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Abstract

Patents award innovators a fixed period of market exclusivity, e.g., 20 years in the United States.

Yet, since in many industries firms file patents at the time of discovery (“invention”) rather than first

sale (“commercialization”), effective patent terms vary: inventions that commercialize at the time of

invention receive a full patent term, whereas inventions that have a long time lag between invention and

commercialization receive substantially reduced - or in extreme cases, zero - effective patent terms. We

present a simple model formalizing how this variation may distort research and development (R&D).

We then explore this distortion empirically in the context of cancer R&D, where clinical trials are

shorter - and hence, effective patent terms longer - for drugs targeting late-stage cancer patients,

relative to drugs targeting early-stage cancer patients or cancer prevention. Using a newly constructed

data set on cancer clinical trial investments, we provide several sources of evidence consistent with

fixed patent terms distorting cancer R&D. Back-of-the-envelope calculations suggest that the number

of life-years at stake is large. We discuss three specific policy levers that could eliminate this distortion

- patent design, targeted R&D subsidies, and surrogate (non-mortality) clinical trial endpoints - and

provide empirical evidence that surrogate endpoints can be effective in practice.
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1 Introduction

Patents aim to incentivize innovation by awarding inventors a temporary period of market exclusivity. In

most countries, the patent term is currently fixed at twenty years from the filing date of the application. It

has long been recognized that heterogeneity across inventions - such as variation in risk-adjusted costs of

development - implies that this type of fixed patent term will award “too much” market exclusivity to some

inventions, and will be insufficient to motivate the development of others.1 In this paper, we theoretically

and empirically investigate a simple - and, we think, important - form of heterogeneity. Since in many

industries firms are effectively compelled to file patents at the time of discovery (“invention”) rather

than at the time of first sale (“commercialization”), legally fixed patent terms generate variable effective

patent terms: inventions that commercialize at the time of invention receive a full twenty-year patent

term, whereas inventions that take longer to commercialize realize a shorter effective patent term. In the

extreme, patents offer no incentive to develop technologies that would take longer than twenty years to

commercialize. Thus, under a fixed patent term, research and development (R&D) investments may be

distorted away from technologies with long time lags between invention and commercialization.

We begin by presenting a simple theoretical model to formalize the fixed patent term distortion. There

are five conditions required for the distortion to arise: there is variation in the time lag between invention

and commercialization; firms file for patent protection at invention; patents are an effective source of

market power; inventions are imitable once patents expire; and inventions have a long useful life relative

to the length of the patent term. Mechanically, these conditions together generate variation in the ratio of

an invention’s “monopoly life” to its “total useful life.” Since society cares about an invention’s total useful

life, but private firms care only about monopoly life, a distortion emerges not just in the level of R&D

(as arises in standard models), but also in the composition of R&D: society might value invention A more

highly than invention B, but private industry may choose to develop B but not A. Note that, other things

equal, commercialization lag lowers both monopoly life and total useful life: both society and private

firms prefer inventions to reach the market quickly. But, under a fixed patent term, commercialization

lag reduces monopoly life more rapidly than total useful life, hence the distortion away from inventions

with both a long total useful life and a long commercialization lag.

The model clarifies that the fixed patent term distortion is unlikely to arise in many industries, but the

conditions necessary for this distortion to exist naturally fit the pharmaceutical industry. Pharmaceutical

firms face strong incentives to file patent applications at the time of invention. However, prior to marketing

1Optimal patent length and optimal patent breadth have long been topics of study in the economics and law literatures;
see, e.g., Machlup (1958), Nordhaus (1969), Scherer (1972), Nordhaus (1972), Kaplow (1984), Klemperer (1990), Gilbert
and Shapiro (1990), and Scotchmer (1991).
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a new drug, firms must submit clinical trial results to the US Food and Drug Administration (FDA)

documenting that their product meets a set of safety and efficacy standards. These clinical trials generate

a lag between the time of patenting and the time of commercialization, which reduces an invention’s

effective patent life - more so for drugs that require longer clinical trials.2 A key determinant of clinical

trial length is patient survival time: because clinical trials generally must show evidence that the treatment

improves mortality-related outcomes, clinical trials tend to be longer - and hence, effective patent terms

shorter - when enrolling patients with longer survival times. All else equal, firms are thus awarded longer

terms of market exclusivity for successfully developing drugs to treat patients with short survival times

relative to drugs to treat patients with longer survival times.3

Consider two examples of clinical trials for prostate cancer treatments, both published in the New

England Journal of Medicine in 2011. A first study, de Bono et al. (2011), analyzed a treatment for

metastatic prostate cancer (an advanced stage of prostate cancer with a five-year survival rate on the

order of 20 percent). The study tracked patient survival for a median time of 12.8 months, and estimated

statistically significant improvements in survival (a gain of 3.9 months of life on average). A second

study, Jones et al. (2011), analyzed a treatment for localized prostate cancer (an early stage of prostate

cancer with a five-year survival rate on the order of 80 percent). The study tracked patient survival for a

median time of 9.1 years, estimating statistically significant improvements in survival. As expected, this

stark difference in patient follow-up times translates into a large difference in clinical trial length: 3 years

for the metastatic patient trial versus 18 years for the localized patient trial. All else equal, the drug

treating localized patients would receive 15 fewer years of effective patent life relative to the drug treating

metastatic patients. Given this difference in effective patent life, we expect private firms to provide “too

few” clinical trials for patients with long expected survival times. Consistent with this idea, the study

of metastatic cancer patients was funded by a private firm (Cougar Biotechnology) whereas the study of

localized cancer patients was funded by the National Cancer Institute. To illustrate a more extreme case,

consider a hypothetical prostate cancer vaccine administered to men at age 20. Because prostate cancer

tends to be diagnosed in men after age 50, a clinical trial documenting that the vaccine prevents prostate

cancer incidence would need to last longer than the life of the patent - suggesting that the patent system

offers little incentive for private firms to invest R&D on such a vaccine.

Our empirical work investigates the basic insight behind these examples in the context of R&D invest-

2As we discuss in Section 2, this reduction in effective patent life matters because many drugs generate significant sales
revenues near the end of their patent term, and generic manufacturers are usually poised to enter the market as soon as
patents expire.

3As we discuss in Section 2.5.1, this gap in effective patent life persists even with the patent term extensions available to
pharmaceutical companies under the 1984 Hatch-Waxman Act, which only partially compensate for patent life lost during
clinical development.
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ments on cancer treatments. Cancer drug development tends to be specific to a cancer type (e.g. prostate)

and stage of disease (e.g. metastatic) - as in the examples above - providing a natural framework for es-

timating how expected commercialization lags (as proxied by survival time) and R&D investments vary

across different groups of patients. Aggregating survival information from patient-level cancer registry

data, we document stark variation in survival times across patients of different cancer types and stages

of disease. In order to measure R&D investments on cancer treatments relevant to each cancer type and

stage of disease, we use newly-constructed data from a clinical trial registry that has cataloged cancer

clinical trials since the 1970s. The key feature of this data which makes it amenable to our analysis is

that for each clinical trial, the registry lists each of the specific patient groups eligible to enroll in the

trial - thus allowing a match between our measures of expected commercialization lag (as measured by

survival time) and R&D activity (as measured by clinical trial investments) across cancer types and stages

of disease.

Using this data, we document that - consistent with the fixed patent term distortion - patient groups

with longer commercialization lags (as proxied by higher survival rates) tend to have lower levels of R&D

investment. Figure 1(a) gives a sense of this basic pattern using stage-level data. On average, metastatic

cancer patients have a five-year survival rate of approximately 10 percent, and have nearly 12,000 clinical

trials in our data. In contrast, localized cancer patients have a five-year survival rate of approximately 70

percent, and have just over 6,000 clinical trials in our data. This pattern is even more stark if we contrast

recurrent cancers (advanced cancers with very poor survival prospects) and cancer prevention: fewer than

500 trials in our data aim to prevent cancer, whereas recurrent cancers have more than 17,000 trials. A

rough adjustment for market size - looking at the number of clinical trials per life-year lost from cancer -

does little to change this basic pattern. Note that from a medical perspective, a distortion in R&D away

from localized cancer patients could be particularly concerning: metastatic cancers are most often not

curable, whereas treatments are more often successful in curing localized cancers.4

This new fact - that we observe fewer R&D investments in patient groups that require longer clinical

trials - is consistent with the fixed patent term distortion. However, by itself this fact is not evidence

of inefficiency because either higher demand for treatments or lower R&D costs might also generate

a negative correlation between survival time and R&D. Based on evidence from a series of additional

empirical analyses, we argue that the observed survival time-R&D correlation is more negative than is

consistent with an efficiency argument based on demand and costs. Our key counterfactual analysis

investigates surrogate endpoints (that is, non-mortality based clinical trial endpoints), which break the

4See, for example, the discussion of the goals of treatment for advanced cancer in this patient guide from the American
Cancer Society: http://www.cancer.org/acs/groups/cid/documents/webcontent/003082-pdf.pdf.

http://www.cancer.org/acs/groups/cid/documents/webcontent/003082-pdf.pdf
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link between patient survival rates and clinical trial length. We document that there is not a negative

relationship between survival time and R&D in the sample of cancers allowed to use surrogate endpoints -

suggesting that the survival time-R&D correlation observed in the full sample is not driven by unobserved

heterogeneity in demand or heterogeneity in the available set of scientific opportunities.

While directly relevant from a policy perspective, this variation in surrogate endpoints changes the

length of clinical trials - in turn changing the financial cost of trials - and thus does not offer a perfectly

clean test of the theoretical model. To address the concern that the financial costs of clinical trials are

correlated with the survival rate, we present evidence from an additional test motivated by our theoretical

model: because higher costs also reduce social R&D incentives, any additional negative correlation between

the survival rate and R&D investments among privately financed trials (relative to publicly financed trials)

should be purged of heterogeneity in the costs of clinical trials that is correlated with the survival rate.

We document that the survival time-R&D correlation is indeed more negative for privately financed trials

than for publicly financed trials. Finally, we document that all six FDA-approved cancer prevention drugs

- drugs that our model predicts should be under-incentivized by the patent system - either relied on the use

of surrogate endpoints or were approved on the basis of publicly financed clinical trials. Taken together,

this body of evidence provides support for the idea that fixed patent terms distort R&D.5

The idea that fixed patent terms may distort innovation has been discussed by several legal scholars

(Abramowicz (2007); Eisenberg (2005); Roin (2010)), but to the best of our knowledge this paper is the

first to formally investigate this distortion either theoretically or empirically. We also use our theoretical

model to analyze the innovation and social welfare consequences of three policy interventions: a patent

design change that would start the patent clock at commercialization, a policy change that would allow

firms to rely on surrogate endpoints in clinical trials, and targeted R&D subsidies.

Our empirical results contribute more broadly to the literature on how patents affect the level and

composition of R&D. Although theoretical models often assume a relationship between the strength of

patent protection and the level of innovation, there is a remarkable dearth of empirical evidence on this

link. For example, Lerner (2002) and Sakakibara and Branstetter (2001) find little evidence that stronger

intellectual property rights induce more innovation.6 Moreover, with the exception of Moser (2005) -

5Conversations with several venture capitalists also generated anecdotal evidence that fixed patent terms result in some
scientifically promising projects failing to reach the market; for example, one venture capitalist we talked with noted: It

happens all the time that we pass on a drug, one we think would probably work, because there wouldn’t be enough life left on

its patent by the time it reached the market. For additional examples, see Section 5.3.1.
6Both Lerner (2002) and Sakakibara and Branstetter (2001) investigate behavioral responses to changes in country-specific

patent laws. Because technologies are developed for a global market, such country-specific patent law changes may capture
a relatively small source of variation in global R&D incentives. In contrast, our analysis takes advantage of a cross-sectional
source of variation in the patent lengths available to innovators who develop technologies for different groups of consumers,
which by construction focuses attention on a larger-scale source of variation in global R&D incentives.
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who documents that in the 19th century, inventors in countries without patent laws were relatively more

concentrated in industries where secrecy was effective relative to patents - there is almost no evidence

on how patents shape the composition of R&D. Our empirical evidence that fixed patent terms distort

R&D can also be interpreted as direct evidence that patents affect both the level and composition of

R&D: pharmaceutical innovation responds to plausibly exogenous variation in effective patent length

(here, driven by patient survival times), and this variation in effective patent length has important effects

on the composition of innovation investments.

Our empirical focus on cancer treatments is of substantive interest because of cancer’s tremendous

morbidity and mortality burden. In 2009, cancer was the second leading cause of death in the US (after

heart disease), accounting for almost 25 percent of all deaths. Using an economic framework which values

improvements in health based on individuals’ willingness to pay, Murphy and Topel (2006) estimate that

a permanent 1 percent reduction in cancer mortality has a present value to current and future generations

of Americans of nearly $500 billion, and that a cure (if feasible) would be worth about $50 trillion. Taking

advantage of our surrogate endpoint variation, we estimate counterfactual R&D allocations and induced

improvements in cancer survival rates that would have been observed in the absence of the fixed patent

term distortion. Based on these counterfactuals, we estimate that among one cohort of patients - US

cancer patients diagnosed in 2003 - the fixed patent term distortion resulted in around 890,000 lost life-

years; valued at $100,000 per life-year lost (Cutler, 2004), the estimated value of these lost life-years is on

the order of $89 billion.

The paper proceeds as follows. Section 2 presents the model. Section 3 describes our data. Section 4

documents the negative correlation between survival time and R&D investments, and Section 5 interprets

this relationship. Section 6 derives a back-of-the-envelope estimate of the life-years lost due to the fixed

patent term distortion. Section 7 concludes.

2 Theory

In this section we present a simple theoretical model which is designed with three goals in mind. First,

the model characterizes the conditions under which fixed patent terms will be expected to distort R&D

investments. Second, we use the model to derive comparative statics that we then take to the data. Third,

the model analyzes three policy interventions which could be used to address this distortion.

In the model, we conceptualize R&D as consisting of two stages: invention and commercialization. By

invention we mean developing the basic idea for a product to the point where it is patentable: producing a

new chemical compound, building a prototype, etc. By commercialization we mean all that is involved in
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bringing an invented product to market: getting FDA approval for the new chemical compound, produc-

ing the prototyped good at efficient scale, etc. The distinction between invention and commercialization

matters because, in many industries, firms face strong incentives to file for patent protection at the time

of invention rather than at the time of commercialization: delayed applications risk competitors filing con-

flicting patents, and risk independent researchers disclosing information (through scientific publications,

for example) that would invalidate later patent applications. Our model clarifies that in cases where there

is a long time lag between time of invention and time of commercialization - as induced by clinical trials

for new drugs - this time lag can interact with fixed patent terms to generate distorted R&D incentives.

The model clarifies that the fixed patent term distortion is unlikely to arise in many industries,

but as we discuss in Section 2.6, the conditions necessary for this distortion to exist naturally fit the

pharmaceutical industry. Reflecting this, we focus the model on the case of the pharmaceutical industry,

although the analysis applies more generally.7

2.1 Preliminaries

A representative firm conducts undirected R&D which stochastically yields inventions. Whenever the

firm’s undirected R&D yields an invention, it then must decide whether to invest directed R&D towards the

goal of commercializing the specific invention. The firm proceeds with commercialization if the expected

private benefits of commercialization exceed the expected private costs. An invention is characterized by

the following parameters:

• Timing parameters: the year in which the invention is realized by the firm’s undirected R&D is

t
invent

, which we normalize to 0. The number of years that the commercialization effort will take

is t
comm

; t
comm

can be interpreted as the number of years that it will take to conduct FDA clinical

trials. We treat t
comm

and several other parameters below as deterministic for simplicity; in practice

many of the parameters would be stochastic.

• Cost of commercialization: the commercialization effort costs c, in net present value terms as of

date t
invent

. The cost c can be interpreted as the cost of conducting FDA trials.

• Likelihood of successful commercialization: the commercialization effort yields a commercially viable

product with probability p. The success parameter p can be interpreted as the likelihood that FDA

clinical trials are successful.
7Kitch (1977) documents a number of case studies (see his Table 1) suggesting that long time lags between patenting and

commercialization may be common in many industries beyond the pharmaceutical industry.
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• Obsolescence risk: if the product is successfully commercialized, then it is useful until superseded.

We model obsolescence risk in a simple way, assuming that obsolescence occurs with probability

1 � � per year in each year following t
invent

.8 Obsolescence risk would more appropriately be

modeled as an endogenous parameter (for example, a function of R&D investments); for simplicity

we follow much of the previous patent theory literature in taking obsolescence risk as exogenous

(e.g. Grossman and Lai (2004)).

• Monopoly profits and social value: if the product is successfully commercialized, non-obsolete, and

protected by patent, it yields profits of ⇡ per year to the inventing firm, and social value of vmonop

per year. If the product were priced by a social planner instead of a monopolist, it would yield social

value of v > vmonop per year.

• Discount factor: both the firm and society apply a discount factor of � to the project.

• Imitability: if the product is successfully commercialized, non-obsolete, and not protected by patent,

generic entrants may imitate the commercialized product. Imitation reduces the inventing firm’s

profits from ⇡ to (1 � ◆)⇡, where ◆ 2 [0, 1] denotes the imitability of the product (that is, vulnera-

bility to generic competition). The case ◆ = 1 corresponds to perfect imitability, which drives the

inventing firm’s profits to zero. We focus on ◆ = 1 for most of the analysis, but note that even in

pharmaceuticals generic entry sometimes does not drive profits all the way to zero (see Bronnenberg

et al. (2013) and our discussion in Section 2.6).

• Patent term and timing of patent filing: in a fixed-term patent system, patents for new inventions

last t
patent

years from the filing date.9 So long as an invention is protected by patent, imitation is

illegal. Firms may choose whether to file for patent protection at the time of invention t
invent

or

at the time of commercialization t
comm

. If they file at the time of invention they receive patent

protection with probability one. If they wait until commercialization to file they receive patent

protection with probability q < 1, reflecting the risk of disclosure, losing an R&D race, etc. As we

discuss in Section 2.6, pharmaceutical firms face very strong incentives to file patents at the time of

invention, and in practice essentially always file their patent applications as early as possible in the

R&D process. For this reason we focus on the case of q = 0 for most of the analysis.

8An alternative would be to incorporate obsolescence that occurs before t
comm

into the probability of commercialization
success p, and only use the term obsolescence to describe cases where the product is superseded after successful commercial-
ization at t

comm

. This is economically equivalent, but less convenient mathematically; see especially formula (1) below.
9We here abstract away from the provisions of the 1984 Hatch-Waxman Act, which awards some qualifying pharmaceutical

firms extended patent terms; we discuss such policy levers in Section 2.5.1.
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2.2 Effective Monopoly Life and Effective Total Life

We define an invention’s Expected Monopoly Life (EML) as the expected number of years, in present value

terms, that the inventor can expect to earn monopoly profits from the commercialized product. This is

the expected amount of time that the invention is commercially viable, protected by patent, and not yet

superseded. We focus our analysis on the case of inventions that are imitable if not protected by patent

(◆ = 1) and where firms must file for patent protection at invention in order to receive patent protection

(q = 0). This is the most relevant case for the pharmaceutical industry; below we discuss other cases. If

t
patent

� t
comm

then EML can be written as:

EML = p

t

patentX

t

comm

(��)t = p
(��)tcomm � (��)tpatent

1� (��)
. (1)

The key thing to notice about equation (1) is the role of the timing parameters: at best, the period of

monopoly is from t
comm

to t
patent

. This best case occurs if the invention is successfully commercialized

(which occurs with probability p) and not superseded as of time t
patent

(which occurs with probability

�tpatent). As soon as time reaches t
patent

, the invention will be imitated and the monopoly position lost.

Note as well that if t
patent

< t
comm

, then EML = 0: by the time the invention is commercialized, patent

protection has expired.

Next, we define an invention’s Expected Total Life (ETL) as the expected number of years, in present

value terms, that the invention will be commercialized and non-obsolete:

ETL = p
1X

t

comm

(��)t = p
(��)tcomm

1� (��)
. (2)

The key difference between EML and ETL is that monopoly life runs at best until t
patent

, whereas total

life runs indefinitely until the invention becomes obsolete.

If the invention is not perfectly imitable (◆ < 1) then the formula for EML would need to be modified

to account for the fact that profits do not fall all the way to zero at t
patent

.10 In the extreme case of

zero imitability (◆ = 0), EML and ETL coincide. If the invention has q that is not only strictly positive

but sufficiently large, then the formula for EML would need to be modified to account for the fact that

firms may choose to file for patent protection at t
comm

rather than t
invent

.11 In this case, the period of

monopoly protection runs from t
comm

to t
comm

+ t
patent

, but the firm enjoys a successful, patent-protected

10The modified formula becomes EML = p
⇣P

t

patent

t

comm

(��)t + (1� ◆)
P1

t

patent

(��)t
⌘
.

11The specific condition to check to see whether firms prefer to patent at t
invent

or t
comm

is which is larger of p
P

t

patent

t

comm

(��)t

or pq
P

t

comm

+t

patent

t

comm

(��)t. Clearly, the former is larger for sufficiently small q (as is the case in pharmaceuticals) and the
latter is larger for sufficiently large q.
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invention with probability of just pq rather than p.

2.3 Private and social incentives to invest

A profit-maximizing firm attempts to commercialize an invention if and only if the expected profits exceed

the costs:

Private Investment Occurs () EML · ⇡ � c. (3)

In words, the firm can expect to enjoy monopoly profits of ⇡ for EML years. If EML ·⇡ exceeds the costs

of commercialization c, it is optimal to commercialize.

Suppose instead that society owned the firm. If commercialization is successful, the social planner will

price at marginal cost, and hence create social welfare of v per year. Hence the social planner attempts to

commercialize the invention if and only if expected social welfare, if the good is priced at marginal cost,

exceeds the costs of commercialization:

Investment is Socially Optimal () ETL · v � c. (4)

Notice that ETL � EML and v � ⇡ by definition. By construction, this ignores issues such as

business stealing and R&D races which - although important - are not the focus of our analysis.12 Thus,

in our framework, anytime a private firm would choose to commercialize an invention, so too would the

social planner. The projects that the private firm does not pursue, but that society would pursue if it

owned the firm, are those where:

Private and Social Investment Di↵er () EML · ⇡
c

 1  ETL · v
c

. (5)

In words, private and social investment decisions differ when the social return is positive but the private

return is negative. The private market can under-provide R&D if either EML

ETL

< 1 or ⇡

v

< 1.

2.4 Distortions in the level and composition of R&D

Our model yields distortions, relative to the social optimum, in both the level and composition of com-

mercialization activity. By distortion in level, we mean simply that fewer inventions are commercialized

by private firms than would be the case if the social planner made commercialization decisions. This is a

standard result. By distortion in composition, we mean that the private market may choose to commer-

cialize A but not B, while a social planner would prefer to commercialize B over A. That is, the private
12Bloom, Schankerman and Van Reenen (2013) provide a recent analysis estimating the magnitude of business stealing.
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sector not only pursues too little R&D relative to the social optimum, but also chooses the wrong projects

relative to what the social planner would choose. We state this formally as follows:13

Proposition 1. The private firm’s commercialization activity differs from the social optimum in both the

level and the composition:

1. (distortion in levels) Commercialization activity is lower than socially optimal, unless (a) patent

terms are infinite (i.e., t
patent

= 1 and hence EML = ETL); and (b) monopolists capture full

social surplus (i.e., ⇡ = v).

2. (distortion in composition) For two inventions, A and B, it is possible that the expected social return

(ETL · v/c) to pursuing invention A exceeds that of invention B, yet invention A is not pursued

while invention B is. For this to be the case, at least one of the following must hold:14

(a) ⇡

B

v

B

> ⇡

A

v

A

, i.e., monopolists capture more profit as a proportion of potential social value from

invention B than from invention A.

(b) EML

B

ETL

B

> EML

A

ETL

A

, i.e., a larger proportion of the total life of the invention is spent in the

monopoly state for invention B than for invention A.

As noted above, Part 1 of Proposition 1 is a standard result, which indicates that the private sector

pursues too little inventive activity relative to the first best. Part 2 of Proposition 1 indicates that

distortions in composition can arise from differences across inventions in either ⇡

v

or EML

ETL

.

An invention’s profitability to social value ratio ⇡

v

depends on the monopolist’s ability to capture the

value its invention creates.15 One extreme case is if the monopolist can perfectly price discriminate, in

which case ⇡

v

= 1. The other extreme case is inventions that are non-excludable, in which case ⇡

v

= 0. An

example of the latter is a study on non-excludable forms of disease prevention: e.g., a profit-maximizing

firm would never conduct an expensive clinical trial to test whether a particular pattern of cardiovascular

exercise reduces the risk of heart disease, because knowledge that a specific pattern of exercise reduces

the risk of heart disease is non-excludable.

An invention’s monopoly-life to total-life ratio, EML

ETL

, corresponds to the proportion of an invention’s

expected total life that is protected under patent. It is straightforward to show that EML

ETL

is decreasing in
13Proofs are presented in Appendix A.
14We use subscripts A and B to denote the project-specific parameters associated with these specific inventions (e.g., ⇡

A

is the monopoly profits associated with successful commercialization of invention A).
15Past authors have estimated that on the whole, pharmaceutical firms appropriate only a small share of the social value of

their innovations - generally between 2-20 percent (Philipson and Jena 2006; Lakdawalla et al. 2010; Lindgren and Jonsson
2012). Nordhaus (2004) estimates that this general conclusion holds outside of the pharmaceutical industry as well, arguing
that only a minuscule fraction of the social returns from technological advances over the 1948-2001 period was captured by
producers.
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commercialization lag, at an increasing rate. To see this, simply write out EML

ETL

for the case t
comm

 t
patent

:

EML

ETL
=

(��)

t

comm�(��)

t

patent

1�(��)

(��)

t

comm

1�(��)

= 1� (��)tpatent

�t

comm . (6)

Proposition 2. Comparative statics of an invention’s proportion of monopoly life to total life, EML

ETL

, on

its commercialization lag, t
comm

:

1. @

EML

ETL

@t

comm

< 0 if t
comm

 t
patent

2. @

2 EML

ETL

@t

2
comm

< 0 if t
comm

 t
patent

3. EML

ETL

= 0 if t
comm

� t
patent

Proposition 2 is intuitive: as commercialization lag increases, the proportion of an invention’s total

life spent under monopoly protection decreases. The rate of decrease is increasing in the lag (part (2)),

until, if the lag is so long that there is no patent protection remaining, EML

ETL

is zero (part (3)). That is,

if the commercialization lag is sufficiently long, then the patent system provides zero incentive for private

commercialization activities.

Notice that if the patent clock started at commercialization rather than invention, so t
patent

� t
comm

was constant across inventions, then commercialization lag would no longer affect EML

ETL

. (See Proposition 4

below for a formal statement). Commercialization lag reduces both EML and ETL: both the monopolist

and the social planner prefer, other things equal, for an invention to reach market quickly. But, under this

alternative patent design, commercialization lag reduces EML and ETL at the same rate. For this reason,

we refer to the comparative static of EML

ETL

on commercialization lag as the fixed patent term distortion.

The following proposition states necessary conditions for the fixed patent term distortion to arise:

Proposition 3. The fixed patent term distortion arises if the following conditions are met:

1. Commercialization lag t
comm

varies across inventions

2. Firms choose to patent at t
invent

rather than t
comm

: q = 0 or sufficiently small

3. Firms earn profits while their inventions are commercialized and protected by patent: ⇡ > 0

4. The invention is at least partially imitable once patent protection expires: ◆ > 0

5. Obsolescence risk is sufficiently low that inventions remain useful after patent expiration with positive

probability: � > 0
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The examples from the introduction are helpful in illustrating this distortion in the composition of

R&D. A vaccine administered to men at age 20 which prevented prostate cancer would likely have a

high social value v (given the high morbidity and mortality burden of prostate cancer), but would have a

low (or zero) EML

ETL

ratio because of the long required clinical trials. In contrast, a drug administered to

late-stage prostate cancer patients which extended life from, say, 6 months to 8 months would likely have

a lower social value v, but a high EML

ETL

ratio because of the short required clinical trials. In this case, the

bias induced by the fixed patent term distortion - generated by the difference in EML

ETL

ratios - would be

reinforced by differences in ⇡

v

.

2.5 Patent design and policy levers

Our empirical work will provide support for the idea that fixed patent terms distort R&D. Given that

evidence, in this subsection we discuss the innovation and social welfare consequences of three policy

interventions: a patent design change that would start the patent clock at commercialization, a policy

change that would allow firms to rely on surrogate (non-mortality) endpoints in clinical trials, and targeted

R&D subsidies. Some readers may prefer to skip this section on a first reading, returning to our analysis

of policy responses after reading the empirical analysis.

2.5.1 Patent design

We have seen that commercialization lag distorts R&D under the current fixed-term patent system: in

the extreme, if t
comm

� t
patent

, then the patent system provides zero incentive to private firms. Our next

result shows that starting the patent clock at commercialization, rather than at invention, eliminates this

distortion:

Proposition 4. If the patent clock starts at commercialization, EML

ETL

is independent of commercialization

lag, t
comm

.

Thus starting the patent clock at commercialization, rather than at invention, eliminates one of the

sources of distortion in composition of R&D. Note of course that commercialization lag still reduces

incentives to invest: other things equal, firms prefer inventions that come to market quickly over inventions

that come to market slowly. The important thing is that, if the patent clock starts at commercialization,

then commercialization lag reduces both private incentives and social incentives at the same rate. That is,

both EML and ETL decrease, but the ratio EML

ETL

, and hence the possibility of distortion, stays constant.

If we make some additional assumptions on the distribution of invention possibilities, we can make

a stronger claim, which is that starting the patent clock at commercialization strictly increases social
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welfare. In fact, the result says we should go further: social welfare is maximized by awarding more

post-commercialization patent life to inventions with longer commercialization lag than inventions with

shorter commercialization lag, in contrast to the current system which awards inventions with longer

commercialization lag less post-commercialization patent life than inventions with shorter lag.

Proposition 5. Make the following assumptions about the distribution of invention parameters: the expec-

tation of costs c conditional on commercialization lag t
comm

is weakly increasing in t
comm

; the conditional

expectations of the social-to-private value ratios v

⇡

and v

monop

⇡

are each weakly increasing in t
comm

; the

density of inventions on the extensive margin, i.e., the expected number of new inventions elicited by

a marginal increase in t
patent

, is uniform; and c, (⇡, v, vmonop) and (�, �, p) are mutually independent.

Suppose that private firms make commercialization decisions according to equation (3). Suppose that the

length of the patent award can be conditioned on t
comm

but not on the other invention parameters. Then

socially optimal patent policy requires that the number of years of post-commercialization patent protection

increases monotonically with t
comm

, whereas under the fixed-term patent system the number of years of

post-commercialization patent protection decreases monotonically with t
comm

.

The intuition for this result, which was conjectured informally in Roin (2010), is as follows. Fix a

level of t
comm

, and consider an increase in post-commercialization patent life for inventions with this

commercialization lag. This increase in patent protection has benefits and costs. The benefit is that

more inventions with commercialization lag t
comm

will be commercialized at the margin; technically, we

have increased EML and hence made it more likely that equation (3) obtains. The cost is that, for

inframarginal inventions that would have been pursued absent the increase in patent protection, there is

more deadweight loss, for the standard reason that social value under monopoly is smaller than social

value under perfect competition from generic entrants. The proof makes two key observations. First,

the deadweight loss costs on the intensive margin are strictly decreasing with t
comm

– both because the

costs are pushed out further into the future and because the set of invention parameters for which private

firms choose to commercialize is shrinking. Second, the benefits at the extensive margin are actually

weakly increasing with t
comm

: for a private firm to be willing to commercialize an invention with higher

t
comm

, it must be higher quality in the sense of higher private value ⇡, which in turn implies higher social

value vmonop and v.16 Intuitively, when t
comm

is large, the inventions at the margin are especially worth

encouraging, and the cost of doing so is comparatively low. Hence, the larger is t
comm

, the larger should

be post-commercialization patent life.
16It is not necessary for the result that benefits at the extensive margin are weakly increasing with t

comm

, only that they
do not decrease too quickly (i.e., faster than do the deadweight loss costs on the intensive margin). For this reason, several
of the assumptions in the proposition can be slightly relaxed.
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We wish to make four further remarks concerning this result. First, conditioning the length of patent

award on t
comm

should be feasible in practice, at least in the case of pharmaceuticals, since completion of

FDA trials is intrinsically an observable event. Second, we have assumed that expected commercialization

costs c and the conditional expectations of the social to private value ratios v

monop

⇡

and v

⇡

are weakly

increasing with commercialization lag. It is worth noting that in fact we might reasonably expect these

parameters to be strictly increasing with commercialization lag. Longer FDA clinical trials are likely more

expensive, and the types of inventions that take longer to reach the market (e.g., treatments of early-stage

disease and disease prevention) may have higher social to private value ratios than do treatments for late-

stage disease. If either of these is the case, then the benefits at the extensive margin are strictly rather

than weakly increasing with t
comm

, which strengthens the result. Third, the 1984 Hatch-Waxman Act

(Public Law Number 98-417, 1984) contains a provision granting some qualifying firms a partial extension

of patent life based on the time that the drug spent in clinical trials. Specifically, the act awards qualifying

firms an additional half-year of patent life for every year spent in clinical trials, up to a maximum of 5 years

not exceeding 14 total years. Our result says that the Hatch-Waxman extension is directionally correct,

but that optimal policy would go further. Finally, we are here abstracting away from strategic responses

that could be “unintended consequences” from such a change in patent policy.17 In practice, awarding

FDA-granted exclusivity periods that run from the date of FDA approval would likely accomplish the

same goal, be administratively simpler to implement, and avoid unintended problems that could arise

with revising the patent system.18

Our next result considers a more limited set of patent-design instruments than is allowed for by

Proposition 5 and shows that there is still scope for improvement.

Proposition 6. Suppose that the length of the patent term must be fixed, but that the patent clock can

start either at invention or commercialization. Make the same assumptions regarding the distribution of

invention parameters as in Proposition 5. Given any patent term that runs from the date of invention, there

exists a patent term that runs from the date of commercialization that strictly increases social welfare. In

particular, the optimal patent term that runs from the date of commercialization is superior to the optimal

patent term running from the date of invention.

Proposition 6 is useful for informing patent policy if it is possible to start the patent clock at com-

mercialization, but difficult to condition the length of the patent award on the precise amount of time
17More generally, we here restrict our attention to policy mechanisms that work within the existing patent system. More

sophisticated policy mechanisms - for instance in conjunction with the ideas in Kremer (1998) and Weyl and Tirole (2012)
- could also be used.

18FDA exclusivity precludes the approval of other drugs with the same active moiety, and is currently granted to new
drug applications (three years for new indications; five years for new molecular entities); to orphan drugs (seven years); and
to pediatric approvals (six months).
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between invention and commercialization. As with the optimal policy considered above in Proposition

5, this more circumscribed policy proposal could be implemented via FDA-granted exclusivity periods

as opposed to a restructuring of the patent system. A recent policy in the spirit of this result is the

2010 Patient Protection and Affordable Care Act (Public Law Number 111-148, 2010), which contains a

provision granting some qualifying drugs (specifically, biologic drugs) a 12-year exclusivity period running

from the date of FDA approval, which runs concurrently with any remaining patent terms. Proposition 6

supports extending this type of post-approval exclusivity period to all drug approvals (but note that our

analysis does not specify the optimal length of such an exclusivity period).

2.5.2 Policy lever: Surrogate endpoints

A major factor determining the duration of a clinical trial is the amount of time needed to observe

statistically significant differences in treatment outcomes among enrolled patients - known as the “follow-

up period.” The length of the follow-up period largely depends on two factors: the natural progression of

the disease, and the clinical trial endpoints required by government regulators.

Prior to marketing a new drug, firms must submit clinical trial results to the US Food and Drug

Administration (FDA) documenting that their product meets a set of safety and efficacy standards. Over

time, the FDA’s interpretation of which clinical trial endpoints can be used to support claims that a drug

is effective have varied (see, e.g., Johnson, Williams and Pazdur (2003)). Conventionally, clinical trials

evaluate whether a candidate product provides a clinical benefit to mortality - be it overall survival or

a closely related measure such as “disease free survival,” which measures time until cancer recurrence.

However, in recent years there has been increased interest in using surrogate endpoints as a substitute

for the standard clinical endpoints in a drug trial. In the case of hypertension, for example, lower blood

pressure is accepted as a surrogate for the clinical endpoint of preventing cardiovascular complications

(Lee et al. 2006). As we discuss in Section 5.1, blood cell counts and related measures have been accepted

surrogate endpoints for hematologic malignancies (leukemias and lymphomas).

Surrogate endpoints have the potential to dramatically reduce the length of clinical trials necessary

to test whether a drug is effective. However, surrogate endpoints have also been extremely controversial.

As described by Fleming (2005), although treatment effects on surrogate endpoints clearly establish some

form of biological activity, changes in surrogate endpoints may not correlate with changes in the clinical

endpoint of interest. As an example, he discusses prostate specific antigen (PSA) levels: although PSA

levels are correlated with the extent of prostate cancer, the PSA level itself is not a mechanism through

which prostate cancer progresses, and thus it is unknown whether a treatment that reduced PSA levels
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in prostate cancer patients would generate improvements in survival.19 Reflecting this type of concern,

most cancers use surrogate endpoints only on a limited, somewhat ad hoc basis.20

In the context of our model, surrogate endpoints can be conceptualized as strictly reducing commer-

cialization lag t
comm

: firms can always choose to use survival as an endpoint, and we assume that the

surrogate endpoint can be observed strictly earlier than the survival outcome. For simplicity, we analyze

the effect of an “ideal” surrogate endpoint - one that perfectly correlates with the true clinical outcome of

interest. This assumption allows us to make the following simple point.

Proposition 7. Allowing surrogate endpoints:

1. Strictly increases commercialization activity: some inventions that would not otherwise have been

commercialized now are, and all inventions that would be commercialized even without surrogate

endpoints still are.

2. Strictly increases firm profits and social welfare.

3. Let t̂
comm

denote commercialization lag, in the absence of a surrogate endpoint, based on the time

required to show an effect on patient mortality. Let t
comm

< t̂
comm

denote the commercialization

lag if surrogate endpoints are allowed. If t
comm

is orthogonal to t̂
comm

- that is, if the time required

to show impacts on the surrogate endpoint is orthogonal to the time required to show impacts on

mortality - then allowing surrogate endpoints eliminates the fixed patent term distortion associated

with t̂
comm

.

Clearly this proposition is based on a strong assumption of the existence of an ideal surrogate endpoint.

Our objective here is simply to show that there would be social welfare benefits from the scientific discovery,

validation, and allowance of valid surrogate endpoints.21

19A non-cancer example of the controversy around surrogate endpoints arose recently in the context of treatments for
early-stage Alzheimer’s disease. In a 2013 editorial in the New England Journal of Medicine, two FDA officials discussed the
possibility of accepting new types of surrogate endpoints in clinical trials of treatments for early-stage Alzheimer’s disease
(Kozauer and Katz, 2013) - a proposal that was sharply criticized by the editorial board of the New York Times (Editorial
Board, 2013), among others.

20As discussed by US Food and Drug Administration (2007) and Johnson, Williams and Pazdur (2003), since 1992 the
FDA’s accelerated approval regulations have allowed for the following: for diseases that are serious or life-threatening, a drug
can be FDA approved based on a surrogate endpoint that is reasonably likely to predict clinical benefit but is not established
at a level that would support regular approval, under the condition that the applicant is required to perform a post-marketing
study to demonstrate that treatment with the drug is indeed supported with clinical benefit. If the subsequent trials fail to
demonstrate clinical benefit, or if the applicant does not conduct the required studies, the FDA can act quickly to remove
the drug from the market.

21The use of invalid surrogate endpoints could increase R&D investments but not generate any corresponding gains in
survival. In the specific empirical context we analyze in Section 5.1, we will document evidence that surrogate endpoints
for hematologic cancers appear to have increased R&D investments, and that this increase in R&D investments appears to
have translated into real improvements in patient health.
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2.5.3 Policy Lever: Targeted R&D subsidies

In principle, targeted R&D subsidies can improve social welfare. The basic logic is simple and standard.

Take a particular invention that is not pursued by the private sector, but that would be pursued in the

first-best world, i.e.,

EML · ⇡ < c < ETL · v. (7)

Suppose that the deadweight loss of taxation is ⌧ per dollar spent. Then, so long as the magnitude of the

potential social gain is large enough relative to the magnitude of the private loss – that is, the magnitude

of the first inequality in (7) is small relative to the magnitude of the second inequality in (7) – there is a

potential for welfare-increasing intervention. The formal condition for the existence of a socially beneficial

R&D subsidy is:

EML · ⇡ < c and c+ ⌧(c� EML · ⇡) < EML · vmonop + (ETL� EML) · v. (8)

While condition (8) can obtain for inventions with any commercialization lag, it is especially likely to

obtain for inventions with large commercialization lags. This is because such inventions spend a larger

proportion of their useful life off-patent – the ratio ETL�EML

ETL

is increasing in t
comm

– so it is more likely

that on-patent life is not sufficient to incentivize private investment, while at the same time off-patent life

is of sufficient importance that the value of public investment overcomes the deadweight loss of taxation.

We can formalize this logic as follows.

Proposition 8. Make the same assumptions regarding the distribution of invention parameters as in

Proposition 5. Suppose that private firms make commercialization decisions according to whether or not

EML · ⇡ + s � c, where s is an amount of government subsidy. Suppose that government R&D subsidies

can be conditioned on t
comm

but not on the other invention parameters. Then, for any target level of total

subsidy expenditures, socially optimal subsidy policy requires that subsidies are strictly increasing in t
comm

.

The intuition for the proof of this result is similar to that for Proposition 5 on optimal patent length:

the higher is t
comm

, the higher is the quality of the marginally commercialized invention, and the smaller

is the cost from needlessly subsidizing inframarginal inventions. As a policy matter, the most practical

way to condition subsidies on t
comm

might be to target subsidies at R&D that relates to treatment of

early-stage disease and to disease prevention.
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2.6 Empirical relevance of the model to the pharmaceutical industry

The model clarifies that the fixed patent term distortion is unlikely to arise in many industries, as a series

of conditions are required in order for this distortion to arise. For example, in an industry with high rates

of obsolescence risk where products become irrelevant long before patent expiration, we would expect

this distortion to be irrelevant. In this section, we provide some context on why the conditions listed in

Proposition 3 are likely satisfied in the case of the pharmaceutical industry.

First, the innovation process must involve a time lag between invention and commercialization. Phar-

maceutical firms face commercialization lags due to the FDA-required clinical trials process. The prostate

cancer clinical trials discussed in the introduction illustrate why we would expect commercialization lags

to be longer for clinical trials enrolling patients with longer expected survival times: because clinical trials

must generally show evidence that treatments improve mortality-related outcomes, trials tend to be longer

when enrolling patients with longer survival times. In Appendix A.9, we outline a power calculation of

the type used to guide the design of clinical trials in order to fix ideas on this point.

Second, firms must face a risk of losing the ability to patent if they wait until commercialization to file.

A variety of sources confirm that pharmaceutical firms file patent applications as early as possible (Galli

and Faller, 2003; Schreiner and Doody, 2006; Wegner and Maebius, 2001). Delaying risks a competitor

patenting first, or subsequent disclosures undermining the drug’s novelty or non-obviousness for purposes

of patentability (Thomas, 2007; Patrick, 2005; Zanders, 2011).22 In practice, firms almost always have

possession of the core patents over their drugs before entering clinical trials (Mossinghoff, 1999; Patrick,

2005; Thomas, 2007).23

Third, patents must be an effective source of market power. While the importance of patents has

been debated in some industries, at least three sources of evidence suggest that patents play a key role in

motivating innovation in the pharmaceutical industry. First, the pharmaceutical industry is one of the few

industries in which executives report in interviews and surveys that patents are essential for recovering

their R&D investments (Mansfield, Schwartz and Wagner 1981; Mansfield 1986; Levin et al. 1987; Cohen,

Nelson and Walsh 2000). Second, the costs of drug development are estimated to be very high relative to

the costs of producing generic copies. Although estimates of the cost of drug development vary, studies

22Zanders (2011), for example, argues: “A question that is often raised during my courses is ’why don’t companies wait as

long as possible before patenting?’ This is tempting, but given the fluid nature of employment in the industry and the general

leakiness of information, this would be tantamount to commercial suicide.”

23Although the law is not settled, FDA clinical trials most likely constitute a public disclosure of the drug; see SmithKline
Beecham Corp. v. Apotex Corp., 365 F.3d 1306, 1318 (Fed. Cir. 2004), opinion vacated and superseded, 403 F.3d 1331
(Fed. Cir. 2005). The SmithKline decision held that a drug’s use in clinical trials puts it in the public domain, but since
that opinion was vacated and the court decided the case on other grounds, the state of the law here is unclear. Once an
invention is in the public domain, the inventing firm must file for patent protection within one year of public disclosure else
they lose the right to patent (35 U.S.C. § 102).
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have estimated that the average capitalized costs of bringing new drugs to market are on the order of $800

million (DiMasi, Hansen and Grabowski 2003, Adams and Brantner 2006). While imitation costs vary,

traditional (small molecule) drugs are relatively inexpensive to copy once the relevant patents expire - on

the order of $1-5 million per drug (Wroblewski et al. 2009). Third, the standard investment models used

by pharmaceutical firms suggest they pay close attention to the effective patent length of their products

(Mayer Brown 2009).

Fourth, the technology must be imitable once patents expire. In the pharmaceutical industry, the

structure of generic entry implies that the time window during which firms can generate revenues is largely

defined by the duration of their patent-provided period of market exclusivity: once generic manufacturers

enter the market, pharmaceutical firms must compete with products that are practically identical to their

own. Generic manufacturers are usually poised to enter the market as soon as patents expire (Grabowski

and Kyle 2007; Hemphill and Sampat 2011), and pharmaceutical firms are estimated to lose about 70%

of their sales within the first six months of generic competition (Datamonitor Group 2011).

Finally, the technology must have a long “total useful life” relative to the length of the patent

term. Across industries, many inventions become commercially irrelevant long before their patents expire

(Schankerman and Pakes 1986). However, this is generally not the case in the pharmaceutical industry,

as most drugs generate significant sales revenues near the end of their patent term (Grabowski and Kyle

2007) and are still in use long after their initial FDA approval date.

3 Data

Our empirical work focuses on cancer R&D for three reasons. First, unlike for many diseases, high-quality

clinical data exists for cancer patients which accurately tracks patient-level characteristics such as survival

time - a key variable needed for our analysis. Second, the existence of a standardized classification system

for cancer - namely, standardized cancer organs of origin (such as breast and lung) and stages of cancers

at the time of diagnosis (such as localized and metastatic) - facilitates a relatively clean match between

aggregated patient-level clinical data and information on clinical trial investments relevant to different

groups of patients. Cancer drug development tends to be specific to the organ and stage of the primary

tumor: for example, Genentech’s drug Bevacizumab was approved by the FDA in 2004 for the treatment

of patients with metastatic carcinoma of the colon and rectum.24 Cancer registry data records the organ

and stage of the primary tumor at the time of diagnosis, allowing us to estimate the characteristics of

24This overly-simplified description glosses over several important issues, including off-label use of cancer drugs, which we
discuss more in Appendix B.
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patients (such as survival times) relevant to each cancer-stage. This mapping is of course imperfect:

for example, the cancer registry data lacks the granularity required to precisely distinguish between

hormone-receptor positive and hormone-receptor negative breast cancer patients. However, the level of

clinical detail available in cancer registry data is remarkably complete relative to data available for other

diseases. Finally, as discussed in the introduction, cancer is of interest from a substantive perspective

given its high morbidity and mortality burden.

Sections 3.1, 3.2, and 3.3 describe our datasets, and Section 3.4 presents some basic summary statistics.

Appendix B describes our data construction in more detail.

3.1 SEER cancer registry data

The clinical data we use is a standard patient-level research database called the Surveillance, Epidemiology,

and End Results (SEER) data, compiled by the National Cancer Institute (NCI) and available from 1973-

2009. SEER is considered the authoritative source of information on cancer incidence and survival in the

US. The key variables we use for our analysis are the following:

• Cancer and stage of patients. Physicians diagnose cancer by the organ of origin and by stages that

correspond to the extent of the disease’s spread at the the time of initial diagnosis. We base our

data construction on the standard SEER cancer classification system (including 80 cancer types)

and the stage classification system that is most consistently available in the SEER data: localized,

regional, and metastatic (listed in order of increasing extent of disease).25 In addition to constructing

cancer-stage-specific survival times, we also use information on the cancer and stage of diagnosis to

construct a count of the number of patients diagnosed as a proxy for market size.

• Survival time. SEER is administratively linked to follow-up mortality data from the National Center

for Health Statistics (NCHS) - in our data, as of 31 December 2009. Our primary measure of survival

time is five-year survival, defined over all uncensored patient cohorts (1973-2004). We also use an

early cohort of patients (1973-1983) with minimal censoring in our construction of the life lost

measure described below.
25For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html. We

exclude in situ cancers from our analysis given that this category is relevant for only a few cancers (breast, cervical, and
melanoma), but our results are similar if these cancers are included. Two other cancer categories are important but not
monitored in the patient-level cancer registry data: remission and recurrence. A cancer is said to recur if it returns after
being undetectable for a period of time, and the time during which the cancer is undetectable is referred to as remission.
In general, recurrence is associated with poor survival prospects, but given that the cancer registry data do not monitor
remission or recurrence, it is not possible to empirically assign a survival time to these groups of patients. Reflecting this
data limitation, we do not examine trials enrolling only remission or recurrence cases in our analysis. As shown in Figure
1(b), in situ and recurrent cancers fit our model well - with excellent (poor) survival prospects corresponding to few (many)
clinical trials, respectively.

http://training.seer.cancer.gov/ss2k/staging/review.html
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• Basic patient demographics at the time of diagnosis. We use the year of diagnosis together with

information on patient sex and age at diagnosis to merge on year-age-gender specific life expectancy

data from the NCHS. We combine this data on average life expectancy (in the absence of cancer)

with our measure of observed survival time for the 1973-1983 cohort in order to estimate the life

lost due to cancer for each patient.

3.2 National Cancer Institute clinical trials registry

To measure R&D investments in cancer treatments, we construct a new clinical trials dataset drawing

on data from the US National Cancer Institute (NCI)’s Physician Data Query Cancer Clinical Trials

Registry.26 The NCI registry was established in 1971, and claims to be the most comprehensive cancer

clinical trials registry. The intended purpose of the registry is to allow cancer patients and physicians

to search for clinical trials currently accepting participants, and to allow them to access information and

results from closed trials.

The NCI registry was not developed as a research database and - to the best of our knowledge - has not

previously been used as a data source by other researchers. The key advantage of the NCI registry for our

analysis - relative to other clinical trials databases such as the NDA Pipeline data or the Pharmaprojects

data - is the fact that the NCI registry explicitly lists which groups of patients (as defined by cancer type

and stage at diagnosis) are eligible to participate in each clinical trial. This feature enables us to construct

a measure of the number of clinical trials in which different groups of patients (as defined by cancer type

and stage) are eligible to enroll, providing a metric of firms’ willingness to investigate candidate drugs on

different groups of patients.

The NCI registry includes a handful of clinical trials with dates prior to 1973; we focus on trials from

1973 forward for consistency with the SEER registry data (which starts in 1973). For a subset of clinical

trials in our data, we observe whether the clinical trial was publicly sponsored or privately sponsored.

3.3 FDA drug approvals data

While our main analysis focuses on the NCI clinical trials data, we also examine a data set of the 71 FDA

approved oncology drugs from 1990-2002 from Johnson, Williams and Pazdur (2003). For 39 of these 71

drug approvals, we were able to hand-collect data on whether a surrogate endpoint was used, as well as

the cancer and stage for which the drug was approved, from the Drugs@FDA database.27

26Clinical trials were used as a measure of R&D investments in Finkelstein (2004).
27Thirty-two of the approvals in the Johnson, Williams and Pazdur (2003) list had no information available in the

Drugs@FDA database on the indication for which the drug was approved, and we are not aware of an alternative source
for this data. Given the coarse stage information that is included in the indication descriptions, we code stage for the drug
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3.4 Summary statistics for cancer-stage level data

We aggregate the patient-level cancer registry data and cancer clinical trials data into cancer-stage level

observations. Our sample is constructed based on the 80 cancer types underlying the SEER site recodes,

and the three non-in situ stages underlying the SEER historic stage A variable - localized, regional,

and metastatic. After accounting for the details of how staging varies across cancers, our benchmark

cancer-stage sample includes 201 observations: 60 cancers appear for all three stages (localized, regional,

distant; 180 observations); prostate cancer is coded by SEER into two stages (localized/regional, distant;

2 observations); and 19 cancers are unstaged by SEER and hence only appear as one observation (19

observations).

Table 1 presents some basic summary statistics on our cancer-stage level data. Between 1973-2011,

an average cancer-stage had roughly 1,000 clinical trials, but this average masks tremendous variation -

ranging from a minimum of around 200 to a maximum of over 7,000. Between 1990-2002, the median

cancer-stage had no drugs approved, ranging to a maximum of 7. Using the number of patients diagnosed

with a given cancer-stage as a rough measure of market size, on average a cancer-stage has around 12,000

diagnoses in SEER catchment areas between 1973-2009, ranging from 100 to over 250,000. On average,

the five-year survival rate (defined for cohorts diagnosed between 1973-2004, all uncensored cohorts) is 38

percent, but ranges from almost 0 to 94 percent. Finally, among trials reporting sponsorship data, around

75 percent report being publicly financed. Given that sponsorship data is missing for approximately half

of our sample, it is difficult to know whether this is an accurate picture, or whether sponsorship is more

likely to be reported for publicly funded trials relative to privately financed trials. While such systematic

under-reporting of private sponsorship data could bias measurement of the level or share of trials that are

privately financed, we do not expect such under-reporting to vary systematically with our survival time

measure - in which case our empirical tests using sponsorship measures should still be valid.

4 Empirical estimates

4.1 Analysis by stage

Figure 1(a) plots two measures of clinical trial activity for each stage of cancer from 1973-2011 against the

five-year survival rate of patients diagnosed with that cancer stage from 1973-2004. Whereas metastatic

cancer patients have a five-year survival rate of around 10 percent, the five-year survival rate for regional

patients is around 50 percent, and for localized patients is about 70 percent. The left-hand-side axis plots

approval data as “early,” “late,” or “not specified” (rather than localized, regional, and distant). In our sample of 39 approvals,
four are coded as early stage, 25 are coded as late stage, and 10 are coded as not specified.
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the corresponding number of clinical trials enrolling patients of each stage: metastatic cancer patients

were the focus of nearly 12,000 clinical trials in our data, whereas regional cancer patients were the focus

of around 10,000, and localized patients around 6,000.

Dating back at least to Schmookler (1966), economists have hypothesized that market size would be

an important determinant of the level of R&D investments. Several recent papers have provided evidence

for this idea in the context of the pharmaceutical industry (Acemoglu and Linn 2004; Finkelstein 2004;

Dubois et al. 2012; Trusheim and Berndt 2012). In our setting, a rough proxy for market size is the number

of life-years lost from cancer. The right-hand-side axis plots the number of clinical trials enrolling patients

of each stage, divided by the number of life-years lost from that cancer-stage as a rough adjustment for

market size.28 This adjustment does little to change the basic pattern.

Figure 1(b) adds clinical trial counts for three other categories of disease for which the five-year survival

rate is difficult to define: prevention trials, in situ cancers, and recurrent cancers. The bars are roughly

positioned in order of increasing survival rates, for comparability with Figure 1(a). Very few clinical trials

aim to prevent cancer (less than 500) or to treat in situ cancers (less than 200). In contrast, recurrent

cancers have more trials than any other stage of disease (over 17,000).

4.2 Analysis by cancer-stage: Full sample

Figure 2 illustrates the relationship between our two key variables of interest in the full sample of cancer-

stage observations: the five-year survival rate, and the number of clinical trials enrolling patients of that

cancer-stage.29 For cancer-stages with low survival rates, there is tremendous variation in the number

of clinical trials, with some cancer-stages having a very high number of trials. In contrast, for cancer-

stages with high survival rates, the distribution of clinical trial counts tends to be more compressed, and

smaller in magnitude. The combination of these two patterns generates the downward-sloping relationship

between the survival rate and R&D investments.

Table 2 formalizes this relationship between clinical trial activity and the five-year survival rate in a

regression framework. For cancer-stage observation cs, we estimate the following:

28As described in Section 3, life-years lost is measured as age-gender-year specific life expectancy (in the absence of cancer)
in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage between
1973-1983 (to minimize censoring) multiplied times market size.

29To give a visual sense of the data for a few major cancers, Appendix Figure C.1 plots the relationship between the five-
year survival rate and clinical trial activity for the “big four” cancers: breast, colon, lung, and prostate. Appendix Figure
C.1(a) plots the number of clinical trials enrolling patients of each cancer-stage, which decline with increases in the five-year
survival rates. The points are labeled with the relevant cancer and stage, which enables a visual analysis of this relationship
either within cancers (e.g. metastatic versus localized breast cancer) or within stages (e.g. localized lung cancer versus
localized colon cancers). Appendix Figure C.1(b) adjusts the clinical trial count by the number of patients diagnosed as a
rough adjustment for market size. Here, the downward-sloping relationship between the survival rate and R&D investments
is much more clearly visible.



24

Y
cs

= ↵+ �S
cs

+ �0X
cs

+ "
cs

. (9)

The number of clinical trials Y for the cancer-stage is the outcome variable, and the coefficient on the

survival rate variable S is the main estimate of interest. We investigate the robustness of this rela-

tionship by conditioning on various covariates X, described below. Reflecting the count nature of the

clinical trials outcome, we show estimates from quasi-maximum likelihood Poisson models. We report

heteroskedasticity-robust standard errors clustered at the cancer level.

Column (1) of Table 2 reports the raw correlation between the five-year survival rate and the number

of clinical trials. The estimated coefficient implies that a ten percentage point increase in the five-year

survival rate is associated with a 8.7 percent decrease in R&D investments. Column (2) adds a rough

market size control (measuring the number of patients diagnosed with that cancer-stage), which does not

substantively change the estimate of interest. This market size variable is clearly an imperfect measure of

demand. As one attempt to refine this measure, we construct a measure of life lost at the individual level -

measured as age-gender-year specific life expectancy (in the absence of cancer) in the year of diagnosis, less

observed survival time in years. At the individual level, this measure attempts to proxy for willingness

to pay, and summed across all individuals diagnosed with a given cancer-stage it may provide a more

accurate measure of market size. Column (3) shows that the survival time-R&D correlation is similar

if we condition on this alternative measure of market size. In Section 5.1, we investigate the concern of

unobserved heterogeneity in demand more directly. Figure 3 presents the visual analog of these regression

specifications, residualizing the survival rate using our two measures of market size.

In an appendix, we present a number of additional robustness checks. First, we ask whether the survival

time-R&D correlation is similar when estimated within cancers (cancer fixed effects) and within stages

(stage fixed effects). Appendix Table C.1 shows that the magnitude of the survival time-R&D correlation

is quite similar after conditioning on cancer fixed effects, stage fixed effects, or both.30 Second, we ask

whether the survival time-R&D correlation is robust to alternative measures of patient survival time.

Appendix Table C.2 shows that the estimated magnitude is quite similar using the one-year survival rate,

as well as several parameterizations of a “pre-period” survival rate (1973 survival in years, the 1973 one-

year survival rate, and the 1973 five-year survival rate). We focus on the five-year survival rate measured

over a longer time period because we expect the survival rate to be more accurately measured on a larger

sample, but the estimated magnitudes are not statistically distinguishable. Third, we investigate the
30For comparability, we omit the 19 unstaged cancers from the sample in this table since these observations do not identify

the relationship of interest once we include cancer fixed effects and by definition unstaged cancers do not correspond to
localized, regional, or metastatic stage definitions. Appendix Figure C.2 shows residualized scatterplots corresponding to
the regression specifications presented in Appendix Table C.1 on this same sample.
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robustness of the survival time-R&D correlation in various sub-samples of the data in Appendix Table

C.3. The estimated correlation is quite similar, for example, if metastatic cancers are excluded - suggesting

that the observed correlation does not only reflect a high level of research on end-of-life patients. Finally,

Appendix Table C.4 confirms that the survival time-R&D correlation also holds in our sample of approved

drugs.

5 Interpreting the relationship between survival time and R&D

Section 4 documents what is - to the best of our knowledge - a new fact: R&D investments on cancer

treatments are strongly negatively correlated with expected survival time. This fact is consistent with

the fixed patent term distortion, because we observe lower levels of R&D investment on inventions that

require longer commercialization lags. However, by itself this fact is not evidence of inefficiency: two

broad classes of alternative explanations may generate the same qualitative pattern - heterogeneity in

demand, and heterogeneity in the costs of R&D. On demand, while our regression analysis conditioned on

indirect demand measures - such as market size and life-years lost - these variables may not capture the

complex ways in which the survival rate may correlate with demand (see, e.g., Hammitt and Haninger

2010; Philipson et al. 2010). On costs, it could be - for example - that the science of treating cancer-

stages with high survival rates is more difficult, and that observed low R&D investments reflect a paucity

of scientific opportunities. In this section, based on a series of additional empirical analyses we argue

that the observed survival time-R&D correlation is more negative than is consistent with an efficiency

argument based on demand and costs.

Section 5.1 presents our key counterfactual analysis, leveraging variation in surrogate endpoints. While

this variation in surrogate endpoints is directly relevant from a policy perspective, surrogate endpoints

change the length of clinical trials - in turn changing the financial cost of trials - and thus do not offer

a perfectly clean test of the theoretical model. Sections 5.2 and 5.3 present additional quantitative and

qualitative evidence that aims to fill this gap.

5.1 Investigating surrogate endpoints

If heterogeneity in demand for treatments or a paucity of scientific opportunities were driving the survival

time-R&D correlation, the observed correlation should be independent of whether surrogate endpoints

are used. In contrast, our model predicts that surrogate endpoints - by eliminating the fixed patent term

distortion - should make the survival time-R&D correlation less negative (Proposition 7). In this section,

we document that there is not a negative survival time-R&D correlation in the sample of cancers allowed
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to use surrogate endpoints - a fact consistent with the fixed patent term distortion.31

As discussed by the US Food and Drug Administration (2007) and Johnson, Williams and Pazdur

(2003), the most clearly established non-mortality related endpoint is “complete response” for leukemias.

A historical example is helpful in illustrating why this surrogate endpoint has been useful. Mukherjee

(2010) chronicles Sidney Farber’s 1948 discovery of chemotherapy, which was made in the context of

leukemia (Farber et al. 1948). While investigating folic acid deficiencies, Farber hypothesized that folic

acid antagonists could be of value in treating cancer patients - paving the way for the development of

modern chemotherapy drugs. Mukherjee (2010)’s account of Farber’s discovery argues that Farber was

naturally inclined to test folic acid antagonists in the context of leukemia because white blood cell count

monitoring offered an accepted method for testing whether the drug was effective in pushing the disease

into remission. While monitoring technologies have clearly progressed since Farber’s time, remission

criteria in leukemias are still based on the same idea of blood cell counts and related bone marrow measures

- outcomes which are generally agreed to closely correlate with improved survival. In addition to being

used for monitoring, such measures have also been accepted by the FDA as the basis for approval of drug

treatments for hematologic malignancies (leukemias and lymphomas; see Pazdur (2000) and Johnson,

Williams and Pazdur (2003)).32

To investigate the effects of surrogate endpoints on R&D activity, we use both our clinical trials data

and our drug approvals data.33 In the sample of approved drugs, we can confirm that hematological

malignancies are more likely to be approved on the basis of surrogate endpoints: in our data, 92 percent

of drugs approved by the FDA for hematological malignancies were approved on the basis of surrogate

endpoints, relative to 53 percent of non-hematological malignancies.

We use these data to test three predictions of our model that relate to commercialization activity.

First, Part 1 of Proposition 7 predicts that the use of surrogate endpoints should increase commercial-

ization activity. To test this prediction, we ask whether - conditional on the five-year survival rate -

hematological malignancies have a larger number of clinical trials. The estimated coefficient in Column

31Importantly, surrogate endpoints enable shorter trials, so this test does not address the possibility that clinical trial
costs are correlated with the survival rate; we address this possibility in a separate test in Section 5.2.

32Based on our reading of these FDA writings, our understanding is that both scientists and regulators have viewed the
surrogate endpoints used for hematologic cancers as valid and uncontroversial. Although far from definitive, our empirical
evidence in Section 6 is consistent with this view, suggesting that the additional R&D investments induced by the use of
these surrogate endpoints have translated into improved survival gains.

33We use this drug approvals data in part to address a measurement error concern that could arise with our clinical trials
data. Namely, the automated coding of our clinical trials data into cancer types (as detailed in Appendix B) could be less
reliable for hematologic malignancies relative to other forms of cancer if text searches for organ names (“breast,” “prostate,”
etc.) are more accurate than our text searches for different forms of leukemias and lymphomas (the names of which tend to
be more complex). While we aimed for the highest possible accuracy in cleaning the clinical trials data, because of the large
sample size our cleaning of that data must be automated. In contrast, because there are a small number of drug approvals
we can hand-code the cancer types relevant to each drug approval, reducing concerns about measurement error.
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(1) of Panel (A) in Table 3 suggests yes: interpreting the coefficient on this binary independent variable

(� = 0.753) suggests a 112 percent increase in clinical trials for hematological malignancies relative to

non-hematological malignancies ((e��1) ·100 ⇡ 112%). This pattern is robust to the inclusion of controls

for market size (Columns (2) and (3)). This result is consistent with the analysis of Trusheim and Berndt

(2012), who observe that hematological malignancies have a larger number of clinical trials than would

be expected based on their market size.

Second, Part 3 of Proposition 7 predicts that - if survival time is orthogonal to the time required to

show impacts on the surrogate endpoint - then the use of surrogate endpoints should reduce the negative

relationship between survival time and R&D investments (by eliminating the fixed patent term distortion).

Third, in cases where surrogate endpoints do not decrease commercialization lag (i.e., t
comm

= t̂
comm

in

the terminology of Proposition 7), our model implies that surrogate endpoints should not change R&D

incentives. That is, for cancers that have a short commercialization lag even in the absence of using a

surrogate endpoint, the option to use a surrogate endpoint should not change R&D incentives. Empirically,

this means that we expect hematologic and non-hematologic cancers to have similar levels of R&D for

the set of cancers that have short commercialization lags even in the absence of using surrogate endpoints

(that is, for low survival time cancers).

To test these second and third predictions we estimate the following specification, where H
c

is an

indicator for hematological malignancies:
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Panel (B) in Table 3 presents these estimates. In contrast to the negative correlation between the five-

year survival rate and the number of clinical trials for non-hematological malignancies (�), we estimate

a positive coefficient on the interaction term (�) - consistent with the second prediction of our model.34

This estimate is robust to the inclusion of controls for market size (Columns (2) and (3)). This contrast in

survival time-R&D correlations across hematologic and non-hematologic cancers is presented graphically

in Figure 4.35

With respect to the third prediction of our model, we find that the estimated coefficient on the indicator

variable for hematologic cancers is - statistically speaking - zero, and also relatively small in magnitude.

34Interpreting the interaction term in this non-linear model requires transforming the coefficient; the interaction coefficient
of 2.266 in the first row of Panel (B) implies that an increase in the five-year survival rate of 10 percentage points predicts
an increase in the number of trials for hematologic cancers that is greater than that of nonhematologic cancers by 300 trials
(about 30 percent relative to the mean), and applying the delta method to obtain a standard error for this interaction term
provides a t-statistic of 5.99. Figure 4 gives an alternative sense of the magnitude of the coefficients obtained from a linear
model.

35Appendix Table C.5 shows that this pattern of results also holds in the drug approvals data.
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In addition to being consistent with our model, this result is also important as a test of a key assumption

underlying this counterfactual exercise - namely, that hematologic cancers and non-hematologic cancers

would have similar R&D investments but for the higher use of surrogate endpoints for hematologic cancers.

A priori, hematologic and non-hematologic cancers are very different for many reasons - for example,

the science of treating hematologic cancers might be simpler for some reason. However, to the extent

that such differences are common across all hematologic cancers, hematologic cancers with low five-year

survival rates should have higher levels of R&D investments than do non-hematologic cancers with low

five-year survival rates. But that is not what we see in the data: rather, hematologic and non-hematologic

cancers have similar levels of R&D investments for the patient groups where surrogate endpoints should

not change R&D incentives. This evidence is consistent with the “all else equal” assumption behind this

hematologic/non-hematologic comparison.

What can we learn from this counterfactual exercise? We draw two conclusions. First, from the

perspective of testing the model, our estimates are consistent with the idea that neither unobserved

heterogeneity in demand nor a paucity of scientific opportunities is driving the observed negative survival

time-R&D correlation in the full sample. Second, from a policy perspective our estimates support the idea

(analyzed in Proposition 7) that valid surrogate endpoints may increase R&D investments and eliminate

the fixed patent term distortion. The caveat to interpreting this evidence as a test of our theoretical model

is that because surrogate endpoints change the length of clinical trials, they in turn change the financial

costs of trials. Sections 5.2 and 5.3 present additional quantitative and qualitative evidence that aims to

address this concern.

In Appendix A.10, we use this hematologic/non-hematologic comparison to provide a rough back-

of-the-envelope estimate of the semi-elasticity of R&D investment with respect to a one-year change in

commercialization lag: @(R&D investment)
@(commercialization lag) .

36 Our main estimates of this semi-elasticity range between 7-

23%. If we are willing to make an additional assumption that a reduction in commercialization lag affects

R&D investments only through the mechanism of lengthening effective patent terms (and not through,

e.g., discounting or a change in the cost of clinical trials), then our estimated semi-elasticity of 7-23% can

also be interpreted as an estimate of the percent increase in R&D investment that would be realized given

a one-year increase in effective patent terms.37

36As described in In Appendix A.10, obtaining this semi-elasticity estimate requires scaling our estimate of how R&D
investment changes in response to a change in the five-year survival rate ( @(R&D investment)

@(5-year survival rate) ) by an estimate of how a change
in the five-year survival rate translates into a change in commercialization lag ( @(commercialization lag)

@(5-year survival rate) ).
37We are aware of only one existing estimate to which we can compare this estimate. Abrams (2009) estimates how patent

filings (as a measure of R&D) responded to incremental patent term extensions under the Agreement on Trade Related
Aspects of Intellectual Property Rights (TRIPS). We would expect his estimate to be an over-estimate of the true semi-
elasticity of interest because when the patent term lengthens it becomes more attractive for firms to file patents on existing
R&D - because the benefits of filing increase - so an increase in patent filings could be observed even if there was no actual
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5.2 Investigating publicly financed clinical trials

To address the concern that the financial costs of clinical trials are correlated with the survival rate,

we present evidence from an additional test motivated by our theoretical model: because higher costs

also reduce social R&D incentives, any additional negative correlation between the survival rate and

R&D investments among privately financed trials (relative to publicly financed trials) should be purged

of heterogeneity in the costs of clinical trials that is correlated with the survival rate. We document in

this section that the relationship between survival time and R&D is indeed larger for privately financed

trials relative to publicly financed trials.

As a first analysis of our trial sponsorship data, Panel (A) of Figure 5 presents the cumulative dis-

tribution functions (CDF) of clinical trial lengths in the trial-level data, separately for privately financed

and publicly financed trials. The privately financed CDF lies above the publicly financed CDF at almost

every clinical trial length. The vertical line at twenty years denotes the length of the fixed patent term:

consistent with the idea that the patent system should offer zero incentive to develop drug compounds

that take longer than twenty years to develop, very few trials in our data have a reported length of twenty

years or longer. Of the approximately 120 clinical trials longer than 20 years that have non-missing data

on sponsorship, 95 percent are publicly funded.38

Panel (B) of Figure 5 provides a second analysis of this sponsorship data, plotting the relationship

between the five-year survival rate and the share of clinical trials enrolling patients of that cancer-stage

which are privately financed.39 The downward-sloping relationship is quantified in Panel (A) of Table 4:

a ten percentage point increase in the five-year survival rate is associated with a 1.2 percent decrease in

the share of clinical trials that are privately financed. The magnitude of this coefficient is quite similar

conditional on our market size controls (Columns (2) and (3)).

Panel (B) of Table 4 presents estimates from a second test of how public and private R&D investments

differ. Estimating Equation 9 separately on the sample of publicly financed trials and on the sample

of privately financed trials, we would like to compare the estimated � coefficients to see whether the

correlation between survival time and clinical trial activity is smaller in the sample of publicly financed

change in “true” R&D investment. With that caveat, Abrams estimates that a 114 day increase in patent term generates
a 21% increase in patent filings; scaling this estimate up to one year (multiplying by 365/114 = 3.158) implies that a one
year increase in patent term would generate a 66% increase in patent filings. Given that we expect his estimates to be
over-estimates, the fact that ours are smaller in magnitude is comforting.

38The longest privately financed trial in our data lasts 18.66 years, with the exception of six trials that are reported to
last longer than sixty years. We suspect that these six trials have typographical errors in their start dates, but have not yet
heard back from the sponsor (Bristol-Myers Squibb) in an inquiry on this point. If these six trials have typographical errors
as we expect, then 100 percent of the trials with non-missing data on sponsorship that are longer than 20 years are publicly
funded.

39In interpreting the scale of the graph, recall that as noted in Section 3.4 we suspect that sponsorship data is more likely
to be reported for publicly funded trials relative to privately financed trials.
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trials relative to the sample of privately financed trials. Formally equivalent to estimating these two

regressions separately is estimating a stacked regression where the unit of observation is a cancer-stage-

type cst (where type is either privately financed or publicly financed):
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Our T
t

variable is defined as an indicator which equals one for observations counting privately financed

trials, and equals zero for observations counting publicly financed trials. The coefficient of interest �

measures the difference in the survival time-clinical trial activity correlation observed for privately financed

trials relative to that observed for publicly financed trials.

These estimates are presented in Panel (B) of Table 4. The negative � estimate implies that the

relationship between the five-year survival rate and R&D investments is more negative for privately

financed trials relative to publicly financed trials - consistent with what we expected based on the analyses

in Panel (B) of Figure 5. Interpreting the point estimate in Column (1) suggests that a ten percentage

point increase in the five-year survival rate results in an additional 4.4 percent decrease in privately

financed clinical trials, in addition to the 8.6 percent decrease observed for publicly financed clinical

trials. These estimates imply that the relationship between survival time and clinical trial activity is on

the order of 35 percent larger for privately financed clinical trials relative to publicly financed clinical

trials ( 4.4

4.4+8.6

⇡ 35%). The point estimates and their ratio are quite stable across specifications adding

our market size controls (Columns (2) and (3)).

We wish to make three remarks concerning these estimates. First, this public-private contrast is

consistent with two potential models of public sector decision making: the public sector could have

a different objective function than the private sector (as in our model), or the public sector could be

compensating for under-investment by the private sector. Both models are consistent with the existence

of a fixed patent term distortion, and thus have the same qualitative interpretation, but the quantitative

interpretation of the estimates would differ across the two models. Second, to the extent that a large

share of publicly financed clinical trials investigate new uses of existing drugs, publicly financed trials

may be constrained by science to mirror privately financed R&D investments. Third, while in our model

- and in a frictionless world - discount rates depend on the project and not who is financing the project,

different discount rates between the public and private sector could be an alternative explanation of the

public-private contrast. In particular, if private firms have higher discount rates than the government

due to frictions such as corporate short-termism (Stein (1989)) then private firms would also under-invest

in projects with long commercialization lags. Given the lack of empirical evidence on the magnitude
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of corporate short-termism (Stein (2003)), it is difficult to quantitatively assess its importance in our

context. That said, to the extent that corporate short-termism plays a role in our results, we note that

two of the three policy levers we analyze (surrogate endpoints and targeted R&D subsidies) address both

the fixed patent term distortion and corporate short-termism as sources of underinvestment in R&D with

long commercialization lags. We also note that, to the extent that corporate short-termism is empirically

important, it would be unfortunate to have the patent system exacerbate such short-term thinking.

5.3 Qualitative evidence

5.3.1 Industry interviews

A first set of qualitative evidence supporting the idea that fixed patent terms distort innovation comes

from the fact that academic clinicians, clinical researchers, and firms all report a reluctance to invest

in drugs that require lengthy clinical trials because of their shorter effective patent life. For example, a

medicinal chemistry textbook notes: “...patents normally run for 20 years from the date of application,

...some compounds are never developed because the patent protected production time available to recoup

the cost of development is too short” (Thomas, 2003). We interviewed several venture capitalists for this

paper, and while their confidentiality agreements with the companies they evaluate prevented them from

naming any specific examples of drugs that failed to reach the market for this reason, they each claimed

that it happens “all the time.” Below are two excerpts from their comments:

• The running clock on these patents is a huge deal. Companies absolutely choose not to go forward

with drugs because their remaining patent life isn’t sufficient. In the models we use to decide whether

to in-license a drug, we measure the time and cost of doing the trials against the period of exclusivity

and time until peak market share. You have a pretty good sense of how long it will take to get to

approval, at least by the time you’re in the Phase 2A trials, so these things happen pretty early in

development. Companies de-prioritize those drugs. Quite often we’ve declined to take advantage of

an opportunity because we thought there wouldn’t be enough time under the patent term to earn a

return on the investment. (Venture Capitalist A)

• The shorter the remaining patent term, the more certainty you need that the drug will work, and the

more it needs to have a large market. Also, the ramp is important. You want at least a couple years

of peak sales. It happens all the time that we pass on a drug, one we think would probably work,

because there wouldn’t be enough life left on its patent by the time it reached the market. (Venture

Capitalist B)
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5.3.2 Historical case studies of FDA-approved chemoprevention drugs

A second set of qualitative evidence supporting the idea that fixed patent terms distort innovation comes

from an investigation of what motivated the development of existing chemoprevention drugs. Given that

cancer prevention trials typically examine cancer incidence as an outcome variable rather than cancer

mortality, these trials do not mechanically fit into our conceptual framework, but we expect cancer pre-

vention technologies to generally require long trials and thus to also be under-incentivized due to the fixed

patent distortion. We start with the list of all - six - FDA approved chemoprevention drugs compiled by

Meyskens et al. (2011). Our qualitative investigation of the history of these FDA drug approvals suggests

that all six of these approvals either relied on the use of surrogate endpoints, or were approved on the basis

of publicly financed clinical trials. In Appendix D, we provide documentation for this assertion, and here

briefly summarize two of the case studies. First, the drug Tamoxifen was FDA approved for several cancer

indications while on-patent; later, a publicly-funded clinical trial supported the 1998 FDA approval of

Tamoxifen as a chemoprevention agent - preventing breast cancer incidence in high-risk groups. Second,

the recent FDA approval of cervical cancer vaccines relied on the use of human papillomavirus (HPV)

incidence as a surrogate endpoint for cervical cancer incidence.

6 Estimating the value of life lost due to the fixed patent term distortion

Even if the fixed patent term distortion affects the allocation of R&D across patient groups, the welfare

costs of this distortion depend on whether additional R&D investments translate into real improvements

in patient health. In this section, we leverage our surrogate endpoint variation from Section 5.1 to estimate

counterfactual improvements in cancer survival rates that would have been observed in the absence of the

fixed patent term distortion.40

Figure 6 illustrates how we use variation in surrogate endpoints (across hematologic and non-hematologic

cancers) to estimate counterfactual survival gains from 1973-2003 that would have been observed in the

absence of the fixed patent term distortion. Panel (a) of Figure 6 illustrates our conceptual framework.

If there had been no survival improvements between 1973 and 2003, all cancer-stage observations would

locate along the 45 degree line (“no progress line”); in contrast, if all cancer-stages had been cured between

1973 and 2003, all cancer-stage observations would locate along the horizontal line where 2003 survival

rates equal 1 (“cure cancer line”). As discussed in Section 5.1, we expect two patterns to emerge when

contrasting survival improvements across for hematologic and non-hematologic cancers. First, survival

40While we would ideally quantify R&D-induced improvements in both morbidity and mortality, given data constraints
we here focus on estimating the extent to which R&D increases patient survival.
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improvements should be similar for hematologic and non-hematologic cancers in cases where surrogate

endpoints do not shorten commercialization lags (that is, for cancers with low 1973 five-year survival

rates). Second, the difference in survival improvements between hematologic and non-hematologic cancers

should increase in commercialization lag (that is, increase in the 1973 five-year survival rate). Reflecting

these predictions, the line marked “non-hematologic cancers” coincides with the line marked “hematologic

cancers” at 0% survival, and the gap between the two lines increases as commercialization lag increases.

Panel (b) plots the observed 2003 five-year survival rates against the 1973 five-year survival rates.

Strikingly, the data matches our illustrative figure in Panel (a) remarkably well. In particular, the linear

fit lines for hematologic cancers and non-hematologic cancers meet for cancers with a very low 1973

five-year survival rate; the linear fit for hematologic cancers is close to a parallel shift of the 45 degree

line (slightly steeper, as expected based on Figure 4); and the linear fit for non-hematologic cancers

is much more shallow in slope. Note that given the dearth of quasi-experimental evidence documenting

that increases in pharmaceutical R&D translate into improved survival (see, e.g., Lichtenberg (2012)), this

evidence that the additional R&D investments induced by eliminating the fixed patent term distortion (by

relying on surrogate endpoints) translated into improved survival gains is itself of substantive interest.41

The area between the linear fit line for hematologic cancers and the linear fit line for non-hematologic

cancers can be used to quantify the number of life-years lost from the fixed patent term distortion. We

formalize this estimation for the cohort of US cancer patients diagnosed in 2003 as follows. First, on

the sample of hematologic cancers, we predict the 2003 five-year survival rate as a function of the 1973

five-year survival rate. Second, for the sample of non-hematologic cancers we use the estimated � from

the hematologic cancers survival regression to predict a counterfactual 2003 five-year survival rate for

non-hematologic cancers in the absence of the fixed patent term distortion. Third, we calculate �
cs

, the

difference between the counterfactual and actual 2003 five-year survival rates, for each non-hematologic

cancer-stage; on average, �
cs

is 13.2 percentage points. Fourth, we convert each �
cs

into a number of

41Welch et al. (2000) and others have argued that although five-year survival is a valid measure for comparing cancer
therapies in a randomized trial, changes in five-year survival rates over time may be biased by changes in diagnosis patterns
(known as ’lead-time bias’). For example, an expansion in mammography screening between 1973 and 2003 could have led
to breast cancers being diagnosed at an earlier stage, which would have mechanically increased measured five-year survival
rates even if there was no real change in patient health. In our context, changes in diagnosis would be expected to bias us
away from finding that hematologic cancers saw larger gains in survival between 1973 and 2003 because the cancers that
saw increases in screening over this period (such as breast and prostate cancer) are non-hematologic cancers. Empirically, if
we construct an alternative version of Figure 6 Panel (b) that plots Welch et al.’s preferred outcome variable - the percent
change in mortality from 1973 to 2003 - against the 1973 five-year survival rate, we observe a very similar pattern to that
displayed in Figure 6 Panel (b): first, hematologic cancers on average had larger percent improvements in mortality from
1973 to 2003 than did non-hematologic cancers; second, as predicted by our model there is no gap between the hematologic
and non-hematologic lines for patient groups with near-zero 1973 five-year survival rates; and third, the gap between the
hematologic and non-hematologic lines increases in magnitude as the 1973 five-year survival rate increases. Taken together,
these results suggest that changes in diagnosis patterns are not generating the differential patterns of survival changes across
hematologic and non-hematologic cancers presented in Figure 6 Panel (b).
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life-years lost per person based on the fact that, in our data, a change from 0 to 1 in the five-year survival

rate corresponds to a gain of 8.1 additional years of life. Applying this conversion, the average �
cs

of 13.2

percentage points corresponds to (8.1)(.132) = 1.07 life-years per cancer patient. Fifth, we multiply each

cancer-stage estimate of per-person life-years lost by the number of US cancer patients diagnosed in 2003

with that cancer-stage. We compute the number of patients in each cancer-stage using the SEER data,

scaling up (dividing by 0.074) to account for the fact that SEER does not cover the entire US population.

In total, this calculation suggests that among this cohort of patients - US cancer patients diagnosed in

2003 - the fixed patent term distortion resulted in around 890,000 lost life-years.

If we value each lost life-year at $100,000 (Cutler, 2004), the estimated value of these lost life-years

is on the order of $89 billion per annual patient cohort. Applying a conservative social discount rate of

5% and assuming that patient cohorts grow with population growth of 1%, the net present value of the

life-years at stake is $89 billion

.05�.01

= $2.2 trillion.42

It is important to note that this life-lost estimate is rough at best. Our point estimate of the value of

life lost per annual patient cohort is $89 billion, with a 95 percent confidence interval that ranges from

$7 billion to $172 billion; the net present value point estimate of $2.2 trillion has a 95 percent confidence

interval that ranges from $170 billion to $4.2 trillion.43

7 Discussion and conclusion

In this paper, we investigate whether fixed patent terms distort innovation. Our theoretical model clarifies

that the interaction of commercialization lags and fixed patent terms may (under some conditions) distort

R&D away from inventions which have both a long useful life and a long commercialization lag. Our

empirical work investigates this distortion empirically in the context of the pharmaceutical industry,

where drugs treating patients with short life expectancies can move through clinical trials more quickly -

and thus receive longer effective patent terms - than drugs treating patients with long life expectancies.

Using a newly constructed data set on cancer clinical trial investments, we provide several sources of

evidence consistent with fixed patent terms distorting cancer R&D away from drugs targeting early-stage

cancer patients or cancer prevention.

We use our theoretical model to analyze the innovation and social welfare consequences of three
42Note that other authors, such as Murphy and Topel (2006) and Weitzman (1998), have argued that a social discount

rate of 2% or lower may be more appropriate; using such lower values would of course increase our estimate of the net present
value of life-years at stake.

43To be conservative, we compute these confidence intervals using HC3 standard errors rather than robust standard errors,
given the expected downward finite sample bias of robust standard errors in this small sample of hematologic cancers (see,
e.g., the discussion in Angrist and Pischke (2009)). The analogous 95 percent confidence interval using robust standard
errors is $15 billion to $164 billion (a net present value range from $365 billion to $4.1 trillion).
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policy interventions which could address the fixed patent term distortion: a patent design change that

would start the patent clock at commercialization, a policy change that would allow firms to rely on

surrogate endpoints in clinical trials, and targeted R&D subsidies. In practice, the patent design change

may be administratively easier to implement through FDA-awarded exclusivity grants, as are currently

implemented under existing public policies such as the US Orphan Drug Act, rather than via reforms to the

patent system. Consistent with our theoretical model, we document empirically that surrogate endpoints

appear to increase R&D investments on innovations that would otherwise have long commercialization

lags, and that this incremental increase in R&D appears to translate into substantial gains in patient

survival.

We use this surrogate endpoint variation to estimate counterfactual improvements in cancer survival

rates that would have been observed in the absence of the fixed patent term distortion, and estimate that

among one cohort of patients - US cancer patients diagnosed in 2003 - the fixed patent term distortion

resulted in around 890,000 lost life-years. Valuing these lost life-years at $100,000 (Cutler, 2004) suggests

that that the estimated social value of the life-years lost due to the fixed patent term distortion in this

one cohort of patients is on the order of $89 billion per year.

Our empirical evidence also speaks to three innovation policy issues beyond the specific question of

whether fixed patent terms distort innovation. First, although both theoretical models and public policies

often assume a relationship between patent length and R&D investments, we document some of the first

direct evidence that patents affect the level and composition of R&D investments. Second, we document

evidence consistent with increases in R&D translating into improvements in patient health. Third, we

document evidence consistent with the idea that - in the case of hematologic cancers - apparently-valid

surrogate endpoints were effective in increasing R&D investments on innovations that would otherwise

have had long commercialization lags, and that the resulting increases in R&D translated (in this case)

into real gains in patient health. While much attention has been focused on the risks and costs of using

surrogate endpoints that may imperfectly correlate with real improvements in patient health, our analysis

is - to the best of our knowledge - the first attempt to use the historical record to quantify how the

availability and use of a valid surrogate endpoint affected R&D allocations and patient health outcomes.

Taken at face value, our results suggest that research investments aimed at establishing and validating

surrogate endpoints may have a large social return.44

44These estimates support informal arguments made by the cancer research community; see, for example, Korn and Stanski
(2005), US Institute of Medicine (2008), Lathia et al. (2009), and American Society for Clinical Oncology (2011). In the case
of cardiovascular disease, the set of surrogate endpoints accepted by the US FDA were initially identified by the Framingham
Heart Study, a large-scale, multi-decade, federally-funded observational study which identified factors such as high blood
pressure as risk factors. Collins (2012) provides an example of a technology - a chip that mimics how humans respond to a
drug - that could serve the same role as a surrogate endpoint, by identifying promising candidate drugs more quickly.
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Figure 1: Survival time and R&D investments: Stage-level data
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(b) R&D investments by stage

Notes: This figure plots measures of clinical trial activity for each stage of cancer from 1973-2011. Panel (a) plots two measures of

clinical trial activity for each stage of cancer from 1973-2011 against the five-year survival rate among patients diagnosed with each

stage between 1973-2004 (the cohorts for which five-year survival is uncensored). The left-hand-side axis plots the number of clinical

trials enrolling patients of each stage from 1973-2011. The right-hand-side axis plots the number of clinical trials enrolling patients

of each stage from 1973-2011 divided by the number of life-years lost - measured as age-gender-year specific life expectancy (in the

absence of cancer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage

between 1973-1983 (to minimize censoring) multiplied times market size. Panel (b) is a bar chart plotting the same data for localized,

regional, and metastatic cancers, but also including the number of trials for preventive technologies as well as in situ and recurrent

cancers. For details on the sample, see the text and data appendix.
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Figure 2: Survival time and R&D investments: Cancer-stage data
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Notes: This figure shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage

between 1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of each

cancer-stage from 1973-2011. Note that because we here count the number of clinical trials patients of each cancer-stage are eligible to

enroll in, a higher count of trials appears here than in Figure 1 because many trials enroll patients of more than one cancer-stage

type. The level of observation is the cancer-stage. For details on the sample, see the text and data appendix.

Figure 3: Survival time and R&D investments: Residualized cancer-stage data
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(a) Market size
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(b) Life-years lost

Notes: This figure shows the relationship between residualized versions of the five-year survival rate among patients diagnosed with

that cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials

enrolling patients of each cancer-stage from 1973-2011. The level of observation is the cancer-stage. Panel (a) residualizes market size;

Panel (b) residualizes life-years lost. Market size denotes the inclusion of a covariate measuring the number of patients diagnosed

with that cancer-stage between 1973-2009. Life-years lost is measured as age-gender-year specific life expectancy (in the absence of

cancer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage between

1973-1983 (to minimize censoring) multiplied times market size. For details on the sample, see the text and data appendix.
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Figure 4: Surrogate endpoints, survival time, and R&D investments
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Notes: This figure shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between

1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of each cancer-

stage from 1973-2011, separately for hematologic and non-hematologic cancers. The level of observation is the cancer-stage. For details

on the sample, see the text and data appendix.

Figure 5: Survival time and financing of clinical trials
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(b) Survival time and private financing

Notes: This figure shows two analyses of how public and private financing of clinical trials differ. Panel (a) plots the cumulative

distribution function of clinical trial length in years, omitting the handful of observations with length greater than 30 years for improved

readability. The level of observation is the clinical trial. The vertical line at 20 years denotes the length of the fixed patent term. Panel

(b) plots the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between 1973-2004 (the

cohorts for which five-year survival is uncensored), and the share of clinical trials enrolling patients of that cancer-stage from 1973-2011

that were privately financed. The level of observation is the cancer-stage. For details on the sample, see the text and data appendix.
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Figure 6: Survival gains, 1973-2003

(a) Framework for analyzing survival gains, 1973-2003
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(b) Observed survival gains, 1973-2003

Notes: This figure illustrates how we use variation in surrogate endpoints (across hematologic and non-hematologic cancers) to estimate

counterfactual survival gains from 1973-2003 that would have been observed in the absence of the fixed patent term distortion. Panel

(a) illustrates our conceptual framework. Panel (b) illustrates the empirical analog of Panel (a), plotting the 1973 five-year survival

rate against the 2003 five-year survival rate. The level of observation is the cancer-stage. For details on the sample, see the text and

data appendix.
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Table 1: Summary statistics: Cancer-stage data

mean median standard
deviation minimum maximum

number of clinical trials, 1973-2011 945 556 1,015 221 7,385
number of drug approvals, 1990-2002 0.507 0 1.221 0 7

five-year survival rate, cases diagnosed 1973-2004 0.377 0.383 0.249 0.006 0.945
number of diagnoses (1000s), 1973-2009 12.423 3.159 29.429 0.010 252.593

estimated years of life lost (1000s), 1973-1983 114.433 35.663 233.576 0.583 1,658.804
share of trials privately financed 0.258 0.265 0.062 0.122 0.507

Notes: This table shows summary statistics for our cancer-stage level data. The level of observation is the cancer-stage. The clinical

trials data is available from 1973-2011. The drug approvals data is available from 1990-2002. The SEER data starts in 1973 and ends

in 2009, which is why the number of diagnoses variable is measured over that time period. The five-year survival rate is calculated over

patients diagnosed between 1973-2004, the cohorts for which five-year survival is uncensored as of 2009. The life years lost measure is

calculated on cohorts diagnosed from 1973-1983 to minimize censoring, as explained in the text. As explained in the text, we suspect

that sponsorship data is more likely to be reported for publicly funded trials relative to privately financed trials. All variables have 201

observations except for the life lost measure which as 192, because 9 cancer-stages had no patients diagnosed between 1973-1983. For

details on the sample, see the text and data appendix.

Table 2: Survival time and R&D investments: Cancer-stage data

(1) (2) (3)

five-year survival rate -0.869 *** -1.167 *** -1.115 ***
(0.319) (0.323) (0.300)

Market size no yes no
Life-years lost no no yes

Dependent variable: Number of clinical trials (mean = 945)

Notes: This table shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between

1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of that cancer-stage

from 1973-2011. The level of observation is the cancer-stage. Estimates are from quasi-maximum likelihood Poisson models. Standard

errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01. Market size denotes the inclusion of a covariate measuring

the number of patients diagnosed with that cancer-stage between 1973-2009. Life-years lost is measured as age-gender-year specific life

expectancy (in the absence of cancer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed

with that cancer-stage between 1973-1983 (to minimize censoring) multiplied times market size. The number of observations is 201 in

Columns (1) and (2), and 192 in Column (3), because 9 cancer-stages had no patients diagnosed between 1973-1983. For details on the

sample, see the text and data appendix.
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Table 3: Surrogate endpoints, survival time, and R&D investments

(1) (2) (3)

five-year survival rate -0.865 *** -1.166 *** -1.107 ***
(0.310) (0.316) (0.295)

(0/1: hematologic) 0.753 *** 0.736 *** 0.571 ***
(0.185) (0.170) (0.183)

Market size no yes no
Life-years lost no no yes

(1) (2) (3)

(five-year survival rate)*(0/1: hematologic) 2.266 *** 2.411 *** 2.115 ***
(0.408) (0.405) (0.522)

five-year survival rate -1.122 *** -1.417 *** -1.316 ***
(0.343) (0.336) (0.310)

(0/1: hematologic) -0.077 -0.147 -0.220
(0.189) (0.186) (0.237)

Market size no yes no
Life-years lost no no yes

Panel (A): Level of R&D, Dependent variable: Number of clinical trials (mean = 945)

Panel (B): Composition of R&D, Dependent variable: Number of clinical trials (mean = 945)

Notes: This table shows two analyses of how cancer R&D differs on hematologic malignancies relative to other cancers, as a way of

shedding light on how surrogate endpoints - which are more commonly used for hematologic malignancies - affect R&D investments.

Panel (A) regresses the number of clinical trials enrolling patients of that cancer-stage from 1973-2011 on the five-year survival rate

among patients diagnosed with each cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored) and an

indicator for hematological malignancies. Panel (B) regresses the number of clinical trials enrolling patients of that cancer-stage

from 1973-2011 on the five-year survival rate among patients diagnosed with each cancer-stage between 1973-2004, an indicator for

hematological malignancies, and an interaction between these two variables. The level of observation is the cancer-stage. Estimates are

from quasi-maximum likelihood Poisson models. Standard errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01.

Market size denotes the inclusion of a covariate measuring the number of patients diagnosed with that cancer-stage between 1973-2009.

Life-years lost is measured as age-gender-year specific life expectancy (in the absence of cancer) in the year of diagnosis, less observed

survival time in years, averaged over patients diagnosed with that cancer-stage between 1973-1983 (to minimize censoring) multiplied

times market size. The number of observations is 201 in Columns (1) and (2), and 192 in Column (3), because 9 cancer-stages had no

patients diagnosed between 1973-1983. For details on the sample, see the text and data appendix.
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Table 4: Survival time and financing of clinical trials

(1) (2) (3)

five-year survival rate -0.122 *** -0.136 *** -0.121 ***
(0.016) (0.017) (0.014)

Market size no yes no
Life-years lost no no yes

(1) (2) (3)

(five-year survival rate)*(0/1: private) -0.436 *** -0.505 *** -0.407 **
(0.166) (0.166) (0.164)

five-year survival rate -0.866 *** -1.137 *** -1.122 ***
(0.314) (0.334) (0.304)

(0/1: private) -0.681 *** -0.697 *** -0.752 ***
(0.062) (0.052) (0.051)

Market size no yes no
Life-years lost no no yes

Panel (A): Dependent variable: Share of clinical trials that are privately financed (mean = 0.258)

Panel (B): Dependent variable: Number of clinical trials (mean = 244)

Notes: This table shows two analyses of how public and private financing of clinical trials varies with patient survival time. Panel (A)

shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between 1973-2004 (the

cohorts for which five-year survival is uncensored), and the share of clinical trials enrolling patients of that cancer-stage from 1973-

2011 that were privately financed; the level of observation is the cancer-stage, and estimates are from ordinary-least-squares (OLS)

models. Panel (B) shows the relationship between the five-year survival rate and the number of publicly/privately financed clinical

trials enrolling patients of that cancer-stage from 1973-2011; the level of observation is the cancer-stage-sponsor (where sponsor is either

public or private), and estimates are from quasi-maximum likelihood Poisson models. Standard errors are clustered at the cancer level.

*: p<0.10; **: p<0.05; ***: p<0.01. Market size denotes the inclusion of a covariate measuring the number of patients diagnosed

with that cancer-stage between 1973-2009. Life-years lost is measured as age-gender-year specific life expectancy (in the absence of

cancer) in the year of diagnosis, less observed survival time in years, averaged over patients diagnosed with that cancer-stage between

1973-1983 (to minimize censoring) multiplied times market size. The number of observations is 201 in Columns (1) and (2) of Panel

(a), 402 (=201*two sponsor types) in Columns (1) and (2) of Panel (b), 192 in Column (3) of Panel (a), and 384 (=192*two sponsor

types) in Column (3) of Panel (b), because 9 cancer-stages had no patients diagnosed between 1973-1983. For details on the sample,

see the text and data appendix.
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A Appendix: Proofs (not for publication)

A.1 Proof of Proposition 1

Part 1 follows immediately from (5).
For Part 2, the expected social return to A exceeding that to B can be written as:
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Hence if invention B is pursued, so is invention A. A contradiction. QED.

A.2 Proof of Proposition 2

Follows immediately from equation (6).

A.3 Proof of Proposition 3

Re condition 1, if t
comm

is a constant then the comparative static of EML

ETL

with respect to t
comm

is not
well defined. Re condition 2, if firms choose to patent at t

comm

rather than t
invent

(see footnote 11 for the
precise condition) then EML

ETL

= q(1� (��)tpatent) which is independent of commercialization lag t
comm

. Re
condition 3, if ⇡ = 0 then the private investment condition (3) never obtains so there will be a distortion
in levels but not a distortion in composition. Re condition 4, if the invention is perfectly non-imitable
(◆ = 0) then EML = ETL per the discussion in Section 2.2, so the ratio EML

ETL

is equal to one regardless
of t

comm

. Re condition 5, if obsolescence risk is such that there is zero probability that the invention is
useful after patent expiration, then EML = ETL regardless of t

comm

. QED.

A.4 Proof of Proposition 4

Follows immediately from equation (6), since t
patent

� t
comm

is now constant.
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A.5 Proof of Proposition 5

Define social welfare as a function of commercialization lag, t
comm

, and post-commercialization patent
length, denoted x (i.e., t

patent

= t
comm

+ x), by

W (t
comm

, x) =
´
EML·⇡�c

(EML · vmonop + (ETL� EML) · v � c) dF (·) (12)

where F (·) denotes the distribution of invention parameters, EML and ETL are defined according to
(1)-(2) using t

patent

= t
comm

+ x, and the integral is taken over all inventions that satisfy the private
investment condition EML · ⇡ � c as defined in equation (3). Using (12), we can define the optimal
choice of post-commercialization patent length x as an implicit function of commercialization lag t

comm

:

x⇤(t
comm

) 2 argmax
x

W (t
comm

, x)

Our goal is to show that x⇤(t
comm

) is increasing in t
comm

. By Topkis’s theorem, it is sufficient for us
to show that the cross-partial @

2
W (t

comm

,x)

@x@t

comm

is strictly positive for all x and t
comm

. (Topkis’s theorem also
tells us that a strictly positive cross-partial implies that the optimum x⇤(t

comm

) is unique for all t
comm

).
To study the cross-partial @

2
W (t

comm

,x)

@x@t

comm

, we first decompose the partial @W

@x

into two components: the
benefit from eliciting more inventions at the extensive margin, and the costs of additional deadweight loss
from inventions on the intensive margin, i.e., inventions that would have been elicited even without the
increase in x. Write this as follows:

@W

@x
= BenefitsExtensive(t

comm

, x)� CostsIntensive(t
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with k denoting the density of inventions on the extensive margin, which we have assumed is uniform.45 We
will show that @

2
W (t

comm

,x)

@x@t

comm

is strictly positive by showing that @CostsIntensive(t

comm

,x)

@t

comm

is strictly negative
and @BenefitsExtensive(t

comm

,x)

@t

comm

is weakly positive.46

First, consider @CostsIntensive(t

comm

,x)

@t

comm

. There are two effects. First, increasing t
comm

reduces the
deadweight loss cost associated with invention parameter tuples on the intensive margin, because these
costs are pushed out further in time. Second, increasing t

comm

reduces the set of inventions for which
deadweight loss is suffered. Both effects are negative. Formally,
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comm

, x)

@t
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=
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@

@t
comm

p(��)tcomm

+x(v � vmonop)dF (·)

�k · E
(EML·⇡=c)

�
p(��)tcomm

+x(v � vmonop)
�

with the first term simplifying to ln(��)CostsIntensive(t
comm

, x), which is strictly negative since �� < 1,
45Formally, the density of inventions on the extensive margin is f(EML · ⇡ = c) @EML

@x

, which we assume is constant
in t

comm

. The proof works equivalently if this density is weakly increasing in t
comm

. Some algebra yields that this latter
condition is equivalent to ⇡

c

g

0(⇡/c)
g(⇡/c) � �1, where g(·) is the marginal density of ⇡

c

; this has the interpretation that the density
of the profits-to-costs ratio, ⇡

c

, does not decline too quickly. For instance, a uniform distribution of ⇡

c

would strictly satisfy
this condition.

46As mentioned in the body of the text, it is not necessary for the result that @BenefitsExtensive(x;t
comm

)
@t

comm

is weakly positive;
it can be negative, so long as it is less negative than @CostsIntensive(x;t

comm

)
@t

comm

. For this reason, several of our assumptions
can be slightly relaxed. For example, the density of inventions on the extensive margin, described in the previous footnote,
could be decreasing in t

comm

so long as the decline is not too rapid.
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and the second term is strictly negative as well. Hence, @CostsIntensive(t

comm

,x)

@t

comm

< 0.
Next, we sign @BenefitsExtensive(t

comm

,x)

@t

comm

. Using our assumption that the density of inventions on the
extensive margin is uniform, we have
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Using EML · ⇡ = c, and our assumption that c is independent of parameters other than t

comm

, we can
rewrite the argument in the RHS of (13) as
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By assumption, expected costs c are weakly increasing with t
comm

, as are the expected social to private
value ratios v

⇡

and v

monop

⇡

. Our assumption that � and � are independent of other parameters implies that
@

@t

comm

E
(EML·⇡=c)

(��) � 0, since EML is decreasing in t
comm

and increasing in �� and we are holding
fixed EML · ⇡ = c. This in turn implies that E

(EML·⇡=c)

�
ETL

EML

�
is weakly increasing in t

comm

, since
ETL

EML

= 1

1�(��)

x

. Hence, all of the terms in (14) are weakly increasing. Since the terms are also all

positive, we have @BenefitsExtensive(t

comm

,x)

@t

comm

� 0. For intuition, examine the parenthetical on the RHS of
(13). Increasing t

comm

decreases EML and ETL, which is bad for social value, but it increases the ⇡ of
inventions on the extensive margin, which in turn increases the social value of inventions on the extensive
margin as measured by vmonop and v. The rewriting of this equation as (14) tells us that the benefit from
higher quality inventions weakly exceeds the cost from additional time discounting. If, as discussed in the
text of Section 2.5.1, the expectations of c, v

⇡

and v

monop

⇡

increased strictly with t
comm

, then the benefits
would strictly exceed rather than weakly exceed the costs, strengthening the result.

Putting this all together, we have
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> 0, as required. QED.

A.6 Proof of Proposition 6

Take as given a fixed patent term running from the date of invention, t
patent

. This patent term induces a
strictly negative relationship between commercialization lag and years of post-commercialization patent
life. Letting x

invent

denote the number of years of post-commercialization patent life when the clock starts
at invention, we have x

invent

(t
comm

) = max(t
patent

� t
comm

, 0) which is strictly downward sloping in t
comm

while t
comm

< t
patent

and then flat at zero while t
comm

� t
patent

.
In contrast, Proposition 5 shows that the optimal post-commercialization patent life, x⇤, is strictly

increasing in t
comm

. Suppose that the strictly increasing curve x⇤(t
comm

) and the strictly decreasing
(then flat) curve x

invent

(t
comm

) intersect, which will occur iff x⇤(0) < x
invent

(0); that is, if optimal
policy involves awarding less than t

patent

years of post-commercialization protection to inventions that
have commercialization lag of 0. Let (t0, x0) denote the point of intersection. Construct a fixed patent
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term running from the date of commercialization using x
comm

= x0. This policy, illustrated in Figure
7, strictly increases welfare relative to an t

patent

term starting at invention. First, take an invention
with t

comm

< t0. For such an invention, we have x⇤(t
comm

) < x
comm

< x
invent

(t
comm

), that is, optimal
post-commercialization protection is smaller than our constructed policy x

comm

, which itself is smaller
than the given policy x

invent

(·). By the same argument as in the proof of Proposition 5, reducing post-
commercialization protection from x

invent

(t
comm

) to x
comm

is welfare improving for these inventions (and
we would be better off reducing further to x⇤(t

comm

)): awarding more protection than x⇤(t
comm

) increases
deadweight loss faster than it increases the gains from non-elicited inventions. Similarly, now take an
invention with t

comm

> t0. For such an invention we have x⇤(t
comm

) > x
comm

> x
invent

(t
comm

), and
our increase of patent protection from x

invent

(t
comm

) to x
comm

increases the gains from eliciting more
inventions faster than it increases deadweight loss.

Figure 7: Illustration of the Proof of Proposition 6
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Notes: The post-commercialization patent term function under current policy, denoted x

invent

(·) in the text, has a negative 45-degree

slope until it reaches zero, then it is flat. The post-commercialization patent term under optimal policy, denoted x

⇤
(·) in the text, is

strictly increasing, but we do not know its shape or location.

Last, suppose that the curves x⇤(t
comm

) and x
invent

(t
comm

) do not intersect; this occurs iff x⇤(0) >
x
invent

(0). In this case, construct our post-commercialization patent term according to x
comm

= x⇤(0).
For all inventions, we have x⇤(t

comm

) � x
comm

> x
invent

(t
comm

), and the argument in the preceding
paragraph implies that this policy strictly increases welfare. QED.
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A.7 Proof of Proposition 7

Proof of Part 1. This follows immediately from the private investment condition (3). Since surrogate
endpoints decrease t

comm

, they increase EML, which might cause additional investments to occur. For-
mally, let t

comm

and t̂
comm

denote a drug’s commercialization lag with and without surrogate endpoints,
respectively. Consider a drug where surrogate endpoints strictly decrease commercialization lag, i.e.
t
comm

< t̂
comm

. Let EMLSurrogate and EMLNoSurrogate denote EML with and without the surrogate
endpoint; t

comm

< t̂
comm

implies that EMLSurrogate > EMLNoSurrogate. Now choose ⇡, c and p such
that

EMLSurrogate · ⇡ � c

p
> EMLNoSurrogate · ⇡

Such an invention will get commercialized with surrogate endpoints but not without. The second part of
the statement follows from our assumption that surrogate endpoints always decrease commercialization
lag, and hence always increase EML.

Proof of Part 2. The social welfare associated with a successfully commercialized invention is EML ·
vmonop+(ETL�EML)·v. A reduction in t

comm

strictly increases EML, and has no effect on ETL�EML,
because both ETL and EML increase by the expected number of additional years that the drug will be
commercially available. Hence, the social welfare associated with any commercialized invention goes up,
sometimes strictly. In combination with part (1) this yields that overall social welfare strictly increases.

Proof of Part 3. Follows immediately from the assumption that t
comm

is orthogonal to t̂
comm

and the
definition of the fixed patent term distortion. QED.

A.8 Proof of Proposition 8

Choose arbitrary commercialization lags t
comm

, t0
comm

, with t
comm

< t0
comm

. Initially, suppose that inven-
tions with these commercialization lags receive the same per-commercialization-effort subsidy, of s > 0
dollars. We will argue that the marginal social welfare benefit of an increase in s for t0

comm

inventions is
strictly larger than that for t

comm

inventions.
Consider a marginal increase in the invention subsidy for commercialization lags t

comm

and t0
comm

. By
the same logic as in the proof of Proposition 5, the marginal invention with lag t0

comm

is weakly more
socially valuable than the marginal invention with lag t

comm

. Also by the same logic as in the proof of
Proposition 5, the cost associated with providing a subsidy to inframarginal inventions (i.e., inventions we
would have received anyway) is smaller the longer is the commercialization lag, since any set of invention
parameters that leads to commercialization with lag t0

comm

also leads to commercialization when the lag is
the shorter t

comm

. Hence, at the margin, additional subsidy to t0
comm

inventions is more valuable than to
t
comm

inventions. This implies that optimal subsidies are increasing in commercialization lag, as required.
QED.

A.9 Power calculation derivation

Our conceptual framework is based on the idea that inventions which require long commercialization
lags may be under-incentivized by the patent system. Empirically, we focus on patient survival as a
determinant of clinical trial length: because clinical trials must generally show evidence that treatments
improve mortality-related outcomes, clinical trials tend to be longer when enrolling patients with longer
survival times. In this section, we outline one example of a power calculation of the type used to guide
the design of clinical trials in order to fix ideas on this point.
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Approval of a drug compound by the US FDA requires evidence of efficacy and safety. Traditionally,
“evidence of effectiveness” has been interpreted as evidence from controlled clinical trials. While most FDA
approvals are based on placebo control groups, oncology trials instead compare the new drug compound to
a non-placebo control of existing therapy. When testing the null hypothesis of no difference in mortality
outcomes between the treatment and control groups, the traditional threshold for statistical evidence in
oncology trials allows for a 1-in-20 chance of a false positive conclusion, or a p-value of 0.05.47 This type
of bar for statistical evidence motivates a calculation of what clinical trial design will be needed to achieve
adequate statistical power to detect a statistically significant difference between the treatment and control
groups.

An enormous literature exists on the design of clinical trials. Here, we simply focus on one type of
calculation as an example. Collett (2003)’s Modelling Survival Data in Medical Research textbook includes
a chapter on clinical trial design when survival is the outcome. Collett frames the design problem as a
calculation of the required number of total deaths that must be observed.48 Following this approach, at a
given follow-up time k after treatment is administered, we can express the total number of deaths as D =
N

2

(1�µk)+ N

2

[1�(1�R(1�µ))k], where µ is the per-period survival rate of untreated individuals, k is the
number of periods of patient follow-up, N is the sample size (equally divided between the treatment group
and the control group), and R is a constant per-period multiplicative treatment effect. This expression
can be derived as follows:

Pr(die at time t|survival to time t� 1) =

(
1� µ for Control
R(1� µ) for Treatment

Pr(survive at time t|survival to time t� 1) =

(
µ for Control
1�R(1� µ) for Treatment

where µ is bounded by 0 and 1 and R is constrained such that R(1� µ) also is bounded by 0 and 1.
Consider first the control group. In the initial period there are N

2

individuals. In the subsequent period,
there are N

2

·µ, and in the kth period there are N

2

·µk. Thus in the kth period there are N

2

�N

2

·µk = N

2

(1�µk)
deaths in the control group. Similarly, in the treatment group, at time k there are N

2

· [1 � R(1 � µ)]k

survivors and N

2

· {1� [1�R(1� µ)]k} deaths. Thus the total number of deaths in the sample at time k
is:

D =
N

2
(1� µk) +

N

2
· [1� (1�R(1� µ))k]

=
N

2
[2� µk � (1�R(1� µ))k]

Applying the implicit function theorem, we can derive the following two comparative statics:

@N

@µ
=

2D(kµk�1 +Rk(1�R(1� µ))k�1)

[2� µk � (1�R(1� µ))k]2

@k

@µ
=

kµk�1 +Rk(1�R(1� µ))k�1

�[µk lnµ+ (1�R(1� µ))k ln(1� (R(1� µ))]
.

Since 0 < µ < 1 and 0 < R(1 � µ) < 1, both of these partial derivatives are positive. Thus, we have
47See, for example, http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/ucm103366.pdf.
48See the discussion in Chapter 10.

http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/ucm103366.pdf
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two results. First, the required follow-up period k is increasing in the per-period survival rate µ: @k

@µ

> 0.
Second, the required sample size N is increasing in µ: @N

@µ

> 0.
The first comparative static is the focus of our conceptual framework: clinical trials enrolling patients

with longer expected survival times will - all else equal - require longer follow-up periods. The second
comparative static is related to our conceptual framework in a more nuanced way. In the absence of
detailed data on clinical trial costs (which are confidential), it is difficult to know whether the financial
cost of enrolling an additional patient is higher or lower than an equivalently effective lengthening of the
trial. However, in addition to the financial cost of enrolling additional patients, there is also a time cost
of an increase in sample size because of the time required to recruit patients.

A variety of sources have stressed the time required to recruit patients as a barrier to clinical devel-
opment; for example, Bartfai and Lees (2006) argue: “[m]any trials take a long time because the rate
of enrollment is low. It is not uncommon that a 90-day drug trial takes 18 months to complete for all
enrolled patients; it might take 90 days for each patient, but by the time the selected centers reach the
required numbers 1.5 years have flown by.”49 Importantly for our analysis, commentators often point
to the running patent term as the reason why these delays due to patient recruiting are so costly. A
book on clinical trial management notes, “access to patients remains critical for the success of clinical
development programs” because “[s]low patient recruitment can delay product launch with revenue loss
during the precious product patent life” (Chin and Bairu, eds (2011)). There are even reports of specific
drugs being dropped from development because slow patient recruitment led to delays that consumed too
much of their patent life (e.g. Kohan et al. (2012)). Thus, although at first blush clinical trial size might
seem to be a mechanism for increasing the statistical power of clinical trials that is independent of trial
length, this margin of adjustment also fits into our conceptual framework.

A.10 Elasticity calculation

In this section, we outline our rough estimate of the elasticity of R&D investment with respect to an
additional year of commercialization lag.

From our empirical work in Section 4, we have an estimate of how R&D investment responds to the
5-year survival rate, @(R&D investment)

@(5-year survival rate) . To translate this estimate into our elasticity of interest, we would

like to scale @(R&D investment)
@(5-year survival rate) by an estimate of how commercialization lag varies with the 5-year survival

rate. By combining these estimates, we could then estimate the elasticity of interest:

@(R&D investment)
@(5-year survival rate)

@(commercialization lag)
@(5-year survival rate)

=
@ (R&D investment)

@ (commercialization lag)

The conceptual problem with estimating @(commercialization lag)
@(5-year survival rate) is that - by construction - we only observe

clinical trial length conditional on a drug compound being placed in clinical trials. Because - consistent
with our model - we document that fewer drug compounds are placed in clinical trials for patients with
longer survival times, we expect selection into clinical trials to bias the relationship between patient
survival and clinical trial length in the set of observed clinical trials. Perhaps the most natural selection
story is that firms are only willing to place a drug compound in clinical trials for patients with long expected
survival times if they receive permission to use a surrogate endpoint in place of survival as an endpoint;
in this case, the relationship between patient survival and clinical trial length would be biased towards
zero.50 Given this selection, we cannot obtain an unbiased empirical estimate of @(commercialization lag)

@(5-year survival rate) . To

49See also Hovde (2006), Goffin (2009), Malani and Philipson (2011), and Allison (2012).
50If we estimate this relationship in our data, we do estimate a statistically significant relationship; however, the magnitude
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overcome this selection problem, we instead calibrate the relationship between commercialization lag and
the 5-year survival rate using the power calculation outlined in Appendix A.9.

We can approximate our estimate of @(commercialization lag)
@(5-year survival rate) with an estimate of @(clinical trial length)

@(5-year survival rate) , given
that we expect commercialization lag to scale one-for-one with clinical trial length. In the language of the
power calculation outlined in Appendix A.9, we can re-write this elasticity as:

@ (commercialization lag)
@ (5-year survival rate)

=
@ (clinical trial length)
@ (5-year survival rate)

=
@k

@µ
=

kµk�1 +Rk(1�R(1� µ))k�1

�[µk lnµ+ (1�R(1� µ))k ln(1� (R(1� µ))]

where µ is the per-period survival rate of untreated individuals, k is the number of periods of patient
follow-up, and R is a constant per-period multiplicative treatment effect.

Intuitively, µ and k come in pairs - not all µ and k are feasible conditional on a given technology (R).
Here, we take the two (µ, k) pairs from the examples in the introduction given that by construction these
are feasible pairs (given that the trials were completed), and that we know these trials looked at survival
outcomes (rather than surrogate endpoints). We assume a technology of R = 0.8, which translates to a 20
percent improvement in the five-year survival rate; this choice of R is arbitrary but we explore robustness
to alternative values of R below. Given the assumed value of R, our two introduction examples can be
written as:

1. Metastatic prostate cancer: 5-year survival rate of 20 percent (µ = 0.2)

(a) Follow-up time of 12.8 months ((12.8/12)/5 => k = 0.213 units in 5-year increments)
(b) Total trial length of 3 years (3/5 => k = 0.6 in 5-year increments)

2. Localized prostate cancer: 5-year survival rate of 80 percent (µ = 0.8)

(a) Follow-up time of 9.1 years (9.1/5 => k = 1.82 units in 5-year increments)
(b) Total trial length of 18 years (18/5 => k = 3.6 units in 5-year increments)

Plugging in these values for µ, k, and R into the above formula for @k

@µ

gives estimates of 2.234 for
metastatic prostate cancer, and 0.766 for localized prostate cancer. Those estimates are in units of 5-year
increments, and multiplying them by 5 to translate them into a 1-year unit gives 11.170 and 3.827. In
words, a change from 0 to 1 in the 5-year survival rate translates to between a 3.827-11.170 year increase
in patient follow-up time.

Our estimate from Section 4 implies that a change from 0 to 1 in the 5-year survival rate translates into
an 86.9% reduction in R&D investment. Scaling this estimate by our estimates of @(commercialization lag)

@(5-year survival rate)
implies an estimated semi-elasticity of R&D investment with respect to a one-year change in commercial-
ization lag of between 7.779% (based on metastatic prostate cancer; 86.9/11.170 = 7.779) and 22.707%
(based on localized prostate cancer; 86.9/3.827 = 22.707).

is implausibly small, consistent with our prior that this relationship would be biased towards zero (a ten percentage point
increase in the five-year survival rate is associated with a 1.5 percent increase in average clinical trial length - an increase
on the order of one month).
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Alternatively, we can do the same calculation using total trial length (3 and 18 years) rather than
follow-up times (12.8 months and 9.1 years). Reassuringly, we obtain nearly identical estimates: 7.993%
(based on metastatic prostate cancer; 86.9/10.872 = 7.993) and 23.416% (based on localized prostate
cancer; 86.9/3.711 = 23.416).

We can investigate sensitivity of our estimates to different assumed values of R, the quality of the
technology. A ‘reasonable’ range of R might be between 0.15-0.95, in which case our estimated elasticities
fall between 6-54%.51

If we are willing to make the additional assumption that a reduction in commercialization lag affects
R&D investments only through the mechanism of lengthening effective patent terms (and not, e.g., through
discounting or a change in the cost of clinical trials), then our estimated elasticity of 7-23% can also be
interpreted as an estimate of the percent increase in R&D investment that would be realized given a
one-year increase in effective patent terms.

51Our metastatic prostate cancer example from the introduction - where the treatment resulted in a gain of 3.9 months
on average - corresponds to R = 0.961, which implies elasticity estimates between 6-20%. On the other extreme Gleevec,
often referenced as a “miracle” drug, is estimated to have increased the five-year survival rate from 30% to 89% - implying
R = 0.157, and elasticity estimates between 17-54%.
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B Appendix: Data (not for publication)

B.1 Description of SEER cancer registry data

The Surveillance, Epidemiology, and End Results (SEER) data is compiled by the National Cancer Insti-
tute (NCI), and is considered the authoritative source of information on cancer incidence and survival in
the US.52

SEER collects data from population-based cancer registries covering approximately 28 percent of
the US population. Specifically, the SEER data aims to be a comprehensive census of all cancer cases
diagnosed among residents of geographic areas covered by SEER cancer registries. In order to focus on a
geographically consistent sample over time, we analyze data from the seven original SEER registries that
joined in 1973: the states of Connecticut, Iowa, New Mexico, Utah, and Hawaii and the metropolitan
areas of Detroit and San Francisco-Oakland. Funding for the data collection varies by state, and is a mix
of funding from the NCI, the Centers for Disease Control and Prevention (CDC), and state funding.

The SEER registries collect detailed information on cancer patients near the time of diagnosis, includ-
ing data on patient demographics, primary tumor site, tumor morphology and stage at diagnosis, and first
course of treatment.53 This data is administratively linked to follow-up mortality data from the National
Center for Health Statistics (NCHS).

We use the 1973-2009 SEER Research Data (ASCII text format) as downloaded on 25 June 2012, which
includes patients diagnosed from 1973-2009.54 The follow-up mortality data cutoff date is 31 December
2009. The key variables that we obtain from the SEER data are the following:

• Cancer information. We use the SEER site recode with kaposi sarcoma and mesothelioma variable
to identify the cancer type for each individual in our sample. For example, a value of 20010 for this
variable corresponds to a diagnosis of lip cancer. There are 80 unique cancer categories, as listed
here: http://seer.cancer.gov/siterecode/icdo3_d01272003/. This variable is non-missing for
all observations.

• Stage information. We use the SEER historic stage A variable to identify the stage of cancer for
each individual in our sample: in situ, localized, regional, metastatic, or unknown. As described on
the SEER website, stage information is not available for all observations for three reasons.55 First,
some cancers are not staged by SEER: for example, brain cancers are not staged.56 Second, some
cancers are not staged in a subset of years: for example, between 1973-1982 nose, nasal cavity, and
middle ear cancers were not staged.57 Third, some individual observations that should be staged

52For more details, see http://www.seer.cancer.gov.
53Importantly for our purposes, the SEER website notes that the SEER data is the only comprehensive source of

population-based information in the US that includes stage of cancer at the time of diagnosis and patient survival data.
54This data is available via a research data agreement; see https://www.seer.cancer.gov/seertrack/data/request/ for

details. The citation for this data is: Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.
gov) Research Data (1973-2009), National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems
Branch, released April 2012, based on the November 2011 submission.

55For more information, see http://seer.cancer.gov/seerstat/variables/seer/yr1973_2009/lrd_stage/index.html.
56The SEER site recodes that are not staged by SEER are: brain (31010); cranial nerves and other nervous system

(31040); pleura (22050); hodgkin and non-hodgkin lymphoma (both nodal and extranodal; 33011, 33012, 33041, and 33042);
myeloma (34000); acute lymphocytic leukemia (35011); chronic lymphocytic leukemia (35012); other lymphocytic leukemia
(35013); acute myeloid leukemia (35021); acute monocytic leukemia (35031); chronic myeloid leukemia (35022); other
myeloid/monocytic leukemia (35023); other acute leukemia (35041); aleukemic, subleukemic, and not otherwise specified
leukemias (35043); kaposi sarcoma (36020); and miscellaneous (37000).

57The SEER site recodes that are staged by SEER for a subset of years are: nasopharynx (not staged 2004 and later;
20060); peritoneum, omentum, and mesentery (not staged 1973-1987; 21120); nose, nasal cavity, and middle ear (not staged

http://seer.cancer.gov/siterecode/icdo3_d01272003/
http://www.seer.cancer.gov
https://www.seer.cancer.gov/seertrack/data/request/
www.seer.cancer.gov
www.seer.cancer.gov
http://seer.cancer.gov/seerstat/variables/seer/yr1973_2009/lrd_stage/index.html
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have missing stage data. The first two categories - for which missing stage data are “expected”
- result in stage data missing for 19 percent of the SEER sample; the third category - for which
missing stage data is “unexpected” - results in stage data missing for an additional 5 percent of the
SEER sample. The exceptions to the standard staging categories are as follows:

– Prostate cancer. Prostate cancer is staged by SEER starting in 1995, but uses a combined
localized/regional category rather than separate localized and regional stages. We code the
localized/regional prostate cases as regional cancers.

– Bladder cancer. All in situ cases of bladder cancer (29010) in the SEER data were re-coded by
SEER to appear as localized cancers.

For consistency, we code all unstaged cancers and cancers that utilize only one stage into an “un-
staged” stage classification in our analysis.

• Survival time. Because the SEER data are linked to follow-up mortality data from the National
Center for Health Statistics, for each individual in our sample we know survival time in months as
calculated using the date of diagnosis and one of the following: date of death, date last known to be
alive, or follow-up cutoff date of 31 December 2009. This variable is non-missing for all observations.

• Year of diagnosis. The SEER data record the year of diagnosis for each patient, defined as
the year the tumor was first diagnosed by a recognized medical practitioner, whether clinically or
microscopically confirmed. The year of diagnosis varies from 1973 to 2009, and is non-missing for
all observations. We use the year of diagnosis together with information on patient sex and age at
diagnosis to calculate life expectancy at the time of diagnosis (in the absence of cancer) for each
individual in the SEER sample.

• Age at diagnosis. The SEER data record the patient’s age in years at diagnosis. This variable is
missing for 692 of 3,245,656 individuals (0.02 percent of the sample). Because we need information
on age at diagnosis in order to calculate life expectancy at the time of diagnosis, we drop these 692
individuals from the sample.

• Sex. The SEER data record the sex of the patient at diagnosis. This variable is non-missing for all
observations. We use this variable together with information on year of diagnosis and patient age
at diagnosis to calculate life expectancy at the time of diagnosis for each individual in the SEER
sample.

Between 1973 and 2009, 3,245,656 individuals were diagnosed in catchment areas of the seven original
SEER registries. Our only sample restriction is to exclude the 692 individuals missing data on age at
diagnosis (0.02 percent of the sample), leaving us with a final SEER sample of 3,244,964 individuals.

SEER also produced population data which can be used to normalize the cancer incidence data into
rates per population. We use the 1969-2009 SEER population data (ASCII text format) for the catchment
areas of the seven original SEER registries as downloaded on 28 June 2012.58

1973-1982; 22010); larynx (not staged 2004 and later; 22020); lung and bronchus (not staged 1973-1987; 22030); trachea
(not staged 2004 forward; 22060); vagina (not staged 2004 forward; 27050); prostate (not staged 1973-1994; 28010); other
endocrine including thymus (not staged 2004 and later; 32020); and mesothelioma (not staged 2004 and later; 36010).

58The citation for this data is: Surveillance, Epidemiology, and End Results (SEER) Program Populations (1969-2009)
(www.seer.cancer.gov/popdata), National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems
Branch, released January 2011.

www.seer.cancer.gov/popdata
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B.2 Life expectancy data

We use year-age-gender-specific period life expectancy data for 1973-2006 from the National Center
for Health Statistics (NCHS) files posted at http://www.cdc.gov/nchs/products/life_tables.htm.
For 2000-2006, digitized files are available from NCHS. For 1973-1999, the data was entered by the firm
Digital Divide Data (http://www.digitaldividedata.org/) and was funded by NIA Grant Number
T32-AG000186 to the NBER. No data is available for 1979 nor 1981.

Based on the year of diagnosis, age at diagnosis, and gender of each patient, we use this NCHS data to
construct year-age-gender-specific life expectancy for each patient - in the absence of cancer - at the time
of diagnosis. Because in most years the life tables end at age 85, we apply the life expectancy numbers for
85-year-old individuals to all individuals age 85 and older. Because data is not available for years 1979,
1981, 2007, 2008, and 2009, we fill in the data as follows: apply the 1978 life expectancy data in 1979;
apply the 1980 life expectancy data in 1981; and apply the 2006 life expectancy data in 2007, 2008, and
2009. Using this life expectancy data, we calculate the life lost for each individual as their life expectancy
at the time of diagnosis minus their survival time in years.

We focus on measuring life lost among patients diagnosed between 1973-1983 to minimize censoring.
In this sample, median survival time by cancer-stage is almost never censored; in the handful of cases
where censoring is an issue, we top code survival time at 25 years.

B.3 Description of classification method for research investment datasets

Unlike the SEER data, our data measuring research investments in cancer treatments were not origi-
nally developed as research data, and hence required a large amount of restructuring to be converted to a
format useable for our analysis. We detail this restructuring below, but first describe the method we use
to classify the cancer and stages to which a given clinical trial is relevant.

We start by compiling a classification system which can consistently code observations that vary in
the aggregation level at which the cancer type was identified in the original data. For example, while
some cancer clinical trials enroll stage III breast cancer patients, others are open to all patients with “solid
tumors” and we need a way of classifying which cancer types are solid tumors. We base our classification
around the SEER site recode ICD-O-3 (1/27/2003) definition.59 These SEER site records define the major
cancer sites (e.g. breast, stomach, prostate) and are the standard set of cancer classifications used by
cancer researchers. Importantly, the SEER cancer registry data include SEER site recodes, so using the
SEER site recodes as the basis of our classification of the research investment datasets is what enables a
cross-walk between the SEER cancer registry data and the research investment data.

For each research investment observation, we search the textual description of the cancer type for
which the observation is relevant in order to match the observation to one or more of the SEER site
recodes.60 Most of the search words are drawn directly from the SEER site recode title (e.g. “lip” for lip
cancer, SEER site recode 20010), but we also search for variations on cancer names that are frequently
observed in the data (e.g. searching both “pancreas” and “pancreatic” for cancer of the pancreas, SEER
site recode 21100). We allow a given observation to be labeled as relevant to multiple cancer types (e.g.
an observation labeled as being relevant for hematologic/blood cancers is classified as relevant to all
hematologic/blood cancers, such as both acute myeloid leukemia and chronic myeloid leukemia). While
there are surely imperfections in this classification system, it allows for a consistent coding of our data.

One additional issue that deserves discussion is off-label use of drugs. Off-label prescription of a drug
refers to use of the drug outside of what is prescribed on its FDA-approved label (Leveque (2008)). Off-
label use of drugs is generally thought to be widespread, particularly in cancer, although very few studies
have actually measured the extent of off-label drug use in representative populations. An exception is

59Available at http://seer.cancer.gov/siterecode/icdo3_d01272003/.
60Detailed documentation on the precise search words used in this classification system are available on request.

http://www.cdc.gov/nchs/products/life_tables.htm
http://www.digitaldividedata.org/
http://seer.cancer.gov/siterecode/icdo3_d01272003/
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a recent study by Agha and Molitor (2012), who estimate that 22 percent of cancer drug prescriptions
were off-label in the Medicare population between 1998-2008. Why could off-label drug use be important
in this context? If off-label use were completely unrestricted, firms would face an incentive to always
approve drugs for the group of patients for which trials were the least expensive, and then ex post have
the drugs be prescribed for all patients. In practice, although in the US physicians are free to prescribe
drugs for off-label uses, it is illegal for pharmaceutical firms to actively advertise/promote those uses, and
additional constraints are often imposed by insurers for reimbursement. Perhaps the clearest evidence
that restrictions on off-label use appear to be binding comes from the fact that we very frequently observe
firms making large R&D investments to re-approve a given drug compound for an additional indication
(see, e.g., Eisenberg (2005)), which they would have no need to do if off-label use restrictions were not
binding.

B.4 Description of NCI cancer clinical trial registry data

The Physician Data Query (PDQ) Cancer Clinical Trials Registry is the National Cancer Institute
(NCI)’s cancer clinical trials database. The NCI registry was created via the National Cancer Act of 1971,
and claims to be the world’s most comprehensive cancer clinical trial registry. The intended purpose of this
registry is to allow cancer patients and physicians to search for clinical trials now accepting participants,
and to allow them to access information and results from closed trials.

We use the 12 July 2011 version of the NCI registry data (XML format), which includes all clinical trials
entered into the registry prior to that date.61 The registration of clinical trials in the NCI registry is strictly
voluntary but strongly encouraged. The NCI registry is thought to include most clinical trials sponsored
by the NCI, as well as a substantial share of clinical trials sponsored by pharmaceutical companies, medical
centers, and other groups. For example, the NCI registry includes all cancer clinical trials registered under
the requirements specified by Section 113 of the Food and Drug Administration Modernization Act of 1997
(phase II and higher drug treatment trials), all cancer clinical trials registered under the requirements of
the International Committee of Medical Journal Editors (phase II and higher trials that have a comparison
or control group), and all cancer clinical trials that are included in the US National Institutes of Health
(NIH) Clinicaltrials.gov database.

Many trials in our sample enroll multiple patient “types” as measured by the cancer-stages eligible for
participation in the trial, and we expand the data to unique trial-cancer-stage observations. We make
three sample restrictions. First, cancer stages are sometimes reported in the NCI data at a finer level of
granularity than we observe in the SEER data: for example, a given trial may list breast cancer stage IIA
and breast cancer IIB patients as eligible for enrollment, but we do not consistently observe cancer stage
at that level of detail in the SEER data. To avoid double-counting, we remove duplicate observations at
the trial-cancer-stage level. Second, because we do not observe remission in the SEER data, we are unable
to construct measures of the patient population eligible for these trials and thus drop trials enrolling only
remission cases from the sample. Third, because we do not observe recurrent cases in the SEER data, we
are again unable to construct measures of the patient population eligible for these trials and thus drop
trials enrolling only recurrent patients from the sample.

The key variables that we obtain from the NCI registry data are the following:

• Cancer information. We identify the types of cancers eligible for enrollment in each clinical trial,
coded by the SEER site recodes. By construction, this variable is non-missing for all observations.

• Stage information. In the NCI registry data, the cancer stages eligible for enrollment in each
clinical trial are most frequently identified in the following categories: stage 0, stage 1, stage 2,

61This data is available via a research licensing agreement; see http://www.cancer.gov/licensing for details. The scripts
used to extract the XML files are available on request.

Clinicaltrials.gov
http://www.cancer.gov/licensing
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stage 3, stage 4, recurrent cancers, cancers in remission, and localized cancers. As discussed above,
we drop trials enrolling only remission or recurrent patients from the sample. We then need a
crosswalk which maps the remaining stage categories in the NCI registry data - stage 0, stage 1,
stage 2, stage 3, stage 4, and localized cancers - to the SEER historic stage A categories in the
SEER data (in situ, localized, regional, and metastatic). We follow the AJCC Cancer Staging
Manual (American Joint Committee on Cancer (2010)) and use the following mapping: stage 0
maps into in situ; stages I, II, and localized map into localized; stage III maps into regional; and
stage IV maps into metastatic.62 In addition, to harmonize the NCI registry stage coding with the
SEER stage coding we make the following revisions:

– Prostate cancer. In the SEER data, the localized and regional prostate cases (28010) are coded
into a joint localized/regional category which as described above we code as regional cancers.
Analogously, in the NCI registry data we code trials for either localized or regional prostate
cancer as being for regional prostate cancer.

– Bladder cancer. In the SEER data, all in situ cases of bladder cancer (29010) are coded as
localized cancers. Analogously, in the NCI registry data we code trials for in situ bladder
cancers as being for localized bladder cancers.

For consistency, we code all cancers which SEER codes as either unstaged or utilizing only one stage
into an “unstaged” stage classification in our analysis.

• Clinical trial sponsorship. Approximately 50 percent of clinical trials in the NCI registry data
are listed as being either publicly sponsored or privately sponsored. We define publicly-sponsored
trials as trials that are solely publicly sponsored, and define privately-sponsored trials as trials that
are solely privately sponsored; in our sponsorship analysis, we treat the approximately 1 percent of
trials that are listed as being both publicly sponsored and privately sponsored as missing sponsorship
data.

• Clinical trial length. Length of clinical trials is very rarely reported in the NCI registry data. Our
understanding is that this is because the NCI registry is primarily oriented towards the recruitment
of patients into clinical trials, whereas trial lengths are typically reported at the time of trial com-
pletion. In order to obtain data on clinical trial length, we take advantage of the fact that the NCI
registry includes - where available - a Clinicaltrials.gov trial ID number. Clinicaltrials.gov
is a registry and results database of clinical trials: likely because Clinicaltrials.gov includes
clinical trial results, trial length is much better reported relative to the NCI registry data. The NCI
registry claims to include all cancer clinical trials listed in the Clinicaltrials.gov registry, and
approximately 70 percent of the NCI trials are included in the Clinicaltrials.gov registry. While
we rely on the more complete NCI registry for the main analysis, we use the Clinicaltrials.gov
subsample in order to examine data on trial length. Approximately 60 percent of trials in the NCI
registry which appear in the Clinicaltrials.gov registry have non-missing data on trial length.
Much of the missing data appears to be explained by trial length being more frequently reported in
more recent years (even given that we would expect missing data for ongoing trials to bias upwards
the share of trials with missing data in more recent years): on the order of 80 percent of trials

62The exact language on page 12 is as follows: “Stage I is usually assigned to tumors confined to the primary site with a
better prognosis, stages II and III for tumors with increasing local and regional nodal involvement, and stage IV to cases
with distant metastatic disease. In addition, a group termed stage 0 is assigned to cases of carcinoma in situ (CIS).”

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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starting in 1997 have missing data on trial length, compared to 50 percent in 2003 and 25 percent
in 2011. This increased reporting over time likely in part reflects increased incentives for reporting:
for example, there was a tightening of reporting requirements affecting clinical trials initiated in or
ongoing as of September 2007; see http://clinicaltrials.gov/ct2/info/results for details.

http://clinicaltrials.gov/ct2/info/results
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C Appendix: Additional figures and tables (not for publication)

Figure C.1: Survival time and R&D investments: Breast, colon, lung, and prostate cancers
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(a) Survival time and R&D investments
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(b) Survival time and market-size adjusted R&D investments

Notes: This figure shows the relationship between the five-year survival rate among patients diagnosed with a given cancer-stage

between 1973-2004 (the cohorts for which five-year survival is uncensored), and two measures of clinical trial activity for that

cancer-stage from 1973-2011, for the “big four” cancers: breast (26000), colon (specifically, ascending colon; 21043), lung (22030), and

prostate (28010). The level of observation is the cancer-stage. Panel (a) plots the number of clinical trials enrolling patients of each

cancer-stage from 1973-2011; Panel (b) plots the number of clinical trials enrolling patients of each cancer-stage from 1973-2011

divided by the number of patients diagnosed with that cancer-stage from 1973-2009, as a rough adjustment for market size. For

details on the sample, see the text and data appendix.
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Figure C.2: Survival time and R&D investments: Residualized cancer-stage data
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(a) Raw data
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(b) Market size and cancer fixed effects
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(c) Market size and stage fixed effects
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(d) Market size, cancer and stage fixed effects

Notes: This figure shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage

between 1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of each

cancer-stage from 1973-2011. The level of observation is the cancer-stage. Panel (a) shows the raw data; Panel (b) residualizes market

size and cancer fixed effects; Panel (c) residualizes market size and stage fixed effects; and Panel (d) residualizes market size, cancer

fixed effects, and stage fixed effects. Market size denotes the inclusion of a covariate measuring the number of patients diagnosed with

that cancer-stage between 1973-2009. As explained in the text, unstaged cancers are omitted from these figures since these

observations do not identify the relationship of interest once we include cancer fixed effects and by definition unstaged cancers do not

correspond to localized, regional, or metastatic stage definitions; Figure 2 shows an analogous scatterplot which includes unstaged

cancers. For details on the sample, see the text and data appendix.
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Table C.1: Survival time and R&D investments: Robustness to cancer and stage fixed effects

(1) (2) (3) (4) (5)

five-year survival rate -0.963 *** -1.214 *** -1.551 *** -0.576 ** -1.709 ***
(0.236) (0.161) (0.095) (0.289) (0.269)

Market size no yes yes yes yes
Cancer fixed effects no no yes no yes

Stage fixed effects no no no yes yes

Dependent variable: Number of clinical trials (mean = 945)

Notes: This table shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between

1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of that cancer-stage

from 1973-2011. The level of observation is the cancer-stage. Estimates are from quasi-maximum likelihood Poisson models. Standard

errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01. Market size denotes the inclusion of a covariate measuring

the number of patients diagnosed with that cancer-stage between 1973-2009. As explained in the text, unstaged cancers are omitted

from these regressions since these observations do not identify the relationship of interest once we include cancer fixed effects and by

definition unstaged cancers do not correspond to localized, regional, or metastatic stage definitions; n=182. For details on the sample,

see the text and data appendix.
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Table C.2: Survival time and R&D investments: Robustness to alternative survival measures

(1) (2) (3) (4) (5)

one-year survival rate -0.781 **
(0.325)

five-year survival rate -0.869 ***
(0.319)

1973 survival (years) -0.034 ***
(0.013)

1973 one-year survival rate -0.598 **
(0.297)

1973 five-year survival rate -0.731 **
(0.309)

Dependent variable: Number of clinical trials (mean = 945)

Notes: This table shows the relationship between various measures of the survival rate among patients diagnosed with each cancer-stage

and the number of clinical trials enrolling patients of that cancer-stage from 1973-2011. The level of observation is the cancer-stage.

Estimates are from quasi-maximum likelihood Poisson models. Standard errors are clustered at the cancer level. *: p<0.10; **: p<0.05;

***: p<0.01. The number of observations is 201 in Columns (1) and (2), and 187 in Column (3), because 14 cancer-stages had no

patients diagnosed in 1973. For details on the sample, see the text and data appendix.

Table C.3: Survival time and R&D investments: Robustness across samples

(1) (2) (3) (4) (5) (6)

five-year survival rate -0.869 *** -1.167 *** -1.241 ** -1.662 *** -0.963 *** -1.214 ***
(0.319) (0.323) (0.529) (0.515) (0.236) (0.161)

Market size no yes no yes no yes
Excluding metastatic cancers no no yes yes no no

Excluding unstaged cancers no no no no yes yes

Dependent variable: Number of clinical trials (mean in Columns (1), (2) = 945)

Notes: This table shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between

1973-2004 (the cohorts for which five-year survival is uncensored), and the number of clinical trials enrolling patients of that cancer-

stage from 1973-2011. The level of observation is the cancer-stage. Estimates are from quasi-maximum likelihood Poisson models.

Standard errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01. Market size denotes the inclusion of a covariate

measuring the number of patients diagnosed with that cancer-stage between 1973-2009. N = 201 in Columns (1) and (2); given the

sample restrictions noted in the table, n=140 in Columns (3) and (4), and n=182 in Columns (5) and (6). For details on the sample,

see the text and data appendix.
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Table C.4: Survival time and FDA drug approvals: Cancer-stage data

(1) (2) (3)

five-year survival rate -2.306 ** -2.719 *** -2.559 ***
(0.912) (0.778) (0.872)

Market size no yes no
Life-years lost no no yes

Dependent variable: Number of approved drugs (mean = 0.507)

Notes: This table shows the relationship between the five-year survival rate among patients diagnosed with each cancer-stage between

1973-2004 (the cohorts for which five-year survival is uncensored), and the number of drugs approved by the US FDA for that cancer-

stage from 1990-2002. The level of observation is the cancer-stage. Estimates are from quasi-maximum likelihood Poisson models.

Standard errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01. Market size denotes the inclusion of a covariate

measuring the number of patients diagnosed with that cancer-stage between 1973-2009. Life-years lost is measured as age-gender-year

specific life expectancy (in the absence of cancer) in the year of diagnosis, less observed survival time in years, averaged over patients

diagnosed with that cancer-stage between 1973-1983 (to minimize censoring) multiplied times market size. The number of observations

is 201 in Columns (1) and (2), and 192 in Column (3), because 9 cancer-stages had no patients diagnosed between 1973-1983. For

details on the sample, see the text and data appendix.
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Table C.5: Surrogate endpoints, survival time, and drug approvals

(1) (2) (3)

five-year survival rate -2.327 *** -2.798 *** -2.604 ***
(0.902) (0.742) (0.847)

(0/1: hematologic) 1.250 *** 1.348 *** 1.269 ***
(0.458) (0.434) (0.423)

Market size no yes no
Life-years lost no no yes

(1) (2) (3)

(five-year survival rate)*(0/1: hematologic) 6.632 *** 7.075 *** 6.896 ***
(1.668) (1.389) (1.412)

five-year survival rate -3.743 *** -4.198 *** -4.125 ***
(1.273) (0.804) (0.943)

(0/1: hematologic) -1.032 -1.073 -1.133 *
(0.725) (0.702) (0.682)

Market size no yes no
Life-years lost no no yes

Panel (A): Level of R&D, Dependent variable: Number of approved drugs (mean = 0.507)

Panel (B): Composition of R&D, Dependent variable: Number of approved drugs (mean = 0.507)

Notes: This table shows two analyses of how cancer R&D differs on hematologic malignancies relative to other cancers, as a way of

shedding light on how surrogate endpoints - which are more commonly used for hematologic malignancies - affect R&D investments.

Panel (A) regresses the number of drugs approved by the US FDA for that cancer-stage from 1990-2002 on the five-year survival rate

among patients diagnosed with each cancer-stage between 1973-2004 (the cohorts for which five-year survival is uncensored) and an

indicator for hematological malignancies. Panel (B) regresses the number of drugs approved by the US FDA for that cancer-stage

from 1990-2002 on the five-year survival rate among patients diagnosed with each cancer-stage between 1973-2004, an indicator for

hematological malignancies, and an interaction between these two variables. The level of observation is the cancer-stage. Estimates are

from quasi-maximum likelihood Poisson models. Standard errors are clustered at the cancer level. *: p<0.10; **: p<0.05; ***: p<0.01.

Market size denotes the inclusion of a covariate measuring the number of patients diagnosed with that cancer-stage between 1973-2009.

Life-years lost is measured as age-gender-year specific life expectancy (in the absence of cancer) in the year of diagnosis, less observed

survival time in years, averaged over patients diagnosed with that cancer-stage between 1973-1983 (to minimize censoring) multiplied

times market size. The number of observations is 201 in Columns (1) and (2), and 192 in Column (3), because 9 cancer-stages had no

patients diagnosed between 1973-1983. For details on the sample, see the text and data appendix.
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D Appendix: Development of chemoprevention drugs (not for publica-

tion)

In a review article on chemoprevention drugs in the journal Cancer Prevention Research, Meyskens et
al. (2011) compile a list of the FDA approved drugs which prevent human cancers: BCG for bladder
carcinoma in situ, Diclofenac for actinic keratoses, Celecoxib for familial adenomatous polyposis (FAP)-
polyps, Photofrin for Barrett’s esophagus, Tamoxifen/Raloxifene for breast cancer, and vaccines (Gardasil
and Cervarix) to prevent cervical cancer. As summarized in Section 5.3, our qualitative investigation of
the history of these FDA drug approvals suggests that each of these six approvals was either financed by
the public sector (Tamoxifen and BCG) or relied on the use of surrogate endpoints (Diclofenac, Celecoxib,
Photofrin, and cervical cancer vaccines). In this appendix, we provide documentation for this assertion.

D.1 BCG

The 1990 FDA approval for bladder carcinoma in situ was supported by clinical trials funded by the
National Cancer Institute (NCI).63 A popular press citation in the New York Times (Leary (1990)) noted
the approval was supported by “controlled, multi-center trials sponsored by the National Cancer Institute.”
Lippman and Hawk (2009) cite the importance of one particular trial by Lamm et al. (1991) as supporting
this approval, which was NCI-funded. Lippman and Hawk (2009) note: “The FDA approved BCG for
preventing recurrence of superficial bladder cancer in 1990 based on several clinical trials including one by
the Southwest Oncology Group (Lamm et al. (1991)).” The acknowledgements in the Lamm et al. (1991)
paper note: “Conducted by the Southwest Oncology Group and supported in part by Public Health Service
Cooperative Agreement grants from the National Cancer Institute (CA-04915, CA-37429, CA-42777, CA-
04919, CA-27057, CA-13512, CA-1238, CA-36020, CA-22433, CA-16385, CA-20319, CA-37918, CA-
13238, CA-35109, CA-12213, CA-12644, CA-35090, CA-461433, CA-35996, CA-35261, CA-14028, CA-
03096, CA-35274, CA-22411, CA-35178, CA-35117, CA-35176, CA-35281, CA-28862, CA-03389, and
CA-32102).”

D.2 Diclofenac

Diclofenac is a topical treatment for actinic keratoses, which is clinically recommended for treatment to
prevent disease progression to squamous cell carcinomas.64 See, for example, the FDA approval letter and
medical review for Diclofenac: http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2000/
21005ltr.pdf and http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21005_Solaraze_medr_
P1.pdf.

D.3 Celecoxib

The clinical trial endpoint for Celecoxib was a reduction in the number of adenomatous colorectal polyps,
as a surrogate endpoint for gastrointestinal and other familial adenomatous polyposis (FAP)-related can-
cers. The medical review for Celecoxib’s FDA approval notes: “The sponsor has submitted clinical efficacy

63Note that there seems to be a typo in the FDA approval date (1978) listed by Meyskens et al. (2011), because the FDA
approval seems to have been in 1990.

64See, for example, Mcintyre et al. (2007), who note: “Actinic keratoses should be treated because of their potential to

progress to squamous cell carcinomas.”

http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2000/21005ltr.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2000/21005ltr.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21005_Solaraze_medr_P1.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21005_Solaraze_medr_P1.pdf
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and safety data in support of the following new indication for Celebrex [celecoxib]: reduction in the num-
ber of adenomatous colorectal polyps in familial adenomatous polyposis patients...based on improvement
in a surrogate endpoint” ( http://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21156-S007_
Celebrex_medr.pdf).

D.4 Photofrin

The clinical trial endpoint for Photofrin was “complete ablation of high-grade dysplasia in patients
with Barrett’s esophagus,” as a surrogate endpoint for the incidence of esophageal carcinoma. See,
for example, the label for Photofrin: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/
020451s020lbl.pdf.

D.5 Tamoxifen

Lippman and Brown (1999) note that the 1998 FDA approval of Tamoxifen as a chemoprevention agent was
supported by the National Surgical Adjuvant Breast and Bowel Project’s Breast Cancer Prevention Trial
(Fisher et al. (1998)), which was funded by the National Cancer Institute and the National Institutes
of Health. Lippman and Brown (1999) note: “Tamoxifen as a chemopreventive agent has produced a
fundamental change in the outlook for controlling breast cancer. Tamoxifen in the National Surgical
Adjuvant Breast and Bowel Project (NSABP) P-1 Breast Cancer Prevention Trial (BCPT) achieved a
striking 49% reduction in the incidence of invasive breast disease in women at increased risk of breast
cancer (Fisher et al. (1998)). With this finding, the Food and Drug Administration (FDA) approved
tamoxifen for risk reduction in this setting, marking the historic first FDA approval of any agent for
cancer risk reduction.” The acknowledgements in the Fisher et al. (1998) paper note: “This investigation
was supported by Public Health Service grants U10-CA- 37377 and U10-CA-69974 from the National
Cancer Institute, National Institutes of Health, Department of Health and Human Services.”

D.6 Cervical cancer vaccines

The clinical trial endpoints for cervical cancer vaccines (Gardasil and Cervarix) were the incidence
of cervical CIN 2/3 (cervical intraepithelial neoplasia grade 2/3) and cervical AIS (cervical adenocar-
cinoma in situ), as surrogate endpoints for the incidence of cervical cancer. See, for example, the
label for the Gardasil vaccine: http://www.fda.gov/downloads/biologicsbloodvaccines/vaccines/
approvedproducts/ucm111263.pdf, which states: “CIN 2/3 and AIS are the immediate and necessary
precursors of squamous cell carcinoma and adenocarcinoma of the cervix, respectively. Their detection
and removal has been shown to prevent cancer; thus, they serve as surrogate markers for prevention of
cervical cancer.”

http://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21156-S007_Celebrex_medr.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21156-S007_Celebrex_medr.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020451s020lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020451s020lbl.pdf
http://www.fda.gov/downloads/biologicsbloodvaccines/vaccines/approvedproducts/ucm111263.pdf
http://www.fda.gov/downloads/biologicsbloodvaccines/vaccines/approvedproducts/ucm111263.pdf
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