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Abstract 

We report a study of DNA deformations using a coarse-grained mechanical model and 

quantitatively interpret the allosteric effects in protein-DNA binding affinity.  A recent single 

molecule study (Kim et al. (2013) Science, 339, 816) showed that when a DNA molecule is 

deformed by specific binding of a protein, the binding affinity of a second protein separated from 

the first protein is altered.  Experimental observations together with molecular dynamics 

simulations suggested that the origin of the DNA allostery is related to the observed deformation 

of DNA’s structure, in particular the major groove width.  In order to unveil and quantify the 

underlying mechanism for the observed major groove deformation behavior related to the DNA 

allostery, here we provide a simple but effective analytical model where DNA deformations 

upon protein binding are analyzed and spatial correlations of local deformations along the DNA 

are examined.  The deformation of the DNA base orientations, which directly affect the major 

groove width, is found in both an analytical derivation and coarse-grained Monte Carlo 

simulations.  This deformation oscillates with a period of base pairs with an amplitude 

decaying exponentially from the binding site with a decay length   base pairs, as a result 

of the balance between two competing terms in DNA base stacking energy. This length scale is 

in agreement with that reported from the single molecule experiment.  Our model can be reduced 

to the worm-like chain form at length scales larger than  but is able to explain DNA’s  

mechanical properties on shorter length scales, in particular the DNA allostery of protein-DNA 

interactions. 

Keywords   

Protein-DNA interactions, mechanical deformation, network model, base orientations.
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I. Introduction 

Protein-DNA interactions play a vital role in many important biological functions, such 

as chromosomal DNA packaging1, 2, repair of damaged DNA sites3, 4, target location5, 6 and 

unwinding of DNA7.  Many studies have explored the local deviations from the canonical helical 

structure of DNA8 as the consequence of protein-DNA binding interactions9, 10.  Nonetheless, 

understanding of protein-DNA interactions at the microscopic level is still incomplete, in part 

because the relevant interactions span a wide range of length scales.  In particular, previous 

theoretical descriptions of DNA typically work well on either very small length scales with 

atomic resolution or very large length scales, at least comparable to the persistent length. This 

leaves an important lacuna for intermediate length scales.  In this connection, our understanding 

of protein-DNA interactions has recently been advanced by single molecule measurements by 

Kim et al.11 of the binding affinities of specific binding of protein to DNA under the influence of 

the binding of another protein to the same DNA at a distance of intermediate length scales, 

which presents the challenge to create a theoretical model to bridge the mesoscopic 

thermodynamic or mechanical properties observed and the underlying molecular mechanism. In 

the following, we expand on these issues. 

At one end of the length scale spectrum, with local details incorporated at the atomic 

level, molecular dynamic (MD) simulations based on force fields such as CHARMM12, and 

AMBER13 have been proven very successful in studying many different phenomena of DNA 

including DNA allostery11, especially with the aid of other numerical techniques such as 

umbrella sampling14 and replica exchange15.  However, the complexity of the DNA molecule 

with its atomic level details together with the lack of a sufficiently realistic continuous field 
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model in describing the solvent makes these simulations computationally expensive.  These 

studies are in general limited by their computational requirements to length scales of the order of 

10 base pairs (bps) and time scales of the order of microseconds. 

At the other end of the length scale spectrum, a widely used theoretical model—the 

worm-like chain (WLC) model16, proposes to treat DNA as a semi-flexible polymer chain that 

behaves like an elastic rod17.  In this continuous description of DNA, all the local details of the 

DNA molecule are coarse-grained into a quadratic bending potential that can be characterized by 

one single parameter, the bending persistence length .  By fitting to experimental results that 

measure extensions of DNA molecules subject to external forces, the model shows a very good 

agreement between theory and experiment with  for double-strand DNA 

under physiological conditions18 as well as in a flow field19.  Detailed variations of this model 

have been proposed over the years by introducing a small number of additional independent 

parameters20, such as the twisting persistence length .  Since they have only a few parameters, 

models of this type prove to be very efficient and accurate in treating long DNA molecules at 

length scales larger than .  But the coarse graining of all local details also deprives these 

models of any ability to describe DNA at molecular length scales smaller than the persistence 

lengths. 

For a number of problems of biological significance, the length scale of interest falls in 

the gap between the atomistic description and the continuous description.  These problems call 

for the creation of a model at the intermediate level, which incorporates the correct amount of 

local details while at the same time provides the computational efficiency for relatively long 

chains of DNA.  An excellent example is a recent experimental single molecule study by Kim et 

al.11, which has motivated the present study.  In this experiment, a single DNA molecule of 
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medium size (contour length ) is deformed by specific binding of a protein, 

and the rate constant of the dissociation of a second protein from the same DNA chain was 

measured as a function of the separation  between the two binding sites. The experimental 

results were analyzed with the assumption that the measured dissociation rate constant  is 

related to the free-energy difference between the binding of the protein and DNA through 

, where the dissociation constant  is the dissociation rate  divided by the 

bimolecular association constant.  With this assumption, the experimental results showed that the 

binding free-energy difference of the second protein oscillates with a period of  (the 

helical pitch of the double helical structure of B form DNA) while the envelop envelope of the 

amplitude decays very quickly and becomes virtually zero at separations larger than .  

Additional experiments were conducted with the DNA deformation caused by attachment to a 

hairpin loop instead of the specific binding of the first protein.  A similar oscillation of the 

dissociation rate was observed, indicating that this observed free-energy landscape is related to 

the underlying correlations between deformed structures along the DNA chain under study rather 

than to direct protein-protein interactions.  The observed allostery was interpreted in terms of the 

modulation of the major groove width of the DNA induced by the binding of a protein11.  But, 

given the observed length scales involved, a quantitative description of the observed correlation 

requires a mesoscopic model with base pair resolution that applies to a DNA chain of contour 

length on the order of . 

Following several pioneering works21-23 in the development of models of intermediate 

length scale, here we propose a mechanical model of DNA to interpret the observed allosteric 

phenomenon.  As one component of this model, the stacking potential between neighboring 
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bases is modeled by a variant of the Gay-Berne potential24, 25 between ellipsoids, while the sugar-

phosphate backbone as well as the hydrogen bonding between bases within a base pair is 

modeled as springs.  We find that interhelical distance changes caused by either protein binding 

or the attached hairpin loop (as used in the experimental study11) induce deformation in the DNA 

base orientations.  Analysis of our model shows that the deformation of the major groove width, 

which is related to DNA base orientation, exhibits an oscillatory change with an exponentially 

decaying amplitude.  The length scale for the decay is derived analytically and confirmed by our 

coarse-grained Monte Carlo simulation.  These results are in good agreement with the 

experimental observations of Ref. 11. 

The outline of the remainder of this contribution is as follows.  In Sec. 2, the description 

of the model is given and an analytic theory is developed, which produces the key decay and 

oscillation lengths results (some portions of the analysis are given in an Appendix).  The Monte 

Carlo simulation procedures are described in Sec. 3.  Our analytical theory results are 

successfully compared with both experiment and the Monte Carlo simulations in Sec. 4.  Section 

5 offers concluding remarks and discussion, including some directions for future efforts. 

II. Model description 

Here we present and analytically develop a mechanical model to study DNA 

deformations at zero temperature.  We show in Sec. 5 that the mechanism underlying the 

behavior of the major groove deformations is an intrinsic feature of the DNA system and that our 

study is applicable to the DNA deformations at room temperature.  In this coarse-grained 

representation of a DNA molecule which incorporates an intrinsic twist at every base pair step, 

the double helical structure of an ideal B-type DNA helps us define a right-handed coordinate 
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system with the z axis in the longitudinal direction (Figure 1).  As illustrated in Figure 2, in our 

model each phosphate-sugar-base unit of DNA is modeled by a sphere representing the 

phosphate-sugar group attached to a thin plate (representing the base) with thickness c, depth of 

the short side b and length of the long side a.  These units are connected into two strands, color-

coded as blue and red.  The two strands are connected together—forming a double helical 

structure, by springs representing the hydrogen bonds between each base pair.  The orientation 

for each DNA unit is defined by the unit vector  normal to the corresponding thin plate and by 

definition  for all units of an ideal B-type double helical structure (Figure 3A).  According 

to previous studies23, the stacking interactions between neighboring bases within each strand 

with orientation  and , where  for the blue strand and  for the red 

strand can be well modeled by a variant of the Gay-Berne potential as a product of three terms: 

.                              (1) 

The first term, in a form of a simple Lennard-Jones potential, controls the distance dependence 

of the interaction; while the last two terms relate the interaction to the orientation  and the 

relative orientation . 

As suggested by the experimental studies of Ref. 11, here we assume that one base pair 

with index  is pulled apart along its long side.  This deformation causes an interhelical 

distance change that involves backbone chemical bonds, stacking interactions and hydrogen 

bonds.  Since the stiffness of the backbone bonds as well as the distance dependent part of the 

stacking interactions (  in eq. 1) is much higher than for other kinds of energies, these two 

kinds of bonds can be regarded as almost rigid.  This approximation exerts a strong geometric 

constraint such that the distorted interhelical distance at the base pair  will relax along the 
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DNA chain back to equilibrium length in a few base pair steps, by the induction of an alteration 

of orientations for neighboring bases, from  at equilibrium to an altered orientation 

 (Figure 3A and 3B).  The induced alteration of 

orientations itself relaxes slowly back to  along the DNA chain.  Due to the symmetry of 

the system, the orientations of the two bases in a base pair  and  

satisfy the conditions  and .  Depending on the alignment 

between the alteration of orientation and the long side of the base plate, such induced alteration 

of orientation can be manifest as a combination of a buckling deformation and a propeller twist 

deformation (Figure 3C).  Since the stacking energy prefers adjacent bases on the same strand to 

have the same orientations, the induced alteration of orientations decays very slowly, as noted 

above.  For illustration purposes we show in Figure 4 a case where it is a constant within one 

helical pitch of DNA.  This Figure shows that as a result of the intrinsic twist, the relative 

alignment between the alteration of orientation and the long side of the base plate changes 

periodically, yielding periodic structure changes from buckling backward to propeller twist 

outward to buckling forward to propeller twist inward within each helical pitch. 

 In order to quantitatively describe the deformation relaxation along the DNA chain, we 

propose here a simplified two-dimensional model that yields analytical results. In this simplified 

model illustrated in Figure 5, centers of identical solid rectangles (side length )each 

representing one DNA base are connected into two strands (color coded as blue and red) 

extending to infinity on both sides.  By means of the pairing of each rectangle on one strand to its 

corresponding rectangle on the other strand with springs of stiffness  and equilibrium length 

, the two parallel strands are connected together and form a two dimensional network.  Here 

we denote the direction parallel to each strand as the z axis and the direction perpendicular as the 



9 

 

x axis, with the two strands at  and  respectively.  The orientation of 

each rectangle can be characterized by the angle  between its main axis perpendicular to side a 

and the z axis.  For an ideal B-type DNA molecule  for all bases.  In order to study the 

relaxation of an interhelical distance deformation, one pair of rectangles (denoted as the 0th pair 

in sequence) are pulled slightly apart in the x direction as their centers are now located at 

 and , respectively. As a result of this deformation, all 

rectangles relocate (to  and ) and reorient (  for the nth 

base in the blue strand and  for the nth base in the red strand) so that on each rectangle such 

that the force balance and the torque balance are restored. If we assume that all rectangles in one 

strand (e.g., the blue strand) are properly relocated so that the distance-dependent contribution 

 in eq. 1 stays fixed, we can simplify the interaction defined in that equation as: 

,                (2) 

where  is the orientation of the nth base in the blue strand,  and the 

coefficients  and  can be obtained from eq. 1.  Due to the symmetry of the system, the 

orientation of the nth base in the other strand (in this case the red strand) is .  Now for the nth 

rectangle away from the deformed boundary, the torque balance requires that 

,                 (3) 

where  is the torque on the base exerted by the hydrogen bonds within the nth base pair. 

Solution of eq. 3 is not straightforward since the torque  is coupled with the orientation 

deformation .  For a simpler problem of interest, in which we have torque , 
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where  is a constant and  is the Kronecker delta function (a constant torque at the ith base 

and 0 torque at any other bases), eq. 3 can be reduced to a simpler form for  

.                                   (4) 

Equation 4 should hold for all , which means that the ratio  is 

independent of  and is parameterized by  and  through the quadratic equation 

.  There are two solutions to this equation satisfying , 

corresponding to one decaying mode  and one growing mode .  It is implied in 

this derivation that the deformation is induced by the external torque at the ith base and decays 

towards the boundary at infinity where , so that the constant ratio  is 

uniquely determined as .  The amplitude of the deformation characterized by  is then 

determined to decay exponentially along the chain as , 

where the deformation correlation length scale .  In the limiting case where 

, this can be reduced to a simple form . 

An analytical approximation to the complete solution to the full eq. 3 as opposed to the 

simplified eq. 4 can be found in the Appendix.  To summarize the result, for the nth base away 

from the deformed boundary we find 

,                                                          (5) 



11 

 

where  shows the relaxation length scale of interhelical distance changes and is estimated to be 

on the order of one base pair step. 

The last two terms in eq. 1 have been studied previously23, providing some information 

on the ratio .  An evaluation of these two terms following this early formulation shows 

that  and  for 

small  and , where  for orientation changes parallel to the long side of the plate and 

 for orientation changes parallel to the short side of the plate.  Comparing this result to eq. 

2 we see that . 

Our modeling of the DNA base as a rectangular thin plate with long side length a, short 

side length b and thickness c is of course a phenomenological approximation and the appropriate 

values for these parameters must yield the minimum center-to-center distance for perfect 

stacking.  Previous study23 shows that one good choice is that ,  and .  

From this we obtain an expectation of the ratio .  This 

supports the simple approximation for  obtained at the end of the discussion of the solution of 

eq. 4 and gives a decay length scale . 

In our development above, we have dealt with the simplified two-dimensional case.  In a 

more realistic three-dimensional DNA model the unit vector representing the orientation is 

characterized by both  and , where  characterizes the overall amplitude of the change of 

orientation from equilibrium where  and  characterizes the relative direction of the 
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change of orientation.  As illustrated by our own Monte Carlo simulation results shown later in 

Sec. 4, the change in  at each base pair step is small and as an approximation we can assume 

that in the real DNA system the change in  is negligible.  Under this approximation our results 

on  for the simplified two-dimensional model can be extended to the orientations of bases 

 in a realistic three-dimensional DNA model which incorporates the intrinsic twist, 

in a fashion that  and .  If we assume that the backbone phosphate group 

relocates according to the edge of the base plate in the longitudinal direction by attachment, we 

have the major groove width of the DNA molecule defined as the distance between the 

phosphate group in the th blue unit and the phosphate group in the th red unit 

,     (6) 

where  is the base step of an ideal B-type DNA, and  is the overall induced 

amplitude defined through  (see eq. 5) which is assumed to be 

small so that all higher order terms can be neglected. 

III. Monte Carlo simulation 

To test if the analytical approach of Sec.3 is reasonable, we carried out a simple coarse-

grained Monte Carlo simulation on a DNA molecule with  base pairs.  We simplified 

the system by keeping only base stacking, hydrogen bonding between bases within each base 

pair and backbone bonding interactions.  The base stacking interaction has been limited to the 

interaction between neighboring bases within the same strand; it is decoupled into a distance-

dependent part and an orientation-dependent part as , where 
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the distance r between two neighboring bases is obtained from ,  with 

 and .  All the distance-dependent interactions included in our 

simulation are modeled as elastic springs around their corresponding equilibrium distances.  That 

is, we use an elastic spring of stiffness  for the distance-dependent part , an elastic spring 

with stiffness  for hydrogen bonding, and an elastic spring with stiffness  for backbone 

bonding (see Table I for the parameters used in the simulation).The orientation-dependent part of 

the stacking is modeled as 

 with 

amplitude , which reduces to the two dimensional case eq. (2) the two dimensional case when 

. 

To start each simulation run, all the bases are placed at the corresponding positions of an 

ideal B-type DNA except for one base pair which is pulled apart in the long side direction by .  

The orientation of each base  is initiated with being a random number between  

to  and  being a random number between  to , except for the one base pair which 

is pulled apart where the orientations of the two are kept fixed at  and  throughout 

the simulation run.  As described in previous studies23, each base taken as a thin plate has six 

degrees of freedom.  Three of them are translational—Rise, Shift, Slide, and the other three are 

rotational—Tilt, Twist, Roll.  Due to the symmetry of the system in our problem, to study the 

deformation relaxation of our interest we assume that only one base in a base pair is free to move 

and that the other will move symmetrically.  In each trial move of our simulation, we fixed the 

Twist degree of freedom and made random displacements in the other five degrees of freedom 

for each base pair.  The moves are accepted or rejected according to the Metropolis scheme26. 
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Since we are only interested in the deformation relaxation of DNA as a result of its mechanical 

properties, we have chosen to downplay the role of thermal excitations and conducted the 

simulation with the  very low temperature , where T denotes room temperature 

=293K. 

IV. Results 

 In this section, we compare our analytic predictions with both experiment and our Monte 

Carlo simulations. 

Our analytical predictions of the base orientation change are compared with the results 

obtained in the simulations in Figure 6.  For the parameter , the amplitude of the change in 

orientation, our analytical prediction (eq. 5) agrees very well with the results obtained in our 

Monte Carlo simulations.  For the base orientation parameter , results from the simulations 

show that the changes at each base step are fairly small (on the order of ) as 

compared to the intrinsic twist which is  at each base step.  This slow variance in  

supports the approximation used in our analytical analysis in Sec. 3, where  is treated as a 

constant.  This can be understood as a result that the change in  raises a large amount of 

energy but does not explicitly help the relaxation of the deformation. 

Most proteins primarily interact with the DNA major grooves.  Therefore distortion of the 

major groove would have the largest influence on protein binding affinity.  Our theoretical 

results are compared with recent experimental results of Ref. 11, which demonstrated the 

correlation and anticorrelation between bindings of two proteins on two specific sites of DNA 

with a separation of L.  Figure 7 shows our results from simulations for the positions of the 
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phosphate groups.  The major groove width of the DNA can be obtained either from these 

locations or analytically from eq. 6.  In figure 8 our theoretical results concerning the major 

groove width are shown in comparison with the experimentally observed 2nd protein binding 

free-energy  as a function of separation L in the form of .  The 

comparison shows a quite good agreement between the experiment and theory for ; the 

quantitative discrepancy at small separation regime for  is still poorly understood and 

requires more detailed studies. 

 

V. Conclusion and Discussion 

Our coarse-grained mechanical model proves to be generally useful for studying DNA 

deformation at an intermediate length scale and leads to theoretical predictions that are in good 

agreement with recent experimental results11 and Monte Carlo simulations.  The new decay 

lengthscale , first demonstrated in the recent single molecule experiment in Ref. 11, is 

proposed here as a result of the balance between two competing terms in DNA base stacking 

energy.  Since this competition is a generic feature of the DNA system, it is of considerable 

interest to see whether the same general exponential decaying behavior is at work for 

deformations other than interhelical distance changes, such as bending, supercoiling 

deformation. 

The results demonstrated within have been obtained from DNA either at zero temperature 

(analytical analysis) or at very low temperature (Monte Carlo simulations).  Here we argue that 

these results also apply at room termperature, and so are relevant for the experiments of Ref. 11.  

At room temperature the DNA molecule undergoes thermal excitations resulting from its 
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interactions with the surrounding solvent (typically water) molecules.  The time scale over which 

these interactions occur is denoted as , typically comparatively small ( ).  Over this 

time scale, the thermal excitations can be considered as an instantaneous thermal “kick”—an 

external force (or torque) at each base pair.  On the other hand, typical experimental observations 

happen at time scale  around , at which the DNA has undergone many thermal 

“kicks”.  Since these interactions are uncorrelated in nature, the effects observed in experiments 

are the statistical averages of many instantaneous thermal “kicks” over .  In a simple 

approach, here we model each of these uncorrelated thermal “kicks” as an external force (or 

torque) at each base pair site, of amplitude  pointing in a random direction, where the 

statistical time average of these “kicks” over a time scale of  has a square amplitude 

proportional to the thermal energy, , where  is the suitable proportionality 

factor.  In order to study the thermally driven deformation of DNA, it involves no loss of 

generality to keep the DNA chain at zero temperature except for one base pair with index , 

since the molecule is treated as a linear system in our mechanical model.  The forces of thermal 

origin mentioned above are not fundamentally different in terms of deforming DNA from other 

external forces treated in our current study. 

Therefore, in the simplest case we can consider only one mode of the thermal “kick” 

which acts as an external torque of amplitude  pointing in a random direction in the xy plane.  

In the spirit of our earlier analytical analysis in Sec. 2, at any instant  the DNA molecule can be 

described by its two-dimensional projection with normal direction of the two dimensional plane 

(characterized by ) determined by the external torque  and the z axis.  According to our 

simplified two-dimensional model, such an external torque induces a change of orientations of 
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bases .  We have already shown that the behavior of  is governed by eq. 4, 

which yields a result of  with amplitude .  Since the thermal 

“kicks” are totally uncorrelated,  is random.  On the time scale , the statistical averages 

show that the deformation in base orientation 

 satisfies  as a 

result of the randomness.  However—and this is the key point—the correlation 

 remains just the same as the result obtained in 

Sec. 2 for our model developed for the zero temperature system.  This important result can be 

generalized as  for the more realistic case where 

all of the DNA base pair sites are thermally excited.  As a direct result of this correlation, the 

major groove widths at different locations exhibit a similar correlation as 

.  The above analysis indicates that the mechanism 

unveiled by our model—the correlation between local deformations of DNA structures at 

different locations—is general and is an intrinsic feature of the DNA system. 

 Conventional models based on the elastic rod treatment of DNA (e.g. the worm-like 

chain model) describe the DNA molecule in terms of its centerline and cross sections.  These 

models provide reliable descriptions of the DNA molecule at length scales larger than the 

persistence length , where the amplitude of the bending angle  between two 

consecutive segments (labeled with index  and , respectively) of DNA of length  is 
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accurately predicted as .  However, since they lack local details, these continuous 

models fail to provide a good description at length scales smaller than that persistence length.  

This failure is caused by the breakdown of one key assumption that the cross sections (as a point 

in the worm-like chain16 and as a circle in other models27) are rigid and are “stacked” along the 

centerline, which requires that all bending angles are independent as .  Our results 

show that local deformations are correlated at short length scale  and the failure of 

these continuous descriptions at short length scales can be avoided by incorporating 

modifications that follow naturally from the model presented in this paper.  The conclusion 

 from the present model is consistent with these elastic rod descriptions since the 

molecular details included in our model can be renormalized into the fitting parameter  at 

length scales larger than .  This new description, which incorporates local details into 

traditional continuous models, is expected to be of considerable importance in studying DNA 

structures at length scales comparable to the persistence length and should help us understand 

many mechanical properties of DNA such as the enhanced flexibility at short length scales and 

DNA repair mechanism inside cells. 

Strictly speaking, the analytical results obtained in this study only apply to an infinitely 

large system consisting of identical units. Extension of the study to finite system with sequence-

dependent properties can be made by bundling all the linear torque balance equations on all 

bases in an equivalent matrix representation.  In this representation, a so-called resistance matrix 

can be given with neighboring interaction coefficients  and  being the matrix elements.  

The final structure of the system upon deformation can be expressed in terms of the eigenvalues 

and the eigenvectors of this resistance matrix.  When all units are identical the matrix is a 
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Toeplitz matrix, that is, elements are constant along diagonals.  For a finite DNA chain of  

base pairs, the convergence of the eigenvalues and eigenvectors of the  by  Toeplitz matrix 

to the  analytical limit has been studied28.  The close agreement between results from our 

analytical analysis with an infinitely large system by eq. 5 and our simulation studies for  

 shows consistence with the mathematical study in Ref. 28; the DNA chain length 

satisfies  so that  serves as a good approximation. 

Of course, in reality these DNA units are in general different.  The variations of the DNA 

molecule at the base pair level, including mismatches29, 30 (broken hydrogen bonds and poor 

stacking forces) and sequence-dependent features 31, 32 (hydrogen bond strength and stacking 

force vary for different sequences), actually have important biological implications and 

accordingly are of great interest.  The rugged free-energy landscape associated with the sequence 

dependent interactions between DNA and the binding protein has been probed33 and its 

important role on many processes of great biological importance, e.g. the sliding kinetics of the 

binding protein along DNA, has been discussed34.  Qualitatively, we know that GC stacking 

interactions are more stable than AT stacking interactions, that is .  This leads to 

a smaller overall amplitude of the induced alteration of orientation for GC-rich DNA segments 

than for AT-rich segments, in qualitative agreement with experimental observations11.  However, 

a highly desired quantitative study is left for the future, although we do note here that for small 

variations this can be realized by perturbation of the resistance matrix around the Toeplitz 

matrix M as .  The sequence dependence and other 

issues will be subjects of further studies. 
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In conclusion, we have proposed a mechanical model and analytic analysis to explain the 

recent experimentally observed DNA allostery phenomenon.  We attributed the observed DNA 

allostery to major groove distortions, which result from the deformation of DNA base 

orientations.  Since the DNA base orientation is much more flexible than the backbone or the 

interhelical distance, the local deformation of the interhelical distance transfers to the distortion 

of the base orientation very rapidly, which can propagate to a long range at a length scale about 

.  The major groove length oscillates because of the intrinsic double helix structure of 

DNA.  Local deformations, major groove width in particular as shown in recent experimental 

study, induced by the first protein bound in turn affects the binding of a second protein and vice 

versa, which is the underlying mechanism for DNA allostery. 
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Appendix.  Approximate solution to eq. 3. 

 In order to solve the full eq. 3, we assume that the system is linear.  When one base pair 
is pulled apart, changes of orientations for neighboring base pairs are induced.  Along the DNA 
chain we see that spatially the interhelical distance change deformation transforms into an 
orientation change deformation.  Under the linear system assumption, we assume that the 
external torque on the nth base .  Equation 3 then becomes 

.                      (A1) 

Without the external torques, we have seen that the solution to equation 

                              (A2) 

satisfies .  As an extension of this result to a system with linear coupling 
between the interhelical distance change and the orientation change, we assume that there exists 

a linear combination  that obeys 

,                                                        (A3) 

where  is constant showing the coupling between the two deformations just mentioned. 

 Equations A1 and A3 can be solved together numerically, with any specified constant .  
Based on the fact that in our case the decaying length scale  is about ten times larger than the 

length scale  over which the interhelical distance change transforms into an orientation change, 
an analytical solution can be achieved with an additional approximation.  This approximation 
considers that the decaying length scale  is much larger than the lengthscale  so that the 
decaying regime and the transformation regime can be regarded as decoupled.  That is, in the 
transformation regime, the decaying terms can be regarded as negligible so that we have: 

.                           (A4) 

Equation A4 can be solved analytically with  and , where 

 and  satisfies: 

.                                    (A5) 
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Outside the transformation regime we can assume that the external torque is negligible so that 

, where .  So overall an analytical approximation of the solution to 
equation (3) can be written as: 

.                                            (A6) 
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Table I 

Parameters used for ideal B-type DNA: 

Base step in z direction Base step intrinsic twist Radius of the double helix 

   

 

Other parameters used in Monte Carlo simulation: 

Backbone strength Base stacking 

distance part 

Hydrogen bond 

strength 

Base stacking 

orientation part I 

Base stacking 

orientation part II 
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Figure captions 

 

Figure 1. Coordinate system. The coordinate system used is defined as illustrated: the 
longitudinal direction of the double helical structure is defined as z.  In the plane perpendicular to 
z, an arbitrary direction is selected as x.  Then y is defined through the right hand rule. 

 

Figure 2.  Our coarse-grained model of DNA.DNA is modeled as two strands (color-coded red 
and blue) of identical units.  Each unit of DNA is modeled as a sphere representing the sugar-
phosphate group attached to a thin plate representing a base, where the long sides of the plates 
are represented by solid lines with length a, short sides of the plates are represented by dotted 
lines with length b, and the thickness of the plates is represented by dashed lines with length c.  
(A) Projection of our three dimensional model in the xz plane.  (B) Projection of our three 
dimensional model in the xy plane. 

 

Figure 3. DNA unit orientations (  for units in the red strand and 

 for units in the blue strand).  The orientation of each unit of DNA is defined 
as the unit vector normal to the corresponding base plate.  (A) By definition, the orientations for 
the all units of an ideal B-type DNA are in the z direction, that is .  (B) The orientation of 
each unit can change as the DNA molecule is deformed from the ideal double helical structure.  

The change in orientation can be characterized by two parameters  and as shown. (C) In 
case that  and  for two units within one base 
pair, the deformation can manifest in the form of a buckling deformation or in the form of a 

propeller twist deformation, depending on the angle between the long sides of the plates and . 

 

Figure 4.  Alteration of orientations.  As the base pair with index  is pulled apart, it 
induces orientation changes in neighboring base pairs.  For the case where the change of 
orientation is a constant over one DNA helical pitch, we see periodic structure changes from 

buckling backward ( ) to propeller twist outward (  or ) to buckling forward 

( ) to propeller twist inward (  or ) as a result of the intrinsic twist of DNA. 
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Figure 5.A simplified two dimensional model.  Identical solid rectangles each representing one 
DNA base are connected into two strands (one colored blue and the other colored red).  By 
pairing one rectangle in the blue strand to its corresponding rectangle in the red strand we form a 
two dimensional network resembling a DNA molecule.  The behavior of the orientation change 
for each DNA base, as defined by the angle between the z axis and the corresponding plate main 
axis perpendicular to side a, can be studied by examining the torque balance of the network. 

 

Figure 6.  Comparison between results from analytical analysis and simulations.  (A)  

Comparison for the orientation parameter  between analytical theory (eq. 5) as given by solid 
line and Monte Carlo simulation as given by solid squares.  The solid line is obtained by setting 
the parameters in eq. 5 to the values  and .  (B) Results from the 

simulations show small variations at each base step for the orientation parameter . 

 

Figure 7.  Displacements of the Phosphate group as a result of the orientation changes of 
DNA bases.  (A) The positions of the phosphate groups according to Monte Carlo our 

simulations, where for phosphate groups at positions ,  and , we have 

 and .  (B) Another version of the positions of the 

phosphate groups, where  follows the double helix instead of being confined between  to 

.  In both figures,  is the length of the helical pitch of an ideal B-type DNA and the 
amplitudes of all displacements are multiplied by a factor of 15 for illustration purposes. 

 

Figure 8.  Comparison between results from analytical analysis, simulations and 
experimental observations.  The experimental relative binding free-energy of the 2nd protein as 
a function of the separation between the two protein binding sites on DNA from Ref. 11 are 
shown as solid red circles with error bars.  Our theoretical results of the major groove width 
changes of the DNA are also shown, with the results from analytical analysis shown by black 
solid line and results from simulations shown by solid blue squares.  Both the black solid line 
and the solid blue squares are scaled to match the experimentally observed amplitude around 

.
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