

Monotone Branch-and-Bound Search for Restricted Combinatorial
Auctions

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Lai, John, and David Parkes. 2012. Monotone branch-and-bound
search for restricted combinatorial auctions. Proceedings of the
13th ACM Conference on Electronic Commerce (EC ’12), June 4-
8, 2012, Valencia, Spain, 705-722. New York, NY: ACM Press.

Published Version doi:10.1145/2229012.2229067

Accessed February 19, 2015 1:11:16 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11956915

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28944329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11956915&title=Monotone+Branch-and-Bound+Search+for+Restricted+Combinatorial+Auctions
http://dx.doi.org/10.1145/2229012.2229067
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11956915
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Monotone Branch-and-Bound Search for Restricted Combinatorial
Auctions

JOHN K. LAI, Harvard University School of Engineering and Applied Sciences
DAVID C. PARKES, Harvard University School of Engineering and Applied Sciences

Faced with an intractable optimization problem, a common approach to computational mechanism design
seeks a polynomial time approximation algorithm with an approximation guarantee. Rather than adopt
this worst-case viewpoint, we introduce a new paradigm that seeks to obtain good performance on typi-
cal instances through a modification to the branch-and-bound search paradigm. Incentive compatibility in
single-dimensional domains requires that an outcome improves monotonically for an agent as the agent’s
reported value increases. We obtain a monotone search algorithm by coupling an explicit sensitivity analy-
sis on the decisions made during search with a correction to the outcome to ensure monotonicity. Extensive
computational experiments on single-minded combinatorial auctions show better welfare performance than
that available from existing approximation algorithms.

Categories and Subject Descriptors: G.1.6 [Mathematics of Computing]: Optimization—Integer Program-
ming; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Economics

Additional Key Words and Phrases: Computational Mechanism Design, Branch and Bound, Combinatorial
Auctions

1. INTRODUCTION
Given a system of self-interested agents, each with private information about their
preferences, and a set of outcomes, the problem of mechanism design is to select an
outcome with desirable properties despite the ability of agents to misreport their pref-
erences. Computational mechanism design (CMD) also insists on computational effi-
ciency, which is a significant concern in domains such as combinatorial auctions (CAs),
where the winner determination problem is NP-hard. Although typical instances of
NP-hard problems such as combinatorial auctions can be routinely solved through
the use of heuristic search such as branch-and-bound search [Sandholm et al. 2005;
Andersson et al. 2000], a common theme in CMD is to insist on worst-case polynomial
time algorithms, and look for algorithms for which there is theoretical support through
worst-case approximation guarantees.

In the context of single-minded CAs, where each agent is interested in exactly one
bundle, Lehmann et al. [2002] provide a greedy algorithm and associated payment rule
with a

√
m welfare guarantee (relative to the optimal welfare), where m is the num-

ber of items being allocated, and a matching lower-bound. More recently, Mu’alem and
Nisan [2008] provide an approximation for the special case of known single-minded
CAs with guarantee ε

√
m for any fixed ε > 0, with runtime that is exponential in 1/ε2.

In a known single-minded CA, the bundle is known to the mechanism, transform-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
EC’12, June 4–8, 2012, Valencia, Spain. Copyright 2012 ACM 978-1-4503-1415-2/12/06...$10.00.

ing this into a single-dimensional mechanism design problem.1 However, if incentives
were not a concern, we have more sophisticated algorithms such as Branch-and-Bound
(BnB) search, which can efficiently find optimal solutions to the winner determination
problem on typical instances. Following a research agenda on heuristic mechanism de-
sign [Parkes 2009], we seek to leverage heuristic algorithms such as BnB search for
the purpose of CMD.

BnB search is a canonical method for solving optimization problems that are formu-
lated as integer programs (IPs). Search proceeds by branching on decisions in regard
to whether or not an agent is allocated (“branch”), and looking to prune large parts of
the search space through linear program (LP) relaxations (“bound”). In cases where it
is too computationally expensive to compute the optimal solution, an optimality toler-
ance γ ∈ (0, 1] is adopted, and search is terminated when a solution is identified that is
proven to be within multiplicative fraction γ of the optimal solution. We will typically
consider BnB with γ < 1 in the present paper.

But therein lies the core problem in combining BnB with mechanism design:
(i) the canonical Vickrey-Clarke-Groves mechanism need not be truthful when cou-

pled with an approximate solution to a welfare optimization problem, and
(ii) the allocation generated by BnB search with γ < 1 need not be monotone, in the

sense that an agent might go from winning at some bid value wi to losing at some bid
w′i > wi.

BnB search is monotone for γ = 1 because it computes the optimal allocation. But
monotonicity can fail with BnB when γ < 1, because a higher agent value can trigger
a different search decision somewhere in the search tree, eventually leading to the
search terminating with an alternate solution that is within a factor γ of optimal but
does not include the agent.

Correcting this failure of monotonicity, we follow an approach introduced by Parkes
and Duong [2007] in a different context. Given an instance, we check to see whether
agent i allocated at bid wi becomes unallocated for any bid w′i > wi (fixing the other
bids.) If this occurs, then the outcome is “corrected” (or ironed) such that the agent is
not allocated at bid wi. By doing this for all inputs, we achieve monotone BnB search
(and thus incentive compatibility). Moreover, the approach retains good welfare if the
original search algorithm is monotone for most agents on most inputs.

The technical challenge is to find an efficient method to trace the effect on the out-
come of BnB search as the bid value of an agent is increased, taking each agent in turn.
From the perspective of an IP, we are increasing an objective coefficient and tracing
the effect on decisions made during BnB search (e.g., branch decisions and pruning
decisions.) The technical innovations involved in making this sensitivity analysis of
BnB search efficient include:
• An efficient technique to identify the next highest objective value coefficient at

which a different search decision would be made for a given BnB search state.
• Caching search states to avoid re-running early steps of BnB search that remain

the same when testing higher objective value coefficients.
• Leveraging structure of BnB search to identify sufficient conditions that ensure

that agent i is allocated in any BnB solution, and terminating sensitivity checks early
when this is the case.

1While the known single-minded assumption is restrictive, Lehmann et al. [2002] describe a pollution rights
auction where companies are bidding for the right to emit certain chemicals into the air, and the pollution
profiles of the companies are known. They also describe communication network settings where bidders own
nodes in the network and wish to connect their nodes. If there is only a single path available between any
pair of nodes, then bidders are single-minded. If it is also public knowledge which companies own which
pairs of nodes, then this becomes a known single-minded setting.

• Caching of LP solutions to avoid expensive re-computations when the solutions
would not have changed.
•Making BnB search more monotone by adopting a bucketing approach to fractional

variables in deciding which variable to branch on, and through a discrete transforma-
tion on the inputs.

We implement our technique and report experimental results based on the well-
studied “legacy” distributions.2 In particular, we focus on the L4 (decay) distribution,
which has been shown in the literature to generate hard winner determination prob-
lems [Leyton-Brown et al. 2000; Sandholm 2002; Sandholm et al. 2005]. We find sets
of randomly generated instances from the L4 distribution where the best parameter-
izations of our monotone BnB algorithm yield better welfare than the approximation
mechanisms of Lehmann et al. [2002] and Mu’alem and Nisan [2008].

Additionally, the best parameterizations of monotone BnB (and for an optimality
tolerance γ < 1 at which welfare is better than existing approximation mechanisms)
have better runtime than optimal BnB. Monotone BnB is also fully parallelizable in
the number of allocated agents while the same is not true of optimal BnB. The fully
parallelized runtime cost of monotone BnB is significantly smaller than that of opti-
mal BnB for the best parameterizations of monotone BnB and instances we consider.
Though our experimental results depend crucially on these input distributions, we
believe they demonstrate the potential of the general approach and the specific appli-
cation to BnB search.

In addition, while earlier work has developed techniques for the sensitivity analy-
sis of optimal solutions to IPs [Marsten and Morin 1977; Feautrier 1988], we are not
aware of earlier work on the sensitivity of BnB search when used with an optimality
tolerance. For this reason, we also provide some analysis of the kinds of decisions that
tend to change during search and the kinds of monotonicity failures that we see on our
instances. We see that on our test instances, the most common changes result from a
pivot to a new LP solution, which causes a change in the branch variable selected. Due
to space constraints, we omit some detailed descriptions and results from this version
of the paper and point the interested reader to the full version.

1.1. Related Work
We follow earlier work of Parkes and Duong [2007] and Constantin and Parkes [2009],
who have applied so-called “computational ironing” to online stochastic combinatorial
optimization (OSCO). BnB search is more complex algorithmically than the OSCO
algorithms studied in this earlier work, and requires new technical contributions in
finding an efficient coupling with the approach of computational ironing.

Also thematically related to heuristic mechanism design is the GROWRANGE method
of Parkes and Schoenebeck [2004], which provides an anytime algorithm for welfare
optimization in general CAs by expanding the range of a VCG-based algorithm, while
allowing for a time-based interruption by the center (although without providing full
strategyproofness.)

Some other papers provide techniques for converting non-truthful approximation al-
gorithms into Bayes-Nash incentive compatible (BIC) mechanisms with essentially the
same approximation factor. Lavi and Swamy [2005] give such a construction for prob-
lems where the optimization problem can be written as an integer program, but use-
fully solved as a linear programming (LP) relaxation. This is the key difference from
our work: we do not rely on the existence of a good approximation gap for a LP relax-

2We did not use the named CATS distributions (matching, paths, regions, scheduling) as there is no straight-
forward way to adapt these to the single-minded setting.

ation (moreover, we work with dominant-strategy IC rather than BIC.) On the other
hand, Lavi and Swamy handle a problem of (welfare maximizing) multi-dimensional
mechanism design. Their construction yields a BIC mechanism with approximation
guaranteeO(

√
m) when applied to (general) CAs. Hartline and Lucier [2010] and Hart-

line et al. [2011] provide a general approach, for both single-dimensional and multi-
dimensional domains, for converting any approximation algorithm into a BIC mecha-
nism with the same approximation guarantee on welfare. This differs from our work as
we target dominant-strategy IC. Additionally, we are not aware of any computational
studies of these suggested approaches.

2. COMBINATORIAL AUCTIONS
In the combinatorial auction (CA) problem, there is a setN of agents and setG of items,
with |N | = n, |G| = m. Each agent has a private valuation function vi : 2G → R≥0
which expresses the agent’s value for each possible bundle of items. A valuation profile
(v1, . . . , vn) = v consists of a valuation function for each agent. It will be useful to write
a valuation profile from the perspective of agent i as v = (vi, v−i), where vi gives agent
i’s valuation function and v−i refers to the valuation function of all other agents.

An allocation a is an assignment of items to each agent, and a feasible allocation
requires that no item is given to more than one agent. An allocation function g maps
from a reported valuation profile to an allocation, and a payment function p maps from
a reported valuation profile to a payment for each agent. By gi we denote the bundle
assigned to agent i and pi denotes the payment of agent i. A mechanism is a pair (g, p).

Agents have quasi-linear utilities; i.e., if agent i receives bundle T ⊆ G and pays q,
then the agent’s utility is vi(T) − q. The utility of agent i under mechanism (g, p) and
reported valuations v′ = (v′i, v

′
−i) is ui(v′) = vi(gi(v

′)) − pi(v′), where vi is the agent’s
true valuation function.

Because agent valuations are private, we are interested in mechanisms for which it
is weakly beneficial for agents to truthfully report their valuation functions. A mecha-
nism (g, p) is truthful if for every agent i, for every valuation function vi and alternate
report v′i, for all valuations v−i of other agents, ui(vi, v−i) ≥ ui(v′i, v−i).

For many settings such as spectrum auctions or auctions of landing slots at airports,
we would like the allocation to maximize the social welfare or total value to the bidders.
The social welfare of an allocation a with respect to values (v1, . . . , vn) is W (a, v) =∑n
i=1 vi(ai). A mechanism (g, p) is efficient if for all v, g(v) ∈ argmaxa:a isfeasibleW (a, v).

We also require that our mechanisms never give agents negative utility. A mechanism
(g, p) is individually rational if for all v, for all i, vi(gi(v))− pi(v) ≥ 0.

2.1. Known single-minded CA
In known single-minded CAs each agent has a target bundle Ti, known to the mecha-
nism, and a value wi > 0 for this bundle. We thus refer to agent reports as being this
single value wi, rather than a report of an agent’s entire valuation function vi. Also, we
consider deterministic allocation functions, so we can assume that gi(wi, w−i) ∈ {0, 1}
corresponding to whether or not the agent is allocated its target bundle.

Definition 2.1. An allocation function g is monotone in a known single minded-
domain if gi(wi, w−i) = 1⇒ gi(w

′
i, w−i) = 1 for all w′i ≥ wi.

For deterministic allocation functions, we have the following well-known observa-
tion:

THEOREM 2.2. [Myerson 1981] Given allocation function g, and a known single-
minded domain, there exists a payment function p that makes (g, p) truthful iff g is
monotone.

In fact, once the allocation function is known, the payment function can be computed
by finding the “critical value” at which an agent starts receiving its target bundle. As
a result, for single-dimensional settings such as known single-minded CAs, the prob-
lem of constructing truthful mechanisms can be reduced to that of finding monotone
allocation functions.3

Known single-minded CAs are a special case of the more general class of downward
closed environments.

Definition 2.3. A single-dimensional mechanism design environment is downward
closed if a feasible allocation is exactly described by a set of agents allocated, and any
subset of a feasible allocation is feasible.

In the known single-minded setting, the feasible sets are the sets of agents whose tar-
get bundles share no intersection and the downward closed property holds because not
all items need to be allocated. While we focus on known single-minded CAs, the gen-
eral ironing procedure developed in Section 3 applies to single-dimensional, downward
closed environments.

3. IRONING, DISCRETIZATION AND A FIRST APPROACH
We first describe the very basic approach to making heuristic algorithms monotone for
downward closed domains. In the next sections, we propose techniques to reduce the
computational overhead in the particular context of BnB search.

The basic idea of ironing is straightforward. We first compute the set of allocated
agents using our allocation algorithm at the current values. We then perform sensi-
tivity analysis on the set of allocated agents. For each allocated agent, we check if
the agent would still be allocated under the allocation algorithm for all higher re-
ported values. If an agent becomes deallocated for higher reported values, then we
must deallocate the agent since this indicates a non-monotonicity in the provided al-
location function. This general procedure is described as ironed-alloc in Figure 1. We
focus on the allocation function in the body of the paper, but the same ideas can be
applied to compute payments for allocated agents by performing downward sensitivity
rather than upward sensitivity.

THEOREM 3.1. The ironed-alloc procedure is monotone and feasible for downward
closed domains.

PROOF. An agent is allocated in ironed-alloc only if the agent is allocated at its
current value and all higher reported values. If this is the case, then ironed-alloc would
still have allocated the agent for higher reports.

If the underlying allocation function is monotone everywhere, then ironed-alloc will
be the same as the underlying algorithm. If it is not, then ironed-alloc may sacrifice
welfare (since it must deallocate some agents) in order to preserve monotonicity.

As stated, ironed-alloc applies to continuous type domains as long as we have a
method for sensitivity checking; i.e., to determine whether an agent will become deal-
located for any higher reports. However, such a procedure may not always be available,
and even when it is, implementing such procedures in practice may introduce an im-
plicit discretization.4

3In the context of the framework of the current paper, once an allocation has been confirmed for an agent
by performing a check of monotonicity for all higher reports the agent could have made, then a parallel,
downward sensitivity check is performed to find the first smaller value at which the agent would no longer
be allocated.
4Initially, we developed our sensitivity checking procedure for continuous values. We identified sensitivity
points w1 based on whether the search might change for any value strictly greater than w1 (open) or for any

ironed-alloc(alloc-func , values)
1 allocated = alloc-func (values)
2 for agent ∈ allocated
3 do
4 if is-deallocated-at-higher-values(agent)
5 then allocated← allocated \ agent
6
7 return allocated

discretized-ironed-alloc(alloc-func , values, β)
1 for value ∈ values
2 do value = bvalue/βcβ
3 allocated = alloc-func (values)
4 for agent ∈ allocated
5 do
6 if is-deallocated-at-higher-values(agent)
7 then allocated← allocated \ agent
8
9 return allocated

Fig. 1. General procedures for making an allocation function monotone.

For this reason, we introduce a discretized version of ironed-alloc that is monotone
in the original domain, even if the original domain is continuous, and still results in
payments that are individually rational. The procedure mimics ironed-alloc, except
that agent bids are rounded down to the nearest grid size β (Figure 1).

THEOREM 3.2. Procedure discretized-ironed-alloc is monotone and admits individ-
ually rational payments.

PROOF. The proof of monotonicity is the same as Theorem 3.1. To see that payments
are individually rational, recall that given a monotone allocation function, the payment
of an agent is the lowest value at which the agent would still be allocated. Suppose
that an agent is allocated when bidding wi. This means that the agent would also be
allocated with bid bwi/βcβ ≤ wi, so the agent’s payment is at most wi.

With grid size β, we can obtain a procedure is-deallocated-at-higher-values by testing
all multiples of β that are greater than the agent’s current value, to see whether the
agent would still be allocated. Because discretized-ironed-alloc rounds values down to
multiples of β prior to sending them to the allocation function, this will capture all
possible points where the agent could have become deallocated. We refer to this as the
brute force sensitivity method.

There is an interesting trade-off in using discretization in the context of ironing.
On one hand, the allocation function no longer accesses exact agent values, which can
result in allocations with lower welfare compared to the allocations computed using
the true values. On the other hand, adopting a discretization may actually improve
the “ironed” welfare because there are fewer points where the algorithm is required
to still allocate the agent, and as a result, the underlying algorithm may become more
monotonic and deallocate fewer agents.

4. BRANCH-AND-BOUND SEARCH FOR COMBINATORIAL AUCTIONS
An empirically effective way to find an allocation with good welfare for CAs is to for-
mulate the problem as an integer program (IP) and use BnB search. We describe the
essentials of this approach in this section.

In the known single-minded CA setting, where each agent is interested in a single
bundle Ti and reports value wi, we can write the following winner determination IP

value weakly greater than w1 (closed). To handle open points, we needed to introduce a parameter ε to jump
the agent’s value to w1 + ε when running counter-factuals. This discussion will be clearer after Section 5.

X2 = 1X2 = 0

X3 = 0 X3 = 1
Integral, Value: 2.1
{ x1* = 1, x3* = 1, x4* = 0 }

Fractional, Value: 2.15
{ x1* = 0.8, x4* = 0.1 }

Fractional, Value: 2.7
{ x1* = 0.2, x4* = 0.6 }

1

2 3

4 5

(a)

X2 = 1X2 = 0

X3 = 0 X3 = 1
Integer, X1* = 1
Bias = 2.1
Value = W1 + 2.1

Frac, X1* = 0.5
Bias = 2.4
Value = 0.5W1 + 2.4

Frac, X1* = 0
Bias = 2.7
Value = 2.7

W1

Frac, X1* = 1.0
Bias = 2.15
Value = W1 + 2.15

1

2 3

4 5

W1 >= 0.5:

W1 <= 0.5:

(b)

Fig. 2. (a) A simple illustration of a branch-and-bound search tree. (b) An illustration of the augmented
search state and get-sens-single-state.

(WDIP) to solve for the welfare-maximizing allocation:

maximize
n∑
i=1

wixi (1)

subject to
∑
i:j∈Ti

xi ≤ 1, 1 ≤ j ≤ m (2)

xi ∈ {0, 1}, 1 ≤ i ≤ n (3)

The linear programming (LP) relaxation of this IP is the same program, except with
the integer constraints (3) replaced by inequalities of the form 0 ≤ xi ≤ 1. Given this,
branch-and-bound (BnB) is a tree search technique that uses the relationship between
an IP and its LP relaxation to prune parts of the search tree. We will focus on the case
where the variables are binary (0 or 1) since the IPs we consider will have this form.

The basic components of the search are the nodes in the search tree. Each node k
stores an integer partial assignment, i.e. t = {x2 = 0, x4 = 1}, along with a solution
{x∗1, . . . , x∗n} to LPt, where LPt is the LP relaxation of WDIP, with extra constraints
added to enforce t. Let t(k) denote the partial assignment stored in k. With a slight
abuse of notation, we say j ∈ t(k) if xj is set to 0 or 1 in t(k).

Let the value of an LP be
∑n
i=1 wix

∗
i , where x∗1, . . . , x∗n is the solution to the LP, and

the value of a node k = val(k) be the value of its LP relaxation. Because the value of
an LP relaxation is an upper bound on its associated IP, val(k) is an upper bound on
any integer solution that agrees with t(k). A solution {x∗i } is integral if x∗i ∈ {0, 1} ∀i,
and fractional otherwise. In Figure 2(a), node 1 corresponds to an empty partial as-
signment, while nodes 2 and 3 correspond to partial assignments {x2 = 0}, {x2 = 1}
respectively. This indicates that x2 is set to 0 in node 2 and all its children, while x2 is
set to 1 in node 3 and all its children.

A search tree has a root node with an empty partial assignment, and other nodes are
either an internal node with two children or a leaf node. The left child of an internal
node k corresponds to adding xj = 0 to t(k) while the right child corresponds to adding
xj = 1 to t(k), for some j /∈ t(k). An important property of a search tree is that any

integer solution agrees with the partial solution in exactly one leaf of the search tree,
i.e. the leaves of any search tree partition the space of possible integer solutions.

The search state s is a collection of nodes, and corresponds to the leaf nodes in a
valid search tree. I(s) denotes the integral nodes associated with s, F (s) the fractional
nodes associated with s, and K(s) = I(s) ∪ F (s) all nodes associated with s. In Figure
2(a), the search state consists of nodes 2, 4, 5, with node 2 integral and nodes 4 and 5
fractional. Given a search state s, we define the dec(s) to be the decision associated with
s. To specify the decision, we assume that BnB is being run to an optimality tolerance
γ ∈ (0, 1], where γ = 1 represents full optimality. The search decision consists of:

(1) Whether or not to terminate the search because a solution with welfare at least γ
times the optimal has been found.

(2) If the search is terminated, a node k ∈ I(s) that has the highest value.
(3) If the search is not terminated,

(a) A node k ∈ F (s) to be selected.
(b) A variable xj to be branched.

The crux of BnB lies in how the decision associated with s is computed. We define:

UB(s) = max
k:k∈F (s)

val(k), LB(s) = max
k:k∈I(s)

val(k)

If γ · UB(s) ≤ LB(s), then terminate, and select a node k ∈ I(s) that has value LB(s).
If γ · UB(s) > LB(s), then select a node k ∈ F (s), γ · val(k) > LB(s) to be explored
(select-node) along with a variable xj to be branched (branch-variable). Altogether, the
BnB procedure proceeds as:

(1) Initialize s to be a single node corresponding to the empty partial assignment.
(2) Repeat until termination:

— Compute dec(s).
— If terminate, return the integral solution in the node given by dec(s) and termi-

nate.
— If not terminate, update s by replacing the node given by dec(s) with two chil-

dren corresponding to branching the variable xj given by dec(s).

There are various choices for how to implement the select-node and branch-variable
functions. For instance, select-node can choose the deepest node, breaking ties by value,
(depth-first) or choose the node with the highest LP solution value (breadth-first) or al-
ternate between the two. A popular choice for branch-variable is to select the most
fractional variable in the LP solution, but other choices are also possible (see e.g.
Chapter II.4 in Nemhauser and Wolsey [1998]). The best choices for these functions
are typically domain specific. In our work, we choose depth-first for select-node until
an integral node is found, after which point we use breadth-first. For branch-variable,
we focus on variants of selecting the most fractional variable.

Upon termination, BnB will return a solution with welfare at least γ times the op-
timal. This is true because at each step max(LB(s), UB(s)) is an upper bound on the
value of any integer solution to WDIP because of the admissibility (or optimistic) es-
timate of value that comes from the use of LP relaxations and because the nodes in s
partition the space of integer solutions.

5. OPTIMIZED SENSITIVITY CHECKING FOR BRANCH-AND-BOUND SEARCH
In this section, we demonstrate an optimized sensitivity checker (i.e. an implementa-
tion of is-deallocated-at-higher-values) that takes advantage of the structure of BnB
search. In what follows, we assume that we are performing sensitivity checking in the
context of discrete-ironed-alloc, and can therefore assume that input values are multi-

optimized-is-deallocated-at-higher-values(alloc-func , values, agent, β)
1 sens-value = values(agent)
2 while sens-value < max-value
3 do values(agent) = sens-value
4 alloc, next-value = get-sensitivity(alloc-func , values, agent, β)
5 if agent /∈ alloc
6 then return true
7 sens-value = next-value
8
9 return false

Fig. 3. An optimized procedure for checking whether an agent becomes deallocated for higher values.

ples of β.5 For the duration of this section, we assume without loss of generality that
we are performing sensitivity checking for agent 1.

Rather than re-run the search for every higher multiple of β, we would ideally like to
skip multiples of β that provably continue allocating agent 1 in the solution returned
by BnB. The core of such a procedure would consist of a function get-sensitivity that
runs BnB with agent 1’s value set to w1, but in addition to returning an allocation,
returns the next value w′1 > w1 for which we should re-run the search. We could then
use the following procedure (summarized in Figure 3) as a replacement for the brute
force sensitivity checker. We first run get-sensitivity with agent 1’s reported value. This
returns the allocation BnB would have returned, along with the next higher value w′1
at which the allocation might change. We set agent 1’s value to w′1, and re-run get-
sensitivity. If the allocation returned continues to allocate agent 1, then continue the
process. Terminate if an allocation returned does not allocate agent 1 or if the next
highest value exceeds the maximum allowed value.6

The next two sections are devoted to defining get-sensitivity. We first examine how
a change in w1 affects a specific node in the search state, and we then use these obser-
vations to provide an implementation for get-sensitivity.

5.1. Impact of a change in value on a Search Node
We first examine how a node in the search state (recall, associated with an LP) changes
when agent 1’s reported value increases. We separate these changes into two types.

5.1.1. Solution value changes. As a agent 1’s reported value increases, the solution to
the LP relaxation in a given node may not change, but the value of the solution will
change if x∗1 > 0 in the solution. If we assume that the solution does not change,
then we can easily track how the solution value changes as the agent’s reported value
increases. Let x∗1, . . . , x∗n be the fractional solution to the LP relaxation at a node. The
solution value as a function of agent 1’s report w1 is val(w1) = w1x

∗
1 + (

∑n
i=2 wix

∗
i) ,

where the expression within the parenthesis does not depend on w1. We call x∗1 the
coefficient and the term in parenthesis the bias of the node.

5To avoid LP degeneracy (which is problematic for sensitivity because we are unsure which solution will be
picked for higher agent values), in our experiments, we add a random value in [0, β) to the discretized agent
values. This perturbation is independent of an agent’s report and thus does not affect truthfulness. In prac-
tice, to maintain individual rationality, one would want to subtract a random value, but our implementation
adds a random value to avoid special casing perturbations that lead to negative values. This should not have
any substantive effect on our experimental results, as properties of the solution are always computed with
respect to the original values prior to any discretization or perturbation.
6If the possible values are uncapped, we could always set a very high max value, and treat (the rare case of)
any reports greater than this value as being the max value.

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V
a
lu

e
 o

f
LP

 r
e
la

x
a
ti

o
n

Value of agent 1

LP sensitivity to agent 1's value

 0.8

 0.9

 1

 1.1

 0 0.05 0.1 0.15 0.2 0.25 0.3

V
a
lu

e
 o

f
LP

 r
e
la

x
a
ti

o
n

Value of agent 1

LP sensitivity to agent 1's value

Fig. 4. Sensitivity of the LP solution value to changes in agent 1’s value.

5.1.2. LP solution changes. As an agent’s reported value increases, the solution to the
LP relaxation at the node can change. LPs have the property that solutions lie at cor-
ners of the polyhedron formed by the constraints of the LP. The solution stays the
same for a range of values, until the agent’s value reaches a critical point where the
LP is degenerate, and two solutions share the same value. Above this, the new solution
becomes the unique optimal solution. The literature on LPs provides simple computa-
tional procedures for computing the sensitivity of a LP solution to coefficients in the
objective function (see e.g. Section 5.1, [Bertsimas and Tsitsiklis 1997]).

5.1.3. Worked example. Figure 4 illustrates these two types of changes by charting how
the value of the LP relaxation changes as the value of agent 1 moves from 0 to 1. The
figure on the left represents the simple case where the LP corresponds to the root node
of the following instance with 3 agents and 5 goods: Agent 1 desires {A,D,E}, agent
2 desires {A,B} at 0.2, and agent 3 desires {B,E} at 0.35. When agent 1’s value is 0,
the LP solution sets x∗2 = 0, x∗3 = 1 and has value 0.35. When agent 1’s value reaches
0.15, the LP solution changes to x∗1 = 0.5, x∗2 = 0.5, x∗3 = 0.5. At this point, the first
and second solutions have the same value. When agent 1’s value reaches 0.55, agent 1
becomes fully allocated with x∗1 = 1. In [0, 0.15], the value of the LP solution does not
depend on agent 1’s value. In [0.15, 0.55] the value of the LP solution has slope 0.5, and
in [0.55, 0.1], the value of the LP solution has slope 1.0. The figure on the right depicts
a more complicated example for the root node LP of an instance with 300 agents. Each
marked point on the graph depicts a point where the LP solution changes, and within
marked points, the value of the LP solution is linear in the value of agent 1, with the
slope governed by the assignment x∗1 in the LP solution. This example is representative
of how the LP solution can be quite sensitive to changes in agent 1’s value. As is the
case in these examples, the slope increases as agent 1’s value increases.

5.2. Isolating major changes and defining get-sensitivity
Having discussed the two ways in which a change in an agent’s value affects a node
in a search state, we present our implementation of get-sensitivity. The get-sensitivity
method runs the search with agent 1’s value set to w1, but in addition to running the
search, returns a higher value w′1 > w1 at which to re-run the search. The guarantee
is that if get-sensitivity returns w′1, then setting agent 1’s value to any multiple of β in
(w1, w

′
1) and running BnB must still result in an allocation that contains agent 1.

As we run the BnB procedure, we can ask at each search state, what higher value
of agent 1’s report might cause a change to occur in the search? Therefore, we reduce
get-sensitivity to the simpler problem of figuring out the value at which the decision at
a single state would change. The minimum of these sensitivity values across all search

states processed in BnB provides the next value to be returned by get-sensitivity. We
call this single search state procedure get-sens-single-state.

A first attempt at get-sens-single-state would consider any higher value at which any
aspect of a search state changes (e.g., the value of solution at any associated node in
the state.) But this would trigger a large number of changes since the number of nodes
scales with the number of steps in the search.

Instead, we focus (for a given state s) on identifying the next higher value at which
the search decision changes (i.e., whether or not we terminate, change the identity of the
integral node in the case of termination, or change the selected node or branch variable
if we do not terminate).

In what follows, we assume that select-node is breadth-first and chooses the frac-
tional node with highest value, although we can adapt the procedure to other choices
of select-node (see full version). In order to find the lowest point where the decision as-
sociated with s changes, we introduce an augmented search state. Let w1 temp be agent
1’s value being currently considered.7 The augmented search state adds the following
information to a search state:

(1) For each node in the state, compute the coefficient and bias for w1 temp.
(2) Compute the best integral node for w1 temp.
(3) Compute the best fractional node for w1 temp.

The purpose of this augmented search state is to allow us to understand how the
search state changes as agent 1’s value increases further from w1 temp, and thus when
the search decision changes. As agent 1’s value increases, we know that the values
at the various nodes in the state will each increase linearly based on the coefficient
of that node. With the assumption that select-node is breadth-first, the decision at s
depends only on a comparison between the best integral node and the best fractional
node. Figure 2(b) gives an example of the augmented search state.

The method get-sens-single-state for augmented state s′ repeatedly finds the next
lowest value w′1 > w1 temp where one of the following changes occurs:

(1) The best fractional node changes identity.
(2) The best integral node changes identity.
(3) The value of the best integral node crosses the value of the best fractional node

(possibly multiplied by γ if we are not running to optimality).
(4) The LP solution of some node changes.

For each such value, the method considers the next higher value on the discrete grid,
and at this value checks to see whether the search decision would actually change at
this state. If it does, then this becomes the relevant sensitivity value for this state—
the first value at which the search decision first changes. We defer a full description
and analysis of the correctness of get-sens-single-state to the full version. We provide
an example here.

Figure 2(b) shows the augmented search state s′ for different ranges of w1, agent 1’s
value. The LP solutions in nodes 2 and 5 are not dependent on w1 while the solution in
node 4 is dependent on w1. When w1 ≤ 0.5, the LP solution in node 4 assigns x∗1 = 0.5
with a bias of 2.4. When w1 ≥ 0.5, the LP solution in node 4 assigns x∗1 = 1.0 with a
bias of 2.15.

We now analyze get-sens-single-state. Suppose w1 = 0.25, β = 0.01. Node 2 is the
best integral node, while node 5 is the best fractional node. At w′1 = 0.5 , event 4 is
triggered as the LP solution in node 4 changes to a solution with x∗1 = 1.0. Note that at

7We make a distinction versus w1 since w1 temp can be a value higher than w1, that we are currently
examining for sensitivity purposes.

w′1 = w′1β = 0.5, at node 4, the value of the previous LP solution is equal to the value
of the new LP solution (0.5 · 0.5 + 2.4 = 0.5 + 2.15). No further updates are needed for
s′ as node 4’s value (2.65) is still less than node 5’s. Though the LP solution in node 4
has changed, the decision remains to select node 5 and continue searching. The same
branch variable will be selected because the LP solution for node 5 has not changed.
As a result, get-sens-single-state will continue, setting w1 temp to 0.5. Assuming that no
LP solutions change, the next event triggered will be event 1 at value w′1 = w′1β = 0.55.
At this value, node 4 will overtake node 5 as the best fractional node (the value of the
LP solution in node 4 reaches 2.7 while the value of the LP solution in node 5 stays at
2.7). The decision associated with s′ will now change because node 4 will be selected as
the next node to be explored. get-sens-single-state will return 0.55.

The example demonstrates the key ideas of get-sens-single-state. Not all events will
lead to changes in the decision, but we need to capture all of these events to make
sure that s′ reflects the true state if agent 1 were to report these higher values. In
particular, event 4 is very important because it makes sure that the coefficient and
bias values are valid for the range of agent 1’s values being considered.

5.3. Hot restart and Inference
5.3.1. Hot restart. With get-sens-single-state, we can now fully instantiate get-

sensitivity and optimized-is-deallocated-at-higher-values. To check whether an agent
becomes deallocated, take the minimum next value returned by calls to get-sens-single-
state from every state in the BnB search and re-run BnB search with the agent’s value
updated to the minimum next value. This procedure may already outperform brute
force sensitivity because we may skip over many higher multiples of β that would not
have changed any search decision.

However, we can further improve performance with the following optimization. Sup-
pose that the minimal next value w′1 returned by all the calls to get-sens-single-state
across all decisions made in the search occurs at step 1000 in the search. This implies
that the decisions at steps 1 through 999 would not have changed if agent 1’s value is
updated to w′1. As a result, we need not re-run all these steps of the search. We can
save the state after step 999 and rerun the search from this point. This inspires the
following modified procedure for get-sensitivity.

Let w1 min represent the lowest next-highest value returned by any call to get-sens-
single-state thus far in the search. Whenever a search decision is made, get-sens-single-
state is called. If the next value returned is weakly greater than w1 min, then ignore
it (the search decision would have changed earlier in the search). If the next value
returned is less than w1 min, then reduce w1 min to this value, and take a snapshot of
the search state. Push this snapshot, along with w1 min, onto a list of search states
from which to re-run. We refer to this as hot restart.

Figure 5 gives a way to view how this version of optimized-is-deallocated-at-higher-
values proceeds. Each stack in the diagram represents the search states from which
the search needs to be re-run based on current knowledge about the search, along
with their starting steps and the associated sensitivity value for agent 1 in that state.
Below each stack we give the step of the actual search, along with the current value
(w1 temp) for agent 1 and the current minimum next value (w1 min) to which sensitivity
checking will jump once the current search is complete. w1 min will always equal the
value stored in the top search state in the stack. As we proceed from left to right, we see
that we might add search states to the stack. This occurs if get-sens-single-state returns
a next value that is lower than w1 min. Once we have run a search state to completion,
we process the next search state in the stack, running get-sensitivity starting at the
indicated step and jumping agent 1’s value w1 temp forward to the stored value. This is

Step 1
W1 = 0.7

Step 142
W1 = 0.5

Step 299
W1_temp = 0.2

W1_min: 0.5

Step 1
W1 = 0.7

Step 142
W1 = 0.5

Step 400
W1_temp = 0.2

W1_min:0.3

Step 1
W1 = 0.7

Step 142
W1 = 0.5

Step 350
W1_temp = 0.3

W1_min: 0.5

Step 301
W1 = 0.3

Step 1
W1 = 0.7

Step 203
W1_temp = 0.5

W1_min: 0.7

Step 1
W1 = 0.7

Step 303
W1_temp = 0.5

W1_min: 0.6

Step 205
W1 = 0.6

Fig. 5. Progression of optimized-is-deallocated-at-higher-values.

possible because we take a snapshot of the search state whenever we add a search state
to the stack. The stack will expand and shrink, but the current agent value w1 temp will
monotonically increase, and eventually, we will have processed all search states in the
stack and completed sensitivity analysis for the agent.

5.3.2. Inference: Allowing Early-Stopping. Until this point, we are still actually running
the search to completion (even though hot restart lets us start low in the tree) for all
higher values that trigger a sensitivity check, even though we only use the allocation
to check whether the sensitivity agent remains in the allocation. This is all we care
about: we don’t need the full details of the allocation!

Leveraging this insight, we devise early stopping rules in the sensitivity checker. If
we are sure that the search will terminate with a solution that contains agent 1, we
do not need to run the search to completion (this is what we mean by “inference”). The
main idea is to upper-bound the value of any solution where agent 1 is not allocated,
and then use this upper bound to argue that the search will always terminate with a
solution that allocates agent 1. One such upper bound is to take the max over the LP
relaxations of all nodes in the current state, with the extra constraint x1 = 0. At the
cost of some extra computation (computing LP relaxations with the x1 = 0), this allows
us to stop searching once it is clear agent 1 will be allocated in any solution returned
(see full version for more details).

5.4. Linear Program Caching, Parallelization
5.4.1. Linear Program Caching. The most expensive part of BnB search and sensitivity

analysis is solving the LP relaxations for nodes. However, a key insight is that in
the course of sensitivity analysis, we may revisit nodes with the same integer partial
assignment over and over, with the only difference being that w1 might be set to a
higher value. As a result, when running get-sensitivity, we cache LP solutions, along
with the upper bounds for when the LP solutions change (as in Section 5.1.2). When
we need to solve an LP in a later BnB search with value w′1, we first make a lookup
in this cache to see if there is an already computed LP solution whose upper bound
is greater than w′1 and reuse the previously computed solution if one is found. This
greatly decreases the number of solves needed for sensitivity analysis.8

5.4.2. Parallelization. While we have to perform sensitivity analysis for every allocated
agent, the sensitivity analysis for each agent is completely independent of the sen-
sitivity analysis for other agents. As a result, sensitivity checking can be perfectly

8An optimization related to LP caching is that of using optimal solutions from parent nodes in the BnB
search tree to “hot start” the LP solve process for child nodes during sensitivity analysis. We did implement
this, but we did not see substantial gains so we abandoned it for simplicity and to keep our memory footprint
small. It would be of interest to pursue this direction further in future work.

 0

 1

 0 0.1 0.2 0.3 0.4 0.5

value

 0

 1

 0 0.1 0.2 0.3 0.4 0.5

value

 0

 1

 0 0.1 0.2 0.3 0.4 0.5

value

 0

 1

 0 0.1 0.2 0.3 0.4 0.5

value

Fig. 6. The allocation function for different agents on a decay instance with 1000 agents and 100 items (see
Section 7). Agents were chosen because of non-monotonicities in the BnB search for these agents.

parallelized. In our experimental results, we report this parallelized runtime, which is
the time required to solve the initial search plus the maximum runtime for optimized-
is-deallocated-at-higher-values across all allocated agents.

6. MAKING BRANCH-AND-BOUND SEARCH MORE MONOTONE
In order for the allocation computed by discretized-ironed-alloc to have good welfare
properties, we need the underlying heuristic algorithm to be monotone for many agents
on many instances. If not, then many agents will be deallocated, and even if the origi-
nal, un-ironed solution has high welfare, the ironed solution will not. Recognizing this,
we introduce two methods for making BnB more monotone.

Input Discretization: As discussed in Section 3, one way to decrease the number
of deallocations is to increase the grid size β. With discretization, an agent remains
allocated as long as the heuristic allocation function continues to allocate the agent
for all higher multiples of β. Figure 6 shows the allocation curve for several agents in
one of our experimental instances. The figure is generated using β = 0.01. Many of
the non-monotonicities in the curves survive for a small range of values. Increasing β
allows these small ranges to be skipped over and increases monotonicity. But there is
a tradeoff with solution quality because the input is approximated.

Fractional Bucketing: The classic variable selection algorithm in BnB search is to
take the most fractional variable; i.e., the variable with value closest to 0.5. But this
is very sensitive to small changes in the LP solution, and can result in many search
decision changes even if the selected node remains the same since the branch variable
may change. To remedy this, we experiment with bucketing variables based on their
fractionality and choosing the lexicographically first variable in the smallest bucket.
For example, consider an LP solution {x1 = 0.41, x2 = 0.48, x3 = 0.7, x4 = 0.51}. The
most fractional variable without any bucketing is x4. But with a bucket size of 0.2,
x1, x2, x4 are all placed in the same bucket (the bucket representing values in [0.4, 0.6]),
and we break ties on x1. In the extreme case of a bucket size of 1.0, all variables belong
to the same bucket, but we make the exception that we don’t select variables that are
already set to 0.0 or 1.0; therefore, a bucket size of 1.0 amounts to selecting the first
variable that is set to a non-integer value. Larger bucket sizes make the underlying
search more monotone since the decisions in the search are less sensitive to small
changes in the LP solutions, and we see this in our experimental results.

7. EXPERIMENTAL RESULTS
We present experimental results based on an implementation of monotone BnB search
for known single-minded CAs. Our experiments are performed using a custom Java
implementation of BnB search, using CPLEX as our LP solver. The experiments are
run on a machine with two 8 core 2.4GHz Intel Xeon processors. We implement the
optimized version of get-sensitivity, as well as hot restart, inference / early-stopping,
and LP caching.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05
W

e
lf
a
re

Grid size

Welfare (Opt. tolerance = 0.90)

orig
iron

b0.2_iron
b1.0_iron

greedy_LOS
greedy_5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.01 0.02 0.03 0.04 0.05

W
e
lf
a
re

Grid size

Welfare (Opt. tolerance = 0.95)

orig
iron

b0.2_iron
b1.0_iron

greedy_LOS
greedy_5

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.01 0.02 0.03 0.04 0.05

W
e
lf
a
re

Grid size

Welfare (Opt. tolerance = 0.99)

orig
iron

b0.2_iron
b1.0_iron

greedy_LOS
greedy_5

Fig. 7. Average welfare (compared to the optimal) for different search parameterizations on small instances.

We generate agent valuations using the decay (L4) distribution with parameter α =
0.75 and a number of agents equal to ten times the number of items as this has been
shown to generate hard winner determination instances [Leyton-Brown et al. 2000;
Sandholm et al. 2005]. In our experiments, we fix node selection to choose the deepest
node if no integral node has been found, and the node with highest value otherwise. For
variable selection, we select the most fractional variable with different bucket sizes, as
described in Section 6. For our discretization procedure, we first normalize values to
[0, 1] by dividing by a maximum value.9

7.1. Welfare Analysis
We generate 50 random instances from the Decay distribution with 300 agents, 30
items, and α = 0.75. We vary γ, β, and the variable selection algorithm. For vari-
able selection, the bucket sizes that we consider are no bucket size, 0.2 and 1.0. For
this dataset, running to full optimality is very fast (on the order of seconds), so these
instances do not represent a domain on which we would want to use our ironing proce-
dure. Rather, they are a way to examine the impact of search parameterization on the
quality of the ironed solution.

Figure 7 presents the welfare results. Each graph is for a particular
γ ∈ {0.9, 0.05, 0.99} and plots average welfare of the solution across the 50 instances
(relative to the optimal) as β increases (i.e., more discretization.) greedy-LOS indicates
the welfare of the greedy algorithm from Lehmann et al. [2002], while greedy-5 indi-
cates the welfare of the algorithm from Mu’alem and Nisan [2008] with a parameter
choice of 5. Beyond this value, the runtime becomes prohibitive without much im-
provement in welfare (see full version).10 The orig line indicates the original welfare
of the solution, i.e. welfare before we check whether agents need to be deallocated.
The iron line indicates the ironed welfare, i.e. welfare after agents have been deallo-
cated.11 Lines with b followed by a floating point number indicate use of bucket sizes.
For instance, b0.2-iron plots the ironed welfare for bucket size 0.2.

7.1.1. Grid size (β). Figure 7 illustrates the effect of the grid size, β, on the welfare
of the ironing algorithm. If β is too small, then there are many deallocations, and the
ironed welfare suffers. If β is too large, then optimizing against the discretized values
gives a poor approximation to the original problem, and welfare suffers.

9For the L4 distribution with α = 0.75, 30 is a reasonable maximum value.
10The specific algorithm we compare against is the one that gives an O(ε

√
m) approximation for single-

minded CAs. For parameter k, this algorithm takes the max of exhaustive search over allocations with k

agents and a greedy algorithm that uses a compact ranking, i.e. the score of a bundle Ti is wi if |Ti| ≤
√
m/k

and 0 otherwise.
11To make the plots clearer, we plot the original welfare for the most fractional variable without bucketing.
The original welfare is similar for the other bucketing strategies.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 0.01 0.02 0.03 0.04 0.05

Ti
m

e
(s

)

Grid size

Runtime (Opt. tolerance = 0.95)

bruteforce
optimized

 0

 2000

 4000

 6000

 8000

 10000

 0 0.01 0.02 0.03 0.04 0.05

N
u
m

b
e
r

o
f

lp
 s

o
lv

e
s

Grid size

LP solves (Opt. tolerance = 0.95)

bruteforce
optimized

(a)

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9>10

N
u
m

b
e
r

o
f

o
b
se

rv
a
ti

o
n
s

Step

branch var
select node

(b)

Fig. 8. (a) Runtime and number of LP solves for brute force and optimized ironing procedures. (b) Histogram
of the steps at which search decisions change, for different change types. γ = 0.95, β = 0.01, averaged over
all bucket sizes and datasets. 300 agents, 30 items.

7.1.2. Most fractional bucket size. Figure 7 confirms that fractional-variable bucketing
has a positive effect on the monotone BnB. The curves with the highest ironed welfare
are those with bucket size 1.0.

7.1.3. Optimality tolerance (γ). The original welfare is quite similar across different val-
ues of γ. We also see that the welfare of the ironed solution improves as γ increases.
In particular, for γ > 0.95, an optimally parameterized ironing algorithm does better
than the greedy algorithms.12 This occurs with γ = 0.95 despite monotonicity failure
and agent deallocations.13

7.2. Effectiveness of optimized sensitivity
7.2.1. Comparison to brute force. We compare the brute force approach with the opti-

mized sensitivity approach. We label the sensitivity checking procedure for BnB the
“optimized” algorithm. Figure 8(a) plots the runtime and number of LPs solved across
different grid sizes for γ = 0.95 and no bucket size.14

It shows that runtime is highly correlated with the number of LP solves. The opti-
mized ironing procedure yields the biggest gains when the grid size is small, though for
all grid sizes, the optimized procedure does have better runtime and a smaller number
of calls to the LP solver. Brute force checks every higher multiple of the β and thus
performs work linear in 1 / β. Even for large grid sizes, where the brute force proce-
dure only needs to make a small number of calls to check sensitivity, the optimized
procedure appears to match or slightly improve on its performance. This is likely due
to the fact that the optimized procedure also leverages larger β in that it rounds to the
next highest multiple of β when checking sensitivity.15

7.3. Analysis of search changes
We also study the particular types of decision changes that take place during sen-
sitivity checking. For γ = 0.95, β = 0.01, most decision changes are branch variable
changes rather than select node changes. With no bucket size, there is an average of
27.1 branch variable changes and 3.8 select node changes. For bucket size 1.0, these

12greedy-LOS and greedy-5 do not have a grid size, so they appear as a constant line.
13The good performance is not because the underlying “orig” algorithm is identifying optimal solutions (and
thus monotone). Averaged across all bucket sizes, for β = 0.01 and γ = 0.9, 34% of the original solutions are
optimal (with respect to the particular grid size). This increases to 45% and 92% for γ = 0.95 and γ = 0.99.
14The graphs for different bucket sizes look very similar so for clarity, we only display no bucket size.
15We did not implement LP caching for the brute force trials, though, which could potentially decrease
runtime and number of LP solves.

Table I. Welfare (% of optimal) on hard instances.

greedy (LOS) orig-0.025-98-1.0 iron-0.025-98-1.0
0.94 0.96 0.96 (+0.02)
0.89 0.93 0.93 (+0.04)
0.92 0.93 0.93 (+0.00)
0.94 0.93 0.93 (-0.01)
0.87 0.92 0.92 (+0.05)
0.91 0.93 0.93 (+0.02)
0.89 0.93 0.92 (+0.03)
0.91 0.91 0.91 (+0.00)
0.88 0.93 0.93 (+0.04)
0.92 0.93 0.93 (+0.01)

Table II. Runtime (minutes) on hard instances

optimal 0.025-98-1.0 (t) 0.025-98-1.0 (p)
4.55 0.41 0.03
0.24 0.02 0.00
1.17 0.14 0.01
0.53 0.10 0.01
1.94 0.14 0.01
0.78 0.02 0.00
2.25 0.43 0.03
0.47 0.39 0.02
1.26 2.11 0.14
0.20 0.17 0.01

numbers decrease to 15.4 and 8.0, indicating that larger bucket sizes do decrease the
number of branch variable changes. Figure 8(b) examines when these changes occur,
and we see that branch variable changes tend to occur in the earlier steps of the search
while select node changes are more evenly distributed.

7.4. Hard instances
In this section, we examine instances where optimal BnB is more computationally
intensive and takes minutes to run to completion. We use decay instances with 1000
agents and 100 items, α = 0.75. We test different parameters, but in Tables I and II, we
focus on the best performing parameters β = 0.025, γ = 0.98 with bucket size 1.0. For
welfare, orig indicates the pre-ironed welfare, while iron indicates the welfare after
deallocations. For runtime, t indicates the total runtime for monotone BnB, while p
indicates the fully parallelized runtime discussed in Section 5.4.2.

From Table I, we see that the welfare produced is better than greedy on these hard
instances, and also that few agents are deallocated as the ironed welfare is close to
the original welfare.16 Table II gives the runtime for optimal BnB and the total and
parallelized runtime for monotone BnB. Running to optimality tends to take more
time than monotone BnB, but there are exceptions. In addition, the fully parallelized
runtime (Section 5.4.2) for our algorithm is better than optimal BnB. We also note that
to maintain truthfulness with optimal BnB we must be able to run every instance to
completion, so we care about the long tail of the runtime distribution. With monotone
BnB, the search itself is fast because we run to an optimality tolerance, and sensitivity
checking for a single agent is not overly expensive. The expense comes in having to
check every allocated agent, and as we have mentioned, this can be parallelized.17

8. FUTURE DIRECTIONS
We introduce a method for monotone BnB search by performing automated sensitivity
analysis in regard to changes in the outcome of search in response to changes in objec-
tive value coefficients. We believe the results in regard to the scalability of sensitivity
checking of BnB search are promising, and given the generality of the approach, hope
to uncover additional optimizations. Possible areas for further improvement are addi-
tional inferential approaches that allow for short-circuiting, as well as additional ways
to encourage monotonicity. We may also be able to leverage the fact that LP value, as
a function of a specific agent’s value, is convex.

Basic to our approach is the idea of performing sensitivity analysis for a given input
and adjusting the algorithm on that input so that the algorithm is monotone over the

16We only report greedy-LOS since it outperforms parameterizations of greedy-k for values of k with run-
times comparable to monotone BnB.
17In this sense, we can reliably decrease runtime for monotone BnB with more computational resources, in
contrast with the scalability that would be offered by state-of-the-art parallel branch-and-bound solvers.

entire input space. Probably the most intriguing, and challenging, direction for future
work is to understand whether this local adjustment is possible in achieving appro-
priate notions of monotonicity in problems of multi-dimensional mechanism design.
Additional targets for future work include: (1) Extend monotone BnB search to other
single-dimensional mechanism design problems, including non-downward closed en-
vironments (e.g., scheduling, where correcting a failure of monotonicity could involve
introducing additional “dummy” jobs for a machine to process); (2) Explore the idea of
sensitivity and computational ironing on other methods of heuristic search, for exam-
ple local search; (3) Extend monotone BnB search to handle cut generation, and ex-
pose a parameterized search framework to the methods of empirical algorithm design,
to allow for automated configuration [Hutter et al. 2010]; and (4) Consider alterna-
tive methods to “correct” an allocation when a failure of monotonicity is identified, for
example introducing randomization to allow for smoother notions of monotonicity.

Acknowledgments
We thank the anonymous reviewers for useful comments and feedback. This material
is based upon work supported in part by the National Science Foundation under Grant
No. CCF-1101570. John Lai is supported by an NDSEG fellowship.

REFERENCES
ANDERSSON, A., TENHUNEN, M., AND YGGE, F. 2000. Integer programming for combinatorial auction win-

ner determination. In Proc. of 4th ICMAS. 39–46.
BERTSIMAS, D. AND TSITSIKLIS, J. 1997. Introduction to Linear Optimization 1st Ed. Athena Scientific.
CONSTANTIN, F. AND PARKES, D. C. 2009. Self-correcting sampling-based dynamic multi-unit auctions. In

Proc. of 10th ACM-EC Conference. 89–98.
FEAUTRIER, P. 1988. Parametric integer programming. RAIRO Recherche Op’erationnelle 22.
HARTLINE, J. D., KLEINBERG, R., AND MALEKIAN, A. 2011. Bayesian incentive compatibility via match-

ings. In Proc. of 22nd SODA. 734–747.
HARTLINE, J. D. AND LUCIER, B. 2010. Bayesian algorithmic mechanism design. In Proc. of 42nd STOC.

301–310.
HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2010. Automated configuration of mixed integer pro-

gramming solvers. Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 186–202.

LAVI, R. AND SWAMY, C. 2005. Truthful and near-optimal mechanism design via linear programming. In
Proc. of 46th FOCS Symposium. 595–604.

LEHMANN, D., O’CALLAGHAN, L. I., AND SHOHAM, Y. 2002. Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM 49, 577–602.

LEYTON-BROWN, K., PEARSON, M., AND SHOHAM, Y. 2000. Towards a universal test suite for combinato-
rial auction algorithms. In Proc. of 2nd ACM-EC Conference. 66–76.

MARSTEN, R. AND MORIN, T. 1977. Parametric integer programming: The Right-Hand side case. Annals of
Discrete Mathematics 1, 375–390.

MU’ALEM, A. AND NISAN, N. 2008. Truthful approximation mechanisms for restricted combinatorial auc-
tions. Games and Economics Behavior 64, 612–631.

MYERSON, R. 1981. Optimal auction design. Mathematics of Operations Research, 58–73.
NEMHAUSER, G. AND WOLSEY, L. 1998. Integer and Combinatorial Optimization. J. Wiley and Sons, Inc.
PARKES, D. C. 2009. When analysis fails: Heuristic mechanism design via self-correcting procedures. In

Proc. of 35th SOFSEM. 62–66.
PARKES, D. C. AND DUONG, Q. 2007. An ironing-based approach to adaptive online mechanism design in

single-valued domains. In Proc. of 22nd AAAI Conference. 94–101.
PARKES, D. C. AND SCHOENEBECK, G. 2004. Growrange: Anytime vcg-based mechanisms. In Proc. of 19th

AAAI Conference. 34–41.
SANDHOLM, T. 2002. Algorithm for optimal winner determination in combinatorial auctions. Artificial In-

telligence 135, 1-2, 1–54.
SANDHOLM, T., SURI, S., GILPIN, A., AND LEVINE, D. 2005. Cabob: A fast optimal algorithm for winner

determination in combinatorial auctions. Management Science 51, 3, 374–390.

