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Abstract

We report a study of DNA deformations using a ceapsined mechanical model and
guantitatively interpret the allosteric effectsprotein-DNA binding affinity. A recent single
molecule study (Kim et al. (2013cience, 339, 816) showed that when a DNA molecule is
deformed by specific binding of a protein, the lngdaffinity of a second protein separated from
the first protein is altered. Experimental obsé&ores together with molecular dynamics
simulations suggested that the origin of the DNIasdéry is related to the observed deformation
of DNA's structure, in particular the major groowgdth. In order to unveil and quantify the
underlying mechanism for the observed major gradefermation behavior related to the DNA
allostery, here we provide a simple but effectivalgtical model where DNA deformations
upon protein binding are analyzed and spatial tatioms of local deformations along the DNA
are examined. The deformationtbke DNA base orientations, which directly affeat ttmajor

groove width, is found in both an analytical detiva and coarse-grained Monte Carlo

simulations. This deformation oscillates wighperiod of1? base pairs with an amplitude
decaying exponentially from the binding site witdecay lengthlo~10 base pairs, as a result
of the balance between two competing terms in DMAebstacking energy. THength scale is

in agreement with that reported from the singleenole experiment. Our model can be reduced
to the worm-like chain form at length scalesger than!s but is able to explain DNA’s
mechanical properties on shorter length scalepaiticular the DNA allostery of protein-DNA

interactions.
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|. Introduction

Protein-DNA interactions play a vital role in mainyportant biological functions, such
as chromosomal DNA packagihg repair of damaged DNA site§ target location ® and
unwinding of DNA. Many studies have explored the local deviatfoms the canonical helical
structure of DNA as the consequence of protein-DNA binding intévast '°. Nonetheless,
understanding of protein-DNA interactions at thenmscopic level is still incomplete, in part
because the relevant interactions span a wide rmaingeagth scales. In particular, previous
theoretical descriptions of DNA typically work welh either very small length scales with
atomic resolution or very large length scaleseast comparable to the persistent length. This
leaves an important lacuna for intermediate leisgties. In this connection, our understanding
of protein-DNA interactions has recently been adegiby single molecule measurements by
Kim et al of the binding affinities of specific binding ofgiein to DNA under the influence of
the binding of another protein to the same DNA diséance of intermediate length scales,
which presents the challenge to create a theolatiocdel to bridge the mesoscopic
thermodynamic or mechanical properties observedf@mdnderlying molecular mechanism. In

the following, we expand on these issues.

At one end of the length scale spectrum, with laledhils incorporated at the atomic
level, molecular dynamic (MD) simulations basedfange fields such as CHARMM, and
AMBER*? have been proven very successful in studying ndéfgrent phenomena of DNA
including DNA allostery', especially with the aid of other numerical tecjugs such as
umbrella samplin and replica exchanfe However, the complexity of the DNA molecule

with its atomic level details together with thekaxf a sufficiently realistic continuous field



model in describing the solvent makes these simansicomputationally expensive. These
studies are in general limited by their computatlaequirements to length scales of the order of

10 base pairs (bps) and time scales of the orderia@bseconds.

At the other end of the length scale spectrum,delyiused theoretical model—the
worm-like chain (WLC) modéf, proposes to treat DNA as a semi-flexible polyctaain that
behaves like an elastic rdd In this continuous description of DNA, all treeél details of the
DNA molecule are coarse-grained into a quadratidlmgy potential that can be characterized by
one single parameter, the bending persistencetérgtBy fitting to experimental results that
measure extensions of DNA molecules subject toreatdorces, the model shows a very good
agreement between theory and experiment Ll 50bps~50nm for double-strand DNA
under physiological conditioffsas well as in a flow fiefd. Detailed variations of this model
have been proposed over the years by introducsmgadl number of additional independent
parameterd, such as the twisting persistence lerigth Since they have only a few parameters,
models of this type prove to be very efficient @aodurate in treating long DNA molecules at
length scales larger thai®*bps . But the coarse graining of all local detailoadeprives these
models of any ability to describe DNA at molecutargth scales smaller than the persistence

lengths.

For a number of problems of biological significanites length scale of interest falls in
the gap between the atomistic description and dhértuous description. These problems call
for the creation of a model at the intermediatelewhich incorporates the correct amount of
local details while at the same time provides thmputational efficiency for relatively long
chains of DNA. An excellent example is a recergezimental single molecule study by Kim et

al*, which has motivated the present study. In tkjgeément, a single DNA molecule of



medium size (contour leng&P0bps~200bps ) js deformed by specific binding of a protein,

and the rate constant of the dissociation of arsgpootein from the same DNA chain was
measured as a function of the separakiobhetween the two binding sites. The experimental

results were analyzed with the assumption thatrteasured dissociation rate constanis

related to the free-energy difference between theitg of the protein and DNA through

AF = —kpTIn{Kp), where the dissociation constfz is the dissociation rate divided by the

bimolecular association constant. With this asdionpthe experimental results showed that the

binding free-energy difference of the second protsicillates with a period d02ps (the

helical pitch of the double helical structure ofdm DNA) while the envelop envelope of the

amplitude decays very quickly and becomes virtuzdiso at separations larger tHt0bps
Additional experiments were conducted with the D8formation caused by attachment to a
hairpin loop instead of the specific binding of firet protein. A similar oscillation of the
dissociation rate was observed, indicating that diiserved free-energy landscape is related to
the underlying correlations between deformed stinest along the DNA chain under study rather
than to direct protein-protein interactions. Tlbserved allostery was interpreted in terms of the
modulation of the major groove width of the DNA irugd by the binding of a protéin But,

given the observed length scales involved, a gtaivie description of the observed correlation

requires a mesoscopic model with base pair resoldtiat applies to a DNA chain of contour

length on the order c§00 bps

Following several pioneering work&? in the development of models of intermediate
length scale, here we propose a mechanical modaNaf to interpret the observed allosteric

phenomenon. As one component of this model, tiekstg potential between neighboring



bases is modeled by a variant of the Gay-Bernenfiaté¢" ?*between ellipsoids, while the sugar-
phosphate backbone as well as the hydrogen bobeimgeen bases within a base pair is
modeled as springs. We find that interhelicalatise changes caused by either protein binding
or the attached hairpin lodps used in the experimental stlfiynduce deformation in the DNA
base orientations. Analysis of our model shows ttiedeformation of the major groove width,
which is related to DNA base orientation, exhilaitsoscillatory change with an exponentially
decaying amplitude. The length scale for the désayrived analytically and confirmed by our
coarse-grained Monte Carlo simulation. These tesue in good agreement with the

experimental observations of Ref. 11.

The outline of the remainder of this contributisras follows. In Sec. 2, the description
of the model is given and an analytic theory isede@ped, which produces the key decay and
oscillation lengths results (some portions of thalgsis are given in an Appendix). The Monte
Carlo simulation procedures are described in Se©@& analytical theory results are
successfully compared with both experiment andvbate Carlo simulations in Sec. 4. Section

5 offers concluding remarks and discussion, inclgdiome directions for future efforts.
I1. Model description

Here we present and analytically develop a mechamodel to study DNA
deformations at zero temperature. We show in Sétat the mechanism underlying the
behavior of the major groove deformations is arnneic feature of the DNA system and that our
study is applicable to the DNA deformations at raemperature. In this coarse-grained
representation of a DNA molecule which incorporatesntrinsic twist at every base pair step,

the double helical structure of an ideal B-type DN&lps us define a right-handed coordinate



system with the axis in the longitudinal direction (Figure 1). Msstrated in Figure 2, in our
model each phosphate-sugar-base unit of DNA is fadd®y a sphere representing the
phosphate-sugar group attached to a thin plateggepting the base) with thicknesslepth of
the short sidé and length of the long side These units are connected into two strandsy-colo
coded as blue and red. The two strands are cathemgether—forming a double helical
structure, by springs representing the hydrogenlbtetween each base pair. The orientation
for each DNA unit is defined by the unit vecibmormal to the corresponding thin plate and by
definition & = Z for all units of an ideal B-type double helicaisture (Figure 3A). According

to previous studiéd the stacking interactions between neighboringbasthin each strand

with orientationiiz: andiz+1, wheres = blue for the blue strand ari&s= r€d for the red

strand can be well modeled by a variant of the Bagre potential as a product of three terms:
US04 ,.7) = U, s ;. 45, ) = (05, 15,,,) 1)

The first term, in a form of a simple Lennard-Jopetential, controls the distance dependence
of the interaction; while the last two terms reltite interaction to the orientati@s: and the

-~

relative orientatioriin+s = 5 .

As suggested by the experimental studies of Refhére we assume that one base pair

with index™ = @ s pulled apart along its long side. This defaioracauses an interhelical
distance change that involves backbone chemicaldy@tacking interactions and hydrogen
bonds. Since the stiffness of the backbone bosdged as the distance dependent part of the
stacking interactions in eq. 1) is much higher than for other kinds nérgies, these two

kinds of bonds can be regarded as almost rigids dpproximation exerts a strong geometric

constraint such that the distorted interhelicalatise at the base pi= @ will relax along the



DNA chain back to equilibrium length in a few bamer steps, by the induction of an alteration
of orientations for neighboring bases, fré £ at equilibrium to an altered orientation
i(f.@)=sinfscospi +sinf +sing ¥ +cosfZ (Figure 3A and 3B). The induced alteration of
orientations itself relaxes slowly backiic= £ along the DNA chain. Due to the symmetry of
the system, the orientations of the two basesbiase paifi(frea- @rea) andi(@oiue- @oiue)

satisfy the condition8rea = frive and®rea = 7 + @oive . Depending on the alignment
between the alteration of orientation and the Isidg of the base plate, such induced alteration
of orientation can be manifest as a combinatioa béickling deformation and a propeller twist
deformation (Figure 3C). Since the stacking engmgyers adjacent bases on the same strand to
have the same orientations, the induced alterafi@nientations decays very slowly, as noted
above. For illustration purposes we show in Figueecase where it is a constant within one
helical pitch of DNA. This Figure shows that aeault of the intrinsic twist, the relative
alignment between the alteration of orientation eénedlong side of the base plate changes

periodically, yielding periodic structure changes buckling backward to propeller twist

outward to buckling forward to propeller twist inkdavithin each helical pitch.

In order to quantitatively describe the deformatielaxation along the DNA chain, we
propose here a simplified two-dimensional modet yirelds analytical results. In this simplified
model illustrated in Figure 5, centers of ident®alid rectangles (side leng#&? ¢ )each
representing one DNA base are connected into t@ods (color coded as blue and red)
extending to infinity on both sides. By meansha pairing of each rectangle on one strand to its
corresponding rectangle on the other strand witingp of stiffness vy and equilibrium length
25y | the two parallel strands are connected togethéf@m a two dimensional network. Here

we denote the direction parallel to each stranh@s axis and the direction perpendicular as the



x axis, with the two strands %bie = l#y and*rea = —lay respectively. The orientation of
each rectangle can be characterized by the &dietween its main axis perpendicular to side
and thez axis. For an ideal B-type DNA molectle= © for all bases. In order to study the
relaxation of an interhelical distance deformatione pair of rectangles (denoted as ti@air

in sequence) are pulled slightly apart in xt@irection as their centers are now located at

Tplue, = lHY T do gnd¥red, =~y — do respectively. As a result of this deformatiot, al
rectangles relocate (&bluen = lay + dn and¥red. = —lay — d:) and reorient&x for then™
base in the blue strand anén for then™ base in the red strand) so that on each rectanghe
that the force balance and the torque balanceeatered. If we assume that all rectangles in one
strand (e.g., the blue strand) are properly re&mtab that the distance-dependent contribution

Ur in eq. 1 stays fixed, we can simplify the intei@ttdefined in that equation as:

Ui, 6,

+1- n+i

)= const«(1 —w,07)+ (1 — w,67, )+ (1 — w,AG]) 2)

wherefn is the orientation of the" base in the blue strar@8n = n+1 — n and the
coefficients@1 and®z can be obtained from eq. 1. Due to the symméditlgeosystem, the
orientation of the"" base in the other strand (in this case the resid}ris—%= . Now for the f

rectangle away from the deformed boundary, theuizplance requires that
wzs(Ensg —On)— @ 0 —wy+(@n -0y 1))+, =0 (3)
whereTr is the torque on the base exerted by the hydrbgads within the"" base pair.

Solution of eq. 3 is not straightforward since thieue» is coupled with the orientation

deformationfx . For a simpler problem of interest, in which vesvé torquel'n = T * Gin |



whereT is a constant andi.n is the Kronecker delta function (a constant torguthei™ base

and 0 torque at any other bases), eq. 3 can beedda a simpler form fcir> 0

u
Biejo1 (2 +L_1)“‘ Biej +0iujsa =10

Wy

(4)

Bisj
. ’ =a
Equation 4 should hold for &il= @ , which means that the ratio /5:*1-1 is

independent of and is parameterized ka and®z through the quadratic equation

1—(2+&]-a+a’=u
fwl

2 . There are two solutions to this equation satigf§ts * @z =1 |

corresponding to one decaying mdéal <1 and one growing mod&z:l = 1 | Itis implied in
this derivation that the deformation is inducedtivy external torque at tfi base and decays

-
i - a
towards the boundary at infinity whefa = 0 | so that the constant ratio /HHJ‘—I IS

uniquely determined &% . The amplitude of the deformation characterizgéh is then

J

_ -4 -L
determined to decay exponentially along the chaffici = fi*ay =6;se Darxe

where the deformation correlation length sdele —(na,}™* | In the limiting case where

fr—

_ |wa
wy € wz, this can be reduced to a simple fcfr*?n N "f“’l.

An analytical approximation to the complete solatio the full eq. 3 as opposed to the
simplified eq. 4 can be found in the Appendix. sStanmarize the result, for tm& base away

from the deformed boundary we find

_n n
Qn~[1-e'!1]-e "D’ (5)

10



wherels shows the relaxation length scale of interheliisiance changes and is estimated to be

on the order of one base pair step.

The last two terms in eq. 1 have been studied pusly®, providing some information

g . . . .
on the ratio lwy. An evaluation of these two terms following teerly formulation shows

r3 2
b, = .0, =€+ 8~ -¢* —Eﬁz 2B, =£,0,,, =5 +B8)~1 — 2e% -

ﬂ:
that and c*  for
small¢ and® , whereX = @ for orientation changes parallel to the long sifithe plate and

X=Db for orientation changes parallel to the short sifithe plate. Comparing this result to eq.

S
ws X*

2 we see thew1 ¢*,

Our modeling of the DNA base as a rectangular phate with long side lengta, short
side lengttb and thickness is of course a phenomenological approximationthedappropriate

values for these parameters must yield the miniroenter-to-center distance for perfect
stacking. Previous stutfshows that one good choice is taat 94, b = 44 andc = 0.74

O3 _X' @ 4% 1005
— /902~100 > 1

From this we obtain an expectation of the reip c* . This

supports the simple approximation zr obtained at the end of the discussion of the &wludf

_ |w .
eq. 4 and gives a decay length ségle_ v fw, ~10 {bm}.

In our development above, we have dealt with thgbfied two-dimensional case. In a

more realistic three-dimensional DNA model the weittor representing the orientation is
characterized by boti and?® , wheref characterizes the overall amplitude of the charige

orientation from equilibrium wher2 = Z and¥ characterizes the relative direction of the

11



change of orientation. As illustrated by our oworie Carlo simulation results shown later in
Sec. 4, the change % at each base pair step is small and as an apprb&imwve can assume
that in the real DNA system the changé’inis negligible. Under this approximation our reésul
on &x} for the simplified two-dimensional model can bésexled to the orientations of bases
{in{(Bn. @)} in a realistic three-dimensional DNA model whialearporates the intrinsic twist,
in a fashion tha?x = &n and®n = const | |f we assume that the backbone phosphate group

relocates according to the edge of the base pidtesilongitudinal direction by attachment, we

have the major groove width of the DNA moleculeigied as the distance between the

phosphate group in tHe™ blue unit and the phosphate group in@e™ 7)™ red unit

o nm in+7)m -
W, = IFT:E.-IE —Pipy7 | = 6h + a (E"n cos = — Bn+7 cus—) + D{E;‘nd}

'Red 5

(6)

whereh = 3.44 is the base step of an ideal B-type DNA, &ui is the overall induced

my _n
amplitude defined througfn = fina * (1-eT)eeD (see eq. 5) which is assumed to be

small so that all higher order terms can be negtect
[11. Monte Carlo simulation

To test if the analytical approach of Sec.3 isoeable, we carried out a simple coarse-

grained Monte Carlo simulation on a DNA moleculghily = 100 pase pairs. We simplified
the system by keeping only base stacking, hydrbgewing between bases within each base
pair and backbone bonding interactions. The bi@skisag interaction has been limited to the

interaction between neighboring bases within tmeesstrandit is decoupled into a distance-

dependent part and an orientation-dependent pltag Tn+1.7) = Up # Ul 1y 4} where

12



the distance between two neighboring bases is obtained frgrmin( |7 - ’}'| |, wii. ) with

i eplaten gngj eplaten +1 = Al the distance-dependent interactions incluikedur
simulation are modeled as elastic springs aroueid tlorresponding equilibrium distances. That
is, we use an elastic spring of stiffnéasfor the distance-dependent plst, an elastic spring
with stiffnessk#y for hydrogen bonding, and an elastic spring witlfir@ssX# for backbone
bonding (see Table | for the parameters used isithalation).The orientation-dependent part of
the stacking is modeled as

Us(lin(On. @n)lint1(On+s. @n+1)) = Up #[1 — 0,67 — 0,607, — 2w,(1 — llp - Wn+4)] with
amplitudels , which reduces to the two dimensional case egh@jwo dimensional case when

Pn = Pn+a.

To start each simulation run, all the bases areeplat the corresponding positions of an

ideal B-type DNA except for one base pair whicpuied apart in the long side direction Lai,!

The orientation of each bafa (fn. @x) is initiated with?n being a random number betwekn
to 0001 anden being a random number betwe®rto 27 | except for the one base pair which

is pulled apart where the orientations of the twelaept fixed af =0 and® =0 throughout

the simulation run. As described in previous st&dj each base taken as a thin plate has six
degrees of freedom. Three of them are transldtieRése, Shift, Slide, and the other three are
rotational—Tilt, Twist, Roll. Due to the symmetoy the system in our problem, to study the
deformation relaxation of our interest we assuna¢ ¢imly one base in a base pair is free to move
and that the other will move symmetrically. Inled&gal move of our simulation, we fixed the
Twist degree of freedom and made random displacenethe other five degrees of freedom

for each base pair. The moves are accepted atedjaccording to the Metropolis schéfne

13



Since we are only interested in the deformatioaxaion of DNA as a result of its mechanical
properties, we have chosen to downplay the roteerimal excitations and conducted the
simulation with the very low temperatife= 107*T  whereT denotes room temperature

=293K.
1V. Results

In this section, we compare our analytic prediaiavith both experiment and our Monte

Carlo simulations.

Our analytical predictions of the base orientatbange are compared with the results

obtained in the simulations in Figure 6. For theametef , the amplitude of the change in

orientation, our analytical prediction (eq. 5) a&geery well with the results obtained in our
Monte Carlo simulations. For the base orientaparamete# , results from the simulations

show that the changes at each base step aredaidy (on the order -1 radian~5") a5

=36

compared to the intrinsic twist which is at each base step. This slow varianc# in

supports the approximation used in our analytiocalysis in Sec. 3, whel® is treated as a

constant. This can be understood as a resultibathange i raises a large amount of

energy but does not explicitly help the relaxatdnhe deformation.

Most proteins primarily interact with the DNA majgrooves. Therefore distortion of the
major groove would have the largest influence aitgdn binding affinity. Our theoretical
results are compared with recent experimental t&suRef. 11, which demonstrated the
correlation and anticorrelation between bindingsaaf proteins on two specific sites of DNA

with a separation df. Figure 7 shows our results from simulationsthar positions of the

14



phosphate groups. The major groove width of thé\@Bn be obtained either from these
locations or analytically from eq. 6. In figure8r theoretical results concerning the major

groove width are shown in comparison with the eixpentally observed™ protein binding
free-energydG(L) as a function of separatidnin the form ofAAG (L) = AG(L) — AG{e) = The
comparison shows a quite good agreement betweesxfiegiment and theory fér= 5bps : the

quantitative discrepancy at small separation redon& < 5bps s still poorly understood and

requires more detailed studies.

V. Conclusion and Discussion

Our coarse-grained mechanical model proves to berghy useful for studying DNA
deformation at an intermediate length scale andsléatheoretical predictions that are in good
agreement with recent experimental restiimd Monte Carlo simulations. The new decay
lengthscalén , first demonstrated in the recent single moleexigeriment in Ref. 11, is
proposed here as a result of the balance betweendmpeting terms in DNA base stacking
energy. Since this competition is a generic featirthe DNA system, it is of considerable
interest to see whether the same general expohdatiaying behavior is at work for
deformations other than interhelical distance clkanguch as bending, supercoiling

deformation.

The results demonstrated within have been obtdno@d DNA either at zero temperature
(analytical analysis) or at very low temperatureo(i¥® Carlo simulations). Here we argue that
these results also apply at room termperaturesarate relevant for the experiments of Ref. 11.

At room temperature the DNA molecule undergoesia¢excitations resulting from its

15



interactions with the surrounding solvent (typigallater) molecules. The time scale over which
these interactions occur is denoted astypically comparatively smallps~1ns ), Over this

time scale, the thermal excitations can be consttas an instantaneous thermal “kick"—an
external force (or torque) at each base pair. H@rother hand, typical experimental observations
“kicks”. Since these interactions are uncorrelatedature, the effects observed in experiments
are the statistical averages of many instantang@usal “kicks” overls. In a simple

approach, here we model each of these uncorreffagechal “kicks” as an external force (or
torque) at each base pair site, of amplitfgl@ointing in a random direction, where the
statistical time average of these “kicks” overradiscale of s has a square amplitude
proportional to the thermal energ{% = folr,~ckT  \wherec is the suitable proportionality

factor. In order to study the thermally drivenatefation of DNA, it involves no loss of

generality to keep the DNA chain at zero tempeeaéixcept for one base pair with indéx 0 |
since the molecule is treated as a linear systemrimechanical modelThe forces of thermal
origin mentioned above are not fundamentally déferin terms of deforming DNA from other

external forces treated in our current study.

Therefore, in the simplest case we can considgram mode of the thermal “kick”

which acts as an external torque of amplitfalgointing in a random direction in tixg plane.

In the spirit of our earlier analytical analysis3ec. 2, at any instaht the DNA molecule can be

described by its two-dimensional projection withrmal direction of the two dimensional plane

(characterized b#{t)) determined by the external torgE®) and the z axis. According to our

simplified two-dimensional model, such an extetoatjue induces a change of orientations of

16



bases[ﬁﬂ (EE{”}} . We have already shown that the behavid?#{t)} is governed by eq. 4,

which yields a result n(t) = 85 (®) v e ko with amplitudefs (t»~fa. Since the thermal

“kicks” are totally uncorrelatec?(t) is random. On the time scélis, the statistical averages

show that the deformation in base orientation

CT—“'n{r:" = ﬁn{t} -Z2= sinﬁ;{(r} = COs qﬂ{f}i‘ + Sinﬁ;{ﬁ'} * Sil‘lqﬂ{!’}‘f‘ SatisfieS{OTH-n ‘:r”T. =0 as a

result of the randomness. However—and this iké#yepoint—the correlation

{En{r}*ﬁ.fr}h./ oo
{Gug(t) = Gue(thr, = remains just the same as the result obtained in

Sec. 2 for our model developed for the zero temperasystem. This important result can be
(B, (t) » Buy(t) =iy
J ] T- . . e tp
generalized as (Ou;(t) » ouy(thy, = for the more realistic case where
all of the DNA base pair sites are thermally extités a direct result of this correlation, the

major groove widths at different locations exhagimilar correlation as

r 5 _I:_jl
'“"1)1 [I‘}*W;{f}h"./ . . _e j'II.ED .. . H
(Wit} = Wity = . The above analysis indicates that the mechanism

unveiled by our model—the correlation between latsibrmations of DNA structures at

different locations—is general and is an intrirfeiature of the DNA system.

Conventional models based on the elastic rodrrest of DNA (e.g. the worm-like
chain model) describe the DNA molecule in termg€enterline and cross sections. These
models provide reliable descriptions of the DNA ewlle at length scales larger than the

persistence lengtip ~150bps  where the amplitude of the bending ar@iebetween two

consecutive segments (labeled with indeand! = 1 | respectively) of DNA of lengtke is
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accurately predicted d9:} = ¢ . However, since they lack local details, thesgtiooious
models fail to provide a good description at lenggthles smaller than that persistence length.
This failure is caused by the breakdown of onedssumption that the cross sections (as a point

in the worm-like chaitf and as a circle in other mod&)sare rigid and are “stacked” along the
centerline, which requires that all bending angiesindependent 49:9;} = dui. Our results
show that local deformations are correlated attdbagth scaldp ~10bps and the failure of
these continuous descriptions at short length saaa be avoided by incorporating
modifications that follow naturally from the mod®lesented in this paper. The conclusion
Ip~10bps « lp from the present model is consistent with theastiel rod descriptions since the
molecular details included in our model can be reradized into the fitting parametés at
length scales larger ths. This new description, which incorporates locatiails into
traditional continuous models, is expected to beooisiderable importance in studying DNA
structures at length scales comparable to thegtensie length and should help us understand
many mechanical properties of DNA such as the ergdhfiexibility at short length scales and

DNA repair mechanism inside cells.

Strictly speaking, the analytical results obtaimethis study only apply to an infinitely
large system consisting of identical units. Extensf the study to finite system with sequence-
dependent properties can be made by bundlingalirikar torque balance equations on all
bases in an equivalent matrix representationhigrepresentation, a so-called resistance matrix
can be given with neighboring interaction coeffit&®~: and®z being the matrix elements.

The final structure of the system upon deformatian be expressed in terms of the eigenvalues

and the eigenvectors of this resistance matrix.eW\ddl units are identical the matrix is a

18



Toeplitz matrix, that is, elements are constamgldiagonals. For a finite DNA chain &f
base pairs, the convergence of the eigenvaluesigadvectors of th¥Y by Toeplitz matrix

to theV = ® analytical limit has been stud®d The close agreement between results from our

analytical analysis with an infinitely large systémeq. 5 and our simulation studies for
N =100 gshows consistence with the mathematical studyeih 28; the DNA chain length

satisfiesV~100bps » Ip so thatV~® serves as a good approximation.

Of course, in reality these DNA units are in gehdifferent. The variations of the DNA
molecule at the base pair level, including misme¢ch® (broken hydrogen bonds and poor
stacking forces) and sequence-dependent featuféghydrogen bond strength and stacking
force vary for different sequences), actually hemportant biological implications and
accordingly are of great interest. The rugged-éeergy landscape associated with the sequence
dependent interactions between DNA and the bindintgin has been prob&dnd its
important role on many processes of great bioldgmeportance, e.g. the sliding kinetics of the

binding protein along DNA, has been discusée@ualitatively, we know that GC stacking

|U”AT| . This leads to

. . S 1)

interactions are more stable than AT stacking agtons, that |:l “GCI g
a smaller overall amplitude of the induced alterabf orientation for GC-rich DNA segments
than for AT-rich segments, in qualitative agreemeitih experimental observatiofts However,

a highly desired quantitative study is left for fh&ure, although we do note here that for small

variations this can be realized by perturbatiothefresistance matr{ around the Toeplitz
matrix M astM +eX)™* = M™* —eM XM ™ + o(*), The sequence dependence and other

issues will be subjects of further studies.
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In conclusion, we have proposed a mechanical mantkbnalytic analysis to explain the
recent experimentally observed DNA allostery pheaoom. We attributed the observed DNA
allostery to major groove distortions, which regrtdim the deformation of DNA base
orientations. Since the DNA base orientation i€monore flexible than the backbone or the
interhelical distance, the local deformation of iterhelical distance transfers to the distortion

of the base orientation very rapidly, which canpgargate to a long range at a length scale about

10 bps | The major groove length oscillates because@fritrinsic double helix structure of
DNA. Local deformations, major groove width in ppeular as shown in recent experimental
study, induced by the first protein bound in tuffeets the binding of a second protein and vice

versa, which is the underlying mechanism for DNlastkry.
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Appendix. Approximate solution to eq. 3.

In order to solve the full eq. 3, we assume thatstystem is linear. When one base pair
is pulled apart, changes of orientations for nedgiy base pairs are induced. Along the DNA
chain we see that spatially the interhelical distachange deformation transforms into an
orientation change deformation. Under the lingatesn assumption, we assume that the
external torque on theé" basetn = £ *dn . Equation 3 then becomes

g w {Sﬁ-l - En} =y w En — g w {En - 8n_1}+ = dn =10 . (Al)
Without the external torques, we have seen thasdheion to equation

Wz (Oney —Op)—wyebp—wye(@p—6y_4,)=0 (A2)

-n
satisfiesfrn+1 = 81+ D As an extension of this result to a system Viitear coupling
between the interhelical distance change and ilkatation change, we assume that there exists
a linear combinatiodn = &» + ¥dy that obeys

-

On+1 = g1 *€ o , (A3)
where¥ is constant showing the coupling between the tefordhations just mentioned.

Equations Al and A3 can be solved together numkéyjavith any specified constatit.
Based on the fact that in our case the decayirgiestale/o is about ten times larger than the
length scald1 over which the interhelical distance change trams$ into an orientation change,
an analytical solution can be achieved with antamithl approximation. This approximation
considers that the decaying length sdzlés much larger than the lengthschleso that the
decaying regime and the transformation regime earegarded as decoupled. That is, in the
transformation regime, the decaying terms can garded as negligible so that we have:

{‘-Uz *(Onsy —Op)—wzs(En —On 1)+ psdy =0

Bn + ydn = ydy . (A4)
-n ( -n
Equation A4 can be solved analytically with = de€ '+ andfn = yds\1 — € '!1], where
Iy = —(lne)™ and¢ satisfies:
ye; —(p+ 2yw)se +yw  =€” =0 (A5)

21



Outside the transformation regime we can assuntattaaxternal torque is negligible so that
n

Bn.n =6y +e 2 whereN > Iy So overall an analytical approximation of theution to
equation (3) can be written as:

nhy
I—l—e ‘ri-'e'

&=

n =vd, (A6)
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Tablel

Parameters used for ideal B-type DNA:

Base step iz direction

Base step intrinsic twist

Radius of tlmeible helix

h=3.44

Wy =

;Tfﬁ

Ry =94

Other parameters used in Monte Carlo simulation:

Backbone streng

th Base stacking

Hydrogen bond

Base stacking

Base stacking

distance part strength orientation part I| orientation part Il
Ko = 20ksT k. = 50ksT k..., = 3k8T Ugtw, = —2kgT |Ugwz = —200kzT
P Ve r e HY s
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Figure captions

Figure 1. Coordinate system. The coordinate system used is defined as illustraie
longitudinal direction of the double helical struict is defined az In the plane perpendicular to
z, an arbitrary direction is selectedxasTheny is defined through the right hand rule.

Figure2. Our coarse-grained model of DNA.DNA is modeled as two strands (color-coded red
and blue) of identical units. Each unit of DNAn®deled as a sphere representing the sugar-
phosphate group attached to a thin plate repregeatbase, where the long sides of the plates
are represented by solid lines with lengtishort sides of the plates are represented bgdiott
lines with lengthb, and the thickness of the plates is representathblyed lines with length

(A) Projection of our three dimensional model inxh@lane. B) Projection of our three
dimensional model in they plane.

Figure 3. DNA unit orientations(ﬁ'[ﬂnd-"r"red] for unitsin thered strand and

(@ piye: ®hiue ) for unitsin the bluestrand). The orientation of each unit of DNA is defined
as the unit vector normal to the corresponding péete. Q) By definition, the orientations for
the all units of an ideal B-type DNA are in thdirection, that i$t = £. (B) The orientation of
each unit can change as the DNA molecule is defdrinoen the ideal double helical structure.
The change in orientation can be characterizedvbypﬁrameter@ and¥ as shown.Q) In
case thafred = Fpiue = Bconst and@rea = T + @piue = Pconse for two units within one base
pair, the deformation can manifest in the form diuakling deformation or in the form of a

propeller twist deformation, depending on the argieveen the long sides of the plates #nd

Figure4. Alteration of orientations. As the base pair with indék= @ is pulled apart, it
induces orientation changes in neighboring bass.p&or the case where the change of
orientation is a constant over one DNA helical Ipitwe see periodic structure changes from

buckling backward{ = 1) to propeller twist outward®¥= 3 or” = %) to buckling forward
(" = 6) to propeller twist inward{= 8 or” = 9) as a result of the intrinsic twist of DNA.
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Figure5.A simplified two dimensional model. Identical solid rectangles each representing one
DNA base are connected into two strands (one ocdlbohge and the other colored red). By
pairing one rectangle in the blue strand to itsesponding rectangle in the red strand we form a
two dimensional network resembling a DNA moleculde behavior of the orientation change
for each DNA base, as defined by the angle betweeEnaxis and the corresponding plate main
axis perpendicular to sige can be studied by examining the torque balantleeohetwork.

Figure6. Comparison between results from analytical analysis and simulations. (A)

Comparison for the orientation paramefleibetween analytical theory (eq. 5) as given bydsoli
line and Monte Carlo simulation as given by sotid&es. The solid line is obtained by setting
the parameters in eq. 5 to the valles 1bps andlp = 9.5bps | (B) Results from the

simulations show small variations at each basefstefhe orientation paramet%r.

Figure7. Displacements of the Phosphate group asa result of the orientation changes of
DNA bases. (A) The positions of the phosphate groups accordirigdnte Carlo our

simulations, where for phosphate groups at pos#dn, P¥ andP< , we have

px py

cosf = sinf =

ipx? + py? ipx2 + py?
N !

and . (B) Another version of the positions of the

phosphate groups, whefe follows the double helix instead of being confiretweer? to

2w | In both figures is the length of the helical pitch of an idealyi¢ DNA and the
amplitudes of all displacements are multiplied gaor of 15 for illustration purposes.

Figure8. Comparison between results from analytical analysis, simulations and
experimental observations. The experimental relative binding free-energy ef #f protein as
a function of the separation between the two pndbgiding sites on DNA from Ref. 11 are
shown as solid red circles with error bars. Oeotltical results of the major groove width
changes of the DNA are also shown, with the restdta analytical analysis shown by black
solid line and results from simulations shown blydsblue squares. Both the black solid line
and the solid blue squares are scaled to matobxiterimentally observed amplitude around
L =10bps
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