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ABSTRACT

Properly segmenting multiband images of the Sun by their
thermal properties will help determine the thermal structure of
the solar corona. However, off-the-shelf segmentation algo-
rithms are typically inappropriate because temperature infor-
mation is captured by the relative intensities in different pass-
bands, while the absolute levels are not relevant. Input fea-
tures are therefore pixel-wise proportions of photons observed
in each band. To segment solar images based on these propor-
tions, we use a modification of k-means clustering that we call
the H-means algorithm because it uses the Hellinger distance
to compare probability vectors. H-means has a closed-form
expression for cluster centroids, so computation is as fast as
k-means. Tempering the input probability vectors reveals a
broader class ofH-means algorithms which include spherical
k-means clustering. More generally, H-means can be used
anytime the input feature is a probabilistic distribution, and
hence is useful beyond image segmentation applications.

Index Terms— Astronomy, Astrophysics, Sun, Cluster-
ing algorithms, Image segmentation

1. INTRODUCTION

The thermal structure of the solar corona is a crucial factor
in a proper understanding of the Sun-Earth connection. It
places constraints on coronal heating mechanisms, controls
the characteristics of the solar wind, and has the potential to
predict flare onsets and mass ejections. Determining the ther-
mal structure is however difficult since the data are obtained
as images at high cadence in multiple filters. Hence, fast im-
age segmentation methods that segregate regions of similar
thermal properties are needed.

Image segmentation is a well-studied problem, with ap-
plications in fields such as medical imaging and computer
vision; see [1], [2], [3], [4], [5] for examples of recent work.
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However, for studying the thermal structure of the solar
corona, standard segmentation approaches suffer two disad-
vantages. First, off-the-shelf segmentation algorithms often
assume that the absolute intensities in each band of multiband
images are the natural input features to be compared, which
is not the case in the thermal structure problem. Second,
model-based approaches that incorporate more complicated
observation models or input features often suffer from com-
putation requirements that prevent their use on streams of
high-resolution images. Fast computation is necessary when
analyzing data from the Atmospheric Imaging Assembly
(AIA) of the Solar Dynamics Observatory, which captures
high resolution multiband images with a cadence of approxi-
mately ten seconds.

In the corona, absolute brightness roughly corresponds to
the amount of plasma in a particular region, which is not rele-
vant for studying thermal properties. Thermal properties such
as average temperature are instead captured by the relative
intensities in the different passbands. Motivated by a proba-
bilistic model of the data generating process, we cluster pix-
els based on the vectors of proportions of photons observed in
each passband. To cluster these probability vectors, we use a
modified k-means algorithm that replaces Euclidean distance
with Hellinger distance, inspiring the name H-means.

In Section 2, we describe theH-means algorithm and dis-
cuss tempering the input distributions. In Section 3, we de-
scribe our application and the statistical model that inspires
our approach. In Section 4, we illustrate the performance of
our algorithm on AIA images. Section 5 concludes.

2. H-MEANS CLUSTERING

Clustering algorithms based on distances other than Eu-
clidean distance have been proposed and studied in, for in-
stance, [6], [7], [8], [9], [10], and [11]. The Hellinger distance
has been suggested as an alternative to Euclidean distance in
clustering and dimension reduction problems in [12], [13],
[14], and [11], but there has been relatively little study of
substituting the Hellinger distance for Euclidean distance in
k-means clustering. We call this modification to k-means the
H-means algorithm.



A standard generalization of the k-means algorithm re-
places squared Euclidean distance with another dissimilarity
measure d(y1, y2). The so-called k-medoids algorithm al-
ternates between updating cluster assignments and updating
cluster medoids. To initialize the k-medoids algorithm, we
can randomly chose the starting medoids m1, . . . ,mk from
the data {y1, . . . , yn}. We assign each unit to the cluster
with the closest medoid as measured by the dissimilarity d.
Formally, cluster assignments {c1, . . . , cn} are determined by
setting ci equal to the j that minimizes d(mj , yi). Then, the
following two steps are repeated until a convergence criterion
is met:

• Update cluster assignments by setting ci to the j that
minimizes d(mj , yi) for each unit i.

• Update the cluster medoids by setting mj equal to the
minimizer

argmin
m

∑
i:ci=j

d(m, yi). (1)

In cases where the distance is an arbitrary dissimilarity mea-
sure only defined pairwise between units in the data set, the
cluster medoid is found as the point from the original data
set in the given cluster that minimizes the total distance (1).
The usual problem with k-medoids is that, if there is not a
closed-form expression for (1), then finding the minimizer in
(1) requires an expensive search, and the computation conse-
quently scales quadratically in the number of observations.

When there is a closed-form solution for the minimizer
(1), then it is possible to replace Euclidean distance with an-
other metric without the usual computational disadvantages of
the k-medoids algorithm. Fortunately, the Hellinger distance
(2) has such a closed-form solution. The squared Hellinger
distance between two discrete1 probability distributions p1
and p2 on a state space X is

d2H(p1, p2) =
1

2

∑
x∈X

(√
p1(x)−

√
p2(x)

)2
. (2)

For a collection p1, . . . , pn of discrete probability distri-
butions, the minimizer

p∗ = argmin
p

n∑
i=1

d2H(p, pi) (3)

is

p∗(x) =

(∑n
i=1

√
pi(x)

)2
∑
x′∈X

(∑n
i=1

√
pi(x′)

)2 , (4)

which can be easily proved using the Cauchy-Schwarz in-
equality.

1In this paper, we focus on the discrete case, but H-means can in prin-
ciple also be applied to continuous probability distributions, although the
closed-form solution then requires evaluating a possibly difficult integral.
The method is therefore quite general and can be applied whenever features
of interest can be expressed as probability distributions.

2.1. Spherical k-means and H-means with tempering

The spherical k-means algorithm [6] is closely related to H-
means. The spherical k-means algorithm takes input vectors
{y1, . . . , yn}with nonnegative entries and normalizes them to
have unit length. Unit vectors are then compared according to
their cosine similarity. That is, the distance between vectors
yi and yj is given by

dcos(yi, yj) = 1− y>i yj
||yi|| ||yj ||

. (5)

Like Euclidean k-means andH-means, the spherical k-means
algorithm has a closed-form expression for the cluster cen-
troids, enabling fast computation [6].

In fact, the spherical k-means algorithm can be viewed as
a member of a class of generalized H-means algorithms. The
Hellinger distance (2) can be expressed as

d2H(p1, p2) = 1−
∑
x∈X

√
p1(x)p2(x).

We can also “temper” these distributions with a parameter
α ≥ 0, defining

pαi (x) ≡
(pi(x))

α∑
x′∈X (pi(x

′))α
, i = 1, 2.

Then, Hellinger distance and cosine distance are related by

d2H
(
p21, p

2
2

)
= dcos (p1, p2) . (6)

Thus, spherical k-means can be viewed asH-means with tem-
pered inputs.

3. IDENTIFYING SOLAR THERMAL FEATURES

Much is still unknown about the processes that govern ther-
mal features in the corona. The Atmospheric Imaging Assem-
bly is a four-telescope array on the Solar Dynamics Observa-
tory satellite that captures near-simultaneous images through
seven extreme ultraviolet wavelength passband filters. Be-
cause these different filters have differing responses to tem-
perature, they should be useful in reconstructing the temper-
ature distribution of the emitting plasma in each image pixel.
If it were possible to accurately infer these underlying tem-
perature distributions, then astronomers could study the ther-
mal characteristics of interesting features on the Sun, such as
loops of hot plasma, and trace the evolution of these thermal
properties over time. However, with only at most seven filters,
each responding to a fairly wide range of temperatures, recon-
structing the temperature distributions is an extremely under-
constrained problem. Instead of adding constraints from prior
information about the likely shapes of temperature distribu-
tions, we choose to bypass the reconstruction step altogether.

Our approach is motivated by a statistical model for the
data generating process. For simplicity of illustration, we



assume no background contamination and no spatial depen-
dence. The J × 1 observed vector yi in pixel i is modeled as
a Poisson random variable with mean

λi = PAµi, (7)

where P is a diagonal J × J matrix of exposure times, A =
(ajk) is a J × K matrix encoding the response of the jth
filter to temperature bin k, and µi is a K × 1 vector of true
intensities in each temperature bin. We parameterize the true
intensities as

µi = γiθi, (8)

where γi is a scalar roughly corresponding to the amount
of plasma in pixel i and θi is a discretized probability dis-
tribution for temperature. For the scientific applications we
consider, we focus on properties of θi such as average tem-
perature, and γi is a nuisance parameter. It is difficult to
reliably estimate the temperature distributions because K is
larger than J .

To avoid directly modeling the niusance parameters γi,
we use the conditional likelihood of yi given the pixel-wise
total

∑
j yij , a multinomial distribution free of γi. The multi-

nomial probabilities

πi =
PAθi

1>PAθi

capture all of the temperature information available after the
degradation by the response matrix A. Thus, in an attempt
to retain the available information with respect to this model,
we identify solar thermal features by clustering pixels with
similar values of the maximum likelihood estimates π̂i =
yi/
∑
j yij .

4. RESULTS

4.1. Simulations

To investigate the performance ofH-means clustering, we ap-
plied it to six 128 × 128 images simulated under the model
(7) and (8) using the same response matrix A that we use on
AIA data in Section 4.2. Figure 1a plots the simulated tem-
perature map. We used two different underlying temperature
distributions arranged in a vertical stripe pattern. The temper-
ature distributions on the log10 of the temperature in Kelvin
were Gaussian with standard deviation 0.25 and means 6.00
and 6.05. Values for γi in (8) were set proportional to the ob-
served total intensity summed across all filters in a slice of an
observation of the Sun, shown in Figure 1b.

Figure 1c shows the results of H-means clustering with
ten clusters based on the data simulated in six bands under
(7) and (8). To make the graphical display more meaningful,
gray scale values of each cluster were set to the pooled pro-
portions of counts in the 171 Angstrom band. The clustering
successfully reveals the vertical stripe pattern of the true un-
derlying temperature distributions, without being obscured by
the patterns in the γi map.

(a) (b) (c)

Fig. 1. Results for a simulated image under the model (7)
and (8). (a) The simulated map of the true temperature dis-
tributions. (b) The simulated map of the nuisance parameters
γi, corresponding to the total intensity. (c) The results of H-
means clustering with 10 clusters.

4.2. Application to AIA Data

We have applied H-means clustering to six full-resolution
(4096×4096) images of the Sun, using the 94, 131, 171, 193,
211, and 335 Angstrom filters, observed on October 2, 2010,
at 05:57am UT. Figure 2 shows the original, untransformed
data in all six bands. Figure 3a shows the estimated propor-
tions π̂i,171 in the 171 Angstrom filter. That is, Figure 3a plots
the pixel-wise ratios of counts in the 171 Angstrom band to
the sums of counts across all bands. Figure 3b displays the
results of applying H-means clustering with 64 clusters. As
in Section 4.1, gray scale values for each cluster were set to
the pooled proportions of counts in the 171 Angstrom band.

TheH-means clustering results capture features in the es-
timated probability images that do not appear in the origi-
nal images, indicating that clustering is operating on features
of the temperature distributions that are of scientific inter-
est. This is reflected in the similarity between Figures 3a and
3b. Moreover, the ‘S’-shaped region evident in Figure 3 is a
much larger scale feature than the typical solar features that
astronomers study, suggesting a direction for further investi-
gation.

5. CONCLUSION

H-means clustering is a general method for clustering proba-
bility distributions based on the Hellinger distance. It is based
on the k-means algorithm, but by tempering the input proba-
bility distributions, H-means encompasses other methods de-
signed to reduce the influence of total counts or magnitudes
across categories, such as spherical k-means. We applied H-
means in a model-inspired image segmentation algorithm to
reveal thermal features in multiband images of the Sun. A key
advantage of this method is that is does not require the recon-
struction of the underlying temperature distributions in each
pixel. A remaining question is the effect of different choices
of the tempering parameter α, given the connection between
H-means and spherical k-means. Future work will aim to



Fig. 2. AIA images of the Sun from 05:57am UT on October
2, 2010. The images in the top row, left to right, are the 94,
131, and 171 Angstrom filters. The images in the bottom row
are the 193, 211, and 335 Angstrom filters.

(a) (b)

Fig. 3. (a) Estimated probabilities π̂i,171 in the 171 Angstrom
filter. (b) H-means clustering results using 64 clusters.

develop a statistically principled way to choose α in practice.
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1995.

[13] P. Legendre and E. Gallagher, “Ecologically meaningful
transformations for ordination of species data,” Oecolo-
gia, vol. 129, pp. 271–280, 2001.
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