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Instabilities in multilayered soft dielectrics

Katia Bertoldi∗ and Massimiliano Gei†

July 15, 2010

Abstract

Experimental observations clearly show that the performance of dielectric elastomeric-
based devices can be considerably improved using composite materials. A critical
issue in the development of composite dielectric materials toward applications is the
prediction of their failure mechanisms due to the applied electromechanical loads.
In this paper we investigate analytically the influence of electromechanical finite
deformations on the stability of multilayered soft dielectrics under plane-strain con-
ditions. Four different criteria are considered: i.) loss of positive definiteness of
the tangent electroelastic constitutive operator, ii.) existence of diffuse modes of
bifurcation (microscopic modes), iii.) loss of strong ellipticity of the homogenized
continuum (localized or macroscopic modes), and iv.) electric breakdown. While
the formulation is developed for generic isotropic hyperelastic dielectrics, results
are presented for the special class of ideal dielectrics incorporating a neo-Hookean
elastic response. The effect of material properties and loading conditions is inves-
tigated, providing a detailed picture of the different possible failure modes.

Keywords: Electroactive Polymers, Bifurcations, Localization of Deformation, Com-
posite Materials, Finite Elasticity.

1 Introduction

The application of a voltage through electrodes to soft dielectric elastomers deforms
them substantially, giving us the opportunity to use this principle to design a new class
of actuators. Discovery and development of these materials were first reported in the
works of Pelrine and coworkers (Pelrine et al., 1998, 2000). Immediately, they attracted
significant interest because of tremendous potential in areas as robotics, aerospace and
biomedical engineering. Currently, dielectric elastomers are widely employed to manufac-
ture devices as reliable electrically-driven actuators, manipulators and energy harvesters

∗School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138,
USA; email: bertoldi@seas.harvard.edu; web-page: www.bertoldi.seas.harvard.edu.

†Department of Mechanical and Structural Engineering, University of Trento, Via Mesiano 77, I-38123
Trento, Italy; email: massimiliano.gei@unitn.it; web-page: www.ing.unitn.it/∼mgei.

1



(see Bar-Cohen, 2001; Carpi et al., 2008a; Carpi and Smela, 2009, and references cited
therein).

A significant challenge in the development of devices based on dielectric elastomers
is that they often require the application of extremely high voltages as a result of the
material low dielectric constant. This represents a clear limitation in their development
toward further applications, but both experimental (Zhang et al., 2002; Huang et al.,
2004; Carpi et al., 2008b) and analytical (deBotton et al., 2007) investigations showed
that composite materials can provide a solution to this critical issue. When stiff and
high-permittivity particles are included in a soft elastomeric matrix, the overall dielec-
tric constant of the material increases considerably, while its deformability may be only
marginally affected. DeBotton et al. (2007) showed that the use of biphasic laminate
dielectric composites can improve the actuation strain up to 50% or, on the other hand,
can provide the same actuation with a sensible decrease of the applied voltage. How-
ever, to design a new class of optimized devices based on dielectric composites, further
investigations are necessary focusing both on their failure under the applied loads and on
the effect of inclusions volume fraction, geometry and material properties on their per-
formance. In this work we concentrate on the latter issue, investigating in a systematic
way instabilities that develop in finitely deformed multilayered dielectrics.

The optimization of the performance of dielectric elastomer actuators is a challenging
task due to their multiple failure modes. For single-phase actuators, electromechani-
cal instabilities (unstable thinning of the actuator, local buckling induced by coexistent
states, electric breakdown) have been explore both analytically (Zhao and Suo, 2007;
Zhao et al., 2007; Moscardo et al., 2008; Liu et al., 2009) and experimentally (Plante and
Dubowsky, 2006), providing also design guidelines to prevent potential failures under op-
erating conditions. Moreover, Dorfmann and Ogden (2010) recently investigated surface
instabilities for an electroelastic half space. In composite systems instabilities are even
more critical and a larger family of potential failure modes must be considered.

In this scenario modeling represents a fundamental tool. Motivated by the develop-
ment of applications, the nonlinear theory of soft dielectrics, first proposed by Toupin
(1956), has been recently reviewed and further developed. In particular, we refer to
the work of McMeeking and Landis (2005), Dorfmann and Ogden (2005) and Suo et al.
(2008), where both the concepts of Maxwell and total stresses and the formulation of
constitutive equations for conservative materials have been discussed. In addition, based
on this theory a variational formulation has been built and discretized using the finite
element method (Vu et al., 2007).

In this paper the stability of multilayered hyperelastic dielectric elastomers deforming
at large strains is systematically investigated. Four instability criteria for composites are
introduced1, namely

i.) loss of positive definiteness of the tangent electroelastic constitutive operator;
ii.) existence of diffuse modes of bifurcation (microscopic modes);

1It is important to note that throughout the paper we refer generically to i.)–iv.) as ‘instability’
criteria. More precisely, i.)–iii.) detect a possible bifurcation point along the fundamental deformation
path, while iv.) corresponds to a failure threshold for the solid.
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iii.) loss of strong ellipticity of single phases and of the homogenized continuum
(localized modes or, in the latter case, macroscopic modes);

iv.) electric breakdown.
The first three criteria follow from the theory of bifurcation and stability for nonlin-
ear elastic solids developed by Hill (1957) and Biot (1965) and applied subsequently
to investigate loss of uniqueness of given loading paths in boundary-value problems for
both homogeneous solids (Hill and Hutchinson, 1975; Ogden, 1984; Needleman and Or-
tiz, 1991; Triantafyllidis and Lehner, 1993) and composite materials (Triantafyllidis and
Maker, 1985; Geymonat et al., 1993; Bigoni and Gei, 2001; Triantafyllidis et al., 2006;
Michel et al., 2007). Electric breakdown is instead specific for dielectric materials that
are characterized by a limit maximum value for the intensity of the electric field, beyond
which electric discharges may take place.

The four instability criteria are then specialized to rank-one layered composites finitely
deformed under plane-strain conditions. A detailed analysis of instabilities is reported
for a multilayer with two phases made of ideal dielectrics incorporating a neo-Hookean
elastic response (Dorfmann and Ogden, 2005). Interestingly, the results clearly show
that depending on the heterogeneity contrast between the phases and on the loading
conditions different failure modes may occur.

2 Theory of elastic dielectrics

2.1 Basic notation

In this section we summarize the equations governing the nonlinear electrostatic de-
formation (electrodynamical effects are excluded) of heterogeneous dielectrics following
the formulation previously introduced by McMeeking and Landis (2005), Dorfmann and
Ogden (2005), deBotton et al. (2007) and Suo et al. (2008).

Let us consider an isolated system consisting of a multi-phase electroelastic body and
the complemental surrounding space (Fig. 1) and indicate by B0 and B0

sur = R
3 \ B0 the

undeformed stress-free configuration of the body and the surrounding space, respectively.
We identify with ∂B0 the boundary separating B0 from the surrounding, while ∂B0

int de-
notes the set of all the internal interfaces between heterogeneities in B0. The application
of both mechanical loadings and electric fields deforms quasi statically the body from B0

to the current configuration B and interfaces ∂B0 and ∂B0
int to ∂B and ∂Bint, respectively.

Such deformation is described by the function χ that maps a reference point x0 in B0 to
its deformed position x = χ(x0) in B. The associated deformation gradient will be de-
noted by F = ∂χ/∂x0, while J identifies its determinant, J = detF. If the surrounding
space does not consists of vacuum, the deformation χ can be extended to B0

sur, yielding
Bsur = R

3 \ B = χ(B0
sur).

At this point it is important to note that when electric and/or magnetic interactions
are considered, the solution of a boundary-value problem requires the integration of the
governing equations over the entire system (i.e. the body and the surrounding space). As
a consequence, specific relations for the jumps over ∂B must be satisfied by the relevant
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Figure 1: An isolated system consisting of a heterogeneous dielectric body and the surrounding space
in the current configuration. In the sketch ∂Bint = ∂B1

int

⋃

∂B2
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⋃

∂B3

int
, while ∂Bv and ∂Bt (∂B =

∂Bv ∪ ∂Bt) denote the portions of ∂B where displacements and tractions are applied, respectively.

quantities entering the governing equations.

2.2 Spatial formulation of the governing equations

Equilibrium of the dielectric body is ensured when the total stress τ , electric displacement
D and electric field E satisfy

div τ + b = 0, τ
T = τ , divD = 0, curlE = 0 (in B ∪ Bsur), (1)

b being the ‘mechanical’ specific body force. Eqns. (1)1,2 are associated with equilib-
rium of momenta, while eqns. (1)3,4 are the relevant Maxwell’s equations in the quasi–
electrostatic limit. Eqn. (1)4 implies that the electric field is conservative, so that it can
be written as a function of the electric potential φ(x)

E = −gradφ,

φ(x) being a continuous function defined over the entire system, since double layers of
charge are not considered. The electric field causes the alignment of dipoles inside the
body leading to its polarization, which is described by a vector field P,

P = D− ǫ0E.

To specify boundary conditions, the subsets ∂Bv and ∂Bt (∂Bv ∪ ∂Bt = ∂B, ∂Bv ∩
∂Bt = ∅) are introduced, where displacements and surface tractions are prescribed, re-
spectively. Thus the boundary conditions across ∂B are given by (see Fig. 1)

[[v]] = 0, [[τ ]]n = t (on ∂Bt), v = ṽ (on ∂Bv), (2)
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[[D]] · n = −ω, n× [[E]] = 0 (on ∂B),
where v denotes the finite displacement field, ṽ and t are prescribed vector fields, n is
the current outward normal to ∂B, ω are surface charges2 and [[ · ]] is the jump operator
defined on ∂B as [[f ]] = f solid − f sur.

Moreover, assuming that no mechanical tractions and surface charges are applied to
∂Bint and that heterogeneities in the body are perfectly bonded, the boundary conditions
across ∂Bint separating phases ‘a’ and ‘b’ are given by

[[v]] = 0, [[τ ]]n = 0, [[D]] · n = 0, n× [[E]] = 0 (on ∂Bint), (3)

where now the jump operator is defined as [[f ]] = f b − fa and n is the unit normal
pointing towards phase ‘a’.

In the particular case of the surrounding space consisting of vacuum, the boundary
conditions (2)2,4 specialize to

τn = t+ τ
∗n, D · n = −ω + ǫ0E

∗
· n, (4)

respectively, where τ and D are evaluated in the body, whereas ∗ denotes quantities
evaluated in the vacuum,

τ
∗ = ǫ0

(

E∗ ⊗ E∗ − 1

2
E∗2I

)

, D∗ = ǫ0E
∗,

ǫ0 being the permittivity of vacuum (ǫ0 = 8.85 pF/m). Equation (4)1 clearly shows that
the Maxwell stress τ ∗ acting on the boundary separating the dielectric body from vacuum
affects the total stress τ in the body.

2.3 Lagrangian formulation of the governing equations

Integration of eqns. (1) over B and change of variable from x to x0 yield3

DivS+ b0 = 0, SF = (SF)T , DivD0 = 0, CurlE0 = 0 (in B0 ∪ B0
sur), (5)

which represent the lagrangian formulation of the field equations for the electroelastic
response of the system. In the equations above S = JτF−T is the total first Piola-
Kirchhoff stress, D0 = JF−1D is the lagrangian (or nominal) electric displacement,
E0 = FTE is the lagrangian (or nominal) electric field4 and Div and Curl denote the

2Often charges are accumulated on the surface through electrodes connected to a battery which
imposes a constant electric potential. In this case the boundary condition (2)4 must be replaced by a
boundary condition setting the appropriate value of φ over the region where the electrodes are applied.

3Denoting by dV 0 an infinitesimal volume in B0, by dA0 an infinitesimal area on ∂B0 and by n0 its
outward unit normal, b0dV 0 corresponds to the infinitesimal current body force, t0dA0 to the infinites-
imal current contact force and ω0dA0 to the infinitesimal current surface charge. Note that dA0 can be
expressed in terms of the current quantities using the Nanson’s formula n dA = JF−Tn0dA0, whereas
dV = J dV 0.

4We avoid to define a ‘lagrangian polarization vector’ since there is no Maxwell’s equation associated
with this field.
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div and curl operators in B0. Since the electric field is conservative, in the reference
configuration E0 = −Gradφ0, where φ0(x0) = φ(x) is the lagrangian (nominal) electric
potential.

The boundary conditions (2) may be rewritten in lagrangian form as

[[v0]] = 0, [[S]]n0 = t0 (on ∂B0
t ), v0 = ṽ0 (on ∂B0

v), (6)

[[D0]] ·n0 = −ω0, n0 × [[E0]] = 0 (on ∂B0),

where v0(x0) = v(x). The lagrangian form of eqns. (3) can be obtained analogously.
We would like to remark that when vacuum surrounds the body, there is no defor-

mation associated with it, so that the definition of lagrangian quantities in B0
sur has no

meaning. Therefore, eqns. (4) can be rewritten in lagrangian form as

Sn0 = t0 + Jτ ∗F−T
bndn

0 and D0
· n0 = −ω0 + ǫ0JF

−1
bndE

∗
· n0, (7)

where Fbnd = F|∂B0 .

2.4 Constitutive equations

Let us consider a conservative material whose response is described by the free-energy
function W = W (F,D0). Application of the first and second law of thermodynamics
yields (McMeeking and Landis, 2005; Dorfmann and Ogden, 2005; Suo et al., 2008)

S =
∂W

∂F
, τ =

1

J

∂W

∂F
FT , (8)

whereas the electric field is obtained as

E0 =
∂W

∂D0
, E = F−T ∂W

∂D0
. (9)

For an incompressible material (i.e. J = 1) eqns. (8) modify as

S =
∂W

∂F
− pF−T , τ =

∂W

∂F
FT − p I, (10)

where p is an arbitrary hydrostatic pressure.
Objectivity requires the free energy W (F,D0) to be written as a function of the right

Cauchy-Green tensor C = FT F and D0, which are both invariant under arbitrary rigid-
body motions. Moreover, for an isotropic hyperelastic dielectric body the free energy
W (C,D0) can be expressed as a function of the invariants of C (see Dorfmann and
Ogden, 2005)

I1 = trC, I2 =
1

2

[

(trC)2 − trC2
]

, I3 = detC = J2,

and of three additional invariants depending on D0, namely

I4 = D0
·D0, I5 = D0

·CD0, I6 = D0
·C2D0.
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Due both to the lack of available experimental data and to the desire of a simple enough
formulation that allows a better understanding of the material response, an uncoupled
form for the free energy is often considered

W = Welas(I1, I2, I3) +Wpol(I4, I5, I6), (11)

where Welas is the strain energy when electric effects are disregarded, whereas Wpol rep-
resents the contribution of the polarization of the solid. Several investigations (Eringen
and Maugin, 1989; McMeeking and Landis, 2005; Zhao et al., 2007; Zhao and Suo, 2008)
showed that the uncoupled free energy (11) well captures the behavior of large classes of
soft dielectrics such us ideal dielectrics and electrostrictive materials. In Section 5 results
will be presented for an incompressible dielectric (I3 = 1) whose behavior is captured
using the free energy

W nH =
µ

2
(I1 − 3) +

1

2ǫ
I5, (12)

where a neo-Hookean form has been adopted for Welas and the dependency of Wpol on I4
and I6 has been neglected. In eqn. (12) µ is the shear modulus in the reference configu-
ration and ǫ = ǫ0ǫr denotes the dielectric constant of the solid taken to be unaffected by
the deformation, so that the free energy (12) predicts a linear proportionality between
electric displacement and electric field along any loading path. The adoption of the form
(12) is justified by experimental data on typical materials for soft dielectrics (see, e.g.,
Goulbourne et al., 2005, and Kofod et al., 2003) showing that i.) the simple form of the
free energy W nH describes well the electromechanical behavior of these materials up to a
maximum tensile stretch of about two, while for highly strained specimens more refined
models such those proposed by Ogden and Yeoh must be employed; ii.) the dielectric
permittivity ǫ is almost insensitive on the large strain applied to the specimen.

2.5 Incremental boundary-value problem

The mechanics of incremental deformations superimposed upon a given state of finite
deformation allows the investigation of instabilities that develop in dielectric bodies sub-
jected to nonlinear electrostatic deformations. Here, in the spirit of Dorfmann and Ogden
(2010), we focus on conservative dielectric materials that are isotropic in the reference
configuration and satisfy at each stage of deformation eqns. (5)-(6).

2.5.1 Lagrangian formulation

Let us consider a perturbation ṫ0 and ω̇0 of the tractions and the surface charges applied
on ∂B0 that takes the body to a new equilibrium configuration where eqns. (5)-(6) are
still satisfied and leaves the body force density b0 unchanged. The incremental problem
is governed by

Div Ṡ = 0, Div Ḋ0 = 0, Curl Ė0 = 0 (in B0 ∪ B0
sur), (13)
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where Ṡ, Ḋ0 and Ė0 denote the increments of total first Piola-Kirchhoff stress, nominal
electric displacement and nominal electric field caused by the perturbation. Moreover,
the incremental jump conditions at the external boundary of the body take the form

[[ẋ]] = 0, [[Ṡ]]n0 = ṫ0 (on ∂B0
t ), ẋ = 0 (on ∂B0

v), (14)

[[Ḋ0]] · n0 = −ω̇0, n0 × [[Ė0]] = 0 (on ∂B0),

ẋ = χ̇(x0) denoting the incremental deformation. Similar boundary conditions hold at
∂B0

int, namely

[[ẋ]] = 0, [[Ṡ]]n0 = 0, [[Ḋ0]] · n0 = 0, n0 × [[Ė0]] = 0 (on ∂B0
int). (15)

When the dielectric body is surrounded by vacuum, the incremental counterpart of eqns.
(7) is given by

Ṡn0 = ṫ0 + Ṡ∗n0, Ḋ0
· n0 = −ω̇0 + Ḋ0∗

· n0, (16)

where Ṡ and Ḋ0 are evaluated in the body, while S∗ = Jτ ∗F−T
bnd and D0∗ = ǫ0JF

−1
bndE

∗

are evaluated in vacuum.
Assuming that all incremental quantities are sufficiently small, the constitutive equa-

tions (8)1–(9)1 can be linearized as

Ṡ = C
0Ḟ+ B

0 Ḋ0, ṠiJ = C0
iJkLḞkL +B0

iJMḊ
0
M ,

Ė0 = B
0T ∗

Ḟ+A0 Ḋ0, Ė0
M = B0

iJM ḞiJ + A0
MNḊ

0
N ,

(17)

where Ḟ = Gradχ̇ and
(

B0T ∗
)

MiJ
= B0

iJM .
It follows from eqns. (8)1-(9)1 and (17) that the components of the electroelastic

moduli tensors C0, B0 and A0 are given by

C0
iJkL =

∂2W

∂FiJ ∂FkL

, B0
iJM =

∂2W

∂FiJ ∂D
0
M

, A0
MN =

∂2W

∂D0
M ∂D0

N

, (18)

which imply the symmetries

C0
iJkL = C0

kLiJ , A0
MN = A0

NM . (19)

For incompressible materials the incremental total first Piola-Kirchhoff stress tensor
and lagrangian electric field are given by

Ṡ = C
0Ḟ+ pF−T ḞTF−T − ṗF−T + B

0 Ḋ0, Ė0 = B
0T ∗

Ḟ+A0 Ḋ0, (20)

where the lagrange multiplier ṗ has been introduced by the incompressibility constraint
tr(ḞF−1) = 0.
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2.5.2 Updated lagrangian formulation

Instabilities are often investigated formulating the incremental boundary value problem
in an updated lagrangian formulation, where the reference configuration moves and is
identified with the current configuration. Push-forward transformations based on linear
momentum balance and divergence theorem (see Appendix A) allow the introduction of
the incremental updated quantities

Σ =
1

J
ṠFT , D̂ =

1

J
FḊ0. (21)

The work-conjugate variables to Σ and D̂ can be easily obtained from the second-order
work, namely

Pext =

∫

∂B0

{φ̇0ω̇0 + ṫ0 · ẋ} dA0.

Substitution of eqns. (14)2,4 and application of the divergence theorem yield

Pext =

∫

B0∪B0
sur

{Ė0
· Ḋ0 + Ṡ · Ḟ} dV 0 =

∫

B∪Bsur

{Ê · D̂+Σ ·L} dV, (22)

where
Ê = F−T Ė0 (23)

is the updated incremental lagrangian electric field, u(x) = ẋ, L = gradu and eqns.
(15) have been taken into account. Eqn. (22) highlights the analogy between surface
charge and surface tractions, displacements and electric potentials. Introduction of the
incremental updated quantities into eqns. (13) yields (see Appendix A)

divΣ = 0, div D̂ = 0, curl Ê = 0 (in B ∪ Bsur), (24)

which represent the updated lagrangian formulation of the field equations governing the
incremental problem. The incremental boundary conditions relating the jumps in the
updated lagrangian formulation to the perturbations in the reference configuration can
be written as

[[u]] = 0, [[Σ]]n dA = ṫ0dA0 (on ∂Bt), u = 0 (on ∂Bv), (25)

[[D̂]] · n dA = −ω̇0dA0, n× [[Ê]] = 0 (on ∂B),
and

[[u]] = 0, [[Σ]]n = 0, [[D̂]] · n = 0, n× [[Ê]] = 0 (on ∂Bint). (26)

When vacuum surrounds the dielectric body eqns. (25)2,4 reduce to

Σn dA = ṫ0 dA0 +Σ∗n dA, D̂ · n dA = −ω̇0 dA0 + D̂∗
· n dA, (27)

where

Σ∗ = τ̇
∗ + τ

∗
[

trL|bnd I− (L|bnd)
T
]

, D̂∗ = ǫ0

[

Ė∗ +
(

trL|bndI− L|bnd

)

E∗
]

,

9



Ė∗ denoting the increment of the electric field in the vacuum and with L|bnd = (gradu)|∂B.
Introduction of eqn. (21) into equations (17) yields

Σ = CL + BD̂, Ê = B
T∗L+AD̂, (28)

where the components of the updated constitutive tensors are given by

Ciqkp =
1

J
C0

iJkLFpLFqJ , Biqa = B0
iJMFqJF

−1
Ma, Aab = J A0

MNF
−1
MaF

−1
Nb . (29)

For an incompressible material eqn. (28)1 modifies as

Σ = CL+ pLT − ṗ I+ BD̂, (30)

whereas eqns. (29) are still valid substituting J = 1.
Analogously to C

0 and A0 the updated constitutive tensors C and A possess major
symmetries

Ciqkp = Ckpiq, Aab = Aba.

Moreover, as pointed out by Dorfmann and Ogden (2010), substitution of eqn. (28)1 into
the equality Σ−ΣT = Lτ − τLT provides

Ciqkp + τipδkq = Cqikp + τpqδik, Biqa = Bqia, (31)

for compressible materials, while for incompressible materials eqn. (31)1 becomes

Ciqkp + (τip + p δip)δkq = Cqikp + (τpq + p δpq)δik.

In Section 5.1 the components of the incremental constitutive tensors defined above
will be given for the class of dielectrics whose response is described by the free energy
(12).

3 Homogenization of multilayered soft dielectrics

Failure mechanisms occurring in composite materials are often predicted by investigating
appropriately homogenized properties of the composite. Thus at this stage, following
deBotton (2005) and deBotton et al. (2007), the homogenized response of incompressible
rank-one layered soft dielectrics finitely deformed under plane-strain conditions is derived.
Here we focus on a biphasic layered structure whose constituents, a and b, have volume
fractions ca = h0 a/

(

h0 a + h0 b
)

and cb = 1− ca, h0 a and h0 b denoting the thicknesses of
the two phases in the reference configuration B0 (see Fig. 2).

The macroscopic deformation gradient Fav, the macroscopic total first Piola-Kirchhoff
stress Sav, the lagrangian electric field E0 av and the lagrangian electric displacement D0 av

are defined as

Fav = caFa+cbFb, Sav = caSa+cbSb, E0 av = caE0a+cbE0 b, D0 av = caD0 a+cbD0 b,
(32)

10
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Figure 2: Schematic representation of a biphasic multilayered dielectric deformed under plane-strain
conditions.

respectively.
In the absence of charges along the interface the electric displacement continuity

equation ([[D0]] ·n0 = 0) can be recast as

D0 a
· n0 = D0 b

· n0,

and can be alternatively expressed as

D0 a −D0 b = βm0, (33)

where n0 is the unit normal to the layers, β is a real parameter and m0 is a unit vector
parallel to the layers, such that n0 · m0 = 0. It follows from eqns. (32)4 and (33) that
the electric displacement field in the two phases can be written as

D0 a = D0 av + cbβm0, D0 b = D0 av − caβm0. (34)

Following a similar approach, deBotton (2005) has shown that interface compatibility
([[F]]m0 = 0) requires

Fa = Fav
(

I+ α cbm0 ⊗ n0
)

, Fb = Fav
(

I− α cam0 ⊗ n0
)

, (35)

where α is a real parameter. Therefore, the macroscopic free energy of the composite is
given by

W av = caW a(Fav,D0 av, α, β) + cbW b(Fav,D0 av, α, β), (36)

where α and β are the scalar parameters previously introduced. Their values are obtained
imposing continuity of tractions ([[S]]n0 = 0) and tangential components of the electric
field (n0 × [[E0]] = 0) at the interface. Once α and β are determined, the macroscopic
total stress and electric field can be obtained through eqns. (32)2,3.

In Section 5.2 the formulation will be specialized to the case of a layered structure
made of two phases whose response is described by the free energy (12).
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4 Instabilities of multilayered soft dielectrics

Since a limiting factor in the design of composite materials is their failure under the
applied loads, following the pioneering work of Hill (1957) the investigation of the sta-
bility of composites subjected to purely mechanical loadings has attracted considerable
attention (Ogden, 1984, Triantafyllidis and Maker, 1985; Geymonat et al., 1993; Tri-
antafyllidis et al., 2006; Michel et al., 2007). Here, guided by well-established criteria
for the ‘pure’ mechanical case, for the first time the onset of instabilities for elastic di-
electric composites finitely deformed by the application of both electrical and mechanical
loadings is investigated.

Three classical bifurcation criteria widely used in the mechanical case are considered
and adapted, namely, i.) loss of positive definiteness of the tangent electroelastic consti-
tutive operator, ii.) diffuse-mode (microscopic) instability, iii.) loss of strong ellipticity
(macroscopic instability when the analyzed solid is the homogenized continuum). In ad-
dition, –iv.)– electric breakdown is investigated, which may represent a critical failure
mode when electric fields are considered.

Taking as reference the theory developed by Hill (1957) (see also Petryk, 1993) for
nonlinear elastic solids, loading processes producing a unique response –the ‘principal
equilibrium path’– that can be parameterized in terms of a scalar loading parameter t are
considered. For each t ≥ 0, an admissible set of incremental deformation and lagrangian
electric displacement is defined as a pair (χ̇, Ḋ0), with both fields not identically zero,
that satisfies the continuity conditions (15) at internal interfaces and such that

χ̇ = 0 (on ∂B0
v), [[Ḋ0]] · n0 = 0 (on ∂B0).

At a critical point tcr along the principal equilibrium path a bifurcation may occur, so
that two solutions (1 and 2) of the incremental boundary-value problem illustrated in
Section 2.5 exist. We indicate by ∆ the differences between the two possible solutions
in any field quantity, i.e. ∆(·) = (·)(1) − (·)(2). Moreover, dead-loading conditions are
considered with the applied tractions t0 and the surface charge ω0 independent of the
deformation, so that ṫ0 = 0 and ω̇0 = 0.

When the incremental boundary conditions are given by eqns. (14) with ṫ0 = 0 and
ω̇0 = 0, it is easy to show that the set {∆χ̇,∆Ṡ,∆Ḋ0,∆Ė0} satisfies the incremental
boundary-value problem. Application of the principle of virtual displacements and of the
divergence theorem yields

∫

B0∪B0
sur

{∆Ṡ ·∆Ḟ+∆Ė0
·∆Ḋ0} dV 0 = 0. (37)

Noting that χ̇
(2) = Ḋ0(2) = 0 represents a solution of the considered homogeneous

incremental boundary-value problem, it follows from eqn. (37) that a sufficient condition
excluding any bifurcation is

∫

B0∪B0
sur

{Ṡ(t) · Ḟ+ Ė0(t) · Ḋ0} dV 0 > 0 (38)
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for all admissible sets, where superscript (1) has been omitted for notational simplicity.
Since in the reference configuration, identified by t = 0, condition (38) is certainly

satisfied, a bifurcation along the loading path occurs as soon as the functional in (38)
becomes positive semi-definite, with the equality holding for at least an admissible set
called primary eigenmode and indicated by (χ̇cr, Ḋ

0
cr), i.e.

∫

B0∪B0
sur

{Ṡcr(t) · Ḟcr + Ė0
cr(t) · Ḋ

0
cr} dV 0 = 0, (39)

where Ṡcr(t) and Ė0
cr(t) are given by the incremental constitutive equations (17).

Although in this study we focus on infinitely extended solids, we note that condition
(38) can be easily adapted to investigate dielectric bodies surrounded by vacuum [with
boundary conditions specified by eqn. (16)].

We are now in the position to introduce and briefly discuss the four bifurcation criteria
investigated in the paper.

• Loss of positive definiteness of the tangent electroelastic constitutive
operator (PD).

Let us start focusing on the pure mechanical problem, so that the critical bifurca-
tion condition (39) specializes to

∫

B0 Ṡ(t) · Ḟ dV 0 = 0 for at least a χ̇ = χ̇cr 6= 0,

while
∫

B0 Ṡ(t) · Ḟ dV 0 > 0 for all other admissible χ̇. When only dead-load trac-

tions are applied to the boundary (i.e. ∂B0
v = ∅) and Ḟ is a homogeneous field, for

compressible materials the bifurcation condition can be rewritten as (Hill, 1967)
C

0(t)Ḟ · Ḟ = 0, for at least a Ḟ = Ḟcr 6= 0, which corresponds to loss of positive
definiteness of the fourth-order tangent constitutive tensor. Therefore, for a homo-
geneously deformed body with only tractions applied to its boundary, the global
bifurcation condition reduces to a local condition that depends only on the principal
equilibrium path.

Similarly, for a soft dielectric body homogenously deformed applying only dead-
load tractions/charges to its boundary, introduction of the incremental constitutive
equations (17) into the critical bifurcation condition (39) yields

C
0(t)Ḟ · Ḟ+ 2B0(t)Ḋ0

· Ḟ+A0(t)Ḋ0
· Ḋ0 = 0 (40)

for at least a pair (Ḟ, Ḋ0) = (Ḟcr, Ḋ
0
cr) 6= 0.

when homogeneous Ḟ and Ḋ0 are considered. Therefore, bifurcation is predicted
when positive definitiveness is lost by the quadratic form in eqn. (40), which can
be identified as the ‘tangent electroelastic constitutive operator’.

For an incompressible material the incremental total first Piola-Kirchhoff stress
tensor is given by (20)1, so that the bifurcation condition (40) modifies as

C
0(t)Ḟ · Ḟ+ p(t) tr[(ḞF−1)2] + 2B0(t)Ḋ0

· Ḟ+A0(t)Ḋ0
· Ḋ0 = 0 (41)

for at least a pair (Ḟ, Ḋ0) = (Ḟcr, Ḋ
0
cr) 6= 0 with tr(ḞcrF

−1) = 0.

13



The critical loading parameter t at which either condition (40) or (41) is satisfied
will be denoted by tPD.

In Section 4.1.2 the formulation will be specialized to the case of a multilayered
consisting of two phases whose response is described by the free energy (12).

• Existence of diffuse modes of bifurcations (microscopic modes).

Diffuse buckling modes with a length scale comparable to the size of the heterogene-
ity may be explored investigating the propagation of small-amplitude perturbations
of arbitrary wavelength superimposed on the current state of deformation (Dowaikh
and Ogden, 1990; Triantafyllidis and Lehner, 1993; Bertoldi et al., 2008; Gei, 2008).
While a real natural frequency corresponds to a propagating wave, a complex natu-
ral frequency identifies a perturbation exponentially growing with time. Therefore,
the transition between a stable and an unstable configuration identified by the crit-
ical loading parameter tMicro is detected when the frequency vanishes and can be
investigated using the quasi-static formulation of the incremental problem.

For the purely mechanical case the relation between the failure of Hill’s condition
(38) and the existence of zero-speed waves has been investigated in detail (see,
i.e., Needleman, 1976; Triantafyllidis, 1980), showing that diffuse modes can be
alternatively identified at the failure of the critical condition (39) expressing the
admissible incremental deformations in Fourier series.

For periodic solids of infinite extent, Geymonat et al. (1993) (see also Triantafyl-
lidis and Bardenhagen, 1996, and Triantafyllidis et al., 2006) rigourously showed
that in the pure mechanical case the same approach can be used and that it is
sufficient to investigate the incremental boundary-value problem of the elementary
unit cell of the composite and apply the Floquet-Bloch boundary conditions, which
automatically introduce in the governing equations for the unit cell the information
regarding the periodicity of the solid. As diffuse modes strongly depend on the mi-
crostructure of the unit cell, they are often called microscopic bifurcation modes.
The results presented by Triantafyllidis and Maker (1985) were the first obtained
for multilayered nonlinear composites applying this method. A relevant result of
the study was the close relationship between onset of long-wavelength microscopic
modes and localization of deformation of the homogenized continuum.

For electroelastic nonlinear solids, the investigation of zero-speed waves has been
used by Dorfmann and Ogden (2010) to explore surface instability, revealing that
the critical loading parameter is crucially dependent on the magnitude of the ap-
plied electric field and on the magnitudes of the electromechanical coupling param-
eters in the constitutive equations.

The microscopic bifurcation analysis for a periodic bilayered nonlinear dielectric
solid under plane-strain conditions will be presented in Section 4.1.3.

• Loss of strong ellipticity of single phases and of the homogenized con-
tinuum (localized or macroscopic modes)

14



Periodic perturbations do not represent an effective way to describe a critical bifur-
cation mode corresponding to fields localized along a narrow band with homoge-
neous deformation and electric field outside the band. In the pure mechanical case
localized modes are identified with shear bands (Hill and Hutchinson, 1975) which
appear at loss of positive definiteness of the acoustic tensor, also indicated as loss
of strong ellipticity5.

In the mechanics of nonlinear composites Geymonat et al. (1993) showed that the
loss of strong ellipticity for the homogenized properties coincides with the long-
wavelength limit of microscopic diffuse modes, providing macroscopic bifurcation
modes.

The investigation of macroscopic bifurcation modes at critical loading parameter
t = tMacro for soft multilayered dielectrics will be presented in Section 4.1.4.

• Electric breakdown (EB).

When the electric field in a part of the system reaches a critical level, failure of
the whole system may occur due to electric discharges. Similarly to Moscardo et
al. (2008), the critical loading parameter tEB corresponds to the attainment of the
critical value of electric field, EEB, in one phase.

4.1 Bifurcation analysis for multilayered composite soft dielectrics

In this Section the instability criteria outlined above are specialized to the case of an in-
finite, incompressible, multilayered body finitely deformed under plane-strain conditions.
The solid consists of alternating identical and perfectly bonded incompressible layers
of materials a and b with initial thicknesses h0a and h0b in the undeformed, stress-free
configuration, which is used as the reference configuration.

Note that the formulation presented in the following part of this Section can be
generalized to any number of layers and is valid for incompressible phases whose response
is described by a free-energy function W (I1, I2, I4, I5, I6) [see Section 2.4]. The results
can be easily specialized to a specific material introducing the appropriate incremental
moduli given by eqns. (29).

4.1.1 Fundamental pre-bifurcation path

Let us introduce a fixed cartesian coordinate system Ox01x
0
2x

0
3 with orthonormal basis

vectors ei (i = 1, 2, 3), and with x02 perpendicular to the direction of lamination in the
reference configuration (see Fig. 3). A pure homogeneous plane-strain deformation in
the x01–x

0
2 plane is considered, so that the deformation is completely described by

x1 = λx01, x2 = x02/λ, x3 = x03, (42)

5In the pure mechanical case, a theorem due to van Hove (1947), proved for elasto-plasticity but easily
adapted in elasticity, states that failure of strong ellipticity is the critical condition for bifurcation, eqn.
(39), for a homogeneous body, homogeneously deformed, subject uniquely to incremental displacements
on the boundary.
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where λ is the stretch along direction x01. Homogeneity and perfect bonding between
layers require that all phases ρ share the same longitudinal stretch, namely λρ = λ
(ρ = a, b).

x2

b

a
n e

0
= 2 h

0b

h
0a

RVE

x1

0

0

D e
0
=D2 2

m e
0
= 1

Figure 3: Schematic representation of the composite under investigation.

The nominal electric displacement vector D0 is taken to be aligned to the x02 direction
and to be independent of x01 and x03. This assumption is compatible, for instance, with
electrodes placed at the external boundary of the multilayered solid and parallel to the
direction of lamination. It follows from eqn. (5)3 that D0

2 is constant throughout each
phase, so that

D0
1 = 0, D0

2 6= 0, D0
3 = 0, (43)

in the reference configuration, while in the current configuration

D1 = D3 = 0, D2 = D0
2/λ. (44)

Moreover, continuity of the electric displacement vector implies D0ρ
2 = D0

2 (ρ = a, b).
A consequence of the above assumptions is that the free-energy functionW introduced

in Section 2.4 depends only on λ and D0
2, W = W̄ (λ,D0

2), and that the only non-zero
in-plane stress components are related through

S11 −
S22

λ2
=
∂W̄

∂λ
, τ11 − τ22 = λ

∂W̄

∂λ
. (45)

Additionally, the normal component of the total stress is assumed to vanish along direc-
tion x02 throughout the body

S22 = 0, or τ22 = 0, (46)

so that continuity of tractions at the interface between the two phases requires

Sρ
22 = 0 (ρ = a, b). (47)

Notice that condition (46) is often met in soft dielectric devices where the material can
deform and expand under the action of attractive forces between electrodes. Thus, eqns.
(45) specialize to

S11 =
∂W̄

∂λ
, τ11 = λ

∂W̄

∂λ
, (48)
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while the nominal electric field is given by

E0
2 =

∂W̄

∂D0
2

, E0
1 = E0

3 = 0. (49)

In each phase the solution of the plane-strain incremental problem must satisfy the
updated field equations [see eqns. (24)]

Σ11,1 + Σ12,2 = 0, Σ21,1 + Σ22,2 = 0, D̂1,1 + D̂2,2 = 0, Ê1,2 − Ê2,1 = 0, (50)

together with incremental jump conditions at all interfaces between layers given by (26).

4.1.2 Loss of positive definiteness of the tangent electroelastic constitutive
operator

For the considered principal equilibrium path loss of positive definiteness of the tangent
electroelastic constitutive operator can be investigated using directly the constitutive
equations (48) and (49).

Small perturbations of stretch λ and electric displacement D0
2 modify the current

stress and electric field as

Ṡ11 =
∂2W̄

∂λ2
λ̇+

∂2W̄

∂λ ∂D0
2

Ḋ0
2, Ė0

2 =
∂2W̄

∂λ ∂D0
2

λ̇+
∂2W̄

∂(D0
2)

2
Ḋ0

2. (51)

The matrix associated with the linear system (51) is the Hessian of the free energy,
which coincides with the tangent electroelastic stiffness at the current state. Eqn. (51)
represents the specialization of eqn. (20), with the electroelastic moduli tensors (18)
replaced by partial derivatives of the free energy with respect to the independent variables
λ and D0

2.
Under dead-load tractions/charges applied to the whole boundary, uniqueness of the

incremental response is ensured by positive definiteness of the Hessian, namely

∂2W̄

∂λ2
> 0,

∂2W̄

∂λ2
∂2W̄

∂(D0
2)

2
>

(

∂2W̄

∂λ ∂D0
2

)2

. (52)

Failure of the former inequality corresponds to a possible mechanical instability, while
failure of the latter condition, which involves both stretch and electric displacement,
detects an electromechanical instability. Recently Zhao and Suo (2007, 2009) and Zhao et
al. (2007) used a similar bifurcation criterion to investigate electromechanical instabilities
in homogeneous three-dimensional actuators subjected to loading conditions similar to
those described in Section 4.1.1. Their analyses revealed that the critical bifurcation
point corresponds to a peak in the D0

2–E
0
2 curve.

We remark that for composites the bifurcation conditions (52) may be critical either
for a single phase or for the homogenized continuum.
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4.1.3 Existence of diffuse-mode bifurcations (microscopic modes)

Here diffuse modes corresponding to inhomogeneous response of the composite with
wavelengths (given by 2π/k1, where k1 is the wavenumber) on the same order of the
characteristic length of the heterogeneities are investigated applying the Bloch-Floquet
quasi-periodicity conditions. Moreover, the limit case of long-wavelength limit (k1 → 0)
is analytically studied, allowing investigation of the relation between microscopic and
macroscopic instabilities.

To solve the incremental boundary-value problem given by eqns. (50) in each phase
ρ, we seek solutions in the form

uρ(x1, x2) = υ
ρ(x2) exp[i k1 x1], ṗ ρ(x1, x2) = qρ(x2) exp[i k1 x1],

D̂ρ(x1, x2) = ∆ρ(x2) exp[i k1 x1].
(53)

The incompressibility constraint requires

i k1 υ1 + υ′2 = 0, (54)

whereas eqn. (50)3 implies
i k1∆1 +∆′

2 = 0, (55)

where the dependency of υ and ∆ on x2 and ρ has been omitted for notational simplicity
and ( · )′ = d( · )/dx2.

Substitution of eqns. (53)-(55) into eqns. (50)1,2 and (50)4 leads to the following
system of ordinary differential equations in each phase ρ

−i k1 q + k21 (C1122 + C1221 − C1111) υ1 + C1212υ
′′
1 + i k1B112∆2 +B121∆

′
1 = 0,

i q′ + i k21C2121υ2 + (C1221 + C1122 − C2222) k1υ
′
1 + k1 (B121 − B222)∆1 = 0,

B121υ
′′

1 + (B112 +B121 −B222) k
2
1υ1 + A11∆

′
1 − iA22k1∆2 = 0.

(56)

Displacement continuity at the interface [eqn. (26)1] reduces to

[[υ1]] = 0, [[υ2]] = 0, (57)

whereas traction continuity [eqn. (26)2] implies

[[B121∆1 + i k1 (C1221 + p) υ2 + C1212υ
′
1]] = 0,

[[B222∆2 + i k1 (C1122 − C2222 − p) υ1 − q]] = 0.

and electrostatic interface conditions (26)3 and (26)4 are given by

[[∆2]] = 0, [[A11∆1 +B121υ
′
1 + iB121k1υ2]] = 0. (58)
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In each layer the general solution to eqns. (56) is found to be the sum of six linearly
independent partial solutions

y(x2) = Wa exp[k1Z
ax2] a

− (0 < x2 < ha),

y(x2) = Wb exp[k1Z
bx2] b (ha < x2 < hb),

y(x2) = Wa exp[k1Z
ax2] a

+ (hb < x2 < ha + hb),

(59)

where Zρ = diag zρ, a−, a+ and b are vectors of unknown constants and yρ = [υρ1 (υρ1)
′ υρ2

∆ρ
1 ∆ρ

2 qρ]. Vector zρ and matrix Wρ contain the eigenvalues and eigenvectors of the
6×6 matrix Vρ with non zero entries

V12 = 1, V21 =
k21
d1

[B121 (B222 − B112 − B121) + A11 (C1122 + C1221 − C1111)],

V25 =
i k1
d1

(A11B112 + A22B121), V26 = − i k1A11

d1
,

V31 = −i k1, V41 =
k21
d1

[C1212 (B112 − B222) +B121 (C1111 − C1122 + C1212 − C1221)],

V45 = − i k1
d1

(B121B112 + A22C1212), V46 =
i k1B121

d1
,

V54 = −i k1, V62 = i k1 (C1221 + C1122 − C2222), V63 = −k21C2121,

V65 = ik1 (B121 − B222),
(60)

with d1 = B2
121 −A11C1212.

The quasi-periodic character of the solution along x2 is ensured imposing of the Bloch-
Floquet type relation

yρ(x2 + h) = yρ(x2) exp[ik2h] (h = ha + hb), (61)

with k2 lying in the unit cell of the reciprocal lattice, i.e. 0 ≤ k2 < 2π/h. The wavenumber
k2 is frequently termed ‘Bloch parameter’ and sets the shape of modes along the transverse
direction. Substituting eqns. (59) into eqns. (57)-(58) and (61) is found that a non-trivial
solution to the problem exists when

det (K− exp[ik2h] I) = 0, (62)

with
K = (Ga)−1Gb exp[iZbhb](Gb)−1Ga exp[iZaha], Gρ = Qρ Wρ, (63)

Qρ being a 6×6 matrix with the following non-zero components

Q11 = Q23 = Q55 = −Q46 = 1, Q32 = C1212, Q33 = i k1 (C1221 + p),

Q34 = B121, Q41 = i k1 (C1122 + C2222 − p) , Q45 = B222,

Q62 = B121, Q63 = i k1B121, Q64 = A11.
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It follows from eqn. (62) that the critical loading parameter at the onset of the bifur-
cation point (tMicro) corresponds to the first occurrence of an eigenvalue Λ = exp[i k2h] of
unitary magnitude for the matrix K. Since detK = 1 and trK = trK−1, the eigenvalues
of K can be calculated from

Λ6 − trK (Λ5 + Λ) +
1

2

[

trK2 − (trK)2
]

(Λ4 + Λ2)

−1

6

[

(trK)3 − 3trK(trK)2 + 2trK3
]

Λ3 + 1 = 0.

(64)

The critical eigenmode is determined observing that the constant vector a− appearing in
eqns. (59) corresponds to the critical eigenvector of K, whereas a+ and b are obtained
introducing eqns. (59) into eqns. (57)-(58) and (61),

a+ = exp[ik2h] exp[−k1Zah] a−,

b = exp[ik2h] exp[−k1Zbh](Gb)−1Ga a−.

The long-wavelength limit. The long wavelength limit k1 → 0 is now considered to
establish a relation between microscopic and macroscopic instabilities. Here we extend
the formulation of Triantafyllidis and Maker (1985) for the pure mechanical case and
perform a matrix series expansion of K –defined in eqn. (63)– in powers of k̄1 = k1h.
Collection of the terms of the same order yields

trK = 6 + ξ1k̄
2
1 + ξ2k̄

4
1 + ξ3k̄

6
1,

trK2 = 6 + 4 ξ1k̄
2
1 + (16 ξ2 + ξ4)k̄

4
1 + (64 ξ3 + ξ5)k̄

6
1,

trK3 = 6 + 9 ξ1k̄
2
1 + (81 ξ2 + 6 ξ4)k̄

4
1 + (729 ξ3 + ξ6)k̄

6
1,

(65)

where coefficients ξi (i = 1, . . . , 6) are given in Appendix B.
Substituting eqns. (65) into eqn. (64) and recalling that Λ = exp[i k2h] we obtain

−ξ31+36 ξ1ξ2−720 ξ3+3 ξ1ξ4+12 ξ5−2 ξ6+3(ξ4+12 ξ2−ξ21)ψ2−6 ξ1 ψ
4−6ψ6 = 0, (66)

with ψ = k2/k1. Therefore, a long wavelength bifurcation mode exists when a real so-
lution for eqn. (66) is found. For the purely mechanical case, Geymonat et al. (1993)
rigorously showed the equivalence between long wavelength bifurcation modes and lo-
calized, macroscopic instability. Here, in Section 5, the solutions of eqn. (66) will be
compared with those for localized modes of the homogenized continuum, allowing us to
determine a clear relationship between microscopic and macroscopic instabilities.

4.1.4 Loss of strong ellipticity of single phases and of the homogenized con-
tinuum (localized or macroscopic modes)

Bifurcation modes consisting of localized fields in a narrow band surrounded by homo-
geneous electroelastic deformation are now investigated. In general, for composites, this
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instability may be critical either for each single phase or for the homogenized continuum.
As previously recalled, for the latter case, it can be related to long wavelength diffuse
modes.

The analysis represents an extension of the formulation presented by Hill and Hutchin-
son (1975) for incompressible materials and can be used for all isotropic, elastic dielectrics
that are deformed according to eqns. (42)-(43).

The solution for the field equations (50) is sought in the form

u = υ̃f(n · x), ṗ = q̃f ′(n · x), D̂ = ∆̃f ′(n · x), (67)

where f is a continuous and piecewise continuous differentiable function and n is the
normal to the band. Incompressibility and eqn. (50)3 require that

υ̃ · n = 0, ∆̃ · n = 0, (68)

so that for the plane-strain problem under consideration the amplitude vectors υ̃ and ∆̃
are related through

∆̃ = ηυ̃, (69)

η being a real parameter.
To obtain the localization condition in a homogeneous phase of the composite, eqns.

(28)2, (30), (67), (68)1 and (69) are substituted in the incremental field equations (50)1,2,4,
providing four equations in q̃, η, υ̃1 and υ̃2. Elimination of the first three unknowns yields
the condition of band localization as

Γ6ν
6 + Γ4ν

4 + Γ2ν
2 + Γ0 = 0, (70)

where ν = n2/n1 and we have assumed n1 6= 0 and ν2A11 + A22 6= 0. Coefficients
Γi (i = 0, 2, 4, 6) depend on the incremental moduli as

Γ6 = B2
211 − A11C1212,

Γ4 = −A22C1212 −A11(C1111 − 2C1122 − 2C2112 + C2222)− 2B211(B112 +B211 −B222),

Γ2 = −A11C2121 −A22(C1111 − 2C1122 − 2C2112 + C2222) + (B112 +B211 − B222)
2,

Γ0 = −A22C2121.

Therefore, localization of the deformation into a band occurs when a real solution ν∗ of
eqn. (70) exists. In this case the amplitude ratio η in eqn. (69) is given by

η =
ν∗(B112 +B211 − B222)− ν3∗B211

ν2∗A11 + A22

. (71)

For the homogenized continuum, the procedure can be repeated employing the perti-
nent homogenized constitutive moduli.
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4.1.5 Electric breakdown

Electric breakdown represents a possible failure mode that occurs when the current elec-
tric field reaches a critical value EEB in one of the phases of the composite. Since for the
specific geometry and loading conditions considered here the only non-zero component
of the electric field is that along direction x2, electric breakdown takes place at a critical
loading parameter tEB when

Eρ
2 = EEB,

either in phase a or b.

5 Results

5.1 Material properties and constitutive laws

In the following sections results are presented for dielectric bodies whose response is
captured using the extended neo-Hookean free energy given by eqn. (12). For this
specific material the constitutive equations (9)–(10) specialize to

S = −pF−T + µF+
1

ǫ
FD0 ⊗D0, E0 =

1

ǫ
CD0 (72)

in the lagrangian formulation and

τ = −p I+ µB+
1

ǫ
D⊗D, E =

1

ǫ
D (73)

in the eulerian formulation6, a result fully consistent with the general equations (45) and
(49); eqn. (73)2 clearly shows the linear proportionality between D and E.

The incremental moduli are obtained substituting the free energy (12) into eqns. (18),
yielding7

C0
iJkL = µδikδJL +

1

ǫ
δikD

0
JD

0
L, (74)

A0
MN =

1

ǫ
CMN , B0

iJM =
1

ǫ
(FiMD

0
J + FiSD

0
SδJM), (75)

6We remark that in (72)1 and (73)1 the hydrostatic pressure p is calculated imposing the boundary
conditions. Therefore, p can be replaced by an equivalent expression, such as p = p̃+ E ·E/2, so that
eqn. (73)1 can be reformulated as

τ = −p̃ I+ µB+
1

ǫ
D⊗D− 1

2ǫ
D ·D,

an expression equivalent to that reported by Zhao et al. (2007) in their eqn. (26) and obtained adapting
the compressible theory of nonlinear dielectrics to the incompressible case.

7Eqns. (74)-(75) are obtained using the derivatives of the invariants I1, I5 with respect to F and D0

∂I1
∂F

= 2F,
∂I5
∂F

= 2D⊗D0,
∂I5
∂D0

= 2CD0,

(

∂I5
∂F∂D0

)

iJK

= 2δJKFiRD
0

R + 2D0

JFiK .
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while the use of eqns. (29) provides the updated constitutive tensors

Ciqkp = µδikBpq +
1

ǫ
δikDpDq, Biqa =

1

ǫ
(δiaDq +Diδqa), Aab =

1

ǫ
δab.

For the geometry and loading conditions described in Sections 4.1.1, it follows from
eqn. (72) that the only non-zero components of the total first Piola-Kirchhoff stress and
nominal electric field are

S11 = µλ− p

λ
, S22 =

µ

λ
+

(D0
2)

2

λǫ
− pλ, S33 = µ− p, E0

2 =
D0

2

λ2ǫ
, (76)

whereas the only non-vanishing in-plane entries of the updated incremental constitutive
tensors are

C1111 = C2121 = µλ2, C2222 = C1212 = µ
1

λ2
+

1

ǫ
D2

2,

B121 = B211 =
1

ǫ
D2, B222 =

2

ǫ
D2, A11 = A22 =

1

ǫ
.

Note that the hydrostatic pressure in eqns. (76)1−3 can be determined using eqn.
(46), yielding

p = µ
1 + D̄2

λ2
,

so that the longitudinal stress S11 is given by

S11 = µ

(

λ− 1 + D̄2

λ3

)

, (77)

with D̄ = D0
2/
√
µ ǫ.

To illustrate the effect of the material parameters µ and ǫ on the electromechanical
response of a homogeneous layer, we focus on a sample subjected to a given longitudinal
nominal stress S11. In this case the stretch λ can be obtained from eqn. (77) as a function
of the electric displacement D0

2 and then can be used to calculate the electric field from
eqn. (76)4.

In Fig. 4 the responses of two specimens whose response is characterized by two sets
of parameters, {µ1, ǫ1} and {µ2, ǫ2} with µ2/µ1 = ǫ2/ǫ1 = 10, are reported. Focusing on
the case for {µ1, ǫ1}, Fig. 4a shows that the λ−D0

2 curve can be decomposed into three
parts: an initial quadratic response is followed by a linear behavior for moderate values
of D0

2, while λ ∼
√

D0
2 for D

0
2/
√
µ1ǫ1 > 4. Moreover, we observe that the response for the

specimen characterized by {µ2, ǫ2} is qualitatively similar to that for {µ1, ǫ1}. However,
for the material characterized by {µ2, ǫ2} an electric displacement hundred times larger
than that for {µ1, ǫ1} must be applied to reach a given stretch λ. In Fig. 4b the evolution
of the dimensionless nominal electric field is reported as a function of the applied electric
displacement. As expected from eqn. (76)4, at a given electric displacement D0

2 a high
electric field is reached in the material with lower permittivity. Interestingly, for applied
compressive longitudinal tractions (see curve for S11/µ1 = −1) the nominal electric field
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Figure 4: Electromechanical behavior of a homogeneous layer deformed under plane strain by the
application of a transverse electric displacement field D0

2
and a longitudinal nominal traction S11. The

material response is captured using the extended neo-Hookean free energy (12) and µ2/µ1 = ǫ2/ǫ1 = 10.

curve displays a maximum. The peak corresponds to loss of positive definiteness of the
tangential electroelastic constitutive operator and occurs at failure of condition (52)2.
However, in a longitudinally compressed layer a buckling instability may occur earlier
along the loading path, preventing the structure to reach the peak.

5.2 Homogenized response

Here the general results obtained in Section 3 for rank-one layered dielectrics are spe-
cialized to the extended neo-Hookean free energy (12). Initially we consider the case
of layers with an arbitrary inclination with respect to the external electric displacement
(n0 6= e2, Fig. 2). Then the results are further specialized to the specific geometry and
loading conditions considered in this work, characterized by layers perpendicular to the
electric displacement field (n0 = e2, Fig. 3).

For the case of a laminated body with layers arbitrarily oriented with respect to
the electric displacement field and whose response is described by the free energy (12),
parameters α and β introduced in eqn. (36) are given by

α =
µb − µa

caµb + cbµa

Favn0
·Favm0

Favm0
·Favm0

,

β =
µaǫa − µbǫb

(caµb + cbµa) (caǫa + cbǫb)

FavD0 av
·Favm0

Favm0
·Favm0

+
µb − µa

caµb + cbµa
D0 av

·m0.

(78)

The jump in hydrostatic pressure across each interface is obtained by multiplying the
traction continuity condition ([[S]]n0 = 0) with the vector (Fav)−Tn0, yielding

pa − pb =

[

ǫb − ǫa

ǫbǫa
(D0 av

· n0)2 + µa − µb

]

1

(Fav)−Tn0
· (Fav)−Tn0

. (79)
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Results given in eqns. (78) and (79) are consistent with those obtained by deBotton
(2005) for neo-Hookean rank-one laminates finitely deformed by the application of only
mechanical loadings.

For the geometry and loading conditions described in Sect. 4.1.1 (i.e. n0 = e2 and
m0 = e1), the only non-vanishing components of the homogenized stress and electric field
obtained using eqns. (32)2,3 are

Sav
11 = µavλ− µav

λ3
[

1 + (D̄av)2
]

, E0 av
2 =

√

µav

ǫHav

D̄av

λ2
, (80)

where

µav = caµa + cbµb, ǫHav =

(

ca

ǫa
+
cb

ǫb

)−1

, D̄av =
D0

2
√

µavǫHav
. (81)

The analysis of macroscopic modes for the composite requires the macroscopic incre-
mental constitutive tensors Cav, Bav, and Aav. It follows from the introduction of (78) in
eqns. (34) and (35) and the use of (32), (20) and (29) that their only in-plane non-zero
components are

Cav
1111 = λ2µav, Cav

1212 =
µHav

λ2
+

(D̄av)2ǫHavµav

ǫavλ2
, Cav

2222 =
µav

λ2
+

(D̄av)2µav

λ2
,

Cav
1221 = Cav

2112 =
µHav − µav

λ2
+

(D̄av)2µav

λ2
ǫHav − ǫav

ǫav
, Cav

2121 = Cav
1221 + Cav

1111,

(82)

Bav
211 = Bav

121 =
D̄av

√

µavǫHav

ǫavλ
, Bav

222 = 2
D̄av

λ

√

µav

ǫHav
, Aav

11 =
1

ǫav
, Aav

22 =
1

ǫHav
, (83)

where

ǫav = caǫa + cbǫb and µHav =

(

ca

µa
+
cb

µb

)−1

. (84)

On the other hand, the investigation of loss of positive definiteness of the tangent
electroelastic operator requires the specialization of the macroscopic free energy (36) to
the specific geometry and loading conditions considered here, leading to

W av = W̄ av(λ,D0
2) =

µav

2

[

λ2 +
(D̄av)2 + 1

λ2
− 2

]

. (85)

To illustrate the effect of phases volume fraction and contrast in material properties
on the overall electromechanical response, we investigate the behavior of a multilayered
dielectric deformed by the application of an electric displacement field perpendicular to
the layers, while leaving the body free to expand laterally (i.e. Sav

11 = 0). The analysis is
fully characterized by the dimensionless material parameters

m = µa/µb and r = ǫa/ǫb. (86)
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Figure 5: Overall D̄b–λ response (with D0
2/
√

µbǫb) for a periodic bilayered dielectric when an electric
displacement field perpendicular to the layers is applied while leaving the body free to expand laterally
(i.e. Sav

11
= 0).

Fig. 5 shows the electromechanical response of the multilayered structure in the D̄b–λ
space with

D̄b = D0
2/
√

µbǫb =

√

√

√

√

µav

cbµb +
caµa

mr

D̄av. (87)

We note that in both Figs. 5a and 5b for ca = 0 the curve corresponds to that for {µ1, ǫ1}
in Fig. 4a, as in this case the solid is composed uniquely of the soft phase. The effect of
phases volume fraction on the material response is investigated for two sets of material
parameters, m = r = 10 in Fig. 5a and m = r = 100 in Fig. 5b. For the geometry
considered in this study an increase of parameters m and r is found to strongly reduce
the longitudinal elongation.

5.3 Nonlinear fundamental electromechanical paths

Although a generic state of deformation described by the pair (λ,D0
2) can be reached

following multiple loading histories, here we focus on two fundamental nonlinear elec-
tromechanical paths:

• Path A: a uniaxial macroscopic stress Sav
11 = S̃av

11 is applied and kept constant while
increasing the external electric displacement field (Fig. 6a).

• Path B: a stretch λ = λ̃ is applied and kept constant while increasing the external
electric displacement field (Fig. 6b).

Here these two nonlinear pre-bifurcation paths are studied assuming a material re-
sponse defined by the free energy (12), so that stress and electrical displacement fields in
each phase of the multilayered body are given by eqns. (76).
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Figure 6: Schematic representation of the two loading paths considered in this study: Path A (a) and
Path B (b).

Path A. A constant longitudinal stress Sav
11 = S̃av

11 is applied to the multilayered struc-
ture, so that

S̃av
11 = caS̃a

11 + cbS̃b
11, (88)

where S̃a
11 and S̃b

11 are obtained from eqn. (77) as

S̃a
11 = µa

(

λ− 1 + (D̄b)2/m r

λ3

)

, S̃b
11 = µb

(

λ− 1 + (D̄b)2

λ3

)

. (89)

Substitution of eqns. (89) in eqn. (88) provides an equation that can be solved for the
unknown stretch λ. The longitudinal stress in each phase, S̃a

11 and S̃b
11 that in general

change along the deformation path, can then be obtained by introducing λ into eqns.
(89). Moreover, the nominal electric fields in the two phases follow from eqn. (76)4 and
can be written in dimensionless form as

Ēa = E0 a
2

√

ǫa

µa
=

D̄b

λ2
√
mr

, Ēb = E0 b
2

√

ǫb

µb
=
D̄b

λ2
.

Path B. Devices based on soft dielectrics are usually prestretched before the application
of the electric field, since it has been observed experimentally that the prestretch increases
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considerably the performance of the actuator, mainly increasing the maximum electric
field before breakdown (Pelrine et al., 2000). Here a longitudinal prestretch λ = λ̃ (with
λ̃ > 1) is applied to the multilayer and, since S22 = 0 throughout the solid, the stress
component S11 associated with the prestretch in the two phases is given by

Spre,a
11 = µa

(

λ̃− 1

λ̃3

)

, Spre,b
11 = µb

(

λ̃− 1

λ̃3

)

.

Subsequently an increasing electric displacement D2 is applied (note that D2 ≡ D0
2

as the current stretch does not vary due to incompressibility), so that the longitudinal
stresses change as

Sa
11 = Spre,a

11 − D2
2

λ̃3ǫa
, Sb

11 = Spre,b
11 − D2

2

λ̃3ǫb
.

The electric excitation introduces a compressive stress in the bilayer, so that Sa
11 and S

b
11

drop to zero when D2 reaches the intensities Ds0a
2 and Ds0b

2 , respectively, where

Ds0a
2 =

√

µaǫa(λ̃4 − 1), Ds0b
2 =

√

µbǫb(λ̃4 − 1).

Note that when D2 > min{Ds0a
2 , Ds0b

2 } part of the system is compressed and this may
lead to a buckling instability. Although traditionally buckling instabilities have been
viewed as an inconvenience, recently they have been exploited to design actuators able
to sustain transverse large displacements (Carpi et al., 2008c; Koo et al., 2008).

5.4 Analysis of instabilities

Loss of uniqueness of the incremental response is now investigated for biphasic periodic
multilayers whose response is described by the extended neo-Hookean free energy (12),
so that the formulation presented in Section 4 specializes as follows:

• Loss of positive definiteness of the tangent electroelastic constitutive operator (PD)

This criterion is applicable to structures with only tractions/surface charges ap-
plied to their boundary, so that it represents a critical condition only for multilayers
loaded following type-A loading paths, since along type-B loading paths displace-
ments are prescribed on portion of the boundary. For the effective free energy (85),
conditions (52) reduce to

µav

λ4
[

3 + 3(D̄av)2 + λ4
]

> 0,
(µav)2

λ6
[

3− (D̄av)2 + λ4
]

> 0. (90)

It is clear that inequality (90)1 is always satisfied, whereas (90)2 fails when λ4 ≤
(D̄av)2 − 3, with the equality setting the critical limit represented by the equation

λPD = [(D̄av)2 − 3]1/4, (91)
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that can be rewritten, using (87), as

λPD =







cbµb +
caµa

mr
µav

(D̄b)2 − 3







1/4

. (92)

Introduction of the critical condition (92) into (80)1 yields

Ēav
PD =

D̄b

√

√

√

√

(D̄b)2 − 3µav

cbµb +
caµa

mr

, (93)

while substituting eqn. (91) into eqn. (80)1 we obtain

S̄11,PD = − 4

λ3PD
= −4







cbµb +
caµa

mr
µav

(D̄b)2 − 3







−3/4

, (94)

where S̄11 = S̃av
11/µ

av. Eqn. (94) shows that the tangent moduli of the homogenized
continuum looses positive definiteness only when longitudinal homogenized com-
pressive stresses are applied. Moreover, the results reveal that the critical condition
(91) corresponds to a peak in the D̄b–Ēav curve. Depending on the way the electric
excitation is applied to the system, the peak may or may not correspond to loss of
stability. When the charge on the electrodes is controlled along the loading path,
it is possible to go beyond the peak maintaining the homogeneous quasi-static re-
sponse. On the other hand, when the voltage is controlled, and as a consequence
the value of the electric field, the system cannot sustain an electric field Ēav higher
than that at the peak. Finally, we remark that in all our calculations the failure
of eqns. (90) has been monitored both in each single phase and in the homoge-
nized continuum. For the considered geometry and loading conditions, we have
found that loss of positive definiteness of the electroelastic tangent operator occurs
earlier along the loading path for the homogenized continuum than for each single
phase.

• Existence of diffuse bifurcation modes: microscopic modes (Micro)

Diffuse-mode bifurcations are investigated numerically as described in Section 4.1.3.
The only simplification introduced in the analysis by the choice of the extended neo-
Hookean free energy is that the eigenvalues zρi of matrices Vρ (ρ = a, b) satisfy the
characteristic equation

[

k21 − (zρ)2
]2 [

k21λ
4 − (zρ)2

]

= 0, (95)

providing six real values for each phase.
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In the long-wavelength limit (k1 → 0) the critical stretch is obtained solving eqn.
(66), yielding

λ∞Micro =

[

1− µHav

µav
+ (D̄av)2

(

1− ǫHav

ǫav

)]1/4

, (96)

which can be easily reformulated in terms of D̄b using eqn. (87). Note that when
D0 = 0, eqn. (96) reduces to the well-known expression reported by Triantafyllidis
and Maker (1985), namely

λ∞Micro|D0=0
=

[

1− µHav

µav

]1/4

. (97)

• Loss of strong ellipticity of single phases and of the homogenized continuum: macro-
scopic modes (Macro)

While band localization within each layer for the considered material model is
excluded [eqn. (70) does not provide any real solution ν], for the homogenized
continuum substitution of the incremental moduli (83)-(84) in the same equa-
tion leads to the same critical loading parameter reported in eqn. (96), so that
λMacro = λ∞Micro. Therefore, a remarkable result of this analysis is that along elec-
tromechanical loading paths localization is found to correspond to diffuse modes
of infinite wavelengths. Similar results were found by Triantafyllidis and Maker
(1985) and Geymonat et al. (1993) for the purely mechanical case.

• Electric breakdown (EB)

For the geometry and loading conditions described in Sect. 4.1.1, eqn. (73)2 and
results of Fig. 4 show that the electric field is significantly higher in the phase with
lower permittivity. Therefore, taking b as the phase characterized by shear modulus
and permittivity lower than those of phase a, electric breakdown may occur first
in phase b. Indicating by EEB the critical value of the electric field, introduction of
eqn. (44)3 into eqn. (73)2 leads to the critical condition

λEB =

√

µb

ǫb
D̄b

EEB
, (98)

in the D̄b–λ plane. Alternatively, in the D̄b–Ēav space it can be expressed as

Ēav =
ǫb

µb

E2
EB

√

√

√

√

µav

cbµb +
caµa

mr

1

D̄b
. (99)

Here we investigate electrical breakdown using a set of parameters typical for sili-
cones (EEB = 350 MV/m, ǫbr = 3, µb = 100 kPa, see Kornbluh and Pelrine, 2008).
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For the considered multilayered structures the critical curves corresponding to the four
instability criteria investigated in this paper are reported in Figs. 7–11 with continuous
lines; black lines correspond to loss of positive definiteness of the tangent electroelastic
constitutive operator (PD), blue lines correspond to microscopic modes, while red and
brown lines denote macroscopic mode and electric breakdown limits, respectively. More-
over, in the figures loading paths of both type A and type B are reported to visualize the
critical point along them.

In Figs. 7, 9 and 10 the critical conditions are sketched in the D̄b–λ space, while Figs.
8 and 11 show the results in the D̄b–Ēav diagram where, using (80)2,

Ēav = E0 av
2

√

ǫHav

µav
=
D̄av

λ2
. (100)

The background color in Figs. 7 and 10 identifies the dimensionless longitudinal stress
S̄11 = Sav

11/µ
av. In Figs. 8, 9 and 11 the gray shaded areas denote the region of allowable

states for type-A loading paths, while for type-B loading paths the material is stable
both in the gray and in the green areas.

The figures clearly highlight the important effect on the failure modes of both the
volume fraction of phases and the contrast in material properties. All these effects are
investigated separately below.

Effect of phases volume fraction. To explore the influence of phases volume fraction
on the failure modes of the bilayer, for a contrast in material properties set bym = r = 10
we investigate four different values of ca, namely ca = 0.05, 0.2, 0.4, 0.6, and the results
are reported in Figs. 7-8.

Focusing on the four instability criteria, we observe that

• for a very low value of ca (Fig. 7a, where ca = 0.05), microscopic instability
represents the limit of the region of allowable states at low values of the applied
electric displacement field D̄b (D̄b < 1 in the inset in Fig. 7a), while for higher D̄b

macroscopic bifurcation and loss of positive definiteness of the tangent electroelastic
constitutive operator (PD) are critical;

• for moderate values of the volume fraction ca (Fig. 7b, where ca = 0.2), only band-
localization (Macro) and PD criteria set the limit for instability over the considered
range of D̄b;

• for higher values of ca (Fig. 7c,d), macroscopic instability is again dominant for low
D̄b (approximately D̄b < 5), while for D̄b > 5, microscopic instability represents
the critical bifurcation;

• electric breakdown is never critical for the considered range of D̄b and ca.

To illustrate the transition between macroscopic and microscopic instabilities occur-
ring for high ca we focus on the case of Fig. 7c (m = r = 10 and ca = 0.6). Fig. 9a shows
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Figure 7: Bifurcation of a bilayered dielectric composite subjected to a transverse electric dis-
placement field: critical conditions in the longitudinal stretch (λ)–dimensionless electric displace-

ment (D̄b = D0
2/
√

µbǫb) space for m = r = 10. Four phase volume fractions ca are considered,
ca = 0.05, 0.2, 0.4, 0.6. Solid lines correspond to Micro (blue), Macro (red), PD (black) and electric
breakdown (EB, brown) instability criteria. Background color corresponds to S̄11 = S̃av

11/µ
av. Short-

dashed (green) curves denote type-A loading paths, while long-dashed (magenta) curves denote type-B
loading paths. Critical states are indicated with circular markers.

both the evolution of λ (on the left vertical axis) and of the critical wavenumbers k1,cr
and k2,cr (on the right vertical axis) as a function of D̄b. At low values of the applied
electric displacement field (approximately D̄b < 5) macroscopic instability prevails. The
results clearly show that at this stage the wavenumber k1,cr of the diffuse mode tend to
zero, consistently with the long wavelength limit analysis. Moreover, the macroscopic
instability analysis detects the formation of a band of localized fields orthogonal to the
layers (n = e1). Thus, since η = 0 [eqn. (71)], only the deformation localizes into the
band, while the electric field is continuous.

Interestingly, for larger values of the applied electric displacement field (D̄b > 5) the
microscopic instability analysis detects diffuse modes characterized by a critical Bloch
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Figure 8: Bifurcation of a bilayered dielectric composite subjected to a transverse electric displace-
ment field: critical conditions in the dimensionless average electric field (Ēav = E0 av

2

√

ǫHav/µav)–

dimensionless electric displacement (D̄b = D0
2
/
√

µbǫb) space for m = r = 10. Four phase volume
fractions ca are considered, ca = 0.05, 0.2, 0.4, 0.6. Solid lines correspond to Micro (blue), Macro (red),
PD (black) and electric breakdown (EB, brown) instability criteria. Short-dashed (green) curves denote
type-A loading paths, while long-dashed (magenta) curves denote type-B loading paths. Critical states
are indicated with circular markers while the gray (gray-green) shaded area highlights the region of
stable type-A (type-B) homogeneous paths. In (c) and (d) the two regions coincide.

parameter k2,cr different from zero. Therefore, phases a and b at bifurcation deform
out-of-phase, as shown in Fig. 9b and 9c, where the bifurcation modes at D̄b = 5 and
10 are reported. Differently, when microscopic instability is critical at low values of D̄b

(D̄b < 1, see Fig. 7a), the analysis predicts critical diffuse modes with a vanishing Bloch
parameter (kcr2 = 0), so that both phases a and b at bifurcation deform in-phase. This
result is consistent with that obtained in the pure mechanical case by Triantafyllidis
and Maker (1985), where only in-phase bifurcation modes were found for neo-Hookean
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and m = r = 10. (b), (c): graphical representations of modes for D̄b = 5 and 10.

materials.
Turning now the attention on the loading paths introduced in Section 5.3, we observe

that for type-A loading paths the equilibrium is stable when specimens are subjected
to a tensile longitudinal stress (S̄av

11 > 0) for ca < 0.5. On the other hand, for type-B
loading paths we note that depending on the applied prestretch λ̃ and on ca, the critical
mode may correspond either to a microscopic or a macroscopic instability. Finally, it is
interesting to remark that an increase of the prestretch λ̃ not only leads to a change of
the bifurcation mode from a localized band to a diffuse mode, but also to an expansion
of the region where the structure is stable.

Effect of contrast in material properties. Although composite dielectrics charac-
terized by a wide range of contrast in material properties have been fabricated (Zhang
et al., 2002; Huang et al., 2004), here the effect of contrast in material properties on
instabilities is explored focusing on m = r = 10 and m = r = 100. For the same volume
fractions as for m = r = 10, results pertaining to the case m = r = 100 are reported in
Figs. 10-11, revealing that

• loss of positive definiteness of the tangent electroelastic constitutive operator (PD)
does not represent a limiting condition for the region of allowable states in the
considered range of D̄b and ca;

• electric breakdown represents a critical condition at large values of ca;

• independently of the volume fraction of phase a, band localization is critical for D̄b

approximately lower than 3, while for larger values of D̄b microscopic instabilities
become dominant.
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Figure 10: Bifurcation of a bilayered dielectric composite subjected to a transverse electric dis-
placement field: critical conditions in the longitudinal stretch (λ)–dimensionless electric displace-

ment (D̄b = D0
2
/
√

µbǫb) space for m = r = 100. Four phase volume fractions ca are considered,
ca = 0.05, 0.2, 0.4, 0.6. Solid lines correspond to Micro (blue), Macro (red), PD (black) and electric
breakdown (EB, brown) instability criteria. Background color corresponds to S̄11 = S̃av

11/µ
av. Short-

dashed (green) curves denote type-A loading paths, while long-dashed (magenta) curves denote type-B
loading paths. Critical states are indicated with circular markers.

When tractions are controlled (type-A loading paths), an increase of m and r has a
dramatic effect on the stability of the multilayer. Focusing on ca = 0.05 and 0.2, Figs.
7a, b show that for m = r = 10 the solid loaded by a longitudinal stress S̄11 ≥ 0 can
deform homogeneously up to a large longitudinal stretch λ, whereas for m = r = 100
(Figs. 10a, b) the critical point is reached at a much smaller longitudinal stretch.

For type-B loading paths the situation is completely different, since an increase of
parameters m and r allows the application of a slightly higher electric displacement prior
to bifurcation, specially for weakly prestretched composites with a low volume fractions
ca.
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Figure 11: Bifurcation of a bilayered dielectric composite subjected to a transverse electric displace-
ment field: critical conditions in the dimensionless average electric field (Ēav = E0 av

2

√

ǫHav/µav)–

dimensionless electric displacement (D̄b = D0
2/
√

µbǫb) space for m = r = 100. Four phase volume
fractions ca are considered, ca = 0.05, 0.2, 0.4, 0.6. Solid lines correspond to Micro (blue), Macro (red),
PD (black) and electric breakdown (EB, brown) instability criteria. Short-dashed (green) curves de-
note type-A loading paths, while long-dashed (magenta) curves denote type-B loading paths. Critical
states are indicated with circular markers, while the gray shaded area highlights the region of stable
homogeneous paths.

We conclude noting that an increase of m and r reduces the occurrence of band-
localization and PD instabilities, promoting microscopic bifurcations and electric break-
down failure modes.
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6 Conclusions

Soft composite dielectrics show great potential in the design of smart devices based
on electrosensitive polymers, since their use allows the application of lower voltages as
a result of the increased overall dielectric constant. A critical issue related to their
development is the prediction of both global and local instabilities that may occur at the
macro or at the micro-scale, respectively. Instabilities can be investigated analytically
extending to soft dielectrics the well-known theory of bifurcation and stability of nonlinear
elastic solids.

In this paper a detailed analysis of instabilities of layered soft dielectric composites
under plane deformations has been developed. Four instability criteria have been formu-
lated, namely:

i.) loss of positive definiteness of the tangent electroelastic constitutive operator of
the homogenized continuum (PD);

ii.) existence of diffuse modes of bifurcation (microscopic instability);
iii.) existence of localized solutions of the homogenized solid (microscopic instability,

corresponding to the loss of ellipticity of the homogenized continuum);
iv.) electric breakdown.
The critical conditions associated with these four criteria have been obtained for a

periodic bilayered composite obeying an extended form of the neo-Hookean free-energy
function and subjected to a transverse electric displacement field. The results provide
for the first time an analysis of failure mechanisms which may occur in a heterogeneous
dielectric under external electrical excitation.

The effect of phases volume fraction and contrast in material properties on instabilities
has been investigated, revealing that for low volume fractions of the stiffer phase –a
relevant case in the application–, an increase of the contrast in material properties of
the two phases promotes a shift from PD to microscopic instabilities. Moreover, while
for constituents not strongly dissimilar band-localization is critical, for high-contrast
phases microscopic instabilities and electric breakdown are the dominant failure modes
for composite soft dielectrics.
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Appendix A - Push-forward operations defining quantities in the updated
lagrangian formulation.

The integration of (14)2,4 over ∂B and the change of variables from reference to current
configurations, observing that F is continuous across the interface ∂B, provide the following
push-forward transformations:

∫

∂B0

[[Ṡ]]n0 dA0 =

∫

∂B
[[Ṡ]]

1

J
FTn dA =

∫

∂B
[[Σ]]n dA, (A.1)

and
∫

∂B0

[[Ḋ0]] · n0 dA0 =

∫

∂B
[[Ḋ0]] ·

1

J
FTn dA =

∫

∂B
[[D̂]] · n dA, (A.2)

which yield the identities (21).
The integrals in (A.1) and (A.2) represent the total incremental force and charge in the sys-

tem, respectively, that vanish as incremental body forces and volume charge are null. Therefore,
application of the divergence theorem to (A.1) and (A.2) yields the incremental field equations
(24)1,2 in the updated lagrangian formulation.

The updated lagrangian formulation of eqn. (24)3 is obtained considering an arbitrary
integration path Γ0 in the reference configuration and an infinitesimal fibre dl0 tangent to Γ0.
In the current configuration Γ = χ(Γ0) and dl = F dl0, so that

∫

Γ0

Ė0
· dl0 =

∫

Γ
Ė0

·F−1dl =

∫

Γ
Ê · dl. (A.3)

(A.3) provides (in a way alternative to eqn. (22)) the relationship (23). Since the electric field
is conservative, the integral (A.3) evaluated along a close path Γ0

c is null. Therefore application
of Stokes’ theorem to (A.3) provides eqn. (24)3.

Appendix B - Coefficients of the expansion (65)
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− 8 tr
[

A(Z̃
b
)2A−1(Z̃

a
)2A(Z̃

b
)2A−1

]}

+(ca)4
(

cb
)2

{

5 tr
[

(Z̃
a
)2AZ̃

b
A
−1

Z̃
b
AZ̃

a
AZ̃

b
A
−1

Z̃
a
]

+ 3 tr
[

AZ̃
b
A
−1(Z̃

a
)2AZ̃

b
A
−1(Z̃

a
)2
]

−8 tr
[

A(Z̃
b
)2A−1(Z̃

a
)4
]}

+ (cacb)3
{

tr
[

(AZ̃
b
A
−1

Z̃
a
)3
]

− 13 tr

[

A

(

Z̃
b
)3

A
−1

(

Z̃
a
)3

]

+ 12 tr
[

AZ̃
b
A
−1

Z̃
a
A(Z̃

b
)2A−1(Z̃

a
)2
]}

,

(B.4)
with Z̃

ρ
= Z

ρ/k1 and A = (Ga)−1
G
b.
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