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Abstract

Extremal but non-supersymmetric charged black holes with SU(2)L spin in IIB
string theory compactified to five dimensions on K3 × S1 are considered. These have
a near-horizon or NHEK region with an enhanced SL(2, R)L conformal symmetry.
It is shown that the NHEK geometry has a second, inequivalent, asymptotically flat
extension in which the radius of the S1 becomes infinite but the radius of the angular
circles of SU(2)L orbits approach a constant. The asymptotic charges associated to the
second solution identify it as a 5D D1-D5-Taub-NUT black string with certain nonzero
worldvolume charge densities, temperatures and chemical potentials. The dual of the
NHEK geometry is then identified as an IR limit of this wrapped brane configuration.

http://arxiv.org/abs/1105.0431v1
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1 Introduction

It has been conjectured [1] that extreme astrophysical Kerr black holes with spin J are dual
to 2D conformal field theories with central charge c = 12J . In the real world, we cannot
expect to know the exact form of the CFT, as that would be equivalent to knowing all the
laws of physics to the Planck scale and beyond. Rather, a compelling match has been found
between universal properties of the CFTs and universal properties of Kerr black holes. For
a recent review see [2].

On the other hand it is nevertheless useful, in order to better understand the nature of the
proposed real-world Kerr/CFT correspondence, to have a toy model in which the exact form
of the CFT might be found. Such a model was recently constructed [3] by embedding certain
5D charged spinning black holes in string theory. At the maximal allowed value of the charge,
the near horizon NHEK geometry is AdS3×S2, and standard string theoretic methods were
used to identify the dual in terms of (a long string of) the wrapped D1-D5-Taub-NUT CFT.
This result, as well as the properties of linear perturbations around maximality, all agree
with expectations from the Kerr/CFT conjecture.

The issue of finite deviations from maximality, where the near-horizon geometry does not
contain an AdS3 factor, was not substantially addressed in [3]. In the present paper, we go
beyond perturbative excursions from maximality and identify the dual for finite deformations
as the IR limit of a wrapped D1-D5-Taub-NUT string with certain non-zero charge densities
and temperatures. This is acomplished by constructing a 5D black string solution whose
near-horizon geometry is locally identical to the 5D NHEK. The full black string geometry
differs from the full black hole geometry in part because the angular circle does not grow
in size at large radius. The microscopic D-brane configuration corresponding to the black
string geometry is straightforward to read off from the asymptotic values of the electric and
magnetic fields and is presented in table 1 below. The dual of the NHEK geometry, for
generic charges and spins is thereby identified as an IR limit of this D-brane configuration.1

1 The precise nature of the flow to the IR (i.e. how charge densities are scaled etc.) can be determined
from the radial dependence of the geometry. The nature of the IR limit here is clearly somewhat exotic
because of the warping of the near-horizon AdS3, potentially related to a so-called dipole deformation of the
IR CFT [4]. We do not address any of these interesting issues herein but hope to return to them elsewhere.
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This paper is organized as follows. In section 2 we review the 5D charged black hole
solutions described in [3], and introduce a slight generalization in which one of the charges
and the asymptotic scalar are varied. In section 3 we construct new, asymptotically flat
black string solutions of the same theory. The most general rotationally-invariant black
string solution of 5D minimal supergravity does not have a warped near-horizon region [5]:
a second U(1) charge is needed for this purpose. Using the asymptotic values of the various
fields at spatial infinity we compute and exhibit (see table 1) all the various magnetic charges,
electric charge densities and ADM energy-momentum of the black string. This information
enables us to identify the corresponding wrapped D-brane configuration. In section 4 we
show that the near-horizon region of the 5D black holes of section 2 are a finite-temperature
identification of the near-horizon region of the black strings of section 3, thereby identifying
the specific collection of wrapped D-branes whose IR limit is dual to the 5D charged NHEK
geometry.

2 5D extremal spinning black holes

In this section we describe non-supersymmetric, extremal, charged spinning black holes which
arise in the compactification of IIB string theory to 5 dimensions onK3×S1 and their NHEK
limits.

2.1 The full solution

We consider the 6-dimensional Einstein-frame effective action

S6B =
1

8π3

∫

d6x
√−g

(

R− 1

12
(FRR

(3) )
2
)

. (2.1)

This truncation of the low energy action without a dilaton is consistent when we make the
additional self-duality restriction

FRR
(3) = ∗FRR

(3) . (2.2)

We further specialize to black hole solutions of this action in a Kaluza-Klein (KK) compact-
ification to D = 5 which carry only SU(2)L angular momentum JL. These restrictions are
made in order to illustrate the basic concepts in the simplest possible setting. More general
solutions can be obtained by U-duality.

The KK compactification of (2.1) to 5 dimensions has one U(1) gauge field descended
from FRR

(3) , a second KK U(1) gauge field and a scalar parametrizing the radius of the S1.
A careful presentation of the relation between 5D and 6D variables in this compactification
can be found in [6, 7], but we mostly employ the simpler 6D variables throughout. The
JR = 0 extreme black hole solutions are labeled by three internal parameters: the mass
(or JL) and two charges. The asymptotic constant value of the scalar is a fourth external
parameter. More general 5D black holes with more nonzero charges can be found in [8],
whose six dimensional embedding can be found in [9].

We first review the subset of solutions studied in [3] characterized by the two parameters
a and δ, and then present the simple two-parameter generalization. a and δ are related to
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the mass M , graviphoton charge Q and spin JL by

M = 6a2 cosh 2δ (2.3)

JL = 4a3 (c3 + s3), (2.4)

Q = 4a2sc (2.5)

where c = cosh δ and s = sinh δ. These relations imply

Q3 ≤ J2
L ,

(

M

3
− Q

2

)2(
2M

3
+ 2Q

)

= J2
L. (2.6)

The metric is

ds26 = −(r̂2 + a2(1− 4c2))

Σ
dt̂2 + dû2 +

4a2 sinh 2δ

Σ
dt̂dû+ Σ

(

r̂2dr̂2

(r̂2 − a2)2
+
dθ2

4

)

+
Σ

4
( dψ̂2 + dφ̂2 + 2 cos θ dφ̂ dψ̂) +

a4

Σ
(dψ̂ + cos θ dφ̂)2

−4a3

Σ

(

(c3 + s3) dt̂+ (s2c+ c2s) dû
)

(dψ̂ + cos θ dφ̂) (2.7)

where Σ ≡ r̂2 + a2(1 + 4s2) and
û ∼ û+ 2πm (2.8)

is the coordinate of the unit-radius KK S1. Defining the one-form

A =
2a2 sinh 2δ

Σ

(

dt̂− 1

2
aeδ(dψ̂ + cos θ dφ̂)

)

(2.9)

the RR three-form is given by the manifestly self-dual expression

FRR
(3) = −dA ∧ (dû+ A)− ∗

(

dA ∧ (dû+ A)
)

. (2.10)

This two-parameter family of solutions is easily embedded in the larger four- parameter
family, in which the two U(1) charges and scalar field are separately varied. We simply
deform the identification (2.25) by the parameters λ and R to

û ∼ û+ 2πmR cosh λ, t̂ ∼ t̂− 2πmR sinhλ, (2.11)

which does not introduce any singularities. To understand the asymptotic geometry we boost
to the primed coordinates

û′ = cosh λû+ sinh λt̂, t̂′ = coshλt̂ + sinhλû, (2.12)

which have the canonical identification

û′ ∼ û′ + 2πmR, t̂′ ∼ t̂′. (2.13)

Hence the asymptotic geometry differs only by the radius R of the KK S1, previously set to
unity.
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2.2 The NHEK limit

In this subsection we describe the near-horizon limit, following [10, 11, 3]. Define

t =
ΩL
2a2

t̂ǫ , r =
r̂2 − a2

ǫ
, y = 2πTQ(û+ Φt̂) , (2.14)

ψ = ψ̂ − ΩLt̂−
2JL
Q2

(û+ Φt̂) , φ = φ̂ (2.15)

where

TQ ≡ c3 − s3

4πas2c2
=

√

J2
L −Q3

πQ2
, (2.16)

ΩL ≡ 1

a(c3 − s3)
, (2.17)

Φ ≡ c2s− s2c

c3 − s3
. (2.18)

The near-horizon metric is then the ǫ→ 0 limit of (2.7)

12

M
ds2 = −r2dt2 + dr2

r2
+ γ(dy + rdt)2 + γ(dψ + cos θdφ)2 (2.19)

+2αγ(dy + rdt)(dψ + cos θdφ) + dθ2 + sin2 θdφ2

where the deformation parameters

α =
2 cosh 2δ

1 + cosh2 2δ
, γ = 1 +

1

cosh2 2δ
. (2.20)

are related by Mαγ = 12a2.
In terms of the SL(2, R)L × SU(2)R invariant forms,

σ1 = cosψdθ + sin θ sinψdφ (2.21)

σ2 = − sinψdθ + sin θ cosψdφ

σ3 = dψ + cos θdφ

w± = −e∓yrdt∓ e∓ydr/r

w3 = dy + rdt ,

the metric can be written

12

M
ds2 = −w+w− + γw2

3 + σ2
1 + σ2

2 + γσ2
3 + 2αγw3σ3 . (2.22)

The gauge field A reduces to

dû+ A = −a
2
tanh 2δ

(

eδσ3 + e−δw3

)

. (2.23)
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FRR
(3) follows from A via (2.10) as

FRR
(3) =

Q

4

(

σ1 ∧ σ2 ∧ σ3 +
1

2
w+ ∧ w− ∧ w3 + sech2δ (σ1 ∧ σ2 ∧ w3 +

1

2
w+ ∧ w− ∧ σ3)

)

(2.24)
The (y, ψ) identifications (2.11) are

y ∼ y + 4π2TRm, ψ ∼ ψ + 2πΘm+ 4πn, (2.25)

for any integers (m,n). Here we have defined

TR = RTQ( coshλ− Φ sinh λ), (2.26)

Θ = −2JLR

Q2
coshλ+R(ΩL +

2ΦJL
Q2

) sinhλ . (2.27)

3 5D charged black strings

In this section we find 5D black string solutions of the same theory (2.1) which have the same
near-horizon geometries as the 5D spinning black holes of the preceding section. The solu-
tions are asymptotically flat in three, rather than four spatial directions and translationally
invariant along the fourth.

3.1 Full solution and charges

A 5D black string is characterized by two magnetic charges obtained by integrating the two
U(1) field strengths over the S2 surrounding the string. We will fix the KKmagnetic charge to
unity. This corresponds to having one Taub-NUT magnetic string.2 The second RR magnetic
charge, which we denote Q below, counts both the number of K3-wrapped D5-branes and
parallel D1 branes which are equal due to the self-duality constraint we have imposed.
The magnetic string worldvolume contains two conserved U(1) currents arising from the
two 5D bulk U(1) gauge symmetries. The general black string solution has nonzero charge
densities qKK and qRR along the string detected by long range electric fields at infinity. Hence
we expect that the lowest-energy translationally and rotationally invariant configuration is
described by the three internal parameters Q, qKK and qRR. We also consider a momentum
density along the string, but this is not an independent fourth parameter as it can always
be eliminated by a boost.

Defining

Ω2 = sin θdθ ∧ dφ, Ae = − dt̂

r̂ + P

H = 1 +
P

r̂

2Solutions with KK magnetic charge p are related to Zp quotients of 5D black holes.
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the action (2.1) has the two-parameter family of solutions

ds2 = −H−2dt̂2 +H2
(

dr̂2 + r̂2(dθ2 + sin2 θdφ2)
)

(3.1)

+P 2γ[(dψ̂ + cos θdφ+ αAe)
2 + (dŷ +

√
1− α2Ae)

2]

FRR
(3) = P 2 tanh 2δ

(

dAe ∧ (dŷ + Ae) + Ω2 ∧ (dψ̂ + cos θdφ)
)

−P
2 tanh 2δ

cosh 2δ

(

−dAe ∧ (dψ̂ + cos θdφ) + Ω2 ∧ (dŷ −Ae)
)

.

where α, γ are related to δ by (2.20). Regularity at the poles requires

ψ̂ ∼ ψ̂ + 4π. (3.2)

It can be verified that the RR 3-form is self-dual. At large r̂, H → 1 and the metric is

ds2 = −dt̂2 + dr̂2 + r̂2(dθ2 + sin2 θdφ2) + P 2γdŷ2 + P 2γ(dψ̂ + cos θdφ)2. (3.3)

This is locally a product of an S1 parameterized by ψ̂ with 5-dimensional Minkowski space
and can be viewed as a Kaluza-Klein (KK) compactification to five dimensions.3

Note that the S1 parameterized by ψ̂ is fibered over the S2 parameterized by (θ, φ) in
a manner indicating there is a string extending in the ŷ direction carrying one unit of KK
magnetic charge. This string also carries D1 and D5 charges Q1 and Q5 given by

Q1 = Q5 =
1

4π2

∫

S3

FRR
(3) = 4P 2 tanh 2δ ≡ Q. (3.4)

In addition the string carries electric charge densities. To see this we dimensionally reduce
to five dimensions along the ψ̂ circle, with the ansatz

ds26 = η−
1
3ds25 + η(dψ̂ +A)2 (3.5)

which gives the 5D effective action

S5B =
1

2π2

∫

d5x
√
−g{R− 1

3
(
∂η

η
)2 − 1

6
η

2
3 (F RR

(3) )
2 − 1

4
η

4
3 (F)2} (3.6)

where F = dA and the KK scalar for the black string (2.7) is given by

η = P 2γ . (3.7)

The 5D two-form arising from S1 reduction of the three-form 6D RR field is proportional to
the 5D dual of F RR

(3)
due to the self duality condition, and so does not explicitly appear in

(3.6). More details of the 6D to 5D reduction can be found in [6] and [7]. The KK gauge
field can be read off of the gψ̂φ and gψ̂t̂ terms in (3.1) and is

A = cos θdφ+ αAe. (3.8)

3We expect that there is a more general solution in which the asymptotic radius of the KK S1 can be
varied arbitrarily, and that this is a special case in which the scalar sits at the attractor value throughout
the geometry. As we are ultimately interested in the near-horizon behavior we will not consider this more
general solution.
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The first term gives the magnetic string charge

qTN = − 1

4π

∫

S2

F = 1 (3.9)

while the second gives a radial electric field at large r̂

Fe = − α

r̂2
dt̂ ∧ dr̂. (3.10)

The proper density of KK electric charge on the string is hence

qKK = − 1

π2

∫

S2×Ry

η
4
3 ∗ F = −α

π
(P 2γ)

4
3 . (3.11)

where Ry is any interval along the y direction with unit proper length, and ∗ is the five
dimensional Hodge dual. There is also an RR electric field at infinity. The corresponding
charge density is

qRR =
1

4π2

∫

S2×Ry

FRR
(3) =

Qsech2δ

4π(P 2γ)
2
3

. (3.12)

This electric field is sourced by D1 branes wrapping the S1 parameterized by ψ̂ and smeared
along the ŷ direction of the string, as well as smeared D5-branes wrapping S1 ×K3. The
proper densities of these objects along the string are equal and both given by qRR. This
string also has finite proper momentum and energy densities P and E . These are determined
from the 1

r̂
corrections to the metric via the standard ADM formulae [12, 13, 14]. Using

asymptotically Cartesian coordinates, the stress-energy tensor for a p-brane in d dimensional
spacetime is

Tab =
1

16πGd

∮

dΩd−p−2r
d−p−2ni[ηab(∂ih

c
c + ∂ih

j
j − ∂jh

j
i )− ∂ihab] (3.13)

where ni is a radial unit vector in the transverse space, and hµν = gµν−ηµν . The labels a, b =
0, 1 · · ·p run over the world volume directions, while i, j denotes the transverse directions.
For the black string solution (2.7), one first need to write the five dimensional Einstein frame
metric in the canonical form, which amounts to the rescaling

t̂ = η−
1
6 t̃, r̂ = η−

1
6 r̃, ŷ = η−

2
3 ỹ (3.14)

Rewriting the metric (2.7) in terms of tilded coordinates, and working out the stress tensor
(3.13), one find the energy and momentum densities

E = Tt̃t̃ =
8

π
P (P 2γ)

1
6 , P = Tt̃ỹ = −2

π
(P 2γ)2/3

√
1− α2 . (3.15)

One could transform everything to a boosted frame with P = 0 but the resulting formulae
are long and unilluminating.

In summary the supergravity solution (3.1) corresponds to the energy-momentum-density
(3.15) brane configuration of the following table :

7



Wrapping 6 7 8 9 u Ry

D5 Q X X X X X
D1 Q X
TN 1 X
D5 qRR X X X X X
D1 qRR X
KK qKK X

where Ry denotes the common string direction, 6-7-8-9 are the K3 directions, the last three
rows are proper wrapping densities and the last row denotes KK momentum around the S1.

3.2 Near-horizon limit

The near horizon limit is taken by defining

r̂ = ǫr, t̂ =
P 2t

ǫ
, (3.16)

ψ̂ = ψ + α(y +
Pt

ǫ
) (3.17)

ŷ =
√
1− α2(y +

Pt

ǫ
) (3.18)

Taking the limit ǫ→ 0 gives the near-horizon metric

1

P 2
ds2 = −w+w− + γw2

3 + σ2
1 + σ2

2 + γσ2
3 + 2αγw3σ3 (3.19)

with the identification
ψ ∼ ψ + 4π (3.20)

and three-form

FRR
(3) =

Q
4

(

σ1 ∧ σ2 ∧ σ3 +
1

2
w+ ∧ w− ∧ w3 + sech2δ (σ1 ∧ σ2 ∧ w3 +

1

2
w+ ∧ w− ∧ σ3)

)

(3.21)
This general near-horizon geometry is fully described by two parameters which can be

taken to be δ and P . The asymptotically flat solution on the other hand has a three-
parameter generalization in which qKK and qRR are separately varied. These all reduce,
however, in the near-horizon limit to the same two parameter family given above. This
corresponds, in the dual picture, to radial RG flows which differ in the UV but reach the
same IR fixed point. This observation agrees with the analysis of [5], where general black
string solutions in the minimal 5D supergravity with a single U(1) were studied. In that case,
the radial electric field is always scaled away in the near-horizon region, 4 which is therefore
always AdS3.

5 We see here that in order to get a rotationally-invariant near-horizon warped
AdS3 two U(1)s are required.

4For rotating black strings, a different decoupling limit was discussed in [15], under which there is also a
warped horizon, but the SU(2) symmetry is broken.

5The fact that one of the two electric fields scales away in the near-horizon region is related to the fact
that the near horizon SL(2, R)L × U(1)R isometry contains a left but not a right scaling symmetry.

8



4 NHEK = black string near-horizon

The near-horizon black string geometry (3.19), (3.21) is locally the same as the NHEK
geometry (2.22), (2.24) with the identification

M = 12P 2. (4.1)

Globally the NHEK geometry also has the identification (2.25) of the y coordinate. In terms
of the hatted coordinates of the full black string solution (3.1) this identification is

ŷ ∼ ŷ + 4π2TR
√
1− α2m, ψ̂ ∼ ψ̂ + 2π(2απTR +Θ)m+ 4πn. (4.2)

In other words, the 5D black string is wrapped around a compactified ŷ circle and has
boundary conditions twisted by a rotation along ψ̂.

In conclusion, the dual of the 5D extreme spinning black holes is identified as the low
energy limit of the D-brane configuration in table 1 wrapped on a circle with ψ̂-twisted
boundary conditions.
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