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Some remarks on the effect of interphases on the mechanical response
and stability of fiber-reinforced elastomers

Katia Bertoldia, Oscar Lopez-Pamiesb

aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

bDepartment of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801-2352, USA

Abstract

In filled elastomers, the mechanical behavior of the material surrounding the fillers — termed interphasial
material — can be significantly different (softer or stiffer) from the bulk behavior of the elastomeric matrix.
In this paper, motivated by recent experiments, we study the effect that such interphases can have on
the mechanical response and stability of fiber-reinforced elastomers at large deformations. We work
out in particular analytical solutions for the overall response and onset of microscopic and macroscopic
instabilities in axially stretched 2D fiber-reinforced non-linear elastic solids. These solutions generalize the
classical results of Rosen (1965) and Triantafyllidis and Maker (1985) for materials without interphases.
It is found that while the presence of interphases does not significantly affect the overall axial response of
fiber-reinforced materials, it can have a drastic effect on their stability.

Key words: Finite strain; Microstructures; Homogenization; Instabilities; Bound rubber

1. Introduction

It is by now well established that the portion of material surrounding the fillers in filled elastomers —
often referred to as “bound rubber” or more generally as interphasial material — can exhibit a mechanical
behavior markedly different (softer or stiffer) from that of the matrix in the bulk. In the case when the
surfaces of the fillers are suitably treated to form strong bonds with the matrix, such interphases can be
up to one order of magnitude stiffer than the matrix material in the small-deformation regime (see, e.g.,
[1, 2] and references therein), and possibly even more at large deformations [3]. On the other hand, for
untreated surfaces or surfaces that are treated unfavorably to form bonds with the matrix, the interphases
can be significantly softer [4].

The study of the chemistry, geometry, and physical properties of interphases in filled elastomers has
a long and motley history, yet numerous practical and theoretical issues remain unresolved [5, 6, 7].
From a mechanical point of view, significant effort has been devoted to incorporate interphasial effects in
constitutive models, but almost exclusively within the limited context of small-strain linear elasticity (see,
e.g., [8, 9]). In this paper we investigate the effects that interphases can have on the macroscopic response
and stability of filled elastomer at large deformations. Motivated by recent experiments [4], and for the
sake of relative simplicity, attention is focused on axially stretched fiber-reinforced elastomers consisting
of a matrix phase reinforced by a single family of aligned long fibers.

To treat the problem analytically, fiber-reinforced elastomers are idealized here as 2D solids comprised
of a periodic distribution of long aligned nonlinear elastic fibers that are bonded to a nonlinear elastic
matrix phase through interphases, as detailed in Section 2. By means of homogenization and Floquet
analyses of the relevant equations of elastostatics, we then generate solutions for the macroscopic response
— in Section 3 — and onset of instabilities — in Sections 4 and 5 — for this class of reinforced materials
directly in terms of the size and behavior of the interphases. Representative numerical results are presented
and discussed in Section 6 followed by some concluding remarks in Section 7.
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2. Problem formulation
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Figure 1: (a) Schematic of two unit cells (or repeat lengths) of a fiber-reinforced elastomer with interphases in the
undeformed configuration Ω0. Materials r = 1, 2, 3 characterize the matrix, fibers, and interphases, respectively.
The initial fiber direction and repeat length are denoted by N and L0. (b) Unit cell in the deformed configuration
Ω of the axially stretched fiber-reinforced elastomer before the occurrence of an instability.

Since 2D idealizations of fiber-reinforced materials — utilized by Rosen [10] and later formalized by
Triantafyllidis and Maker [11] in their classical works — are known to lead to results that are qualitatively
similar to their 3D counterparts [12, 13], here we consider a 2D periodic distribution of long aligned fibers
that are bonded to a matrix phase through interphases. Thus we focus on fiber-reinforced elastomers

made up of layers of three different materials (r = 1, 2, 3), with volume fractions c
(r)
0 = L

(r)
0 /L0 in the

undeformed stress-free configuration Ω0, that are periodically intercalated in the sequence shown in Fig.
1(a). Material r = 1 corresponds to the matrix phase, whereas materials r = 2 and r = 3 correspond to
the fibers and interphases, respectively. The domains occupied by each individual phase are denoted by

Ω
(r)
0 so that Ω0 = Ω

(1)
0

∪
Ω

(2)
0

∪
Ω

(3)
0 . The initial fiber direction and repeat length are designated by the

unit vector N and scalar L0. In the sequel, the microscopic size L0 is assumed to be much smaller than
the macroscopic size of Ω0, so that Ω0 can be regarded as a representative volume element.

Material points in the solid are identified by their initial position vector X in Ω0. Upon deformation
the position vector of a point in the deformed configuration Ω is specified by x = χ(X), where χ is a
continuous and one-to-one mapping from Ω0 to Ω. The pointwise deformation gradient tensor is denoted
by F = Gradχ.

All three materials are assumed to be homogenous1 nonlinear elastic characterized by strongly elliptic
stored-energy functions W (r) of F. At each material point X in the undeformed configuration, the first
Piola–Kirchhoff stress S is thus related to the deformation gradient F by

S =
∂W

∂F
(X,F), W (X,F) =

3∑
r=1

θ
(r)
0 (X)W (r)(F), (1)

where the indicator function θ
(r)
0 is equal to 1 if the position vector X is inside phase r and zero otherwise.

More specifically, owing to the assumed separation of length scales and the periodicity of the microstructure

θ
(r)
0 (X1, X2) = θ

(r)
0 (X1 + q1L0, X2 + r2), (2)

where q1 is an arbitrary integer, r2 is an arbitrary real number, and the fiber direction N has been tacitly
identified (without loss of generality) with the laboratory Cartesian basis vector e2 (see Fig. 1(a)).

1The development that follows can be easily generalized to interphases that are not homogeneous, such as for instance
graded interphases.
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The overall or macroscopic constitutive response for the above-described reinforced solid is defined as
the relation between the volume averages of the first Piola-Kirchoff stress S

.
= |Ω0|−1

∫
Ω0

S(X)dX and

the deformation gradient F
.
= |Ω0|−1

∫
Ω0

F(X)dX over Ω0 under affine displacement boundary conditions

[14, 15]. The result reads formally as

S =
∂W

∂F
(F), W (F) = min

F∈K(F)

1

|Ω0|

∫
Ω0

W (X,F)dX, (3)

where K denotes a suitably defined set of admissible deformations [16, 17]. W is the so-called effective
stored-energy function and represents physically the total elastic energy (per unit undeformed volume)
stored in the material. For small macroscopic deformations (near F = I) the minimization in (3)2 is
expected to yield a well-posed linearly elastic problem with a unique solution. As F deviates from I
beyond the linearly elastic neighborhood into the finite-deformation regime, the minimization in (3)2
may yield, however, more than one equilibrium solution with different overall energies. Physically such a
bifurcation signals the possible development of an instability.

Following the work of Triantafyllidis and collaborators (see, e.g., [11, 18, 19]), it is useful to make the
distinction between “microscopic” instabilities, that is, instabilities with wavelengths that are of the order
of the size of the microstructure L0, and “macroscopic” instabilities, that is, instabilities with much larger
wavelengths comparable to the size of Ω0. The computation of microscopic instabilities is in general a
difficult task, though, for the class of 2D fiber-reinforced materials of interest in this work, they can be
computed elegantly by making use of Floquet theory [11, 19]. On the other hand, the computation of
macroscopic instabilities is a much simpler task, since it reduces to the detection of loss of strong ellipticity
of the effective stored-energy function W [18].

The aim of this paper is to gain insight into the effect that interphases can have — via their relative

size c
(3)
0 and constitutive behavior W (3) — on the macroscopic response and onset of instabilities in fiber-

reinforced elastomers, as characterized by (3). In the sequel, for definiteness, we will focus on a specific
choice of energies W (r) for the matrix, fibers, and interphases that are general enough to contain all the
essentials of the problem and that at the same time lead to analytical solutions. The analysis of the
macroscopic response is presented in the next section, while the computations of the microscopic and
macroscopic instabilities are the focus of Sections 4 and 5.

3. Macroscopic response of a fiber-reinforced Neo-Hookean material with interphases

While the formulation presented in the previous section applies to nonlinear elastic materials charac-
terized by arbitrary stored-energy functions W (r), in this section and subsequently we consider the matrix
(r = 1) and the fibers (r = 2) to be incompressible and isotropic nonlinear elastic solids characterized by
Neo-Hookean stored-energy functions of the form

W (r)(F) =

 µ(r)

2
(F · F− 2) if detF = 1,

+∞ otherwise.
(4)

On the other hand, the interphases are assumed to be characterized by the compressible Neo-Hookean
stored-energy function

W (3)(F) =
µ(3)

2
(F · F− 2) + h(J), (5)

where the material parameters µ(r) > 0 denote the shear moduli of the three different constituents at
zero strain and h is an arbitrary convex2 function of J

.
= detF that satisfies the linearization conditions

h(1) = 0 and h′(1)
.
= dh(1)/dJ = −µ(3). A particular example that will be utilized later in the results

section is given by

h(J) = µ(3)[J ln J + 2(1− J)] + k

[
1

m+ 1
− J (−Jm +m+ 1)

m(m+ 1)

]
, (6)

2Here, h is required to be convex in order to automatically ensure strong ellipticity of W (3).
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where k > 0 and m < 0 are material constants. Comments on the constitutive choice (5) with (6) for the
interphases are deferred to Section 6.

3.1. Local deformation and stress fields at equilibrium

Having specified the constitutive behaviors (4)–(5) for the matrix, fibers, and interphases, we next
turn to computing the pointwise deformation gradient field F(X) that minimizes the functional (3)2, from
which we will then be able to compute the macroscopic constitutive relation between S and F. Similar
to the corresponding case in linear elasticity (see, e.g., Chapter 9 in [20]), the equilibrium solution F(X)
to the nonlinear problem (3)2 can be shown to be uniform per phase up to the onset of a first instability
[21]. When specialized to the stored-energy functions (4)–(5), such a solution can in turn be computed in
closed form. The result reads as

F(X) =


F

(1)
= F+α⊗N⊥ if X ∈ Ω

(1)
0

F
(2)

= F+ β ⊗N⊥ if X ∈ Ω
(2)
0

F
(3)

= F+ γ ⊗N⊥ if X ∈ Ω
(3)
0

, (7)

where the unit vector N⊥ is defined via N⊥ ·N = 0,

α = δFN⊥ +
1− (1 + δ)J

FN · FN
J F

−T
N⊥,

β = −µ(2) − (1 + δ)µ(1)

µ(2)
FN⊥ +

µ(2) − (1 + δ)µ(1)J

µ(2)FN · FN
J F

−T
N⊥,

γ = −c
(1)
0

c
(3)
0

α− c
(2)
0

c
(3)
0

β (8)

with

δ =
c
(2)
0 (µ(2) − µ(1))µ(3) + c

(3)
0 (µ(3) − µ(1))µ(2)

c
(1)
0 µ(2)µ(3) + c

(2)
0 µ(1)µ(3) + c

(3)
0 µ(1)µ(2)

, (9)

and J
.
= detF. Owing to the incompressibility of the matrix and fibers, the macroscopic deformation

gradient F in (7) must satisfy the unilateral constraint

J
(3) .

= detF
(3)

=
J − 1 + c

(3)
0

c
(3)
0

> 0, (10)

so that material impenetrability is not violated. It is also noteworthy that the field F(X) turns out to
be independent of the function h(J), which serves to characterize the compressibility of the interphasial
material, because of the incompressibility of the matrix and fibers.

Up to the onset of a first instability, the resulting local stress field S(X) at equilibrium is of course
also uniform per phase and can be simply written as

S(X) =


S
(1)

= µ(1)(F+α⊗N⊥)− p(1)
(
F

−T − J F
−T

N⊥ ⊗ F
−1

α
)

if X ∈ Ω
(1)
0

S
(2)

= µ(2)(F+ β ⊗N⊥)− p(2)
(
F

−T − J F
−T

N⊥ ⊗ F
−1

β
)

if X ∈ Ω
(2)
0

S
(3)

= µ(3)
(
F+ γ ⊗N⊥)+ h′(J

(3)
)
(
J
(3)

F
−T − J F

−T
N⊥ ⊗ F

−1
γ
)

if X ∈ Ω
(3)
0

,

(11)
where the vectors α, β, γ are given by expressions (8) and

p(1) =
J

FN · FN

[
µ(1) − µ(3) +

(
µ(1) +

c
(1)
0 + c

(2)
0

c
(3)
0

µ(3)

)
1− J

J

]
− h′(J

(3)
),

p(2) =
J

FN · FN

[
µ(2) − µ(3) +

(
µ(2) +

c
(1)
0 + c

(2)
0

c
(3)
0

µ(3)

)
1− J

J

]
− h′(J

(3)
). (12)

In contrast to the local deformation (7), note that the local stress field (11) does depend on the compress-
ibility function h(J).
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3.2. Macroscopic response

In view of the explicit results (7) and (11) for the local fields, it is now a simple matter to compute the
macroscopic constitutive response (3) for the above-defined fiber-reinforced Neo-Hookean material with
interphases. After some algebraic manipulation, the effective stored-energy function W in this case can
be shown to take the closed form

W (F) =
3∑

r=1

c
(r)
0 W (r)(F

(r)
)

=
µ

V

2

(
F · F− 2

)
−

µ
V
− µ

R

2
J

2
F

−T
N · F−T

N+

µ
V
− µ

R
J

2
+ µ(3)(J − 1)(J

(3)
+ 1)

2FN · FN
+ c

(3)
0 h(J

(3)
) (13)

where

µ
V
=

3∑
r=1

c
(r)
0 µ(r), µ

R
=

(
3∑

r=1

c
(r)
0

µ(r)

)−1

, (14)

and it is recalled that J
(3)

is given explicitly by equation (10). The macroscopic stress-deformation relation
is in turn given by

S =
∂W

∂F
(F) =

3∑
r=1

c
(r)
0 S

(r)

= µ
V
F+ (µ

V
− µ

R
)J

2
F

−T
N⊗ F

−1
F

−T
N−

µ
V
− µ

R
J

2
+ µ(3)(J − 1)(J

(3)
+ 1)

(FN · FN) 2
FN⊗N+

(
µ(3)J

(3) − µ
R
J
)
J

FN · FN
− (µ

V
− µ

R
)J

2
F

−T
N · F−T

N+ Jh′(J
(3)

)

 F
−T

. (15)

A few remarks regarding the above formulae are in order. First we note that the macroscopic consti-
tutive response (15) is transversely isotropic as expected, with the effective stored-energy function (13)

depending on the four transversely isotropic invariants F · F, FN · FN, F
−T

N · F−T
N, and J . We note

in particular that the dependence on J , which measures the overall compressibility of the fiber-reinforced
solid, is highly non-trivial (and not simply additive). The material constants µ(1), µ(2) and volume frac-

tions c
(1)
0 , c

(2)
0 of the matrix and fibers enter the macroscopic relations (13) and (15) simply through the

arithmetic µ
V
and harmonic µ

R
averages (14). On the other hand, the material parameter µ(3), material

function h(J), and volume fraction c
(3)
0 of the interphases enter (13) and (15) in a more complex manner.

For the special case of aligned or axial loading — to be the focus of our analysis subsequently — with

F ij = diag(λ1, λ2), (16)

the effective stored-energy function (13) reduces (with a slight abuse of notation) to

W (λ1, λ2) =
µ

V

2

(
λ

2

2 + λ
−2

2 − 2
)
− (1− λ1λ2)(λ1λ2 − 1 + 2c

(3)
0 )

2c
(3)
0 λ

2

2

µ(3) + c
(3)
0 h(J

(3)
) (17)

and the macroscopic stress (15) to Sij = diag(t1, t2) with

t1 =
∂W

∂λ1

(λ1, λ2) =
λ1λ2 − 1 + c

(3)
0

c
(3)
0 λ2

µ(3) + λ2h
′(J

(3)
),

t2 =
∂W

∂λ2

(λ1, λ2) = µ
V

(
λ2 − λ

−3

2

)
+

λ1λ2 − 1 + c
(3)
0 (2− λ1λ2)

c
(3)
0 λ

3

2

µ(3) + λ1h
′(J

(3)
), (18)
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where now J
(3)

= (λ1λ2−1+ c
(3)
0 )/c

(3)
0 . Finally, it is important to re-emphasize that expressions (13) and

(15) may cease to be valid at macroscopic deformations F sufficiently far away from the linearly elastic
neighborhood (near F = I) because of the development of instabilities. The computation of the critical
deformations Fcr and associated critical stresses Scr at which these instabilities first occur along aligned
loadings of the form (16) is the subject of the next two sections.

4. Onset of microscopic instabilities

Instabilities in solids are often investigated formulating the relevant incremental boundary value prob-
lem in an updated Lagrangian formulation, where the reference configuration moves and is identified with
the current configuration (see, e.g., Chapter 6 in [22]). Push-forward transformations allow the introduc-
tion of the incremental updated stress quantity Σ(x), so that the incremental equilibrium equation takes
the form

divΣ = 0. (19)

In the case of nonlinear elastic materials characterized by a stored-energy functionW (X,F), the underlying
constitutive equation takes the linear form

Σ = C gradu (20)

to first order in the incremental deformation field u(x)
.
= ẋ, where the components of the updated modulus

tensor are given by

Ciqkp =
1

J
FplFqj

∂2W

∂Fij∂Fkl
(X,F). (21)

If, in addition, the material is incompressible, u must satisfy the constraint tr(gradu) = 0 and as a result
relation (20) specializes to

Σ = C gradu+ p (gradu)T − ṗ I, (22)

where p and ṗ stand for the Lagrange multipliers associated with the incompressibility constraint.
In order to apply the above formalism to the problem of interest here, we begin by recognizing from

the periodicity of the microstructure that it suffices to consider equation (19) on just one unit cell of
the material — and not on the entire domain Ω — together with some additional boundary conditions
provided by Floquet theory. Given that our primary focus is on aligned macroscopic loadings (16), we
consider the unit cell depicted in Fig. 1(b). Note that, because of the updated Lagrangian formulation,
the unit cell is in the deformed configuration Ω and hence the lengths of the axially stretched layers are
given by

L(1) = F
(1)

11 L
(1)
0 = λ

−1

2 L
(1)
0 ,

L(2) = F
(2)

11 L
(2)
0 = λ

−1

2 L
(2)
0 ,

L(3) = F
(3)

11 L
(3)
0 =

λ1λ2 − 1 + c
(3)
0

λ2c
(3)
0

L
(3)
0 , (23)

as dictated by the underlying local deformation gradient (7). Because the underlying microstructure is
piecewise homogeneous, note further that continuity of the incremental deformation u and traction Σn⊥

requires that

[[u(x1 + L(1), x2)]] = 0, [[Σ(x1 + L(1), x2)]]n
⊥ = 0,

[[u(x1 + L(1) + L(3)/2, x2)]] = 0, [[Σ(x1 + L(1) + L(3)/2, x2)]]n
⊥ = 0,

[[u(x1 + L(1) + L(3)/2 + L(2), x2)]] = 0, [[Σ(x1 + L(1) + L(3)/2 + L(2), x2)]]n
⊥ = 0,

[[u(x1 + L, x2)]] = 0, [[Σ(x1 + L, x2)]]n
⊥ = 0, (24)

where n⊥ = N⊥ (since under loadings (16) the fibers do not rotate) and the notation [[f ]] has been
introduced to denote the difference in the values of any field quantity f when evaluated on both sides of
an interface.
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Matrix and fibers. Having identified the unit cell on which to carry out the incremental analysis, our next
step is to seek solutions to (19) of the form

u(r)(x1, x2) = v(r)(x1) exp[i k2 x2], ṗ(r)(x1, x2) = q(r)(x1) exp[i k2 x2], k2 ∈ (0,+∞) (25)

for the incompressible matrix material r = 1 and fibers r = 2. The incompressibility constraint requires
that

i k2 v
(r)
2 + (v

(r)
1 )′ = 0, (26)

where the dependency of v on x1 has been omitted for notational simplicity and ( · )′ .
= d( · )/dx1.

Substituting expressions (25)–(26) into the incremental equilibrium equation (19), and making use of the

notation C(r)
iqkp = 1

detF
(r)F

(r)

pl F
(r)

qj ∂
2W (r)(F

(r)
)/∂Fij∂Fkl, leads to the following system of linear ordinary

differential equations

(q(r))′ + k22C
(r)
1212v

(r)
1 + ik2

(
C(r)
1111 − C(r)

1122 − C(r)
1221

)
(v

(r)
2 )′ = 0

C(r)
2121(v

(r)
2 )′′ + k22(C

(r)
1122 + C(r)

1221 − C(r)
2222)v

(r)
2 − i k2 q

(r) = 0 (27)

for the unknowns v
(r)
1 , v

(r)
2 , and q(r) in each phase r = 1, 2. By defining the 4×4 matrix V(r) with non-zero

entries

V
(r)
12 = −i k2, V23 = 1, V32 = −k22

C(r)
1122 + C(r)

1221 − C(r)
2222

C(r)
2121

, V
(r)
34 = i k2

1

C(r)
2121

,

V
(r)
41 = −k22C

(r)
1212, V

(r)
43 = −ik2

(
C(r)
1111 − C(r)

1122 − C(r)
1221

)
, (28)

the solution to (27) can be compactly written as

y(r)(x1) = W(r) exp[Z(r)x2]a
(r), (29)

where y(r) = [v
(r)
1 v

(r)
2 (v

(r)
2 )′ q(r)]T . Here, Z(r) and W(r) are 4×4 matrices defined as Z(r) =

diag(z
(r)
1 , z

(r)
2 , z

(r)
3 , z

(r)
4 ) and W(r) = [w

(r)
1 |w(r)

2 |w(r)
3 |w(r)

4 ] with z
(r)
I and w

(r)
I (I = 1, 2, 3, 4) denoting the

eigenvalues and corresponding eigenvectors of the matrix V(r), while a(r) is a vector of unknown constants.

Interphases. In turn, for the compressible interphases (r = 3), we seek solutions of the form

u(3)(x1, x2) = v(3)(x1) exp[i k2 x2]. (30)

Upon substitution of expression (30) in (19) the following system of ordinary differential equations is
generated

C(3)
1111(v

(3)
1 )′′ − k22C

(3)
1212v

(3)
1 + i k2

(
C(3)
1122 + C(3)

1221

)
(v

(3)
2 )′ = 0

C(3)
2121(v

(3)
2 )′′ − k22C

(3)
2222v

(3)
2 + i k2

(
C(3)
1122 + C(3)

1221

)
(v

(3)
1 )′ = 0 (31)

for v
(3)
1 and v

(3)
2 . Similar to the previous case, by introducing the 4×4 matrix V(3) with non-zero entries

V
(3)
13 = V

(3)
24 = 1, V

(3)
31 = k22

C(3)
1212

C(3)
1111

, V
(3)
34 = −i k2

C(3)
1122 + C(3)

1221

C(3)
1111

,

V
(3)
42 = k22

C(3)
2222

C(3)
2121

, V
(3)
43 = −i k2

C(3)
1122 + C(3)

1221

C(3)
2121

, (32)

the solution to (31) can be expediently written as

y(3)(x1) =

{
W(3) exp[Z(3)x2]a

(3) if x1 ∈ [L(1), L(1) + L(3)/2]

W(3) exp[Z(3)x2]b
(3) if x1 ∈ [L(1) + L(2) + L(3)/2, L]

(33)

where now y(3) = [v
(3)
1 v

(3)
2 (v

(3)
1 )′ (v

(3)
2 )′]T . In this last expression, Z(3) = diag(z

(3)
1 , z

(3)
2 , z

(3)
3 , z

(3)
4 ) and

W(3) = [w
(3)
1 |w(3)

2 |w(3)
3 |w(3)

4 ], where z
(3)
I and w

(3)
I (I = 1, 2, 3, 4) denote the eigenvalues and corresponding

eigenvectors of the matrix V(3), and a(3) and b(3) are vectors of unknown constants.
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4.1. Floquet analysis

In view of the periodicity of the microstructure, the solution along the x1 direction must satisfy the
Floquet relation (see, e.g., Chapter 15.7 in [23])

y(1)(x1 + L) = y(1)(x1) exp[ik1L], (34)

where the real number k1 ∈ [0, 2π/L) is the so-called Floquet parameter of the solution. After substituting
expressions (25) and (30) with (29) and (33) in the interface conditions (24) and then making use of the
Floquet relation (34), it is not difficult to deduce that a non-trivial solution u(x) ̸= 0 to the incremental
problem (19) exists when

det
[
K(λ1, λ2; k2)− exp[ik1L]I

]
= 0 (35)

for some k2 ∈ (0,+∞) and k1 ∈ [0, 2π/L), where I denotes the 4×4 identity matrix and K is given by

K = (G(1))−1G(3) exp

[
Z(3)L

(3)

2

]
(G(3))−1G(2) exp[Z(2)L(2)](G(2))−1G(3) exp

[
Z(3)L

(3)

2

]
(G(3))−1G(1) exp[Z(1)L(1)] (36)

with G(r) = Q(r)W(r), Q(r) (r = 1, 2) and Q(3) being 4×4 matrices with the following non-zero entries

Q
(r)
11 = Q

(r)
22 = −Q

(r)
34 = 1, Q

(r)
32 = i k2

(
C(r)
1122 − C(r)

1111 − p(r)
)
, Q

(r)
41 = i k2

(
C(r)
1221 + p(r)

)
, Q

(r)
43 = C(r)

2121

(37)
and

Q
(3)
11 = Q

(3)
22 = 1, Q

(3)
32 = ik2C(r)

1122, Q
(3)
33 = C(3)

1111, Q
(3)
41 = i k2C(3)

1221, Q
(3)
44 = C(3)

2121. (38)

Thus, according to equation (35), along an arbitrary diagonal loading path (16) with origin F = I an
instability will first occur in the fiber-reinforced material at the point at which Λ = exp[i k1L] becomes
an eigenvalue of the matrix K. More explicitly, exploiting the facts that || exp[i k1L]|| = 1 and detK = 1

(since
∑4

I=1 z
(r)
I = 0 for r = 1, 2, 3 in this case), an instability will first occur at the point at which any of

the four conditions

A(λ1, λ2; k2)
.
=

∣∣∣∣∣
∣∣∣∣∣I14 +

a(I1, I2)

4
±
√

I21 − 2I2 − 4 + I1a(I1, I2)

2
√
2

∣∣∣∣∣
∣∣∣∣∣− 1 = 0, (39)

with a(I1, I2) = ±
√
I21 − 4I2 + 8, I1 = trK, and I2 =

[
(trK)2 − trK2

]
/2, is satisfied for some positive

value of k2. In addition to the dependency on the size and constitutive behavior of the matrix and
fibers, the above derivation explicitly reveals that the onset of instabilities depends as well on the size

and constitutive behavior of the interphases — via the matrices exp
[
Z(3) L(3)

2

]
and G(3) in (36). To

better reveal this dependency, sample numerical results for the critical deformations and critical stresses
at which instabilities occur — as dictated by condition (39) — will be presented in Section 6 and compared
with corresponding results for materials without interphases. Before proceeding with these results, it is
expedient to discuss in some detail the long wavelength limit k2 → 0 in (39).

5. Onset of macroscopic instabilities

Long-wavelength or macroscopic instabilities are known to be of particular prominence in fiber-reinforced
elastomers [11, 12, 24] and can be detected by taking the limit k2 → 0 directly in condition (39) and solving
the resulting asymptotic problem [11]. Alternatively — as proved by Geymonat et al. [18] in the context
of a much more general class of periodic composites — macroscopic instabilities can also be detected from
the loss of strong ellipticity of the overall response of the material. Specifically, for the fiber-reinforced
materials under study in this work, macroscopic instabilities may develop whenever the condition

min
||m||=1

B(F;m) > 0, (40)
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with

B(F;m)
.
= det

[
Li1k1

(
m1

m2

)2

+
(
Li1k2 + Li2k1

) m1

m2
+ Li2k2

]
and L =

∂2W

∂F∂F
(F), (41)

is first violated along any arbitrary loading path with starting point F = I.
For aligned loadings of the form (16), it is possible to rewrite condition (40) as a set of three simple

and explicit conditions exclusively in terms of the moduli Lijkl [25]. They read as

(i) L1111L2121 > 0,

(ii) L2222L1212 > 0,

(iii)

√
L1111L2121L2222L1212 +

1

2

[
L1111L2222 + L1212L2121 − (L1122 + L1221)

2
]
> 0. (42)

Here, according to (41)2 with (13) and (16),

L1111 =
µ(3) + λ

2

2 h
′′(J

(3)
)

c
(3)
0

,

L1122 =
(1− c

(3)
0 )µ(3) + c

(3)
0 λ

2

2 h
′(J

(3)
) + λ

2

1 λ
4

2 h
′′(J

(3)
)

c
(3)
0 λ

2

2

,

L2222 =
(3− 6c

(3)
0 + 2(c

(3)
0 − 1)λ1λ2)µ

(3) + c
(3)
0 µ

V
(3 + λ

4

2 ) + λ
2

1 λ
4

2 h
′′(J

(3)
)

c
(3)
0 λ

4

2

,

L1212 =
(1− λ1λ2)(λ1λ2 + 2c

(3)
0 − 1)µ(3) + c

(3)
0 µ

R
λ

2

1 λ
2

2 + c
(3)
0 µ

V
(λ

4

2 − 1)

c
(3)
0 λ

4

2

,

L1221 =
c
(3)
0 µ

R
λ1λ2 − (λ1λ2 − 1 + c

(3)
0 )µ(3)

c
(3)
0 λ

2

2

− h′(J
(3)

),

L2121 = µ
R
, (43)

where it is recalled that J
(3)

= (λ1λ2 − 1 + c
(3)
0 )/c

(3)
0 . Exploring the parameter space for a variety of

convex functions h(J) indicates that it is condition (ii) — via L1212 = 0 — the condition that almost
invariably first ceases to hold true. That is, starting at λ1 = λ2 = 1 and marching along loading paths of
the form (16), macroscopic instabilities can first develop at stretches λ1 and λ2 that satisfy the algebraic
condition

C(λ1, λ2)
.
= λ2 −

[
1− λ

2

1 λ
2

2

µ
R

µ
V

+
(λ1λ2 − 1)(λ1λ2 + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]1/4
= 0. (44)

If the material parameters µ(r) and volume fractions c
(r)
0 are such that there is no pair of positive real

numbers (λ1, λ2) that satisfies condition (44), macroscopic instabilities do not occur. In the event that
macroscopic instabilities do occur, the set of (real and positive) points satisfying condition (44) defines
a curve C(λ1, λ2) in the (λ1, λ2)–deformation space. Henceforth, we refer to such a curve as onset-of-
macroscopic-instability curve. The corresponding critical nominal stresses, t1 and t2, at which macroscopic
instabilities occur are given by

t1 =
∂W

∂λ1

(λ
∗
1 , λ

∗
2 ) =

λ
∗
1 λ

∗
2 − 1 + c

(3)
0

c
(3)
0 λ

∗
2

µ(3) + λ
∗
2 h

′

(
λ

∗
1 λ

∗
2 − 1 + c

(3)
0

c
(3)
0

)
,

t2 =
∂W

∂λ2

(λ
∗
1 , λ

∗
2 ) = µ

V

(
λ

∗
2 − λ

∗−3

2

)
+

λ
∗
1 λ

∗
2 − 1 + c

(3)
0 (2− λ

∗
1 λ

∗
2 )

c
(3)
0 λ

∗ 3

2

µ(3) + λ
∗
1 h

′

(
λ

∗
1 λ

∗
2 − 1 + c

(3)
0

c
(3)
0

)
,

(45)

where, for clarity of notation, λ
∗
1 and λ

∗
2 have been introduced to denote the critical stretches that satisfy

condition (44). The set of points generated by evaluating expressions (45) at all pairs of critical stretches
9



(λ
∗
1 , λ

∗
2 ) constitutes an onset-of-macroscopic-instability curve S(t1, t2) in (t1, t2)–stress space. Unlike in

(λ1, λ2)–deformation space, it is not possible in general to write an explicit formula for S(t1, t2), but a
partial inversion of (45) leads to the semi-explicit expression

S(t1, t2) = λ
∗
1 λ

∗
2

[
1− λ

∗ 2

1 λ
∗ 2

2

µ
R

µ
V

+
(λ

∗
1 λ

∗
2 − 1)(λ

∗
1 λ

∗
2 + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]−1/2

t1 − t2 −

λ
∗ 2

1 λ
∗ 2

2 µ
R

[
1− λ

∗ 2

1 λ
∗ 2

2

µ
R

µ
V

+
(λ

∗
1 λ

∗
2 − 1)(λ

∗
1 λ

∗
2 + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]−3/4

= 0, (46)

which proves helpful for evaluating some limiting cases of practical interest discussed below.
A quick glance at (44) and (46) suffices to recognize that the onset of macroscopic instabilities depends

on the size — via c
(3)
0 — and constitutive behavior — via µ(3) and h(J) — of the interphases. Such a

dependency will be examined with the help of sample numerical results in the next section and compared
with corresponding results for materials without interphases. In this connection, it is fitting to remark
that the onset-of-macroscopic-instability curves for materials without interphases can be readily computed
from (44) and (46) by appropriately taking the limit of vanishingly small volume fraction of interphases

c
(3)
0 → 0 and enforcing the macroscopic incompressibility constraint λ1λ2 = 1 (resulting from the local
incompressibility of the matrix and fibers). The results read as follows

C′(λ1 = λ
−1

2 , λ2) = P ′(λ2) = λ2 −
(
1−

µ′
R

µ′
V

)1/4

= 0 (47)

and

S ′(t1, t2) =

(
1−

µ′
R

µ′
V

)−1/2

t1 − t2 − µ′
R

(
1−

µ′
R

µ′
V

)−3/4

= 0. (48)

In these last expressions,

µ′
V
= (1− c

(2)
0 )µ(1) + c

(2)
0 µ(2) and µ′

R
=

(
1− c

(2)
0

µ(1)
+

c
(2)
0

µ(2)

)−1

(49)

and it is pointed out that the instability curve in deformation space (47) is comprised of just one point
because of the incompressibility constraint λ1λ2 = 1.

5.1. The case of uniaxial compression in the direction of the fibers (t1 = 0 and λ2 6 1)

For comparison with experiments and with the classical results of Rosen [10] and Triantafyllidis and
Maker [11] further below, we now spell out the specialization of conditions (44) and (46) to the case of
uniaxial compression in the direction of the fibers, corresponding to t1 = 0 and λ2 6 1. Under this type
of loading condition, it is not difficult to show from (44)–(46) that the critical values λ

cr

2 and t
cr
2 of the

stretch λ2 and stress t2 at which a macroscopic instability can first develop are given, respectively, by

λ
cr

2 =

[
1− z2

µ
R

µ
V

+
(z − 1)(z + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]1/4
(50)

and

t
cr
2 = −z2µ

R

[
1− z2

µ
R

µ
V

+
(z − 1)(z + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]−3/4

, (51)

where z is the real root to the nonlinear algebraic equation

z − 1 + c
(3)
0

c
(3)
0

µ(3) +

[
1− z2

µ
R

µ
V

+
(z − 1)(z + 2c

(3)
0 − 1)µ(3)

c
(3)
0 µ

V

]1/2
h′

(
z − 1 + c

(3)
0

c
(3)
0

)
= 0 (52)
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closest to 1.
The critical expressions (50) and (51) apply to general heterogeneity contrast µ(2)/µ(1) between the

matrix and the fibers. In practice, however, actual fibers in reinforced elastomers are usually several orders
of magnitude stiffer than the matrix phase. It is hence convenient to record the further simplification of
the above result in the limit as ∆

.
= 1/µ(2) → 0, when the fibers are taken to be rigid. In this limit, the

solution to (52) admits the asymptotic explicit form

z = 1− c
(3)
0 µ(1)µ(3)

2c
(2)
0

(
c
(3)
0 (µ(1) − µ(3)) + (1− c

(2)
0 )µ(3)

) (
µ(3) + h′′(1)

)µ(3)∆+O(∆2) (53)

so that, to first order (O(∆0)), the critical stretch (50) and stress (51) reduce to

λ
cr

2 = 1 and t
cr
2 = − µ(1)µ(3)

c
(3)
0 (µ(1) − µ(3)) + (1− c

(2)
0 )µ(3)

, (54)

irrespectively of the choice of the compressibility function h(J) for the interphases.

5.1.1. Comparison with the classical results of Rosen (1965) and Triantafyllidis and Maker (1985)

In one of the very first works making use of 2D idealizations of fiber-reinforced materials, Rosen [10]
considered a material system made up of alternating layers of two different linear elastic isotropic solids
that is subjected to uniaxial compressive load along the layers. By means of an energy method, he solved

the problem approximately and concluded that the critical stretch λ
Ros

2 and associated critical stress t
Ros
2

at which macroscopic instabilities develop are given (in the present notation) by

λ
Ros

2 = 1− µ(1)

3(1− c
(2)
0 )c

(2)
0 µ(2)

and t
Ros
2 = − µ(1)

1− c
(2)
0

. (55)

Later, Triantafyllidis and Maker [11] re-examined the same 2D idealization within the more general frame-
work of finite elasticity. Specifically, these authors considered alternating layers of two different incom-
pressible Neo-Hookean materials, also under uniaxial compression along the layers. By making use of

Floquet theory, they showed that the critical stretch λ
TM

2 and associated critical stress t
TM
2 at which

macroscopic instabilities can first develop in this case are given (in the present notation) exactly by

λ
TM

2 =

(
1−

µ′
R

µ′
V

)1/4

and t
TM
2 = −µ′

R

(
1−

µ′
R

µ′
V

)−3/4

, (56)

where it is recalled that µ′
V
and µ′

R
are given by expressions (49). While the approximate Rosen expressions

(55) differ in general from the exact results (56), both of these criteria agree identically in the physically
relevant limit of rigid fibers, as ∆ = 1/µ(2) → 0, when they reduce to

λ
Ros

2 = λ
TM

2 = 1 and t
Ros
2 = t

TM
2 = − µ(1)

1− c
(2)
0

(57)

to first order (O(∆0)).
When compared with the classical results (55)–(56), it should be apparent from expressions (50) and

(51) that the presence of interphases in fiber-reinforced materials can have a drastic effect on the values

of the critical loads at which macroscopic instabilities develop, even for very small volume fraction c
(3)
0

of interphases. This is more explicitly revealed by the case of rigid fibers, when is easily deduced from
relations (54) and (57) that for materials with interphases that are softer than the matrix — in the
sense that µ(3) < µ(1) and irrespectively of the compressibility function h(J) — the onset of macroscopic
instabilities can occur at much smaller compressive stresses than for the corresponding materials without
interphases. The opposite is true for the case when the interphases are stiffer than the matrix (i.e.,
µ(3) > µ(1)). Further comments on this key result are provided in the next section.
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6. Sample results and discussion

In this section, the above-derived results for the axial macroscopic response and onset of instabilities
in fiber-reinforced materials — as characterized by relations (18), (39), and (44)–(46) — are examined for
various values of the underlying geometric and material parameters of the matrix, fibers, and interphases.
Prompted by recent experiments3, all the results that follow correspond to µ(1) = 1, µ(2) = 100, and
interphases that are softer than the matrix phase so that µ(3) < µ(1). For the function h(J) describing
the compressibility of the interphases, we make use of expression (6) with k = 1 and m = −2. This choice
corresponds to interphases that are extremely soft under volume increasing deformations, but stiff under
volume decreasing ones, similar to the behavior of gaseous substances.

6.1. Macroscopic response
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Figure 2: Macroscopic response of fiber-reinforced materials with interphases under uniaxial stress in the fiber
direction: t1 = 0. The results correspond to c

(2)
0 = 30% volume fraction of fibers, interphase shear modulus

µ(3) = 0.1, various volume fractions of interphases c
(3)
0 , and are shown in terms of the nominal stress t2 as

a function of the applied axial stretch λ2. Part(a) displays the results for tension λ2 ≥ 1, and part (b) for
compression λ2 ≤ 1.

Figure 2 shows results for the macroscopic response of fiber-reinforced materials with c
(2)
0 = 30%

volume fraction of fibers subjected to uniaxial tension — part (a) — and uniaxial compression — part
(b) — in the fiber direction (i.e., t1 = 0). The results are presented in terms of the nominal stress t2 as
a function of the applied axial stretch λ2 for values of interphase shear modulus µ(3) = 0.1 and initial

volume fractions c
(3)
0 = 0.01, 0.05, 0.1. The response of the corresponding fiber-reinforced material without

interphases (c
(3)
0 = 0) has also been included in the figure (dashed line) for comparison purposes. Note

that the plots have been either stopped at the first occurrence of an instability, denoted with the symbol
“◦” in the figure, or at some sufficiently large value of the stretch λ2 if no instability occurs.

A self-evident observation from Fig. 2 is that the presence of interphases does not affect the macroscopic
(tensile or compressive) uniaxial-stress response of fiber-reinforced materials, as all results agree with that
of the material without interphases; although not shown here, varying the values of the interphase shear
modulus µ(3) has been checked not to affect the results either. On the other hand, the presence of

3In a recent set of experiments [4], blocks of a transparent elastomer reinforced by cylindrical nitinol rods were axially
compressed up to the point at which buckling of the rods was observed. The surfaces of the rods were not treated before
fabrication of the composites resulting in fairly weak bonding between the elastomer and the rods.
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interphases does significantly alter the stability of these material systems under uniaxial compression; no
instabilities occur under uniaxial tension. More specifically, the larger the size of the interphases — as

measured by their volume fraction c
(3)
0 here — the less stable the materials become in the sense that

instabilities occur at lower values of compressive stresses. Exactly as in the material without interphases,

the instabilities in all the materials with interphases (c
(3)
0 = 0.01, 0.05, 0.1) in Fig. 2(b) are of long

wavelength.
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Figure 3: Macroscopic response of fiber-reinforced materials with interphases under uniaxial tensile stretch: λ1 = 1
and λ2 > 1. The results correspond to c

(2)
0 = 30% volume fraction of fibers, interphase shear modulus µ(3) = 0.1,

and various volume fractions of interphases c
(3)
0 . Part (a) shows results for the nominal stress t2 vs. λ2, whereas

part (b) shows t1 vs. λ2.

To further probe the axial macroscopic response of fiber-reinforced materials with interphases, Fig.
3 displays results for uniaxial tensile stretch with λ1 = 1 and λ2 ≥ 1. Plots are shown for t1 and
t2 as functions of λ2 for the same cases considered in Fig. 2, with the exception that the response of
the (incompressible) material without interphases cannot be shown because the imposed loading is not
isochoric. Much like for the preceding case of uniaxial stress loading, the stress t2 here is seen to be fairly
insensitive to the presence of interphases. The stress in the transverse direction t1, however, exhibits a
stronger dependence on the volume fraction of interphases but this dependency is in actuality negligible
when compared to the one-order-of-magnitude larger axial stress t2.

In short, the above sample results illustrate that interphases have little influence on the axial macro-
scopic response of fiber-reinforced materials. This is consistent with the fact that axial loading activates
fiber-dominated modes of deformation, and thus the macroscopic response is mostly governed by the be-
havior of the stiffer fibers. By contrast, the above sample results also indicate that interphases can have
a strong effect on the development of instabilities. This, in turn, is consistent with the fact that instabil-
ities are controlled by the activation of matrix-dominated (or soft) modes of deformation, and hence the
presence of soft interphases can have a significant impact on their occurrence. This remarkable effect of
interphases on instabilities is examined more thoroughly in the next subsection.

6.2. Onset of instabilities

Figure 4 shows results for the critical stretches λ
cr

2 and stresses t
cr
2 at which instabilities develop for the

case of uniaxial compressive loading in the fiber direction (t1 = 0). The main observation from this figure

is that fiber-reinforced materials with thicker (i.e., larger c
(3)
0 ) and softer (i.e., smaller µ(3)) interphases are

increasingly less stable. In particular, when compared with the material without interphases (dashed line),
the critical compressive stretches λ

cr

2 and stresses t
cr
2 in materials with interphases can be remarkably lower,
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Figure 4: Critical stretches λ
cr
2 and stresses t

cr
2 at which instabilities develop in fiber-reinforced materials subjected

to uniaxial stress in the fiber direction: t1 = 0. The results are shown as functions of the volume fraction of fibers
c
(2)
0 for various values of interphase volume fraction c

(3)
0 and interphase shear modulus µ(3).

even for very small volume fraction of interphases in the order of c
(3)
0 = 1% or smaller. Another important

observation is that all instabilities in Fig. 4 are of long wavelength, except for sufficiently large interphase

shear moduli µ(3) and sufficiently small volume fractions of fibers c
(2)
0 — greater than µ(3) = 0.01 and less

than c
(2)
0 = 8% for the cases considered here — when they are of short wavelength. The trend in c

(2)
0 is

similar to that exhibited by instabilities in fiber-reinforced materials without interphases [11]. For clarity,
dotted lines are utilized in the plots to indicate that the instabilities are of short wavelength, in contrast
to the solid lines utilized to denote long wavelength instabilities.

Onset-of-instability curves for general axial loading are presented in Figure 5. Part (a) shows the
curves in (λ1, λ2)–deformation space, while part (b) illustrates them in (t1, t2)–stress space. The results

correspond to materials with c
(2)
0 = 30% volume fraction of fibers, c

(3)
0 = 2% of interphases, and interphase

shear moduli µ(3) = 0.01, 0.05, and 0.1. For any loading path of choice in both spaces, the first instability
that occurs is of long wavelength, as characterized by equations (44) and (46). In deformation space,
materials with softer interphases are consistently less stable for small and moderate values of the transverse
stretch λ1. This trend is reversed at sufficiently large stretches λ1 > 1, when instabilities are seen to develop
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Figure 5: Onset-of-instability curves in (λ1, λ2)–deformation and (t1, t2)–stress spaces. The results correspond to

materials with c
(2)
0 = 30% volume fraction of fibers and c

(3)
0 = 2% volume fraction of interphases with shear moduli

µ(3) = 0.01, 0.05, 0.1.

not only for compressive but also for tensile axial stretches λ2. In stress space, on the other hand, softer
interphases consistently lead to less stable behavior.

7. Final Comments

The results worked out in this paper indicate that while interphases have a marginal effect on the
axial macroscopic response of fiber-reinforced elastomers, they can drastically affect their stability. In
particular, for the case of materials with interphases that are softer than the matrix, the critical loads at
which instabilities develop were found to be significantly lower than in the corresponding materials without
interphases, even for very small volume fraction of interphases. At a fundamental level, this behavior can
be understood from the fact that instabilities are controlled by the activation of matrix-dominated (or
soft) modes of deformation, and hence the presence of soft interphases can have a significant impact on
their occurrence.

From a practical point of view, the results also highlight that — in addition to some knowledge of the
presence of geometrical and material imperfections [26, 27] — some knowledge of the size and mechanical
behavior of the underlying interphases is absolutely necessary in order to be able to accurately predict
the compressive failure of fiber-reinforced elastomers.

Finally we remark that it would be interesting to extend the present analysis to non-symmetric loading
conditions — where interphases are expected to influence not only the stability but also the macroscopic
response — and different geometries of fillers such as for instance spherical particles — where interphasial
effects have been reported to play a major role [3, 1, 2].
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