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The Ramsey Discounting Formula for a Hidden-State

Stochastic Growth Process

REVISED for EARE
July 31, 2012

Abstract

The long term discount rate is critically dependent upon projections of future

growth rates that are fuzzier in proportion to the remoteness of the time horizon.

This paper models such increasing fuzziness as an evolving hidden-state stochastic

process. The underlying trend growth rate is an unobservable random walk hidden by

noisy transitory shocks and recoverable only as a probability distribution via Bayesian

updating. A simple expression is derived for the time-declining Ramsey discount rate.

The components of this hidden-state Ramsey discounting formula are then analyzed,

followed by a few remarks about possible implications and applications.

1 Introduction to Long Term Discounting

The concept of discounting is central to economics, since it allows e¤ects occurring at di¤erent

future times to be compared by converting each future dollar into the common currency of

equivalent present dollars. Because of this centrality, the choice of an appropriate discount

rate is one of the most critical issues in economics. It represents an especially acute dilemma

for projects involving long time horizons, because in such situations the results of cost-bene�t

analysis (CBA) can depend enormously on the choice of a discount rate.

The problem of an unsure discount rate has long bedeviled CBA, but it has acquired

renewed relevance lately because economists are increasingly being asked to analyze en-

vironmental projects or activities whose e¤ects will be felt very far out into the future.

Examples include nuclear waste management, loss of biodiversity, groundwater alterations,

minerals depletion, and many others. The most prominent example by far is the economics

of climate change, which will be used throughout this paper as the prototype application.
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The e¤ects of global warming and climate change will be spread out over what might be

called the �distant future��centuries and even millennia from now. The logic of compound

interest forces us to say that what one might conceptualize as monumental events do not

much matter when they occur in the distant future. Perhaps yet more disconcerting, when

exponential discounting is extended over very long time periods there is a truly extraordinary

dependence of CBA on the choice of a discount rate. Seemingly insigni�cant di¤erences in

discount rates can make an enormous di¤erence in the present discounted value of distant-

future payo¤s. In many long-run situations, including climate change, it may not be too

much of an exaggeration to say that almost any answer to a CBA question can be defended

by one particular choice or another of a discount rate.

Answers to questions thrown up by climate-change CBA therefore hinge critically on the

core issue of how to discount the distant future. There is a high degree of uncertainty

about what should be taken as the appropriate real rate of return on investments for the

long run, accompanied by much controversy about the implications for long-run discount-

ing. For speci�city, the investigation of this paper is focused sharply on CBA of small

investments that only incrementally impact distant-future events. However, many climate

change investments may themselves be big and involve large impacts. Yet even after some

of these big investments have been made, the issue of choosing the appropriate long-term

rate of return for additional marginal investments remains important and is emblematic of

a whole series of thorny issues concerning how to conceptualize and how to evaluate actions

spanning across many generations. The discount rate represents the current price of future

bene�ts or costs, and as such it is a convenient shorthand vehicle for studying the general

nature of investment tradeo¤s over time.

The famous Ramsey equation relates the discount rate to the underlying growth rate

of consumption. There is no harm in accepting the implicit causality of this route by

conceptualizing the growth rate of consumption as being the more primitive entity, which

then determines the discount rate via the Ramsey equation. Such an approach has the

advantage of rigorously laying bare the exact structure of uncertainty and its resolution,

which undergirds time-varying discount rates. This route has already been taken by many

researchers, and is the route taken here. For the convenience of having a uni�ed framework,

I henceforth pretend that all research on time-varying discount rates was done as if it came

from within this Ramsey framework where growth rates determine discount rates.

Behind the uncertainty about how to discount the distant future, therefore, lie uncertain-

ties about what will be the growth rate of the global standard of living leading to this distant

future. Many kinds of uncertainty are involved. One important uncertainty concerns long

term prospects for technological progress and the degree to which this future technological
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progress will be able to meet, overcome, or fall behind the unknown unfolding challenges

of resource, environmental, and historical constraints. Despite decades of research into

the subject of economic growth, including the development of so-called endogenous growth

theory, we are nowhere near being able to predict worldwide growth rates of the standard of

living much beyond anything more fundamental than rough guesstimates of what the future

portends. As we all know, individual views of long term future growth prospects can range

from ultra-optimistic to ultra-pessimistic.

Thus, I think it is important to begin by recognizing that there is no deep reason of

principle that allows us to extrapolate past growth rates into the distant future. The in-

dustrial revolution itself began some two centuries ago, and only slowly thereafter permeated

throughout the world. Merely lea�ng through the pages of Angus Maddison�s monumental

work The World Economy: A Millennial Perspective1 should convince a reader that the

world-wide growth process is, in the book�s summing-up, �uneven in space and time�and

�in no way linear.� It is di¢ cult enough to predict worldwide economic growth in the

next decade or two. Making growth projections over the next century or two seems almost

unbearably fuzzy. Yet dealing with this kind of fuzzy distant uncertainty is exactly what is

required to infer long-term future discount rates.

A line of research over the past few decades has shown that future growth rates of

consumption which are uncertain but persistent can lead to a schedule of discount rates that

decline over time. This line of research on the mechanics and consequences of time-declining

discount rates due to various forms of growth-rate persistence is su¢ ciently comprehensively

summarized in Christian Gollier�s new book2 that I do not feel the necessity to delve into

details of the underlying models here, except to note one point.

For most of the underlying models in this literature, the variance of the average future

growth rate over a given future time horizon declines (towards zero) as the horizon lengthens,

due to the law of large numbers. In other words, the prediction interval for the average

future growth rate typically narrows rather than widens with the prediction horizon. This

seems to me like a counter-intuitive speci�cation. The more distant is the time horizon,

the more uncertain should we be now about the average future growth rate. It seems only

natural that predicting the average growth rate over the next two centuries is fuzzier and

more speculative than predicting the average growth rate over the next two decades. In

this paper I examine the discounting consequences of a speci�cation where the variability of

the predicted average future growth rate widens with the time horizon.

1Maddison (2001). See especially Table 8b on page 263.
2Pricing the Planet�s Future: The Economics of Discounting in an Uncertain World. Princeton Univer-

sity Press (forthcoming October 2012).
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It seems to me natural, at least on a �rst pass, to model such kind of increasingly uncertain

growth scenario as an evolving hidden-state stochastic process in which the underlying trend

growth rate is an unobservable random walk. The underlying random-walking trend growth

rate is hidden by noisy transitory growth shocks and can only be recovered as a probability

distribution via Bayesian updating in a manner �rst emphasized by Muth and Kalman.

Such an approach highlights our critical inability to separate out what is permanent and

predictable about our present growth experience from that which is temporary and transient.

In this paper I propose to apply the simplest standard model of a hidden-state stochastic

process to the topic of determining the long term discount rate.

My intent, then, is to merge the Muth-Kalman updated-prediction apparatus with the

Ramsey discounting apparatus. I believe that such a hidden-state formulation raises impor-

tant questions about modeling future growth rates and sheds useful new light on the sources

of a time-declining future discount rate. One source of a time-declining future discount rate

is that we are uncertain about the present underlying trend growth rate, which e¤ect would

remain to be played out over time even if the future trend growth rate were to remain still

and do no further meandering. The other source of a declining discount rate is that we are

uncertain about the future trend growth rate of a random walk, which e¤ect would remain

even if we knew exactly the state of the present underlying trend growth rate.

The Ramsey formula for deriving a discount rate schedule from a single representative

agent, who stands in for an enormously heterogeneous real world having widely dispersed

growth rates, degrees of risk aversion, and rates of pure time preference, all of which are

then projected into a hazy distant future, is at the outer limits of abstract modeling. We

wouldn�t be taking this route if the issues were not so important. For all of its oversim-

pli�cations, I believe that the Ramsey approach yields fundamental insights �and that the

novel combination of the Ramsey equation with a hidden-state model of uncertain growth

rates is especially fruitful in unpacking a few key relationships hitherto unexplored.

I thus view the hidden-state Ramsey approach primarily as a conceptual device for under-

standing an important series of interconnected issues concerning discounting in the presence

of a hazy future. But there is no use pretending that such a super-aggregated super-abstract

model has direct operational consequences obtainable by merely plugging in numbers and

directly obtaining quantitative outcomes. In this paper I emphasize overall simplicity and

understandability by leaning heavily on speci�cations having great analytical tractability.

The formulation here yields a remarkably simple expression for a time-declining discount

rate, which, I believe, gives some fundamental insights into the nature of long-term discount-

ing that would otherwise not be available. The basic components of this simple discounting

formula will be analyzed in terms of underlying parameters, followed by a few speculative
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remarks about possible implications and applications. The purpose of this paper is purely

to outline the role of a previously neglected hidden-state aspect of the thorny problem of

distant future discounting, rather than to propose an actual usable schedule of long term

discount rates.

A word of warning is in order about any model attempting to derive discount rate sched-

ules for the distant future (including the model of this paper). The models we use in such

exercises are all oversimpli�ed approximations. We have relatively more con�dence in the

approximations when conditions being investigated are not too di¤erent from the current

familiar situation. As we move further into the future, however, we have relatively less

con�dence in the approximations because we are attempting to extrapolate the local into

the global. Typically, some implication or another of the model is not credible in the limit

as future time approaches in�nity. For example, as noted above, most models used to de-

rive future discount rates in the existing literature have the unbelievable feature that the

variance of the average future growth rate approaches zero in the limit, so that by the law

of large numbers we e¤ectively know with certainty the long term growth rate. The model

of this paper does not have this particular unbelievable feature, but instead has the di¤erent

unbelievable feature that discount rates decline inde�nitely, approaching minus in�nity in

the limit. The underlying problem with all such models of discount-rate formation is that

the oversimpli�ed local approximations are increasingly breaking down as the time horizon

lengthens. I do not think there is any general cure for this problem except to be careful

when trying to use such oversimpli�ed models for much more than giving general insights

into the process of long term discounting.

2 Growth Rates as Random Walks

This section attempts to succinctly provide the backdrop analytical framework that will be

used to develop the hidden-state stochastic growth process used throughout the rest of the

paper.

Time is broken up into discrete periods represented by the integer-valued variable t. The

present corresponds to time zero, while future times correspond to integer values t > 0 and

past times correspond to integer values t < 0. Consumption in period t is Ct. The growth

rate of consumption in period t is

lnCt � lnCt�1 = Yt: (1)
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In turn, Yt is decomposed into the expression

Yt = Xt + zt (2)

where Xt is the permanent component of the growth rate at time t, while zt is a transitory

shock to the growth rate at time t. The permanent growth-rate component Xt is a random

walk satisfying

Xt = Xt�1 + wt: (3)

The random variables fztg and fwtg are mutually independent iid Gaussian processes
with distributions

zt � N (0; Vy) (4)

and

wt � N (0; Vx) (5)

The stochastic process (2)-(5) constitutes a standard model well represented in the lit-

erature. (The notation Vy is used as a mnemonic in (4) because the variance of zt impacts

Y via (2); likewise the notation Vx is used in (5) because the variance of wt impacts X via

(3).)

Let t > 0 be some future time. De�ne new random variables

Zt �
tX
s=1

zs (6)

and

Wt �
tX

�=1

�X
s=1

ws (7)

Carefully iterating out and summing the equations (1), (2), (3) yields, after applying (6),

(7), the basic result

lnCt � lnC0 = Zt + tX0 +Wt: (8)

From equations (4) and (6), it is readily apparent that

Zt � N (0; t Vy): (9)

As for Wt, reversing the order of summation in (7) gives

Wt =

tX
s=1

(t� s+ 1)ws; (10)
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whose variance is Vx
Pt

s=1(t � s + 1)2, which in continuous time becomes the much neater
formula Vx

R t
0
(t�s)2 ds = Vx t3=3. If we had chosen to express the di¤erence equation (3) as a

continuous-time stochastic di¤usion process, we would then have obtained the neater formula

directly. Leaving aside the arbitrary discreteness of the period length, we have shown that

the random walk (3) exerts a stochastic in�uence on the random variable lnCt� lnC0 whose
variance is cubic in time:

Wt � N (0; t3Vx =3): (11)

Were X0 observed directly, formula (8) would be su¢ cient to push on further with the

analysis in the reduced form

lnCt � lnC0 � N (tX0; tVy + t3Vx =3): (12)

However, when the permanent component of the growth rate is not directly observable,

then X0 becomes a random variable that must itself be inferred from the the noisy past

growth rates that have been observed. The next section describes brie�y this process of

hidden-state inference and updating.

3 Hidden-State Growth Rates

This section develops succinctly the simplest standard model of a Muth-Kalman hidden-state

stochastic process. This baby model is applied to growth rates that will subsequently be

plugged into the Ramsey formula for determining discount rates.

The growth of consumption during period t is given by equation (1), which is the only

part of the stochastic system that is directly observable (after its realization). For ana-

lytical convenience, I assume that in any period there is an in�nite past record of previous

observations.

When period t opens, with Yt�1 having just been observed at the very end of period t�1,
suppose that

Xt�1 � N (�t�1; Vxy) (13)

for some mean �t�1 and variance Vxy yet to be determined. (Later it will become clear why

Vxy carries the mnemonic subscript xy.) From the symmetry of the situation with an in�nite

number of observations of past growth rates, it is reasonable to postulate (and can be proved

rigorously) that Vxy is a constant independent of t.

At the very beginning of period t (immediately after Yt�1 has been observed), the random

walk described by (3) occurs and Xt�1 ! Xt. The realization of the unobserved random
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variable wt adds variance Vx to the variance Vxy in (13), so that the variance of the estimate

of Xt increases to Vxy+Vx throughout period t. At the very end of period t, the observation

Yt is made, which adds precision 1=Vy and thereby lowers the variance of Xt back down to

Vxy according to the equation
1

Vxy + Vx
+
1

Vy
=

1

Vxy
: (14)

The corresponding Bayesian updating formula for �t is

�t =

1
Vxy+Vx

�t�1 +
1
Vy
Yt

1
Vxy+Vx

+ 1
Vy

: (15)

Equations (15) and (14) re�ect the fact that Bayesian updating of normal distributions

is expressed in terms of additive weights of the precision, which equals one over the variance.

Solving the quadratic equation (14) for Vxy, one obtains the formula

Vxy =

p
4VxVy + V 2x � Vx

2
: (16)

Notice in (16) that Vxy = 0 if either Vy = 0 or if Vx = 0. When Vy is much larger than

Vx, then a good approximation for the formula (16) is

Vxy � �x�y: (17)

Equation (15) can be solved recursively to yield (for time zero)

�0 = (1� �)
1X
s=0

�sY�s; (18)

where

� =
Vy

Vxy + Vx + Vy
: (19)

To summarize, the mean of the normally distributed random variable tX0 is t �0, while

its variance is t2 Vxy, so that

tX0 � N (t �0; t2 Vxy): (20)

Decomposing equation (8) (or (12)) into the independent normal probability distributions
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(9), (11), (20) gives the basic result that

lnCt � lnC0 � N
�
�0 t ; Vy t+ Vxyt

2 +
Vx
3
t3
�
: (21)

It is much easier to think in terms of average growth rates than changes in the log of

consumption as given by formula (21). If we de�ne the average future growth rate over the

time horizon [0; h] to be the random variable

Gh =
lnCh � lnC0

h
; (22)

then from (21) it follows that

Gh � N
�
�0;

Vy
h
+ Vxy +

Vx
3
h

�
: (23)

From formula (23) the variance of the average growth rate eventually increases with the

length of the future horizon h (for h >
p
3Vy=Vx). In other words, the prediction interval

for the average growth rate widens with the prediction horizon. I would view this as an

intuitively desirable property because, once the law of large numbers has eliminated station-

ary background noise, I think that future average growth rates should become increasingly

uncertain as the time horizon is more remote. However, the other side of this same coin is

that the probability of large negative (or large positive) growth rates becomes increasingly

likely over a longer time horizon Both features are outcomes of the random walk speci�-

cation (2). It is di¢ cult to model the one feature without the other (while preserving a

consistently symmetric treatment of time), so there may be a deep issue of model tradeo¤s

involved here. Perhaps the best interpretation is to view (23) as an acceptable approxima-

tion for large h (centuries?) but not for too large h (millennia?). Perhaps an asymmetric

treatment of time is warranted for very large h. Perhaps some degree of mean reversion

needs to be introduced, although this seems to make learning about hidden states an an-

alytically intractable problem. Perhaps stochastic processes that rule out negative values

(like expressing all variables in logarithms) would be more appropriate, but again analytical

tractability would have to be sacri�ced. In any event, this paper is devoted to analyzing

the consequences for Ramsey discounting of the simplest standard model of a Muth-Kalman

hidden-state stochastic growth process, to which application we now turn.
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4 Ramsey Hidden-State Discount Rates

Viewed from the present time t = 0, consumption Ct at future time t > 0 is a random

variable. The normative welfare criterion used throughout this paper is the standard formula

for expected present discounted utility of consumption

E

" 1X
t=0

e��t U(Ct)

#
; (24)

where U(C) is the utility function of consumption and � � 0 is the rate of pure time

preference or utility discount rate.

Suppose that someone proposes a marginal �project�that costs some in�nitesimally small

amount � of consumption now (at time t = 0) but will safely deliver some in�nitesimally

small amount � of consumption at time t > 0 in the future, independent of the state of the

world then. Should this project be accepted? This is the prototype question of investment

criteria that we are seeking to answer from within the Ramsey hidden-state framework.

Applying the additively-separable expected present discounted form (24) to this problem,

we should accept the marginal project if and only if

� e��tE[U 0(Ct)] > �U
0(C0): (25)

We can translate the investment criterion (25) into the more familiar language of a

continuously-compounded discount rate as follows. De�ne the relevant discount rate for in-

vestment payo¤s at time t to be the value rt satisfying the equation exp(�rt t) = e��tE[U 0(Ct)]=U 0(C0),
which can be rewritten as

rt = �
1

t
ln

�
e��tE[U 0(Ct)]

U 0(C0)

�
: (26)

Then applying (26) to (25), the project should be approved if and only if

� exp(�rt t) > �: (27)

Adding up linearly from (27), the basic principle of CBA here is that safe marginal

investments should be undertaken if and only if their present discounted bene�ts exceed

their present discounted costs, where the discount rate schedule to be applied to payo¤s at

future time t is given by formula (26).

To get a more interpretable formula than (26), we need to put more structure on the

problem. Pursuing the spirit of utmost simplicity that this paper tries to embrace, without
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further ado I just postulate further that U(C) is of the isoelastic or constant relative risk

aversion (CRRA) form

U(C) =
C1��

1� � ; (28)

where � > 1 is the coe¢ cient of CRRA. Note from (28) that marginal utility here takes the

simple form U 0(C) = C��. The CRRA speci�cation (28) is a familiar standby in applications,

but its assumption is not innocuous. The same comment could apply to other familiar

speci�cations and functional forms being assumed throughout this model. The saving grace

is that one obtains a relatively simple discount-rate formula, which gives some clear basic

insights that hopefully apply more generally.

Applying (28) to (26) enables the latter to be rewritten as

rt = �
1

t

�
ln e��t + lnE

�
(Ct=C0)

���� : (29)

Plug the identity (Ct=C0)�� = exp(�� (lnCt � lnC0)) into (29), thereby obtaining the
expression

rt = ��
1

t
lnE [exp(�� (lnCt � lnC0))] : (30)

Plug the distribution (21) into (30). Make use of the standard formula for the expectation

of a lognormal distribution and rearrange terms to obtain, at last,

rt = �+ � �0 �
�2

2

�
Vy + Vxyt+

Vx
3
t2
�
: (31)

Equation (31) is the Ramsey riskfree discount rate formula for the simplest model of

a hidden-state Muth-Kalman stochastic growth process. The remainder of the paper is

devoted to analyzing this time-dependent Ramsey discount rate schedule.

It is immediately obvious from equation (31) that discount rates eventually turn negative.

As has been remarked upon already in connection with the stochastic behavior of growth

rates, this disturbing feature can be removed by any one of several possible technical changes

in the model, but they all destroy the simplicity of a formula like (31) and replace it by an

analytically intractable equation. The unit root assumption implicit in the random walk

speci�cation is responsible for the extreme limiting situation that rt ! �1 as t ! 1.
Some minimal amount of mean reversion (to a known positive mean) would bound rt from

below, while su¢ ciently strong mean reversion (to a known positive mean) would cause the

probability of negative rt to become vanishingly small. For what it is worth, two econometric

studies using a time series of over 200 years of interest rate observations weakly favor the
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hypothesis of a unit root over the hypothesis of mean reversion.3 Alas, the presence of mean

reversion seems to make learning about the hidden state analytically intractable.

The eventually negative discount rates in formula (31) can be viewed as an artifact

of the possibility of highly negative growth outcomes from the normal distribution in the

speci�cation of the random walk equation (3), along with the assumption of a CRRA utility

function (28). The representative agent in this setup is very averse to large negative growth

rates, which become increasingly likely over time under a random walk. Eventually, the

representative agent here would be willing to pay a positive price to guarantee the safe

delivery of consumption over a long enough time period ahead. Again I point out that this

undesirable feature can be avoided by a variety of ad hoc modi�cations of the model, but at a

cost of sacri�cing analytical tractability. Perhaps the simplest way to evade negative discount

rates is to mechanically avoid considering the very long time periods over which they can

manifest themselves. More basically and less literally, I think that the eventually negative

discount rates in (31) are trying to tell us that, in a world where we are fundamentally unsure

about how distant future growth prospects could evolve, there are potentially strong forces

that might want to make us consider using very low discount rates for discounting distant-

future events. All of this is testimony to the fear-power of being so very unsure about where

the world is headed in the long run. This interpretation is not rigorously satisfying, but I

think it contains a strong element of truth.

5 Analyzing Ramsey Hidden-State Discount Rates

The most intuitive way to understand formula (31) is to build it up piece by piece out of its

constituent components.

When there is no uncertainty (Vy = 0, Vx = 0), then expression (31) reduces to the

famous deterministic Ramsey equation for the discount rate

rt = �+ � �0 : (32)

When there is only the uncertainty of transitory shocks (Vy > 0, Vx = 0), then (31)

reduces to a familiar expression for the Ramsey equation modi�ed for the presence of iid-

normal growth uncertainty

rt = �+ � �0 �
�2

2
Vy : (33)

Formula (33) indicates the well known result that the presence of iid growth shocks uni-

3Newell and Pizer (2003). Groom, Koundouri, Panopoulou, and Pantelidis (2007).
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formly lowers the Ramsey discount rate, because the attractiveness of a risk-free investment

increases when consumption is uncertain, but it does not cause the discount rate to change

over time. For the Ramsey discount rate on a safe investment to exhibit time dependence

of its term structure in an otherwise symmetric setting requires some persistence of growth

uncertainty.

When there is only the uncertainty of the random walking permanent growth-rate com-

ponent (Vy = 0, Vx > 0), then (31) reduces to the expression

rt = �+ � �0 �
�2

6
Vx t

2: (34)

It is perhaps not a surprise that modeling the permanent component of future growth

rates as a random walk causes a declining discount rate. What is perhaps more surprising

is that the decline in the discount rate schedule is quadratic in time. If we think of Vx as

being very small, then this quadratic time e¤ect may take a long time to exert its in�uence.

But once exerted, its in�uence can quickly expand quadratically to become very powerful.

Finally, when there is uncertainty about both the random-walking permanent component

of growth rates and about transitory growth shocks (Vy > 0, Vx > 0), then the full equation

(31) holds. If the quadratic time term �2Vxt2=6 is expressing fear of where we might be going

in the long term, the linear time term �2Vxyt=2 is expressing fear of not knowing where we

might be now. When Vy is much bigger than Vx, then the coe¢ cient Vxy of the linear time

component is much bigger than the coe¢ cient Vx=3 of the quadratic time component. So

the linear time component causes the discount rate to decline more powerfully in the short

run, while the quadratic component dominates in the long run.

In this hidden-state formulation, we are unsure what is the current underlying trend

growth rate X0 because we are unsure about how to read the noisy past record. This e¤ect

would remain even if future random walking suddenly ceased altogether. To isolate sharply

the role of this linear time term �2Vxyt=2 in (31), consider the following arti�cial thought

experiment. Suppose that the full stochastic formulation of this paper describes perfectly

the past behavior of the system, but that in the future all uncertainty will miraculously cease

((2) and (3) will no longer hold) so that e¤ectively Xt (for t > 0) will henceforth remain

frozen at X0. In this thought experiment, equation (31) would become

rt = �+ � �0 �
�2

2
Vxyt: (35)

The �as if� story being told by (35) is the following. A take-it-or-leave-it decision

must be made now, just before time zero (call it time 0�), about whether or not to make a
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marginal investment that costs � now but will yield a bene�t payo¤ � at future time t. Right

now, at time 0�, the constant permanent future value of the growth rate of consumption

is a random variable whose realization is unknown. At time 0+, this constant permanent

growth rate is realized as a random draw from � N (�0; Vxy). A decision must be made

now (at time 0�, just before the �true�state of the world is revealed at time t = 0+) about

whether or not to invest in the proposed project. Immediately after the investment decision

is made, at time 0+, the true growth rate becomes known that will hold thenceforth, from

time t = 0+ to time t =1. What is the relevant discount rate?
In the above setup, the relevant discount rate for CBA is given by formula (35). The idea

that uncertain future growth rates are permanent and materialize overnight is extreme, but

it has been used in the literature as a point of departure for giving insights into declining

discount rates.4 The point being made here is that such a story can be viewed as the

hypothetical outcome of a situation that in the past was subject to hidden-state uncertainty,

but in the future will not be subject to any further such uncertainty.

Equation (35) indicates that Ramsey riskfree discount rates will decline over time and

eventually become negative, based just on uncertainty about what is the underlying per-

manent growth rate, even though this underlying permanent growth rate will henceforth

stay put and not move away from its current (and currently unknown) value. As with the

pure quadratic random-walking case (34), the pure linear fear-of-bad-growth case (35) comes

from the long (even if thin) left tail of the normal distribution, along with the assumption

of a CRRA utility function (28). Again here, a way to evade negative discount rates is

to mechanically avoid considering the very long time periods in which they can manifest

themselves. And again, more basically, I think that the eventually-negative discount rate in

(34) is trying to tell us that, in a world where we are fundamentally unsure now about what

will be distant future growth prospects, there are potentially strong forces that might want

to make us consider using very low discount rates for discounting distant-future events.

In thinking about the declining discount rate schedules implied by formulas like (35), (34),

or (31), the underlying normality assumption cuts two ways. On the one hand, the long

negative tail of the normal distribution makes discount rates eventually become negative.

If we arti�cially truncated the left tail, it would impair the ability to generate eventually-

negative discount rates. On the other hand, the long negative tail of the normal distribution

is very thin with probability measure, so that if it were made fatter with mean-preserving

probability in the left side range where it is not truncated, discount rates could decline more

rapidly to whatever low values they eventually attain.

The simplicity of formula (31), and the fact that it eventually yields negative values,

4For example, Gollier and Weitzman (2009).
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depends on the speci�c functional forms of the model. However, I believe that the more

general overarching message of the hidden-state model of this paper is the di¢ culty of avoid-

ing eventually-low Ramsey discount rates in a world where there is fundamental uncertainty

about interpreting past growth rates and projecting future changes in growth prospects.

6 A Numerical Example

Attempting to plug actual numbers into the model of this paper constitutes an unusually

brazen act of hubris. The model itself is at a nearly cosmic level of abstraction. Whose

preferences and future prognostications is the representative agent in this model supposed to

represent? So many di¤erent answers to this question are possible, with so many di¤erent

possible numerical values to plug into formula (31), that it practically rules out decisive

conclusions from the beginning.

For the record, I will attempt here just one such �illustrative�numerical exercise. I do

not try hard to defend the numbers I use. The beauty of having a formula as simple as (31)

is that readers can readily plug in their own favorite numbers and see almost immediately

what emerges. Results are sensitive to the numbers being plugged in, but I let readers

explore this topic for themselves.

For normative pure time preferences associated with intergenerational comparisons, I

choose in this example to not favor any particular generation by selecting � = 0. Estimates

of the relevant value of the coe¢ cient of relative risk aversion vary according to the individual

or the study. A not uncommon idea is that the CRRA coe¢ cient should reasonably be

somewhere between one and four. For this example I choose � = 2.

Worldwide per-capita growth rates have averaged about 2% per year in the time since

1950, but with enormous variation across regions and sub-periods. For the purposes of this

example I choose �0 = 2%. The postwar variability of annual growth rates is relatively low

in the advanced OECD economies, say �y � 2% on average, but it is considerably higher for
the world as a whole or even for OECD countries prior to 1950. In this numerical example

I choose �y = 3%.

I think the trickiest, crudest, and most brazen calibration of all concerns the variability �x
of the random walk for the permanent growth-rate component Xt. By (23), the term �2xt=3

is contributed to the variance of the average future growth rate by random walking of the

underlying trend growth rate I choose �x by the following thought experiment. Suppose

there is zero transient uncertainty (�y = 0) and �0 = X0 is known to be 2%. I then

calibrate �x by requiring that the probability of a stagnant (no growth) century due to the

random walk alone is one out of a million (10�6). With a normal distribution, the one-sided
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probability 10�6 is a 4.265-sigma event. Therefore, the corresponding value of �x which

makes such an extreme zero-average-growth random walk over a century have a probability

of one out of a million satis�es

�2x
3
� 100 =

�
:02

4:265

�2
; (36)

whose solution is �x = :08% per year. I readily admit the incredible crudeness of this

calibration, but am unsure what else to do.

The corresponding Ramsey hidden-state discount schedule from formula (31) is enumer-

ated in the following table.

t = 0 yrs 50 yrs 100 yrs 150 yrs 200 yrs 250 yrs

rt = 3.8% 3.5% 2.9% 2.1% 1.2% .4%
Table 1: Discount rates rt (% per year) as function of time t (years)

Considering the (unavoidable) casualness of the numbers plugged into formula (31), I

do not want to over-interpret the results. Di¤erent people can plug in their own favorite

numbers and may draw their own conclusions from what is but a single illustrative example.

I think Table 1 indicates loosely that even a very small amount of random walking in the

underlying trend growth rate can work its way through the hidden-state mechanism to have

non-negligible long term impacts on lowering the discount rate.

7 Concluding Comments

I think that the paper suggests several themes.

First, there is a sense that how we model current fuzziness about future growth rates

is likely to be an important ingredient in deriving and analyzing long-term discount rates.

The extent to which predicting future growth is a highly unresolved issue is disconcerting.

Modeling the growth process as a hidden-state stochastic process is one previously untried

route to deriving discount rate schedules, which is long overdue for analysis. This route

captures, however crudely, one aspect of what makes distant future growth so fuzzy. Perhaps

we need to try other routes, some of which may be similarly unorthodox and are similarly

overdue for analysis.

The hidden state model of this paper is suggesting a kind of crude taxonomy for dis-

counting under uncertainty. In this approach, there are three stylized �source types�that

push riskfree discount rates lower. One is independent noisy growth shocks, which lowers

the Ramsey discount rate uniformly. A second �source type�of lower discount rates is the
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idea that we are ignorant of what is the current underlying growth rate trend amidst all the

random noise of widely di¤erent past growth rates for various regions and periods. This

current ignorance of the true state contributes to a discount rate that declines linearly over

time. A third �source type�of lower discount rates is the idea that even if we knew the

current underlying trend growth rate, it will likely change over time. The uncertainty of

future random walking contributes to a discount rate that declines quadratically over time,

although it is multiplied by a variance coe¢ cient that is much smaller than the variance

coe¢ cient associated with the linear time term. A contribution of this paper is to spell

out in detail how these three �source types�for declining discount rates interact with each

other and depend di¤erently upon the time horizon.

Over and above the crudeness of the basic model and the arti�cial precision of its formulas,

I think the paper is hinting that random forces can act powerfully to lower discount rates

over long time horizons. Even very small amounts of random walking can eventually work

their way into having strong discounting e¤ects for the distant future.

If, as I suspect, there is a fundamental problem with our long-term discounting models

depending heavily on how we conceptualize and express fuzzy future growth rates, then we

researchers have much work ahead of us.
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