nM of 
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each drug. Every one to two weeks on average, when drugged cells resumed growth rates similar 

to parental cells, the drug concentration was increased by 50-100 nM. After about four months, 

resistant cells were maintained in 5 μM of each drug.  

 

Genomic analysis of resistant cells 

 Genomic DNA was isolated from the sensitive and resistant cells using the DNeasy 

Blood and Tissue Kit (Qiagen) and sent to the Center for Cancer Genome Discovery at the Dana-

Farber Cancer Institute (Boston, MA) and the Partners Laboratory for Molecular Medicine 

(Cambridge, MA) for analysis. 

OncoPanelv2 represents a targeted sequencing strategy to simultaneously detect 

mutations, translocations and copy-number variations in archived clinical tumor specimen. 

Targeted sequencing was achieved by designing RNA baits to capture the exons of 504 genes 

with relevance to cancer. The bait set was augmented with specific intronic sequences to detect 

translocations often involved in cancer. 

Sequencing libraries were prepared as described previously (46) from 100 ng of genomic 

DNA. Libraries were quantified by QPCR (Kapa Biosystems, Inc, Woburn, MA) and pooled in 

equimolar concentrations to 500 ng total and enriched for the Oncopanel_v2 baitset using the 

Agilent SureSelect hybrid capture kit. The enriched targeted exon libraries were again quantified 

by QPCR and subsequently sequenced in one lane of a Hiseq2000 sequencer (Illumina Inc, San 

Diego, CA) in the 2 x 100 bp pair-end mode. Sequence alignment, demultiplexing and variant 

calling, including single nucleotide variants (SNVs) and insertions/deletions (indels), was 

performed using PICARD, GATK tools, Mutect and IndeLocator as described previously (46).  
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Copy number analysis was performed using Nexus7.1 (BioDiscovery, Inc.) after 

calculating read counts using the ngCGH tool (https://github.com/seandavi/ngCGH). Copy 

number variants (CNVs) were called with the following BAM-ngCGH settings: significance 

threshold = 1E-6; max contiguous probe spacing or 1000 kbp; minimum number of probes per 

segment = 3. CNV gains have a log ratio >0.4 and were called high gains if  >1. Single copy loss 

threshold was <-0.8 and large loss was <-2. 

 Copy number of 12 target loci (BCL2, CCND1, CDK4, ERBB2, EGFR, FGFR1, FGFR2, 

FGFR3, FGFR4, MET, PDGFRA, PIK3CA) was validated by droplet digital PCR (ddPCR, 

BioRad CX100), as described previously (47). For each target locus, two TaqMan (Life 

Technologies) MGB probes were used to measure the concentration of target-specific molecules 

relative to the concentration of reference locus molecules.  RPP30 (chr10q23) was used as the 

reference locus for each assay. Quantification of these concentrations provided a ratio of the 

target to the reference loci, and the measurement was expressed as an absolute copy number. A 

total of 24 ng of genomic DNA was analyzed for each target locus. To minimize aneusomy at the 

reference loci, the reference locus (RPP30) was interrogated against two additional reference loci 

(AP3B1, chr5q14; NFAT5, chr16q22) such that each target locus was normalized to the average 

concentration of the three reference loci. 

 

Inhibitor studies for growth inhibition 

 Five thousand cells per well were seeded into 96-well plates in 100 μL media. 10 μL drug 

was added in quadruplicate for final concentrations of 0.3 nM-10 μM in half logs, or 3 nM-100 

μM in half logs, with eight DMSO control wells, and incubated for four or five days. For 

combination inhibitor studies, the same seeding and drugging protocol was followed except that 
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final concentration of 30 nM or 300 nM of the second drug was also included in all wells except 

the DMSO controls. After incubation, 50 μL Cell Titer Glo (Promega) was added to each well 

and luminescence was measured on the SpectroMax 5 or the SpectroMax LM imager. Percent 

growth inhibition compared to DMSO controls was calculated and plotted in Prism (GraphPad 

Software, Inc). 

 

Immunoblot and coimmunoprecipitation 

 Cells were lysed in buffer containing 0.5% NP-40, 50 mM Tris pH 8, 150 mM MgCl2, 

and phosphatase and protease inhibitors, and proteins were separated by SDS/PAGE and 

transferred to nitrocellulose membranes via the iBlot dry transfer system (Life Technologies). 

Antibody binding was detected using the LI-COR Odyssey IR imaging system (LI-COR 

Biosciences).  

To confirm loss of phosphorylation of relevant kinases in the presence of inhibitor, cells 

were washed with PBS and serum starved overnight in the presence of indicated concentrations 

of inhibitor prior to lysis. 

To identify potential interactions between FGFR1 and MET, on the same day as cell 

lysis, 500 μg protein was incubated with 30 μL (sc-121 AC) or 7 μL (3472) anti-FGFR1 

antibody on a rotator overnight at 4°C. Lysates incubated with sc-121 AC were then washed four 

times with 500 μL cold lysis buffer, boiled with loading buffer and reducing agent, and loaded 

into gels as described above. Lysates incubated with anti-FGFR1 antibody #3472 were then 

incubated with Protein A Agarose (Life Technologies) for two hours on a rotator at 4°C, then 

washed, reduced, and loaded into gels as described above. 
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Cell cycle analysis using flow cytometry 

 To determine cell cycle stage after drug treatment, 300,000 cells were seeded into 10 cm 

plates and treated with indicated concentrations of trametinib for 72 hours. Media and cells were 

moved to a 15 mL tube and resuspended in 300 μL PBS. 5 mL of ice-cold 100% methanol was 

slowly added dropwise to each tube with constant gentle vortexing and tubes were immediately 

placed at -20°C and incubated overnight. Cells were then resuspended in 5 mL cold PBS and 

incubated on ice for one hour, after which they were resuspended in 500 μL staining solution, 

which consisted of 25 μg/mL propidium iodide and 50 μg/mL RNaseA in PBS, and incubated for 

30 minutes at room temperature while protected from light. DNA content was measured using 

the FACS LSR (BD Biosciences) with the FACSDiva software and analyzed with FlowJo (Tree 

Star, Inc). 
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SUMMARY 

EphA3, a member of the Eph receptor tyrosine kinase family, is a membrane-bound 

protein studied predominantly in the context of embryonic development. In the past several 

years, EphA3 and its family members have also been studied in the context of cancer formation 

and progression. Recently, sequencing of lung adenocarcinoma paired tumor-normal samples 

revealed a statistically significant number of somatic mutations in EphA3—11 in 188 samples. 

This was the first observation of EphA3 mutations at levels above background in lung cancer, 

and suggested that mutations in this kinase might drive oncogenesis in lung cancer, as is the case 

with other significantly mutated kinases. When tested, however, we found that exogenous 

expression of the mutations had no measurable effect on colony forming potential in NIH-3T3 

cells. Nor could we detect expression of EphA3 in cancer cell lines harboring EphA3 mutations, 

as would be expected if the mutations were active. Further, ligand stimulation studies suggest 

that some of the observed mutations may be loss-of-function (LOF), further negating the 

hypothesis that these mutations drive a cancer phenotype. These observations were further 

supported by recent lung adenocarcinoma sequencing data in which several EphA3 alterations 

occurred as nonsense, splice site, or frame shift mutations, as would be expected in a LOF 

context. Therefore, we conclude that, though EphA3 is significantly mutated in lung 

adenocarcinoma, it does not fit the standard model for oncogenic kinases in cancer to acquire 

gain-of-function, driving alterations. While it is certainly possible that this LOF phenotype 

contributes to cancer development or maintenance as a tumor suppressor, more work is required 

to define its role in lung adenocarcinoma. 

 

BACKGROUND 
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In recent years, whole genome characterization has had a pronounced effect on the way 

that potential cancer targets are identified. Whole genome sequencing allows an unbiased scan of 

the genome for cancer-associated alterations, providing a detection approach not powered solely 

to detect common variants in diseased populations. 

This was the rationale behind a 2008 study in which 623 genes, including all tyrosine 

kinases, were sequenced in 188 lung adenocarcinoma tumors along with corresponding normal 

tissue, and somatic point mutations and copy number alterations were identified and annotated 

(1). In this analysis, many genes previously described as mutated in lung adenocarcinoma were 

observed, such as TP53, KRAS, and EGFR. Also as expected, many genes with no prior 

association with lung adenocarcinoma were observed containing significant alterations. One of 

the most significantly altered genes was the receptor tyrosine kinase (RTK) Eph receptor A3 

(EphA3) (1). 

The Eph receptor family is the largest family of receptor tyrosine kinases (2). They 

become activated by binding members of the membrane-bound ephrin (eph-receptor-interacting) 

ligand family. There are 14 Eph receptors in mammals (including nine EphA and five EphB 

receptors) and eight ligands (including five ephrin-As and three ephrin-Bs) (2). Eph receptors 

often interact with more than one ephrin but display higher affinity for certain ephrins over 

others, and for the most part, EphA receptors interact with ephrin-A ligands and EphB receptors 

with ephrin-B ligands (3). Ligand stimulation activates morphological changes including 

cytoskeletal remodeling, which can ultimately lead to motility in cells expressing activated 

kinases (4). 

Eph receptors and ephrins must be expressed by separate cells in order to stimulate 

activation, as expression in cis has been shown to abrogate activity via poorly understood 
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mechanisms (5). Activation mediates a bidirectional cascade of signals into both the Eph-

expressing and ephrin-expressing cells (2). These signaling cascades often trigger either 

internalization of the activated receptor-ligand complexes to continue signaling within the cell, 

or proteolytic cleavage of the Eph-ephrin complex (via proteases such as ADAM10 in the case of 

EphA3 (6)) which leads to internalization, degradation, and down-regulation of Eph expression 

in the cells (2). 

EphA3 encodes a 983 amino acid protein that has been well-studied for its role in 

embryonic development (7). It acts through both adhesive and repulsive forces to influence 

diverse populations of cells during axon guidance, and its loss has been shown to lead to defects 

in gastrulation in zebrafish (8). In the retina, EphA3 geographically directs developing ganglion 

cells (9); it is also required for normal cardiac development in mice (10). 

Eph receptors have not been well studied in cancer, but some alterations have been 

identified. For example, EphA3 is overexpressed in melanoma, sarcoma, and renal cancer (11, 

12) and other Eph receptors are upregulated in breast, liver, and colon cancer (13). EphA3 

mutations have also been previously observed in lung cancer samples and cell lines, in both the 

extracellular domain (ECD) and kinase domain (14, 15). 

EphA3 was significantly mutated in a 2008 survey of 188 lung adenocarcinoma samples 

(1). The eleven novel mutations (Table 4-1) were missense events that did not demonstrate 

significant clustering. Several were in functional domains; for example, one kinase domain 

mutation (K761N) is at a residue homologous to that of the kinase "molecular brake" in another 

RTK, FGFR2 (16) and is designated “probably damaging” by structural analysis (Table 4-1). We 

hypothesize that these mutations may drive oncogenesis in a subset of lung adenocarcinoma, and 

here describe preliminary data generated while testing this hypothesis.   
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Table 4-1. EphA3 mutations identified in lung adenocarcinoma sequencing data.  

Eleven missense mutations were identified along the length of the EphA3 protein in 188 lung 

adenocarcinoma samples. Amino acid change is listed with Polyphen score (PBD: probably 

damaging; B: benign; PSD: possibly damaging) and Pfam protein domain (LBD: ligand binding 

domain; Cys-rich: Cysteine rich region; FN3: fibronectin type-III domain; TKD: tyrosine kinase 

domain). 
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 RESULTS 

EphA3 mutations are not transforming in standard cellular assays and are not expressed in 

EphA3-mutant cell lines 

 A common mechanism driving cancer is the aberrant activation of kinases, and in lung 

adenocarcinoma, receptor tyrosine kinases have frequently been implicated in oncogenesis (17-

19). Altered RTKs are compelling targets for therapy, as their inhibition results in fewer side 

effects than conventional chemotherapy in appropriately selected tumors, and their presence can 

act as a biomarker predicting therapeutic response (20). We therefore sought to determine 

whether EphA3 mutations were activating, enabling the potential to drive oncogenesis in lung 

adenocarcinoma. 

 Members of our group first introduced these mutations into NIH-3T3 cells and seeded 

them into soft agar to evaluate whether the mutations could confer anchorage-independent 

growth. Surprisingly, they did not (21)—even the kinase domain mutation homologous to part of 

the “molecular brake” in FGFR2 (16) was not transforming in this assay. We observed that 293T 

cells transiently transfected with EphA3 wild type cDNA did cause rounding and blebbing in the 

presence of ligand—thus repeating previous work (4) and demonstrating a functional EphA3 

protein product (Figure 4-1A).  

 Since the exogenous expression of EphA3 did not demonstrate a transformation 

phenotype, we sought cancer cell lines with endogenous mutant EphA3 to determine protein 

function in a physiologically relevant setting. Three lung cancer cell lines, HCC15, HCC515, and 

NCI-H1770, have been described previously to have missense mutations in EphA3 (14, 15) and 

we began testing them to determine the role of EphA3 on their growth and development and their 

potential as models for therapeutic development. 
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Figure 4-1. Exogenously expressed EphA3 has normal functionality, but endogenous 

EphA3 mutations are not expressed in lung cancer cell lines. 

(A) 293A cells expressing vector control (left panel) or wild type EphA3 (right panel) were 

stimulated with preclustered ephrin-A5 as described previously (4). Exogenously expressed 

EphA3 showed a rounding and blebbing phenotype while vector control did not, consistent with 

prior observations. 

(B) Lung cancer cell lines HCC15, HCC515, and H1770 have EphA3 point mutations but do not 

express EphA3, while 293T cells transduced with exogenously expressed EphA3 readily express 

the protein product. Lung cancer cell line A549 has wild type EphA3 and also does not express 

EphA3.
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 However, this plan was immediately cut short when initial experiments demonstrated that 

none of the three cell lines expressed any detectable EphA3 (Figure 4-1B). While in transiently 

transfected 293T cells it was readily detectable (left panel), expression was not observed in any 

of the three mutant cell lines or in an EphA3-wild type cell line A549 (right panel). This finding 

further suggested that mutant EphA3 may not be functioning as a transforming oncogene.  

 

Ligand studies suggest that some EphA3 mutations may be loss of function 

 Having acquired only negative readouts of EphA3 activity, we sought to identify a 

positive phenotype by which we could study the functional impact of EphA3. EphA3 is known to 

interact with a membrane-bound ligand, ephrin-A5, which stimulates EphA3 phosphorylation 

activity under normal developmental contexts (4). We stimulated wild type EphA3-expressing 

293A cells with recombinant ephrin-A5 and were able to detect an increase in phospho-EphA3 

by immunoblot with an anti-phospho-tyrosine antibody (Figure 4-2A). Due to the presence of 

other bands by this method (Figure 4-2A, right panel), we went on to perform 

immunoprecipitation for phospho-tyrosine followed by immunoblot for EphA3 to detect 

activated EphA3, which was cleaner (Figure 4-2B).  

Having established a readout for EphA3 activation, we began to test several of the most 

promising candidate mutations, amino acid changes K761N in the EphA3 kinase domain and 

T166N and W250R in the ECD by this method. We had hypothesized that EphA3 K761N would 

drive greater signaling than wild type due to its homology with a molecular brake in FGFR2 

(16); however, we found that its phosphorylation pattern was identical to wild type EphA3 

(Figure 4-2C). In contrast, ECD mutants T166N and W250R showed decreased phosphorylation 

compared to wild type EphA3, suggesting that those mutations introduced a loss of ligand  
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Figure 4-2. Studies of EphA3 wild type and selected mutations reveal that mutations in the 

extracellular domain have reduced phsophorylation upon ligand stimulation.  

(A) Cells expressing vector control or wild type EphA3 were ligand stimulated for the indicated 

times (C: control; 10’: 10 minutes; 20’: 20 minutes) and probed for EphA3, actin, or phospho-

tyrosine by immunoblot. Phospho-EphA3 can be identified upon ligand stimulation when 

immunoblotting with an anti-phospho-tyrosine antibody, but background bands are also observed 

(right panel; arrow, phospho-EphA3).  

(B) Phospho-EphA3 can be cleanly identified by immunoprecipitating 293A-EphA3 lysates with 

an anti-phospho-tyrosine antibody (pY99) and immunoblotting for EphA3; activity decreases by 

30 minutes after ligand stimulation. 

(C) Cells expressing vector control, wild type EphA3, or the K761N kinase domain mutant show 

that the K761N mutant is phosphorylated to similar levels as the wild type receptor upon ligand 

stimulation. 
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Figure 4-2 continued 

(D) Cells expressing vector control, wild type EphA3, or the T166N or W250R ECD mutants  

demonstrate that the ECD mutants have reduced phosphorylation compared to the wild type 

receptor upon ligand stimulation.
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binding capacity (Figure 4-2D) and potentially demonstrate a more general loss-of-function 

phenotype due to mutations in the EphA3 gene observed in lung adenocarcinoma. 

 

EphA3 kinase null mutants are phosphorylated, suggesting the potential for alternative 

mechanisms of activation of EphA3 

 While performing these studies, we utilized loss-of-function kinase domain EphA3 

mutation constructs, EphA3 D746A and K653M, to control for loss of kinase activity. However, 

when cells transfected with these mutation constructs were stimulated with ephrin-A5, we 

observed phosphorylation of these supposedly “kinase dead” protein products (Figure 4-3A). 

This was surprising; however, a similar phenomenon was observed in the naturally non-

functional EphB6 due to heterodimerization with wild type EphB1 (22). It is possible that EphA 

receptors might also activate non-homologous EphA receptor family members, resulting in 

phosphorylation of kinase null proteins.  

 To begin testing for other expressed EphA receptors in our system, we immunoblotted for 

EphA2 in 293A cells, and found it to be robustly expressed (Figure 4-3B). We also found similar 

phosphorylation patterns for EphA2 to what we had seen with EphA3 after ephrin-A5 

stimulation (Figure 4-3C). EphA receptors are able to bind promiscuously to ephrin-A ligands, 

suggesting, along with our data, that EphA2 is activated by ephrin-A5 similarly to EphA3 (2). 

More data are required to characterize these observations in the context of EphA3 kinase null 

phosphorylation.  

 

DISCUSSION 

EphA3 is an RTK that was observerd to be statistically significantly mutated in a 2008  



Chapter 4. EphA3 is significantly mutated in lung adenocarcinoma and is of unknown clinical 
importance 

115 

 

Figure 4-3. Phosphorylation of “kinase dead” exogenously expressed EphA3 mutations 

suggests a secondary method of phosphorylation than receptor homodimerization 

(A) Cells expressing vector control, wild type EphA3 (WT), or kinase null EphA3 mutations 

D746A or K653M were ligand stimulated for the indicated times (C: control; 10’: 10 minutes; 

20’: 20 minutes) and probed for phospho-tyrosine by immunoprecipitation with the pY99 

antibody followed by immunoblot with an anti-EphA3 antibody. D746A shows similar 

phosphorylation levels to the wild type receptor under these conditions, while phosphorylation of 

K653M is diminished compared to WT, but still detectable. An immunoprecipitation control 

(IPC) was included to control for lysis buffer or antibody effects. 

(B) EphA2, another EphA receptor, is robustly expressed in 293A cells irrespective of 

transduced vector, wild type, or EphA3 mutation construct T166N.  

(C) Ligand stimulation with preclustered ephrin-A5 leads to EphA2 phosphorylation as 

measured by anti-phospho-tyrosine immunoprecipitation followed by immunoblot with an anti-

EphA2 antibody in cells transduced with a possible loss-of-function EphA3 mutation (T166N) or 

a kinase null EphA3 mutation (K653M). An immunoprecipitation control (IPC) was included to 

control for lysis buffer or antibody effects.
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sequencing report of lung adenocarcinoma (1). Our study began to determine the oncogenic 

potential of the EphA3 mutations, hypothesizing that strong statistical significance of missense 

mutations in this RTK indicated a gain-of-function, oncogenic effect. However, our preliminary 

data suggest that in fact, these mutations may be causing loss-of-function, tumor suppressive 

effects. Indeed, this was consistent with the findings of a recent report characterizing these and 

other EphA3 mutations identified in tumor sequencing projects (23). We also demonstrate an 

unexpected phosphorylation pattern present in kinase null EphA3 mutations and hypothesize that 

alternative activation methods may exist for EphA3 and other EphA family members, perhaps 

similar to those described previously for the EphB family (22).  

 Since the 2008 study in which the mutations described here were observed, further 

genome characterization of lung adenocarcinoma has been performed by Imielinski et al. (2012) 

(24) and The Cancer Genome Atlas (TCGA) Research Consortium (manuscript under review, 

data accessed using the cBioPortal for Cancer Genomics (25, 26)). These studies have provided 

further evidence for a loss-of-function phenotype caused by these mutations. For instance, 

Imielinski et al. identify 29 point mutations and one putative homozygous deletion of EphA3 for 

a total alteration rate of 16% in 183 samples, in which four point mutations result in a nonsense 

or frameshift event, which along with homozygous deletion are suggestive of loss of function 

(report referenced in (24), data analyzed using the cBioPortal for Cancer Genomics (25, 26)). 

Similarly, unpublished TCGA lung adenocarcinoma sequencing data identify 22 point mutations 

and one homozygous deletion for an alteration rate of 10% across 229 sequenced tumors, in 

which three mutations result in a nonsense or frameshift event, also suggestive of loss of function 

(data provisional, accessed using the cBioPortal for Cancer Genomics (25, 26)). In TCGA data, 

five amplifications of EphA3 were also observed. 
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 Nonsense mutation events remain the minority in acquired genomic variants of EphA3, 

suggesting that missense mutation is instead the preferred mechanism through which receptor 

inactivity occurs. This is not commonly observed in RTK genes associated with cancer, but is 

described in the canonical case of TP53 mutations, which are known to have dominant negative 

missense mutation phenotypes to drive loss of function (27). The surprising suggestion of a 

similar tumor suppressive role driven by missense mutation in a receptor tyrosine kinase thus 

warrants further study for its role in cancer.  

 The study of EphA3 also provides a compelling example of how even highly statistically 

significant events require functional validation in order to demonstrate biological significance. 

As genome characterization studies continue to improve accuracy and depth of coverage, more 

alterations will be identified which play driving or suppressive roles, or no role at all, in cancer 

development and maintenance. Identifying appropriate models in which to study phenotypic 

outcomes of these events will further improve treatment options and care for patients diagnosed 

with lung adenocarcinoma and other cancers. 

 

MATERIALS AND METHODS 

Reagents 

 Cell lines NCI-H1770, A549, 293T, and 293A were obtained from the American Type 

Culture Collection (Manassas, VA). Cell lines HCC15 and HCC515 were obtained from Drs. 

John Minna and Adi Gazdar at UT Southwestern Medical Center, Dallas, TX. Lung cancer cell 

line NCI-H1770 was maintained in ACL-4 medium. Lung cancer cell lines A549, HCC15, and 

HCC515 were maintained in RPMI with 10% FBS added. Cell lines 293T and 293A were 

maintained in DMEM with 10% FBS added.  
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  Ephrin-A5-Fc was purchased from Life Technologies. Anti-human IgG-Fc was 

purchased from Sigma-Aldrich. Antibodies against EphA2, EphA3, beta-actin, and phospho-

tyrosine (p-Y100) were purchased from Cell Signaling Technology. Phospho-tyrosine agarose 

conjugate (p-Y99 AC) was purchased from Santa Cruz Biotechnology, Inc. Fugene-6 was 

purchased from Roche.  

 

Cellular morphology assay 

 The rounding/blebbing cellular assay was performed as described previously (4). Cells 

were photographed on the AxioCam MRm (Carl Zeiss Microscopy).  

 

Transfection of 293T and 293A cells 

 Transfections were performed when cells maintained in 6-well dishes were ~50% 

confluent. Six µL of Fugene-6 were diluted in 94 µL of serum-free DMEM and incubated for 

five minutes at room temperature, followed by the addition of 1 µg cDNA, after which the 

mixture was incubated for 15 minutes at room temperature. The entire mixture was then added to 

one well of cells in a 6-well dish, swirled gently, and incubated at 37°C for 48 hours prior to 

assaying gene expression and function. 

 

Immunoblot and immunoprecipitation 

 Cells were lysed in buffer containing 0.5% NP-40, 50 mM Tris pH 8, 150 mM MgCl2, 

and phosphatase and protease inhibitors, and proteins were separated by SDS/PAGE and 

transferred to nitrocellulose membranes via the iBlot dry transfer system (Life Technologies). 

Antibody binding was detected using HRP-conjugated secondary antibodies (Cell Signaling 
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Technologies, Inc) reacting with the ECL western blotting substrate (Thermo Fisher Scientific, 

Inc.) and developed on film.  

 To perform phospho-tyrosine immunoprecipitation, 500 μg protein was incubated with 

30 μL p-Y99 AC antibody on a rotator overnight at 4°C. Lysates were then washed four times 

with 500 μL cold lysis buffer, boiled with loading buffer and reducing agent, and loaded into 

gels as described above. 

 

Ligand stimulation 

 Ligand stimulation was performed using recombinant ephrin-A5 conjugated to the Fc 

region of human IgG1 at the C-terminus. Ephrin-A5-Fc was clustered with anti-human IgG-Fc 

prior to cell stimulation by incubating a 1:10 molar ratio of ephrin-A5-Fc and anti-human IgG-Fc 

for 20 minutes at room temperature. Cells were stimulated by adding 10 nM preclustered ephrin-

A5-Fc or anti-human IgG-Fc for indicated times and lysed for analysis. 
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FGFR mutations as a druggable target in lung squamous cell carcinoma 

 Fibroblast Growth Factor Receptor (FGFR) alterations have been characterized 

previously in both germline disease (1) and cancer (2). In both contexts, alterations lead to kinase 

activation and sustained signaling through the FGFR pathway (3), consistent with observations 

of other receptor tyrosine kinases (RTKs) altered in cancer (4). Recently, the FGFR family 

members have been targeted by clinical small molecule inhibitors, enabling treatment options 

previously unrealized in patients whose tumors harbor these events (5-7). Squamous cell 

carcinoma of the lung has long been known as an aggressive disease for which treatment options 

were severely limited (8). Thus the identification of mutations in FGFR family members 

(Chapter 2, (9)), known to be druggable cancer targets, was an appealing topic for follow-up 

characterization.  

 The sufficient demonstration of FGFR2 and FGFR3 mutations as driving, targetable 

events in lung squamous cancer is a lofty goal. No appropriate mouse models of these tumors are 

available to study putative alterations (10), nor do cancer cell line models even contain the 

mutations, let alone exhibit dependency on mutant FGFR protein products (11). Using transgenic 

cell line models, we have demonstrated here that the identified mutations are both transforming 

(Figure 2-4A) and sensitive to inhibition by targeted therapy (Figure 2-6A, 2-8B); however, 

these studies occur in cellular contexts insufficient to fully model oncogenesis and treatment 

response. Even a clinical response to a multi-kinase inhibitor in the presence of a known 

activating FGFR2 mutation (Figure 2-10) is only a correlative observation, as the driving activity 

of FGFR2 was not established in the tumor and the inhibitor has many targets beyond FGFR 

family members (12).  



Chapter 5. Discussion 

125 

 Thus, while the study described in Chapter 2 demonstrates that potential and actionable 

genomic alterations can be identified through whole genome sequencing, and their functional 

characterization can exert real influence over patient care (as evidenced by a clinical trial, 

NCT01761747, begun as a direct result of the data presented in Chapter 2), we are still far from 

meeting that goal. Until we develop and routinely utilize disease models that can accurately 

identify biomarkers of inhibitor sensitivity prior to their identification via fortuitous human 

tumor response, functional genomic studies such as the one described here will be an incomplete 

surrogate for the true demonstration of inhibitor sensitivity based on identified genomic events in 

human cancer. 

 

Multiple acquired resistance mechanisms identified in FGFR1-amplified lung squamous 

cell carcinoma 

 Like the accurate demonstration of oncogenesis and inhibitor sensitivity described above, 

resistance that arises in response to inhibition is difficult to predict. FGFR1-amplification in lung 

squamous cell carcinoma was identified prior to whole genome characterization (13, 14), but 

phase 1 clinical trials of patients with targeted anti-FGFR therapies for this indication have only 

recently begun (8). A subset of patients in these studies has responded to therapy; thus, the field 

anticipates the occurrence of resistance.  

 As is known for other tumor types, resistance can arise via multiple mechanisms (15-17). 

In the search for resistance mechanisms in response to FGFR inhibitors, studies of bladder 

cancer and multiple myeloma reveal several mechanisms, which are distinct from those 

described arising in lung squamous cell carcinoma in Chapter 3 (18-20). Preclinical models such 

as these can be useful to identify clinically relevant and actionable resistance mechanisms (21-
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23), but they fall short of identifying all resistance events (15) and can also identify events not 

observed in the clinic (24).  

Our ability to predict and identify mechanisms of acquired resistance to targeted therapy 

remains limited, but we have also not exhausted preclinical models to identify potential 

resistance mechanisms. This is particularly true in contexts where targeted therapies have only 

recently been introduced into the clinic, as is the case with FGFR small molecule inhibitors for 

lung squamous cell carcinoma. It is our hope that the identification of FGFR-dependent MET 

activation, driven by amplification, and NRAS mutation will enable improved patient care, while 

still recognizing that more work remains to further characterize these mechanisms and to identify 

mechanisms that are as yet unstudied. 

 

EphA3 is significantly mutated in lung adenocarcinoma, and demonstrates loss-of-function 

characteristics 

 The identification of EphA3 as a significantly mutated receptor tyrosine kinase in lung 

adenocarcinoma (25) was an attractive discovery. Advances in therapy targeting driving kinases 

had been successful for EGFR-mutant lung cancer, as well as in cancers driven by other 

oncogenes (26-28). It came as a surprise, therefore, to find that none of these events was 

transforming in standard cellular assays (Chapter 4, (29)). Further study suggested a loss-of-

function phenotype for several of the identified mutations (Figure 4-2), later confirmed by an 

independent study (29) and leading to the conclusion that tyrosine kinases may act as tumor 

suppressors in cancer, rather than oncogenes, and that their loss of efficacy by missense mutation 

has the potential to allow tumor growth to progress unchecked. This is further supported by a 

recent screen identifying EphA3 as a mediator of cellular senescence (30). 
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 This observation recommends study into the intriguing field of targeting tumor 

suppressors for therapy. It is undoubtedly a challenge, as many tumor suppressor genes are 

deleted or mutated with alterations resulting in truncations (31). However, for tumor suppressors 

that lose function through missense mutation, targeted therapy may be an option. 

 This possibility has been described most extensively for TP53, encoding p53, which is 

altered in 50% or more of all cancers and is a well-studied tumor suppressor (32-34). The 

majority of alterations in p53 are missense mutations that result in a dominant negative 

phenotype but that studies suggest can be partially overcome by restoration of wild type activity 

(33). Although EphA3 mutations do not necessarily possess similar dominant negative activity, 

restoration of the wild type protein may similarly result in a reactivation of its tumor suppressor 

functions. 

 

Genomic studies of cancer: benefits and limitations 

Targetable genomic alterations and the potential for cancer treatment with few side effects 

Historically, lung cancer treatment has relied on surgery, chemotherapy, and radiation, 

and except in early stage tumors, patient prognosis is often grim (35). Thus the technological 

advances made toward accurate whole-genome characterization present an opportunity to 

determine driving alterations that could potentially be targeted with small molecules or 

antibodies, thus avoiding many of the side effects common to standard therapies.  

 There are several limitations to current targeted treatments available. First, analysis of 

many factors including co-occurring events, tumor heterogeneity, and even point mutation data 

from tumors cannot predict with certainty which patients will respond to treatment (4). The 

predictive power drops further in the case of amplifications. Second, many of the “targeted” 
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drugs heralded by the pharmaceutical industry as silver bullets are often multi-kinase inhibitors 

with many protein targets at doses common in clinical therapy, with the potential for off-target 

effects and serious side effects (36). These drugs are often ATP-competitive and generally target 

either the active conformation of the kinase domain or the inactive structure. This presents 

difficulty due to the high homology between protein kinase domains, especially tyrosine kinase 

domains (36), and can result in patient toxicity even in response to “targeted” treatments 

(Chapter 2). Even in cases where specific drugs can target a specific protein kinase structure, 

some protein families, like the FGFRs, share such high structural homology that the best 

inhibitor of the ATP pocket of the kinase domain will still target several protein family members 

(37).  

One solution to this issue is the development of allosteric inhibitors, which bind a non-

kinase site on the protein that is unique structurally and inhibits activity via a different 

mechanism than inhibition of kinase activation (36). These require identification and extensive 

validation of the non-kinase targeted domain. Another option is monoclonal antibody therapy, 

which can bind the unique extracellular domain of proteins, but generally do not distinguish 

between mutant and wild type, nor are there common inhibitory mechanisms to exploit (38). 

Clearly, research toward more specific targeted therapies is needed to present patients with 

specific treatment options with minimal side effects. 

 

The inverse relationship between genomic characterization of cancer and appropriate 

preclinical models for study 

 Research into targeted therapies is limited, however, by the current dearth of disease 

models available for appropriate preclinical study. With the explosion of genomic 
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characterization of cancer by The Cancer Genome Atlas and other studies, new targets with 

oncogenic potential have been described in large numbers, though they may require validation 

 (9, 25, 39, 40). Existing models of disease such as those curated in the Cancer Cell Line 

Encyclopedia (11) have been largely exhausted of their potential to study newly identified 

alterations, particularly for low frequency recurrent alterations such as those identified in the 

FGFR family in lung squamous cell carcinoma (Chapter 2, (9)). To demonstrate the potential of 

these events to drive oncogenesis and respond to targeted therapy, alternative suboptimal 

methods, including anchorage-independent growth assays and cell proliferation assays, are 

employed that show standard cancer phenotypes such as transformation and dependency 

(Chapter 2, Figures 2-4, 2-6, 2-8). However, these assays are limited because they are able to 

characterize phenotypes in vitro, but cannot demonstrate that patients presenting with those 

alterations in their tumors will respond to therapy targeting them.  

 These limitations can be partially overcome by the generation of new models. Cancer cell 

lines have historically been difficult to isolate, but new methodologies have recently been 

identified that significantly increase the rate at which cancer cells will establish immortal cell 

lines in culture (41, 42). Also, genetically engineered mouse models can be generated with the 

capacity to model oncogenesis dependent on certain oncogenes, though often imperfectly (43, 

44). Similarly, human xenografts, in which human tumors are grown in immunocompromised 

mice without ever growing on plastic, or mouse allografts, in which mouse-derived tumors are 

maintained in mice of the same genetic background with normal immune function, are of some 

benefit in drug studies (44, 45).  

 None of these models can perfectly predict human clinical response to targeted cancer 

therapy, but in vitro cancer cell line models do have predictive power to identify oncogenic 
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targets in human disease (11) and the various mouse models can simulate in vivo disease in ways 

not attainable in transgenic cell lines (44, 45). One might therefore suppose that more resources 

ought to be diverted toward generation of these models, which is reasonable but for one 

limitation: the extreme difficulty in acquiring patient samples. In the absence of genetically 

engineered mouse models, which often present major technical challenges to generate, these 

types of samples require the appropriate informed consent of a cancer patient and the cooperation 

of a surgeon who performs the biopsy or surgical removal, both of which are notoriously difficult 

to obtain and for which there can be little institutional structure or support. This difficulty, 

certainly due to the real necessity for patient privacy and protection, has nonetheless hindered the 

continued acquisition of human samples that may be cultured preclinically for the study of 

oncogenesis and susceptibility to targeted therapy for novel genomic alterations in cancer. 

 

The limits of statistical significance and the necessity of functional validation 

 Large datasets derived from cancer genomes are enabling identification of many novel, 

recurrent, and targetable alterations in silico, using computational methods to deconvolute 

genomic events such that those occurring more frequently than expected by chance are quickly 

identified as positively selected and warranting further study. However, the statistical power to 

detect significance in these events is necessarily limited by sample size, as well as other factors 

such as gene length and background- and gene-specific mutation frequency (46). The reliance on 

statistical analysis of cancer genome data to identify targets for therapy leads to two major 

limitations.  

The first is that the stringent criteria used to identify significant events can fail to identify 

truly recurrent, targetable alterations occurring at a low frequency, such as those described in 
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FGFR2 and FGFR3 in Chapter 2. With larger datasets, the power to detect low-frequency 

alterations will increase, but rare, potentially driving events will continue to be observed in the 

non-significant “tail” of a graph of alterations arranged by p-value (Figure 5-1). In this sort of 

statistical analysis of the genomic data, a threshold of significance is set by contributing 

parameters including gene length and mutation frequency, and mutated genes fall above or below 

that threshold to indicate significance. This leaves open the possibility that mutations observed in 

the dataset are potentially oncogenic and actionable, but do not rise to the level of statistical 

significance when all criteria are included for analysis. A solution to this is to screen alterations 

that do not meet the criteria for statistical significance against databases such as the Catalog of 

Somatic Mutations in Cancer (COSMIC, (47)) and protein structure databases that predict the 

likelihood of functional impact of point mutations such as PolyPhen-2 (48). Screening these 

databases proves incomplete, however, since databases such as COSMIC can only identify 

previously annotated mutations in cancer, and PolyPhen-2, in addition to being only predictive, 

does not distinguish between gain- and loss-of-function events. Still, these tools and others can 

inform functional studies of genes not otherwise deemed statistically significant. 

The second limitation is that identification of statistically significant genomic alterations 

does not necessarily predict functional relevance. This is commonly observed in the case of copy 

number variations in the cancer genome, where significant amplification peaks can contain many 

genes while few have functional impact (31). It is also observed less commonly in the case of 

point mutations, such as those identified in EphA3 and described in Chapter 4. Several of these 

mutations were originally described as likely deleterious to protein function by an earlier version 

of the PolyPhen tool described above (25). Upon functional validation, our data and others 

suggest that the missense mutations identified in EphA3 are in fact loss-of-function events, rather
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Figure 5-1. Computational analysis to identify significant oncogenic alterations in cancer 

genome datasets results in a “tail” of observed alterations of unknown biological 

significance that do not reach statistical significance.  

Observed alterations arranged by p-value from most significant to least significant demonstrate 

that when a significance threshold is set (red dashed line), many alterations form a “tail” of 

events (beginning at arrow) that do not meet the level of statistical significance but may 

nonetheless contribute to oncogenic development or maintenance of cancer in the tumors in 

which the alteration was identified. This phenomenon poses a challenge for researchers seeking 

to identify biological contributors to oncogenesis by computational methods.
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than gain-of-function, as is common for missense mutations in RTKs (Chapter 4, (29)). This 

unexpected observation draws particular attention to the need for comprehensive functional 

validation of statistically significant novel cancer genome alterations, as their function cannot be 

assumed a priori, despite suggestive data from similar proteins. 

 

Future directions for lung squamous cell carcinoma treatment 

 Lung squamous cell carcinoma has historically been an aggressive disease with few 

treatment options beyond standard chemotherapy (8). No targeted therapies are approved and 

prior to TCGA analysis, no recurrent targets were known except for few low-frequency events 

(13, 14, 49). With the completion and publication of initial TCGA analysis, however, many 

putative targets have been identified (9). As described in Chapter 2, missense mutations in 

FGFR2 and FGFR3 are an exciting potential therapeutic target and have led to the initiation of a 

new clinical trial selecting patients with FGFR-mutated lung squamous cell carcinoma (NCI 

Identifier NCT01761747) as well as one of the first functional validations of a new cancer target 

resulting from TCGA characterization (50).  

 Beyond alterations in FGFR family members, other alterations that may contribute to 

lung squamous oncogenesis have been identified. Many of these events are currently undergoing 

functional validation to identify more targets in this disease. These include alterations in the 

PI3K/AKT pathway, such as point mutations in PIK3CA, TSC1, and TSC2, deletions and 

mutations in PTEN, and amplifications of AKT3 (8, 9), suggesting a role for therapeutic targeting 

of this pathway in lung squamous patients. In addition, mutations in known cancer-related 

kinases, including ABL1, ABL2, MET, and ErbB2-4 have been identified in a small percentage of 

cases (8, 9), suggesting that rather than a few common driving events occurring in a large 
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percentage of tumors, as is the case with other cancers such as melanoma (51), lung squamous 

cell carcinoma is a much more heterogeneous disease with many identified driving mechanisms. 

Thus, though numbers of cases presenting with any individual alteration are small, targeted 

therapeutic options exist against many of these protein products and indicate that together, a 

much larger number of cases may have personalized treatment options available. 

 Interesting non-kinase alterations are also observed in TCGA data, indicating a potential 

role for diverse mechanisms in oncogenesis and maintenance of this disease and possible new 

therapeutic vulnerabilities. Among the most altered genes in the lung squamous TCGA dataset 

were NFE2L2, KEAP1, and CUL3 (8, 9), which together form a complex regulating the 

transcription of genes associated with the cellular response to oxidative and chemical stress (52) 

and, when altered, have been associated with oncogenesis and resistance to therapy in cancer 

(53, 54). Alterations in one of these three genes are identified in about a third of lung squamous 

cancers (9) and could contribute to its refractory nature. Indeed, restoration of this pathway in 

altered tumors has the potential to sensitize otherwise insensitive tumors to chemo- and 

radiotherapies and should be evaluated further in the lab and the clinic.  

 

Future directions for FGFR studies 

 Known to be involved in germline craniofacial syndromes, FGFR family members have 

also been implicated in many types of cancers (3). They have been described as mutated in large 

percentages of cases in bladder cancer (55) and endometrial cancer (56, 57), translocated and 

mutated in multiple myeloma (58), and amplified in lung squamous (13, 14) and breast cancer 

(59, 60). Recently, a new transforming fusion between FGFR3 and TACC3 has been described 

in glioblastoma (61), bladder cancer (62), and lung squamous cancer (63), demonstrating the 
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need for further study into novel alterations in this protein family and a great need for therapies 

targeting FGFRs. Unlike some other RTKs, which have known “hotspot” mutations accounting 

for a large percentage of observed alterations across cancer, FGFR family members are 

infrequently altered at the same site across different tumor types. This requires more extensive 

functional validation and likely contributes to the delayed identification of FGFRs as a 

prominent cancer-related gene family.  

 Now, however, many FGFR targets are known and targeted therapies have entered the 

clinic (5, 7, 64). This is a great success for combined functional validation efforts and opens 

therapeutic options to many formerly untreatable patients. Unfortunately, resistance will 

undoubtedly emerge, as is observed universally in solid malignancies (65). Several mechanisms 

of resistance to FGFR targeted therapy have been described, in Chapter 3 and elsewhere (18-20), 

and like the diversity of mechanisms of activation of the FGFR signaling pathway in cancer, 

diverse resistance mechanisms arise in response to therapy as well. Thus in the continued study 

of resistance in diseases driven by alterations in these genes, we expect distinct mechanisms of 

resistance in different tumor types and in response to the varied targeted therapies available. The 

detailed and diverse research required to elucidate this expected variability will likely result in 

the best understanding, outcomes, and further treatment options for patients presenting with 

resistance to FGFR targeted therapy. 

 

CONCLUSIONS 

 The genomic study of cancer has enabled the identification of putative oncogenes and 

tumor suppressors in many cancer types, creating the need for their functional validation as new 

drug targets. This need is unlikely to decrease in the near future, as genome sequencing goes 
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deeper, tumor heterogeneity is described, and stromal contributions to disease are better 

understood, and we expect that new standards for validation will be adopted to accommodate the 

increased number of targets that will result from these advances. We have demonstrated here the 

potential success of studies characterizing novel findings from cancer genome data for the 

development of new targets for therapy, while also providing an example indicating the need for 

functional validation of significant targets to inform drug development studies. We have also 

delved into the world of therapeutic resistance, a field increasing in its scope with every newly 

approved cancer drug. It is our hope that together, this work has contributed to an evidence-

based defense of functional validation for putative targets in genomic studies of cancer in 

general, while also increasing knowledge and improving understanding specifically in the study 

and treatment of non-small cell lung cancer. The continuation of these types of studies in this and 

other cancers might then lead to the goal of all cancer research: a world in which all cancers are 

understandable, treatable diseases.  
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Therapeutics, Targets, and Chemical Biology

Inhibitor-Sensitive FGFR2 and FGFR3 Mutations in Lung
Squamous Cell Carcinoma

Rachel G. Liao1,3, Joonil Jung3, Jeremy Tchaicha1, Matthew D. Wilkerson4, Andrey Sivachenko3,
Ellen M. Beauchamp1, Qingsong Liu2, Trevor J. Pugh1,3, Chandra Sekhar Pedamallu1,3, D. Neil Hayes4,
Nathanael S. Gray2, Gad Getz3, Kwok-Kin Wong1, Robert I. Haddad1, Matthew Meyerson1,3, and
Peter S. Hammerman1,3

Abstract
A comprehensive description of genomic alterations in lung squamous cell carcinoma (lung SCC) has

recently been reported, enabling the identification of genomic events that contribute to the oncogenesis of
this disease. In lung SCC, one of the most frequently altered receptor tyrosine kinase families is the fibroblast
growth factor receptor (FGFR) family, with amplification or mutation observed in all four family members.
Here, we describe the oncogenic nature of mutations observed in FGFR2 and FGFR3, each of which are
observed in 3% of samples, for a mutation rate of 6% across both genes. Using cell culture and xenograft
models, we show that several of these mutations drive cellular transformation. Transformation can be
reversed by small-molecule FGFR inhibitors currently being developed for clinical use. We also show that
mutations in the extracellular domains of FGFR2 lead to constitutive FGFR dimerization. In addition, we
report a patient with an FGFR2-mutated oral SCC who responded to the multitargeted tyrosine kinase
inhibitor pazopanib. These findings provide new insights into driving oncogenic events in a subset of lung
squamous cancers, and recommend future clinical studies with FGFR inhibitors in patients with lung and
head and neck SCC. Cancer Res; 73(16); 5195–205. !2013 AACR.

Introduction
Two goals of comprehensive next-generation sequencing of

cancers are to discover novel, targetable somatic alterations,
and to identify new targets for which therapies already exist.
Genome-scale analyses of tumors representing many cancer
types have recently been completed (1–6), enabling discoveries
consistent with both goals.
Historically, targetable oncogenic alterations in cancer

were discovered on an individual gene basis. This was the
case for cancer-causing alterations observed in several tyro-
sine kinases, including EGFR and ALK in lung adenocarcino-
ma (7–9), FGFR2 in endometrial carcinoma (10, 11), and

FGFR3 in urothelial carcinoma (12). These studies and others
have led to demonstrations of the successful application of
targeted therapeutic agents and their superiority to conven-
tional chemotherapy (13, 14).

Lung squamous cell carcinoma (lung SCC) is a prevalent and
deadly disease for which no targeted therapies are approved.
Recent data reported by The Cancer Genome Atlas (TCGA)
lung SCC project (4) showed that the fibroblast growth factor
receptor (FGFR) tyrosine kinases are one of the most frequent-
ly altered kinase families in this disease. Amplification of
FGFR1 was observed, in agreement with prior reports (15,
16). Furthermore, mutations in FGFR2 and FGFR3 were
reported. Although the frequency of these mutations did not
reach statistical significance at the cohort size examined by
TCGA, several features including recurrence, prior observation
in other cancer types and congenital syndromes, and lack of
other dominant oncogenic alterations in tumors with FGFR
mutations, suggested they might be driving, targetable events
in a subset of patients presenting with this disease.

Germlinemutations in the FGFR tyrosine kinase family were
first described in craniofacial and skeletal syndromes (17).
Somatic point mutations identical to those germline events
have also been observed inmalignancies (18). The FGFR family
is made up of four active members, each containing an
extracellular domain (ECD) and a cytoplasmic kinase domain.
Activation is stimulated by binding FGF and heparan sulfate
proteoglycan (HSPG) in the ECD, and subsequent dimerization
of two receptor–ligand complexes, leading to transphosphor-
ylation of the kinase domains. This leads to phosphorylation of
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binding partner FRS2 and downstream activation of Ras/
MAPK and PI3K/AKT pathways (19).

The FGF family is made up of more than 20 members, all of
which retain specificities for both different FGFR family mem-
bers and different isoforms of each receptor (20). In addition,
tissue types vary in which receptors, isoforms, and ligands are
expressed, adding further levels of complexity to the system.
Dysregulation can lead to oncogenesis, as has been shownwith
altered expression of receptors (15, 16, 21), altered isoform
expression (22, 23), and altered ligand specificity (24) driven by
somatic genomic events.

Aberrant FGFR signaling has been implicated in the devel-
opment of several cancer types. In addition to lung SCC,
FGFR1 amplification is observed in 10%of breast cancers (21).
Point mutations in FGFR2 are observed in 12% of endometrial
carcinomas (10) and mutations in FGFR3 are observed in
more than 30% of urothelial carcinomas (12). Cell lines
harboring these events have shown sensitivity to inhibition
by FGFR small-molecule inhibitors, and clinical trials are now
testing FGFR inhibitors in patients harboring somatic events
in FGFRs (18).

Here, we characterize FGFR2 and FGFR3 mutations obs-
erved in lung SCC and show the oncogenic potential of these
mutations using models of transformation and dependency.
We show that cells harboring these mutations are sensitive to
inhibition by several FGFR and multikinase inhibitors. In
addition, we report a case of a patient with an FGFR2-mutated
oral SCC, who responded to pazopanib, an inhibitor ofmultiple
tyrosine kinases including the FGFR family. Together, these
data identify a promising new therapeutic target for patients
with lung SCC and other squamous epithelial tumors.

Materials and Methods
Patient samples and genomic analysis

Wemanually reviewed FGFR2 and FGFR3 exome sequencing
data generated by the TCGA research network. In addition,
we queried publicly available sequencing data generated from
18 samples that were excluded from the initial TCGA report.
All data were deidentified and obtained in accordance with
patient protection standards set by the TCGA and were obt-
ained from the TCGA Data Portal.

For the individual with a clinical response to pazopanib,
total RNA was extracted using the AllPrep DNA/RNA Mini Kit
(Qiagen; #80204). Poly-adenylated mRNA was enriched using
the AmbionMicroPoly(A)Purist Kit starting from 30 mg of total
RNA as an input according to the manufacturer's protocol.

Illumina transcriptome sequencing libraries were prepared
as previously described (25) from mRNA and from total RNA
and were subjected to 76-bp paired-end sequencing on a single
lane of an Illumina GAIIx sequencer. Sequencing reads were
first aligned to all curated protein-coding transcripts and were
mapped back to reference human genome, hg18 as previously
described (25). Potential mutations were called using the
Unified genotyper from the GATK tool (26).

This individual was consented for the analysis according to
Institutional Protocol 94138 at the Dana-Farber Cancer Insti-
tute (Boston, MA). The FGFR2 P253R mutation was found in

both the total RNA-seq data and mRNA-seq data, and it was
confirmed from genomic DNA by Sanger sequencing in a
Clinical Laboratory Improvement Amendments (CLIA)–certi-
fied laboratory.

Cell lines, antibodies, ligands, and inhibitors
NIH-3T3 cells and Ba/F3 cells were obtained from the

AmericanType Culture Collection andmaintained as described
previously (10, 20). Antibodies against FGFR2 (C-8) and FRS2
(H-91) were purchased from Santa Cruz Biotechnology, Inc.
Antibodies against FGFR3 (C51F2), p-FGFR, p-FRS2 (Y436),
AKT (C67E7), p-AKT (T308, 244F9), Erk 1/2 (137F5), p-Erk
1/2 (E10), and b-actin (8H10D10) were obtained from Cell
Signaling Technology, Inc.

For FGFR stimulation experiments, the FGF1 ligand was
obtained fromAbcam. FGF7 and FGF9were obtained fromLife
Technologies. Interleukin-3 (IL-3) was purchased from VWR
and heparin from STEMCELL Technologies, Inc.

Ponatinib (AP24534), dovitinib (TKI258), and cediranib
(AZD2171) were obtained from Selleck Chemicals. Brivanib
alaninate (BMS-582664) was obtained from Fischer Scientific.
Pazopanib (GW786034) was obtained from Axon Medchem.
AZD4547 was obtained from Active Biochem. E7080 was obt-
ained from American Custom Chemicals Corporation. BGJ398
was a gift from Novartis Pharmaceuticals Corporation.

Mutagenesis and cellular transfection and infection
Mutagenesis primers developed for each mutation were

generated using the Agilent QuikChange Primer Design tool.
FGFR2 isoforms IIIb and IIIc, and FGFR3 isoform IIIc were
cloned into pDONR223 and mutated by site-directed muta-
genesis with the QuikChange Lightning Site-Directed Muta-
genesis Kit from Agilent Technologies. Sequence-verified
constructs were cloned into pBabe-puro and transfected into
HEK-293T cells with Fugene-6 (Promega) as described pre-
viously (10). NIH-3T3 and Ba/F3 cells were infected with the
resulting virus and after 2 days the cells were selected with
2 mg/mL puromycin.

Western blot analysis and visualization of unreduced
dimers

Cells were lysed in buffer containing 0.5% NP-40, 50 mmol/L
Tris pH 8, 150 mmol/L MgCl2, and phosphatase and protease
inhibitors, and proteins were separated by SDS-PAGE and
transferred to nitrocellulose membranes via the iBlot dry
transfer system (Invitrogen). Antibody binding was detected
using the LI-COR Odyssey IR imaging system (LI-COR
Biosciences).

To visualize receptor dimers formed by ECD mutations to
cysteine residues, NIH-3T3 cells expressing the appropriate
mutations were serum-starved for 8 hours in the presence of
PBS or FGF1 and heparin, washed with PBS containing 10
mmol/L iodoacetamide, and lysed in lysis buffer containing 1%
Triton, 10% glycerol, 50 mmol/L Tris pH 7.4, and 10 mmol/L
iodoacetamide. Two 100 mg aliquots of each protein sample
were prepared, one with reducing agent and one without.
Electrophoresis was carried out using 4% to 12% Tris–glycine
SDS-PAGE gels (Invitrogen).
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To confirm loss of phosphorylation of relevant kinases in the
presence of inhibitor, NIH-3T3 cells expressingmutated FGFR2
or FGFR3 were washed with PBS, serum-starved for 4 hours in
the presence of indicated concentrations of inhibitor, and
ligand-stimulated with FGF1 for 30 minutes before lysis.

Soft agar colony formation assays
Two milliliter of 0.5% Select agar (Gibco) and media were

plated to each well of a non-tissue culture–treated 6-well plate
and allowed to solidify. A total of 5! 104 cells were suspended
in 330 mL media and mixed with 770 mL 0.5% Select agar and
media and then plated onto the solidified bottom layer in
triplicate. Plates were incubated for 3 weeks, photographed
using QuickCapture (Logitech), and quantified via ImageJ for
colony formation. Statistical comparison was conducted using
the Student t test.
To evaluate the effect of clinical inhibitors on soft agar

colony formation, the above protocol was conducted with the
following alteration: 5 ! 104 cells were suspended in 330 mL
media plus relevant inhibitor before addition of 0.5% agar
solution and plating.

Xenograft studies
All animal experiments were carried out according to the

institutional guidelines about animal safety. Immunocompro-
mised mice were injected with NIH-3T3 cells stably expressing
exogenous FGFR2-IIIb wild-type (WT)-, W290C-, S320C-, or
K660N-mutant isoforms. Cohorts of 7 mice were injected at
three sites for each cell type with 2 million cells per site, and
mice were observed until tumor volume reached 200 to 300
mm3. Mice were then treated with BGJ-398 at 15 mg/kg or
vehicle (PEG-300) control daily for 2 weeks, and tumor size was
measured during the treatment period.

Ba/F3 dependency and inhibitor studies
Ba/F3 cells expressing each mutation construct were

selected in media containing IL-3 and puromycin. To estab-
lish cells dependent on FGFR signaling, 3 million cells were
washed twice with PBS and seeded into 2 mL of media
containing FGF7 (for FGFR2 IIIb) or FGF9 (for FGFR2 IIIc)
and heparin. These cells were maintained until IL-3–inde-
pendent cells emerged. Five thousand FGFR-dependent cells
per well were seeded into 96-well plates in 100 mL media
containing FGF and heparin. Ten microliter drug was added
in quadruplicate for final concentrations of 0.3 nmol/L to 10
mmol/L in half logs, with two DMSO controls, and incubated
for 3 or 4 days. Fifty microliter CellTiter-Glo (Promega) was
added to each well and luminescence was measured on the
SpectraMax 5 imager. Percentage survival compared with
DMSO controls was calculated and plotted in Prism (Graph-
Pad Software, Inc.).

Results
FGFR2 and FGFR3 are recurrently mutated in lung SCC
We analyzed whole-exome sequencing data, generated by

TCGA (4), for mutations in the FGFR2 and FGFR3 genes. We
identified five FGFR2 and six FGFR3 mutations in analysis of
exome sequencing data of 178 tumor/normal pairs, as well as

an FGFR2 K660Nmutation in a sample that was excluded from
the TCGA report due to poor RNA quality (TCGA-21-1083), for
a total of 12 mutations.

Patients in the reported TCGA cohort with FGFRmutations
(n¼ 10, as one subject had two FGFRmutations) ranged from
58 to 81 years old with a median age of 73 years. All patients
were current or former smokers with a pack-year history of 9 to
63 pack-years (median, 49). Tumors were obtained from
resected specimens with a T stage of I (n ¼ 3) or II (n ¼ 7)
andN stage of 0 (n¼ 8) or I (n¼ 2).More extensive patient data
are available in Supplementary Table S1.

The observed mutations fell in both the extracellular and
kinase domains of FGFR2 and FGFR3, both in codons in which
mutations have been previously reported in endometrial car-
cinoma (10, 11) and urothelial carcinoma (12), and at novel
residues (Fig. 1A). In the samples containing FGFR2 or FGFR3
mutations, the IIIb isoforms of each protein were overex-
pressed compared with the IIIc isoforms (Supplementary Fig.
S1). FGFR kinase alterations were significantly enriched in the
basal expression subtype (ref. 27; Fisher exact test; P ¼ 0.016;
Supplementary Fig. S1).

FGFR mutations cooccurred with mutations in known
oncogenes in only 3 cases. LUSC-21-1078 had a high somatic
mutation rate and harbored mutations in HRAS at codon 61
and PDGFRA at codon 842, both previously reported to be sites
of oncogenic mutation, as well as a novel ERBB2 E1021Q
mutation (Fig. 1B). LUSC-21-1078 contained a noncanonical
KRAS mutation G118S and LUSC-21-5485 had a previously
unreportedERBB2mutationG1075V.Other samples contained
no known oncogenic somatic mutations, except that FGFR2
and FGFR3 mutations commonly cooccurred with mutations
in TP53 (8 of 10) and PIK3CA (3 of 10), the latter being a gene
with mutations that commonly cooccur with driving onco-
genes. Four of 10 samples with FGFR mutation harbored 3q
amplification of SOX2 and 2 samples CDKN2A homozygous
deletion (Fig. 1B). The presence of these events may suggest
that FGFR mutations are not solely driving oncogenesis;
however, due to the high heterogeneity observed in the lung
SCC samples, even the presence of other known oncogenic
events does not guarantee that events cooccur in cells or that
subsets of tumor cells would not be sensitive to FGFR-targeted
therapy.

FGFR2 and FGFR3 mutations drive anchorage-
independent growth of NIH-3T3 cells

To determine whether the mutations identified in lung SCC
were oncogenic, we established NIH-3T3 cells stably expres-
sing each mutation to assess anchorage-independent growth
in soft agar. We observed colony formation in cells expressing
the majority of observed FGFR2 and FGFR3 mutations (Fig.
2A). We determined that ECD mutations W290C and S320C in
FGFR2, and R248C and S249C in FGFR3, significantly increased
colony formation compared with WT FGFR2 or FGFR3, as did
kinase domainmutations K660E and K660N in FGFR2 (P < 0.05
by Student t test). In contrast, FGFR2 mutations E471Q and
T787K, and FGFR3 mutations S435C and K717M did not form
colonies aboveWT. Robust formation of colonies was observed
in NIH-3T3 cells expressing an activating EGFR insertion
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mutation. FGFR2 mutations were generated in both common
isoforms of FGFR2 with similar results obtained for all assayed
mutations with the exception of FGFR2 T787K, which was very
modestly transforming only in isoform IIIc (Fig. 2A).

FGFR2 and FGFR3 mutations drive tumor formation in
xenograft models

NIH-3T3 cells expressing transforming FGFR2 mutations or
WT were injected into nude mice. Tumors reached approxi-
mately 200 to 300mm3 in all mice injected withmutant cells by
day 13 and began treatmentwith a pan-FGFR inhibitor, BGJ398
(28), or vehicle, with ECDmutations driving particularly strong
tumor formation (Fig. 2B, solid lines). Tumors formed by cells
expressing WT FGFR2 grewmore slowly, and began treatment
on day 16 (Fig. 2B).

Tumors treatedwithBGJ398 slowed or reversed their growth
comparedwith vehicle (Fig. 2B, dashed lines), so that by the end
of the study, tumor burden in vehicle-treated versus BGJ398-
treated mice was noticeably distinct (Fig. 2C and Supplemen-
tary Fig. S2).

Extracellular domain mutations form ligand-sensitive
intermolecular disulfide bonds

Acommonmechanismof activationof the FGFR2andFGFR3
kinases is through the formation of covalently bound receptor
dimers (29, 30). Although WT receptor tyrosine kinases main-
tain extracellular structure required for ligand binding and
receptor dimerization through intramolecular disulfide bonds,
mutant receptors can form intermolecular disulfide dimers
through a novel cysteine residue created by the mutation itself
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or through instability created by a mutated residue near a
structural intramolecular disulfide bond (29). This mechanism
was previously established for FGFR3 mutations that we have
observed in lung SCC, R248C, and S249C (30).
To assess whether mutations in the ECD of FGFR2 and

FGFR3 lead to covalent dimerization, and whether dimeriza-
tion could be increased by ligand stimulation, we serum-
starved cells in the presence of PBS or 5 nmol/L FGF1 and 2
mg/mL heparin for 8 hours, or 5 nmol/L FGF1 and 2 mg/mL
heparin for 30 minutes, followed by washing with PBS and
serum-starving in the presence of PBS for the remaining 7.5
hours followed by electrophoresis in both reducing and non-
reducing conditions. FGFR2 ECD mutations were sufficient to
drive covalent dimerization in the absence of ligand, but
dimerization was increased in the presence of even 30 minutes
of ligand stimulation (Supplementary Fig. S3A). In FGFR3
mutations, on the other hand, dimerization was observed but
not increased under ligand-stimulation conditions (Supple-
mentary Fig. S3B). As has been shown previously (31), FGFR

proteins typically form highly glycosylated folded protein
products. Although FGFR2 W290C seems to undergo a glyco-
sylation defect contributing to its lower molecular weight, this
mutant form still retains the capacity to dimerize.

We then seeded the same cells into soft agar in the presence
of PBS, 2 mg/mL heparin alone, or 5 nmol/L FGF1 and 2 mg/mL
heparin. After 3 weeks, we observed greater colony formation
in response to FGF1 and heparin treatment than in heparin
alone or PBS-treated cells (Supplementary Fig. S3C).

FGFR2- and FGFR3-driven cellular transformation is
blocked by clinically relevant FGFR inhibitors

Having established that FGFR2 and FGFR3mutations in lung
SCC drive anchorage-independent growth in NIH-3T3 cells, we
asked whether this transformation could be blocked by small-
molecule inhibitors of FGFRs. NIH-3T3 cells were seeded into
soft agar in the presence or absence of the multikinase inhib-
itor AP24534 (ponatinib), which targets imatinib-resistant
BCR-ABL (32), and has activity against FGFR family members
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(33). Colony formation was inhibited in the presence of pona-
tinib in cells harboring activating FGFR2 or FGFR3mutations,
but not in cells harboring an activating EGFR insertion (Fig. 3A,
left). All ECD mutations in FGFR2 and S249C in FGFR3 lost
colony-forming potential when exposed to 100 nmol/L of drug,
whereas kinase domain mutations lost colony-forming poten-
tial at 10 nmol/L of drug. Exceptions were FGFR2 K660E
expressed in the IIIc isoform, which behaved similarly to the
FGFR2 ECDmutations, and FGFR3 R248C, which had a 10-fold
higher inhibitory concentration than any other mutation, at 1
mmol/L. Colony formation driven by EGFR was not lost until
cells were exposed to 10 mmol/L of drug.

To determine whether ponatinib was inhibiting colony
formation driven by mutant FGFR2 and FGFR3, we assessed
phosphorylation of several proteins in the FGFR signaling
pathway. Levels of phospho-FGFR, phospho-FRS2, and phos-
pho-Erk all decreased in response to increasing concentrations

of ponatinib (Fig. 3B), suggesting that colony formation was
lost due to a decrease in FGFR-mediated signaling.

To evaluate whether ponatinib was acting by specific inhi-
bition of FGFR kinases, these assays were also conducted with
BGJ398, a selective FGFR kinase inhibitor (28) as well as
pazopanib (GW786034; ref. 34) and dovitinib (TKI-258; ref. 35),
two multikinase inhibitors with specificity for FGFR family
members. Colony formation was inhibited by at least 50% in
the presence of 10 nmol/L BGJ398 for all cells expressing FGFR
mutations, whereas cells expressing the activating EGFR inser-
tion did not lose the capacity for colony formation until 1
mmol/L BGJ398 (Fig. 3A, right), and WT phosphorylation was
lost at 10 nmol/L under ligand stimulation conditions (Sup-
plementary Fig. S4A). Dovitinib also inhibited colony forma-
tion in cells expressing mutant FGFR compared with activated
EGFR, but with less uniformity across mutations. FGFR2 ECD
mutations lost 50% colony formation between 100 nmol/L and
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1mmol/L dovitinib. In contrast, colony formationwas inhibited
by 50% between 10 and 100 nmol/L for FGFR2 kinase domain
mutations excludingK660E IIIc, which behaved similarly to the
FGFR2 ECD mutations. Cells expressing FGFR3 R248C and
S249C were sensitive between 10 and 100 nmol/L. Again, cells
transformed by mutant EGFR did not lose colony formation
until exposed to 10 mmol/L drug (Supplementary Fig. S4B, left).
Mutant EGFR-expressing cells had sustained phosphorylation
at AKT T308 up to 10 mmol/L dovitinib, as detected by imm-
unoblot, whereas detectable AKT phosphorylation was lost by
100 nmol/L to 1 mmol/L dovitinib in cells expressing FGFR
mutations (Supplementary Fig. S4C). Pazopanib similarly
inhibited colony formation in cells expressing all FGFR2 and
FGFR3mutations at concentrations of 100 nmol/L to 1mmol/L
drug, whereas cells expressing mutant EGFR formed colonies
even in the presence of 10 mmol/L drug (Supplementary Fig.
S4B, right). Consistently, biochemical studies revealed sus-
tained AKT T308 phosphorylation in mutant EGFR cells
exposed to 10 mmol/L pazopanib, whereas detectable AKT
T308 phosphorylation was lost in mutant FGFR cells at 100
nmol/L to 1 mmol/L pazopanib (Supplementary Fig. S4D).
In NIH-3T3 cells expressing the ECD mutations of both

FGFR2 and FGFR3 and in the kinase domain mutation FGFR2
K660E IIIc, we observed that low concentrations of ponatinib
(10 nmol/L) conferred a growth-promoting phenotype above
control, which was abrogated at higher concentrations (Fig. 3A,
left). This could be due to the multikinase inhibitory properties
of ponatinib, which may inhibit a second kinase that could
impact FGFR2 or FGFR3 signaling. This phenomenon was also
observedwhen these experimentswere carried outwith the two
othermultikinase inhibitorswith anti-FGFR activity, pazopanib
and dovitinib (Supplementary Fig. S4B), but not with BGJ398, a
more selective FGFR kinase inhibitor (Fig. 3A, right).

Analysis of FGFR2 and FGFR3 inhibition in IL-3–
independent Ba/F3 cells
To test whether cellular transformation driven by mutated

FGFR2 could be abrogated in a second system by small-
molecule FGFR inhibitors and to test the relative efficacy of
these compounds, we generated Ba/F3 cells expressing the
FGFR2mutations that had shown significant colony formation
in the NIH-3T3 anchorage-independent assay. These cell lines
were dependent on FGFR signaling in the presence of FGF and
heparin, and in the absence of IL-3. Phosphorylation of the
FGFRkinase domain andFRS2weremeasured by immunoblot,
and interestingly, cells expressing FGFR2 K660E IIIc showed a
greater degree of phosphorylation of both molecules despite
similar expression levels as compared with cells expressing
other mutations (Fig. 4A).
Ba/F3 cells expressing WT and mutated FGFR2 transgenes

were first seeded into media containing increasing concentra-
tions of ponatinib. We observed that ponatinib inhibited IL-3–
independent proliferation of Ba/F3 cells expressing the FGFR
mutations at about 10 nmol/L of drug treatment, but cells
expressing an EGFR-activating insertion or parental Ba/F3
cells grown in the presence of IL-3 were only inhibited by
10 mmol/L of drug (Fig. 4B, left). IC50 values for Ba/F3 cells
expressing each mutant were also calculated and plotted (Fig.

4C, left). These assays were also conducted on cells seeded into
media containing BGJ398, and similarly, cells expressing FGFR
mutations, but not the EGFR insertion or parental Ba/F3 cells,
were inhibited at about 10 nmol/L inhibitory concentrations of
drug (Fig. 4B, right and Fig. 4C, right). Interestingly, insensitive
controls in the presence of ponatinib seemed to gain a growth
advantage in the presence of drug at concentrations in the
range of 10 to 100 nmol/L (Fig. 4B), similar to our observations
in the anchorage-independent colony formation assay (Fig. 3A
and Supplementary Fig. S4B).

To further assess the potency of small-molecule FGFRkinase
inhibitors in the Ba/F3 system, we assembled a panel of FGFR
kinase inhibitors described in the literature (refs. 28, 32–39;
Supplementary Table S2) and tested the Ba/F3 inhibitory
response in the presence of each. Each of these inhibitors
showed similar trends to those seen for ponatinib and BGJ398:
amulti-log increase in drug sensitivity in cells expressing FGFR
mutations compared with controls (Supplementary Fig. S5).
IC50 values for eachmutation in the presence of each drugwere
also calculated (Supplementary Fig. S5). Strikingly, FGFR2
K660E expressed in the IIIc isoform (in yellow) repeatedly
exhibited a 5- to 10-fold higher IC50 concentration as compared
with the IIIb isoform and either isoform of the K660Nmutation
in the FGFR2 kinase domain (Supplementary Fig. S5). This
observation was consistent with the concentrations at which
anchorage-independent growth observed for FGFR2K660E IIIc
was lost in the presence of several inhibitors (Fig. 3A and
Supplementary Fig. S4B).

Case report of aheadandneckSCCpatient responding to
an FGFR inhibitor

Weidentifiedan individualwithSCCof theheadandneckwho
was found to harbor an extracellular FGFR2mutation (p.P253R)
in a biopsy specimen (Fig. 5A). This mutation was initially
identified in RNA sequencing data and then confirmedby Sanger
sequencing in a CLIA-certified laboratory (Fig. 5B). FGFR2
mutations have previously been observed at low frequencies in
head and neck cancer (40, 41), and confirmed by initial reports
from TCGA where seven mutations were observed in exome
sequencing data of 279 individuals as of October 1, 2012 (data
obtained from the TCGA Data Coordinating Center). FGFR2
P253R has previously been observed in endometrial carcinoma
(10). Cellular and biochemical analysis of the FGFR2 P253R
mutation suggest that this event is transforming and sensitive
to targeted therapies in our assays, similar to the events observed
in lung SCC (Supplementary Fig. S6).

The patient was diagnosed with locally advanced (T2N1M0,
stage III) SCC of the right tongue in 2008 at the age of 52 years.
He had no history of tobacco use or alcohol abuse and was
treated with a right hemiglossectomy and postoperative radio-
therapy. He subsequently developed recurrences in the right
and left neck over a period of 3 years and was treated with
surgery, two additional courses of radiotherapy and multiple
courses of chemotherapy including carboplatin, paclitaxel,
cisplatin, and cetuximab. In 2012, he had further progression
in the right neck and left axilla. He began daily treatment with
800 mg pazopanib starting on April 12, 2012. At this time, he
had gross disease in the right neck (Fig. 5C, left). A follow-up
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visit 12 days later showed a marked reduction in tumor size
(Fig. 5C, right). He continued on pazopanib for 2months, when
he presented with a right carotid hemorrhage. Pazopanib was
discontinued at that time, and the patient remains alive as of
March 15, 2013 under hospice care. This correlative observa-
tion does not definitively identify FGFR2 as the target of
pazopanib, but we believe that this result provides compelling

rationale to continue to pursue treatment of FGFR2-mutated
tumors with anti-FGFR–targeted therapies.

Discussion
Lung SCC is a poorly characterized disease responsible for

40,000 new deaths per year in the United States. One of the
most provocative findings from genomic analysis is that of
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FRS2 Y436. Actin was used as a loading control. B, Ba/F3 cells expressing each mutation construct were seeded into 96-well plates in the
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calculated for each mutation. These experiments were carried out with other FGFR inhibitors; those results are documented in Supplementary Fig. S5.
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recurrent FGFR2 and FGFR3 mutations, which are significant
given that germline FGFR mutations are known to be patho-
genic (17), that somatic mutations have been described in
other malignancies (18), and that focal FGFR1 amplification is
known to occur in lung SCC and seems to be a therapeutic
target (15, 16).

We have confirmed that a subset of observed mutations
drive transformation in NIH-3T3 cells in an anchorage-inde-
pendent growth assay and xenograft assays, and that this is
reversible by pan-FGFR and multikinase inhibitors. Some
mutations were not transforming, but given the very high
somatic mutation rate in lung SCC, this observation is not
surprising. We found that ECDmutations in FGFR2 are able to
form ligand-sensitive covalent receptor-dimers, as has been
observed in other FGFR2 ECD mutations (29) and in FGFR3
mutations that have been described previously in urothelial
carcinoma, and that we also observe here in the lung SCC
data (30). This finding is especially relevant given that the
FGFR2 W290C mutation has been observed independently in
lung SCC sequencing on two previous occasions (10, 42). It is
also possible that the glycosylation deficiency thatwe observed
in the expressed protein harboring this mutation impacts
protein function, a phenomenon with precedence in this
receptor family (31).

We found that the FGFRmutations also exhibited sensitivity
to inhibition by FGFR inhibitors in the Ba/F3 system, which
models dependency on oncogenic pathways.Many drugs in the
panel of inhibitors that we tested are already approved for
clinical use in other malignancies, and clinical trials are
underway to test sensitivity to FGFR inhibitors in patients
harboring FGFR events (NCT01004224, NCT01457846, and
NCT00979134). Although we cannot infer in vivo sensitivity to
these inhibitors from our models, we believe that this study
provides a compelling rationale for extending trials of FGFR
kinase inhibitors to patients with lung and oral SCC harboring
FGFR2 or FGFR3 mutations.

This study represents one of the first functionally validated
novel recurrent targets to emerge from analysis of the system-
atic genomic profiling of lung SCC by the TCGA Research
Network. It is our expectation that these findings will continue
with the publication of more genomic studies of malignancies,

and that this will lead to improved treatment options for
patients with this disease.
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