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Abstract

RNA-Seqg is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent
bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We
developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seqg.
Following reverse transcription, a large set of barcode sequences is added in excess, and nearly
every cDNA moleculeis uniqudy labeled by random attachment of bar code sequencesto both ends.
After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences.
Rather than counting the number of reads, RNA abundance is measured based on the number of
unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be
unambiguoudly identifiable even in the presence of multiple sequencing errors. This method
allows counting with single copy resolution despite sequence-dependent bias and PCR amplification
noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We
demonstrated transcriptome profiling of E. coli with more accurate and reproducible quantification
than conventional RNA-Seq.



The central goal of transcriptome profiling is txarately quantify the abundance of RNA transcriipta
sample. While hybridization-based approachesDIK& microarrays can provide only a relative, analog
measure of transcript abundance, sequencing-bagedazhes such as RNA-Seq have the advantage of
removing hybridization bias among genes (1, 2)@ffet the promise of true digital quantification.

The interpretation of conventional RNA-Seq is coegikd by sequence-dependent bias and
amplification noise from reverse transcription, @eéa ligation, library amplification by PCR, solphase
clonal amplification, and sequencing (3-5). Namio§t technology mitigates these complications by
eliminating enzymatic reactions and hybridizingatetoded probes directly to RNA for single molecule
detection (6), though it requires many specifiches Other methods reduce bias in RNA-Seq by
eliminating PCR and directly sequencing single males of RNA (7) or sequencing single molecules (8)
or clonal populations (9) of cDNA. However, libyaamplification is desirable for sequencing small
samples or single cells (10).

Conventional library amplification is based on P@Rt the exponential amplification afforded
by PCR introduces noise, especially at low copy lpens (11). Digital PCR was introduced to
circumvent this problem by distributing DNA moleeslinto many containers, each receiving zero or one
molecules, which are amplified and detected by RCR. This technique has been successfully applied
to RNA counting (13). However, it requires specificimers for each gene, which hinders high-
throughput measurements.

Here we report a system-wide method for bias anseneduction in RNA-Seq that allows the
use of PCR to amplify a cDNA library prior to sequing, providing accurate digital quantificationtbé
transcriptome. In our approach, each cDNA mole@ilattached to a unique barcode sequence from a
large pool of barcodes prior to amplification (Fig\) (14). Deep sequencing then allows quantification
of the number of cDNA molecules in the original gdenby counting the number of unique barcode
sequences associated with a given cDNA sequendtis cdncept has been applied recently for studying
protein-RNA interactions (15), to improve the séwmgy of DNA mutation detection (16, 17) and
accuracy of DNA copy number measurements for inldizi genes by threshold detection (18), and to
perform karyotyping and mRNA profiling (19). Howey barcode identification in these studies was not
immune to errors incurred during library prepanatiamplification, and sequencing, which can convert
one barcode into another. Hence, a substantiglidraof reads contained misidentified barcodes (16
19), which in some cases were discarded using é&ficial threshold (17-19). To avoid this
complication, we designed optimized barcodes that e ligated and amplified with minimal bias and

distinguished from one another despite the accuionlaf PCR mutations and sequencing errors.

RESULTS



Barcoding Srategy for Digital RNA-Seq. Fig. 1A depicts the general concept of digital counting by
random labeling of all target nucleic acid molesule a sample with unique barcode sequences. To
achieve unique barcoding of as many target segsemsepossible, the set of barcode sequences
introduced to the sample must be 1) much largen tha copy number of the most abundant target
sequence and 2) sampled randomly by the targeteregs. If these two criteria are satisfied, then
digital quantification of the target molecules st method is limited only by sequencing depth and
accuracy. Unlike conventional sequencing-basedoaghes to nucleic acid quantification, the digital
counting technique is no longer limited by intrmsimplification noise and bias in downstream sample
preparation and sequencing (Fig)1

Implementation of the scheme in FigA Xor digital RNA-Seq requires several critical
considerations. As noted above, if the barcode esezps are random, then a sequencing error at one
position in a barcode will cause that barcode tonsdentified. This error-induced interconversigiti
occur even if the barcode sequences are non-raf®mnunless the barcodes are carefully designed so
that multiple substitution errors and indels do oloscure their identities (20). Because DNA seaond
structure can reduce amplification efficiency, bacodes should not have significant sequence ayverl
or complementarity with each other, the adapter jrither sequences used in library preparation and
sequencing, or the transcriptome-of-interest. llgethe barcode set will not contain sequence faoti
that are known to be problematic for sequencingnisigies such as long homopolymers and regions with
high or low GC-content.

We used a computer program to generate a set obdwt®de sequences 20 base-pairs in length
(Table S) that satisfies the above criteria (Materials anethdds andl Materials and Methods). The
barcode sequences can sustain up to four sulbmtitatrors and remain unambiguously identifiable. |
addition, a barcode that incurs up to nine suligiituerrors or the combination of one indel andefiv
substitution errors will not take on the sequerfcenomther barcode.

Instead of using a single barcode sequence toifigeaich target molecule in our sample (15-19),
we attached a barcode sequence to both ends ofargehmolecule (Fig.B, S Materials and Methods).
If both ends of a target sequence sample all ofbdreodes randomly, the target sequence will have
access to 145x145 = 21,025 unique labels. Thebtvoode sequences along with the target molecule
sequence were then read out by paired-end seqgefiin 1B). This paired-end strategy dramatically
reduces the number of barcodes that must be desmmt synthesized, is compatible with conventional
paired-end library protocols, and provides longgersequence information which improves mapping
accuracy (21, 22). In addition, attaching barcotte®oth ends increases the overall randomness of

barcode sampling because the two ends of a targlecote are unlikely to have a similar degree afbi



We tested and characterized this method on a squanftified DNA spike-in sequences and a cDNA

library derived from théranscriptome oE. coli.

Quantification of Spike-In Sequences and Barcode Sampling Bias. To calibrate our digital RNA-Seq
system,we measured the concentrations of five synthetiARIdike-in sequences using the Fluidigm
digital PCR platform and used them as internalddasts. The spike-in samples were barcoded, added t
the barcoded. coli cDNA library, and quantified using the sequendiaged digital counting strategy
described above. FigAZhows that the number of digital counts (i.e. uaigarcodes) observed in deep
sequencing is well-correlated with the digital PGHibration of the spike-in sequences.

To evaluate the difference between using randorooldar sequences and our optimized barcode
sequences, we conducted two experiments. In operiexent, we labeled the spike-in molecules with
random barcode sequenced Materials and Methods), and in the second experiment, we used our
optimized, pre-determined barcode set. We constluthe histograms of the number of reads for all
barcodes observed from the most abundant spikegipesice (Fig. B). When using random barcodes
(red histogram in Fig.RandS Materials and Methods), the left-most bin exhibits a large peak because
substantial fraction of barcodes are infrequerglydrdue to sequencing errors. This causes bartmdes
interconvert, generating quantification artifactsieth were also evident in previous reports (16-19).
stark contrast, the left-most bin when using optadi barcodes (green histogram in Fi) Bas no such
peak because our optimized barcode sequences misidentification due to sequencing errors. The
effect of sequencing error on both random and dpéichbarcode counting is clearly shown by simufatio
(Fig. S1,9 Materials and Methods).

We note that the green histogram in Fi§. i& the distribution of the number of reads for the
5,311 uniquely barcoded molecules from a particaf@ke-in @ Materials and Methods). Assuming
each barcoded spike-in molecule is identical, tteeig histogram in Fig.Ris essentially the probability
distribution of the number of reads for a singlelenale, which spans three orders-of-magnitude. s Thi
broad distribution arises primarily from intrinsRCR amplification nois€ll) in sample preparation.
Given this broad single molecule distribution, imwv copy molecules in the original sample, countimg
total number of reads (conventional RNA-Seq) wdugdcatastrophic. On the other hand, this problem
can be circumvented if one counts the number dérdifit barcodes (integrated area of the histogram)
using our digital RNA-Seq approach, yielding acteirguantification with single copy resolution. The
two counting schemes give same results only whenctipy number in the original sample is high,
assuming there is no sequence-dependent bias.

Random sampling of the barcode sequences by esagbt tequence is essential for accurate
digital counting. Fig. € shows that the distribution of observed molecubeints is in excellent



agreement with Poisson statistics. Thereforeithespike-in sequences sample the 21,025 barcdde pa

without bias.

Digital Quantification of the E. coli Transcriptome. We obtained 26-32 million reads from our
barcoded cDNA libraries that uniquely mapped toEheoli genome (Materials and Methods arable
S2 in two replicate experiments. FigA3hows the number of conventional and digital ceohique
barcodes) as a function of nucleotide positiorttierfumA transcription unit (TU). Not surprisingthe
read density is considerably less uniform acrosstt than the number of digital counts, presumaiky
to intrinsic noise and bias in fragment amplifioati

It is crucial for transcripts across tBecoli transcriptome to sample all barcodes evenly. 3Bg.
shows this distribution, which is close to Poiskom is somewhat overdispersed. Such biased sagnplin
reduces the effective number of barcode sequengeavidilable. However, in ol. coli transcriptome
sample, the copy number of the most abundant cDal#ges from 10-40 copies for both counting
methods. Based on Poisson statistics, even fomib& abundant cDNA fragments in our sample, the
required Ny is ~100-400 for 95% unique labeling of all molexul(18). Because there are 21,025
barcode pairs available, on average the degreendbmness observed in Fid & sufficient.

The conventional method counts the number of ampsica quantity that is subject to bias and
intrinsic amplification noise (11), rather than tmamber of molecules in the original sample.
Conversely, in our digital counting scheme, unidpaecode sequences distinguish each molecule in the
sample, and so the effects of intrinsic noise amimized. Fig. £ shows how drastically different
digital counting can be from conventional countatgow copy numbers, implying that digital counting
of unique barcodes is advantageous, particularygé@mntifying low copy fragments. We note that the
correlation is stronger for high copy fragments trelsame phenomenon is also observed for whole TUs
and genesHig. S2.

To demonstrate the superior accuracy of digitainting, we examined the uniformity of our
abundance measurements within individual trangripBecause individual TUs were, by-and-large,
intact RNA molecules following RNA synthesis, theNA fragments that map to one region of a given
TU should have the same abundance as fragmentsndgato a different region of the same TU. We
histogrammed the ratio between the variation inveational countingvc and variation in digital
countingvp for TUs in different abundance ranges (FiD).3 A variation ratio ofvc/vp = 1 indicates that
both conventional and digital counting give sinlifarniform abundances along the length of a TU.r Fo
a TU wherevc/vp exceeds one, conventional counting measures abhoadiess consistently along the TU
than digital counting. The mean valuesvefvp in the two replicates are 1.4 (s=1.5, where sampe

standard deviation) and 1.2 (s=0.5) for the comepkett of analyzed TUs, indicating that conventional



counting is less consistent than digital countingpss an average TU. Furthermore, the mean vdlue o
vc/Vp increases with decreasing copy number and itdldision becomes broader (FigDB For TUs in

the lowest abundance regime, the mean valueg/of are 1.9 (s=2.4) and 1.3 (s=0.9) for the two
replicates. We conclude that, on average, digdahting outperforms conventional counting in teofs
accuracy, and its performance advantage is moebpraced for low abundance TUs.

While Fig. 3 demonstrates that digital countindeiss noisy and more accurate than conventional
counting, Fig. 4 shows that digital counting isoatsore reproducible. We demonstrate this on thel le
of a single TU in Fig. A, which shows the ratio of counts between the teplicates for both
conventional and digital counting along the fumaAnscript. This ratio is consistently close to dore
digital counting, but fluctuates over three ordefgnagnitude for conventional counting. We anatiyze
the global reproducibility of the whole transcripte for quantification of TUs and genes for both
conventional and digital counting in FigB4nd Fig. €, respectively. In both cases, the correlation
between replicates is noticeably better for digitalinting than conventional counting, particulaidy

low copy transcripts.

Discussion

Unlike previously reported methods of eliminatingidband noise from RNA-Seq (7-9), our strategy
allows amplification by PCR and uses standard coioialeprotocols for sample preparation. However,

the implementation described above also leavesidenable room for improvement. For example, one
could ligate barcoded adapters directly to RNA (28), reducing the bias that occurs during reverse
transcription. Alternatively, a recently describpabtocol for processing mature mRNA from single

mammalian cells could be modified to include basmbgrimers for reverse transcription and second
strand synthesis prior to amplificati(i0), obviating the need for ligation.

One disadvantage of our technique is that it meguihigher sequencing coverage than
conventional RNA-Seq. This is because both thestiaptome and the barcode set must be evenly
sampled for accurate counting. However, the cestipse of deep sequencing continues to decrease
rapidly. In our experiment, the mean number ofiseper fragment was ~400. However, the spike-in
sequencing reads can be randomly downsampled d(QSoMaterials and Methods) without perturbing
the correlation between abundance measured byadR@R and digital barcode countirigd. S3. This
implies that significantly lower coverage will sigi in many cases.

For applications where many cycles of PCR areiredqufor sensitive detection, bias and noise
reduction are crucial for accurate quantificatioAlthough we demonstrated our technique onEhedli
transcriptome, we note that the maximum copy nunfibepolyadenylated mRNA in a single mouse

blastomere was found to be ~2,400). With 155 optimized barcode sequences (10entloan were



used in this study), one could uniquely label neaslery identical molecule in this system (with 95%
unique labeling for even the most abundant trapgcriHence, we expect this technique will be riyadi
applicable to eukaryotic systems without substhntiedification. In addition, we analyze the
performance of digital and conventional countingisimulation of differential expression analysikey
application of RNA-SegHFig. S4. Our simulation, which accounts for experimegtaheasured copy
number, barcode sampling bias, and amplificatioisenalistributions, shows that digital counting of
unique barcodes outperforms conventional countingifferential expression analysi§ (Materials and
Methods). Although it is always more difficult to rejedhe null hypothesis for low abundance
transcripts, we expect our digital counting scheéméye nonetheless more accurate than conventional
counting for differential expression analysis at lcopy numbers.

In addition to single cell applications, we expéuis technique to be particularly useful for
nascent transcript sequencing by run-on (25) or RiKmerase capture (26), ribosome profiling (27),
and profiing of mIRNA and other regulatory RNAs ialh typically exist at low copy numbers.
Significant recent progress has been made in nmmigni bias induced by sample barcodes for
multiplexed miRNA-Seq (28), and we expect that thishnique could be applied to the introduction of
barcodes for digital counting in any RNA-Seq expemt. In addition, one could use our approach to
improve DNA sequencing experiments such as chramatmunoprecipitation sequencing (ChlP-Seq)
(29) which is procedurally related to RNA-Seq ardased to similar sources of bias and noise (30).

RNA-Seq holds substantial promise for basic retear biomedicine and may ultimately impact
clinical diagnostics (21, 31, 32). However, chades ranging from bias in sample preparation tdditn
sensitivity and remain significant. Digital RNA<gelong with continued improvements to sequencing

technology, will lead to new applications and allBNA-Seq to reach its full potential.

Materials and M ethods

Generation and Optimization of Barcodes. We generated 2,358 random 20-base barcode carglidate
using a computer such that even if a barcode adet@tlinine mutations, it would not take the segaenc
of any other generated barcode sequences (unlikeatidom barcode case S| Material and Methods,
(Dataset S3)). Barcode candidates containing holyimers longer than four bases or GC-content less
than 40% or greater than 60% were discarded. Barcandidates were also discarded if each exceeded
a certain degree of complementarity or sequencatitge(total matches and maximum consecutive
matches) with (1) the lllumina paired-end sequempgrimers (33), (2) the lllumina PCR primers PE 1.0
and 2.0, (3) the 3’ end of the lllumina PCR primBE 1.0 and 2.0, (4) the whdte coli genome [K-12
MG1655 strain (U00096.2)], and (5) all other getentebarcode candidateS (Materials and Methods).



Any barcode candidate for which an indel mutatiauld place it within five point mutations of anothe
barcode candidate was also discarded. The finallptpn consisted of 150 barcodes, of which 145ewer
randomly chosen and usethple S).

E. coli RNA Preparation and cDNA Generation. The cDNA library ofE. coli [K-12 MG1655 strain
(U00096.2)] was generated by a standard met8okléterials and Methods).

Sample-Adapter Ligation, Sequencing Sample Preparation, and Sequencing. The cDNA library was
ligated to the barcode adapter mixture, and theesszing sample was prepared by the standard Illmin
protocol with some modifications along with an i standardq Materials and Methods, Dataset $4).

E. cali Transcriptome Analysis. From the raw sequencing data, we isolated readshwtidntained
barcode sequences that corresponded to our orilighadf 145 barcodes in both forward and reverse
reads for each sequencing cluster that had at omestmismatch. We then aligned the first 28 bagés (
bases for the second sequencing run) of the tafgetguence of both the forward and reverse reads of
each cluster to thE. coli genome and kept the sequences that uniquely faliger than three mismatches
and where the two reads did not map to the sanse sgrantisense strand of the genome. The remgainin
sequences were mapped to transcription units (3d)sarted by starting and ending position as well a
forward and reverse barcodes (unique tag). Mapgpedence fragments with a length of at least 1,000
bases were discarded. All sequences within thee daamscription unit that had the same unique tag
were analyzed further. We determined that mora thae sequence with the same unique tag were
identical if the distance between their center fpmss was less than four base-pairs and if theediffce

in length was less than 9 base-paltig)( S5andFig. S§. Thus, the read counts for sequences deemed
identical were summed and the sequence with maad o®unts was deemed as the actual correct
sequence. Then for each unique sequence, we dotlrgeumber of unique barcode tags that appeared
to determine the copy number of each sequence. g@iheme wide expression profile by digital counting

and conventional counting are visualized by IntegtdgGenome BrowseB(Materials and Methods).
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Figure Legends

Fig. 1. Our scheme of digital RNA-Sedd)(General principle of digital RNA-Seq. Assume thigioal
sample contains two cDNA sequences, one with tloggies and another with two copies. An
overwhelming number of unique barcode sequencesadded to the sample in excess, and five are
randomly ligated to the cDNA molecules. Ideallgclke cDNA molecule in the sample receives a unigue
barcode sequence. After removing the excess besctioe barcoded cDNA molecules are amplified by
PCR. Because of intrinsic noise and sequence-depérbias, the barcoded cDNA molecules are
amplified unevenly. Consequently, after the angul&c are sequenced, it appears that there are three
copies of cDNAL for every four copies of cDNA2 bdsen the relative number of reads for each
sequence. However, the ratio in the original semy@s 3:2, which is accurately reflected in thatie¢
number of unique barcodes associated with each cBétfdence.B) In our implementation ofA), we
found it advantageous to randomly ligate both esfdsach phosphorylated cDNA fragment to a barcoded
phosphorylated lllumina Y-shaped adapter. Noté tha single T and A overhangs present on the
barcodes and cDNA, respectively, are to enhancidig efficiency. After this step, the sample is
amplified by PCR and prepared for sequencing usiiegstandard lllumina library protocol. For each
amplicon, both barcode sequences and both strdrtde oDNA sequence are read using paired-end deep

sequencing.

Fig. 2. Spike-in sequence quantificatiom) (Correlation between the number of spike-in mdiesdor

five different spike-in sequences as measured ¢itadlPCR and digital counting of unique barcodése
theoretical curve, which saturates due to thediniimber of barcode pairs (21,025), is calculateskt

on the Poisson distribution (18).B)(Histograms of the number of reads correspondingath observed
barcode attached to the most abundant spike-inesequfor two experiments. The red histogram
corresponds to a spike-in sequence labeled witbormanbarcode sequences, and the green histogram
corresponds to a spike-in sequence labeled witloptimized barcodes. Note the leftmost bin in ribet
histogram is >10 times larger than that of the greistogram and contains a large number of unique
barcodes with a low number of reads. This is chuse various sequencing and PCR amplification
errors which generate new artifactual unique bagsatbt present in the original sample and resudt in
large number of falsely identified unique barco(l@sMaterials and Methods). The inset shows the red
histogram in greater detail. C) Histogram of the number of times a barcode pais wbserved with all
five spike-in sequences (i.e. the number of spikeolecules attached to a given barcode pair). absx
the spike-in sequences sample the barcode paidemdn with very little bias, the histogram folloves

Poisson distribution.
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Fig. 3. Digital quantification of thee. coli transcriptome(A) Conventional and digital counting results
for the fumA transcription unit (TU) as a functioh genome position. The conventional counts were
calculated by using a conventional calibration euwhich allows regression of the number of reads
against the number of input molecules for all spikenolecules (Fig. &). The digital counts were
obtained by counting the number of unique barcadssciated with each fragment. The red dots are th
ratios of these two numbers for each basB) Histograms of the number of times a barcode wag
observed with thee. coli cDNA sequences (i.e. the number of cDNA molecattached to a given
barcode pair) in the two replicates. Barcode samgpl more biased on average tor coli cDNA
fragments, but is still in reasonably good agredgmeti Poisson statistics. Cf Correlation between the
number of reads (conventional counting) and thebmmof molecules obtained from digital counting of
unique barcodes for every mapped fragment in the teplicates. For low copy molecules, the
conventional counts are distributed over three mrd&magnitude. This is because the conventional
method counts amplicons which are subject to igicinoise (11), rather than directly counting maoles

in the original samples like the digital countingtimod. We note that higher copy fragments are less
affected by intrinsic noise (11) as the number ofaoules sequenced is greater; this effectivelyval
averaging over the read counts of many moleculesmnventional RNA-Seq, decreasing the variance of
counting in the process. D) Uniformity of conventional vs. digital countindpag the length of each TU
as a function of TU abundance across the wholmli transcriptome for both replicates. We calculated
the variationvp = $/lp (Wherep and g are the mean and sample standard deviation oflitfital
counts among 99-base bins in a TU, respectivelsda@ated with digital counting and the variatian

= s/Uc associated with conventional counting within eathfor which at least three bins contained on
average at least one read. We then created ttogtam of the ratio between conventional and digita
counting variation\{c/vp) for TUs in different abundance ranges for eaglticate. TU abundance is the

sum of all digital counts for each fragment in Thé

Fig. 4. Reproducibility of digital and conventional quification of theE. coli transcriptome. A) Ratio

of counts between two replicate sequencing runmalized by total uniquely mapped reads for digital
counting plotted along with the ratio of countsvitn the two replicates for conventional countifithe
fumA TU. As expected, the ratio fluctuates ovdsraader range for conventional counting than digita
counting along the length of the TUB)( Correlation between replicate sequencing rungligital and
conventional counting of TUs. DPKM represents timquely mapped digital counts per kilobase per
million total uniquely mapped molecules. RPKM mesents the uniquely mapped reads per kilobase per
million total uniquely mapped reads.C)( Correlation between replicate sequencing runglifgital and
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conventional counting of genes. Taken togetti®ratd C) demonstrate that digital counting is globally
more reproducible than conventional counting.

FOOTNOTES
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