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PAUL DÜTTING, École Polytechnique Fédérale de Lausanne, Switzerland

FELIX FISCHER, University of Cambridge, UK

PICHAYUT JIRAPINYO, Harvard University, USA

JOHN K. LAI, Harvard University, USA

BENJAMIN LUBIN, Boston University, USA

DAVID C. PARKES, Harvard University, USA

In mechanism design it is typical to impose incentive compatibility and then derive an optimal mechanism
subject to this constraint. By replacing the incentive compatibility requirement with the goal of minimiz-
ing expected ex post regret, we are able to adapt statistical machine learning techniques to the design of
payment rules. This computational approach to mechanism design is applicable to domains with multi-
dimensional types and situations where computational efficiency is a concern. Specifically, given an outcome
rule and access to a type distribution, we train a support vector machine with a special discriminant function
structure such that it implicitly establishes a payment rule with desirable incentive properties. We discuss
applications to a multi-minded combinatorial auction with a greedy winner-determination algorithm and
to an assignment problem with egalitarian outcome rule. Experimental results demonstrate both that the
construction produces payment rules with low ex post regret, and that penalizing classification errors is
effective in preventing failures of ex post individual rationality.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—Eco-

nomics; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Computational Mechanism Design, Support Vector Machines

1. INTRODUCTION

Mechanism design studies situations where a set of agents each hold private infor-
mation about their preferences over different outcomes. The designer chooses a center
that receives claims about such preferences, selects and enforces an outcome, and op-
tionally collects payments. The classical approach is to impose incentive compatibility,
ensuring that agents truthfully report their preferences in strategic equilibrium. Sub-
ject to this constraint, the goal is to identify a mechanism, i.e., a way of choosing an
outcome and payments based on agents’ reports, that optimizes a given design objec-
tive like social welfare, revenue, or some notion of fairness.
There are, however, significant challenges associated with this classical approach.

First of all, it can be analytically cumbersome to derive optimal mechanisms for do-
mains that are “multi-dimensional” in the sense that each agent’s private information
is described through more than a single number, and few results are known in this
case.1 Second, incentive compatibility can be costly, in that adopting it as a hard con-

1One example of a multi-dimensional domain is a combinatorial auction, where an agent’s preferences are
described by a numerical value for each of several different bundles of items.
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straint can preclude mechanisms with useful economic properties. For example, im-
posing the strongest form of incentive compatibility, truthfulness in a dominant strat-
egy equilibrium or strategyproofness, necessarily leads to poor revenue, vulnerability
to collusion, and vulnerability to false-name bidding in combinatorial auctions where
valuations exhibit complementarities among items [Ausubel andMilgrom 2006; Raste-
gari et al. 2011]. A third difficulty occurs when the optimal mechanism has an outcome
or payment rule that is computationally intractable.
In the face of these difficulties, we adopt statistical machine learning to automati-

cally infer mechanisms with good incentive properties. Rather than imposing incentive
compatibility as a hard constraint, we start from a given outcome rule and use machine
learning techniques to identify a payment rule that minimizes agents’ expected ex post
regret relative to this outcome rule. Here, the ex post regret an agent has for truth-
ful reporting in a given instance is the amount by which its utility could be increased
through a misreport. While a mechanism with zero ex post regret for all inputs is ob-
viously strategyproof, we are not aware of any additional direct implication in terms
of equilibrium properties.2 Support for expected ex post regret as a quantifiable target
for mechanism design rather comes from a simple model of manipulation where agents
face a certain cost for strategic behavior. If this cost is higher than the expected gain,
agents can be assumed to behave truthfully. We do insist on mechanisms in which the
price to an agent, conditioned on an outcome, is independent of its report. This pro-
vides additional robustness against manipulation in the sense that there is no local
price sensitivity.3

Our approach is applicable to domains that are multi-dimensional or for which the
computational efficiency of outcome rules is a concern. Given the implied relaxation of
incentive compatibility, the intended application is to domains in which incentive com-
patibility is unavailable or undesirable for outcome rules that meet certain economic
and computational desiderata. The payment rule is learned on the basis of a given out-
come rule, and as such the framework is most meaningful in domains where revenue
considerations are secondary to outcome considerations.
The essential insight is that the payment rule of a strategyproof mechanism can be

thought of as a classifier for predicting the outcome: the payment rule implies a price
to each agent for each outcome, and the selected outcome must be one that simultane-
ously maximizes reported value minus price for every agent. By limiting classifiers to
discriminant functions4 with this “value-minus-price” structure, where the price can
be an arbitrary function of the outcome and the reports of other agents, we obtain a re-
markably direct connection between multi-class classification and mechanism design.

2The expected ex post regret given a distribution over types provides an upper bound on the expected regret
of an agent who knows its own type but has only distributional information on the types of other agents.
The latter metric is also appealing, but does not seem to fit well with the generalization error of statis-
tical machine learning. An emerging literature is developing various regret-based metrics for quantifying
the incentive properties of mechanisms [Parkes et al. 2001; Day and Milgrom 2008; Lubin 2010; Carroll
2011], and there also exists experimental support for a quantifiable measure of the divergence between the
distribution on payoffs in a mechanism and that in a strategyproof reference mechanism like the VCGmech-
anism [Lubin and Parkes 2009]. An earlier literature had looked for approximate incentive compatibility or
incentive compatibility in the large-market limit, see, e.g., the recent survey by Carroll [2011]. Related to
the general theme of relaxing incentive compatibility is work of Pathak and Sönmez [2010] that provides
a qualitative ranking of different mechanisms in terms of the number of manipulable instances, and work
of Budish [2010] that introduces an asymptotic, binary, design criterion regarding incentive properties in
a large replica economy limit. Whereas the present work is constructive, the latter seek to explain which
mechanisms are adopted in practice.
3Erdil and Klemperer [2010] consider a metric that emphasizes this property.
4A discriminant function can be thought of as a way to distinguish between different outcomes for the
purpose of making a prediction.



For an appropriate loss function, the discriminant function of a classifier that mini-
mizes generalization error over a hypothesis class has a corresponding payment rule
that minimizes expected ex post regret among all payment rules corresponding to clas-
sifiers in this class. Conveniently, an appropriate method exists for multi-class classi-
fication with large outcome spaces that supports the specific structure of the discrim-
inant function, namely the method of structural support vector machines [Tsochan-
taridis et al. 2005; Joachims et al. 2009]. Just like standard support vector machines,
it allows us to adopt non-linear kernels, thus enabling price functions that depend in
a non-linear way on the outcome and on the reported types of other agents.

In illustrating the framework, we focus on two situations where strategyproof pay-
ment rules are not available: a greedy outcome rule for a multi-minded combinato-
rial auction in which each agent is interested in a constant number of bundles, and
an assignment problem with an egalitarian outcome rule, i.e., an outcome rule that
maximizes the minimum value of any agent. The experimental results we obtain are
encouraging, in that they demonstrate low expected ex post regret even when the 0/1
classification accuracy is only moderately good, and in particular better regret proper-
ties than those obtained through simple VCG-based payment rules that we adopt as a
baseline. In addition, we give special consideration to the failure of ex post individual
rationality, and introduce methods to bias the classifier to avoid these kinds of errors
as well as post hoc adjustments that eliminate them. As far as scalability is concerned,
we emphasize that the computational cost associated with our approach occurs offline
during training. The learned payment rules have a succinct description and can be
evaluated quickly in a deployed mechanism.

Due to space constraints, we omit some extend examples, proofs, and tables, and
refer the reader to the full version of the paper for details.

Related Work

Conitzer and Sandholm [2002] introduced the agenda of automated mechanism design
(AMD), which formulates mechanism design as an optimization problem. The output
is the description of a mechanism, i.e., an explicit mapping from types to outcomes
and payments. AMD is intractable in general, as the type space can be exponential in
both the number of agents and the number of items, but progress has recently been
made in finding approximate solutions for domains with additive value structure and
symmetry assumptions, and adopting Bayes-Nash incentive compatibility (BIC) as the
goal [Cai et al. 2012]. Another approach is to search through a parameterized space of
incentive-compatible mechanisms [Guo and Conitzer 2010].

A parallel literature allows outcome rules to be represented by algorithms, like
our work, and thus extends to richer domains. Lavi and Swamy [2005] employ LP
relaxation to obtain mechanisms satisfying BIC for set-packing problems, achieving
worst-case approximation guarantees for combinatorial auctions. Hartline and Lucier
[2010] and Hartline et al. [2011] propose a general approach, applicable to both single-
parameter and multi-parameter domains, for converting any approximation algorithm
into a mechanism satisfying BIC that has essentially the same approximation factor
with respect to social welfare. This approach differs from ours in that it adopts BIC as
a target rather than the minimization of expected ex post regret. In addition, it evalu-
ates the outcome rule on a number of randomly perturbed replicas of the instance that
is polynomial in the size of a discrete type space, which is infeasible for combinato-
rial auctions where this size is exponential in the number of items. The computational
requirements of our trained rule are equivalent to that of the original outcome rule.
Lahaie [2009, 2010] also adopts a kernel-based approach for combinatorial auctions,

but focuses not on learning a payment rule for a given outcome rule but rather on
solving the winner determination and pricing problem for a given instance of a combi-



natorial auction. Lahaie introduces the use of kernel methods to compactly represent
non-linear price functions, which is also present in our work, but obtains incentive
properties more indirectly through a connection between regularization and price sen-
sitivity.

2. PRELIMINARIES

A mechanism design problem is given by a set N = {1, 2, . . . , n} of agents that interact
to select an element from a set Ω ⊆ "i∈NΩi of outcomes, where Ωi denotes the set of
possible outcomes for agent i ∈ N . Agent i ∈ N is associated with a type θi from a set
Θi of possible types, corresponding to the private information available to this agent.
We write θ = (θ1, . . . , θn) for a profile of types for the different agents, Θ = "i∈NΘi for
the set of possible type profiles, and θ−i ∈ Θ−i for a profile of types for all agents but i.
Each agent i ∈ N is further assumed to employ preferences over Ωi, represented by a
valuation function vi : Θi × Ωi → R. We assume that for all i ∈ N and θi ∈ Θi there
exists an outcome o ∈ Ω with vi(θi, oi) = 0.

A (direct) mechanism is a pair (g, p) of an outcome rule g : Θ → "i∈NΩi and a payment
rule p : Θ → R

n
≥0. The intuition is that the agents reveal to the mechanism a type

profile θ ∈ Θ, possibly different from their true types, and the mechanism chooses
outcome g(θ) and charges each agent i a payment of pi(θ) = (p(θ))i. We assume quasi-
linear preferences, so the utility of agent i with type θi ∈ Θi given a profile θ′ ∈ Θ
of revealed types is ui(θ

′, θi) = vi(θi, gi(θ
′)) − pi(θ

′), where gi(θ) = (g(θ)i) denotes the
outcome for agent i. A crucial property of mechanism (g, p) is that its outcome rule is
feasible, i.e., that g(θ) ∈ Ω for all θ ∈ Θ.
Outcome rule g satisfies consumer sovereignty if for all i ∈ N , oi ∈ Ωi, and θ

′
−i ∈ Θ−i,

there exists θ′i ∈ Θi such that gi(θ
′
i, θ

′
−i) = oi; and reachability of the null outcome if for

all i ∈ N , θi ∈ Θi, and θ
′
−i ∈ Θ−i, there exists θ′i ∈ Θi such that vi(θi, gi(θ

′
i, θ

′
−i)) = 0.

Mechanism (g, p) is dominant strategy incentive compatible, or strategyproof, if
each agent maximizes its utility by reporting its true type, irrespective of the re-
ports of the other agents, i.e., if for all i ∈ N , θi ∈ Θi, and θ′ = (θ′i, θ

′
−i) ∈ Θ,

ui((θi, θ
′
−i), θi) ≥ ui((θ

′
i, θ

′
−i), θi); it satisfies individual rationality (IR) if agents report-

ing their true types are guaranteed non-negative utility, i.e., if for all i ∈ N , θi ∈ Θi,
and θ′−i ∈ Θ−i, ui((θi, θ

′
−i), θi) ≥ 0. Observe that given reachability of the null outcome,

strategyproofness implies individual rationality.
It is known that a mechanism (g, p) is strategyproof if and only if the payment of

an agent is independent of its reported type and the chosen outcome simultaneously
maximizes the utility of all agents, i.e., if for every θ ∈ Θ,

pi(θ) = ti(θ−i, gi(θ)) for all i ∈ N, and (1)

gi(θ) ∈ argmax
o′
i
∈Ωi

(

vi(θi, o
′
i)− ti(θ−i, o

′
i)
)

for all i ∈ N, (2)

for a price function ti : Θ−i × Ωi → R. This simple characterization is crucial for the
main results in the present paper, providing the basis with which the discriminant
function of a classifier can be used to induce a payment rule.
In addition, a direct characterization of strategyproofness in terms of monotonicity

properties of outcome rules explains which outcome rules can be associated with a pay-
ment rule in order to be “implementable” within a strategyproof mechanism [Saks and
Yu 2005; Ashlagi et al. 2010]. These monotonicity properties provide a fundamental
constraint on when our machine learning framework can hope to identify a payment
rule that provides full strategyproofness.
We quantify the degree of strategyproofness of a mechanism in terms of the regret

experienced by an agent when revealing its true type, i.e., the potential gain in utility
by revealing a different type instead. Formally, the ex post regret of agent i ∈ N in



mechanism (g, p), given true type θi ∈ Θi and reported types θ′−i ∈ Θ−i of the other
agents, is

rgt i(θi, θ
′
−i) = max

θ′
i
∈Θi

ui
(

(θ′i, θ
′
−i), θi

)

− ui
(

(θi, θ
′
−i), θi

)

.

Analogously, the ex post violation of individual rationality of agent i ∈ N in mechanism
(g, p), given true type θi ∈ Θi and reported types θ′−i ∈ Θ−i of the other agents, is

irv i(θi, θ
′
−i) = |min(ui((θi, θ

′
−i), θi), 0)|.

We consider situations where types are drawn from a distribution with probability
density function D : Θ → R such that D(θ) ≥ 0 and

∫

θ∈Θ
D(θ) = 1. Given such a

distribution, and assuming that all agents report their true types, the expected ex post
regret of agent i ∈ N in mechanism (g, p) is Eθ∼D[rgt i(θi, θ−i)].
Outcome rule g is agent symmetric if for every permutation π of N and all types

θ, θ′ ∈ Θ such that θi = θ′
π(i) for all i ∈ N , gi(θ) = gπ(i)(θ

′) for all i ∈ N . Note that

this specifically requires that Θi = Θj and Ωi = Ωj for all i, j ∈ N . Similarly, type
distribution D is agent symmetric if D(θ) = D(θ′) for every permutation π of N and
all types θ, θ′ ∈ Θ such that θi = θ′

π(i) for all i ∈ N . Given agent symmetry, a price

function t1 : Θ−1 × Ωi → R for agent 1 can be used to generate the payment rule p for
a mechanism (g, p), with

p(θ) =
(

t1(θ−1, g1(θ)), t1(θ−2, g2(θ)), . . . , t1(θ−n, gn(θ))
)

,

so that the expected ex post regret is the same for every agent.
We assume agent symmetry in the sequel, which precludes outcome rules that break

ties based on agent identity, but obviates the need to train a separate classifier for each
agent while also providing some benefits in terms of presentation. Because ties occur
only with negligible probability in our experimental framework, the experimental re-
sults are not affected by this assumption.

3. PAYMENT RULES FROM MULTI-CLASS CLASSIFIERS

A multi-class classifier is a function h : X → Y , where X is an input domain and Y is
a discrete output domain. One could imagine, for example, a multi-class classifier that
labels a given image as that of a dog, a cat, or some other animal. In the context of
mechanism design, we will be interested in classifiers that take as input a type profile
and output an outcome. What distinguishes this from an outcome rule is that we will
impose restrictions on the form the classifier can take.

Classification typically assumes an underlying target function h∗ : X → Y , and the
goal is to learn a classifier h that minimizes disagreements with h∗ on a given input
distribution D on X, based only on a finite set of training data {(x1, y1), . . . , (xℓ, yℓ)} =
{(x1, h∗(x1)), . . . , (xℓ, h∗(xℓ))} with x1, . . . , xℓ drawn from D. This may be challenging
because the amount of training data is limited, or because h is restricted to some hy-
pothesis class H with a certain simple structure, e.g., linear threshold functions. If
h(x) = h∗(x) for all x ∈ X, we say that h is a perfect classifier for h∗.

We consider classifiers that are defined in terms of a discriminant function f : X ×
Y → R, such that

h(x) ∈ argmax
y∈Y

f(x, y)

for all x ∈ X. More specifically, we will be concerned with linear discriminant functions
of the form

fw(x, y) = wTψ(x, y)



for a weight vector w ∈ R
m and a feature map ψ : X × Y → R

m, where m ∈ N ∪ {∞}.5

The function ψ maps input and output into an m-dimensional space, which generally
allows non-linear features to be expressed.

3.1. Mechanism Design as Classification

Assume that we are given an outcome rule g and access to a distribution D over type
profiles, and want to design a corresponding payment rule p that gives the mechanism
(g, p) the best possible incentive properties. Assuming agent symmetry, we focus on
a partial outcome rule g1 : Θ → Ω1 and train a classifier to predict the outcome to
agent 1. To train a classifier, we generate examples by drawing a type profile θ ∈ Θ
from distribution D and applying outcome rule g to obtain the target class g1(θ) ∈ Ω1.

We impose a special structure on the hypothesis class. A classifier hw : Θ → Ω1 is
admissible if it is defined in terms of a discriminant function fw of the form

fw(θ, o1) = w1v1(θ1, o1) + wT−1ψ(θ−1, o1)

for weights w such that w1 ∈ R>0 and w−1 ∈ R
m, and a feature map ψ : Θ−1×Ω1 → R

m

for m ∈ N ∪ {∞}.
The first term of fw(θ, o1) only depends on the type of agent 1 and increases in its

valuation for outcome o1, while the remaining terms ignore θ1 entirely. This restriction
allows us to directly infer agent-independent prices from a trained classifier. For this,
define the associated price function of an admissible classifier hw as

tw(θ−1, o1) = −
1

w1
wT−1ψ(θ−1, o1),

where we again focus on agent 1 for concreteness. By agent symmetry, we obtain the
mechanism (g, pw) corresponding to classifier hw by letting

pw(θ) =
(

tw(θ−1, g1(θ)), tw(θ−2, g2(θ)), . . . , tw(θ−n, gn(θ))
)

.

Even with admissibility, appropriate choices for the feature map ψ will produce rich
families of classifiers, and thus ultimately useful payment rules. Moreover, this form
is compatible with structural support vector machines, discussed in Section 4.1.

3.2. Example: Single-Item Auction

Before proceeding further, we illustrate the ideas developed so far in the context of a
single-item auction. In a single-item auction, the type of each agent is a single number,
corresponding to its value for the item being auctioned, and there are two possible
allocations from the point of view of agent 1: one where it receives the item, and one
where it does not. Formally, Θ = R

n and Ω1 = {0, 1}.
Consider a setting with three agents and a training set

(θ1, o11) = ((1, 3, 5), 0), (θ2, o21) = ((5, 4, 3), 1), (θ3, o31) = ((2, 3, 4), 0),

and note that this training set is consistent with an optimal outcome rule, i.e., one that
assigns the item to an agent with maximum value. Our goal is to learn an admissible
classifier

hw(θ) = argmax
o1∈{0,1}

fw(θ, o1) = argmax
o1∈{0,1}

w1v1(θ1, o1) + wT−1ψ(θ−1, o1)

that performs well on the training set. Since there are only two possible outcomes, the
outcome chosen by hw is simply the one with the larger discriminant. A classifier that
is perfect on the training data must therefore satisfy the following constraints:

w1 · 0 + wT−1ψ((3, 5), 0) > w1 · 1 + wT−1ψ((3, 5), 1),

5We allow w to have infinite dimension, but require the inner product between w and ψ(x, y) to be defined
in any case. Computationally the infinite-dimensional case is handled through the kernel trick, which is
described in Section 4.1.1.



w1 · 5 + wT−1ψ((4, 3), 1) > w1 · 0 + wT−1ψ((4, 3), 0),

w1 · 0 + wT−1ψ((3, 4), 0) > w1 · 2 + wT−1ψ((3, 4), 1).

This can for example be achieved by setting w1 = 1 and

wT−1ψ((θ2, θ3), o1) =

{

−max(θ2, θ3) if o1 = 1 and

0 if o1 = 0.
(3)

Recalling our definition of the price function as tw(θ−1, o1) = −(1/w1)w
T
−1ψ(θ−1, o1),

we see that this choice of w and ψ corresponds to the second-price payment rule. We
will see in the next section that this relationship is not a coincidence.6

3.3. Perfect Classifiers and Implementable Outcome Rules

We now formally establish a connection between implementable outcome rules and
perfect classifiers.

THEOREM 3.1. Let (g, p) be a strategyproof mechanism with an agent symmetric
outcome rule g, and let t1 be the corresponding price function. Then, a perfect admissible
classifier hw for partial outcome rule g1 exists if argmaxo1∈Ω1

(v1(θ1, o1)− t1(θ−1, o1))) is
unique.

PROOF. By the first characterization of strategyproof mechanisms, g must select an
outcome that maximizes the utility of agent 1 at the current prices, i.e.,

g1(θ) ∈ argmax
o1∈Ω1

(v1(θi, o1)− t1(θ−1, o1)).

Consider the admissible discriminant f(1,1)(θ, o1) = v1(θ1, o1) − t1(θ−1, o1), which uses
the price function t1 as its feature map. Clearly, the corresponding classifier h(1,1) max-
imizes the same quantity as g1, and the two must agree if there is a unique maximizer.

The relationship also works in the opposite direction: a perfect, admissible classifier
hw for outcome rule g can be used to construct a payment rule that turns g into a
strategyproof mechanism.

THEOREM 3.2. Let g be an agent symmetric outcome rule, hw : Θ → Ω1 an admissi-
ble classifier, and pw the payment rule corresponding to hw. If hw is a perfect classifier
for the partial outcome rule g1, then the mechanism (g, pw) is strategyproof.

We prove this result by expressing the regret of an agent in mechanism (g, pw) in
terms of the discriminant function fw. Let Ωi(θ−i) ⊆ Ωi denote the set of partial out-
comes for agent i that can be obtained under g given reported types θ−i from all agents
but i, keeping the dependence on g silent for notational simplicity.

LEMMA 3.3. Suppose that agent 1 has type θ1 and that the other agents report types
θ−1. Then the regret of agent 1 for bidding truthfully in mechanism (g, pw) is

1

w1

(

maxo1∈Ω(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

.

6In practice, we are limited in the machine learning framework to hypotheses that are linear in
ψ((θ2, θ3), o1), and will not be able to guarantee that (3) holds exactly. In Section 4.1.1 we will see, how-
ever, that certain choices of ψ allow for very complex hypotheses that can closely approximate arbitrary
functions.



PROOF. We have

rgt1(θ) = maxθ′
1
∈Θ1

(

v1(θ1, g1(θ
′
1, θ−1))− pw,1(θ

′
1, θ−1)

)

−
(

v1(θ1, g1(θ))− pw,1(θ)
)

= maxo1∈Ω1(θ−1)

(

v1(θ1, o1)− tw(θ−1, o1)
)

−
(

v1(θ1, g1(θ))− tw(θ−1, g1(θ))
)

= maxo1∈Ω1(θ−1)

(

v1(θ1, o1) +
1

w1
wT−1ψ(θ−1, o1)

)

−
(

v1(θ1, g1(θ)) +
1

w1
wT−1ψ(θ−1, g1(θ))

)

=
1

w1

(

maxo1∈Ω1(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

.

PROOF OF THEOREM 3.2. If hw is a perfect classifier, then the discriminant func-
tion fw satisfies argmaxo1∈Ω1

fw(θ, o1) = g1(θ) for every θ ∈ Θ. Since g1(θ) ∈ Ω1(θ−1),
we thus have that maxo1∈Ω1(θ−1) fw(θ, o1) = fw(θ, g1(θ)). By Lemma 3.3, the regret of
agent 1 for bidding truthfully in mechanism (g, pw) is always zero, which means that
the mechanism is strategyproof.

It bears emphasis that classifier hw is only used to derive the payment rule pw,
while the outcome is still selected according to g. In principle, classifier hw could be
used to obtain an agent symmetric outcome rule gw and, since hw is a perfect clas-
sifier for itself, a strategyproof mechanism (gw, pw). Unfortunately, outcome rule gw
is not in general feasible. Mechanism (g, pw), on the other hand, is not strategyproof
when hw fails to be a perfect classifier for g. While payment rule pw always satisfies
the agent-independence property (1) required for strategyproofness, the “optimization”
property (2) might be violated when hw(θ) 6= g1(θ).

3.4. Approximate Classification and Approximate Strategyproofne ss

A perfect admissible classifier for outcome rule g leads to a payment rule that turns
g into a strategyproof mechanism. We now show that this result extends gracefully to
situations where no such payment rule is available, by relating the expected ex post
regret of a mechanism (g, p) to a measure of the generalization error of a classifier
for g.
Fix a feature map ψ, and denote by Hψ the space of all admissible classifiers with

this feature map. The discriminant loss of a classifier hw ∈ Hψ with respect to a type
profile θ and an outcome o1 ∈ Ω1 is given by

∆w(o1, θ) =
1

w1

(

fw(θ, hw(θ))− fw(θ, o1)
)

.

Intuitively the discriminant loss measures how far, in terms of the normalized dis-
criminant, hw is from predicting the correct outcome for type profile θ, assuming the
correct outcome is o1. Note that∆(o1, θ) ≥ 0 for all o1 ∈ Ω1 and θ ∈ Θ, and∆(o1, θ) = 0 if
o1 = hw(θ). Note further that hw(θ) = hw′(θ) does not imply that ∆w(o1, θ) = ∆w′(o1, θ)
for all o1 ∈ Ω1: even if two classifiers predict the same outcome, one of them may still
be closer to predicting the correct outcome o1.
The generalization error of classifier hw ∈ Hψ with respect to a type distribution D

and a partial outcome rule g1 : Θ → Ω1 is then given by

Rw(D, g) =

∫

θ∈Θ

∆w

(

g1(θ), θ
)

D(θ)dθ.

The following result establishes a connection between the generalization error and the
expected ex post regret of the corresponding mechanism.

THEOREM 3.4. Consider an outcome rule g, a space Hψ of admissible classifiers,
and a type distribution D. Let hw∗ ∈ Hψ be a classifier that minimizes generalization
error with respect to D and g among all classifiers in Hψ. Then the following holds:



(1) If g satisfies consumer sovereignty, then (g, pw∗) minimizes expected ex post re-
gret with respect to D among all mechanisms (g, pw) corresponding to classifiers
hw ∈ Hψ.

(2) Otherwise, (g, pw∗)minimizes an upper bound on expected ex post regret with respect
to D amongst all mechanisms (g, pw) corresponding to classifiers hw ∈ Hψ.

PROOF. For the second property, observe that

∆w(g1(θ), θ) =
1

w1

(

fw(θ, hw(θ))− fw(θ, g1(θ))
)

=
1

w1

(

maxo1∈Ω1
fw(θ, o1)− fw(θ, g1(θ))

)

≥
1

w1

(

maxo1∈Ω(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

= rgt1(θ),

where the last equality holds by Lemma 3.3. If g satisfies consumer sovereignty, then
the inequality holds with equality, and the first property follows as well.

Minimization of expected regret itself, rather than an upper bound, can also be
achieved if the learner has access to the set Ω1(θ−1) for every θ−1 ∈ Θ−1.

4. A SOLUTION USING STRUCTURAL SUPPORT VECTOR MACHINES

In this section we discuss the method of structural support vector machines (structural
SVMs) [Tsochantaridis et al. 2005; Joachims et al. 2009], and show how it can be
adapted for the purpose of learning classifiers with admissible discriminant functions.

4.1. Structural SVMs

Given an input space X, a discrete output space Y , a target function h∗ : X → Y ,
and a set of training examples {(x1, h∗(x1)), . . . , (xℓ, h∗(xℓ))} = {(x1, y1), . . . , (xℓ, yℓ)},
structural SVMs learn a multi-class classifier h that on input x ∈ X selects an output
y ∈ Y that maximizes fw(x, y) = wTψ(x, y). For a given feature map ψ, the training
problem is to find a vector w for which hw has low generalization error.

Given examples {(x1, y1), . . . , (xℓ, yℓ)}, training is achieved by solving the following
convex optimization problem:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk (Training Problem 1)

s.t. wT
(

ψ(xk, yk)− ψ(xk, y)
)

≥ L(yk, y)− ξk for all k = 1, . . . , ℓ, y ∈ Y

ξk ≥ 0 for all k = 1, . . . , ℓ.

The goal is to find a weight vector w and slack variables ξk such that the objective
function is minimized while satisfying the constraints. The learned weight vector w
parameterizes the discriminant function fw, which in turn defines the classifier hw.
The kth constraint states that the value of the discriminant function on (xk, yk) should
exceed the value of the discriminant function on (xk, y) by at least L(yk, y), where L
is a loss function that penalizes misclassification, with L(y, y) = 0 and L(y, y′) ≥ 0
for all y, y′ ∈ Y . We generally use a 0/1 loss function, but consider an alternative in
Section 4.2.2 to improve ex post IR properties. Positive values for the slack variables
ξk allow the weight vector to violate some of the constraints.

The other term in the objective, the squared norm of w, penalizes scaling of w. This is
necessary because scaling of w can arbitrarily increase the margin between fw(x

k, yk)
and fw(x

k, y) and make the constraints easier to satisfy. Smaller values of w, on the
other hand, increases the ability of the learned classifier to generalize by decreasing



the propensity to over-fit to the training data. Parameter C is therefore a regulariza-
tion parameter: larger values of C encourage small ξk and larger w, such that more
points are classified correctly, but with a smaller margin.

4.1.1. The Feature Map and the Kernel Trick. Given a feature map ψ, the feature vector
ψ(x, y) for x ∈ X and y ∈ Y provides an alternate representation of the input-output
pair (x, y). It is useful to consider feature maps ψ for which ψ(x, y) = φ(χ(x, y)), where
χ : X × Y → R

s for some s ∈ N is an attribute map that combines x and y into a single
attribute vector χ(x, y) compactly representing the pair, and φ : Rs → R

m for m > s
maps the attribute vector to a higher-dimensional space in a non-linear way. In this
way, SVMs can achieve non-linear classification in the original space.

While we work hard to keep s small, the so-called kernel trick means that we do
not have the same problem with m: it turns out that in the dual of Training Prob-
lem 1, ψ(x, y) only appears in an inner product of the form 〈ψ(x, y), ψ(x′, y′)〉, or, for a
decomposable feature map, 〈φ(z), φ(z′)〉 where z = χ(x, y) and z′ = χ(x′, y′). For com-
putational tractability it therefore suffices that this inner product can be computed
efficiently, and the “trick” is to choose φ such that 〈φ(z), φ(z′)〉 = K(z, z′) for a simple
closed-form function K, known as the kernel.
In this paper, we consider polynomial kernels Kpolyd , parameterized by d ∈ N

+, and
radial basis function (RBF) kernels KRBF , parameterized by γ = 1/(2σ2) for σ ∈ R

+:

Kpolyd(z, z
′) = (z · z′)d, KRBF (z, z

′) = exp
(

−γ
(

‖z‖2 + ‖z′‖2 − 2z · z′
))

.

Both polynomial and RBF kernels use the standard inner product of their arguments,
so their efficient computation requires that χ(x, y) ·χ(x, y′) can be computed efficiently.

4.1.2. Dealing with an Exponentially Large Output Space. Training Problem 1 has Ω(|Y |ℓ)
constraints, where Y is the output space and ℓ the number of training instances, and
enumerating all of them is computationally prohibitive when Y is large. Joachims et al.
[2009] address this issue for structural SVMs through constraint generation: starting
from an empty set of constraints, this technique iteratively adds a constraint that
is maximally violated by the current solution until that violation is below a desired
threshold ǫ. Joachims et al. show that this will happen after no more than O(C

ǫ
) itera-

tions, each of which requires O(ℓ) time and memory. However, this approach assumes
the existence of an efficient separation oracle, which given a weight vector w and an
input x finds an output y ∈ argmaxy∈Y fw(x, y). The existence of such an oracle re-
mains an open question in application to combinatorial auctions; see Section 5.1.3 for
additional discussion.

4.1.3. Required Information. In summary, the use of structural SVMs requires specifica-
tion of the following:

(1) The input space X, the discrete output space Y , and examples of input-output
pairs.

(2) An attribute map χ : X × Y → R
s. This function generates an attribute vector that

combines the input and output data into a single object.
(3) A kernel function K(z, z′), typically chosen from a well-known set of candi-

dates, e.g., polynomial or RBF. The kernel implicitly calculates the inner product
〈φ(z), φ(z′)〉, e.g., between a mapping of the inputs into a high dimensional space.

(4) If the space Y is prohibitively large, a routine that allows for efficient separation,
i.e., a function that computes argmaxy∈Y fw(x, y) for a given w, x.

In addition, the user needs to stipulate particular training parameters, such as the
regularization parameter C, and the kernel parameter γ if the RBF kernel is being
used.



4.2. Structural SVMs for Mechanism Design

We now specialize structural SVMs such that their learned discriminant func-
tion will manifest as a payment rule for a given symmetric outcome function
g and distribution D. In this application, the input domain X is the space
of type profiles Θ, and the output domain Y is the space Ω1 of outcomes for
agent 1. Thus we construct training data by sampling θ ∼ D and applying g
to these inputs: {(θ1, g1(θ

1)), . . . , (θℓ, g1(θ
ℓ))} = {(θ1, o11), . . . , (θ

ℓ, oℓ1)}. For admissi-
bility of the learned hypothesis hw(θ) = argmaxo1∈Ω1

wTψ(θ, o1), we require that
ψ(θ, o1) = (v1(θ1, o1), ψ

′(θ−1, o1)). When learning payment rules, we therefore use an
attribute map χ′ : Θ−1 × Ω1 → R

s rather than χ : Θ × Ω1 → R
s, and the kernel φ′

we specify will only be applied to the output of χ′. This results in the following more
specialized training problem:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk (Training Problem 2)

s.t. (w1v1(θ
k
1 , o

k
1) + wT−1ψ

′(θk−1, o
k
1))− (w1v1(θ

k
1 , o1) + wT−1ψ

′(θk−1, o1)) ≥ L(ok1 , o1)− ξk

for all k = 1, . . . , ℓ, o1 ∈ Ω1ξk ≥ 0 for all k = 1, . . . , ℓ.

If w1 > 0 then the weights w together with the feature map ψ′ define a price func-
tion tw(θ−1, o1) = −(1/w1)w

T
−1ψ

′(θ−1, o1) that can be used to define payments pw(θ),
as described in Section 3.1. In this case, we can also relate the regret in the induced
mechanism (g, pw) to the classification error as described in Section 3.3. Specifically,
we can show that on any type profile θk of the training data, rgt1(θ

k) ≤ ξk/w1; see the
full version of the paper for details.

We choose not to enforce w1 > 0 explicitly in Training Problem 2, because adding this
constraint leads to a dual problem that references ψ′ outside of an inner product and
thus makes computation of all but linear or low-dimensional polynomial kernels pro-
hibitively expensive. Instead, in our experiments we simply discard hypotheses where
the result of training is w1 ≤ 0. This is sensible since the discriminant function value
should increase as an agent’s value increases, and negative values of w1 typically mean
that the training parameter C or the kernel parameter γ is poorly chosen. It turns out
that w1 is indeed positive most of the time, and for every experiment a majority of
the choices of C and γ yield positive w1 values. For this reason, we do not expect the
requirement that w1 > 0 to be a problem in practice.7

4.2.1. Payment Normalization. One issue with the framework as stated is that the pay-
ments pw computed from the solution to Training Problem 2 could be negative.

We solved this problem by normalizing payments, using a baseline outcome ob: if
there exists an outcome o′ such that v1(θ1, o

′) = 0 for every θ1, this “null outcome”
is used as the baseline; otherwise, we use the outcome with the lowest payment. Let
tw(θ−1, o1) be the price function corresponding to the solution w to Training Problem 2.
Adopting the baseline outcome, the normalized payments t′w(θ−1, o1) are defined as

t′w(θ−1, o1) = max(0, tw(θ−1, o1)− tw(θ−1, ob)).

Note that ob is only a function of θ−1, even when there is no null outcome, so t′w is still
only a function of θ−1 and o1.

4.2.2. Individual Rationality Violation. Even after normalization, the learned payment rule
pw may not satisfy IR. We offer three solutions to this problem, which can be used in
combination.

7For multi-minded combinatorial auctions, 1049/1080 > 97% of the trials had positive w1, for the assign-
ment problem all of the trials did; see Section 5 for details.



Payment offsets. One way to decrease the rate of IR violation is to add a payment
offset, which decreases all payments (for all type reports) by a given amount. We apply
this payment offset to all bundles other than ob; as with payment normalization, the
adjusted payment is set to 0 if it is negative.8 Note that payment offsets decrease IR
violation, but may increase regret.

Adjusting the loss function L. We incur an IR violation when there is a null outcome
onull such that g1(θ) 6= onull and fw(θ, onull) > fw(θ, g1(θ)) for some type θ, assuming
truthful reports. This happens because fw(θ, o1) is a scaled version of the agent’s util-
ity for outcome o1 under payments pw. If the utility for the null outcome is greater than
the utility for g1(θ), then the payment tw(θ−1, g1(θ)) must be greater than v1(θ1, g1(θ)),
causing an IR violation. We can discourage these types of errors by modifying the con-
straints of Training Problem 2: when ok1 6= onull and o1 = onull , we can increase L(ok1 , o1)
to heavily penalize misclassifications of this type. With a larger L(ok1 , o1), a larger ξk

will be required if fw(θ, o
k
1) < fw(θ, onull). As with payment offsets, this technique will

decrease IR violations but is not guaranteed to eliminate all of them. In our experi-
mental results, we refer to this as the null loss fix, and the null loss refers to the value
we choose for L(ok1 , onull) where ok1 6= onull .

Deallocation. In settings that have a null outcome and are downward closed (i.e.,
settings where a feasible outcome o remains feasible if oi is replaced with the null
outcome), we modify the function g to allocate the null outcome whenever the price
function tw creates an IR violation. This reduces ex post regret and in particular en-
sures ex post IR. On the other hand, the total value to the agents necessarily decreases
under the modified allocation. In our experimental results, we refer to this as the deal-
location fix.

5. APPLYING THE FRAMEWORK

In this section, we discuss the application of our framework to two domains: multi-
minded combinatorial auctions and egalitarian welfare in the assignment problem.

5.1. Multi-Minded Combinatorial Auctions

A combinatorial auction allocates items {1, . . . , r} among n agents, such that each
agent receives a possibly empty subset of the items. The outcome space Ωi for agent i
thus is the set of all subsets of the r items, and the type of agent i can be represented
by a vector θi ∈ Θi = R

2r that specifies its value for each possible bundle. The set of
possible type profiles is then Θ = R

2rn, and the value vi(θi, oi) of agent i for bundle oi is
equal to the entry in θi corresponding to oi. We require that valuations are monotone,
such that vi(θi, oi) ≥ vi(θi, o

′
i) for all oi, o

′
i ∈ Ωi with o′i ⊆ oi, and normalized such that

vi(θi, ∅) = 0. Assuming agent symmetry and adopting the view of agent 1, the partial
outcome rule g1 : Θ → Ω1 specifies the bundle g1(θ) allocated to agent 1; we require
feasibility, so that no item is allocated more than once.
In a multi-minded CA, each agent is interested in at most b bundles for some con-

stant b. The special case where b = 1 is called a single-minded CA. In our framework,
the restriction to multi-minded CAs leads to a number of computational advantages.
First, valuation profiles and thus the training data can be represented in a compact
way, by explicitly writing down the valuations for the constant number of bundles each
agent is interested in. Second, inner products between valuation profiles, which are re-
quired to apply the kernel trick, can be computed in constant time.

5.1.1. Attribute Maps. To apply structural SVMs to multi-minded CAs, we need to spec-
ify an appropriate attribute map χ. In our experiments we use two attribute maps

8It is again crucial that ob depends only on θ
−1, so that the payment remains independent of θ1 given o1.



χ1 : Θ−1 × Ω1 → R
2r(2r(n−1)) and χ2 : Θ−1 × Ω1 → R

2r(n−1), which are defined as
follows:

χ1(θ−1, o1) =























0

· · ·

0

θ−1

0

· · ·

0





























dec(o1)(2
r(n− 1))







(2r − dec(o1)− 1)(2r(n− 1)),

χ2(θ−1, o1) =









θ2 \ o1
θ3 \ o1
. . .

θn \ o1









.

Here, dec(o1) =
∑r

j=1 2
j−1

Ij∈o1 is a decimal index of bundle o1, where Ij∈o1 = 1 if

j ∈ o1 and Ij∈o1 = 0 otherwise. Attribute map χ1 thus stacks the vector θ−1, which
represents the valuations of all agents except agent 1, with zero vectors of the same
dimension, where the position of θ−1 is determined by the index of bundle o1. The re-
sulting attribute vector is simple but potentially restrictive. It precludes two instances
with different allocated bundles from sharing attributes, which provides an obstacle
to generalization of the discriminant function across bundles. Attribute map χ2 stacks
vectors θi \ o1, which are obtained from θi by setting the entries for all bundles that
intersect with o1 to 0. This captures the fact that agent i cannot be allocated any of the
bundles that intersect with o1 if o1 is allocated to agent 1.9

5.1.2. Efficient Computation of Inner Products. Inner products can be computed efficiently
for both χ1 and χ2. A detailed discussion can be found in the full version of the paper.

5.1.3. Dealing with an Exponentially Large Output Space. Recall that Training Problems 1
and 2 have constraints for every training example (θk, ok1) and every possible bundle
of items o1 ∈ Ω1, of which there are exponentially many in the number of items in the
case of CAs. In lieu of an efficient separation oracle, a workaround exists when the
discriminant function has additional structure, such that the induced payment weakly
increases as items are added to a bundle. Given this item monotonicity, it would suffice
to include constraints for bundles that have a strictly larger value to the agent than
any of their respective subsets. We further discuss this issue in the full version of the
paper.10

5.2. The Assignment Problem

In the assignment problem, we are given a set of n agents and a set {1, . . . , n} of items,
and wish to assign each item to exactly one agent. The outcome space of agent i is thus
Ωi = {1, . . . , n}, and its type can be represented by a vector θi ∈ Θi = R

n. The set of

possible type profiles is then Θ = R
n2

. We consider an outcome rule that maximizes
egalitarian welfare in a lexicographic manner: first, the minimum value of any agent is
maximized; if more than one outcome achieves the minimum, the second lowest value
is maximized, and so forth. This outcome rule can be computed by solving a sequence of
integer programs. As before, we assume agent symmetry and adopt the view of agent 1.

To complete our specification of the structural SVM framework for this problem, we

need to define an attribute map χ3 : Rn
2−n × N → R

s, where the first argument is
the type profile of all agents but agent 1, the second argument is the item assigned to

9Both χ1 and χ2 are defined for a particular number of items and agents, and in our experiments we train
a different classifier for each number of agents and items. In practice, one can pad out items and agents by
setting bids to zero and train a single classifier.
10The experimental results in Section 6 do not assume item monotonicity and instead use a separation
oracle that iterates over all possible bundles o1 ∈ Ω1.



agent 1, and s is a dimension of our choosing. A natural choice for χ3 is to set

χ3(θ−1, j) = (θ2[−j], θ3[−j], . . . , θn[−j]) ∈ R
(n−1)2 ,

where θi[−j] denotes the vector obtained from θi by removing the jth entry. The at-
tribute map thus reflects the agents’ values for all items except item j, capturing the
fact that the item assigned to agent 1 cannot be assigned to any other agent. Since the
outcome space is very small, we choose not to use a non-linear kernel on top of this
attribute vector.

6. EXPERIMENTAL EVALUATION

We perform a series of experiments to test our theoretical framework. To run our ex-
periments, we use the SVMstruct package [Joachims et al. 2009], which allows for the
use of custom kernel functions, attribute maps, and separation oracles.

6.1. Setup

We begin by briefly discussing our experimental methodology, performance metrics,
and optimizations used to speed up the experiments.

6.1.1. Methodology. For each of the settings we consider, we generate three data sets:
a training set, a validation set, and a test set. The training set is used as input to
Training Problem 2, which in turn yields classifiers hw and corresponding payment
rules pw. For each choice of the parameter C of Training Problem 2, and the parameter
γ if the RBF kernel is used, a classifier hw is learned based on the training set and
evaluated based on the validation set. The classifier with the highest accuracy on the
validation set is then chosen and evaluated on the test set. During training, we take
the perspective of agent 1, so a training set size of ℓ means that we train an SVM on ℓ
examples. Once a partial outcome rule has been learned, however, it can be used to in-
fer payments for all agents. We exploit this fact during testing, and report performance
metrics across all agents for a given instance in the test set.

6.1.2. Metrics. We employ three metrics to measure the performance of the learned
classifiers. These metrics are computed over the test set {(θk, ok)}ℓk=1. Classification
accuracy measures the accuracy of the trained classifier in predicting the outcome.
Each instance of the ℓ instances has n agents, so in total we measure accuracy over nℓ
instances:11

accuracy = 100 ·

∑ℓ

k=1

∑n

i=1 I(hw(θi, θ−i) = oki ))

nℓ
.

Ex post regret sums over the ex post regret experienced by all agents in each of the ℓ
instances in the validation set:

regret =

∑ℓ

k=1

∑n

i=1 rgt i(θ
k
i , θ

k
−i)

nℓ
.

Individual rationality violation measures the fraction of individual rationality viola-
tion across all agents:

ir-violation =

∑ℓ

k=1

∑n

i=1 I(irv i(θi, θ−i) > 0)

nℓ
.

11For a given instance θ, there are actually many ways to choose (θi, θ−i) depending on the ordering of
all agents but agent i. We discuss a technique we refer to as sorting in Section 6.1.3, which will choose a
particular ordering. When this technique is not used, for example in our experiments for the assignment
problem, we simply fix an ordering of the other agents for each agent i and use the same ordering across all
instances.



Table I. Results for multi-minded CA with op-
timal outcome rule, training set size 500

ζ
accuracy regret ir-violation

χ1 χ2 χ1 χ2 χ1 χ2

0.5 15.8 67.0 0.133 0.032 0.26 0.19

1.0 73.4 77.4 0.018 0.011 0.19 0.12

1.5 91.7 93.9 0.004 0.002 0.06 0.03

Table II. Results for multi-minded CA with greedy outcome rule,
training set size 500

ζ
accuracy regret ir-violation

pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2

0.5 64.9 61.3 63.0 0.048 0.027 0.042 0.13 0.19 0.24

1.0 82.7 85.8 84.9 0.007 0.009 0.009 0.04 0.10 0.10

1.5 97.5 90.5 91.4 0.001 0.004 0.002 0.01 0.06 0.04

6.1.3. Optimizations. In the case of multi-minded CAs we map the inputs θ−1 into a
smaller space, which allows us to learn more effectively with smaller amounts of
data.12 We use instance-based normalization, which normalizes the values in θ−1 by
the highest observed value and then rescales the computed payment appropriately,
and sorting, which orders agents based on bid values. These techniques are explained
in more detail in the full version of the paper.

6.2. Single-Item Auction

As a sanity check, we perform experiments on the single-item auction with the opti-
mal outcome rule, where the agent with the highest bid receives the item. We obtain
excellent accuracy and very close approximation to the second-price payment rule. The
framework is able to automatically learn the payment rule of Vickrey’s auction. The
complete results are deferred to the full version of the paper.

6.3. Multi-Minded CAs

We give a high-level overview of the type distribution and the two outcome rules used
in the experiments, details can again be found in the full version of the paper.
The type distribution is inspired by Sandholm’s decay distribution for single-minded

CAs [Sandholm 2002], and is parameterized by two variables β and ζ: β controls the
level of correlation between values of different agents, ζ controls the degree of comple-
mentarity between items.

The first outcome rule is the optimal rule gopt, which selects a feasible allocation
with maximum total value. It is well known that this outcome rule can be turned into
a strategyproof mechanism (gopt, pvcg) by means of the Vickrey-Clarke-Groves payment
rule pvcg. The second outcome rule we experiment with is a generalization of the greedy
allocation rule for single-minded CAs [Lehmann et al. 2002], which attempts to find an
allocation with good welfare by greedily allocating bundles to agents based on a heuris-
tic score. This rule can be made strategyproof in the special case of single-minded CAs,
but not in the general multi-minded case.

We experiment with training sets of sizes 100, 300, and 500, and validation and
test sets of size 1000. All experiments we report on are for a setting with 5 agents,
5 items, and 3 bundles per agent, and use β = 0.5, the RBF kernel, and parameters
C ∈ {104, 105} and γ ∈ {0.01, 0.1, 1}. Additional experimental results can be found in
the full version of the paper.

6.3.1. Basic Results. Tables I and II present the basic results for multi-minded CAs
with optimal and greedy outcome rules, respectively. For the greedy outcome rule we
also present results for pvcg as a baseline.13 These results are not shown for the optimal
outcome rule, where pvcg has accuracy 100, regret 0, and IR violation 0.

12The barrier to using more data is not the availability of the data itself, but the time required for training,
because training time scales quadratically in the size of the training set due to the use of non-linear kernels.
13The payment of an agent under the VCG-based payment rule pvcg is equal to the marginal externality
imposed by the agent on the other agents, relative to the outcome rule in question.



Table III. Impact of payment offset and null loss fix for ζ = 0.5 and greedy outcome rule, training set
size 300. All results are for χ2, null loss values appear in the second row.

payment
offset

accuracy regret ir-violation ir-fix-welfare-avg

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0 59.7 61.8 61.7 0.065 0.048 0.042 0.35 0.26 0.21 0.27 0.43 0.52

0.05 61.7 61.2 60.1 0.054 0.045 0.044 0.29 0.20 0.15 0.37 0.54 0.65

0.15 60.4 55.1 52.2 0.047 0.055 0.064 0.17 0.10 0.06 0.59 0.75 0.84

0.25 54.3 47.7 44.3 0.061 0.082 0.096 0.08 0.03 0.02 0.79 0.89 0.93

0.04 0.06 0.08 0.10 0.12
0

0.1

0.2

0.3

0.4

regret

IR
v
io
la
ti
on

null loss 0.5

null loss 1.0

null loss 1.5
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Fig. 1. Impact of payment offset and null loss fix for ζ = 0.5 and greedy outcome rule, training set size 300

As expected, accuracy across all instances is negatively correlated with regret and
ex post IR violation. Both the outcome rule and degree of complementarity between
items controlled by ζ have a major effect on the results. Regret is higher for ζ = 0.5,
i.e., when complementarity between items is low, and χ2 performs better for the op-
timal outcome rule while χ1 performs better for the greedy outcome rule. For high
complementarity, the greedy outcome rule tends to allocate all items to a single agent,
and the learned payment rule sets high prices for small bundles to capture this prop-
erty. For low complementarity, the allocation tends to be split and less predictable.
Still, the best classifiers achieve average ex post regret of less than 0.032, for values
normalized to [0, 1], even though the corresponding prediction accuracy can be as low
as 63%. For the greedy outcome rule, the performance of the learned payment rule is
comparable to that of pvcg when ζ ∈ {1.0, 1.5}, and superior in the case ζ = 0.5, where
the difference between and greedy outcome rule and the optimal one is bigger.

6.3.2. Effect of Training Set Size. As expected, increasing the training set size from 100
to 300 to 500 leads to better results with higher accuracy and lower regret. Detailed
results can be found in the full version of the paper.

6.3.3. IR Fixes. Table III summarizes our results regarding the various fixes to IR
violations, for the particularly challenging case of the greedy outcome rule and ζ = 0.5.
The extent of IR violation decreases with larger payment offset and null loss. Regret
tends to move in the opposite direction, but there are cases where IR violation and
regret both decrease. The three rightmost columns of Table III list the average ratio
between welfare after and before the deallocation fix, across the instances in the test
set. With a payment offset of 0, a large welfare hit is incurred if we deallocate agents
with IR violations. However, this penalty decreases with increasing payment offsets
and increasing null loss. At the most extreme payment offset and null loss adjustment,
the IR violation is as low as 2%, and the deallocation fix incurs a welfare loss of only 7%.



Table IV. Results for assignment problem with egalitarian outcome rule

n
accuracy regret ir-violation

vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw

2 64.3 67.5 67.5 89.0 0.018 0.015 0.015 0.023 0.03 0.01 0.01 0.03

4 40.6 43.1 30.8 71.0 0.111 0.123 0.199 0.054 0.07 0.09 0.03 0.02

6 27.1 29.9 20.0 59.0 0.189 0.208 0.290 0.074 0.10 0.13 0.03 0.01

Figure 1 shows a graphical representation of the impact of payment offsets and null
losses. Each line in the plot corresponds to a payment rule learned with a different null
loss, and each point on a line corresponds to a different payment offset. The payment
offset is zero for the top-most point on each line, and equal to 0.29 for the lowest point
on each line. Increasing the payment offset always decreases the rate of IR violation,
but may decrease or increase regret. Increasing null loss lowers the top-most point on
a given line, but arbitrarily increasing null loss can be harmful. Indeed, a null loss
of 1.5 results in a slightly higher top-most point but significantly lower regret at this
top-most point compared to a null loss of 2.0.

6.4. The Assignment Problem

In the assignment problem, agents’ values for the items are sampled uniformly and in-
dependently from [0, 1]. We use a training set of size 600, validation and test sets of size
1000, and the RBF kernel with parameters C ∈ {10, 1000, 100000} and γ ∈ {0.1, 0.5, 1.0}.

The performance of the learned payment rules is compared to that of three VCG-
based payment rules. Let W be the total welfare of all agents other than i under the
outcome chosen by g, and Weg be the minimum value any agent other than i receives
under this outcome. We then consider the following payment rules: (1) the vcg payment
rule, where agent i pays the difference between the maximum total welfare of the
other agents under any allocation and W ; (2) the tot-vcg payment rule, where agent i
pays the difference between the total welfare of the other agents under the allocation
maximizing egalitarian welfare andW ; and (3) the eg-vcg payment rule, where agent i
pays the difference between the minimum value of any agent under the allocation
maximizing egalitarian welfare andWeg.

The results for attribute map χ3 are shown in Table IV. We see that the learned
payment rule pw yields significantly lower regret than any of the VCG-based payment
rules, and average ex post regret less than 0.074 for values normalized to [0, 1]. Since
we are not maximizing the sum of values of the agents, it is not very surprising that
VCG-based payment rules perform rather poorly. The learned payment rule pw can
adjust to the outcome rule, and also achieves a low fraction of ex post IR violation of at
most 3%.

7. CONCLUSIONS

We have introduced a new paradigm for computational mechanism design in which
statistical machine learning is adopted to design payment rules for given algorith-
mically specified outcome rules, and have shown encouraging experimental results.
Future directions of interest include (1) an alternative formulation of the problem as
a regression rather than classification problem, (2) constraints on properties of the
learned payment rule, concerning for example the core or budgets, (3) methods that
learn classifiers more likely to induce feasible outcome rules, so that these learned
outcome rules can be used, (4) optimistically assuming item monotonicity and drop-
ping constraints implied by it, thereby allowing for better scaling of training time with
training set size at the expense of optimizing against a subset of the full constraints in
the training problem, and (5) an investigation of the extent to which alternative goals
such as regret percentiles or interim regret can be achieved through machine learning.
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