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FROM NAVIER-STOKES TO EINSTEIN

Irene Bredberg, Cynthia Keeler, Vyacheslav Lysov and Andrew Strominger

Center for the Fundamental Laws of Nature, Harvard University

Cambridge, MA, 02138

Abstract

We show by explicit construction that for every solution of the incompressible Navier-Stokes equation

in p + 1 dimensions, there is a uniquely associated “dual” solution of the vacuum Einstein equations

in p + 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Σc whose

extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a “near-horizon”

limit in which Σc becomes highly accelerated. The near-horizon expansion in gravity is shown to be

mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation

reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is

algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions

of a holographic duality relating fluids and horizons which began with the membrane paradigm in the

70’s and resurfaced recently in studies of the AdS/CFT correspondence.
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1 Introduction

The Einstein equation

Gµν = 0, (1)

and the incompressible Navier-Stokes equation

v̇i − η∂2vi + ∂iP + vj∂jvi = 0, (2)

have long played central roles in both mathematics and physics. The Einstein equation universally governs

the long-distance behavior of essentially any gravitating system, while the incompressible Navier-Stokes

equation universally governs the hydrodynamic limit of essentially any fluid. They both display a rich

non-linear structure which has been a continual source of interesting surprises yet remains, centuries

after their discovery, incompletely understood. It is the purpose of this paper to give a mathematically

precise relationship between (1) and (2) and their solutions, and thereby provide a hopefully useful bridge

between the two subjects. For example cosmic censorship could be related to global existence for Navier-

Stokes or the scale separation characterizing turbulent flows related to radial separation in a spacetime

geometry, see e.g. [1, 2].

Hints of such a connection, summarized in the next section, have surfaced in various forms over the

last three decades [3–28], see [26, 29–32] for reviews. In particular, excitations of a black hole horizon

dissipate very much like those of a fluid [3–5, 12, 13, 28, 33–35], and there has been recent discussion of

a holographic duality relating black holes and fluids [1, 8–10, 12, 14–17, 19, 21, 23, 24]. Inspired by these

suggestions, in this paper we explicitly construct a map from solutions of the nonlinear incompressible

Navier-Stokes equation to solutions of the nonlinear Einstein equation. A key ingredient is the imposition

of boundary conditions which, in a sense to be defined, isolate the horizon dynamics from the rest of the

gravitational dynamics and thereby reduce equation (1) to equation (2).

Our basic construction is roughly as follows. We begin with the region of p+2-dimensional Minkowski

space inside a hypersurface Σc given by an equation of the form x2 − t2 = 4rc. Σc is intrinsically flat

(being the translation of an hyperbola in the t-x plane along the remaining p spatial directions), but has

an extrinsic curvature linked to the constant acceleration a = 1/
√

4rc. It asymptotes to its future horizon

H+ which is the null surface x = t. We then study the effect of finite perturbations of the extrinsic

curvature of Σc while keeping the intrinsic metric flat. These generically lead, when evolved radially

inward with the Einstein equation, to singularities on H+. The special ones which are smooth on H+

are analyzed in the hydrodynamic “ε-expansion”, which is a nonrelativistic, long-wavelength expansion

and, importantly, keeps terms that are nonlinear in the size of the perturbation. It is found that tensor

and scalar modes of the metric decouple in this limit and the remaining degrees of freedom are vector

modes governed by the Navier-Stokes equation in p+1 dimensions. We present (equation (14) below) the

p+ 2-dimensional solution of the Einstein equation through third order in the hydrodynamic expansion

parameter ε. The first term is flat space. The second and third terms are algebraically constructed from

the velocity field vi and pressure P of an incompressible fluid. The nonlinear spacetime Einstein equation

then reduces to the nonlinear incompressible Navier-Stokes equation for the pair (vi, P ).

This result is already interesting and non-trivial, but the fact that the Navier-Stokes arises when the

geometric variables are subject to the same kind of expansion used in fluid dynamics might have been

anticipated. A deeper connection appears when we consider an alternate expansion in which, instead of

going to long distances, we take the acceleration of Σc to infinity. This is a near-horizon limit since it

pushes Σc towards its horizon H+. We then show that, after a constant overall rescaling of the metric, the

near-horizon expansion is mathematically identical to the hydrodynamic expansion. Hence the solutions of

the Einstein equation (constrained by the boundary conditions of a flat metric on Σc and smoothness on

H+) in this near-horizon expansion are in one-to-one correspondence with solutions of the incompressible

Navier-Stokes equation. This then is the precise mathematical sense in which horizons are incompressible

fluids.
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It is possible that the ultimate origin of this relation is a deep and exact holographic duality relating

(among other things) quantum black holes to fluids as has been suggested by string theoretic investiga-

tions. However in this paper we have concentrated on simply establishing the mathematical relationship

between (1) and (2) in a manner which makes no assumptions about or reference to this tantalizing

possibility.

This paper is organized as follows. In section 2 we briefly describe precursors of our construction

going back to the 70’s. Section 3 briefly reviews the hydrodynamic expansion in the study of fluids, and

the emergence of the incompressible Navier-Stokes equation in the hydrodynamic limit. In section 4 we

specify the boundary conditions, explained roughly above, used to isolate horizon dynamics. In section

5 we present the general solution of the nonlinear Einstein equation with these boundary conditions

through the first three orders in the hydrodynamic expansion, and show that the first nontrivial term

corresponds to the velocity field of an incompressible fluid. We also discuss the geometric analog of forcing

the fluid, argue for uniqueness, and discuss the possible formation of black hole type singularities. Section

6 presents a simpler form of the metric and shows that, up to an overall rescaling and after an appropriate

coordinate transformation, it depends only on the product of the leading-order acceleration of Σc and the

hydrodynamic expansion parameter ε. In section 7 we show that the geometries are, through the order

constructed, of a special type known in four dimensions as Petrov type II. This may enable a connection of

the present work with the large literature on algebraically special spacetimes [36–38]. Finally in section

8 we demonstrate, using the simplified metric of section 6, the equivalence of the hydrodynamic and

near-horizon expansions.

2 Relation to previous work

The first suggestion of a relation between horizon and Navier-Stokes dynamics appears in the prescient

thesis of Damour [3]. This work contains an expression now known as the Damour-Navier-Stokes equation

[39] governing the geometric data on any null surface. Although tantalizingly similar, it is not quite the

Navier-Stokes equation as it has too many variables (eliminated herein by an appropriate boundary

condition) and an extra nonlinear term. To get precisely Navier-Stokes we found it necessary to consider

the near-null limit of a highly accelerated timelike surface. Such a surface was introduced by Price and

Thorne [5] and coined the stretched horizon (analogous to our Σc). Although similar in spirit their limit

is slightly different from ours. They obtain a compressible fluid with a negative bulk viscosity and an

extra term not present in Navier-Stokes. This approach was developed into the membrane paradigm

and is reviewed in the book [40]. Much more recently Policastro, Starinets and Son [9] made the striking

observation, in the context of the AdS/CFT correspondence, that the dissipative behavior of a large black

hole in AdS agrees with that of the hydrodynamics of the holographically dual CFT. This observation

has been developed in many directions [10,12,29,41–51]. Although far from obvious at first glance, these

results from AdS/CFT are compatible with, and in some cases equivalent to, the earlier results from pure

gravity [10,23,28,52,53]. In the AdS/CFT context Bhattacharya, Minwalla and Wadia [1,23] showed that

in asymptotically AdS spacetimes at finite temperature, the asymptotic AdS boundary data is governed

in a hydrodynamic limit by the Navier-Stokes equation. They use the Navier-Stokes data to construct

a bulk solution of the Einstein equation with negative cosmological constant. Our dual bulk geometry

in equation (14) is a refinement of expression (4.4) in [1] in which the cosmological constant is taken to

zero and the boundary can be pushed to any radius - in particular to the interesting near-horizon region.

Finally we rely heavily on our previous paper [28] which solves the linear case within the framework

adopted herein.
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3 The hydrodynamic limit and the ε-expansion

The incompressible Navier-Stokes equation has a well-known scaling symmetry which is important in the

following and briefly reviewed here. Let the pair (vi, P ) solve the incompressible Navier-Stokes equation

∂ivi = 0, ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0, (3)

where η is the kinematic viscosity and i = 1, ...p. Now consider a family of pairs (vεi , P
ε) in which

frequencies and wavelengths are non-relativistically dilated and amplitudes scaled down by the parameter

ε:

vεi (x
i, τ) = εvi(εx

i, ε2τ), (4)

P εi (xi, τ) = ε2P (εxi, ε2τ).

It is easy to check that (3) directly implies

∂τv
ε
i − η∂2vεi + ∂iP

ε + vεj∂jv
ε
i = 0. (5)

Hence (4) generates from the original solution a family of solutions parameterized by ε.

In real fluids there are always corrections to the Navier-Stokes equation. Galilean invariance requires

that these vanish for constant vi. Typical corrections are for example of the form

∂τvi − η∂2vi + ∂iP + vj∂jvi + vkvj∂k∂jvi + ∂2τvi = 0. (6)

If (vi, P ) obey this equation, the rescaled quantities obey

∂τv
ε
i − η∂2vεi + ∂iP

ε + vεj∂jv
ε
i + ε2

(
vεkvεj∂k∂jv

ε
i + ∂2τv

ε
i ) = 0. (7)

The limit ε → 0 is the hydrodynamic limit. In this limit these corrections become irrelevant. Similarly

the speed of sound goes to infinity and compressible fluids become incompressible. It is not hard to show

that all reasonable types of corrections are scaled away, and the incompressible Navier-Stokes equation

universally governs the hydrodynamic limit of essentially any fluid. The limit is an incredibly rich and

interesting one because, even though the amplitudes are scaled to zero, nonlinearities survive. It is this

hydrodynamic limit of a fluid that we will match to a near-horizon limit in gravity.

4 Characterizing the dual geometries

We seek a relation between the (p+2)-dimensional Einstein and (p+1)-dimensional Navier-Stokes equa-

tions. Of course, the former has a much larger solution space than the latter so only a special type of

Einstein geometry is relevant. Roughly speaking, the relevant geometries are non-singular perturbations

of a horizon. Let us now make this more precise.

We consider geometries of the type depicted in Figure 1 with an outer “cutoff” boundary denoted

Σc. The boundary hypersurface Σc is taken to be asymptotically null in both the far future and far past.

In the Minkowskian coordinates ds2p+2 = −dudv + dxidx
i, past null infinity I− is the union of the null

surfaces v → −∞ together with u → −∞ and Σc is the timelike hypersurface uv = −4rc with v > 0.

Past (future) event horizons H− (H+) are defined by the boundaries of the causal future (past) of Σc.

The dual geometries will be constructed in two a priori different expansions about Minkowski space: the

near-horizon and the hydrodynamic ε-expansion. Ultimately the two expansions will be shown to be

equivalent.

Initial data can be specified on the union of Σc and I−. We consider initial data which is asymp-

totically Minkowskian and flat (no incoming waves) on I− (or equivalently H−). On Σc we generally

demand that the intrinsic metric γab be flat,

γab = ηab, a, b = 0, ...p (8)
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Figure 1: This figure depicts the Einstein geometry holographically dual to a fluid. The accelerated boundary hypersurface

Σc at radius r = rc is intrinsically flat but the extrinsic curvature is given by the fluid stress tensor. This extrinsic curvature

leads to gravity waves which propagate radially inward. The leading-order condition that these waves do not cross the past

horizon H− of Σc at τ = −∞ or produce singularities on the future horizon H+ at r = 0 is the non-linear incompressible

Navier-Stokes equation for the fluid.

although we will later consider “forcing” the system by perturbing γab.

We wish to consider the general solution of the Einstein equations consistent with this initial data

and smooth on H+.1 In particular, so far we have not specified the extrinsic curvature Kab on Σc or

equivalently (and more conveniently) the Brown-York stress tensor on Σc
2

Tab ≡ 2(γabK −Kab). (9)

If no initial data were prescribed on I−, any Tab on Σc consistent with the constraint equations could be

chosen. This data could then in general be evolved radially inwards to produce a spacetime everywhere

inside of Σc. In general, such a spacetime will have gravitational flux (if not singularities) going up to

v = ∞ (I+) as well as down to I−. Hence we have a “shooting problem” to find those special allowed

choices of Tab which produce a spacetime smooth on H+ with no flux coming up from I−.

We solved this problem in [28] to leading order in a double expansion in long wavelengths and weak

fields.3 Ingoing Rindler coordinates were used for which the leading order flat metric is

ds2p+2 = −rdτ2 + 2dτdr + dxidx
i. (10)

Σc is the accelerated surface r = rc, H− is τ = −∞ and H+ is r = 0. These coordinates are conve-

nient for analyzing smoothness on H+. It was found that the allowed choices of Tab are precisely those

corresponding to the linearized fluid:

r3/2c T τi = vi, r3/2c T ij = −η∂(ivj), (11)

where the (kinematic) viscosity here is given by the formula

η = rc, (12)

1Here we allow for incoming flux where I− meets Σc at u = −∞, v = 0.
2Our normalization here agrees with the conventional one for G = 1/16π.
3Our conventions here differ from [28].
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while vi obeys the linearized incompressible Navier-Stokes equation

∂iv
i = 0, ∂τv

i − η∂2vi = 0. (13)

If we choose any value for the viscosity other than (12), the constraint equations on Σc are still obeyed,

but gravitational waves are propagated down to I− and there is a singularity at r = 0.

In this paper we go one step further and solve the problem in certain hydrodynamic and near-horizon

limits without making a linearized approximation, enabling us to see a direct connection between the

nonlinear structures of the Navier-Stokes and Einstein equations.

5 Nonlinear solution in the ε-expansion

In this section we will improve on the analysis of [28] by solving the shooting problem in the long

wavelength ε-expansion without a simultaneous linearized expansion. The general solution will be pa-

rameterized by a solution vi(x
i, τ), P (xi, τ) of the full nonlinear Navier-Stokes equation with viscosity

(12) together with the parameter ε.

5.1 The solution

Consider the metric

ds2p+2 =− rdτ2 + 2dτdr + dxidx
i

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr (14)

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

− (r2 − r2c )
rc

∂2vidx
idτ + . . .

where vi = vi(x
i, τ) and P (xi, τ) are independent of r. Here and henceforth i, j = 1, ..p indices are raised

and lowered with δij and we take

vi ∼ O(ε), P ∼ O(ε2), ∂i ∼ O(ε), ∂τ ∼ O(ε2) (15)

as in the hydrodynamic scaling of section 3. It follows that the first line on the right hand side of (14) is

O(ε0) and each subsequent line is one higher order in ε. The linearization of this expression in vi agrees

with the linearized solution studied in [28].

On the cutoff surface Σc, r = rc and the induced metric is flat:

γabdx
adxb = −rcdτ2 + dxidx

i, (16)

and hence satisfies the desired boundary condition. Here and henceforth xa ∼ (xi, τ). The extrinsic

curvature and unit normal on Σc are

Kab =
1

2
LNγab = −1

2

[
Tab −

1

p
γabγ

cdTcd

]
, Nµ∂µ =

1
√
rc
∂τ +

√
rc

(
1− P

rc

)
∂r +

vi
√
rc
∂i+O(ε3). (17)

The Brown-York stress tensor is

Tabdx
adxb =

dx2i√
rc

+
v2
√
rc
dτ2 − 2

vi√
rc
dxidτ +

(vivj + Pδij)

r
3/2
c

dxidxj − 2
∂ivj√
rc
dxidxj +O(ε3). (18)

We wish to solve the Einstein equations as a power series in ε. We first consider the necessary but

not sufficient condition that the constraints be satisfied on Σc. At order ε0 the metric is flat and Tab
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is constant so they are trivially satisfied. The only way to get an order ε term is with one power of vi

and no derivatives. Such a linear term cannot appear because the constant vi terms in (14) can, through

quadratic order, be obtained from a boost of flat space. The first nontrivial equation is encountered at

order ε2:

r3/2c ∂aT
aτ = ∂iv

i = 0. (19)

This equation is satisfied if and only if vi is the velocity field of an incompressible fluid. Taking this to

be the case, one finds at order ε3:

r3/2c ∂aTai = ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0. (20)

This is satisfied if and only if vi solves the Navier-Stokes equation with pressure P and viscosity η = rc.

Once the constraints are satisfied it is ordinarily possible to evolve the solution off the hypersurface,

in this case in the radial direction, at least for a finite distance. Here we have the danger of singularities

at the horizon H+ near r = 0, or equivalently waves coming up from I−. We know from [28] that such

singularities are absent in the linearized analysis provided the fluid viscosity takes the required value

(12). We have checked by direct computation that this absence of singularities extends to the nonlinear

case as well. That is all components obey

Gra, Gab, Grr = O(ε4) (21)

and are nonsingular for finite values of r. Presumably the order ε4 and higher terms in the metric can

be chosen so that the Einstein equations are solved exactly.

It turns out that it is still possible to solve the Einstein equations analytically through order ε3 with

the “wrong” value of the viscosity (i.e. η 6= rc ) even in the nonlinear case. As expected these solutions

develop a singularity at r = 0 near H+, and are presented in Appendix A .

5.2 Forcing the fluid

Solutions of the linearized Navier-Stokes equation decay exponentially in the future. There is some

expectation - although no proof - that nonlinear solutions eventually decay as well. Therefore the extrinsic

curvature on Σc in our examples is expected to become constant.

On the other hand, already at the linear level, Navier-Stokes solutions grow exponentially in the far

past and typically are singular at τ = −∞ . Therefore we expect that the dual geometry is also singular

at τ = −∞, which is the past horizon H− of Σc. This singularity is not problematic for real fluids, as we

are typically interested in cases where forcing terms correct the Navier-Stokes equation. For example we

might consider a fluid which is initially at rest, stirred at time τ = τ∗ , and then left to evolve according

to the unforced Navier-Stokes equation.

In fact this kind of situation is also very natural to consider on the gravity side. Consider flat

Minkowski spacetime with a flat metric and constant extrinsic curvature on the boundary Σc for τ < τ∗.

We then stir it at τ = τ∗ by momentarily perturbing the boundary condition that the induced metric

on Σc be flat. This will send out a gravitational shock wave along τ = τ∗ and excite the geometry for

τ > τ∗. The result should be an appropriate gluing of (14) along a null hypersurface to flat Minkowski

space. This is depicted in Figure 2.

At the linear level, it is possible to explicitly construct the glued geometry describing this situation

through order ε3. The metric is

ds2 =− rdτ2 + 2dτdr + dxidx
i

−
[
2(1− r/rc)vidxidτ + (1− r/rc) (∂jvi + ∂ivj) dx

idxj − 2

(
r − r2

2rc
− rc/2

)
∂2vidx

idτ

]
− δ(τ − τ∗)

[(
4(1− r/rc)Fi +

2

rc
αi

)
dxidτ − 2

rc
βijdx

idxj
]

+ . . . (22)
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Figure 2: On the Σc surface, prior to τ = τ∗, all initial data is trivial. At τ = τ∗, a gravitational shock wave arrives. The

shock forces the fluid on Σc, and consequently the vi is nontrivial on Σc after τ∗.

where Fi is an arbitrary function of xi obeying ∂iF
i = 0. βij and αi (which is divergence free) are both

functions of xi and related to Fi by

∂j∂jαi = Fi, βij = ∂iαj + ∂jαi. (23)

Since the metric on Σc is no longer flat, the constraint equations become linearized Navier-Stokes with a

forcing term similar to that described in [28]. For this configuration we have

∂τv
i − η∂2vi = F i(x)δ(τ − τ∗). (24)

Clearly, since vi(x, τ) is taken to vanish for τ < τ∗, the forcing term will cause it to jump to Fi(x
i)

at τ = τ∗, after which it will evolve according to Navier-Stokes. Given (24) this geometry solves the

linearized Einstein equations everywhere, and is characterized by an arbitrary divergence-free vector field

Fi(x). Before τ = τ∗ it is flat, while afterward it is, up to a coordinate transformation, the linearization

of (14).

At the nonlinear level, the equations are cumbersome and we have been unable to explicitly construct

the analog of (22) away from Σc. However it seems plausible that qualitatively similar solutions persist

at the nonlinear level.

5.3 Singularities at r = ±∞

The square of the Riemann tensor for the solution (14) is given by

R2 = − 3

2r2c
(∂ivj − ∂jvi)2 − 2

r

r2c

[
∂2vi∂

2vi + 3∂ivj
(
∂j∂

2vi − ∂i∂2vj
)]

+ . . . . (25)

This expression diverges at r = ±∞. Of course perturbation theory cannot be trusted when |r| is of order
1
ε , so the computation is unreliable in this regime. Whether or not there are actual divergences in these

regions will depend on the details of the solution. In general, at r = −∞, black hole type singularities

may plausibly arise.

The divergence at r = +∞ is outside the cutoff surface, so a priori need not concern us. Still we may

ask what happens if we try to extend the solution to this region. In general relativity with no cosmological

8



constant it is hard to find solutions which are asymptotically flat in codimension one: i.e. there are no

codimension one black holes. This suggests that many configurations will be singular if extended to

r = +∞. On the other hand, if we add a negative cosmological constant, there are codimension one

asymptotically AdS black holes. At large r the cosmological term tends to dominate, and we expect in

this case many solutions to have nonsingular extensions to this region. However, as we will see below,

the hydrodynamic regime is small r so the large r behavior is of limited interest for the present purposes.

5.4 Uniqueness

Equation (14) gives the first three orders in the ε-expansion of metrics satisfying the Einstein equations

with the prescribed boundary data. These solutions are constructed from nonlinear solutions of the

incompressible Navier-Stokes equations. The latter are in turn, assuming existence and uniqueness for

Navier-Stokes, specified by a divergence-free vector field vi(x, τ∗) at a moment of time τ∗.

One may ask whether or not (14) is the unique solution with the prescribed boundary data (up to

coordinate transformations and field redefinitions) associated to a given vi(x, τ∗). This can be addressed

in the context of a combined weak-field expansion and ε-expansion. The problem was solved to leading

nontrivial order in the weak-field expansion in [28]. The unique solution is the first two lines of (14), but

with a vi obeying the linearized Navier-Stokes equation. Generally one does not expect the dimension of

the solution space in weak-field perturbation theory to change unless there is a linearization instability

and associated obstruction. In the present case, the only potential obstruction is the Navier-Stokes

equation which we are assuming can be solved. Hence one expects the solution (14) to be unique at each

order in the ε-expansion, up to the usual ambiguity of adding solutions of the leading order equations at

subleading orders.

6 Alternate presentation

In this section we give an alternate presentation of the metric (14) in which all the factors of ε appear

explicitly, without being hidden in the functional dependence on the coordinates. This is accomplished

by first transforming to hatted coordinates

xi =
rcx̂

i

ε
, τ =

rcτ̂

ε2
, r = rcr̂ (26)

so that ∂τ̂ = O(ε0) and we denote ∂̂i = ∂
∂x̂i = O(ε0). In the new coordinates

ds2p+2 =− r̂r3c
ε4
dτ̂2 +

2r2c
ε2
dτ̂dr̂ +

r2c
ε2
dx̂idx̂

i

− 2r2c
1− r̂
ε2

v̂idx̂
idτ̂ − 2rcv̂idx̂

idr̂ (27)

+ (1− r̂)

[
r2c
v̂2 + 2P̂

ε2
dτ̂2 + rcv̂iv̂jdx̂

idx̂j

]
+ rc(v̂

2 + 2P̂ )dτ̂dr̂

− (r̂2 − 1)rc∂̂
2v̂idx̂

idτ̂ + . . . , (28)

where P̂ (x̂, τ̂) = 1
ε2P (x(x̂), τ(τ̂)), v̂i(x̂, τ̂) = 1

ε vi(x(x̂), τ(τ̂)), v̂2 ≡ v̂iδ
ij v̂j and i, j indices are raised and

lowered with δij . The usual Navier-Stokes equation for v, P with η = rc implies

∂τ̂ v̂j − ∂̂2v̂j + v̂k∂̂kv̂j + ∂̂jP̂ = 0. (29)

This is the Navier-Stokes equation with η = 1 and no factors of ε or rc.

Finally let us consider the rescaled metric dŝ2p+2 = ε2

r2c
ds2p+2. The Einstein tensor is invariant under

such constant metric rescalings. Rearranging terms and defining

λ ≡ ε2

rc
(30)
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one finds

dŝ2p+2 =− r̂

λ
dτ̂2

+
[
2dτ̂dr̂ + dx̂idx̂

i − 2(1− r̂)v̂idx̂idτ̂ + (1− r̂)(v̂2 + 2P̂ )dτ̂2
]

(31)

+ λ
[
(1− r̂)v̂iv̂jdx̂idx̂j − 2v̂idx̂

idr̂ + (v̂2 + 2P̂ )dτ̂dr̂ + (1− r̂2)∂̂2v̂idx̂
idτ̂
]

+ . . . .

The Brown-York stress tensor is{
T̂ τ̂τ̂ = −

√
λv̂2, T̂ τ̂i = −

√
λv̂i, T̂ ij =

1√
λ
δij +

√
λ
[
v̂iv̂j + P̂ δij − 2∂̂iv̂j

]}
+O(λ3/2). (32)

The important point here is that the geometry depends only on the ratio λ = ε2

rc
and not ε or rc separately.

Given that the rescaled geometry depends only on λ and the ε-dependence (21) of the unrescaled

geometry (14) we conclude that in the hatted coordinates

Gτ̂ τ̂ =
r2c
ε4
Gττ ∼ O(λ0), Gîĵ =

r2c
ε2
Gij ∼ O(λ),

Gr̂τ̂ =
r2c
ε2
Grr ∼ O(λ), Gr̂r̂ = r2cGrr ∼ O(λ2)

Gτ̂ î =
r2c
ε3
Gτi ∼ O(λ1/2), Gr̂î =

r2c
ε
Gri ∼ O(λ3/2). (33)

Given the explicit factor of λ−1 in gτ̂ τ̂ , it is not immediately obvious in this presentation that in a direct

computation the Einstein tensor will even have a good Taylor expansion in λ. What happens is that,

because gr̂r̂ = 0, there are only a limited number of powers of gτ̂ τ̂ that can appear in the Einstein tensor,

and one may thereby directly recover (33). In fact, direct computation reveals we do slightly better; the

last line may be replaced by

Gτ̂ î =
r2c
ε3
Gτi ∼ O(λ1), Gr̂î =

r2c
ε
Gri ∼ O(λ2). (34)

Notice that Gτ̂ τ̂ in (33) is of order λ0 rather than λ1. We can improve this by computing a few higher

order pieces of the metric. Specifically, we add to (31)

−2λ(1− r̂)q̂idx̂idτ̂ + 2λ2g
(2)
r̂i dr̂dx̂

i + λ2g
(2)
ij dx̂

idx̂j + . . . (35)

Demanding that the r-independent pieces of Gτ̂ τ̂ = 0 be solved through order λ0 then fixes q̂i(τ̂ , x̂):

∂̂iq̂
i = ∂̂2v̂2 − 1

2
v̂i∂̂iv̂

2 − 3

2
∂τ̂ v̂

2 − 1

2

(
∂̂iv̂j + ∂̂j v̂i

)2
. (36)

Apparently q̂i is a kind of heat current. Demanding that the entire Gτ̂ τ̂ = 0 through order λ0 gives us a

differential equation for the combination Q̂(r̂, τ̂ , x̂) ≡ −2∂̂ig
(2)
r̂i + ∂r̂g

i (2)
i :

Q̂+2r̂∂r̂Q̂ = 2∂̂iq̂
i−2v̂iq̂

i+3r̂∂̂2v̂2− r̂
2

(
∂̂iv̂j + ∂̂j v̂i

)2
+2∂̂iv̂j ∂̂

j v̂i− v̂j ∂̂j v̂2+
(
v̂2
)2−2v̂i∂̂iP̂+2P̂ v̂2. (37)

Choosing q̂i, Q̂ accordingly, we find that as desired all components of the Einstein equations vanish for

λ→ 0:

Gr̂â, Gâb̂, Gr̂r̂ = O(λ). (38)

7 Petrov type

Interestingly, this geometry is of an algebraically special type. We consider the case of p = 2 to connect

to the well-studied Petrov classification of spacetimes [37]). A geometry is Petrov type II if there exists

a real null vector kµ such that the Weyl tensor satisfies

Wµνρ[σkλ]k
νkρ = 0. (39)
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This happens if the invariant I3−27J2 vanishes where I, J are both specific combinations of Weyl tensor

components which can be found in [37]. For the metric (14), the lowest nonzero entries for I, J are at

O(ε4) and O(ε6) respectively. Hence, the first contribution to the invariant would be at O(ε12); however

the invariant vanishes through O(ε13). At higher order in ε, it gets modified by corrections to (14); we

expect that including higher order terms in (14) enables (39) to be satisfied exactly.

8 Nonlinear solution in the near-horizon expansion

In section 4, the nonlinear Einstein equations with certain boundary conditions were solved in the non-

relativistic, long-wavelength hydrodynamic ε-expansion. This generalized the analysis given in [28] of

the ε-expansion for linearized modes. [28] also considered, for linearized modes, a second, near-horizon

expansion. Although physically inequivalent, the two expansions were found to be equivalent mathemat-

ically and reduce to the linearized dynamics of an incompressible fluid. In this section, we consider the

nonlinear version of the near-horizon expansion and find that it is again mathematically equivalent to

the nonlinear ε-expansion.

In the ε-expansion one solves the shooting problem for long-wavelength perturbations of Σc with a

fixed leading-order extrinsic curvature. The proper acceleration of a worldline at fixed xi in Σc is to

leading order just proportional to Kττ , so we may also view this as fixing the acceleration away from the

origin. In the near-horizon expansion, instead of expanding in the wavelength one expands in the inverse

acceleration. We begin with the flat metric on the Rindler wedge

ds2p+2 = −rdτ2 + 2dτdr + dxidx
i. (40)

To avoid confusion with the notation of the previous section we put the boundary on the accelerating

surface

r = r̃c, (41)

so that r ≤ r̃c. The near-horizon, large acceleration, limit is r̃c → 0. In order to exhibit the r̃c-dependence

explicitly in the metric we transform to r = r̃cr̂, τ = τ̂
r̃c

so that r ≤ 1 and

ds2p+2 = − r̂

r̃c
dτ̂2 + 2dτ̂dr̂ + dxidx

i. (42)

In these coordinates the near-horizon limit rescales to infinity the coefficient of dτ̂2 at any finite r̂.

We now wish to consider perturbations of this metric solving the Einstein equations order by order

in the near-horizon expansion parameter r̃c that are consistent with a flat induced metric at r̂ = 1. At

the level of linear perturbations, the most general solution was found in [28] (characterized in terms of

the data at r = r̃c). This solution is (for all r)

dŝ2p+2 = − r̂

r̃c
dτ̂2 + 2dτ̂dr̂ + dxidx

i − 2(1− r̂)vidxidτ̂ + r̃c
[
(1− r̂2)∂2vidx

idτ̂ − 2vidx
idr̂
]

+O(r̃2c ) (43)

where ∂iv
i = 0 and ∂τ̂v

i − ∂2vi = 0. That is, vi is an incompressible fluid flow obeying the linearized

Navier-Stokes equation with unit kinematic viscosity.

The nonlinear generalization of (43) which solves the nonlinear Einstein equations to O(r̃c) is

dŝ2p+2 = − r̂

r̃c
dτ̂2

+
[
2dτ̂dr̂ + dxidx

i − 2(1− r̂)vidxidτ̂ + (1− r̂)(v2 + 2P̂ )dτ̂2
]

+ r̃c
[
(1− r̂)vivjdxidxj − 2vidx

idr̂ + (v2 + 2P̂ )dτ̂dr̂ + (1− r̂2)∂2vidx
idτ̂ − 2(1− r̂)q̂i(τ̂ , r̂, x)dxidτ̂

]
+ r̃2c

[
2g

(2)
r̂i (τ̂ , r̂, x)dxidr̂ + g

(2)
ij (τ̂ , r̂, x)dxidxj

]
+O(r̃2c ) (44)
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provided ∂iv
i = 0, ∂τ̂vj − ∂2vj + vk∂kvj + ∂jP̂ = 0. q̂i, g

(2)
r̂i , g

(2)
ij are solutions of first order differential

equations of the type (36) and (37). Further O(r̃2c ) pieces do not affect the equations of motion to this

order.

We can now see explicitly that making the notation change v → v̂, xi → x̂i and r̃c → λ in (44)

gives us the rescaled solution (31) in section 6. Hence the near-horizon and hydrodynamic expansions

are mathematically equivalent.

Since we are identifying r̃c = λ = ε2

rc
, rc → ∞ in the metric (14) is actually equivalent to the near-

horizon limit r̃c → 0 in (44). This may at first seem odd, but the near-horizon-hydrodynamic equivalence

involves a constant rescaling of (14) by a factor of 1
r2c

, the proper distance to the cutoff surface in the

rescaled metric (44) indeed behaves as 1√
rc

.
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A Appendix

In the ε-expansion,

ds2p+2 =− rdτ2 + 2dτdr + dxidx
i − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr + c1 log

(
r

rc

)
(∂ivj + ∂jvi) dx

idxj

− (r2 − r2c )
rc

∂2vidx
idτ − 2

(
1− r

rc

)
qidx

idτ − 2c1 (r log r − rc log rc) ∂
2vidx

idτ (45)

− 2c1 log

(
r

rc

)
vj (∂ivj + ∂jvi) dx

idτ + 2c1

(
1− r

rc

)
vj∂jvidx

idτ +O(ε4)

solves the Einstein equations through O(ε3) if vi obeys the incompressible Navier-Stokes equation with

the “wrong” viscosity η = rc (1 + c1) where c1 is a nonzero constant. For this geometry, the square of

the Riemann tensor is

R2 = − 3

2r2c
(∂ivj − ∂jvi)2 +

c1 (c1 + 2)

r2

[
2∂ivj∂

jvi +
1

2
(∂ivj − ∂jvi)2

]
+O(ε6) (46)

which clearly diverges at r = 0 unless c1 vanishes or c1 = −2. The last possibility is the time reverse of

the first and exponentially growing in the future.
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