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Research

Ontogeny of classical and operant learning
behaviors in zebrafish

André Valente,1,3,4 Kuo-Hua Huang,1,2,4 Ruben Portugues,1 and Florian Engert1,5

1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 2Program in

Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA; 3Gulbenkian PhD Programme in Biomedicine,

Oeiros, 2780-156, Portugal

The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus

on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electro-

shocks were used in two fully automated assays to investigate both learning paradigms. These allow the evaluation of the

behavioral performance of zebrafish continuously throughout development, from larva to adult. We found that learning

improves throughout development, starts reliably around week 3, and reaches adult performance levels at week 6. Adult

fish quickly learned to perform perfectly, and the expression of the learned behavior is manifestly controlled by vision. The

memory is behaviorally expressed in adults for at least 6 h and retrievable for at least 12 h.

[Supplemental material is available for this article.]

The ability to associate two environmental cues, as in classical
conditioning, or to correlate one’s behavior with its conse-
quences, as in operant conditioning, are processes often essential
for an animal’s survival (Skinner 1984). While there are studies
that have followed the ontogeny of learning behaviors in animal
model systems of classical conditioning paradigms (Campbell and
Ampuero 1985; Moye and Rudy 1985; Paczkowski et al. 1999;
Raineki et al. 2009), the ontogeny of operant learning, in particu-
lar, remains much less explored.

The ability for classical conditioning is pervasive across the
animal kingdom and often interpreted as the most basic and ro-
bust form of associative learning; however, it has been shown
that adding an operant component to a learning task may increase
performance, or show it where it was not present before (Heisen-
berg et al. 2001; Moore 2004).

Zebrafish is an exceptional model of vertebrate neural devel-
opment and amenable both to forward genetics and ge-
netic manipulation (Neuhauss 2003). The transparent larvae are
uniquely suited to functional imaging and have recently served
to uncover fundamental mechanisms in fish locomotor control
(Orger et al. 2008; Portugues and Engert 2009). Behavior is the ul-
timate functional readout of neural activity; indeed, behavior is
the ultimate evolutionary reason for the existence of brains and
the changes in behavior during development should reflect the
changes the nervous system undergoes as the larval organism de-
velops into the adult. While there are well-established learning
paradigms for Drosophila and rodent experimental models, zebra-
fish still lacks a systematic learning characterization. We describe
here an approach to implement and test such a learning assay that
utilizes the fact that zebrafish can see and track visual stimuli and
clearly perform visually evoked locomotor behaviors as early as
5 d post-fertilization (dpf) (Easter and Nicola 1996; Budick and
O’Malley 2000). To that end we use visually guided stimuli com-

bined with a noxious electroshock to control learning behaviors.
We characterize these assays and specifically obtain a full ontoge-
ny of operant learning from 7-d-old larvae to adult. This ontogeny
will thus not only provide a full developmental picture of operant
learning in a model vertebrate in itself but also provide a full func-
tional correlate to the well-described development of the nervous
system in zebrafish. Moreover, it will determine how early zebra-
fish start to be able to not just integrate and respond to visual stim-
uli, but significantly change their behavior as a response to visual
learning.

Results

Classical and operant conditioning in adult zebrafish
To evaluate associative learning in zebrafish we set out to test two
forms of learning robustly present in vertebrates, classical and op-
erant conditioning. We developed tests that can easily be adapted
and closely compared at different developmental stages from
7-dpf larvae to complete adult maturation at 8 wk. The general
layout of our learning arena is described in Figure 1, A and
B. Fish swim freely in a tank cued with distinct patterns that
demarcate the two halves of the arena. They are monitored con-
tinuously with a video tracking system, which registers their posi-
tion online at all times.

During classical conditioning (Fig. 1C) fish learn to associate
an unconditioned stimulus (US), a small whole-tank electroshock,
with a visual pattern that is presented beneath the tank, the con-
ditioned stimulus (CS). The US is preceded and overlapped with
the CS (as illustrated) and delivered in nine consecutive pairings
at 0.1 Hz (Fig. 1C, pink region). This assay could also be interpret-
ed as a form of differential classical conditioning in which one vi-
sual stimulus (the CS+ represented in Fig. 1A–C as a prominent
checkered board) is paired with the US and another one is not
(the CS 2, in this case the gray panel as in Fig. 1C) (Jami et al.
2007). The animals can be trained easily to either of the stimuli.
Remarkably, 2 h after a successful training session against the
checkerboard, the same animal could be quickly conditioned
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against the gray stimulus as illustrated in
Supplemental Movies 1 and 2.

In operant conditioning (Fig. 1D),
during the 30 min of training, a small
shock is paired with the presence of the
freely moving animal in one of two visu-
ally defined halves of the tank. The dis-
tinct difference with respect to the
classical conditioning assay is that here
it is an aspect of the animal’s own loco-
motor behavior, its position along the vi-
sual cues, that determines the presence
of the CS and US. Training was followed
by a 30-min dark period in which fish
are deprived of all visual cues.

Both forms of learning are tested by
monitoring the behavior of fish in the
presence of the paired and unpaired
(conditioned and neutral) visual cues
(Fig. 1C,D, second half). The spatial
preference of the fish is analyzed either
based on their recorded position or on
the number of times fish turn away
from the conditioned cues. In the data
shown in Figure 1, D and F, fish were con-
ditioned against red. They can be equally
conditioned against the white stimulus
(Supplemental Fig. 1). Both positional
and turning analyses clearly show that
adult fish can learn these tasks extremely
well (Fig. 1E,F), avoiding swimming in
the areas paired with the noxious stim-
uli with performance indices (PIs) close
to +1.

If visuo-spatial stimuli are reversed
during testing, the animal’s preferred po-
sition reverses accordingly. In Figure 1, C
and D, the vertical lines at 33.5 and
90 min, respectively, indicate the time
point at which the visual cues are re-
versed (symbolic icons at top).

Ontogeny of learning in the classical

conditioning assay
To assess when zebrafish first start ex-
pressing learning behaviors, we continu-
ously tested the same group of fish in
our classical conditioning assay from lar-
val to adult stages (see Fig. 2A–C). Tank
and visual stimulus size was scaled to
fishstage in order to provide similar learn-
ing conditions to all animals. Figure 2D
depicts the performance index of an indi-
vidual group of fish that underwent classi-
cal conditioning for five consecutive days
every week, over a period of .6 wk.

The freely swimming group of fish
was briefly exposed to a visual pattern
paired to precede and overlap with a
whole-tank electroshock for nine consec-
utive pairings at 0.1 Hz (Fig. 1C, pink re-
gion). Figure 2D shows the performance
index of the animals after training as
they mature to adults. It is apparent
that fish start learning significantly at

Figure 1. Classical and operant conditioning in adult zebrafish. (A) Experimental setup. The visual
conditioned stimulus is presented on a LCD screen beneath an infrared-lit fish tank. The unconditioned
stimulus consists of an electric shock across the arena. (B) Left panel: view of the arena from above
without an infrared filter; right panel: online analysis of fish location. (C) A typical example trace
from a classical conditioning experiment showing the basic training protocol. (Top) Experiments start
with a baseline period (0–30 min), followed by a training period (30–31.5 min), and end with a test
period (31.5–64 min). The visual cues presented at each of these stages are symbolized on top of
the trace. Each black circle represents the animal’s location recorded at one frame/sec. The curly
bracket indicates the time window used for analyzing conditioned behavior. (Bottom) Magnified
trace around the training period. Two visual cues are displayed alternatively, but only one is associated
with electric shocks (red ellipses). The trained fish changes position when the visual cues are switched
(31.5–36.5 min). (D) A typical example trace from an operant conditioning experiment. The assay
starts with a baseline period (0–30 min), is followed by a training period (30–60 min), then a dark
period (60–90 min), and ends with a test period (90–120 min). The electric shocks applied during
training are indicated by red ellipses. The conditioned response disappears immediately after visible
light is removed in the dark period, but reappeared after the visual cues are presented in the test
period (see Fig. 5, below). (E) Adult zebrafish show a significant learning response after classical condi-
tioning as analyzed both by the animal’s position or its turning behavior. The results of the two analyses
are similar. In the turning analysis, each circle represents the performance index (PI) of a fish, and the
area of the circle represents the turning numbers within the analysis window. This allows visualizing and
taking into account animals that show little movement and thereby perform fewer turns. In the plot,
animals represented by a smaller dot performed fewer turns in the tank. The size of the dots gives us
a strong degree of confidence in the data. Animals were trained against either gray or checkerboard
with comparable learning indices and data are pooled in the figure. (F) Adult zebrafish show a signifi-
cant learning response after operant conditioning; analysis as in E.
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week 4 and reach close to the maximum PI by week 6. As seen
in Figure 1, this is maintained in older adults. While the data
gathered with this assay are striking and informative, there are
several caveats with this experiment. Firstly, fish are trained in
groups, which may lead to interference effects between animals.
Secondly, the repeated training sessions, which have been chosen
for maximum impact, also contain inherently repeated extinction
trials, which make the results harder to interpret. These compro-
mising factors might serve as an explanation of why fish apparent-
ly start learning only at an age .25 d. Finally, as mentioned in the
introduction section, adding an operant component is known to
increase the performance, and the experiment shown here relies
mostly on a classical assay. Therefore, we subsequently tested in-
dividual animals in an operant assay to investigate the ontogeny
of learning.

Ontogeny of learning in the operant conditioning assay
We analyzed operant conditioning over the course of develop-
ment by assaying different individual fish, each taken naively at
different stages, from larva to adult. In this assay, we observed
that the capacity to learn begins at week 3 and reaches the maxi-
mum PI of +1 for almost all individuals tested by week 6, which is
maintained in adult performance (Fig. 3D). Even though we estab-
lished a common training period of 30 min, it is evident that the
number of shocks fish expose themselves to decreases as they
develop, that is, they take progressively fewer shocks to learn to
avoid the paired stimulus (Fig. 3E). Even between weeks 7 and 8,
when their performance level appears indistinguishable, there is

a significant decrease in the number of
shocks fish expose themselves to during
training. This number decreases to less
than half, from an average of 19 to seven
shocks (t-test, P ¼ 0.0272) per training
session.

There is substantial individual vari-
ability in results before week 3, indicat-
ing that some larvae could be able to
perform these tasks. Although there is a
progressive decrease in the number of
shocks individuals expose themselves
to, the decrease only becomes significant
between weeks 2 and 3, when the perfor-
mance index also becomes significantly
higher (t-test, P ¼ 0.0492).

Persistence of memory in behavior

of adult zebrafish
To assess the persistence of the learned
behavior in adults we tested for the pres-
ence of conditioned behavior in response
to the visual cues after an increasing
length of time in the absence of visual
stimuli after operant training.

Visual stimuli with reversed orienta-
tion were introduced after a period of no
light in the tank to ensure that the condi-
tioned behavior is based on the presented
visual stimuli rather than other nonvisual
or distal visual cues (Fig. 4A, example trace
at 90 min). We found that the condi-
tioned response disappears immediately
after the removal of light, indicating that
the behavior was purely visually mediated
(Figs. 1D, 4A; 60–90 min, dark icon).

To test for the permanence of the memory in behavior, the
length of the period with no light was gradually increased before
reintroduction of the visual cues. Figure 4B plots the performance
index observed for increasing periods in the absence of light.
Figure 4A serves as an example of typical raw trace, where the po-
sitional distribution of the animal after the reintroduction of the
stimulus is clearly biased toward the unpaired visual stimulus in
spite of the reversal of orientation of the stimuli presented (Fig.
4A, t . 90 min).

In this assay, the memory is shown to control the fish’s
behavior, showing a PI significantly different from zero, for at least
6 h (Fig. 4B). By 12 h, fish have on average apparently lost the con-
ditioned behavior (although high variability is seen here).

The apparent decrease in average PI to zero observed after
12 h in the absence of light (Fig. 4B) could mean that most ani-
mals have by this time positively lost the conditioned memory,
that they are less responsive to stimulus reintroduction as this
comes during the nighttime of their light–dark cycle, or, alterna-
tively, that this memory is still represented in the nervous system,
though no longer dominating the animals’ behavior in response
to the conditioned visual stimulus. In order to test for the ability
to effectively recall this memory, we provided a shock 30 min after
testing (red dot at 120 min in Fig. 4A). It is clear that in most
animals a brief electric shock can reinstate the behavior even after
a 12-h lag. We performed an additional experiment with 24 h in
the absence of light to test whether reintroduction of the visual
cues during the dark phase of their cycle could be showing an
effect of sleep in the 12-h time point and observed a similar result;
the animals do not show significant conditioned behavior.

Figure 2. Ontogeny of learning in the classical conditioning assay. (A–C) Typical example responses
of 7-, 30-, and 42-d-old fish to the presence of visual CS. As fish mature, they progressively show a clear
response, distributing themselves to avoid the CS during testing. (D) In our classical conditioning assay,
learning is significant at week 4 and reaches adult performance level at week 6. The animals are trained
and tested five times per day, and their performance is quantified based on their position in the arena.

Ontogeny of learning behaviors in zebrafish
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Figure 3. Ontogeny of learning in the operant conditioning assay. (A–C) Example traces of the operant conditioning assay at different developmental
stages. The baseline period (0–30 min) is followed by a training period (30–60 min) and ended with a test period (60–120 min). The visual cues are
indicated on the left and maintained throughout the experiments. Striped visual cues are used for fish younger than 4 wk to increase their chance of
encountering the borderlines. The red dots indicate the shock events in the training period. The curly bracket indicates the time window for analysis.
(D, top) Conditioned behavior at different developmental stages. Each circle represents the performance index (PI) of a fish. The area of the circle is pro-
portional to the turning events during the analysis window. Arrows indicate the PI of the fish demonstrated in A–C. A consistent learning behavior in
zebrafish emerges in week 3 and reaches adult performance during the juvenile stage, and specifically at week 6. The animals are trained and tested in-
dividually, and naive animals are used at each developmental stage. (D, bottom) Zebrafish show no innate preference for the visual stimuli at all devel-
opmental stages. (E) Number of shocks received during the training period (30–60 min) at each developmental stage assayed. The number of shocks
decreases throughout development, even after week 4 when the PI is already close to 1. The number of shocks fish expose themselves to shows a sig-
nificant decrease between weeks 2 and 3, 4 and 5, and 7 and 8 (t-test, P ¼ 0.0492, P ¼ 0.0004, and P ¼ 0.0272, respectively).
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However, after a reinstatement shock,
four of the eight individuals tested
show a learning performance index, in-
dicating that even if there is high vari-
ability, the memory may still be present
in many individuals after this time
(Supplemental Fig. 2).

Vision is the sensory modality

governing the expression of the

learned behavior
The learned spatial avoidance is ex-
pressed solely in the presence of visual
cues and disappears completely when
these are removed (Fig. 5A). Locomotion
is maintained and increased in the ab-
sence of visual cues and thus a decrease
in PI is not confounded by fish ceasing
activity (Fig. 5B). In particular, when
the visual cues are reintroduced to fish
kept in the dark, animals almost immedi-
ately return to their learned performance
(Fig. 5C) while maintaining their average
locomotor activity in the tank (Fig. 5D).
The presence of other sensory modalities
such as audition and lateral line sens-
ing do not contribute to or are insuffi-
cient for the expression of the learned
behavior.

Discussion

Here, we provide a close analysis of the
development of both classical and oper-
ant learning behaviors in zebrafish. We
characterized the complete ontogeny of
a learning behavior in a vertebrate model
system from the time larvae first exhibit
controlled visually elicited behaviors to
full adult maturation. Results from our
assays show that the ability to learn is
first expressed in a window of time from
3 wk post-fertilization.

Ontogenies of classical condition-
ing in model systems have been intensely
studied (Moye and Rudy 1985; Paczkow-
ski et al. 1999), and more recently with
advances in molecular and developmen-
tal neurobiology, these ontogenies have
taken on an important role in serving
as functional readouts for the underlying
neural circuitry as it develops and pro-
gressively assembles components re-
quired for behavior and plasticity. The
possibility of real time in vivo imaging
of neural development and activity in
zebrafish makes this particular model
system especially attractive (Niell et al.
2004).

Our results show remarkable simi-
larity to those observed in mammals:
Rats and mice also show a defined win-
dow of time in which conditioning can

Figure 4. Persistence of memory in adult zebrafish. Persistence of conditioned response after an in-
creasing length of dark period. Fish are trained and tested individually, and a new fish is used in each
condition. Turning performance analysis calculated unless otherwise indicated. (A) An example trace
of an operant conditioning experiment involving a 30-min dark period (60–90 min) between the train-
ing (30–60 min) and test period (90–120 min). Each dot represents the animal’s location in the arena.
The red ellipse in the training period represents the shock event. This animal expresses a robust condi-
tioned response 30 min after learning. (B, left) Naive adult zebrafish show no innate preference to the
visual stimuli. (Middle) The conditioned response is largely intact 30 min after learning and gradually
decreases until a residual response at 6 h after training. (Right) Seven fish serve as a yoke experiment,
receiving the electroshocks applied to the paired training group (2-min dark period). These shocks
were uncorrelated to the fish’s own location, and the animals show no significant learning behavior.
(C) A whole-tank electric shock leads to re-expression of conditioned memory in behavior. After
30 min of testing in the presence of visual cues after different lengths of time in the dark (90–
120 min as example shown in A) fish are given a single electroshock in the middle of a 20-sec period
with light removed (to hinder direct association with visual stimuli). Fish that had apparently lost the
expression of memory from behavior after 12 h in the absence of light show a recovered performance
index.
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first be induced. This window (generally occurring between 2 and
3 wk after birth) is common for many different paradigms such as
different forms of Pavlovian fear conditioning and eyeblink con-
ditioning (Campbell and Ampuero 1985; Moye and Rudy 1985;
Paczkowski et al. 1999; Raineki et al. 2009). Moreover, studies of
Pavlovian fear conditioning in infant hooded rats have found a
dissociation in time between the ability to first detect visual
events and to use these for associative learning (Moye and Rudy
1985).

To date there are no studies focusing on the initial develop-
ment and maturation of learning behaviors in zebrafish. Studies
have shown that adult zebrafish are good learners, both using
food as an appetitive reward (Williams et al. 2002; Colwill et al.
2005) and noxious electroshock stimuli (Pradel et al. 1999;
Rawashdeh et al. 2007; Xu et al. 2007; Blank et al. 2009), some
of these uncovering potential anatomical pharmacological and
neurochemical components of the system where learning occurs
(Pradel et al. 2000; Xu et al. 2007; Blank et al. 2009; Jesusathan
2011; Okamoto et al. 2011). We have developed computer-based
automated behavioral assays which we can easily control and
comprehensively analyze. In our assays, adult zebrafish are clearly
shown to be excellent learners, as in both assays animals create a
robust memory after only brief exposure to the unconditioned
stimulus-conditioned stimulus (US–CS) pairing. Training and
testing can be done without removing the animal from the water
during the post-training period, and the assay can easily be up-
graded to monitor large numbers of animals at the same time
for high-throughput analyses.

We have used two different classical and operant-condition-
ing freely swimming behavioral assays. Despite the differences be-
tween these assays, both show a similar time window for learning
onset in development. Even though most zebrafish larvae per-
formed poorly in both assays, the systems involved in visual
detection and locomotor response are known to be fully function-
al at 7 dpf. Larval zebrafish at 5 dpf already express robust visually
induced behaviors, including the optokinetic response (OKR)

(Brockerhoff et al. 1995; Easter and Nicola 1996; Portugues and
Engert 2009), phototaxis (Burgess and Granato 2007), the opto-
motor response (OMR) (Clark 1981; Orger et al. 2000), and prey
capture (Budick and O’Malley 2000; Borla et al. 2002; Gahtan
et al. 2005). In several of these studies the locomotor behavior
of larval zebrafish was characterized in detail and included multi-
ple swimming and turning components that can be assembled to-
gether to generate very fine motor control as observed, for
example, during prey capture. Larval zebrafish can perform visual
tracking and fine optomotor responses even when immobilized in
agar, and in such experimental preparation also failed to show
classical conditioning (Supplemental Fig. 3). Nonetheless, it is
possible that the visual system of larval zebrafish is not mature
enough to distinguish between the different stimuli in our assay.
We deliberately avoided the use of stimuli that elicit any innate
preference or aversion, as these make the interpretation of the as-
say inherently difficult. Together, this indicates that larval zebra-
fish between weeks 1 and 2 already have a functional visual system
and control of locomotion, even though these sensorimotor capa-
bilities may not yet have matured sufficiently to reliably support
learning in our conditioning assays. Some of the larvae tested
did show high learning performance indices (Fig. 3D), and recent
data suggests that larval zebrafish are able to associate visual cues
and tactile noxious stimuli (Aizenberg and Schuman 2011).

Materials and Methods

Animals and apparatus
In all experiments, where sexual dimorphism was clear, only fe-
male zebrafish were used to avoid any possible sexual bias in
behavior (Dalla and Shors 2009). Zebrafish of strain AB swam free-
ly in a custom-built acrylic tank with opaque walls and a transpar-
ent bottom. The tank’s size is 6 cm × 6 cm × 2.5 cm, with water
1-cm deep for animals younger than 3 wk (Gahtan et al. 2005),
and 18 cm × 6 cm × 12 cm, with water 3-cm deep for older fish.
Visual stimuli are presented on a LCD screen immediately below

Figure 5. Vision is the sensory modality governing the expression of the learned behavior. (A) Performance index of fish 5 min before and after removal
of light. Animals used in operant conditioning experiment in Figure 1F. When the dark period is instated, fish quickly redistribute their movement to the
whole tank, as can be seen by the decrease in the performance index. (B) Locomotion of fish during the same period registered in A. At the end of the
training period animals are moving constantly while expressing the learned behavior, and this transition to the dark period results in increased swimming.
(C) Performance index of fish 5 min before and after visual stimuli are reintroduced. Reintroducing the visual cues results in the memory being re-
expressed, as can be seen by the increase in the performance index. (D) The change observed upon light reintroduction in C is achieved while retaining
the same mobility in the tank.
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the tank (Samsung SyncMaster, 15 inch, 1024 × 768 pixels).
Swimming behavior is recorded at one frame per second using
an infrared-sensitive CCD camera positioned above the tank. A
15-volt Infrared LED array was custom built within the LCD screen
to illuminate the arena from below. An infrared filter is positioned
in front of the camera to block visible light. This facilitates online
analysis of fish position via a custom-written LabView program
(National Instruments). A small fan is used to dissipate the heat
generated by IR-LEDs. Electric shocks (70 msec, 9 V/6 cm) are de-
livered via four pieces of steel mesh, two on each side of the arena.
Shock delivery at each side of the arena is controlled independent-
ly. Dose response curves to strength of electric stimuli were ob-
tained (data not shown), and we chose stimulus values around
9 V that were placed in the range of values that elicits a response
in all stages with 100% reliability and no detectable short or long-
term damage to the animal. Experiments were undertaken at day-
time in the animals’ 14–10 h light–dark cycle (L: 9 am–11 pm; D:
11 pm–9 am). In the experiments in Figure 4, memory retention
after 12 h was assayed at nighttime.

Training protocols
All behavioral experiments are divided into baseline, training, and
test periods. Fish are introduced to the arena 30 min before start-
ing experiments with the LCD screen on, with the cues to be used
for conditioning, Supplemental Figure 4 (no innate preference is
shown for any of the cues used as shown in the results for the na-
ive period).

During classical conditioning, in the baseline and test periods,
the two distinct visual cues are presented below the tank, and no
electric shocks are delivered. During training, the conditioned vi-
sual stimulus (CS) is presented for 1.5 sec, followed by the non-
conditioned visual stimulus (non-CS) for 8.5 sec, nine times, for
1.5 min. An electric shock (70 msec, 9 V/6 cm) serves as uncondi-
tioned stimulus (US), which overlaps and ends simultaneously
with the CS visual cue.

For the experiments described in Figure 1, C and E, individual
naive 1-yr-old fish were used. For the experiments described in
Figure 2, 17 fish were trained and tested as a group starting at
7 dpf. This group was used repetitively throughout the experi-
ment up to 42 dpf. In this experiment fish were trained as in the
protocol above, but for six consecutive times, with test periods
of 90 sec between.

During operant conditioning experiments, the design for the
baseline and test periods is the same as in the classical condi-
tioning assay. During operant training, the two visual cues are pre-
sented simultaneously below the tank, and electric shocks are
delivered at frame acquisition rate (1 Hz) only whenever the ani-
mal enters the area demarcated by the conditioned visual cue.
This is followed by a dark period of variable length and subsequent
reverse cue introduction. Cues are always reintroduced for testing
when the animal is swimming over the area corresponding to
non-CS. For the experiments described in Figure 1, D and F, indi-
vidual naive 1-yr-old fish were used. For those described in Figure
3, individual naive fish were trained and tested at each develop-
mental stage. Training was performed for both the different cues
used in each experiment to control for any innate preference. In
addition, cues of similar luminance were used for larvae and juve-
niles to prevent bias from the strong phototaxis response present
in larvae. The cues used for the experiments are included in
Supplemental Figure 4.

In the experiments that test the persistence of memory, a period
during which all visible lights are turned off, is introduced be-
tween training and test periods. A whole-tank reinstatement
shock is provided after 30 min of test; this shock is presented in
the middle of a 20-sec period of no light in the tank so as to avoid
pairing with any particular visual cue.

Analysis
The swimming behavior along the tank is quantified based on ei-
ther the animal’s position or its turning behavior. In positional
analysis, the animal receives a score of 21 or +1 in each image

frame if its center of mass is in the conditioned or nonconditioned
visual area of the tank, respectively. The performance index (PI) is
the average of the scores in the first 5 min of the test period. An
animal that only swims in the non-CS area during the time win-
dow shows a PI of +1, a fish that swims evenly between the two
zones shows a PI of zero and, conversely, a fish that would only
swim in the conditioned area would have a PI of 21.

In turning behavior analysis, an animal receives a score of +1 if
it turns away from the CS visual cue, and receives 21 if it turns
away from the non-CS visual cue. The animal receives a score of
zero if it turns at the two ends of the tank. The PI is the sum of
scores divided by the half number of all turning events during
the analysis window. Thus, an animal that always turns away
from the CS visual cue receives a PI of +1. A fish that only turns
at the end of the tank, a behavior that is often observed in naive
animals, receives a score of zero. The PI of a fish in the figures is
represented by a circle. The center represents the value of the PI
and the area is proportional to the overall number of turning
events. The analysis of turning behavior, therefore, weighs the
performance of fish according to their total locomotion. In loco-
motion analysis we analyzed the movement of the fish at a 5-Hz
frame rate. We calculated speed from the difference in position ev-
ery second and plotted the average for every 30 sec in Figure 5.
T-tests are performed where necessary, always assuming unequal
variance.
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