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Abstract

What does regressing Y on X versus regressing X on Y have to do with MCMC? It turns out that
many strategies for speeding up data-augmentation type algorithms can be understood as fostering in-
dependence or “de-correlation” between a regression function and the corresponding residual, thereby
reducing or even eliminating dependence among MCMC iterates. There are two general classes of
algorithms, those corresponding to regressing parameters on augmented data/auxiliary variables and
those that operate the other way around. The interweaving strategy (Yu and Meng, 2011, JCGS)
provides a general recipe to automatically take advantage of both, and it is the existence of two dif-
ferent types of residuals that makes the interweaving strategy seemingly magical in some cases and
promising in general. The concept of residuals—which depends on actual data—also highlights the
potential for substantial improvements when data augmentation schemes are allowed to depend on
the observed data, a potential that so far has been largely overlooked. At the same time, there is an
intriguing phase transition type of phenomenon regarding choosing (partially) residual augmentation
schemes, reminding us once more of the prevailing issue of trade-off between robustness and efficiency.
This article reports on these latest theoretical investigations (using a class of normal/independence
models) and empirical findings (using a posterior sampling for a Probit regression) in the search
for effective residual augmentations—and ultimately more MCMC algorithms—that meet the 3-S
criterion: simple, stable, and speedy.

Keywords: Ancillary-Sufficient Interweaving Strategy (ASIS), Conditional Augmentation, MCMC,
Marginal Augmentation, Phase transition, Probit Regression, PX-DA,

1 Residual Augmentations: A Unified Strategy

1.1 Creative Re-Parameterization and Over-Parameterization

Designing algorithms that are simple, stable, and speedy is a dream shared by virtually anyone working on

Markov chain Monte Carlo (MCMC) or more generally on statistical computing. For data augmentation

(Tanner and Wong 1987) and Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990) type

of algorithms, it is well known that parameterizations can affect substantially both convergence and

ease of implementation (e.g., Gelfand, Sahu and Carlin 1995, 1996; van Dyk and Meng, 2010). By
∗Corresponding author: meng@stat.harvard.edu
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using parameterizations creatively, a variety of strategies have been proposed to accelerate convergence

while maintaining implementation simplicity. In particular, Papaspiliopoulos, Roberts and Sköld (2003,

2007) study the centered, noncentered, and partially noncentered parameterizations. The idea of partial

noncentering is to introduce a family of parameterizations (or data augmentation schemes), and then

to seek the optimal parameterization for fastest convergence. This is mathematically equivalent to the

conditional augmentation approach (Meng and van Dyk, 1999; van Dyk and Meng, 2001), where the

family of data augmentation schemes are indexed by a working parameter.

Formally, consider the model p(θ|Yobs) ∝ p(Yobs|θ)p(θ) where θ is the parameter of interest and Yobs

denotes observed data. A data augmentation (DA) model p(Yobs, Ymis|θ) is any joint distribution of Ymis

(the missing or augmented data) and Yobs given θ such that the marginal p(Yobs|θ) is preserved. In other

words, we can write p(Yobs, Ymis|θ) = p(Yobs|θ)p(Ymis|Yobs, θ). In conditional augmentation, a working

parameter c is introduced such that

p(Yobs, Ymis|θ, c) = p(Yobs|θ)p(Ymis|Yobs, θ, c).

Whereas p(Yobs, Ymis|θ, c) clearly is a legitimate DA because it preserves the desired margin p(Yobs|θ), it

is a form of over-parameterization because the working parameter c is not identifiable by the observed

data Yobs. For conditional augmentation, the value of c is obtained by optimizing a certain criterion,

e.g., based on the convergence rate of the closely related EM algorithm (Meng and van Dyk, 1997,

1998, 1999 and van Dyk and Meng, 2001). The resulting algorithm alternates between drawing θ given

(Yobs, Ymis) and drawing Ymis given (θ, Yobs), conditioning on the chosen value of c. Finding a good

conditional augmentation scheme requires a careful balance between the theoretical speed and ease of

implementation, as illustrated in detail by van Dyk and Meng (2001, 2010).

This conditional augmentation approach contrasts with the marginal augmentation approach (Meng

and van Dyk, 1999), which is closely related to parameter-expanded DA (PX-DA; Liu and Wu, 1999).

In marginal augmentation, the working parameter c is marginalized out after being assigned a working

prior p(c). The resulting algorithm is a standard DA—labeled Scheme 2 in van Dyk and Meng (2001)—

alternating between drawing Ymis given (θ, c, Yobs) and drawing (θ, c) given (Ymis, Yobs) based on the

joint posterior

p(Ymis, θ, c|Yobs) ∝ p(Yobs, Ymis|θ, c)p(θ)p(c). (1.1)

We can also sample from (1.1) by alternating between drawing (Ymis, c) given (θ, Yobs) and drawing (θ, c)

given (Ymis, Yobs), as in PX-DA (Liu and Wu, 1999). Obviously this is algorithmically equivalent to the

DA sampler that alternates between drawing Ymis given (θ, Yobs) and drawing θ given (Ymis, Yobs), which

was labeled Scheme 1 in van Dyk and Meng (2001).

The strategies discussed above all amount to using a single data augmentation scheme in the actual

implementation. For conditional augmentation, this is rather obvious by construction. For marginal
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augmentation, if the working prior p(c) is proper, then Scheme 1 is the standard DA using

p̃(Ymis|Yobs, θ) =
∫
p(Ymis|Yobs, θ, c)p(c)µ(dc) (1.2)

as the data augmentation, where µ is the dominating measure for the working prior, typically the

Lebesgue measure. However, when p(c) is improper, Scheme 1 is not feasible. In contrast, Scheme 2

still is implementable, just as an improper prior can still lead to a proper posterior. But this does not

automatically imply that the algorithm will converge properly. Minimally it should be clear that the

resulting joint chain for (θ, c, Ymis) cannot be positive recurrent because its target distribution (1.1) is

improper when p(c) is improper. By a result of Hobert (2001a, b), this also automatically implies that

the corresponding (major) sub-chain for (θ, c) cannot be positive recurrent either. However, when the

improper working prior is the limit of a sequence of proper priors, then under regularity conditions,

the sub-sub-chain produced by Scheme 2 for θ will converge to the desired target distribution p(θ|Yobs).

Intriguingly, when p(c) corresponds to the right Haar measure, this sub-sub-chain actually represents the

fastest algorithm among a class of DA algorithms as formulated in Liu and Wu (1999) with their elegant

group-theoretic argument.

Even more intriguingly, there is often a simpler way to reach this optimality by using two standard

data augmentation schemes (i.e., no improper prior is involved), and the new strategy is demonstrably

more powerful and versatile than all known strategies based on a single (limiting) data augmentation,

for reasons presented in the following section.

1.2 Alternating versus Interweaving

Suppose p(Ymis, θ|Yobs) and p(Ỹmis, θ|Yobs) are two augmentation schemes (i.e., both preserving the target

posterior p(θ|Yobs)). An obvious strategy is to concatenate two iterations, one based on each of the two

schemes, that is, by alternating between the two algorithms. This may be represented schematically as in

Figure 1 where each arrow indicates a sampling step. For example Ymis → θ means drawing θ given the

current Ymis (and Yobs). Somewhat surprisingly, Yu and Meng (2011) demonstrate that an alternative

interweaving strategy holds much more promise than the simple alternating scheme. Specifically, the

interweaving strategy simply cuts out the θ between Ymis and Ỹmis, and hence it leads to the triangular

diagram given in Figure 2. That is, each iteration cycles through the parameter θ and the two sets of

augmented data by first drawing Ymis given θ, then Ỹmis given Ymis, and then θ given Ỹmis. (Henceforth

we suppress the conditioning on Yobs when there is no confusion.)

The triangular diagram also reveals a fundamental insight about the power of the interweaving strat-

egy. Similar to the usual DA algorithm, whose convergence rate is the square of the maximal correlation

between Ymis and θ in their joint posterior, the interweaving strategy has a convergence rate that is

bounded above by the product of three maximal correlations as indicated by the three links in the

above diagram. That is, let the geometric convergence rate of DA under Ymis and Ỹmis be r1 and r2,
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Figure 1: Alternating Scheme
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indirect

Figure 2: Interweaving Scheme

respectively, and the rate for the interweaving scheme be r1&2. Then Yu and Meng (2011) proved that

r1&2 ≤ R(Ymis, Ỹmis)R(θ, Ymis)R(θ, Ỹmis) = R1,2
√
r1r2 (1.3)

where R1,2 ≡ R(Ymis, Ỹmis), and

R(X1, X2) = sup
g,h∈L2

Corr{g(X1), h(X2)}

is the maximal correlation between (generic) X1 and X2. (Note in our application, the joint distribution

is the joint posterior predictive distribution p(Ymis, Ỹmis|Yobs).)

As discussed in Yu and Meng (2011), the key insight here is that we can make r1&2 small (which means

a faster algorithm) by making any one of {R1,2, r1, r2} small. Indeed, it is even possible that r1 = r2 = 1,

that is, neither of the two DAs being interwoven is geometrically convergent, and yet r1&2 = 0, that is,

the interwoven algorithm will deliver i.i.d draws! See Yu and Meng (2011) for such an example.

In general, achieving i.i.d. draws is obviously too much of a dream, but the interweaving strategy

provides us with a new way to combat the common problem of high dependence among consecutive

MCMC draws. Specifically, with either alternating or interweaving, we can reduce the dependence

between θ(t) and θ(t+1)—where t indexes the iteration—by reducing either r1 or r2 or both. Schematically,

this corresponds to “breaking” either or both of the two direct links marked in Figure 2; here a direct

link is an arrow with θ as one of its two end points. However, the interweaving strategy allows us to

achieve the same goal by breaking an indirect link, which does not involve θ, and clearly it exists only

in Figure 2.

Therefore, given the original augmentation as represented by the arrow from θ to Ymis, we now

have two ways to break the cycle. The first is to make Ỹmis independent of θ and hence to break

the Ỹmis → θ link, which is what partially non-centering or conditional augmentation aims to achieve.

The second is to make Ỹmis independent of Ymis, thereby breaking the Ymis → Ỹmis link, which is

what marginal augmentation and the interweaving strategy try to accomplish. In particular, Yu and

Meng (2011) advocate an ancillarity-sufficiency interweaving strategy (ASIS) that takes advantage of the

existing competing nature between sufficient augmentation and ancillary augmentation to reduce their a

posteriori dependence.
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1.3 Direct and Indirect Residual Augmentations

Such considerations lead to the idea of residual augmentations (Yu and Meng 2011, Rejoinder), as a

way to “break links” by judiciously choosing Ỹmis for a given (original) DA scheme (Ymis, θ). For the

direct residual augmentation (DRA), we attempt to break the direct link Ỹmis → θ by choosing Ỹmis

to be a residual from regressing Ymis on θ. The central idea here is that a residual is constructed to

be uncorrelated (though rarely independent) with the regression function, which is θ here. The obvious

choice is the usual additive residual from regressing Ymis on θ :

Ỹmis = Ymis − E[Ymis|θ, Yobs]. (1.4)

A less obvious one is its multiplicative variant:

Ỹmis =
Ymis

E[Ymis|θ, Yobs]
(1.5)

in the scalar case. It is straightforward to show that both Ỹmis’s are uncorrelated with θ with respect to

the joint posterior distribution p(Ymis, θ|Yobs), as long as the correlation exists. (But note the condition

of having correlation does not hold for (1.5) as often as it does for (1.4)).

For the indirect residual augmentation (IRA), the aim is to break the indirect link Ymis → Ỹmis,

and hence we need to regress θ on Ymis. This naturally leads to the counterparts of (1.4) and (1.5) by

swapping θ and Ymis, that is,

Ỹmis = θ − E[θ|Ymis, Yobs] (1.6)

and

Ỹmis =
θ

E[θ|Ymis, Yobs]
. (1.7)

For all these constructions, the implementation Ymis → Ỹmis is typically straightforward. We accom-

plish this by first drawing θ from p(θ|Ymis, Yobs), which is a step required by the original DA algorithm

based on Ymis alone. We can then compute Ỹmis as a deterministic function of θ, Ymis and Yobs. This

computation typically is straightforward for DRA, because E[Ymis|θ, Yobs] is simply the mean function

of the full conditional p(Ymis|θ, Yobs) already needed by the original DA algorithm; it can also be carried

out by Monte Carlo if necessary. For IRA, this task typically is even simpler, because it calls only for

E[θ|Ymis, Yobs], the complete-data posterior mean.

Therefore, the simplicity of a residual augmentation algorithm depends critically on how easy it

is to implement the Ỹmis → θ step. To implement it exactly requires us to derive the conditional

distribution of θ given Ỹmis as implied by one of (1.4)-(1.7). This may not be an easy task when the

regression function involved (i.e., E[Ymis|θ, Yobs] or E[θ|Ymis, Yobs]) is non-linear. This issue, however, can

be dealt with pragmatically by adopting a convenient global or local approximation, with the trade-off of

achieving less reduction in auto-correlations for implementation simplicity. Such a pragmatic approach

also helps us to compromise appropriately between implementation simplicity and the desire to find

5



suitable transformations of g(θ) and h(Ymis) such that the low correlation between them is a reasonable

indicator of their lack of dependence. Note ideally we would want a joint one-to-one transformation

T (θ, Ymis) for better joint normality because under joint normality low linear correlation is the same as

low maximal correlation. Unfortunately, this joint transformation typically will destroy the simplicity of

the original Gibbs setup that alternates between θ and Ymis.

For the rest of the paper, in Section 2 we first illustrate some theoretical properties of residual aug-

mentations using the simplest normal hierarchical model and its extensions, which include t distributions.

In particular, we note an interesting “safe zone” for the choice of augmentation schemes and show how

ASIS can be viewed as a “minimax” strategy, always staying within the safe zone regardless of the prior

specification and the configuration of observed data. Our pragmatic strategy is illustrated in Section 3

with a probit regression example. We conclude in Section 4 with a host of open problems.

2 Theoretical Illustrations and a Phase Transition Phenomenon

2.1 Illustrating DRA and IRA

A common illustrative example in the DA literature is the one-way random effect model (Liu and Wu,

1999; Yu and Meng, 2011; Hobert and Roman, 2011). Instead of repeating the standard setup, here we

adopt a simpler representation capturing its essence that is relevant for our algorithmic investigation.

Specifically, suppose θ is the parameter of interest and Ymis is the missing datum or latent variable, and

their joint posterior distribution (given Yobs) can be standardized into θ

Ymis

∣∣∣∣∣∣Yobs ∼ N
 0

0

 ,

 1 r

r 1

 . (2.1)

Here r is a known function of Yobs and, without loss of generality, we can assume 0 ≤ r < 1. The

standard DA based on Ymis then iterates between sampling θ given Ymis and sampling Ymis given θ (all

conditioning on Yobs of course). Clearly this DA has the convergence rate r1 = r2.

Now consider a conditional augmentation or partially non-centering scheme Ỹmis = Ymis − cθ, with

c being a working parameter to be determined. Clearly θ

Ỹmis

∣∣∣∣∣∣Yobs ∼ N
 0

0

 ,

 1 r − c

r − c 1 + c2 − 2rc

 . (2.2)

This implies that the DA algorithm using Ỹmis as the augmentation will have convergence rate r2 =

(r− c)2/(1 + c2− 2rc). Now because of their joint normality, the maximal correlation between Ymis and

Ỹmis is the same as the absolute value of their linear correlation. Therefore R1,2 = |Corr(Ỹmis, Ymis)| =

|1− cr|/
√

1 + c2 − 2rc. Because the bound in (1.3) is sharp for this normal setting (Yu and Meng, 2011),

we see that the rate of convergence from interweaving the DA based on Ymis and the DA based on Ỹmis
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is

r1&2 = R1,2
√
r1r2 =

|r(r − c)(1− cr)|
1 + c2 − 2rc

. (2.3)

We see immediately that when c = r or c = r−1, r1&2 = 0, and hence the interweaving strategy will

produce i.i.d. draws. The c = r case corresponds to DRA because E[Ymis|θ, Yobs] = rθ, and hence taking

c = r in Ỹmis = Ymis − cθ is the same as making Ỹmis the additive residual, which is independent of θ

because of normality. Consequently, the link Ỹmis → θ is completely broken, yielding i.i.d. draws. On

the other hand, because E[θ|Ymis, Yobs] = rYmis, taking c = r−1 in Ỹmis = Ymis − cθ = −c(θ − c−1Ymis)

is equivalent to setting Ỹmis = θ − rYmis, which is the IRA. The joint normality ensures that Ỹmis is

independent of Ymis, and hence IRA completely breaks the indirect link Ymis → Ỹmis, again resulting in

i.i.d. draws.

2.2 A Phase Transition Phenomenon

In real applications, rarely can the direct or indirect link be broken completely. Even under the normality

assumption, we may not be able to compute the regression slopes with infinite precision. A natural

question then arises: What happens if we use a c that approximates a regression slope (i.e., from regressing

Ymis on θ or θ on Ymis)? Does it still retain approximately the benefit of residual augmentation? Common

wisdom would suggest so, based on the usual continuity argument.

Unfortunately, the continuity argument would fail here. A clue is offered by considering what happens

when c = 1, which corresponds to using ASIS for this model (see Yu and Meng, 2011), and when r

approaches 1. On the one hand, when c = 1, it is easy to see from (2.3) that

r1&2 =
r(1− r)

2
≤ 1

8
(2.4)

for all 0 ≤ r < 1. On the other hand, for any c 6= 1, if we let r → 1, r1&2 will approach 1. Clearly

therefore there is a discontinuity at c = r = 1. More interestingly or even magically, as proved in the

Appendix, the 1/8 bound in (2.4) holds whenever c falls between the two regression slopes, that is,

whenever r ≤ c ≤ r−1, with the bound 1/8 achieved if and only if r = 1/2 and c = 1.

However, as seen in the perspective plot Figure 3 and the contour plot Figure 4, as soon as c leaves

this “safe” zone [r, r−1], the convergence rate r1&2—as a function of (c, r) denoted by g(c, r)—increases

dramatically, exhibiting essentially a phase transition type of phenomenon at the two boundaries c = r

and c = r−1. As hinted previously, this phenomenon is most extreme at the point (c, r) = (1, 1): If we

fix c = 1, then g(c, r) = r(1 − r)/2 → 0 as r → 1; if we fix r = 1, then g(c, r) = 1 for any c (including

c = 1 by a limiting argument).

A geometric interpretation of this phenomenon can help us to understand it better. The joint (de-

generate) normality of (θ, Ymis, Ỹmis) allows us to visualize the three pairwise (maximal) correlations in

a single triangle, as in Figure 5, where each vector represents a random variable, and the cosine of the
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Figure 3: Convergence rate as a function of (c, r) viewed in two perspectives: the yellow (light) area

is the “safe” zone, where the convergence rate is bounded by 1
8 ; the red (dark) area is outside the two

regression lines, where the convergence rate increases dramatically.

(directional) angle between two vectors is their correlation. Denote the pairwise correlations between

(θ, Ymis), (θ, Ỹmis) and (Ymis, Ỹmis) as cosα1(> 0), cosα2 and cosα3 respectively. From geometry, we

know that α2 = α1 + α3. The convergence rate of the interweaving strategy is

r1&2 = | cosα1 cosα2 cosα3| = | cosα1 cos(π − (α1 + α3)) cosα3|. (2.5)

For a nonobtuse triangle, the product of cosines of its three angles cannot exceed 8−1, hence the same

bound is achieved when Ỹmis falls in the shaded area. Moreover, within the “safe” zone,

Corr(Ỹmis, Ymis)Corr(Ỹmis, θ) ≤ 0.

This says that the pairwise correlations of (θ, Ỹmis) and (Ymis, Ỹmis) should have opposite signs to make

the interweaving algorithm stable. This finding is consistent with empirical observations and heuristic

arguments reported in Yu and Meng (2011) that the interweaving strategy works by taking advantage

of the “beauty and beast” nature of two competing DAs. It may also help us search for similar “safe”

interweaving algorithms for more complicated problems.

2.3 Going Beyond Normality

But before one conjectures generalizations inspired by this simple example, one must contemplate the

possibility that, without the normality condition, such a “safe zone” may completely disappear. After

all, the aforementioned 1/8 bound for r1&2 depends critically on the triangulation formulation in (2.5),

which was possible because maximal correlation is the same as linear correlation (when it is non-negative)

under joint normality. One therefore should at least show such a “safe zone” exists beyond the normality

setting.
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Contour plot of convergence rate
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Figure 4: Contour plot: the dashed lines corre-

spond to the two regression slopes, c = r and

c = r−1.

Figure 5: Geometric interpretation: the shaded

area corresponds to the “safe” zone, where the

formed triangle is nonobtuse.

A common generalization moving beyond normality is to consider a t-type of distribution. Here

we consider a general class of the so-called “normal/independent” distributions, which includes the t

distribution as a special case (see Lange and Sinsheimer, 1993). This class of (univariate or multivariate)

distributions model a random variable Y as Y = Z/W (modulo an affine transformation), where Z is

(multivariate) normal, and W is univariate and is independent of Z (and hence the “normal/independent”

nomenclature). Obviously, choosing W =
√
χ2
v/v gives the t distribution with v degrees of freedom.

With this setup, let us replace the normal model (2.1) by the following conditional normal model.

That is, conditioning on a common variable W , the posterior distribution of (θ, Ymis) is: θ

Ymis

∣∣∣∣∣∣Yobs,W ∼ N
 0

0

 ,
1
W 2

 1 r

r 1

 , (2.6)

where 0 ≤ r < 1 is known and is free of W but may depend on Yobs. The working parameter remains the

same, that is, Ỹmis = Ymis−cθ, and hence (2.2) remains as well other than adding the conditioning on W

and the corresponding multiplicative factor W−2 for its covariance matrix. Furthermore, the regression

slopes remain the same because

E[Ymis|θ, Yobs] = E {E[Ymis|θ,W, Yobs] |θ, Yobs} = E {rθ |θ, Yobs} = rθ

and similarly for E[θ|Ymis, Yobs] = rYmis.

Without restricting the (posterior) distribution of W , we consider in general the maximal correlation

between θ and Ymis, which governs the rate of convergence for the DA algorithm for (θ, Ymis). Intuitively,

this maximal correlation is determined by two separate sources of dependence, namely the maximal

correlation brought in by the common variable W and correlation r between the normal components
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after conditioning on W . Mathematically, this intuition is roughly captured by Lemma 1 of Yu and

Meng (2011), which in the current case allows us to establish that

R(θ, Ymis) ≤ r + (1− r)R(θ,W )R(Ymis,W ). (2.7)

Using this inequality together with (1.3) and the fact that R(θ,W ) = R(Ymis,W ), we can show (see

Appendix) that under (2.6), the rate of convergence for interweaving Ymis and Ỹmis = Ymis− cθ satisfies

r1&2 ≤ [g + (1− g)r][g + (1− g)r1][g + (1− g)r2], (2.8)

where g = R2(θ,W ), and

r1 =
|c− r|√

1 + c2 − 2cr
and r2 =

|1− cr|√
1 + c2 − 2cr

. (2.9)

This leads to the “safe” zone c ∈ [r, r−1] because within this zone, as shown in the Appendix,

r1&2 ≤
1
8

[1 + g]3, (2.10)

which is strictly less than 1 as long as g = R2(θ,W ) < 1. Note the bound in (2.10) again is independent of

the value of r, and is predetermined by the maximal correlation between a normal/independent variable

Z/W and its denominator W .

To see how useful the bound in (2.10) can be, let us consider the (bivariate ) t distribution, where

W 2 ∼ χ2
v/v. Then R(θ,W ) is simply the maximal correlation between a t random variable and its

denominator, which depends only on the degrees of freedom v. We therefore denote it as Rv(θ,W ) to

emphasize this dependence. The analytic calculation of Rv(θ,W ) seems intractable, but nevertheless we

can show that (see Appendix): as v → 0, Rv(θ,W )→ 1; and as v →∞, Rv(θ,W )→ 0. (Incidentally and

somewhat ironically, the proof of the latter assertion turns out to be surprisingly difficult, but we were

able to establish it by employing a set of well-known theoretical tools for bounding MCMC convergence

rate itself.) Therefore (2.10) is a generalization of the 8−1 bound under normality because, as v → ∞,

the t distribution converges to normal, and 1
8 [1 +R2

v(θ,W )]3 → 1
8 .

For an arbitrary degrees of freedom v, we generated 100,000 t samples and then used the ACE

algorithm of Breiman and Friedman (1985)—as given in the R-package acepack—to estimate the maximal

correlation Rv(θ,W ). For a given v, this process was repeated 50 times to construct (95%) confidence

intervals, represented by the “vertical dots” in the left panel of Figure 6, which plots the resulting

estimated curve of Rv(θ,W ) as a function of v (on a equal-spaced grid 0 to 10 plus v = 20). The right

panel plots the corresponding bound in (2.10), using the g = R2
v(θ,W ) values displayed in the left panel.

We see from the right panel that as soon as v ≥ 6, the rate appears to not exceed 1/5. Even for v = 1,

that is, the Cauchy distribution, the upper confidence limit on the upper bound of the convergence rate

is only about 1/2. Whereas these bounds are not as good as 1/8 for the normal case, they are far better
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Figure 6: Estimated Rv(θ,W ) and convergence rate bound: the left plot is the estimated Rv(θ,W ) via

ACE; the right plot is the corresponding value given by (2.10), an upper bound for convergence rate.

than adequate for practical purposes, considering most numerical bounds used in practice are above 0.9

and even above 0.99; see for example Hobert (2001a) and van Dyk and Meng (2001, Rejoinder). Indeed,

if we use 0.9 as standard, then unless one fits a t model with tiny fractional degrees of freedom (e.g.,

v ≤ 0.1), the interweaving algorithm will be safe as long as c ∈ [r, r−1].

Regarding the phase transition phenomenon, for the normal model (2.1) we were able to demonstrate

it exactly because the chain was reversible and the inequality (1.3) becomes equality under that normal

model. For this more general normal/independence model, we currently can only demonstrate such a

phenomenon for the bound in (2.8). This is given in Figure 7, where the four values of g correspond

to four values of the degrees of freedom v in the left panel of Figure 6. We see clearly the very similar

shape as in Figure 3, other than that the function values in the safe zone increase as g increases. This

of course only provides suggestive evidence (and it is only for t distributions), and we certainly hope a

more direct demonstration can be found, perhaps via finding a lower bound that shares a similar shape

as in Figure 7.

Regardless of the extent to which the phase transition phenomenon exists for an arbitrary choice of

W , it is clear that the choice of c = 1 is always safe irrespective of the actual value of r (which depends

on the actual data) in the sense that (2.10) always hold for c = 1. Indeed, here c = 1 can be viewed as a

minimax choice because it minimizes the maximal convergence rate (strictly speaking, an upper bound

of the rate) against all possible values of r.

A couple of remarks are in order before we illustrate the power of applying the interweaving strategy

with residual augmentations in a practical setting. First, the demonstrations above are to provide

theoretical insights (e.g., the phase transition phenomenon) and to illustrate theoretical potential (e.g.,

the upper bound (2.10)); they do not take into account the issue of ease or cost of implementation, an
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Figure 7: Bound in (2.8) as a function of (c, r), with four values of g = R2(Z/W,W ). Note the different

ranges of values on the vertical axis.

issue that will be investigated in the next section. Second, as a side note, the very wide confidence

intervals seen in Figure 6 only at v = 1 may seem puzzling at the first sight, because one might expect

the Monte Carlo error getting progressively worse as v decreases below 1, which corresponds to tail

behavior that is even heavier than Cauchy (so much so that a sample mean is more dispersed than a

single observation). Whereas we do not have a good explanation for this phenomenon, we suspect it is

related to a hidden symmetry in the maximal correlation, that is, R(Z/W,W ) = R(W/Z,W ), with the

Cauchy distribution corresponding to the center of symmetry because it is invariant to the reciprocal

transformation, and hence its unique properties.

3 An Empirical Exploration via Probit Regression

3.1 A Locally Linearized Direct Residual Augmentation

Consider the widely used Probit regression model:

Yobs,i = sign(Ymis,i), Ymis,i|θ,Xi ∼ N(Xiθ, 1), (3.1)

where Yobs,i is the observed binary (±1) outcome, the sign of the latent score Ymis,i, Xi is a 1 × p

vector of covariates, and θ is a p× 1 vector of regression coefficients. Write Yobs = (Yobs,1, · · · , Yobs,n)>,
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Ymis = (Ymis,1, · · · , Ymis,n)>, and X> = (X>1 , · · · , X>n ). Taking the standard noninformative prior

p(θ) ∝ 1, we have the well-known full conditional distributions for the standard DA/Gibbs sampler (see

Albert, 1992; Albert and Chib, 1992; Meng and Schilling, 1996):

Ymis,i|Yobs, θ ∼ TN(Xiθ, 1, Yobs,i); (3.2)

θ|Yobs, Ymis ∼ N(θ̂, (X>X)−1). (3.3)

Here θ̂ = (X>X)−1X>Ymis, and TN(µ, σ2, Yobs,i) denotes a N(µ, σ2) distribution truncated to the

interval (0,∞) if Yobs,i = 1 and to (−∞, 0) if Yobs,i = −1. The standard DA/Gibbs sampler iterates

between (3.2) and (3.3). Though convenient, it can be extremely slow. Several methods, therefore, have

been proposed to improve it, including PX-DA (Liu and Wu, 1999) and ASIS (Yu and Meng, 2011).

Below we first demonstrate how to implement the residual augmentation, and then we compare it to

several existing algorithms.

Given the normal model in (3.1) for Ymis, which is univariate (in contrast to θ, which is often

multivariate), it is easier to consider the additive DRA Ỹmis = Ymis − E[Ymis|θ, Yobs]. In particular, it

is known that if we let H(z) = z + M(z) where M(z) = φ(z)
Φ(z) is the inverse Mills ratio, then (recall

Yobs,i = ±1)

E[Ymis,i|θ, Yobs] = E[Ymis,i|θ, Yobs,i] = Yobs,iH(Yobs,iXiθ), i = 1, . . . , n. (3.4)

However, since H(±Xiθ) is non-linear in θ, deriving and then sampling from the resulting p(θ|Yobs, Ỹmis)

is rather a difficult task. As a compromise, we seek a locally linear approximation to H(z) by utilizing

its derivative

G(z) = H ′(z) = 1− zM(z)−M2(z).

The resulting local residual augmentation has the form

Ỹmis,i = Ymis,i −G(Yobs,iXiθ)Xiθ, i = 1, . . . , n. (3.5)

However, the corresponding p(θ|Yobs, Ỹmis) is still hard to employ, because of the θ inside the non-linear

G(·) function.

3.2 Seeking Compromise via Adaptive Data-Dependent Augmentation

To further simplify the implementation, we adopt the adaptive MCMC idea (see Rosenthal, 2011 and

references therein). That is, at (t + 1)st iteration, we adopt a DA scheme that depends on the value of

θ(t):

Ỹmis,i = Ymis,i − b(t)i Xiθ, where b
(t)
i = G(Yobs,iXiθ

(t)). (3.6)

It is critical to recognize that (3.5) and (3.6) are different augmentation schemes, even though they

share the same conditional distribution p(Ỹ (t+1)
mis |θ = θ(t), Yobs). Their difference lies in the two different
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conditional distributions p(θ(t+1)|Ỹmis = Ỹ
(t+1)
mis , Yobs). For scheme (3.5), the θ inside the G(·) function is

free or “live”, therefore we need to take it into account when deriving p(θ|Ỹmis;Yobs) for drawing θ(t+1).

In contrast, for scheme (3.6), the θ(t) inside the G(·) is fixed or “dead” by iteration (t+1)st, so in deriving

p(θ|Ỹmis;Yobs), b(t)i = G(Yobs,iXiθ
(t)) is just a constant, rending Ỹmis of (3.6) truly linear in θ.

This “adaptive linearity” on one hand permits an easy implementation, but on the other hand de-

stroys the proper convergence of the resulting Markov chain. This is because the adaptive DA, namely

an iteration-dependent DA model p(t)(θ, Ymis|Yobs), can easily destroy the detailed balance condition.

Whereas the detailed balance condition is not necessary for MCMC to converge, without it proper con-

vergence can be easily destroyed. As a matter of fact, our empirical checking indicated that our adaptive

algorithm does not converge to our desired target, as demonstrated in Figure 10 of Section 3.5 below.

Fortunately this is a relatively easy problem to resolve, because the reason we invoke the adaptation

is to seek a suitable compromise between simplicity and speed. We therefore can run the adaptive

algorithm for a burn-in period, say until t = t∗, and then fix b(t)i = bi for all t > t∗ (and all i), eliminating

adaptation. Here the value bi can be chosen in many ways by analyzing {b(t)i , t ≤ t∗}, such as the average

of the last (say) 10% of the {b(t)i , t ≤ t∗}. Another way to motivate this switching strategy is to consider

the adaption as a greedy strategy, i.e., it aims to find the best piece-wise linear approximation given the

θ drawn at the current iteration. But what we really need is a good approximation given θ within a

reasonable range as determined by its posterior distribution. Therefore, at the end of the adaptive stage,

we form a compromise by taking an appropriate summary of bi’s from the adaptive stage. Currently we

do not have a general theoretical framework for choosing the optimal summary. Nor do we believe there

is a unique optimal choice here, because such a choice typically entails a trade-off between statistical

efficiency and computational efficiency. Nevertheless, we conducted a preliminary empirical investigation

of the impact of the choices of bi, as reported is in Section 3.5 below.

In contrast to a global residual augmentation such as Ỹmis = Ymis− cXθ, where c is a scalar working

parameter, the adaptation outlined above allows us to search for a more powerful residual augmentation

(for our goal to reduce auto-correlations) by taking into account heterogeneity in different components

as governed by the actual observed data. Specifically, the adaption leads to a component-wise (direct)

residual augmentation in the form of

Ỹmis ≡


Ỹmis,1

Ỹmis,2
...

Ỹmis,n

 =


Ymis,1 − b1X1θ

Ymis,2 − b2X2θ
...

Ymis,n − bnXnθ

 = Ymis −BXθ, (3.7)

where B = diag{b1, . . . , bn}. What makes (3.7) more powerful than Ỹmis = Ymis − cXθ is not only that

it permits heterogeneity among the n components, but more importantly the value of individual working

parameter bi takes into account the information from the actual observed data because it depends on the
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value of Yobs,i as seen in (3.6). This is an important extension of virtually all previous data augmentation

schemes, which—to the best of our knowledge— were constructed before seeing the actual data, at least

for routine applications such a probit regression. But see Section 4 for a discussion of the potential

robust-efficiency trade-off from using data-dependent augmentation schemes.

3.3 A Prototype Algorithm

With the setup outlined above, we can carry out (at least) two algorithms. The first is simply a direct

DA algorithm using (3.7) as its augmentation scheme, albeit we need to deal with its adaptive nature,

as outlined below. The second is to interweave the first with the standard DA based on the original DA

Ymis to gain additional benefit. Below we provide the details for the first, as the interweaving one is

rather trivial once the first one is in place.

Specifically, the direct (initially) adaptive DA algorithm requires two-stage execution:

I. Adaptive Stage: t = 1, . . . , t∗, update bi = b
(t)
i (i = 1, . . . , n) at each iteration;

II. Sampling Stage: Same as Adaptive Stage, except bi is fixed as b̄i, the average of the last 10% of

the b(t)i ’s obtained from the Adaptive Stage (i = 1, . . . , n). (See Section 3.5 for other choices.)

Operationally, during the Adaptive Stage, we carry out the following (where Ỹmis = (Ỹmis,1, . . . , Ỹmis,n)>):

• Draw Ỹ
(t+1)
mis |θ(t), Yobs:

Step 1 Update bi ⇐ b
(t)
i = G(Yobs,iXiθ

(t)), i = 1, . . . , n;

Step 2 Draw Y
(t+1)
mis,i ∼ TN(Xiθ

(t), 1, Yobs,i) and then compute Ỹ (t+1)
mis,i = Y

(t+1)
mis,i − biXiθ

(t).

• Draw θ(t+1)|Ỹ (t+1)
mis , Yobs:

Step 3 For i = 1, . . . , n, compute X̃i = (1− bi)Xi and then

µ̂ = (X̃>X̃)−1X̃>Ỹ
(t+1)
mis , Σ̂ = (X̃>X̃)−1,

where X̃> = (X̃>1 , . . . , X̃
>
n );

Step 4 Draw θ(t+1)|Ỹ (t+1)
mis , Yobs ∼ TN(µ̂, Σ̂) with the truncation determined by the constraint that

sign(Ỹ (t+1)
mis,i + biXiθ

(t+1)) = Yobs,i. We implement this step via a nested Gibbs sampler: for

each i, draw θ
(t+1)
i |Ỹ (t+1)

mis , Yobs, θ
(t+1)
−i , a truncated univariate normal distribution, and repeat

it K cycles.

At the Sampling Stage, we simply skip Step 1, that is, we use bi = b̄i for all iterations to produce

our MCMC samples. We emphasize that this algorithm is by no means optimal in any sense; there

should be many ways to improve upon it especially regarding the potentially time consuming nested

Gibbs sampler used in Step 4; see Section 3.5 for an exploration. Our aim here is to provide the first
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prototype algorithm, in a real application setting, that builds upon the concept of residual augmentation

formulated in Yu and Meng (2011). Nevertheless, our preliminary numerical experiments, as reported

below, have shown great potential even for this prototype algorithm.

3.4 A Numerical Comparison

To see the effectiveness of our prototype algorithm and of its interweaving with the standard Gibbs

sampler, we conducted a numerical experiment using the lupus nephritis data set of van Dyk and Meng

(2001; Table 1), which has n = 55 patients and p = 3 covariates (including a constant term for the

intercept). We compare it with various other algorithms. The algorithms we included in our comparisons

are:

I. Standard Gibbs sampler given by (3.2)-(3.3). This is also known as the DA algorithm with Sufficient

Augmentation (SA) Ymis (Yu and Meng, 2011), and hence it is the same as setting bi ≡ 0 in our

prototype algorithm for all i (therefore Ỹmis = Ymis, which makes Step 4 the same as (3.3)).

II. A marginal augmentation/PX-DA algorithm based on a multiplicative working parameter Ỹmis =

σYmis, with Haar working prior p(σ2) ∝ σ−2—see Liu and Wu (1999) and van Dyk and Meng

(1999).

III. The DA algorithm based on Ancillary Augmentation (AA) Ỹmis = Ymis−Xθ (Yu and Meng, 2011),

which is the same as setting bi ≡ 1 in our prototype algorithm for all i.

IV. The ASIS algorithm (Yu and Meng, 2011) that interweaves SA and AA in (I) and (III) respectively.

V. Our prototype DRA algorithm as given in Section 3.3.

VI. The algorithm that interweaves (I) and (V) (IS-DRA).

Here the first two are well-known algorithms in the literature, which we employ as benchmarks,

even though algorithm II uses a multiplicative working parameter (and hence theoretically it is not

directly comparable with those built upon an additive working parameter). The next two are more

recent algorithms proposed in Yu and Meng (2011) but without the benefit of tuning bi according to

the actual data because they set bi = 1 for all i. The last two are our new prototype algorithms

(without and with interweaving), benefiting from allowing data to have a strong influence on choosing

bi (i = 1, . . . , n). Figure 8 displays the trajectories, histograms, and autocorrelations of the draws of

θ1 (the first coefficient) for these six algorithms. We see the algorithms work progressively better, at

least in terms of autocorrelations, empirically demonstrating that we are on the right track in our effort

to reduce autocorrelations by using progressively more efficient DA schemes and with the help of the

interweaving strategy.
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Figure 8: Comparing various samplers for the lupus nephritis data: trajectories, histograms and auto-

correlations (K = 30 for III-VI).

Clearly autocorrelation measures only (one aspect of the) statistical efficiency. Another important

measure is CPU time, an aspect of computational efficiency. Table 1 reports the CPU time (in seconds)

from 25 replications, together with estimated effective sample size (ESS) obtained from the R-package

coda. We see that in terms of both ESS and Relative Speed, DRA(30)—with or without IS— ranks at the

top, about one order of magnitude improvement over PX-DA and about two orders of improvement over

SA. However, unlike the statistical efficiency measure ESS, which does not depend on how the algorithm

is actually implemented (as long as it is implemented correctly), CPU time depends critically on how

the algorithm is implemented, in what program language(s) it is written, on what machine it is carried

out, etc. As a matter of fact, when we initially implemented Step 4 directly via the R language, the

drawing from the truncated multivariate normal turned out to be so costly that the gain in statistical

efficiency by DRA was outweighed by the lost of computational efficiency. The results in Table 1 are

from using the R-package tmvtnorm (by Stefan Wilhelm), which was implemented in Fortran. All the

rest of the implementation was done in R, except for the drawing from a truncated multivariate uniform

as needed by AA and hence also by ASIS (which corresponds to Step 4 of our prototype algorithm; see

Section 4.1 of Yu and Meng, 2011). These truncated uniform drawings were also carried out by the

same Fortran program tmvtnorm with the covariance matrix set to a very large value, so the truncated

multivariate normal effectively becomes truncated multivariate uniform. We adopted this strategy to
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Method Mean Time ESS (min,median,max) ESS/Time Relative Speed

SA 20.2 (4, 16, 81) 0.8 1

PX-DA 20.6 (180, 235, 273) 11.4 14

AA(1) 19.2 (64, 115, 157) 6 7

AA(10) 22.5 (211, 454, 601) 20.2 25

AA(30) 27.9 (871, 1025, 1235) 36.8 46

ASIS(1) 24.9 (78, 122, 203) 4.9 6

ASIS(10) 27.3 (363, 475, 592) 17.4 22

ASIS(30) 32.8 (771, 1047, 1337) 32 40

DRA(1) 20.2 (199, 259, 366) 12.8 16

DRA(10) 22.9 (976, 1233, 1458) 53.8 67

DRA(30) 28.8 (2216, 2928, 3968) 101.6 127

IS-DRA(1) 24.7 (222, 285, 356) 11.6 14

IS-DRA(10) 27.5 (1033, 1294, 1503) 47.1 59

IS-DRA(30) 33.3 (2363, 2950, 3286) 88.6 110

Table 1: Comparison of methods after 10, 000 samples averaged over 25 runs. For AA, ASIS, DRA and

IS-DRA, the number within the parentheses (e.g. DRA(K)) denotes the number of iterations in the

nested Gibbs sampler. For relative speed, we use SA as the reference point, e.g., in this application,

IS-DRA(30) is about 110 times faster than SA in terms of the relative speed.

ensure a meaningful comparison of CPU times so the simulation results do not bias toward our DRA;

indeed, when we implemented AA and ASIS completely in R, their CPU time was much worse than our

DRA using tmvtnorm, further illustrating how computational efficiency depends critically on the actual

implementation, not just the algorithm itself.

We remark here that the substantial increases in ESS as K increases from K = 1 to K = 30 clearly

demonstrate the importance and effectiveness of using data augmentation schemes that are as close

to residual augmentations as possible. We also note that in this case the additional gain/protection

from using interweaving is rather minor, a consequence of a rather effective DRA for this problem and

particular data set. Yu and Meng (2011) provided ample evidence that the performance of any single

DA tends to depend on the actual data set much more substantially than those by interweaving a pair.

Our theoretical bounds given in Section 3 (albeit they do not apply to the Probit regression problem)

provide further suggestive evidence of the robust nature of our interweaving strategy.

3.5 Seeking Effective Data-Dependent Working Parameter

In Section 3.2 we emphasized the importance and potential of allowing the actual data to govern the

choice of the working parameter. In the current cases, the working parameters are {bi, i = 1, . . . , n}.
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In Section 3.3 we then mentioned that there are a number of possible choices of bi for the sampling

stage based on working parameter values obtained during the adaptive stage: {b(t)i , t = 1, . . . , t∗}. As

a preliminary assessment of the impact of the choice of data-dependent working parameters on ESS,

Figure 9 displays the box-plots of ESS for six choices of bi’s. They are:

1. Last: Set bi = b
(t∗)
i , the last updated value of bi from the adaptive stage;

2. Mean: Set bi = b̄i, the average of the last 10% b
(t)
i ’s from the adaptive stage;

3. Median: Set bi = med{bi}, the median of the last 10% b
(t)
i ’s from the adaptive stage;

4. Mode: Set bi = mode{bi}, the mode of an estimated density (using a kernel method) of the last

10% b
(t)
i ’s from the adaptive stage;

5. Mode2: Set bi = G(Yobs,iXiθ̂) (see (3.6)), where θ̂ is the mode of an estimated density (using a

kernel method) of the last 10% of θ(t)’s from the adaptive stage;

6. MLE: Set bi = G(Yobs,iXiθ̂MLE), where θ̂MLE is the MLE of θ under the Probit model. (This

last choice of bi does not require the adaptive stage, and it is included as a benchmark.)

●
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ESS by different methods

Figure 9: Comparing various choices of the data-dependent working parameter based on 25 simulations.

As one may expect, using only the last value from the adaptive stage creates too much variation,

although it is the least costly in terms of CPU time and easiest to implement. The latter is true for

using the MLE, which eliminates the adaptive stage altogether. Unfortunately these two methods also

have the lowest ESS on average. The best performer seems to be using the mode of b(t)i , but it involves a

kernel estimation (and mode finding), which can be more costly timewise, albeit for our simulation this

was not a problem. For our Table 1, we adopted the mean choice because we conjectured that it would

represent a practical compromise between statistical efficiency and computational efficiency. Figure 9

suggests, however, that the median perhaps is an even better compromise. Further research obviously is

needed to assess whether using the median (or another method) is a good compromise in general.
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We did, however, find a partial indication for the better performance of the median when we attempted

to address both reviewers’ question about how we could trust bi’s from the adaptive stage, where the

draws from our prototype algorithm itself cannot be trusted. The answer lies in the fact that we are

not seeking the theoretically optimal choice of bi, but rather any reasonable choice of it that would

result in an algorithm with acceptably satisfactory efficiency. Recall the choice of bi does not affect

the validity of our prototype algorithm as long as it is fixed during the sampling stage. Furthermore,

although in the adaptive stage the draws of θ from our algorithm follow a different distribution than

the one for the draws from the sampling stage, the two distributions apparently are close enough that

their corresponding distributions for bi = G(Yobs,iXiθ) do not provide significantly different summary

statistics, especially for the robust ones such as medians.

To illustrate this point, Figure 10 displays the Q-Q plots of the samples of the three components of θ

from the sampling stage against their counterparts from the adaptive stages. We see clearly that although

the plots show some visible differences between the two distributions, the differences lie primarily in their

tails.
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Figure 10: Q-Q plots for samples of θi, i = 1, 2, 3: sampling stage verses the adaptive stage.

Figure 11 displays the corresponding Q-Q plot of samples of randomly selected four (out of n = 55)

bi from the sampling stage against those from the adaptive stage. Again we see the major differences lie

in tails. To see the impact of adaptation numerically, let b̄[S]
i and b̄

[A]
i be the sample means of bi from

the sampling stage and the adaptive stage respectively. Then for the same data underlying Figure 10

and Figure 11, we have (recall n = 55 for our lupus nephritis data set)

1
55

55∑
i=1

∣∣∣b̄[S]
i − b̄

[A]
i

∣∣∣ = 0.00303, (3.8)

which is only one third (0.00303/0.918=0.0033) of a percent compared with
∑55
i=1 b̄

[S]
i /55 = 0.918. If

we replace the sample means in (3.8) by their sample median counterparts, then the absolute difference

will be even smaller: 0.00226. The corresponding relative difference compared with the average of the

sample medians is 0.00226/0.926 = 0.0024, only one quarter of a percent. We therefore have rather good
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empirical verification that the lack of proper convergence during the adaptive stage had non-significant

impact on our overall findings.
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Figure 11: Q-Q plot: samples of bi (for four different i’s) from the sampling and adaptive stages.

It is also worthy to point out the trade-off between the number of iterations during the adaptive stage

and the sampling stage. Practically, the length of the adaptive stage is likely to be positively correlated

with the quality of our choices of bi’s for the sampling stage. However, the lengths of the two stages

obviously compete with each other for a total given computational budget. There is hence a trade-off

between a longer sampling stage with a less effective choice of b versus a shorter sampling stage but with

a more effective b. We still need to develop a good practical guideline for such a trade-off, as well as for

a number of other trade-offs discussed in the next Section.

4 Challenges and Opportunities

The primary purpose of this article was to provide initial evidence of the potential of residual augmenta-

tions, proposed recently (Yu and Meng, 2011). On the theoretical side, we demonstrated the possibility

of establishing numerically rather tight universal bounds (e.g., 1/8 or 1/5) by utilizing a unique “com-

peting” nature of the interweaving strategy, as well as the existence of the “safe zone” and the resulting

convenient minimax choice ASIS. At the same time, we uncovered a somewhat unexpected phase tran-

sition behavior, which makes the issue of robustness-efficiency trade-off particularly critical and tricky.

Mathematically, the situation reminds us of AR(1) type of time series models (see Pena, Tiao and Tsay,

2001), where the unit root serves as the only boundary between a stationary region and an explosive

region. It is well known that uncertainties in identifying a unit root could lead to rather different statis-

tical properties from what were intended (e.g., Meng and Xie, 2013). Analogously errors in computing

regression slopes for residual augmentations could mean the difference between delivering nearly inde-

pendently and identically distributed draws and producing almost identical draws (because of extremely

poor mixing)!

Therefore, much needs to be done in order to identify situations where we can push the data-dependent
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residual schemes to achieve their maximal efficiency, and where it is too dangerous to do so and hence

we should stay with robust “data-free” schemes such as ASIS. Whereas we succeeded in establishing

such results for a class of normal/independent models, we nevertheless benefited from the conditional

normality inherited in such a class of models and the symmetric nature of (θ, Ymis) as in (2.6). We

imagine the task is rather challenging in general because without normality of some sort (marginal or

conditional), the analytic manipulation of maximal correlations is typically intractable. Furthermore,

the three maximal correlations in (1.3) generally cannot be mapped into the same triangle because (for

example) the function (i.e., transformation) of θ that leads to its maximal correlation with Ymis may not

be the same function for maximizing its correlation with Ỹmis. This would render the geometric expression

(2.5) inapplicable, at least not directly. Nevertheless, given the general difficulties in establishing useful

bounds for convergence rates for MCMC (see various chapters in Brooks et al., 2011), we are encouraged

by the preliminary theoretical results reported in Section 3.

On the algorithmic side, as we have seen from the Probit models, there are at least two issues we

need to deal with effectively in order to fully realize the potential of residual augmentations, with or

without interweaving. The first is how to find a good compromise between statistical efficiency, which

requires us to stay as closely as possible to the theoretically optimal residuals (under whatever criterion

adopted), and implementation/computational efficiency, which often requires simple approximations to

the optimal residual for effective execution of the Ỹmis → θ step. The second is that even when we know

how to carry out the Ỹmis → θ step in theory, its actual implementation can have a significant impact on

the overall competitiveness of the resulting algorithm. As seen in Section 3.4, different implementations

of the nested Gibbs sampler have led to very different algorithmic efficiency.
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Figure 12: The left plot is the H function with a two-piecewise linear approximation; the right plot is

the derivative function G(z) = H ′(z).

We are also working on finding a better approximation to the actual residual than our current linear
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approximation. As is evident from the left panel in Figure 12, the conditional mean function H(z) can be

approximated well by a two-piecewise linear function. That is, we can find two suitable derivative values

(see the right panel) G(z) as the bi’s for our residual augmentations Ỹmis,i = Ymis,i− biXθ depending on

the value of Xθ (from the left panel, choosing 0 as the connecting point of the two linear pieces seems to be

both effective and convenient). However better approximations do not transfer to better algorithms unless

the added computational burden does not unduly offset the gain in statistical/algorithmic efficiency.

Furthermore, for our probit regression we have constructed only DRA, mainly because in this case

DRA is simpler in construction than IRA due to the fact that E[Ymis,i|θ, Yobs] = E[Ymis,i|θ, Yobs,i], per-

mitting component-wise (as indexed by i) calculations (see (3.4)), which is not the case for E[θ|Ymis, Yobs].

However, for each component i, we notice that the probit model depends on θ only through Xiθ. Hence

it is possible to consider forming component-wise IRA in the form of Ỹmis,i = Xiθ−E[Xiθ|Ymis,i, Yobs,i],

which would still render component-wise zero posterior correlation:

Cov(Ỹmis,i, Ymis,i|Yobs,i) = 0, i = 1, . . . , n. (4.1)

Although component-wise derivation/calculation will render implementation simplicity, we are likely

giving up some statistical efficiency because (4.1) does not achieve the actual zero posterior correlation

Cov(Ỹmis, Ymis|Yobs) = 0; note (4.1) implies neither Cov(Ỹmis,i, Ymis,j |Yobs,i) = 0 for any i 6= j, nor

Cov(Ỹmis,i, Ymis,i|Yobs) = 0 for any i.

We are currently investigating a number of such trade-off issues between statistical efficiency and

computational efficiency (e.g., implementation simplicity). There are many challenges ahead, and what

is reported above are only those from our initial investigation. At the same time, we have so many options

to explore, from forming DRA and IRA to many of their approximations and variations (e.g., component-

wise residuals), and with or without interweaving. In our general pedagogical effort, explaining the

difference between regressing Y on X and regressing X on Y , to those who are ingrained in deterministic

thinking of a functional relationship, has not been a trivial task. But it is the very existence of these two

regression lines that offers us a unified theme to explore and construct MCMC algorithms which come

closer to realizing the sweet 3-S dream, a dream we invite all readers to share.

5 Appendix

5.1 Proof of the 8−1 bound for the normal model

Proof : Let g(r, c) be the function defined by the right-hand side of (2.3). Then when r ≤ c ≤ r−1,

g(r, c) =
r(c− r)(1− rc)

1 + c2 − 2rc
≤ 1

8
⇔ (1 + 8r2)c2 − 2r(4r2 + 5)c+ 1 + 8r2 ≥ 0. (5.1)

But for the quadratic form (in c) on the right-hand side, the discriminant ∆ = 4(2r+1)2(2r−1)2(r2−1) ≤

0. This establishes our claim that when c is in the safe zone [r, r−1], r1&2 ≤ 8−1. (As mentioned before,
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a geometric proof is to use (2.5). It can also be viewed as a special case of the t model with infinite

degrees of freedom, discussed below.)

5.2 Proof of the bound (2.10) for the normal/independence model

To prove this bound we need the notion of partial maximal correlation (Yu and Meng 2011) defined for

three random variables X,Y, Z as the following:

RZ(X,Y ) = sup
f,h∈L2

Cov(f(X)− E[f(X)|Z], h(Y )− E[h(Y )|Z])√
Var(f(X)− E[f(X)|Z])Var(h(Y )− E[h(Y )|Z])

. (5.2)

We also need the notion of conditional maximal correlation, which is defined as

R(X,Y |Z) = sup
f,h∈L2

Corr(f(X), h(Y )|Z)

= sup
f,h∈L2

Cov(f(X), h(Y )|Z)√
Var(f(X)|Z)Var(h(Y )|Z)

.

The difference is that R(X,Y |Z) plays the role of conditional correlation, which is a function of Z; while

RZ(X,Y ) plays the role of partial correlation, which is averaged over Z. But they obey the following

inequality:

RZ(X,Y ) ≤ sup
z
R(X,Y |Z = z). (5.3)

This can be proved by first noticing that for any triple {X,Y, Z},

Cov(f(X)− E[f(X)|Z], h(Y )− E[h(Y )|Z]) = E
[
Cov(f(X), h(Y )|Z)

]
(5.4)

whenever the needed moments exist. Applying (5.4) to both numerator and denominator of (5.2) (for

the two parts in the denominator, we take f = h in (5.4)), we obtain

RZ(X,Y ) = sup
f,h∈L2

E
[
Cov(f(X), h(Y )|Z)

]
√

E
[
Var(f(X)|Z)

]
E
[
Var(h(Y )|Z)

]
,

≤ sup
z
R(X,Y |Z = z)× sup

f,h∈L2

E
[√

Var(f(X)|Z)Var(h(Y )|Z)
]

√
E[Var(f(X)|Z)]E[Var(h(Y )|Z)]

= sup
z
R(X,Y |Z = z),

where the last equality follows from the Cauchy-Schwartz inequality, which becomes equality when f = h.

Now applying (5.3) to (2.6), we have

RW (θ, Ymis) ≤ sup
w
R(θ, Ymis|W = w) = r. (5.5)

By the Lemma 1 of Yu and Meng (2011),

R(θ, Ymis) ≤ RW (θ, Ymis) + (1−RW (θ, Ymis))R(θ,W )R(Ymis,W ). (5.6)
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Noting that under (2.6), R(Ymis,W ) = R(θ,W ), we see from (5.5)-(5.6) that

R(θ, Ymis) ≤ g + (1− g)r, where g = R2(θ,W ). (5.7)

Letting Ỹmis = Ymis − cθ, it is easy to see that the above derivation also applies to R(Ỹmis, θ) and

R(Ỹmis, Ymis), except with r replaced respectively by

r1 ≡ R(Ỹmis, θ|W ) =
|c− r|√

1 + c2 − 2cr
and r2 ≡ R(Ỹmis, Ymis|W ) =

|1− cr|√
1 + c2 − 2cr

, (5.8)

where the calculation of R(Ỹmis, θ|W ), for example, can be directly read off from the covariance matrix in

(2.2) (the missing multiplicative factor W−2 is not relevant for the correlation calculation). Consequently,

from (1.3), we have

r1&2 ≤ R(θ, Y mis)R(θ, Ỹ mis)R(Ỹ mis, Y mis)

≤ [g + (1− g)r][g + (1− g)r1][g + (1− g)r2] ≡ F (r, c, g),

Now we prove that in the “safe” zone, where r ≤ c ≤ r−1,

F (r, c, g) ≤ 1
8

(1 + g)3.

We prove this in two steps.

1. For fixed 0 < r, g < 1, F (r, c, g) is maximized at c = 1. Because

∂F

∂c
=

(1− r2)(1− g)[r + (1− r)g]
(1 + c2 − 2cr)2

[g
√

1 + c2 − 2cr + (1− g)(1 + c)](1− c), (5.9)

we have

∂F

∂c


> 0, if c < 1

= 0, if c = 1

< 0, if c < 1.

Therefore, we see F (r, c, g) is maximized at c = 1 for any r and g.

2. For c = 1 and fixed g, F (r, 1, g) is maximized at r = 1
2 . Because

∂F (r, 1, g)
∂r

=
(1− g)[(1− g)

√
(1− r)/2 + g]

[
1− g + g√

2(1−r)+1

]
√

2(1− r)
(1− 2r), (5.10)

we see that

∂F (r, 1, g)
∂r


> 0, if r < 1

2

= 0, if r = 1
2

< 0, if r < 1
2 .

Hence F (r, 1, g) is maximized when r = 1
2 for any fixed g < 1.

As a result, F (r, c, g) ≤ F ( 1
2 , 1, g) = 1

8 (1 + g)3.
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5.3 Proof of the limits of Rv(θ,W )

Now we prove that when W 2 ∼ χ2
v/v, Rv(θ,W ) → 1 as v → 0, under the model (2.6). Consider two

functions g, h : g(θ) = |θ|v/4 and h(W ) = W−v/4. Because g(θ) and h(W ) both have finite variances,

their linear correlation is a lower bound for Rv(θ,W ). Thus it is sufficient to show that this linear

correlation goes to one as v → 0. Direct calculation shows

Corr(|θ|v/4,W−v/4) = 2
v
4 Γ[

4 + v

8
]

√
Γ[ v4 ]Γ[v2 ]− Γ[ 3v

8 ]2

2πΓ[v2 ]2 − 2
v
2 Γ[ 3v

8 ]2Γ[ 4+v
8 ]2

. (5.11)

By the fact that Γ[v]Γ[1− v] =
π

sin(πv)
when 0 < v < 1, we know limv→0 vΓ[v] = 1. Together with the

fact that limv→0 Γ[ 4+v
8 ] = Γ[1

2 ] =
√
π, we deduce the right-hand side of (5.11) converges to

√
π

√√√√√√ 8− 64
9

2π×4− 64
9
π

= 1,

which completes our proof.

The proof for Rv(θ,W )→ 0 as v →∞ turns out to be much more involved, even though the result

seems obvious because as v →∞, W converges almost surely to the constant 1, and hence it should be

independent of any random variable. The trouble is that there is no theory to automatically guarantee

that Rv(θ,W ) is a continuous function of v. In general, it is a rather complex task to establish even

such a continuity with respect to a simple linear combination weight because in general it is not true

(see Bryc, Dembo, and Kagan, 2005). We therefore take an indirect route, by considering a two-step

Gibbs sampler alternating between sampling θ|W and W |θ, whose L2 convergence rate is R2
v(θ,W ). It

was shown in Roberts and Tweedie (2001) that, for a time reversible Markov chain (such as a two-step

Gibbs sampler), its L2 geometric rate is equivalent to its L1 rate. By definition, geometric ergodicity in

L1 means that the total variation distance to the target distribution can be bounded by an exponentially

decaying function. The bounds in Jones and Hobert (2004) yield precisely such functions, from which

we can read off bounds on the geometric rate. Therefore, we can establish the desired result by proving

that the L1 rate converges to zero as v →∞.

To prove this, we first consider an equivalent two-step Gibbs sampler that alternates between θ|Y and

Y |θ, where Y = vW 2 ∼ χ2
v. Clearly, to draw from θ|Y, we only need to draw Z ∼ N(0, 1) independently

of Y , and then form θ = Z/
√
Y/v. To draw Y |θ, we note the identity Y = (Y + Z2)/(θ2/ν + 1), and

the fact that 1/(θ2/ν + 1) = Y/(Y + Z2) has a beta distribution and is independent of Y + Z2, which

has a χ2
ν+1 distribution. Hence we simply draw G ∼ χ2

ν+1 independently of θ and let Y = G/(θ2/ν + 1).

Combining the two steps we may represent one iteration of the Y margin by

Y → Y new ≡ G

1 + Z2/Y
, (5.12)

where Z2 ∼ χ2
1, G ∼ χ2

ν+1, and Y, Z2, G are independent. The Markov chain (5.12) is irreducible

(with respect to Lebesgue measure), aperiodic and positive Harris recurrent with χ2
ν as its invariant
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distribution. Therefore, to bound its L1 rate we can establish suitable minorization and drift conditions

and appeal to Rosenthal’s (1995) result as stated by Jones and Hobert (2004), Theorem 3.1.

Assume ν > 6 and define

V (y) = ν

(
ν − 6
y
− 1
)2

, y > 0.

Direct calculation using moments of the inverse χ2 distribution yields

E[V (Y new)|Y ] = γV (Y ) + b, where γ =
3

(ν − 1)(ν − 3)
and b =

2ν2

(ν − 1)(ν − 3)
.

Let dR > 4 be a constant, and suppose ν is large enough so that ν > dR > 2b/(1 − γ). Define the set

C = {y > 0 : V (y) ≤ dR}, which is simply the interval

y ∈ [y∗, y∗], where y∗ =
ν − 6

1 +
√
dR/ν

and y∗ =
ν − 6

1−
√
dR/ν

.

Let ε =
√
y∗/y∗. For any fixed y ∈ C the density of Z2/y is bounded below by ε times the density of

Z2/y∗, because √
y

2πx
e−yx/2 ≥

√
y∗

2πx
e−y

∗x/2, x > 0.

It follows that, if we denote the distribution of G/(1 + Z2/y) by P (y, ·) (i.e., P (y, ·) is the transition

kernel of (5.12)), then

P (y, ·) ≥ εP (y∗, ·), y ∈ C.

Specifically, one can sample from P (y, ·) by setting Y new = G/(1 + Z2/y∗) with probability ε and using

another transition rule with probability 1− ε.

We have now verified all conditions of Theorem 3.1 of Jones and Hobert (2004) and can conclude

that the L1 rate of (5.12) is bounded above by max{(1− ε)r, Ur/α1−r}, where

α =
1 + dR

1 + 2b+ γdR
, U = 1 + 2(γdR + b)

and r ∈ (0, 1) is an arbitrary constant. However, for fixed dR, as ν →∞ we have b→ 2, γ → 0, ε→ 1,

and this upper bound tends to 5r/((1 +dR)/5)1−r. By choosing an arbitrarily large dR we can make this

limiting upper bound arbitrarily small. Hence the L1 rate must tend to zero as ν →∞.
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