

Cardinality Restricted Boltzmann Machines

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Swersky, Kevin, Daniel Tarlow, Ilya Sutskever, Ruslan
Salakhutdinov, Richard S. Zemel, and Ryan P. Adams. 2012.
Cardinality restricted Boltzmann machines. Advances in Neural
Information Processing Systems 25: 3293-3301.

Accessed February 19, 2015 1:12:21 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11315421

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28944402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11315421&title=Cardinality+Restricted+Boltzmann+Machines
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11315421
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Cardinality Restricted Boltzmann Machines

Kevin Swersky Daniel Tarlow Ilya Sutskever
Dept. of Computer Science

University of Toronto
[kswersky,dtarlow,ilya]@cs.toronto.edu

Ruslan Salakhutdinov†,‡ Richard Zemel†
Dept. of Computer Science† and Statistics‡

University of Toronto
[rsalakhu,zemel]@cs.toronto.edu

Ryan P. Adams
School of Engineering and Applied Sciences

Harvard University
rpa@seas.harvard.edu

Abstract

The Restricted Boltzmann Machine (RBM) is a popular density model that is also
good for extracting features. A main source of tractability in RBM models is
that, given an input, the posterior distribution over hidden variables is factorizable
and can be easily computed and sampled from. Sparsity and competition in the
hidden representation is beneficial, and while an RBM with competition among
its hidden units would acquire some of the attractive properties of sparse coding,
such constraints are typically not added, as the resulting posterior over the hid-
den units seemingly becomes intractable. In this paper we show that a dynamic
programming algorithm can be used to implement exact sparsity in the RBM’s
hidden units. We also show how to pass derivatives through the resulting posterior
marginals, which makes it possible to fine-tune a pre-trained neural network with
sparse hidden layers.

1 Introduction

The Restricted Boltzmann Machine (RBM) [1, 2] is an important class of probabilistic graphical
models. Although it is a capable density estimator, it is most often used as a building block for
deep belief networks (DBNs). The benefit of using RBMs as building blocks for a DBN is that they
often provide a good initialization for feed-forward neural networks, and they can effectively utilize
large amounts of unlabeled data, which has led to success in a variety of application domains [3, 4].
Despite the benefits of this approach, there is a disconnect between the unsupervised nature of
RBMs and the final discriminative task (e.g., classification) for which the learned features are used.
This disconnect has motivated the search for ways to improve task-specific performance, while still
retaining the unsupervised nature of the original model [5, 6]. One effective method for improving
performance has been the incorporation of sparsity into the learned representation. Approaches
that learn and use sparse representations have achieved impressive results on a number of tasks
[7], and in the context of computer vision, sparsity has been linked with learning features that are
invariant to local transformations [8]. Sparse features are also often more interpretable than dense
representations after unsupervised learning.

For directed models, such as sparse coding [9], sparsity can be easily enforced using a Laplace or
spike and slab prior. For undirected models, however, introducing hard sparsity constraints directly
into the energy function often results in non-trivial dependencies between hidden units that makes
inference intractable. The most common way around this is to encourage sparsity during training
by way of a penalty function on the expected conditional hidden unit activations given data [10].
However, this training-time procedure is a heuristic and does not guarantee sparsity at test time.

1

Recently, methods for efficiently dealing with highly structured global interactions within the graph-
ical modeling framework have received considerable interest. One class of these interactions is based
on assigning preferences to counts over subsets of binary variables [11, 12]. These are known as
cardinality potentials. For example, the softmax distribution can be seen as arising from a cardinal-
ity potential that forces exactly one binary variable to be active. For general potentials over counts,
it would seem that the cost of inference would grow exponentially with the number of binary vari-
ables. However, efficient algorithms have been proposed that compute exact marginals for many
higher-order potentials of interest [12]. For achieving sparsity in RBMs, it turns out that a relatively
simple dynamic programming algorithm by Gail et al. [13] contains the key ingredients necessary
to make inference and learning efficient. The main idea behind these algorithms is the introduction
of auxiliary variables that store cumulative sums in the form of a chain or a tree.

In this paper, we show how to combine these higher-order potentials with RBMs by placing a cardi-
nality potential directly over the hidden units to form a Cardinality-RBM (CaRBM) model. This will
allow us to obtain genuinely sparse representations, where only a small number of units are allowed
to be active. We further show how gradients can be backpropagated through inference using a re-
cently proposed finite-difference method [14]. On a benchmark suite of classification experiments,
the CaRBM is competitive with current approaches that do not enforce sparsity at test-time.

2 Background

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is a particular type of Markov random field that has a two-layer
architecture, in which the visible, stochastic units v ∈ {0, 1}Nv are connected to hidden stochastic
units h ∈ {0, 1}Nh . The probability of the joint configuration {v,h} is given by:

P (v,h) =
1

Z
exp (v>Wh+ v>bv + h>bh), (1)

where Z is the normalizing constant, and {W ∈ RNv×Nh , bv ∈ RNv , bh ∈ RNh} are the model
parameters, with W representing visible-to-hidden symmetric interaction terms, and bv , bh repre-
senting visible and hidden biases respectively. The derivative of the log-likelihood with respect to
the model parameters1 W can be obtained from Eq. 1:

∂ logP (v; θ)

∂W
= EPdata

[vh>]− EPmodel
[vh>], (2)

where EPdata
[·] denotes an expectation with respect to the data distribution

Pdata(h,v; θ) = P (h |v; θ)Pdata(v) where Pdata(v) =
1

N

∑
n

δ(v − vn) (3)

represents the empirical distribution, and EPmodel
[·] is an expectation with respect to the distribution

defined by the model, as in Eq. 1. Exact maximum likelihood learning in this model is intractable
because exact computation of the expectation EPmodel

[·] takes time that is exponential in the number
of visible or hidden units. Instead, learning can be performed by following an approximation to the
gradient, the “Contrastive Divergence” (CD) objective [15].

After learning, the hidden units of the RBM can be thought of as features extracted from the input
data. Quite often, they are used to initialize a deep belief network (DBN), or they can be used
directly as inputs to some other learning system.

2.2 The Sparse RBM (SpRBM)

For many challenging tasks, such as object or speech recognition, a desirable property for the hidden
variables is to encode the data using sparse representations. That is, given an input vector v, we
would like the corresponding distribution P (h|v) to favour sparse configurations. The resulting
features are often more interpretable and tend to improve performance of the learning systems that

1The derivatives with respect to the bias terms take a similar form.

2

use these features as inputs. On its own, it is highly unlikely that the RBM will produce sparse
features. However, suppose we have some desired target expected sparsity ρ. If qj represents a
running average of the hidden unit marginals qj = 1/N

∑
n P (hj = 1|vn), then we can add the

following penalty term to the log-likelihood objective [16]:
λ (ρ log qj + (1− ρ) log(1− qj)) , (4)

where λ represents the strength of the penalty. This penalty can be interpreted as the KL divergence
between the hidden unit marginals and the target sparsity probability. In the online case, it’s deriva-
tive is simply λ(ρ − qj). Note that this is applied to each hidden unit independently and has the
intuitive property of encouraging each hidden unit to activate with proportion ρ across the dataset.

If the hidden units activations are stored in a matrix where each row corresponds to a training ex-
ample, and each column corresponds to a hidden unit, then this is enforcing sparsity in the columns
of the matrix. This is also referred to as lifetime sparsity. When using the SpRBM model, the hope
is that each individual example will be encoded by a sparse vector, corresponding to sparsity across
the rows, or population sparsity.

3 The Cardinality Potential

Consider a distribution of the form

q(x) =
1

Z
ψ

 N∑
j=1

xj

 N∏
j=1

φj(xj), (5)

where x is a binary vector and Z is the normalizing constant. This distribution consists of non-
interacting terms, with the exception of the ψ(·) potential, which couples all of the variables together.
This is a cardinality potential (or “counts potential”), because it depends only on the number of 1’s
in the vector x, but not on their identity. This distribution is useful for imposing sparsity because it
allows us to represent the constraint that the vector x can have at most k elements set to one.

There is an efficient exact inference algorithm for computing the normalizing constant and marginals
of this distribution. This can be interpreted as a dynamic programming algorithm [13, 17], or as an
instance of the sum-product algorithm [18]. We prefer the sum-product interpretation because it
makes clear how to compute marginal distributions over binary variables, how to compute marginal
distributions over total counts, and how to draw an exact joint sample from the model (pass messages
forwards, then sample backwards) and also lends itself towards extensions. In this view, we createN
auxiliary variables zj ∈ {1, . . . , N}. The auxiliary variables are then deterministically related to
the x variables by setting zj =

∑j
k=1 xk, where zj represents the cumulative sum of the first j

binary variables.

More formally, consider the following joint distribution q̂(x, z):

q̂(x, z) =

N∏
j=1

φj(xj) ·
N∏
j=2

γ(xj , zj , zj−1) · ψ(zN). (6)

We let γ(xj , zj , zj−1) be a deterministic “addition potential”, which assigns the value one to any
triplet (x, z, z′) satisfying z = x+ z′ and zero otherwise. Note that the second product ranges
from j = 2, and that z1 is replaced with x1. This notation represents the observation that zj can
be computed either as zj =

∑j
k=1 xk, or more simply as zj = zj−1 + xj . The latter is prefer-

able, because it induces a chain-structured dependency graph amongst the z and x variables. Thus,
the distribution q̂(x, z) has two important properties. First, it is chain-structured, and therefore
we can perform exact inference using the sum-product algorithm. By leveraging the fact that at
most k are allowed to be on, the runtime can be made to be O(Nk) by reducing the range of
each zi from {1, . . . , N} to {1, . . . , k + 1}. Second, the posterior q̂(z|x) assigns a probability one
to the configuration z∗ that is given by z∗j =

∑j
k=1 xj for all j. This is a direct consequence of

the sum-potentials γ(·) enforcing the constraint z∗j = xj + z∗j−1. Since z∗N =
∑N
j=1 xj , it follows

that q(x) = q̂(x, z∗), and since q(z|x) concentrates all of its mass on z∗, we obtain:

q̂(x) =
∑
z

q̂(x, z) =
∑
z

q̂(z|x)q̂(x) = q̂(x, z∗) = q(x). (7)

3

This shows that q(x) is the marginal distribution of the chain-structured distribution q̂(x, z). By
running the sum-product algorithm on q̂ we can recover the singleton marginals µj(xj), which
are also the marginals of q(·). We can likewise sample from q by computing all of the pair-
wise marginals µj+1,j(zj+1, zj), computing the pairwise conditionals µj+1,j(zj+1|zj), and sam-
pling each zj sequentially, given zj−1, to obtain a sample z. The vector x can be recovered
via xj = zj − zj−1. The basic idea behind this algorithm is given in [13] and the sum-product
interpretation is elaborated upon in [18].

There are many algorithmic extensions, such as performing summations in tree-structured distribu-
tions, which allow for more efficient inference with very large N (e.g. N > 1000) using fast Fourier
transforms [19, 18]. But in this work we only use the chain-structured distribution q̂ described above
with the restriction that there are only k states.

4 The Cardinality RBM (CaRBM)

The Cardinality Restricted Boltzmann Machine is defined as follows:

P (v,h) =
1

Z
exp

(
v>Wh+ v>bv + h>bh

)
· ψk

Nh∑
j=1

hj

 , (8)

where ψk is a potential given by ψk(c) = 1 if c ≤ k and 0 otherwise. Observe that the conditional
distribution P (h|v) assigns a non-zero probability mass to a vector h only if |h| ≤ k. The car-
dinality potential implements competition in the hidden layer because now, a data vector v can be
explained by at most k hidden units. This form of competition is similar to sparse coding in that there
may be many non-sparse configurations that assign high probability to the data, however only sparse
configurations are allowed to be used. Unlike sparse coding, however, the CaRBM learning prob-
lem involves maximizing the likelihood of the training data, rather than minimizing a reconstruction
cost. Using the techniques from the previous section, computing the conditional distribution P (h|v)
is tractable, allowing us to use learning algorithms like CD or stochastic maximum likelihood [20].
The conditional distribution P (v|h) is still factorial and easy to sample from.

Perhaps the best way to view the effect of the cardinality potential is to consider the case of k = 1
with the further restriction that configurations with 0 active hidden units are disallowed. In this case,
the CaRBM reduces to an ordinary RBM with a single multinomial hidden unit. In this case, a
similar model to the CaRBM is the Boltzmann Perceptron [21], which also introduces a term in the
energy function to promote competition between units; however, k is set to 1 in order to maintain
tractability. Another similar line of work is the Restricted Boltzmann Forest [22], which uses k
groups of multinomial hidden units.

We should note that the actual marginal probabilities of the hidden units given the visible units are
not guaranteed to be sparse, but rather the distribution assigns zero mass to any hidden configuration
that is not sparse. In practice though, we find that after learning, the marginal probabilities do tend
to have low entropy. Understanding this as a form of regularization is a topic left for future work.

4.1 The Cardinality Marginal Nonlinearity

One of the most common ways to use an RBM is to consider it as a pre-training method for a
deep belief network [2]. After one or several RBMs are trained in a greedy layer-wise fashion,
the network is converted into a deterministic feed-forward neural network that is fine-tuned with
the backpropagation algorithm. The fine-tuning step is important for getting the best results with a
DBN model [23]. While it is easy to convert a stack of standard RBMs into a feed-forward neural
network, turning a stack of CaRBMs into a feed-forward neural network is less obvious, because it
is not clear what nonlinearity should be used.

Observe that in the case of a standard, binary-binary RBM, the selected nonlinearity is the sig-
moid σ(x) ≡ 1/(1+exp(−x)). We can justify this choice by noticing that it is the expectation of the
conditional distribution P (h|v), namely

σ(W>v + bh) = EP (h|v)[h], (9)

4

where the sigmoid is applied to the vector in an element-wise fashion. In particular, using the
conditional expectation as the nonlinearity is a fundamental ingredient in the variational lower bound
that justifies the greedy layer-wise procedure [2]. It also appears naturally when the score matching
estimator is applied to RBMs over Gaussian-distributed visible units [24, 25]. This justification
suggests that for the CaRBM, we should choose a nonlinearity µ(·) which will satisfy the following
equality:

µ(W>v + bh) = EP (h|v)[h], (10)

where the conditional P (h|v) can be derived from Eq. 8. First note that such a nonlinear function
exists, because the distribution P (h|v) is completely determined by the total input W>v + bh.
Therefore, the feed-forward neural network that is obtained from a stack of CaRBMs uses a message-
passing algorithm to compute the nonlinearity µ(·). We should note that µ depends on k, the number
of units that can take on the value 1, but this is a constant that is independent of the input. In practice,
we keep k fixed to the k that was used in unsupervised training.

To compute gradients for learning the network, it is necessary to “backpropagate” through µ, which
is equivalent to multiplying by the Jacobian of µ. Analytic computation of the Jacobian, however,
results in an overly expensive O(N2) algorithm. We also note that it is possible to manually dif-
ferentiate the computational graph of µ by passing the derivatives back through the sum-product
algorithm. While this approach is correct, it is difficult to implement and can be numerically unsta-
ble.

We propose an alternative approach to multiplying by the Jacobian of µ. Let x =W>v + bh be the
total input to the RBM’s hidden units, then the Jacobian J(x) is given by:

J(x) = EP (h|v)[hh
>]− EP (h|v)[h] EP (h|v)[h

>],

= EP (h|v)[hh
>]− µ(x)µ(x)>. (11)

We need to multiply by the transpose of the Jacobian from the right, since by the chain rule,

∂L

∂x
=
∂µ

∂x

> ∂L

∂µ
= J(x)>

∂L

∂µ
, (12)

where L is the corresponding loss function. One way to do this is to reuse the sample h ∼ P (h|v)
in order to obtain a rank-one unbiased estimate of EP (h|v)[hh

>], but we found this to be inaccurate.
Luckily, Domke [14] makes two critical observations. First, the Jacobian J(x) is symmetric (see
Eq. 11). And second, it is easy to multiply by the Jacobian of any function using numerical dif-
ferentiation, because multiplication by the Jacobian (without a transpose) is precisely a directional
derivative.

More formally, let f(x) be any differentiable function and J be its Jacobian. For any vector `, it can
be easily verified that:

lim
ε→0

f(x+ ε`)− f(x)
ε

= lim
ε→0

f(x) + εJ`+ o(ε)− f(x)
ε

= lim
ε→0

o(ε)

ε
+
εJ`

ε
= J`. (13)

Since µ is a differentiable function, we can compute J(x)` by a finite difference formula:

J(x)` ≈ µ(x+ ε`)− µ(x− ε`)
2ε

. (14)

Using the symmetry of the Jacobian of µ, we can backpropagate a vector of derivatives ∂L/∂µ using
Eq. 14. Of the approaches we tried, we found this approach to provide the best combination of speed
and accuracy.

5 Experiments

The majority of our experiments were carried out on various binary datasets from Larochelle et
al [26], hence referred to as the Montreal datasets. Each model was trained using the CD-1 algo-
rithm with stochastic gradient descent on mini-batches. For training the SpRBM, we followed the
guidelines from Hinton [27].

5

5.1 Training CaRBMs

One issue when training a model with lateral inhibition is that in the initial learning epochs, a small
group of hidden units can learn global features of the data and effectively suppress the other hid-
den units, leading to “dead units”. This effect has been noted before in energy-based models with
competition [22]. One option is to augment the log-likelihood with the KL penalty given in Eq. 4.
In the SpRBM, this penalty term is used to encourage each hidden unit to be active a small number
of times across the training set, which indirectly provides sparsity per-example. In the CaRBM it
is used to ensure that each hidden unit is used roughly equally across the training set, while the
per-example sparsity is directly controlled. We observed that dead units occurred only with a ran-
dom initialization of the parameters and that this was no longer an issue once the weights had been
initialized properly.

A related issue with SpRBMs is that if the KL penalty is set too high then it can create dead examples
(examples that activate no hidden units). Note that the KL penalty will not penalize this case as long
as the inter-example activations matches the target probability ρ.

5.2 Comparing CaRBM with SpRBM

Both the CaRBM and SpRBM models attempt to achieve the same goal of sparsity in the hidden
unit activations. However, the way in which they accomplish this is fundamentally different.

For datasets such as MNIST, we found the two models to give qualitatively similar results. Indeed,
this seemed to be the case for several datasets. On the convex dataset, however, we noticed that the
models produced quite different results. The convex dataset consists of binary 28× 28-pixel images
of polygons (sometimes with multiple polygons per image). Figure 1 (a) shows several examples
from this dataset. Unlike the MNIST dataset, there is a large variation in the number of active pixels
in the inputs. Figure 1 (e) shows the distribution of the number of pixels taking the value 1. In some
examples, barely any pixels are active, while in others virtually every pixel is on.

For both models, we set the target sparsity to 10%. We next performed a grid search over the strength
of the KL penalty until we found a setting that achieved an average hidden unit population sparsity
that matched the target without creating dead examples (in the case of the SpRBM) or dead units (in
the case of the CaRBM). Figure 1 (d) and (h) show that both models achieve the desired population
sparsity. However, the SpRBM exhibits a heavy-tailed distribution over activations per example,
with some examples activating over half of the hidden units. By comparison, all inputs activate the
maximum number of allowable hidden units in the CaRBM, generating a spike at 10%. Indeed, in
the CaRBM, the hidden units suppress each other through competition, while in the SpRBM there
is no such direct competition.

Figure 1 (b) and (f) display the learned weights. Both models appear to give qualitatively similar
results, although the CaRBM weights appear to model slightly more localized features at this level
of sparsity.

5.3 Classification performance

To evaluate the classification performance of CaRBMs, we performed a set of experiments on the
Montreal suite. We conducted a random search over hyperparameter settings as recommended in
Bergstra [28], and set the target sparsity to be between 2.5% and 10%. Table 1 shows that the CarBM
and SpRBM achieve comparable performance. On this suite we found that the validation sets were
quite small and prone to overfitting. For example, both the SpRBM and CaRBM achieve 0.5%
validation error on the rectangles dataset. One interesting observation is that for the convex dataset,
the SpRBM model, chosen by cross-validation, used a weak penalty strength and only achieved
a population sparsity of 25%. As we increased the strength of the sparsity penalty, classification
performance in the SpRBM degraded, but the desired sparsity level was still not achieved.

5.4 CIFAR-10 Patches

In our second experiment, we extracted 16× 16 whitened image patches from the CIFAR-10 dataset
and trained both models. Figure 2 (a) shows learned filters of the CaRBM model (both models

6

(a) (b)
0.1 0.2 0.2 0.3 0.4

(c)
0.0 0.2 0.3 0.5 0.6

(d)

0 200 400 600 800

(e) (f)
0.06 0.07 0.09 0.10 0.12

(g)

0.0 0.2 0.4 0.6 0.8 1.0

(h)

Figure 1: (a),(e) Samples from the Convex dataset and the distribution of the number of pixels in
each image with the value 1. (b),(f) Visualization of the incoming weights to 25 randomly selected
hidden units in the SpRBM and CaRBM models respectively. (c),(g) The distribution of the average
lifetime (across examples) activation of the hidden units in the SpRBM and CaRBM respectively.
(d),(h) The distribution of the average population activation (within examples) of the hidden units in
the SpRBM and CaRBM respectively.

Dataset RBM SpRBM CaRBM
rectangles 4.05% 2.66% 5.60%

background im 23.78% 23.49% 22.16%
background im rot 58.21% 56.48% 56.39%

recangles im 24.24% 22.50% 22.56%

Dataset RBM SpRBM CaRBM
convex 20.66% 18.52% 21.13%

mnist basic 4.42% 3.84% 3.65%
mnist rot 14.83% 13.11% 12.40%

background rand 12.96% 12.97% 12.67%

Table 1: Test-set classification errors on the Montreal datasets.

behave similarly and so we just display the CaRBM weights). Observe that the learned weights
resemble Gabor-like filters.

5.5 Topic Modelling with the NIPS dataset

One form of data with highly variable inputs is text, because some words are used much more
frequently than others. We applied the SpRBM and CaRBM to the NIPS dataset2, which consists
of 13649 words and 1740 papers from NIPS conferences from 1987 to 1999. Each row corresponds
to a paper, each column corresponds to a word, and the entries are the number of times each word
appears in each paper. We binarized the dataset by truncating the word counts and train the SpRBM
and CaRBM models with 50 hidden units, searching over learning rates and KL penalty strengths
until 10% sparsity is achieved without dead units or examples. Once a model is learned, we define
a topic for a hidden unit by considering the 5 words with the highest connections to that unit. We
conjecture that sparse RBMs should be beneficial in learning interpretable features because there
will be fewer ways for hidden units to collude in order to model a given input.

Table 2 shows the result of picking a general topic and finding the closest matching hidden unit from
each model. While all models discover meaningful topics, we found that the grouping of words
produced by the RBM tended to be less cohesive than those produced by the SpRBM or CaRBM.
For example, many of the hidden units contain the words ‘abstract’ and ‘reference’, both of which
appear in nearly every paper.

Figure 2 (b)-(d) displays the effect that the KL penalty λ has on the population sparsity of the
SpRBM. For a fairly narrow range, if λ is too small then the desired sparsity level will not be met.

2http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

7

Model Computer Vision Neuroscience Bayesian Inference
RBM images, pixel, computer,

quickly, stanford
inhibitory, organization, neu-
rons, synaptic, explain

probability, bayesian, priors,
likelihood, covariance

SpRBM visual, object, objects, im-
ages, vision

neurons, biology, spike,
synaptic, realistic

conditional, probability,
bayesian, hidden, mackay

CaRBM image, images, pixels, ob-
jects, recognition

membrane, resting, in-
hibitory, physiol, excitatory

likelihood, hyperparameters,
monte, variational, neal

Table 2: Topics learned by each model on the NIPS dataset. Each column corresponds to a chosen
topic, and each cell corresponds to a single hidden unit. The hidden unit is chosen as the best match
to the given topic from amongst all of the hidden units learned by the model in the row.

(a)
0.1 0.2 0.3 0.4

(b) λ = 0.1

0.0 0.1 0.2 0.3 0.4
(c) λ = 0.5

0.0 0.1 0.2 0.3 0.4
(d) λ = 1

Figure 2: (a) Weights of the CaRBM learned on 16×16 images patches sampled from the CIFAR-10
dataset. (b)-(c) Change in population sparsity with increasing KL penalty λ on the NIPS dataset.
The SpRBM is sensitive to λ, and can fail to model certain examples if λ is set too high.

As it is increased, the lifetime sparsity better matches the target but at the cost of an increasing
number of dead examples. This may hurt the generative performance of the SpRBM.

6 Conclusion

We have introduced cardinality potentials into the energy function of a Restricted Boltzmann Ma-
chine in order to enforce sparsity in the hidden representation. We showed how to use an auxiliary
variable representation in order to perform efficient posterior inference and sampling. Furthermore,
we showed how the marginal probabilities can be treated as nonlinearities, and how a simple finite-
difference trick from Domke [14] can be used to backpropagate through the network. We found
that the CaRBM performs similarly to an RBM that has been trained with a sparsity-encouraging
regularizer, with the exception being datasets that exhibit a wide range of variability in the number
of active inputs (e.g. text), where the SpRBM seems to have difficulty matching the target sparsity.
It is possible that this effect may be significant in other kinds of data, such as images with high
amounts of lighting variation.

There are a number of possible extensions to the CaRBM. For example, the cardinality potentials can
be relaxed to encourage sparsity, but not enforce it. It is also possible to learn the potentials. It would
also be interesting to see of other high order potentials could be used within the RBM framework.
Finally, it would be worth exploring the use of the sparse marginal nonlinearity in auto-encoder
architectures and in the deeper layers of a deep belief network.

References

[1] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. 1986.

[2] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural computa-
tion, 18(7):1527–1554, 2006.

[3] A.-R. Mohamed, G. E. Dahl, and G. E. Hinton. Deep belief networks for phone recognition. In NIPS
Workshop on Deep Learning for Speech Recognition and Related Applications, 2009.

8

[4] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 609–616, 2009.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In
Advances in Neural Information Processing Systems, 2007.

[6] J. Snoek, R. P. Adams, and H. Larochelle. Nonparametric guidance of autoencoder representations using
label information. Journal of Machine Learning Research, 13:2567–2588, 2012.

[7] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image
classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1794–1801, 2009.

[8] I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A.Y. Ng. Measuring invariances in deep networks. Advances
in Neural Information Processing Systems, 22:646–654, 2009.

[9] B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set: A strategy employed by
V1? Vision research, 37(23):3311–3325, 1997.

[10] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. Advances in Neural
Information Processing Systems, 20:873–880, 2008.

[11] R. Gupta, A. Diwan, and S. Sarawagi. Efficient inference with cardinality-based clique potentials. In
International Conference on Machine Learning, volume 227, pages 329–336, 2007.

[12] D. Tarlow, I. Givoni, and R. Zemel. HOP-MAAP: Efficient message passing for high order potentials. In
AISTATS, 2010.

[13] M. H. Gail, J. H. Lubin, and L. V. Rubinstein. Likelihood calculations for matched case-control studies
and survival studies with tied death times. Biometrika, 68:703–707, 1981.

[14] J. Domke. Implicit differentiation by perturbation. Advances in Neural Information Processing Systems,
23:523–531, 2010.

[15] G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

[16] V. Nair and G. Hinton. 3d object recognition with deep belief nets. Advances in Neural Information
Processing Systems, 22:1339–1347, 2009.

[17] R. E. Barlow and K. D. Heidtmann. Computing k-out-of-n system reliability. IEEE Transactions on
Reliability, 33:322–323, 1984.

[18] D. Tarlow, K. Swersky, R. Zemel, R.P. Adams, and B. Frey. Fast exact inference for recursive cardinality
models. In Uncertainty in Artificial Intelligence, 2012.

[19] L. Belfore. An O(n) log2(n) algorithm for computing the reliability of k-out-of-n:G and k-to-l-out-of-n:G
systems. IEEE Transactions on Reliability, 44(1), 1995.

[20] T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In
International Conference on Machine Learning, pages 1064–1071, 2008.

[21] H.J. Kappen. Deterministic learning rules for boltzmann machines. Neural Networks, 8(4):537–548,
1995.

[22] H. Larochelle, Y. Bengio, and J. Turian. Tractable multivariate binary density estimation and the restricted
Boltzmann forest. Neural computation, 22(9):2285–2307, 2010.

[23] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[24] K. Swersky, M. Ranzato, D. Buchman, B.M. Marlin, and N. de Freitas. On autoencoders and score
matching for energy based models. In International Conference on Machine Learning, 2011.

[25] P. Vincent. A connection between score matching and denoising autoencoders. Neural computation,
23(7):1661–1674, 2011.

[26] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep archi-
tectures on problems with many factors of variation. In Proceedings of the 24th international conference
on Machine learning, pages 473–480, 2007.

[27] G. Hinton. A practical guide to training restricted Boltzmann machines. Technical Report UTML-TR
2010003, Department of Computer Science, University of Toronto, 2010.

[28] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The Journal of Machine
Learning Research, 13:281–305, 2012.

9

