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Abstract

From its beginning in the early 20th century, quantum theory has

become progressively more important especially due to its

contributions to the development of technologies. Quantum mechanics

is crucial for current technology such as semiconductors, and also

holds promise for future technologies such as superconductors and

quantum computing. Despite of the success of quantum theory, its

applications have been mostly limited to equilibrium or static systems

due to 1. lack of experimental controllability of non-equilibrium

quantum systems 2. lack of theoretical frameworks to understand

non-equilibrium dynamics. Consequently, physicists have not yet

discovered too many interesting phenomena in non-equilibrium

quantum systems from both theoretical and experimental point of

view and thus, non-equilibrium quantum physics did not attract too

much attentions.

The situation has recently changed due to the rapid development of

experimental techniques in condensed matter as well as cold atom

systems, which now enables a better control of non-equilibrium

quantum systems. Motivated by this experimental progress, we

constructed theoretical frameworks to study three different
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non-equilibrium regimes of transient dynamics, steady states and

periodically drives. These frameworks provide new perspectives for

dynamical quantum process, and help to discover new phenomena in

these systems. In this thesis, we describe these frameworks through

explicit examples and demonstrate their versatility. Some of these

theoretical proposals have been realized in experiments, confirming

the applicability of the theories to realistic experimental situations.

These studies have led to not only the improved fundamental

understanding of non-equilibrium processes in quantum systems, but

also suggested entirely different venues for developing quantum

technologies.
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size L = ƩƤƤξs, integration length l = ƨƤξs, and the ef-
fective spin Luttinger parameter Ks = ƦƤ with initial
temperature corresponding to the chemical potential μ 162

ix



Citations to previously published works

Most of the work described in this thesis have appeared
previously in print. Here, we list those works relevant to this thesis.

Study of dynamics in one-dimensional systems and
prethermalization

• ”Ramsey interference in one dimensional systems: The full
distribution function of fringe contrast as a probe of many-body
dynamics, ” Takuya Kitagawa, Susanne Pielawa, Adilet
Imambekov, Jorg Schmiedmayer, Vladimir Gritsev, Eugene
Demler, Phys. Rev. Lett. 104, 255302 (2010) ; arXiv:0912.4643

• ”The dynamics and prethermalization of one dimensional
quantum systems probed through the full distributions of
quantum noise, ” Takuya Kitagawa, Adilet Imambekov, J�rg
Schmiedmayer, Eugene Demler, New J. Phys. 13 073018 (2011);
arXiv:1104.5631

• ”Relaxation Dynamics and Pre-thermalization in an Isolated
Quantum System, ” Maximilian Kuhnert, Remi Geiger, Tim
Langen, Michael Gring, Bernhard Rauer, Takuya Kitagawa,
Eugene Demler, David Adu Smith, J�rg Schmiedmayer, Science
14 337 1318 (2012); arXiv:1112.0013v1

• ”Multimode dynamics and emergence of a characteristic
length-scale in a one-dimensional quantum system, ” Michael
Gring, Maximilian Kuhnert, Tim Langen, Takuya Kitagawa,
Bernhard Rauer, Matthias Schreitl, Igor Mazets, David A.
Smith, Eugene Demler, J�rg Schmiedmayer, arXiv:1211.5323

Study of topological phases in quantum walks

• ”Exploring Topological Phases With Quantum Walks, ” Takuya
Kitagawa, Mark S. Rudner, Erez Berg, Eugene Demler, Phys.
Rev. A 82, 033429 (2010); arXiv:1003.1729

x



• ”Observation of topologically protected bound states in a one
dimensional photonic system, ” Takuya Kitagawa, Matthew A.
Broome, Alessandro Fedrizzi, Mark S. Rudner, Erez Berg, Ivan
Kassal, Al�n Aspuru-Guzik, Eugene Demler, Nature
Communications, 3 882 (2012) ; arXiv:1105.5334

Dynamical induction of topological properties in condensed matter
and cold atom systems

• ”Topological characterization of periodically driven systems , ”
Takuya Kitagawa, Erez Berg, Mark Rudner, Eugene Demler,
Phys. Rev. B 82, 235114 (2010) ; arXiv:1010.6126

• ”Majorana Fermions in Equilibrium and Driven Cold Atom
Quantum Wires, ” Liang Jiang, Takuya Kitagawa, Jason Alicea,
A. R. Akhmerov, David Pekker, Gil Refael, J. Ignacio Cirac,
Eugene Demler, Mikhail D. Lukin, Peter Zoller, Phys. Rev.
Lett. 106, 220402 (2011) ; arXiv:1102.5367

• ”Photo-induced quantum Hall insulators without Landau levels,
” Takuya Kitagawa, Takashi Oka, Arne Brataas, Liang Fu,
Eugene Demler, Phys. Rev. B 84, 235108 (2011); ;
arXiv:1104.4636

Dynamical control of transport properties

• ”Photo control of transport properties in disorderd wire; average
conductance, conductance statistics, and time-reversal
symmetry , ” Takuya Kitagawa, Takashi Oka, Eugene Demler ,
Ann. Phys. 10 1016 (2012); arXiv:1201.0521

• ”Photoinduced helical metal and magnetization in
two-dimensional electron systems with spin-orbit coupling, ”
Teemu Ojanen, Takuya Kitagawa , Phys. Rev. B 85, 161202
(R); arXiv:1201.5997v1

• ”Conductance beyond the Landauer limit and charge pumping
in quantum wires, ” Jay D. Sau, Takuya Kitagawa, Bertrand I.
Halperin, Phys. Rev. B 85 155425(2012); arXiv:1202.6051

Novel phases in non-equilibrium steady states

xi



• ”Correlated phases of bosons in tilted, frustrated lattices, ”
Susanne Pielawa, Takuya Kitagawa, Erez Berg, Subir Sachdev,
Phys. Rev. B 83, 205135 (2011) ; arXiv:1101.2897v1

Quench dynamics from superfluid to Mott insulator

• ”Signatures of the superfluid to Mott insulator transition in
equilibrium and in dynamical ramps, ” Susanne Pielawa, D.
Pekker, B. Wunsch, T. Kitagawa, E. Manousakis, A. S.
Sorensen, E. Demler, Phys. Rev. B 86, 144527 (2012);
arXiv:1206.1648

Cooling of quantum systems through driving

• ”Cooling through optimal control of quantum evolution, ”
Armin Rahmani, Takuya Kitagawa, Eugene Demler, Claudio
Chamon, arXiv:1210.5244

xii



I dedicate this dissertation to my family. Particularly
to my parents, Keiko and Takeo Kitagawa, who supported
me for studying and carrying research in the country
far from home. I also want to thank my sisters, Sayaka
and Chihiro, who supported me in especially difficult
times during graduate programs.

xiii



Acknowledgments

I want to thank all of the people who help me go through the
graduate program and write this thesis. First of all, I would like to
thank my fabulous adviser, Dr. Eugene Demler, for his
encouragements, understandings and guidance in science. Not only
have I obtained great inspirations of physics from him, I always have
many things to learn from his broad perspectives of scientific as well
as non-scientific disciplines. I also want to thank Dr. Markus Greiner,
Dr. Subir Sachdev, Dr. Mihail Lukin, Dr. Bertrand Halperin, Dr.
Joerg Schmiedmayer, Dr. Immanuel Bloch, Dr. Alain Aspect and Dr.
Peter Zoller for their warm encouragements and exciting discussions
for my ideas. I could never get so excited about physics without their
lively discussions and insights, and my experience to collaborate with
them is one of the most fun time during my graduate years. In
addition, I wish to express my gratitude for many of my collaborators,
Dr. Mark Rudner, Dr. Erez Berg, Dr. Jay D Sau, Dr. Takashi Oka,
Dr. Liang Fu, Dr. Anatoli Polkovnikov, Dr. Liang Jiang, Dr. Teemu
Ojanen, Dr. David Pekker, Dr. Adilet Imambekov, Dr. Dimitry
Abanin, Dr. Anton R. Akhmerov, Dr. Belen Paredes, Dr. Ehud
Altman, Dr. Gil Rafael, Dr. Vladimir Gritsev, Dr. Lucia
Hackermuller, Dr. Ulrich Schneider, Dr. Maria Moreno-Cardoner, Dr.
Armin Rahmani, Dr. Claudio Chamon, Dr. Susanne Pielawa, Dr.
Michael Gring, Dr. Tim Langen, Dr. David A. Smith, Dr. Monika
Aidelsburger, Dr. Matthew A. Broome, Dr. Alessandro Fedrizzi, Dr.
Arne Brataas, Dr. Bernhard Wunsch and Dr. Yutaka Shikano who
patiently taught and guided an immature physicist like me through
collaborations and discussions. I learned tremendous amount of
physics and being a physicist from all of them. Of course, I am

xiv



greatly indebted to many of my friends during the graduate program,
and I would like to especially thank Yu Shoji, Yumiko Ito, Megumi
Iso, Kaku Hiroki, Mariko Tani, Saki Mizuguchi, Yushiro Okamoto,
Nao & Chihiro Ogi, Eli Visbal, Bryan gin-ge Chen, Mehtash Babadi,
Dilani Kahawala, Ashwin Rastogi, Eunmi Che, Gaku Nagashima,
Takuma Inoue, Albert Lee, Yuki Nakamura, Ruxuan Gao, Keiko
Tsuruta and many others. I could not have accomplished what I have
done without any of your support behind the scenes.

xv



1
Overview

The study of non-equilibrium dynamics has made tremendous
progress due to the recent development of artificial systems such as
ions, photons and cold atom systems. While theoretical frameworks
we constructed in our works are applicable to general quantum
systems and thus are not limited to artificial systems, they are often
motivated by the possibility of immediate experimental realizations in
such artificial systems. In the first section of this chapter, we would
like to give the overview of non-equilibrium physics in the context of
experiments in cold atom systems. With this background, in the
second section, we give the overview of our works from the perspective
of three regimes of transient dynamics, periodical drives and steady
states.
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1.1 Overview of experimental works in artifi-
cial systems

In this section, we would like to summarize the experimental progress
for studying non-equilibrium physics in cold atoms from the
perspective of unique features of artificial systems. Artificial systems
are advantageous compared to condensed matter materials when seen
as a platform for investigating fundamental physics and as a testing
bed for future quantum technologies. The advantages are contributing
to the understandings of non-equilibrium physics in the following
experiments;

1. Artificial systems are well-isolated and decoupled from
environments, and thus coherent time is typically much longer
than corresponding time of systems in the condensed matter
environment. This feature of cold atom systems is demonstrated
and taken advantage of in the following experiments;

(a) Study of equilibration dynamics. While we have good
understanding of equilibrated states through the framework
of thermodynamics, the process of equilibration is yet
ill-understood especially in quantum systems. This lack of
understandings is partly due to the fast relaxation and
equilibration time scale (≈ ƥƤ−ƥƦs) in condensed mater
systems, which requires special probes for its study.
Moreover, the environment of electrons in solid states
materials is not controlled or manipulated, and the detailed
comparison between theories and experiments are
challenging. Thus cold atom systems with long
equilibration time scale with good controls of their
environment provide ideal situations for investigating this
important question of equilibration. For example,
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Immanuel Bloch’s group prepared a non-equilibrium initial
state in a one dimensional lattice system, where every
other site is occupied. They observed and studied the
subsequent equilibration dynamics as this initial state
freely evolves[158]. The same group also studied the
dephasing dynamics in one dimensional bosonic systems
with two-component spin, and showed that spin-echo type
sequence does not rephase the spins in many-body
dynamics[165]. On the other hand, the group led by Cheng
Chin was interested in the equilibration process when the
system is quenched across phase transitions. They observed
the mass-redistributions in the process of equilibration by
preparing superfluid states with bosonic particles in optical
lattice and suddenly quenching into Mott-insulating state
through the ramping up of the lattice[63]. Other groups
have investigated the lack of equilibration when the system
possesses certain special symmetries. For example,
Kinoshita et al has observed the coherent dynamics of
many-body one dimensional systems which stays out of
equilibrium for exceedingly long time[83]. This experiment
is a beautiful example of physics that became addressable
for the first time due to cold atom systems that are
well-isolated from environments. In more recent
experiments by Joerg Schmiedmayer’s group, a novel
phenomenon called prethermalization is observed, where
dynamics leads to a non-equilibrium steady state whose
observables look like those of equilibrium states but their
values correspond to temperature much lower than the true
equilibrium temperature of the system[50, 97]. Such
experiments demonstrate an intricate nature of
equilibration which takes place not through monotonic
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process but through several distinct stages.

(b) Study of coherent quantum dynamics. In condensed matter
environments, it is often difficult to observe phase
coherence, especially the revival of it. In the early time of
cold atom experiments, Markus Greiner, Olaf Mandel,
Theodor W. H�nsch and Immanuel Bloch have
demonstrated the possibility to observe the oscillations of
phase coherence as the system is quenched from superfluid
to Mott states by the ramping up of optical lattice[48].
The phase of the system revived in time inversely
proportional to interaction strengths, in agreement with
the theory of Bose-Hubbard model. In more recent years,
the experiments become more sophisticated and the
measurements of revival time become more precise. In such
experimental systems, it now became possible to observe
the effects of multi-body interactions through the
deviations of the phase revival. S. Will et al measured the
strength of multi-body interactions in this way[166]. Other
examples of coherent dynamics is the study of Bloch
oscillations. In the clean environment of cold atoms, M. B.
Dahan et al. observed the Bloch oscillations and observed
effective mass of particles in a lattice through the
momentum distributions of Bloch states[14].

2. Cleanness of the system. Because artificial systems are
something that experimentalists build, they understand well
about the microscopic details of the systems. Thus, systems can
be built clean without impurities, and ideal theoretical
descriptions of the systems capture the physics of the
experiments quite well. Such situations allow, for example,
measurements of multi-body interactions in optical lattice[166]
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as described above through the comparisons of experiments with
theoretical descriptions. Such cleanness of cold atom systems
can be used to check the validity of quantum theories, and it is
now routine work to confirm the predictions of theories such as
Bose-Hubbard model through the good agreements with
experiments[6, 141, 165]. From reversed perspective,
experimentalists can also introduce controlled impurities and
study disordered systems. In this way, physicists deepened the
understanding of Anderson localizations by realizing it in one
[19, 132], as well as in three dimensions[76, 96].

3. Controllable microscopic parameters. Not only do artificial
systems offer experimental systems described by ideal
Hamiltonians, but also they allow experimentalists to tune the
parameters of Hamiltonians at will. Such controllability allows
the study of phase diagrams of static systems as demonstrated
by the famous study of superfluid-Mott transitions by Greiner et
al. [48]. For non-equilibrium systems, this means microscopic
parameters can be changed in time in controllable fashions, and
allow the study of;

(a) Quench dynamics. For example, Chen et al., Hung et al.,
Tuchman et al. and Bakr et al. studied the dynamics of
Bose-Hubbard model as the system is quenched from
superfluid states to Mott-insulating states or vice
versa[6, 28, 63, 159]. On the other hand, Sadler et al.
studied the dynamics after quenching the system from
paramagnetic phase to ferromagnetic phase in spinor
condensates[138]. The controllability of parameters can
also be used for the preparation of initial states. Schneider
et al. has studied the transport property of Fermionic
particles in Hubbard model by preparing the particles in
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tightly confined potentials and observing the subsequent
dynamics after the release[141].

(b) Periodical drives of the systems. Fast oscillations of
parameters in the Hamiltonian leads to the the effective
change of Hamiltonian for slow dynamics in Floquet
picture. Experiments by Arimondo’s group have
successfully demonstrated such ”photonics dressing” of
particles[103, 171] and even have shown the phenomenon of
dynamic localizations which makes the hopping amplitude
to be zero through shaking[36]. Such shakings of optical
lattice is proposed to allow the ingenious realizations of
models such as XXZ spin models[30], and recently the
phase diagrams of frustrated magnetism in triangular
lattice have been experimentally studied through lattice
modulation methods in Sengstock group[152].

4. Large length and time scale of the systems. Cold atom systems
have different length scales compared to condensed matter
materials. The typical length scale of cold atom is set by the
wavelength of lasers making up the optical lattice. In the case of
RbƬƫ, a typical choice of atoms in cold atom systems, the lattice
constant of optical lattice is given by ƩƧƦ nm. This number
should be compared with the typical lattice constant of
electronic systems, which is of the order of angstrom, or Ƥ.ƥnm.
Taking advantage of this fact that lattice length scale of cold
atom is much bigger than that of electrons, the groups led by
Markus Greiner successfully developed the imaging systems that
allow the visualization of particle movements at single site
level[7]. Other groups quickly followed, and realized a similar
single-site microscope for cold atoms[162]. In addition to in-situ
visualizations, the same technology allows the single-site
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addressability, where particles at each site can be manipulated
by the lasers. Such extraordinary ability for atomic controls is a
big leap for the possibility to build quantum computers, which
require coherent qubit preparations and controls. In addition to
the large length scale, cold atom systems also have larger time
scale compared to condensed matter materials. Time scale of
systems is given by the inverse of energy scale. The typical
energy scale of cold atoms is set by the confinement energy of
atoms in the latice, which is given by the lattice recoil energy.
In the case of RbƬƫ, then, this corresponds to milliseconds or
ƥƤ−Ƨs time scale. For electronic systems, the typical energy scale
is set by the electron electron interactions at the length scale of
lattice constant, and given by pico to fempto second or
ƥƤ−ƥƦ ≈ ƥƤ−ƥƩs. Thus, any dynamics taking place in cold atom
systems is much easier to follow through conventional
technology, and therefore, the quantum dynamics is much easier
to study in cold atom systems, as we described above in the
study of equilibration dynamics.

5. New observables and probes. While many of the properties of
cold atom systems can be made resemble those of electronic
systems for condensed matter materials, some important
differences remain. One of the largest difference between them is
the absence of electromagnetic interactions in cold atoms, which
implies that one cannot study the effect of ”magnetic field” or
”electronic” transport through the application of voltage as
easily as one does for condensed matter materials. On the other
hand, cold atoms come with its own unique probes that allow
the observations of quantum states from much different point of
view. Not only can non-equilibrium physics be studied with
such novel probes, but non-equilibrium process provides such
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new probes in the context of cold atoms. For example, the time
of flight images is a standard technique in cold atom to measure
the momentum distributions of the states[21]; the time of flight
combined with interference experiments provide crucial insights
about the coherence of the systems[61, 131]; modulations of
lattice is now routinely used for spectroscopic measurements[168]
or as a probe of excitation spectrum[144]; bloch oscillation is
recently employed together with interference experiments for the
measurements of topology in the band structures[5];
hydrodynamic expansions of cold atoms after the release from
traps are used for the study of BEC-BSC crossovers[22].

All of the unique features described above contributes to the
advancement of the fundamental understanding for quantum
many-body dynamics. Questions that cold atom experiments
addressed to help answer include those that have been previously
asked but were never experimentally studied, such as the dynamics of
mobile spin impurity[44] and spreading of correlations in quantum
many-body systems[31]. Motivated by the experimental possibility,
physicists also extended the previous influential ideas to new frontiers
such as the study of Landau-Zener transitions in many-body
physics[28] and doublon decays in Fermi Hubbard models [151]. Since
the cold atom systems are controllable and its microscopic
Hamiltonian is well-understood, we can also use cold atoms as
quantum simulators of physics that we cannot analytically or
numerically compute, such as the many-body relaxation dynamics in
strongly correlated 1D gas[158].

We have summarized the study of non-equilibrium systems in cold
atoms through the lens of experimental advantages in the hope of
advocating new ideas in the field. The excitement of the field is now
expanding due to the numerous experimental achievements that we
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described in this section. While previous excitements mainly came
from the possibility to study traditional, important questions in
condensed matter physics but now physicists are looking toward
achieving novel physics in cold atoms that would be difficult to realize
in condensed matter materials. The hope is that such progress can
then in turn give back novel ideas to condensed matter physics, which
together create not only the fundamental understandings of
non-equilibrium physics but also the advancement of quantum
technologies. This is indeed what I tried to achieve in my works, and I
now turn to describe them in details.

1.2 Overview of my works on non-equilibrium
quantum dynamics

Non-equilibrium quantum systems include a wide range of situations
since its name only indicates what it is not and does not really specify
what it is. From the point of view of Hamiltonian H(t),
non-equilibrium systems are anything that is described by
time-dependent Hamiltonian, and equilibrium system can be seen as
the special case where Hamiltonian does not depend on time.
Therefore, in order to study non-equilibrium quantum systems, we
restrict ourselves to more specific situations and analyze their
dynamics.

In this thesis, we focus on three different situations of
non-equilibrium;

1. Periodic drives where Hamiltonian is changed in periodic fashion
in time. For example, we have examined in the previous studies
the application of light to graphene[91, 115] and to spin-orbit
coupled semiconductors[114], as well as periodic change of laser
intensity for optical lattices with cold atoms[86]. Another
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Figure 1.2.1: We have investigated three regimes of non-equilibrium through
specific examples; transient dynamics, steady states and periodical drives.

important case of periodic drives includes the periodic
applications of a set of quantum protocols to a single atom or a
photon such as quantum walks [2, 81, 85, 89, 92].

2. Transient dynamics. Notable cases include quench dynamics
where a parameter in the system (interaction strength, chemical
potential, composition of particles, etc) is suddenly changed and
subsequent dynamics is studied[6, 71]. In our works, we have
demonstrated repeated quench operations can lead to the
optimal cooling scheme for coupled one dimensional
quasi-condensates[127].

3. Physics of steady-states. Non-equilibrium dynamic such as
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quench dynamics and periodic drives sometimes leads to the
states of systems that do not change in time, but are different
from equilibrium states. Such steady states sometimes display
response properties that are rarely observed in equilibrium
states. We have demonstrated that intriguing correlated sates
can exist as a steady-state in tilted optical lattice systems[123].
In addition, in one dimensional quasi-condensates, a quench of a
parameter leads to prethermalization phenomena where the
dynamics leads to a steady state whose observables look like
those of equilibrium states but their values correspond to
temperature much lower than the true equilibrium temperature
of the system[50, 88, 90, 97].

In each of the situations, we find interesting phenomena that open
new perspectives for the study of non-equilibrium systems. In the
following, we briefly describe the main findings of each study to
illustrate this point. For the summary figure of my works, see
Fig. 1.2.1.

1.3 Periodically driven systems

One simple way to drive quantum systems out of equilibrium is to
”shake” them in periodic fashions. For example, one can apply light
or electromagnetic waves to condensed matter materials, or one can
change the intensity of lasers for optical lattices of cold atom systems.
A stationary state under such periodic drives is distinct from any
equilibrium state of the system, and exhibit different physical
properties in response functions. Thus, periodic drives can be
employed, under certain circumstances, as a method to modify and
control physical properties of materials. In my works, I have
demonstrated 1. change of transport properties[91, 93, 114, 140] and
2. induction of topological properties through periodic drives
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[85, 86, 89, 92]. In the followings, we describe this general ideas
through explicit examples of such property controls.

1.3.1 Control of transport properties

Photo-induced insulator to conductor crossover in one
dimensional disordered wire [93]

It is well-known from the study of disordered systems that
dimensionality of the system dramatically change the transport
properties of materials. In particular, for infinite systems, it has been
argued that any one and two dimensional systems with disorders is an
insulator, whereas there exists mobility edge energy above which
particles can flow through the system in three dimensional system
with disorder. For finite system, conductance shows analogous
cross-over behaviors from insulator to conductor even in one or two
dimensional systems, depending on the ratio of localization lengths ξ
and system size L; for ξ/L ≪ ƥ, the average conductance is
exponentially suppressed and the system is insulator and for ξ/L ≫ ƥ,
the system behaves as a conductor.

The major insight into the control of transport properties in
disordered systems with light comes from the possibility to effectively
change the dimensionality of the system with periodic drives. This
can be seen quite easily as follows. For Hamiltonians which change
periodically in time with period T, Schrodinger equations can be cast
into time-independent form as follows;

i
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ (1.1)

→ (E+ mΩ)|ψE(m)⟩ =
∑
k

H(m− k)|ψE(k)⟩ (1.2)

where the state |ψ(t)⟩ and H(t) is expanded in the Fourier transform
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as |ψ(t)⟩ =
∑

m

∫ Ω/Ʀ
−Ω/Ʀ dEe

−it(E+mΩ)|ψE(m)⟩ and H(t) =
∑

m H(m)e
−imΩt

with Ω = Ʀπ/T. This way of expanding periodically driven systems is
known as Floquet formalism. Intuitively, Eq. (1.2) shows that in
periodically driven systems, a state can absorb or emit energies in
units of Ω, where magnitude of absorbing k units of energy is given by
H(k). Thus, periodic drives add one more index to the state of the
system where the additional index label the ”energy layer” of the
system that indicate how many units of energy it has
absorbed/emitted. In this perspective, H(m− k) in Eq. (1.2) is a
hopping term from kth layer to mth layer, and mΩ on the left side of
Eq. (1.2) is a linear potential in the direction of energy layers. If the
original problem involves n dimensional tight-binding models, then
periodically driven systems correspond to n+ ƥ dimensional static
systems with linear potential.

Motivated by these observations, I have numerically calculated
conductance distributions for disordered 1D wire under the
application of light by extending the transfer matrix method to
periodically driven systems. For intermediate disorder regime,
conductance distributions are log-normal distributions for weak
intensity of light, indicating insulating behaviors. On the other hand,
when the intensity of light is strengthened, the conductance
distributions qualitatively change its shape to normal distributions,
indicating conducting behaviors (see Fig. 1.3.1).

Conductance beyond Landauer limit under the application
of light [140]

The insight of dimensional increase obtained in Eq. (1.2) leads to yet
another physical consequence, which is the possibility to reach
conductance beyond Landauer limit in periodically driven systems.
For one dimensional wire with a single channel, unitarity of scattering
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Figure 1.3.1: Conductance distributions for one dimensional disordered wire
under the applications of light for various disorder strength and intensity of
light. For strong disorder, the system is insulator with log-normal conductance
distributions, and for weak disorder, it is conductor with normal conductance
distributions. In the intermediate disorder regime, the distributions display
cross-over behaviors from insulator (log-normal distributions) to conductors
(normal distributions) as the intensity of light is increased.
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Figure 1.3.2: The conductance beyond Landauer limit of unit quantum con-
ductance (ƦeƦ/h for spin 1/2 electrons) for the system considered in Ref. [140].

matrix dictates that the conductance cannot exceed ƦeƦ/h for an
electron with spin ƥ/Ʀ. However in the periodically driven systems, the
number of channels are effectively increased by the
absorption/emission of photons, enabling the conductance to exceed
this Landauer limit. In the work Conductance beyond the Landauer
limit and charge pumping in quantum wires, we have proposed a
concrete, physically sensible scheme with a simple quantum point
contact where such conductance can be attained, and theoretically
calculated the expected conductance (Fig. 1.3.2). The demonstration
of such conductance will be the explicit evidence of additional Floquet
channels, and thus provide important experimental verifications of
Floquet theory in realistic systems.

1.3.2 Control of topological properties[86]

Topological property of a physical system refers to a property that is
robust against small changes of microscopic parameters of the system,
where its property is protected by the underlying topology of the
state. Most well-known example of a topological property is integer
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quantum Hall effect[58, 94, 100], where Hall conductance takes the
quantized value of integers times eƦ/h. This quantized Hall
conductance is robust against small changes of magnetic fields, sample
shapes and sizes, or introductions of small disorders. In this case, the
topological origin of the effect comes from the direct relation between
Hall conductance and Chern number of ground states through
so-called TKNN formula[156], where Hall conductance is simply given
by Chern number times eƦ/h. Here, Chern number is an example of
topological invariant, and it is an integer value characterizing the
topology of the ground state of the system. Topological invariants
take only integer values, and thus cannot change its value under
continuous deformations of the ground state in accordance with the
property of topology. Thus, small change of microscopic parameters
in the system does not change topological invariants, and so according
to TKNN formula, Hall conductance does not change either.

Therefore, topological properties are unique characteristics of the
ground state of a Hamiltonian, and thus of a Hamiltonian itself.
Conventionally, such topological characterizations are often studied
with static Hamiltonians, a simple extension of the idea can be
applied also to periodically driven systems.

A conceptually simple idea is to reduce a time-dependent
Hamiltonian to a static Hamiltonian. For periodic Hamiltonian with
period T, the system evolves, after one period of time, through the
unitary evolution operator

UT = T e−i
∫ T
Ƥ H(t)dt, (1.3)

If we define the effective Hamiltonian Heff as

UT ≡ e−iHeffT. (1.4)
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then the evolution under Heff coincides with the evolution under
periodic drives H(t) after integer multiple time of T. Thus, long-time
evolution of the system is described by Heff. By turning it around, you
could say that H(t) is a stroboscopic realizations of Heff. In this way,
by controlling the drives, one could design H(t) such that Heff

possesses non-trivial topological properties.
Such topology of periodically driven systems associated with Heff is

analogous to the topological property of static systems. On the other
hand, it is also possible that the evolution operator UT itself possesses
unique topology, which is not associated with any topology of Heff.
This particular topology is related to the periodicity of energy for Heff.
The definition of Heff in Eq. (1.4) reveals that Heff is only defined up
to Ʀπ/T, and thus Ƥ and Ʀπ/T energies are equivalent in this definition.
Because of this, the system can possess ”windings” in energy direction,
which creates additional topological invariant for the system.

In my works, we demonstrated these general ideas through explicit
examples, which we now describe in turn.

Discrete quantum walks [85, 89, 92]

Discrete quantum walk, in its simplest form, is a dynamical protocol
for controlling a single spin ƥ/Ʀ particle in one dimensional lattice (see
Fig. 2.1.1). It consists of two operations; 1. rotation around y axis by
angle θ, whose operator is given by Ry(θ) = e−iθσy/Ʀ; 2. spin-dependent
translation T where spin up particle is move to the right by one lattice
site and spin down particle is moved to the left by one lattice site.
One step of the quantum walk is given by U = TRy(θ) The evolution
of quantum walk results from the repeated applications of these two
operations in alternate fashion. Such repeated protocols applied to
particles is an example of periodic drives.

A crucial insight into the topological descriptions of quantum walks
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Figure 1.3.3: The protocol of a conventional discrete quantum walk. A con-
ventional quantum walk is a dynamical protocol for controlling a spin ƥ/Ʀ
quantum particle in one dimensional lattice. It consists of two operations; 1.
rotation around y axis by angle θ, whose operator is given by Ry(θ) = e−iθσy/Ʀ;
2. spin-dependent translation T where spin up particle is move to the right by
one lattice site and spin down particle is moved to the left by one lattice site.
One step of the quantum walk is given by U = TRy(θ) and the evolution of
the particle after many steps are studied.

is the description from effective Hamiltonians given by U ≡ e−iHeffT.
As is described in detail later in this thesis, the study of Heff reveals
non-trivial topology, whose topological class is the same as the
well-known model of polyacetylene called Su-Schrieffer-Heeger model.
This topological class results from the characteristic symmetry of Heff

called chiral or sub-lattice symmetry, which is given by the existence
of unitary operator Γ which anti-commutes with the Hamiltonian, i.e.
ΓHeff = −HeffΓ.

The physical manifestations of non-trivial topology of quantum
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walks is the existence of zero energy bound state at the boundary
between two distinct topological phases. We have proposed concrete
experimental protocols to detect such topologically protected bound
states, and in collaboration with Andrew White’s group in University
of Queensland, we explicitly observed this zero-energy state for the
first time[92].

This example with quantum walks shows the possibility to generate
interesting topological phenomena by design of protocols. Motivated
by this perspective, we have further explored if other topological
phases classified for static Hamiltonians with certain symmetries can
be realized with extensions of quantum walk protocols[89]. Through a
simple modification, we have shown that any of known topological
classes in one and two dimensions can indeed be realized with
quantum walks (see Fig. 1.3.4).

The study of quantum walks not only demonstrates the rich
possibility to realize known topological classes, but also revealed the
existence of unique topological phenomena to periodically driven
systems; the existence of topologically protected π energy state.

A single zero-energy state in quantum walks was special because
chiral (sub-lattice) symmetry dictates that any state |ψ⟩ with
eigenenergy E comes with another state Γ|ψ⟩ with energy −E. Thus,
for static systems, E = Ƥ state is the only state that could exist singly
without a paired state. If a system possesses a single zero energy state
and moreover there is no other states near zero energy, then this zero
energy state cannot be removed with a small modifications of
Hamiltonian due to chiral (sub-lattice) symmetry.

In the case of periodically driven systems, E = π state is yet another
special state. As is noted below Eq. (1.4), Heff is defined only up to
Ʀπ/T. Thus E = π/T is the same as E = −π/T and such state can
exist, just as E = Ƥ state, without a paired state. (Here, the driving
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Figure 1.3.4: Classification of topological phases by symmetry for one (1D)
and two (2D) dimensions, adapted from Ref.[84, 142]. Discrete time quan-
tum walks can naturally realize all ten classes of nontrivial topological phases
in 1D and 2D. Time reversal symmetry (TRS) and particle-hole symmetry
(PHS) are defined by the existence of antiunitary operators T and P satisfy-
ing T HT −ƥ = H and PHP−ƥ = −H, and may be absent, or present with
T Ʀ = ±ƥ (PƦ = ±ƥ). In the absence of both TRS and PHS, a distinct “chiral”
symmetry with a unitary Γ satisfying CHC−ƥ = −H may be found. In each
case, the symmetry-allowed phases are classified by an integer (Z) or binary
(ZƦ) topological invariant. Classes containing the Su-Schrieffer-Heeger model
(SSH)[153], integer quantized Hall (IQH)[58, 94, 100], and quantum spin-Hall
(QSH)[16, 41, 62, 79, 98] phases are indicated.
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period T in the quantum walk protocol is arbitrary, so we set T = ƥ)
The existence of such E = π in addition to E = Ƥ bound states was
theoretically predicted and observed in the experiment by Andrew
White’s group[92].

Graphene under the application of light [91]

Quantum walk example provides proof of principle demonstrations of
the versatility of periodically driven systems for studying topological
phenomena. For more practical and natural example, we studied
graphene under the application of light. As we will explain below,
graphene is theoretically shown to display integer quantum Hall effect
under the application of circularly polarized light without magnetic
fields. In effect, the system realizes so-called Haldane model[57] in a
dynamical fashion.

Generally speaking, the application of light on electron systems has
two important physical effects; 1. photon-dressing of band structures
through the mixing of different bands 2. redistribution of electron
occupation numbers through the absorptions/emissions of photons
leading to non-equilibrium distributions. First, we discuss the first
part of effective dressing of band structures with light, and later come
back to discuss the second part.

Photon-dressing of band structures can be most easily understood
for the light with off-resonant frequency. In this case, the
modifications from the static Hamiltonian can be captured in
perturbation theory. Intuitively, an absorption (emission) of a single
photon takes an electron out of the energy bands, and thus an
electron can only virtually make such a transition. Thus the second
process of an emission (absorption) of a photon has to follow. Since
such process is suppressed by the energy of the photon, which here is
assumed to be large, this second order processes are the main
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a) b)

Figure 1.3.5: a) The modification of the Hamiltonian due to the virtual pho-
ton process can be intuitively understood as the sum of two second order pro-
cesses where electrons absorbs and then emits a photon, and electrons first
emit and absorb a photon. b) The illustration of the structure of Heff in real
space for graphene under the application of right circularly polarized light
in Eq. (1.6). The commutator [Hƥ,Hƥ] is the second neighbor hopping with
phase ϕ = π/Ʀ. Thus, the tight-binding model under the application of light
realizes Haldane model proposed in Ref. [[57]].

contributions to the photon-dressings.
Including the light effect, Hamiltonian of the system becomes

periodic in time (with one period T). If we consider Fourier
components of Hamiltonian

H(m) =
∫ T

Ƥ
dtH(t)eimΩt (1.5)

then H(m) represents the absorptions/emissions of m photons. Here
Ω = Ʀπ/T is the frequency of the drive.

There are two processes that contribute as illustrated in Fig. 1.3.5
a); one where electron absorbs a photon and then emits a photon
Hƥ

ƥ
ω−(ω+Ω)

H−ƥ where ω is the energy of the original electron; another
where electrons first emits a photon and then absorbs a photon, which
leads to H−ƥ

ƥ
ω−(ω−Ω)

Hƥ. By summing these two contributions, we
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obtain the correction due to the second order process, leading to the
effective Hamiltonian,

Heff ≈ HƤ +
[H−ƥ,Hƥ]

Ω
(1.6)

When this formalism is applied to graphene under the application
of circularly polarized light as described later in the thesis, the second
term in Eq. (1.6) corresponds to the second order hopping with
imaginary amplitude, as illustrated in Fig. 1.3.5 b). Such a model is
nothing but the one described earlier by Haldane[57], and its band
structure leads to integer quantum Hall effects without magnetic field!
In this case, however, such second order hopping is generated in a
dynamical fashion, in contrast to artificial constructions of the model
by Haldane.

The considerations above only take into account the
photon-dressings of band structures, and ignore the issue of electron
occupations in driven environments. Topological properties only
appear when certain bands are fully filled, and it is not clear how this
band occupation can be achieved and topological properties survive
when the system is strongly driven out of equilibrium by the
application of light.

In order to answer these questions, we studied the physical
consequence of the application of light through DC many-terminal
transport measurements as in Fig. 1.3.6. The coupling of the driven
systems with leads, that are in return coupled with equilibrium
reservoirs, plays the crucial role to determine the occupations of
electrons. Using the formalism for transport properties in periodically
driven systems developed by various groups[75, 95, 112], we explicitly
demonstrate that for off-resonant light where electrons cannot directly
absorb photons, the transport properties of the non-equilibrium
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Figure 1.3.6: The many-terminal measurements of DC current for graphene
under the application of light. Graphene is attached to multiple leads labeled
by {α}, and the leads are connected to reservoirs at chemical potentials, {μα}.
Off-resonant, circularly polarized light is applied to the graphene. In the ab-
sence of impurities and interactions, electrons coming from leads coherently
propagate under the application of light, asborb or emit photons, and leak out
into leads. Current measurements between each leads determine longitudinal
and Hall conductances.

systems attached to the leads are well approximated by the transport
properties of the system described by the static effective Hamiltonian
that incorporates the virtual photon absorption processes [91]. In
particular, the occupations of the electrons under this situation are
close to the filling of the photon-dressed bands. This study
constitutes the first direct approach to investigate the topological
transport property in periodically driven systems, and can provide the
starting point for more in-depth analysis of the difficult problems that
include relaxation processes and on-resonant light applications.

Realizations of Majorana Fermions in static and driven
cold atomic systems [77]

Thanks to recent development of technology, cold atom systems allow
versatile controls of their parameters and thus provide an ideal
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platform for realizing periodically driven systems. In this paper, we
proposed long-sought realizations of Majorana Fermions, using two
hyperfine states of Fermions with multiple lasers.

The ideas to realize Majorana Fermions in this system are
motivated by recent proposals to realize it in one dimensional
spin-orbit coupled semiconductors in proximity with s-wave
superconductors in the presence of transverse magnetic field[104, 118].
In order to provide all the necessary ingredients in the Hamiltonian,
we consider the application of the following 2 lasers.

1. We realize ”superconducting pairing” term Δ in cold atoms as
”molecule pairing,” by applying the laser which
associate/de-associate Fermion particles in two hyperfine states
into a molecule and vice versa. Note that since this laser creates
Fermions from molecules, it acts as a chemical potential term μ
as well when the laser is detuned in frequency.

2. We effectively realize both ”spin-orbit coupling” term u and
”transverse magnetic field” B by applying a laser which induces
the transition between two hyperfine states of Fermions, while
giving the particle a momentum kick by transferring the photon
momentum.

In the static case, this system realizes topological phases when the
intensity of second laser which realizes ”transverse magnetic field” B
becomes sufficiently stronger than the intensity of the first laser which
induces ”superconducting pairing” Δ amplitudes.

We also consider periodically driving this system by, for example,
periodically changing the chemical potentials of Fermions through
periodical change of detuning frequency of the first laser. Then it is
possible to induce topologically non-trivial phase even when Δ and B
correspond to values for topologically trivial phase in the static
system. Moreover, just in the case of π energy state of discrete
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quantum walks, this periodically driven systems allows the realization
of two flavors of Majorana Fermions at Ƥ and π energy, which could
never happen in static systems. Thus, this example gives yet another
demonstration that periodically driven systems provide rich platform
for studying topological phenomena.

1.4 Transient Dynamics

There could also be a number of interesting physics in the transient
dynamics of non-equilibrium quantum systems. However, descriptions
and calculations of quantum dynamics for many-body systems are
typically very hard and can be solved under only a special
circumstances. During previous studies, we have analyzed two types
of tractable systems 1. one dimensional Bostonic systems where
systems whose low-energy dynamics is described by
Tomonaga-Luttinger theory[88, 90] 2. Superfluid and Mott insulating
states of three dimensional Bosonic systems, where mean-field theory
provides a good starting point for understanding the systems[122].
These systems provide examples of unique dynamics and demonstrate
ideas as a proof-of-principle. In the following, we describe examples of
the dynamics with one-dimensional quasi-condensates.

Cooling of a quantum many-body system [127]

While thermodynamics of classical systems are well-understood and
such understandings are applied for the heating and cooling of
systems, a similar idea is absent for quantum systems. Traditionally,
quantum systems are hard to control, and thus, any disturbances you
introduce to quantum systems are thought to lead to heating of the
system in experiments. Recent advances of quantum technologies now
allow much more intricate controls of quantum systems, and as a
consequence coherent driving of the system became possible.
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Figure 1.4.1: Two coupled one-dimensional condensates. The tunneling am-
plitude Δ(t) can be tuned by raising or lowering the potential barrier.

Motivated by the extraordinary experimental progress in cold atom
systems, here we sought to find cooling protocols of quantum,
many-body cold atom systems. Lowering of the temperature for cold
atom systems is crucial for the study of many interesting physics
including the study of Fermionic Hubbard model with repulsive
interactions. Study of high-temperature superconductivity indicates
that this system leads to d-wave pairings of superconductivity, but
yet, this expectation has never been directly confirmed in experiments
and remains to be controversial. Due to the small energy scale of cold
atom systems, observations of d-wave superconductivity requires an
order of magnitude smaller temperature than the one achieved with
the current state of art cooling methods (sub-nano Kelvin regime).

In order to study whether cooling of quantum systems is possible
through coherent dynamics, we studied the systems of one
dimensional Bosonic quasi-condensate on an atomchip, where current
on the atom chip creates a potential barrier in the middle of the one
dimensional condensate so that it splits the quasi-condensate into
two(see Fig. 1.4.1).

In this paper, we considered dynamically changing the barrier
between the two one dimensional quasi-condensates. Our aim is to
find the optimal dynamics for the barrier so that one of the
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quasi-condensate has the lowest energy possible at the end of the
dynamics.

The study of this system, two coupled one dimensional
quasi-condensates, reduces to the study of multi-mode harmonic
oscillators in the low energy descriptions of Tomonaga-Luttinger
theory. Such optimization problems can be solved through
well-established classical optimization theory. Applying so-called
Pontryagin’s maximum principle, we found that the optimal protocols
of barrier dynamics are given by ”bang-bang” protocols, where, at a
given time of the dynamics, the height of the barriers is set to either
at its maximum value or minimum value. Through such protocols,
cooling of the one of the quasi-condensate by the factor of Ʃ is possible
under reasonable experimental settings.

Prethermalization phenomena probed through the distri-
bution functions of interference patterns [50, 90, 97]

In this work, we studied the similar system as the previous study of
”cooling of quantum many-body systems” but asked conceptually
different questions. Here we start from a one-dimensional
quasi-condensate, and suddenly split it into two. The subsequent
dynamics is studied through Tomonaga-Luttinger formalism. This is
an example of quench dynamics, where a parameter in the system is
suddenly changed and subsequent dynamics is evolved under a
constant Hamiltonian. Here, one of the main questions we are
interested in is whether the split condensates equilibrate after
sufficient amount of time.

One of the challenges to answer this question is the
characterizations of dynamical states through observables. Unlike
equilibrium states where states are determined by thermodynamical
variables such as temperature and volume, dynamical states are
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characterized by larger set of variables and thus, richer observables
are required to more holistically capture their states.

Previous studies of equilibrium one dimensional quasi-condensates
employed studied interference patterns after the release of two
quasi-condensates[61, 69, 124]. Average amplitude of interference
patterns, for example, successfully captures the strength of
fluctuations in the condensates. In order to capture quantum nature
of the systems, they also studied quantum fluctuations of interference
patterns. In fact, by repeated observations of interference patterns,
experiments successfully constructed the full distributions of
interference patterns. For equilibrium systems, Imambekov et al
theoretically calculated the distributions, and the theory agrees very
well with experimental results[61, 69].

Motivated by these studies, we extended the calculations of full
distribution functions of interference patterns to this dynamical
systems, and we have analytically calculated the time evolution of the
distributions of interference patterns after the quench (splitting). The
resulting distribution functions are visualized as a two-dimensional
heat map, where radius corresponds to the interference amplitudes
and angle corresponds to (average) phase difference between the two
quasi-condensates(see Fig. 1.4.2).

Using this theoretical framework, it is possible to observe long-time
limit of the dynamics in the low energy sectors. One crucial insight is
that in the low energy sectors, modes with different momenta do not
mix, and thus can never truly equilibrate. A true equilibration takes
place only when high order terms contribute to the dynamics, which
usually takes much longer time than the typical time scale of the
dynamics for interference patterns governed by low energy sectors.
Yet, it is possible to show that interference patterns becomes
indistinguishable from those interference patterns between two
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Figure 1.4.2: Time evolution of the joint distribution function Px,y(α, β) for
the system size L/ξs = ƦƤƤ, the spin Luttinger parameter Ks = ƦƤ and various
integration lengths l/ξs = ƦƤ(left),ƧƤ(middle), and ƨƤ(right). Time is measured
in units of ξs/cs where cs is the spin sound wave velocity. Here axes are scaled
such that the maximum value of α and β are ƥ. For for short integration length
l/ξs = ƦƤ, the dynamics leads to the distribution with the ”ring”-like struc-
ture, showing that the magnitude of spins does not decay much (spin diffusion
regime). On the other hand, for longer integration lengths, the magnitude of
spins decays quickly and the distribution forms a ”disk”-like structure(spin
decay regime).

equilibrium quasi-condensates after relatively short time within the
theory of low energy sectors(See Fig. 1.4.3).

This phenomena, that display observables corresponding to
equilibrium states when the state is far from equilibrium, are known
as prethermalizations. Prethermalizations are first proposed to explain
the observed phenomenon in ion collisions where equilibrium
equations of states seem to be satisfied way before true equilibration
is expected to establish[15]. Our calculations show that one
dimensional quantum system is yet another example of the system
where prethermalizations can be observed.

Following our theoretical calculations and proposals,
Schmiedmayer’s group in Vienna has carried out the proposed
experiments[50, 97]. Indeed, the prethermalization phenomenon has
been confirmed as expected from the theory. They have demonstrated
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Figure 1.4.3: The distributions of interference contrast for steady states of
split quasi-condensates and two thermal quasi-condensates. Here x axis is
scaled such that the maximum value of interference contrast is ƥ. For the split
condensates, we plot the distribution at time t = ƪƤξs/cs for Luttinger pa-
rameter Ks = ƦƤ, system size L = ƨƤƤξs and two different integration length
l/ξs = ƧƤ, ƨƤ. The thermal quasi-condensates are for temperature πcs

Ʀξs
for the

same integration length corresponding to the effective temperature obtained in
Eq. (3.52).

that the distribution of interference patterns observed in the
experiments agree well with the one predicted in theory. This implies,
in return, that this distributions of interference patterns closely
resembles those obtained from equilibrium condensates. Thus one can
define so-called effective temperature Teff which is nominal
temperature of quasi-condensates observed from the interference
patterns between the steady state after the quench dynamics. The
existence of such effective temperature is one signature of
prethermalization. Moreover in their experiments, they have
confirmed the correctness of the theory by further studying the
following dependence of effective temperature on the parameters of
the experiments;

1. Independence of the effective temperature on the initial
temperature of quasi-condensate, see Fig. 1.4.4 B. Since this
effective temperature is entirely determined by quench dynamics
in the theory, it should be independent of the initial
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Figure 1.4.4: (A) Dependence of Teff on ρ and (B) independence of Teff from
the initial temperature T of the system before splitting, corrected for the scal-
ing of Teff with density. The colors encode different data sets. The (black)
solid line corresponds to the theoretical prediction kBTeff = gρ/Ʀ.

temperature of the quasi-condensate. On the other hand, the
true equilibrium temperature of the system crucially depends on
the initial temperature of the system. In fact, the observed
effective temperature is ≈ ƥƨnK whereas the initial
quasi-condensate temperature is as large as ƥƤƤnK < T. Thus,
this result unambiguously demonstrate that the resulting steady
state is distinct from true equilibrium states, despite of the
nominal effective temperature of interference patterns.

2. Linear dependence of the effective temperature on the density of
particles, see Fig. 1.4.4 A. In the experiment, the density of
particles can be changed by loading fewer number of particles at
the beginning. Then, the effective temperature of the
interference patterns is measured after steady states are reached.

These results convincingly show that the observed phenomenon is
prethermalization.
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1.5 Steady states

When one hears the word ”non-equilibrium quantum systems,” one
typically thinks about dynamical processes. However, even when the
system is not evolving, non-equilibrium systems could produce
interesting physics. An example comes from the study of steady
states. There are a few different scenarios where steady states that
are distinct from equilibrium states are created;

1. Steady states as a result of competitions between drivings and
dissipations. Drivings are constantly disturbing systems to bring
them out of equilibrium, and dissipations are pushing them
toward equilibration. After sufficient amount of time, this
competition can lead to steady states that are not equilibrium
states. One interesting result of such dynamics is the
preparation of dark states, where dissipations put systems into
states that are not affected by the drivings. A group of Peter
Zoller has proposed that intricate correlated states including
topological phases can be realized through this method[34].

2. Existence of (approximate) conserved quantities prevents true
equilibration to take place for a long time, and thus leads to the
generation of steady states distinct from equilibrium states.
Prethermalization we discussed above is one example of
phenomena that result from this mechanism.

3. Separation of energy scales sometimes leads to the equilibration
of states within restricted energy range.

The possibility to produce steady states that are distinct from
equilibrium states implies that such physics could lead to novel
physics that could never be possible in equilibrium systems. In the
following, we describe our previous work where this third example,
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generations of steady states due to separation of energy scales,
produced strongly correlated states that are otherwise very difficult to
create in realistic situations for static systems.

Correlated phases in tilted optical lattices [123]

The original idea of this work comes from the work by Subir Sachdev
and company[137], where he demonstrated that tilting the
(one-dimensional) Mott insulating states created with cold atoms and
optical lattices leads to the effective Hamiltonian for Ising
ferromagnet in a transverse field and zero longitudinal field.

The description of this physics is simple. Consider one dimensional
Mott insulating state, with, for simplicity, tunneling strength t set to
zero, see Fig. 1.5.1, a). We tilt the optical lattice by applying a linear
potential with strength E which corresponds to the potential
difference between the neighboring sites. If we increase E, then there
would be a transition point at E = U where U is the interaction
strength of the particles. When E < U, the system with one particle
per site is the lowest energy state. On the other hand, when E > U,
lowest energy states are states with alternate occupations of Ƥ and Ʀ.
There are two states with this property as described in Fig. 1.5.1, b)
and c). Thus the ground state is doubly degenerate, which can be
interpreted as two degenerate ferromagnetic phases. With this
interpretation in mind, it is possible to more formally map this model
to Ising ferromagnetic Hamiltonian with a transverse magnetic field.

Notice that as soon as E > Ƥ, true ground state of the system is no
longer Mott insulating state with one particle per site, but sliding
states where all the particles are piled up at the bottom of the ladder.
When tunneling strength t is non-zero, the state follows this ground
state if we increase E sufficiently slowly due to the adiabatic theory.
However, if E is initially increased rapidly, then in the subsequent
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(a)

(b)

(c)

Figure 1.5.1: a) ground Mott insulator when E < U. b), c) states with Ising
order when U > E.

time, sliding down of particles are suppressed due to the energy gap
for hopping a particle to next site, given by Δ = U− E. In other
words, the energy sector of the state with one particle per site is
separated from the energy sector of ground state as E takes a finite
value. Due to this separation of energy, one particle per site state
remains a stable steady state. Within this energy sector, the system
can be studied as effective transverse Ising model.

Now my idea was to extend this simple magnetic model to richer
models that possess interesting correlated physics. By applying this
tilting ideas to lattices in larger dimensions, I noticed it is possible to
introduce the physics of geometrical frustrations, that are known to
lead to correlated phases[110, 133]. The simplest example comes from
tilting the Kagome lattice. When E > U, all the particles try to slide
down to lower energy site to create Ƥ− Ʀ pair. However, due to the
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Figure 1.5.2: An example of steady states prepared when E > U for geomet-
rically frustrated lattice. Here, we assume that three particle interaction UƧ is
positive and non-zero.

geometrical frustration, it is not possible for all the particles to slide
down, but only ƥ in Ƨ particles can slide down, as illustrated in
Fig. 1.5.2.

Such geometrical frustration generates exponentially large number
of degenerate ground states when the tunneling strength is zero.
When the tunneling strength is non-zero, corrections to the effective
Hamiltonian generate lead to ”order by disorder” mechanism, where
quantum fluctuations lift the degeneracy and pick out a few ground
state. In the case of tilted Kagome lattice, I have proven that the
ground state is unique and is equal superposition of all the degenerate
states when t = Ƥ. Such a state, which lacks any magnetic order in the
ground state, is known as quantum liquid phase[8]. Such lack of
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magnetic order at temperature much lower than the typical energy
scale of magnetic interaction strength is surprising, and has attracted
tremendous attentions in recent years in condense matter
communities. Our example here provides the first realistic systems
where such quantum liquid states can be realized as non-equilibrium,
many-body states.

1.6 Summary of overview

Previous sections give overviews of my works on the rich physics that
can be found in non-equilibrium quantum systems, in three large
topics of 1. periodically driven systems 2. transient dynamics and 3.
steady states.

In the rest of the thesis, we focus on the following two topics and
describe their physics in detail.

1. Topological phenomena in discrete quantum walks

2. Prethermalization in one dimensional quasi-condensates

These topics are representatives of physics described in this
overview. Both of these theoretical frameworks led to concrete
experimental proposals and predictions that are realized and
confirmed by Andrew White’s group in Queensland, Australia and
Joerg Schmiedmayer’s group in Vienna, Austria, respectively. These
ideas, together with other topics introduced in this overview, can be
extended to provide further novel phenomena and examples, which not
only lead to fundamental understandings of non-equilibrium quantum
systems, but also possibly to advancement of quantum technologies.
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2
Topological phenomena in quantum

walks

Discrete quantum walks are dynamical protocols for controlling
a single quantum particle. Despite of its simplicity, quantum walks
display rich topological phenomena and provide one of the simplest
systems to study and understand topological phases. In this chapter,
we review the physics of discrete quantum walks in one and two
dimensions in light of topological phenomena and provide elementary
explanations of topological phases and their physical consequence,
namely the existence of boundary states. We demonstrate that
quantum walks are versatile systems that simulate many topological
phases whose classifications are known for static Hamiltonians.
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Furthermore, topological phenomena appearing in quantum walks go
beyond what has been known in static systems; there are phenomena
unique to quantum walks, being an example of periodically driven
systems, that do not exist in static systems. Thus the quantum walks
not only provide a powerful tool as a quantum simulator for static
topological phases but also give unique opportunity to study
topological phenomena in driven systems.

2.1 Introduction

Discrete quantum walk, in its simplest form, is a dynamical protocol
for controlling a single spin ƥ/Ʀ particle in one dimensional lattice (see
Fig. 2.1.1). It consists of two operations given by a spin rotation and
spin-dependent translation. The evolution of quantum walk results
from the repeated applications of these two operations in alternate
fashion. From the first introduction of the concept of quantum walks
by Aharonov[2], quantum walks attracted tremendous attentions due
to their implications in quantum information science[81]. One of the
attractive features of quantum walks is its simplicity which allows any
student of physics who has a basic understanding of quantum
mechanics to grasp its definition. Yet, the consequence of quantum
walks is profound; on one hand, it provides a powerful tool for
quantum algorithms[37, 81] and on the other, it displays rich
topological phenomena revealing the deep relation between physics
and the abstract field of mathematics[87]. In this article, we review
the topological phenomena appearing in discrete quantum walks.
While the concept of topological phases is often challenging to
understand because it tends to be intimately intertwined with the
physics of solid state materials, discrete quantum walks provide a rare
opportunity to explain the idea of topological phases in the most
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Move spin down 

to the left

Repeat

Move spin up 

to the right

Rotate spin 

Discrete time quantum walk

Figure 2.1.1: The protocol of a conventional discrete quantum walk. A con-
ventional quantum walk is a dynamical protocol for controlling a spin ƥ/Ʀ
quantum particle in one dimensional lattice. It consists of two operations; 1.
rotation around y axis by angle θ, whose operator is given by Ry(θ) = e−iθσy/Ʀ;
2. spin-dependent translation T where spin up particle is move to the right by
one lattice site and spin down particle is moved to the left by one lattice site.
One step of the quantum walk is given by U = TRy(θ) and the evolution of
the particle after many steps are studied.
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elementary form due to its simplicity.
This chapter is organized as follows. In Section 2.2, we study the

physics of a one dimensional quantum walk. First, in Section 2.2.1, we
define the simplest one dimensional quantum walk and give the
description of quantum walks through so-called effective
Hamiltonians. This quantum walk possesses a symmetry that is not
apparent at a first sight but plays a crucial role for its topological
properties, and we describe this symmetry in Section 2.2.2. The
effective Hamiltonian approach to quantum walks gives an intuition
behind the behavior of quantum walks, which we use to derive the
analytic expression for their asymptotic distribution in Section 2.2.3.
This conventional quantum walk and slight variations of it has been
realized in a numerous experiments with different physical settings,
and we explain some of their realizations with cold atoms, photons
and ions in Section 2.2.4.

In Section 2.3, we first briefly review the main ideas of topological
phases that will be relevant to the study of quantum walks.

Starting from Section 2.4, we investigate the topological nature of
the quantum walks. In Section 2.4.1, we describe the concept of
topological invariants in the context of quantum walks. In order to
fully explore the topological phases in quantum walks, we extend the
conventional quantum walks to so-called split-step quantum walk in
Section 2.4.2, which displays multiple topological phases in its phase
diagram. Using split-step quantum walks, we argue in Section 2.4.3
that physical manifestations of topological nature of quantum walks
are the appearance of bound states across distinct topological phases.
We demonstrate the existence of such bound states in two physically
distinct situations; one is inhomogeneous quantum walks where
rotation angles are varied in space (Section 2.4.3) and the other is the
quantum walks with reflecting boundary (Section 2.4.4). The unique
nature of these bound states lies in the robustness of their existence
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against small perturbations. We provide additional understandings of
this robustness in Section 2.4.5, which is based on the spectrum and
topological invariants associated with the bound states. These bound
states in the quantum walk have the same topological origin as the
bound states predicted to arise in polyacetylene described by the
Su-Schrieffer-Heeger model and Jackiw-Rebbi model in high energy
physics.

Remarkably, there are also phenomena in quantum walks that have
not been predicted before in static systems; the existence of two
flavors of bound states at quasi-energy E = Ƥ and E = π. This
phenomenon is unique to periodically driven systems, and we
illustrate the physics in Section 2.4.8. These one dimensional
topological phenomena in quantum walks have been experimentally
verified in [92].

From Section 2.5, we extend the idea of quantum walks to two
dimension and study their topological properties. In Section 2.5.1, we
define the two dimensional quantum walks that display non-zero
Chern numbers, which is the topological invariant responsible for
integer quantum Hall effects. We explain in detail how Chern number
arises in quantum walks in this section and demonstrate that
non-trivial topology in this class results in unidirectionally
propagating modes at the edge of the systems. As is the case for one
dimensional quantum walks, two dimensional quantum walks display
topological phenomena unique to periodically driven systems. In
Section 2.5.2, we describe a simple quantum walk which possesses
unidirectionally propagating modes as a result of topological
invariants unique to driven systems, namely the non-trivial winding
number in energy direction. Due to its simplicity, this quantum walk
has the advantage of being easier to implement in experiments
compared to the quantum walk introduced in Section 2.5.1.

In Section 2.6, we briefly discuss the realization of other topological
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phases, using quantum walks. In Section 2.7, we conclude with
possible extensions of ideas reviewed in this article.

2.2 One dimensional quantum walk : general
property

2.2.1 Effective Hamiltonian description of quantum walk

The simplest form of discrete quantum walks1 is defined as a protocol
acting on a single particle in one dimensional lattice with two internal
degrees of freedom. Here and throughout the paper, we consider the
infinite one dimensional lattice, where the lattice site ranges from
j = −∞ to j = ∞. In an analogy with spin ƥ/Ʀ particle, we refer to the
internal degrees of freedom as as “spin up” and “spin down.” This
quantum walk, which we call as a conventional quantum walk in this
article, consists of two operations(see Fig. 2.1.1);

1. rotation of the spin around y axis by angle θ, corresponding to
the operation Ry(θ) = e−iθσy/Ʀ where σy is a Pauli operator. The
operator on the spatial degrees of freedom is identity, and we
suppress this in the following.

2. spin-dependent translation T of the particle, where spin up
particle is move to the right by one lattice site and spin down
particle is moved to the left by one lattice site. Explicitly,
T =

∑∞
j=−∞ |j+ ƥ⟩⟨j| ⊗ | ↑⟩⟨↑ |+ |j− ƥ⟩⟨j| ⊗ | ↓⟩⟨↓ |.

These two operations make up one step U = TRy(θ) of the quantum
walk, and the evolution of the particle after many steps of the walk is
studied. It is possible to define more general quantum walks by

1Throughout the paper, we consider discrete quantum walks, so we interchange-
ably use the word ”discrete quantum walk” and ”quantum walk” when confusion
does not arise.
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replacing the first operation by any unitary operation R(θ, ϕ), which
can be written as the product of the rotation of the spin around some
axis n by angle θ and the phase accumulation ϕ i.e.
R(θ, ϕ) = e−iθn·σ/Ʀe−iϕ. However, many central concepts of topological
phases in quantum walks can be illustrated with the simple quantum
walk defined above, so we focus on the conventional quantum walk in
this paper. The extensions to more general case is straightforward.
Discrete quantum walks have been realized in variety of experiments
with ions, cold atoms and photons [23, 80, 145, 170]. In Section 2.2.4,
we describe experimental realizations of quantum walks in some of
these systems in details.

Many properties of quantum walks, such as the distribution of the
particle after many steps, have been extensively studied from
mathematical physics point of view[18, 49]. In this paper, we take the
intuitive picture in which quantum walk is considered as a
stroboscopic realization of static effective Hamiltonian, defined
through the evolution operator of one step quantum walk protocol
U = TRy(θ);

U = TRy(θ) (2.1)
≡ e−iHeffΔT (2.2)

Here, ΔT is the time it takes to carry out one step of the quantum
walk. Because n steps of quantum walk correspond to the evolution
Un = e−iHeffnT, the evolution under the quantum walk coincides with
the evolution under the effective Hamiltonian U = TRy(θ) at integer
multiple times of T. From this perspective, quantum walk provides a
unique quantum simulator for the static effective Hamiltonian Heff

through periodic drive of a quantum particle. In the following, we set
ΔT = ƥ. While the effective Hamiltonian Heff represents a static
Hamiltonian, there is one important difference from the truly static
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Hamiltonian; the energy is only defined up to Ʀπ/ΔT, as is clear from
the definition Eq. (2.2). This periodic structure of the eigenvalues of
effective Hamiltonian, called quasi-energy, is the result of discrete
time-translational symmetry of the system. Just as momentum
becomes quasi-momentum with periodic structure when the system
possesses only discrete spatial translational symmetry, energy also
becomes quasi-energy with periodic structure in this case. This
distinction between energy and quasi-energy plays an important role
in understanding the topological phenomena unique to quantum
walks, or periodically driven systems, as we explain later.

For the quantum walk defined above, the evolution operator of one
step U = TRy(θ) possesses spatial translational symmetry, and thus
the evolution operator becomes diagonal in quasi-momentum space.
In particular, spin-dependent translation T can be written as

T =
∞∑

j=−∞

|j+ ƥ⟩⟨j| ⊗ | ↑⟩⟨↑ |+ |j− ƥ⟩⟨j| ⊗ | ↓⟩⟨↓ | (2.3)

=

∫ π

−π
dk eikσz ⊗ |k⟩⟨k| (2.4)

In this expression, we see that the spin-dependent translation mixes
the orbital degrees of freedom represented by quasi-momentum k and
spin encoded in σz. The presence of such spin-orbit coupling is a key
to realizing topological phases. We note that the continuous quantum
walk does not have such spin-orbit coupling and thus is distinct from
discrete quantum walks in the topological properties[81]

Now in quasi-momentum space, the effective Hamiltonian for the
conventional quantum walk takes the form

Heff =

∫ π

−π
dk [E(k) n(k) · σ]⊗ |k⟩⟨k|, (2.5)
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Figure 2.2.1: a), b) quasi-energy spectrum of the effective Hamiltonian
Eq. (2.5) for conventional quantum walks with rotation angle θ = π/Ʀ and
θ = Ƥ. The spectrum consists of two bands coming from two internal degrees
of freedom, and there is a finite gap between the two bands for general value
of θ except for θ ̸= Ƥ, Ʀπ. For θ = Ƥ, Ʀπ, the spectrum closes the gap as is
observed in b). Note that the gap is closing in this case at quasi-energy E = Ƥ
as well as at E = π. c) The behavior of the eigenstates n(k) in Eq. (2.7) rep-
resented on a Bloch sphere. For a given quasi-momentum k, the eigenstate is
the superposition of spin up and down, and therefore, can be represented as
a point on a Bloch sphere given by n(k). For a conventional quantum walk,
n(k) traces a circle around the origin as k goes from −π to π. Note that n(k)
is perpendicular to a vector A = (cos(θ/Ʀ), Ƥ, sin(θ/Ʀ)) for all k in our quantum
walk. For gapless quantum walk with θ = Ƥ, Ʀπ, n(k) becomes ill-defined at
those k corresponding to the gap closing point.
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where σ = (σx, σy, σz) is the vector of Pauli matrices and the unit
vector n(k) = (nx, ny, nz) defines the quantization axis for the spinor
eigenstates at each momentum k. For θ ̸= Ƥ or Ʀπ, explicit expressions
for E(k) is given by

cos E(k) = cos(θ/Ʀ) cos k (2.6)

Typical band structure of quasi-energies E(k) is plotted in Fig. 2.2.1a)
for θ = π/Ʀ. There are two bands because the system has two internal
degrees of freedom, and for generic values of θ, the two bands are
separated by a band gap.

On the other hand, at θ = Ƥ, Ry(θ) = I, and therefore the effective
Hamiltonian is Heff = kσz. Thus the quasi-energy bands close the gap
at quasi-momentum k = Ƥ at quasi-energy E = Ƥ. Moreover, due to
the periodicity of energy, the spectrum also closes the gap at
quasi-momentum k = π at quasi-energy E = π. The spectrum for
θ = Ƥ is illustrated in Fig. 2.2.1b). Similar situation occurs at θ = Ʀπ.

Interesting structure appears in n(k) of Eq. (2.5). For θ ̸= Ƥ, Ʀπ, n(k)
is given by

n(k) =
(sin(θ/Ʀ) sin k, sin(θ/Ʀ) cos k, − cos(θ/Ʀ) sin k)

sin E(k)
. (2.7)

Note that the eigenstates of the effective Hamiltonian Heff(θ) are the
superposition of spin up and spin down, and therefore can be
represented as a point on a Bloch sphere. The unit vector n(k) is
nothing but the unit vector that determines the direction of this point.
The behavior of n(k) on a Bloch sphere for θ = π/Ʀ as k goes from −π
to π is plotted in Fig. 2.2.1c). We see that n(k) “winds” around the
equator of the Bloch sphere. This peculiar feature is in fact the origin
of topological nature of quantum walks, as we see in Section 2.4.
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Note that at θ = Ƥ, Ʀπ, the states at quasi-momentum k = Ƥ and π
become degenerate and thus any superposition of spin up and down
becomes the eigenstates of the Hamiltonian at these quasi-momentum.
Thus, eigenvector n(k) becomes indeterminate at these points.

2.2.2 Hidden symmetry of quantum walks

The effective Hamiltonian of the quantum walk Heff as given in
Eq. (2.5) has an interesting symmetry. First, we note that n(k) is
perpendicular to the vector A = (cos(θ/Ʀ), Ƥ, sin(θ/Ʀ)) as is easy to
check from Eq. (2.7). The symmetry of the system is then given by
the rotation around the axis A by angle π which takes Heff to −Heff, or

Γ−ƥHeffΓ = −Heff Γ = e−iπA·σ/Ʀ (2.8)

Indeed, as is clear from the picture of Fig. 2.2.1, such rotation takes
n(k) to −n(k) for each k, and thus takes Heff =

∫
dkE(k)n(k) · σ ⊗ |k⟩⟨k|

to minus itself. This symmetry given by a unitary operator is called
sublattice or chiral symmetry2.

One interesting feature of quantum walks which results from the
sublattice (chiral) symmetry is the symmetric spectrum; states with
energy E and −E always appear in pairs. This is easy to demonstrate.
Given a state |ψ⟩ with eigenvalue E, one can check that the state Γ|ψ⟩

2These two words are used interchangeably in the literature. The word, ”sub-
lattice symmetry” is intuitive. When one has a Hamiltonian, for example, with
sublattice structure with sublattice A and B such that the Hamiltonian is only hop-
ping from sites of A to sites of B, then Hamiltonian can be made minus of itself
by multiplying all the creation and annihilation operators of sublattice A. This op-
eration is unitary, and thus, the Hamiltonian possesses sublattice symmetry. The
word, ”chiral symmetry,” originates from the high energy physics, where it relates
the two handedness of Dirac fields. Because the word ”chiral” has the meaning of
”handedness,” the word ”chiral symmetry” is also used in solid state physics for
some crystal symmetries, and care has to be taken to use the word.
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is an eigenstate of the Hamiltonian with energy −E;

Heff|ψ⟩ = E|ψ⟩

→ Heff (Γ|ψ⟩) = −E (Γ|ψ⟩)

There are exceptions to this pairing of states. When E satisfies
E = −E, the states |ψ⟩ and Γ|ψ⟩ can represent the same state. Due to
the periodicity of quasi-energy, quantum walk has two special energies
that satisfies the condition E = −E, given by E = Ƥ and E = π. We will
later see that this property of E = Ƥ and E = π leads to the topological
protection of E = Ƥ and E = π states. The existence of a single E = Ƥ
state is known in the non-driven systems with sublattice (chiral)
symmetry [136], but E = π energy state is the novel feature of
periodically driven systems.

2.2.3 Asymptotic distribution; ballistic propagation

In this section, we provide an intuition behind the propagation of a
particle under quantum walks by considering their asymptotic
distributions. Quantum walk was originally conceived as quantum
analogue of random walk[2]. In fact, it is easy to check that if one
carries out a measurement of the particle after each step, quantum
walk reduces to a biased random walk. Thus, by varying the amount
of decoherence in the system, one can smoothly go from a quantum
walk to classical a random walk[23]. However, the behavior of a
random walk is quite different from that of a quantum walk in the
absence of decoherence. We remind the reader that a (non-biased)
random walk asymptotically approaches the Gaussian distribution
with the peak centered around the origin where the mean squared
travel distance is given by ⟨xƦ⟩ = NaƦ where a is the step size of one
step. Thus, the particle propagates in a diffusive fashion under a
classical random walk.
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On the other hand, a particle under quantum walks propagates in a
ballistic fashion[18, 49]. This fact almost trivially results from the
understanding of quantum walks as simulations of static effective
Hamiltonian of non-interacting particle as given by Eq. (2.2) and
Eq. (2.5). If one prepares a particle in a state such that its
quasi-momentum is narrowly concentrated around k, then it is
intuitively clear that the particle ballistically propagates with the
group velocity given by vk = ∂E(k)

∂k where E(k) is the quasi-energy given
in Eq. (2.6).

This intuition can be made rigorous by deriving the asymptotic
distribution of quantum walks. The argument above shows that the
distribution of the variable X = x/N in the asymptotic limit converges
to a finite form. Here we consider the quantum walk of a particle
initially localized at the origin x = Ƥ with spin state given by |s⟩. In
Appendix 2.8.1, we show that the distribution function of X takes the
following form

P(X) =

∫ π

−π

dk
Ʀπ

ƥ
Ʀ
(ƥ+ ⟨n(k) · σ⟩) δ(vk − X)

+
ƥ
Ʀ
(ƥ− ⟨n(k) · σ⟩) δ(vk + X) (2.9)

where ⟨n(k) · σ⟩ = ⟨s|n(k) · σ|s⟩, and vk = ∂E(k)
∂k . This result is quite

intuitive; each momentum state k propagates with velocity ±vk where
+ sign is for spin parallel to n(k) and − sign is for spin anti-parallel to
n(k). Because the initial state is localized at a single site, it is the
superposition of all quasi-momentum state k, and thus, the asymptotic
distribution is given by the sum of the contributions for each k.

The form of asymptotic distribution written above immediately
leads to various results known in quantum walks [18, 49]. For
example, symmetry of the asymptotic distribution x ↔ −x exists
whenever ⟨n(k) · σ⟩ is an even function of k, which is the case when the
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0

Figure 2.2.2: The asymptotic distribution of a conventional quantum
walk with θ = π/Ʀ, whose analytical solution is obtained in Eq. (2.9) and
Eq. (2.10). The result is expressed for rescaled coordinate X = x/N where N
is the total number of quantum walk steps. X takes a finite value for N → ∞
limit because a particle propagates in a ballistic fashion.

initial spin state is pointing in y direction. Otherwise, the distribution
is generically not symmetric around the origin. Numerical evaluation
of asymptotic distribution is always possible, and in certain cases, the
analytic result can be expressed in a compact form. For example, for
the asymptotic distribution of θ = π/Ʀ quantum walk with initial spin
state pointing in z direction, the asymptotic distribution is given by

P(X) =
ƥ
π

ƥ
ƥ+ X

ƥ√
ƥ− XƦ − ƥ√

Ʀ
≤ X ≤ ƥ√

Ʀ
(2.10)

The distribution is plotted in Fig. 2.2.2. The derivation given here
and Appendix 2.8.1 can be easily extended to more general quantum
walks with different unitary operations or even to higher dimensions.

2.2.4 Experimental realizations of quantum walks

One dimensional quantum walks described in previous sections have
been realized in experiments. Since quantum walk is a general

51



concept applicable to many different physical systems, there are
realizations with cold atoms, ions, and photons[23, 80, 145, 170]. Such
realizations in different physical settings allow different controls of the
systems, such as the ability to choose the rotation operations, to
introduce known amount of dephasing[23], or to create spatial
boundary between regions with different rotation operations[92].
Thus, study of quantum walks in experimental settings is versatile
and is not usually restricted by the technology of a specific field.

The realization of quantum walks takes a widely different forms for
different systems. The realization with cold atom[80] is probably the
simplest and most straightforward. In this experiment, Karsi et al.
realized the quantum walk, using the cesium atoms (Cs). Here, two
hyperfine states of cesium (Cs) atoms are used as spin degrees of
freedom. The spin rotation is implemented through the application of
resonant microwave radiation between these two hyperfine states. The
spin-dependent translation, on the other hand, is implemented by the
adiabatic translation of spin dependent optical lattices. This
experiment implemented quantum walks up to ƥƤ steps, and observed
the distributions of the particle. The experiment shows a good
agreement, but quantum walks were dephased after ƥƤ or so steps.

On the other hand, in the case of photonic realization by Broome et
al.[23], the vertical and horizontal polarization of a photon is used as
spin degrees of freedom. The rotation operation is implemented
through half wave plates, where the polarization of a photon is
rotated as a photon goes through the plate. The
polarization-dependent translation is implemented by birefringent
calcite beam displacer. The optical axis of the calcite prism was cut in
such way to displace horizontally polarized light to the perpendicular
direction to the propagation direction and transmit the vertical
polarized light without displacement. Now these optical components
are put in series in, say, z direction, so that the photon goes through
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them one by one as it propagates in z direction. Thus, z direction
plays the role of time direction, and the photon is evolved according
to the quantum walk as it propagates through these optical
components. This experiment implemented ƪ steps. In the subsequent
experiments, this experiment was extended to create the boundary
between regions with different rotation angles, which was used to
investigate the topological nature of quantum walks[92]. Yet another
implementations of quantum walks with photonic architecture is
demonstrated in [145], using a fiber network loop.

Lastly, we describe the quantum walk implemented with ions. In [
170], Zhringer et al. realized quantum walks in a phase space with ion
ƨƤCa+ They used the internal states |Sƥ/Ʀ,m = ƥ/Ʀ⟩ and |DƩ/Ʀ,m = Ƨ/Ʀ⟩
as spin degrees of freedom. For spatial degrees of freedom, they used
the excitation of the ions in the harmonic traps, where the
superposition of raising and lowering operators are identified as the
coordinate operator x̂ = a† + a and momentum operator p̂ = a†+a

Ʀ . In
this space, they implemented the spin dependent translation by
applying a bichromatic light that is resonant with both the blue and
red axial sideband. This shows the interesting fact that quantum
walks can be encoded in abstract space. The experiment
demonstrates that the quantum walk in this space can maintain the
coherence up to even ƦƧ steps.

While they are not an experimental demonstrations, there are two
interesting possible realizations of quantum walks proposed in natural
systems.

Oka et al. proposes in [116] that the evolution of electrons on a ring
under the application of DC electric field can be understood as
quantum walks in energy level space. When the electric field is
understood as the time-dependent vector potential, the problem
represents a time-dependent problem, where the Landau-Zener
transitions of electrons among different levels can be mapped to
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quantum walks. In this work, they proposed the existence of a
localized state near the ground state of the system, which is a
manifestation of the topological nature of quantum walks explained in
this article[87] (see Section 2.4.4).

Another proposal by Rudner and Levitov[135] concerns an
extension of quantum walk to include the decaying sites at every
other lattice sites, which can arise in the problem of coupled electron
and nuclear spins in quantum dots in the presence of competing
spin-orbit and hyperfine interactions. This quantum walk,
intriguingly, displays topological phenomena as well, where the mean
walking distance of a particle before it decays at one of the sites is
quantized to be an integer.

2.3 Brief introduction to topological phases

Quantum walks described in Section 2.2 display rich topological
phenomena. In this section, we review the ideas of topological phases,
and provide the background for understanding the topological
phenomena in quantum walks.

The relation between quantum phases of matter and topology was
first discovered through the study of integer quantum Hall effect,
which revealed the quantization of Hall conductance for two
dimensional electron gas in the presence of a strong magnetic
field[94, 105]. The quantization of Hall conductance is very precise,
and moreover is robust against perturbations such as the impurity of
the materials. The fundamental origin for such robustness is the
topological nature of ground state wavefunction. Ground state
wavefunction of integer quantum Hall systems is associated with a
topological number. A topological number is a global property of the
shape of wavefunction, like “winding,” and thus cannot be changed by
a continuous change. Because Hall conductance is directly given by
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this topological number[156], its value does not change under the
small change of Hamiltonian or its ground state wavefunction.

In addition to the quantized Hall conductance, yet another direct
physical consequence of non-trivial topology of wavefunction is the
existence of unidirectional edge states at the boundary of the
sample[58]. The two phenomena, the quantized Hall conductance and
unidirectional edge states, are closely related where the current for the
quantized Hall conductance is carried by the edge states. From this
point of view, the robustness of the Hall conductance against
impurities results from the robustness of unidirectional edge
propagation against impurity scatterings. As we explain in this
article, while quantized Hall conductance is a unique phenomenon to
the topological class of integer quantum Hall systems, the existence of
robust edge states is generic feature of any topological class.

Because topology is a general property of ground state
wavefunction, such idea is extendable to other systems in other
dimensions[59, 125]. In one dimension, Su Schrieffer and Heeger gave
a simple model of conducting polyacetylene and found the existence of
topological solitons at edges[153]. This so-called Su-Schrieffer-Heeger
model of polyacetylene is an example of one dimensional topological
phase with sublattice (or chiral) symmetry. Independently, physics in
the same topological class was also studied in the context of high
energy physics by Jackiw and Rebbi[72, 73]. In recent years, band
insulators with time-reversal symmetry are predicted to possess
topological properties called quantum spin Hall effect[16, 78], and
these so-called topological insulators were soon realized in
experiments with HgTe[98]. One important conceptual advance of
these topological phases compared to integer quantum Hall phase is
that these are new topological phases appearing in the presence of
symmetries such as sublattice and time-reversal symmetry, whereas
the integer quantum Hall effect originally discovered in the presence
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of strong magnetic field and disorders is the phenomena that appear
in the absence of these symmetries. The idea has been further
extended to three dimensional systems in the presence of time-reversal
symmetry[29, 42, 169].

Motivated by these findings, a several groups independently
classified the non-interacting systems in the presence of particle-hole,
time-reversal, or sublattice (chiral) symmetry, giving the “periodic
table” of topological phases[84, 126, 142]. While the possible existence
of topological classes are known for the symmetry class within these
categories, their realizations are not easy in condensed mater
materials and consequently, some table entries have not yet found
physical realizations. Moreover, even when such topological phases
are proposed to be realized in condensed matter materials, it is
usually hard to directly image the wavefunction of, say, topologically
protected bound states with current technology. Due to the
outstanding controllability, artificial systems are promising alternative
candidates for studying these novel phases, and there is a number of
theoretical and experimental studies of topological phenomena using
cold atoms and photons [74, 77, 86, 92, 120, 148, 161, 172]. Among
them, quantum walks provide unique platform where any topological
phase classified in one and two dimensions is realizable with simple
modifications of their protocols, as we will explain in this paper[87].
In fact, one dimensional topological class predicted to arise in
Su-Schrieffer-Heeger model and Jackiw-Rebbi model has been already
realized in the photonic architecture[92]. The key ingredient in the
versatility of quantum walks is the controllability of the protocols.
Because protocols are something experimentalists choose to
implement, it is possible to design the protocols in such a way to
preserve or break certain kind of symmetries. From the following
section, we study how such topological structure appears in discrete
quantum walks.
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2.4 Topological phenomena in quantum walks

2.4.1 Topological characterization of quantum walks

In Section 2.2.1, we have seen that the eigenvectors of quantum walks
n(k) illustrated in Fig. 2.2.1 have non-zero winding as k goes from −π
to π. Such winding gives a topological characterization of quantum
walks in the presence of sublattice (chiral) symmetry.

As we noted in Section 2.2.1, the effective Hamiltonian of the
quantum walk possesses the sublattice (chiral) symmetry, which
constrains the eigenvector of Hamiltonian for each quasi-momentum
n(k) to lie on the plane perpendicular to the vector A. Under this
sublattice (chiral) symmetry, n(k) represents a map from the first
Brillouin zone, which is a circle, to the equator of Bloch sphere, which
is also a circle. Then quantum walk described by Eq. (2.5) possesses
non-trivial winding of this map, where n(k) goes around once the
equator of Bloch sphere as k goes from −π to π. In the presence of the
symmetry, the winding observed in Fig. 2.2.1 c) is robust against
small perturbations; one cannot change the winding number by small
change of the Hamiltonian Heff which preserves the sublattice (chiral)
symmetry. One can intuitively check this robustness by trying to
change the winding through the continuous deformations of n(k). We
call this winding number as topological number due to their
robustness against perturbations, and the topological number
associated with Heff is ƥ whenever θ ̸= Ƥ, Ʀπ3 for our quantum walks.
More generally, the winding of n(k) around the equator can take any
integer value, and different topological phases in this topological class
are associated with different integers (winding numbers), and thus the
topological classification is given by Z (a set of integers).

It is important to note that this winding number is not topological
3More concretely, the two bands of quantum walks both possess winding number

ƥ.
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in the absence of any symmetry constraint, in the sense that the
winding number can be made zero by continuous change of n(k). For
example, one can shrink the loop of n(k) into a point on a Bloch
sphere.

More generally, the concept of topological numbers (or topological
invariants) are defined for a collection of Hamiltonian that represent
band insulators with certain symmetries. A topological invariant is
assigned to each band, and its value cannot change under the
continuous deformations of Hamiltonian which preserve the symmetry.
There is one exception to this statement; when two bands mix with
each other, the topological invariants can be changed in these two
bands. We can flip this argument and say that topological numbers
can change their values only if two bands close their band gaps in the
process. We argue in Section 2.4.3 that this property of topological
numbers results in the creation of topologically protected bound
states in the spatial boundary between regions that belong to two
distinct topological phases.

In the conventional quantum walk, the winding number associated
with the effective Hamiltonian is always ƥ, and no other topological
phase exist in this family of quantum walks. In the next section,
Section 2.4.2, we give yet another family of quantum walks that
display two distinct topological phases with winding number Ƥ and ƥ
in the presence of sublattice (chiral) symmetry. We illustrate how
topological numbers can change as Hamiltonian is changed in this
example.

2.4.2 Split step quantum walks

In this section, we extend the conventional quantum walk by
modifying the protocols and define so-called split-step quantum walks.
This example illustrates how one can engineer topological phases in
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Figure 2.4.1: a) Protocol for a split-step quantum walk. Split-step quan-
tum walk is defined for spin ƥ/Ʀ particle in one dimensional lattice, and con-
sists of four operations; 1. spin rotation around y axis by angle θƥ, given by
Ry(θƥ); 2. Translation of spin up to the right by one lattice, T↑; 3. spin rota-
tion around y axis by angle θƦ, given by Ry(θƦ); 4. Translation of spin down
to the left by one lattice, T↓. The evolution operator of one step is given by
U = T↓Ry(θƦ)T↑Ry(θƥ). b) The topological phase diagram of split-step quan-
tum walk for various rotation angles θƥ and θƦ. The phase is characterized by
the winding number W, and split-step quantum walks realize either W = Ƥ
or W = ƥ. Since winding number is a topological number, it can change its
value only when the band gap closes, and these gapless phases are denoted by
solid black line (band gap closes at quasi-energy E = Ƥ) and by red dotted line
(band gap closes at quasi-energy E = π).
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quantum walks through the active design of the protocols.
Split-step quantum walks is a simple extension of conventional

quantum walks which have one additional rotation and translation
process(see Fig. 2.4.1 a)). The complete protocol is as follows;

1. Rotation of the spin around y axis by angle θƥ, corresponding to
the operation Ry(θƥ) = e−iθƥσy/Ʀ.

2. Translation of spin up particle to the right, given by
T↑ =

∑
j |j+ ƥ⟩⟨j| ⊗ | ↑⟩⟨↑ |+ ƥ⊗ | ↓⟩⟨↓ |. Spin down particle stays

in the original position.

3. Second rotation of the spin around y axis by angle θƦ,
corresponding to the operation Ry(θƦ) = e−iθƥσy/Ʀ.

4. Translation of spin down particle to the left, given by
T↓ =

∑
j |j− ƥ⟩⟨j| ⊗ | ↓⟩⟨↓ |+ ƥ⊗ | ↑⟩⟨↑ |. Spin up particle stays in

the original position.

Thus, the evolution operator of one step is given by
U(θƥ, θƦ) = T↓Ry(θƦ)T↑Ry(θƥ). This split-step quantum walk is reduced
to the conventional quantum walk defined in Section 2.2.1 with
θƦ = Ƥ. As before, we can find the effective Hamiltonian through
U ≡ e−iHeff . The effective Hamiltonian again takes the form Eq. (2.5)
where the quasi-energy is

cos E(k) = cos(θƦ/Ʀ) cos(θƥ/Ʀ) cos k− sin(θƥ/Ʀ) sin(θƦ/Ʀ), (2.11)
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and the eigenvector n(k) is

nx(k) =
cos(θƦ/Ʀ) sin(θƥ/Ʀ) sin k

sin E(k)

ny(k) =
sin(θƦ/Ʀ) cos(θƥ/Ʀ) + cos(θƦ/Ʀ) sin(θƥ/Ʀ) cos k

sin E(k)

nz(k) =
− cos(θƦ/Ʀ) cos(θƥ/Ʀ) sin k

sin E(k)
.

It is straightforward to check that A(θƥ) = (cos(θƥ/Ʀ), Ƥ, sin(θƥ/Ʀ)) is
perpendicular to n(k) for all k. Therefore, the system possesses
sublattice (chiral) symmetry with the symmetry operator
Γ(θƥ) = e−iπA(θƥ)·σ/Ʀ. Notice that this symmetry operation only depends
on the first rotation angle θƥ.

The existence of sublattice (chiral) symmetry allows us to
characterize the split-step quantum walk by the winding number,
denoted by W, of n(k) around the equator of Bloch sphere. Using the
explicit expression for n(k) in Eq. (2.12), we find W = ƥ if
| tan(θƦ/Ʀ)/ tan(θƥ/Ʀ)| < ƥ, and W = Ƥ if | tan(θƦ/Ʀ)/ tan(θƥ/Ʀ)| > ƥ. Thus
the split-step quantum walk can realize different winding number for
different rotation angles θƥ and θƦ. We plot the phase diagram of
split-step quantum walk in Fig. 2.4.1 b).

For a given θƥ, a set of Hamiltonian for varying values of second
rotation θƦ has the same sublattice (chiral) symmetry, and thus
{Hθƥ(θƦ)} defines quantum walks in the same topological class.
Because the dependence of Hθƥ(θƦ) on θƦ is continuous, topological
nature of the winding number implies that the winding number is the
same for wide range of the rotation angle θƦ as phase diagram
Fig. 2.4.1 b) shows.

However, the winding number can change its value when the two
bands close their gap. Such gapless points are given by the points
| tan(θƦ/Ʀ)/ tan(θƥ/Ʀ)| = ƥ, or θƦ = ±θƥ, Ʀπ ± θƥ denoted by solid and
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dotted lines in Fig. 2.4.1 b). The mechanism behind the change of
winding numbers is the following. At the value of θƦ where two bands
close the gap, for example, θƦ = θƥ, eigenvector n(k) in Eq. (2.12)
becomes ill-defined at the quasi-momentum k corresponding to the
degenerate points, because any superposition of spin up and down is
the eigenstate of the Hamiltonian at that points. At this θƦ = θƥ, the
winding number cannot be defined, and winding numbers of bands at
Hθƥ(θƥ − ε) and Hθƥ(θƥ + ε) do not have to be the same.

Note that this argument can be used to find the phase diagram in
Fig. 2.4.1 b) without calculating the winding number at each point of
the phase diagram. Since the winding number can change only when
the bands close their gap, the phase transition between two
topological phases is always gapless. Thus, in order to draw the phase
diagram, it is only necessary to identify the gap closing points in the
parameter space, and find the winding number of the region bounded
by the gapless phase lines. In quantum walks, the periodicity of
quasi-energy allows the closing of the gap at either quasi-energy E = Ƥ
and E = π as we saw in Fig. 2.2.1 b). These gap closing lines at
quasi-energy E = Ƥ and E = π are denoted in Fig. 2.4.1 b) as solid and
dotted lines, respectively.

The topological structure of split-step quantum walk described
above has a strong asymmetry between θƥ and θƦ, but this asymmetry
is an artifact. One can shift the starting time of the quantum walk by
unitary transformation and define an equivalent dynamics through
U′ = T↑Ry(θƥ)T↓Ry(θƦ). It is straightforward to show that this quantum
walk has sublattice (chiral) symmetry given by Γ(θƦ) = e−iπA(θƦ)·σ/Ʀ

with A(θƥ) = (cos(θƥ/Ʀ), Ƥ, sin(θƥ/Ʀ)). In this case, the quantum walks
with constant θƦ correspond to the Hamiltonians in the same
topological classes.
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Figure 2.4.2: Illustration of the existence of bound states across the bound-
ary of regions that belong to distinct topological phases. Here, we con-
sider the inhomogeneous split-step quantum walk where the second rotation
θƦ(x) changes in space, and the winding number associated with the phase
θƦ− = θƦ(x → −∞) is different from the winding number associated with the
phase θƦ+ = θƦ(x → ∞). In both limit of x → −∞ and x → ∞, the bands are
gapped. However, the winding number cannot change its value unless band
gap closes, and thus it is expected that the band gap closes in the middle near
the origin. States at E = Ƥ that exist near x = Ƥ must be localized since there
is no state at this energy far into the left or into the right of the system.

2.4.3 Physical manifestations of topological band struc-
ture

The non-trivial winding, or topological number, of the bands in
quantum walks gives rise to a robust bound states at the boundary
between two phases with different topological numbers. In the
following, we first give an intuition behind the existence of such
robust edge states.

Here we consider the split-step quantum walks with inhomogeneous
rotations in space, in order to create a boundary between quantum
walks with different winding numbers. Here we take the first rotation
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θƥ to be homogeneous in space and make the second rotation θƦ space
dependent, see Fig. 2.4.2. The effective Hamiltonian of this
inhomogeneous quantum walk, having the homogeneous first rotation
θƥ, possesses the sublatice (chiral) symmetry given by
Γ(θƥ) = e−iπA(θƥ)·σ/Ʀ. While this statement is intuitively clear, it is
instructive to explicitly show the existence of sublattice (chiral)
symmetry, and we provide the proof in the Appendix 2.8.2.

We take the second rotation angle to approach θƦ− for x → −∞ and
θƦ+ for x → ∞. We take the region in which the rotation angle
changes from θƦ− to θƦ+ to be finite region around x = Ƥ. Now we take
θƦ−, θƦ+ to be such that winding number is Ƥ for the split-step
quantum walk with the rotation angle θƥ, θƦ− and winding number is ƥ
for the walk with the rotation angle θƥ, θƦ+. Then the region near the
origin represents the phase boundary between two distinct topological
phases.

In Fig. 2.4.2, we illustrate the local band structures in this
inhomogeneous quantum walk. Strictly speaking, the system is
spatially inhomogeneous, so quasi-momentum is no longer a good
quantum number, and band structures cannot be drawn. Yet, it is
helpful to visualize band structures to understand what happens at
the boundary. If the variation of rotation angle θƦ is slow, then one
can visualize the band structures at point xƤ to be the band structures
of homogeneous quantum walk with rotation angles θƥ and θƦ(xƤ).
Such description is certainly applicable in the limit x → −∞ and
x → ∞.

The band structures of both x → −∞ and x → ∞ represent band
insulators where two bands are separated by a band gap. By
definition, the two bands are characterized by winding number W = Ƥ
in x → −∞ and W = ƥ in x → ∞. However, since the sublattice
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Figure 2.4.3: Evolution of the spatially inhomogeneous split-step quantum
walk. The initial spin of the particle is spin up, and particle is initialized at
x = Ƥ. a) The rotation angles of quantum walk are chosen such that the
quantum walk corresponds to trivial topological phase with winding number
W = Ƥ as x → −∞ indicated as a white dot in the phase diagram and non-
trivial topological phase with W = ƥ as x → ∞ indicated as a blue dot. Here
we took the uniform first rotation θƥ = −π/Ʀ and second rotation θƦ− = Ƨπ/ƨ
and θƦ+ = π/ƨ with θƦ(x) = ƥ

Ʀ(θƦ−+θƦ+)+ ƥ
Ʀ(θƦ+−θƦ−) tanh(x/Ƨ). After many

steps of quantum walks, a large probability of finding a particle near the origin
remains, indicating the presence of bound states. b) In this quantum walk, the
phase of the two sides of the origin has the same winding number. The phase
as x → −∞ is indicated by the white dot in the phase diagram and phase as
x → ∞ is indicated by the red dot. Here we took θƥ = −π/Ʀ and θƦ− = Ƨπ/ƨ
as before and θƦ+ = ƥƥπ/Ƭ. In this case, the probability to find the walker near
x = Ƥ after many steps decays to 0, indicating the absence of a localized state
at the boundary.
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(chiral) symmetry exists throughout the space, the winding numbers
can only change by closing the gap across the boundary near x = Ƥ.
Therefore, the gap must close near x = Ƥ, as illustrated in Fig. 2.4.2.

This argument shows that there must be states in the gap (near
E = Ƥ) around the origin. Now because there is no state near E = Ƥ in
the limit x → ∞ and x → −∞ (this energy is in the gap of the bands),
we can conclude these states near E = Ƥ around the origin must be
confined around the origin. Thus there is generically a bound state
near E = Ƥ at the boundary between two different topological phases.

This prediction can be confirmed by running a simple simulations
of inhomogeneous quantum walks. The presence or absence of bound
states can be confirmed by initializing the particle near the origin and
running the quantum walk protocols. If there are bound states near
the origin, there is generically an overlap between the initial state and
the bound state, and even after many steps of quantum walk, there
remains a non-zero probability to find the particle near the origin. On
the other hand, if there is no bound state, the particle quickly
propagates away from the origin due to the ballistic propagation of
quantum walks as described in Section 2.2.3.

In Fig. 2.4.3, we present the result of two inhomogeneous quantum
walks. In Fig. 2.4.3 a), the boundary between two topologically
distinct phases is created near the origin with winding number W = Ƥ
as x → −∞ and W = ƥ as x → ∞. Specifically, the uniform first
rotation is θƥ = −π/Ʀ and second rotation θƦ− = Ƨπ/ƨ and θƦ+ = π/ƨ.
Here we considered a smooth variation of the second rotation given by
θƦ(x) = ƥ

Ʀ(θƦ− + θƦ+) + ƥ
Ʀ(θƦ+ − θƦ−) tanh(x/Ƨ), where the second

rotation changes from θƦ− to θƦ+ with the length scale of ∼ ƪ sites.
The phases of quantum walks in the limit x → −∞ and x → ∞ are
indicated on the phase diagram as the white and blue dot,
respectively. In the simulation, the initial spin of the particle is spin
up, and particle starts at x = Ƥ. As we expect, a peak in the
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probability distribution appears even after ƪƤ steps of the simulation,
indicating the existence of topological bound states.

On the other hand, we studied the quantum walk in Fig. 2.4.3 b),
where the system is characterized by W = Ƥ throughout the space.
Here we took θƥ = −π/Ʀ, θƦ− = Ƨπ/ƨ and θƦ+ = ƥƥπ/Ƭ again with the
same functional dependence on x,
θƦ(x) = ƥ

Ʀ(θƦ− + θƦ+) + ƥ
Ʀ(θƦ+ − θƦ−) tanh(x/Ƨ). The phases of quantum

walks in the limit x → −∞ and x → ∞ are indicated on the phase
diagram as the white and red dot, respectively. With the same initial
state of spin up, we implemented the quantum walk simulation, and
the resulting probability distribution shows a fast decay of probability
near the origin. After ƪƤ steps, the probability near the origin decays
close to zero, indicating the absence of bound states.

For further details of the simulation, the interactive demonstration
of inhomogeneous quantum walks is available on the Mathematica
demonstration website[1]4, where one can change the values of θƥ and
θƦ and run the quantum walks.

The topological class realized by the conventional quantum walk
and by the split-step quantum walk is the same topological class as is
proposed in Su-Schrieffer-Heeger model of polyacetylene and
Jackiw-Rebbi model. This is the topological class in one dimension
with sublattice (chiral) symmetry. In this respect, quantum walk acts
as a quantum simulator of the topological phase. Since quantum
walks are realizable with many different systems such as ions, photons
and cold atoms, they allow the study of topological phases in a
manner that is not possible in traditional condensed matter materials.
The proposal to study topological phases and topologically protected
bound states in split-step quantum walk was first proposed in [87],

4In the demonstration, the rotation angle θƦ is constant and the first rotation
angle θƥ is varied in space. As we have explained at the end of Section 2.4.2,
such quantum walk also possess sublattice (chiral) symmetry and thus the essential
physics remains the same.
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and later realized in experiments with photonic architecture[92]. The
controllability of the experimental apparatus not only allow the direct
imaging of the wavefunctions of topological bound states, but also
allow to confirm the robustness of the bound states with parameter
changes, the signature of topological origin for the bound states. This
topological bound state in one dimensional system has not been
directly observed in materials such as polyacetylene, and this photonic
architecture provided the first experimental imaging of the bound
states with topological origin in one dimension.

2.4.4 Quantum walks with a reflecting boundary

A special case of Hamiltonian with trivial topology is the vacuum,
where the topological number associated with the system is zero.
Thus, we can make a phase boundary by simply terminating the
quantum walk with winding number W = ƥ. In this setup, the
boundary exists at the edge of the quantum walk, and it is expected
that a bound state exists at this edge according to the general
argument in Section 2.4.3.

As we briefly mentioned in Section 2.2.4, such a setup is not
unphysical, and intriguing realization of quantum walks with a
reflecting edge has been suggested in [116] through the understanding
of a particle under the electric field in discrete energy level structure
as a quantum walk. The transition between different levels occurs as
Landau-Zener process in this system, which corresponds to the
translation operation in quantum walks. Thus, the ground state of
the system acts as the reflecting boundary. They predicted the
existence of a bound state near the ground state, which we can now
understand as a topological bound state as a result of non-trivial
topological number of quantum walks.

Here we consider the conventional quantum walk described by
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U = TRy(θ) which extends from x = −∞ up to x = Ƥ. The quantum
walk is terminated at x = Ƥ. In order to conserve the particle number,
we require the operation at the boundary to be unitary, i.e. the spin ↑
particle needs to be reflected at the edge x = Ƥ. Here we take the
following operation at the edge x = Ƥ;

1. Rotation of the spin around y axis by angle θ, as in other sites,
given by Ry(θ) = e−iθσy/Ʀ.

2. Translation of the spin ↓ to site x = −ƥ. Spin ↑ stays at x = Ƥ
and its spin is flipped to spin ↓ with phase accumulation eiϕ

Explicitly, the operation at x = Ƥ is

U(x = Ƥ) = TedgeRy(θ)

Tedge = | − ƥ⟩⟨Ƥ| ⊗ | ↓⟩⟨↓ |+ eiϕ|Ƥ⟩⟨Ƥ| ⊗ | ↓⟩⟨↑ |

In order to have a quantum walk in a topological class, it is crucial
to have the sublattice (chiral) symmetry of the whole system. In
particular, the sublattice (chiral) symmetry needs to be present for
the evolution operator including the edge. If we denote the total
evolution of the system with an edge as Ux≤Ƥ, then we require

Γ−ƥUx≤ƤΓ = U†
x≤Ƥ (2.12)

where Γ=e−iπA·σ/Ʀ with A = [cos(θ/Ʀ), Ƥ, sin(θ/Ʀ)]. This is a simple
extension of the definition of sublattice (chiral) symmetry in Eq. (2.8)
to evolution operator. It is straightforward to check that the
necessary and sufficient condition for the existence of sublattice
(chiral) symmetry in Ux≤Ƥ is ϕ = Ƥ, π for the phase accumulated at the
reflecting boundary.

According to the general argument in Section 2.4.3, bound states
exist near the boundary of x = Ƥ. For this simple quantum walk, it is
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not very difficult to obtain the analytical solution of the bound state.
The details of the derivation is given in the Appendix 2.8.3. We note
that a straightforward extension of the derivation given in the
Appendix should allow similar analytical solutions of bound states for
the inhomogeneous split-step quantum walks.

Here we describe the solution for the boundary condition of ϕ = Ƥ
and rotation angle θ = π/Ʀ. The analytical solution shows that the
bound state is at quasi-energy E = π and the wavefunction takes the
form

|ψE=Ƥ
b (−j)⟩ =

ƥ
N

(−ƥ)je−j/λ ⊗

(
ƥ−

√
Ʀ

ƥ

)
Ƥ ≤ j

(2.13)
λ = − ƥ

log(
√
Ʀ− ƥ)

where N is the normalization factor. Since the localization length
λ ≈ ƥ.ƥ is small, this bound state is tightly localized around x = Ƥ.

For the same boundary condition ϕ = Ƥ but different rotation angle
θ = Ʃπ/Ʀ, the evolution operator U = TRy(θ) is different from the one
with the rotation angle θ = π/Ʀ by only a minus sign, i.e.
TRy(θ = Ʃπ/Ʀ) = −TRy(θ = π/Ʀ). Thus, the same wavefunction in
Eq. (2.13) is the bound state for this case as well, but now the
quasi-energy of the bound state is E = Ƥ due to the extra minus sign.

On the other hand, for the reflecting boundary condition with
phase accumulation ϕ = π with θ = π/Ʀ, the bound state exists at
quasi-energy E = Ƥ and wavefunction is

|ψE=π
b (−j)⟩ =

ƥ
N

e−j/λ ⊗

(
ƥ−

√
Ʀ

ƥ

)
Ƥ ≤ j

λ = − ƥ
log(

√
Ʀ− ƥ)
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Generally, the quasi-energy of bound states for quantum walks with
sublattice (chiral) symmetry is at E = Ƥ or E = π. We will see in the
next section, Section 2.4.5, that these energies represent special points
where sublattice (chiral) symmetry provides the topological protection
of the states at these energies.

For the special rotation angles of θ = π, it is possible to obtain the
bound state solution by following the quantum walk for a few steps.
Since this calculation is elementary, the existence of a bound state can
be easily understood. This rotation angle corresponds to the rotation
operation

Ry(θ = π) = −iσy

=

(
Ƥ −ƥ
ƥ Ƥ

)

Thus, the rotation turns | ↑⟩ → | ↓⟩ and | ↓⟩ → −| ↑⟩. Let us take the
phase accumulation upon reflection to be ϕ = Ƥ. If we initialize the
particle at x = Ƥ with spin down, the quantum walk follows the
following evolution.

|Ƥ⟩ ⊗ | ↓⟩ R→ |Ƥ⟩ ⊗ (−| ↑⟩) T→ |Ƥ⟩ ⊗ (−| ↓⟩)

Thus in this special case, |Ƥ⟩ ⊗ | ↓⟩ is an eigenstate of quantum walk
operator localized at the edge. Since the state gains a minus sign after
one step of the quantum walk, the quasi-energy of the bound state is
π, in accordance with the result obtained in the general analytical
solution.
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2.4.5 Topological protection of the bound states: topo-
logical invariants

The bound states resulting from topology studied in Section 2.4.3 and
Section 2.4.4 are protected in a sense that they are robust against
small changes in the quantum walk protocols or the introduction of
small static disorder potentials. The logic is the following; since the
bound states are the result of topological winding numbers, and
topological winding numbers cannot change their values unless the
bands close their gaps, the bound states cannot disappear for a small
change of rotation angles unless they are changed by a large amount
such that the gap of the corresponding effective Hamiltonian closes.

There is a more direct way to confirm such robustness by simply
looking at the spectrum. In Section 2.4.4, we found that the energies
of the topological bound states is always either E = Ƥ or E = π.
Because the spectrum of the bulk (or the spectrum of the system
without boundaries) is gapped, the total spectrum of the system
studied in the previous section look as in Fig. 2.4.4 a) and b), where a
single localized state sits at E = Ƥ or E = π and the bands of states
away from E = Ƥ or E = π correspond to extended states in the bulk.

Now we argue that the energy of the bound state sitting at the
energy E = Ƥ or E = π cannot be changed by a continuous change of
Hamiltonian which preserves the sublattice (chiral) symmetry. First
of all, the presence of sublattice (chiral) symmetry implies that the
states with energy E and −E have to come in pairs. In order to shift
the energy of the bound state at E = Ƥ by a small amount ε, then, it
is necessary to create two states at energy ±ε. However, since a single
state cannot be split into two, this is impossible, and the energy of
the single state initially at E = Ƥ(π) is pinned at E = Ƥ(π). According
to this argument, the only way to remove such a zero (or π) energy
bound state is to change the Hamiltonian until the bulk energy bands
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Figure 2.4.4: General spectrum structure for inhomogeneous quantum walks
with bound states. a), b) in Section 2.4.4, we analytically showed that there
is a Ƥ or π energy bound state at the boundary of a conventional quantum
walk. In a similar fashion, these bound states also appear in the inhomoge-
neous split-step quantum walks. These bound states energy are well sepa-
rated from the extended, bulk states. Sublattice (chiral) symmetry requires
that states with energy E and −E appear in pairs, and thus, a single Ƥ and
π energy bound state cannot disappear unless bulk energy gap closes at Ƥ or
π. c) Inhomogeneous conventional quantum walks can possess Ƥ and π en-
ergy bound states, even though the winding numbers associated with the both
sides of the boundary are zero. Such existence of two flavors of topologically
protected bound states is a unique feature of periodically driven systems and
quantum walks. As is shown in Section 2.4.5, each bound state at Ƥ or π en-
ergy is associated with a topological number ±ƥ. For a given system, a sum
of these topological numbers QƤ for E = Ƥ and Qπ for E = π is a conserved
quantity that cannot change its value unless the gap of the system closes.
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close the gap so that bulk states mix with the the boundary state.
The structure of the spectrum illustrated in Fig. 2.4.4 a) and b) is

generic. All the topological bound states exist at E = Ƥ or E = π. It is
possible to assign topological numbers to these bound states, which
give yet another understanding of the topological protection of the
bound states. These topological numbers are different from the
winding numbers we assigned to the quantum walk band structures.
These topological numbers are now assigned to the bound states
themselves. The following consideration shows that the topological
classification of the quantum walks with sublattice (chiral) symmetry
is Z× Z, which means any integer numbers of E = Ƥ and E = π energy
states are topologically protected.

In the following, we consider general one dimensional systems with
sublattice (chiral) symmetry, as in the case of quantum walks. Here
we consider the bound states at energy Ƥ. Analogous arguments can
be applied to the bound states at π. Suppose that there is NƤ number
of degenerate bound states with energy Ƥ. We label these states by
|ϕƤ

α′⟩ with α′ = ƥ · · ·NƤ. Let the sublattice (chiral) symmetry operator
be given by Γ. Sublattice (chiral) symmetry implies that we have the
anti-commutation relation between Γ and Hamiltonian, H, such that
{Γ,H} = Ƥ. As a consequence, ΓƦ commutes with H. When there is no
conserved quantity associated with ΓƦ, it is possible to choose the
phase of Γ such that ΓƦ = ƥ. For example, in the case of quantum
walks, we choose Γ = ieiA·σπ/Ʀ. Because of the sublattice (chiral)
symmetry, we know that Γ|ϕƤ

α′⟩ is also an eigenstate of H with E = Ƥ,
so Γ represents a rotation within the subspace of zero energy states,
{|ϕƤ

α′⟩}. Then we can choose the basis of zero energy states such that
they become eigenstates of Γ. We denote the zero energy states in this
basis as {|ψƤ

α⟩} and their eigenvalues under Γ as {QƤ
α}. Since ΓƦ = ƥ, QƤ

α

is either ±ƥ.
We now show that the sum of eigenvalues, QƤ ≡

∑
α Q

Ƥ
α, represents
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the topological invariant associated with zero energy bound states.
We define the integer number QƤ for zero energy bound states and Qπ

for π energy bound states constructed in an analogous fashion, as

QƤ =
∑
α

⟨ψƤ
α|Γ|ψ

Ƥ
α⟩ (2.14)

Qπ =
∑
α

⟨ψπ
α |Γ|ψ

π
α⟩ (2.15)

where {|ψπ
α⟩} are the π energy bound states.

In order to show that these quantities are indeed topological
invariants, we show that perturbations of the Hamiltonian which
preserves the sublattice (chiral) symmetry cannot mix two states both
at the zero (π) energy with the same eigenvalues of Γ. This implies
that such perturbations do not lift the energies of these states away
from Ƥ or π. Thus, QƤ (Qπ) number of bound states at energy
E = Ƥ(E = π) cannot change under small deformations of the
Hamiltonian.

Let H′ be a perturbation to the system such that {Γ,H′} = Ƥ. Now
we evaluate the matrix element of {Γ,H′} = Ƥ in the Ƥ(π) energy
states. The result is

Ƥ = ⟨ψƤ
α|{Γ,H

′}|ψƤ
β⟩

=

{
Ʀ⟨ψƤ

α|H′|ψƤ
β⟩ for QƤ

α = QƤ
β

⟨ψƤ
α|H′|ψƤ

β⟩ − ⟨ψƤ
α|H′|ψƤ

β⟩ = Ƥ for QƤ
α ̸= QƤ

β

This calculation shows that bound states with the same eigenvalues
QƤ

α cannot mix. On the other hand, the same calculation does not give
any constraint on the mixing of states with different eigenvalues QƤ

α.
Because one can break up any finite change of the Hamiltonian into
successive changes of small perturbations, one can repeat this
argument and show that the values QƤ and Qπ cannot change unless
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the bound states at Ƥ and π energies mix with the bulk states.

2.4.6 Temporal disorder

While we argued the robustness of bound states against spatial
disorders through the general argument in the previous section, the
bound state is not robust against temporal disorders[92, 113]. One
way to understand this is to consider the wave functions of bound
states in each one step operations. As long as the effective
Hamiltonian of each one step operation is topologically non-trivial,
the bound state exists at the boundary at each step. However, if one
step operation changes due to the temporal change of operations, the
bound state wave function changes after each step. Thus, after each
step, small portion of the bound state wave function in the previous
step becomes extended states and escape from the boundary. After
sufficiently long evolution of the quantum walks, a bound state
eventually decays to zero. In a similar fashion, the bound state is not
robust against decoherence. Such effect of decoherence on the bound
state has been experimentally studied in Ref[92].

2.4.7 Breaking of sublattice (chiral) symmetry

Here we briefly comment on the perturbations of the Hamiltonian that
breaks sublattice (chiral) symmetry. In the previous section, we give
the argument that zero or π energy bound states are protected as long
as the bands in the spectrum do not close the gap. Now one can ask
what happens if we consider the perturbations of Hamiltonians that
break sublattice (chiral) symmetry. Since no topological structure can
be defined in the absence of sublattice (chiral) symmetry, there is no
longer topological protection of the bound states. Yet, the statement
that bound states cannot disappear until they mix with the bulk
states remains true. Therefore, if we perturb the system that
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possesses topological bound states by adding small perturbations that
break sublattice (chiral) symmetry, the existence of the bound states
is still protected by the existence of the gap. However, the bulk gap
does not have to close to remove such a bound state; now the energy
of the bound state can take any value in the absence of sublattice
(chiral) symmetry and the state can be lifted away from Ƥ or π energy.

2.4.8 Ƥ and π energy bound states ; topological phenomena
unique to periodically driven systems

Zero-energy bound state in one dimensional system with sublattice
(chiral) symmetry has been known for almost 30 years, and their
existence was first predicted by Su-Schrieffer-Heeger model of
polyacetylene and Jackiw-Rebbi model[72, 73, 153]. On the other
hand, we saw in previous sections that quantum walks have two
topologically protected bound states; Ƥ and π energy states. The
appearance of π energy states is the result of the periodicity of
quasi-energy. In return, quasi-energy is a property of periodically
driven systems, and thus such appearance of two flavors of
topologically protected bound states is a unique phenomenon to
driven systems, which cannot occur in non-driven systems.

In previous examples, only one of these states, Ƥ and π energy
bound states, appears in a single system. From the argument given in
Section 2.4.3, which of E = Ƥ and E = π bound states appears across
the boundary of two topological phases is determined by whether the
band gap closes at quasi-energy E = Ƥ or E = π. For example, consider
the creation of a boundary between two different topological phases in
the inhomogeneous split-step quantum walk, as we considered in
Section 2.4.3. By choosing θƦ− and θƦ+ appropriately, one can either
make the boundary between the two phases to be gapless at either
E = Ƥ or E = π, as one can see from the phase diagram in Fig. 2.4.1.
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When the boundary closes the gap at E = Ƥ(π), the bound state
appears at E = Ƥ(π) as is depicted in Fig. 2.4.4 a) and b).

Now consider the creation of the boundary between the phases with
the same winding numbers by setting θƥ = Ƥ. This quantum walk
whose evolution operator is given by U = T↓Ry(θƦ)T↑ is nothing but
the conventional quantum walk described in Section 2.2.1 with initial
time shifted. This time-shifted quantum walk realizes only a single
phase with W = Ƥ5. If we set θƦ− to be −Ʀπ < θƦ− < Ƥ and θƦ+ to be
Ƥ < θƦ+ < Ʀπ, then the two phases corresponding to x → −∞ and x →
both have W = Ƥ. From the point of view of the winding topological
number defined on the band structures, one expects no topologically
protected bound states to be present. However, this inhomogeneous
quantum walk possesses two topological bound states at
quasi-energies E = Ƥ and E = π.

The existence of two bound states near the origin can be easily
confirmed for the simple case of θƦ− = −π and θƦ+ = π where the
rotation θƦ− is applied to all the sites x ≤ Ƥ and the rotation θƦ+ is
applied to sites Ƥ < x. These rotations act on the spins as

θƦ− = −π : | ↑⟩ → −| ↓⟩, | ↓⟩ → | ↑⟩

θƦ+ = π : | ↑⟩ → | ↓⟩, | ↓⟩ → −| ↑⟩

Now we consider the evolution of the particle after one step for a
5The conventional quantum walk described in Section 2.2.1 realized a single

phase with W = ƥ. The difference in the winding number of two quantum walks
related by unitary transformation arises because these two walks are described by
different sublattice (chiral) symmetry. The sublattice (chiral) symmetry of split-step
quantum walks with θƥ = Ƥ is given by the rotation of spin by π around the axis
B = (ƥ, Ƥ, Ƥ), which is independent of the rotation angle θƦ. On the other hand, the
winding number of the conventional quantum walks in Section 2.2.1 is given in terms
of the rotation of spin by π around the axis A = (cos(θ/Ʀ), Ƥ, sin(θ/Ʀ)). Topology of
the system crucially depends on the symmetry, and thus, winding numbers do not
have to be identical when symmetry operators are different.
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particle at site x = ƥ with spin either up or down. This state evolves as

|Ƥ⟩ ⊗ | ↑⟩
T↑→ |ƥ⟩ ⊗ | ↑⟩ R→ |ƥ⟩ ⊗ | ↓⟩

T↓→ |Ƥ⟩ ⊗ | ↓⟩

|Ƥ⟩ ⊗ | ↓⟩
T↑→ |Ƥ⟩ ⊗ | ↓⟩ R→ |Ƥ⟩ ⊗ | ↑⟩

T↓→ |Ƥ⟩ ⊗ | ↑⟩

Thus it is clear that |ψE=Ƥ⟩ = |Ƥ⟩ ⊗ ƥ√
Ʀ (| ↑⟩+ | ↓⟩) is an eigenstate of

the one-step evolution operator with quasi-energy Ƥ and
|ψE=π⟩ = |Ƥ⟩ ⊗ ƥ√

Ʀ (| ↑⟩ − | ↓⟩) has quasi-energy π. It is straightforward
to check that any other states in this system has energy E = ±π/Ʀ.
Because this system possesses a single bound state at energy E = Ƥ
and E = π, these states cannot be removed from these states until the
gap of the bulk states closes, and thus these states must be present for
any parameter values −Ʀπ < θƦ− < Ƥ and Ƥ < θƦ+ < Ʀπ. The general
spectrum of such inhomogeneous quantum walks is illustrated in
Fig. 2.4.4 c). As we noted in Section 2.4.5, these bound states are
associated with topological numbers. In this walk, since θƥ = Ƥ, the
sublattice (chiral) symmetry is given by the operator Γ = σx. Then the
topological number associated with the bound state |ψE=Ƥ⟩ is nothing
but the eigenvalue of Γ, so |ψE=Ƥ⟩ has QƤ = ƥ and |ψE=π⟩ has Qπ = −ƥ.

Such coexistence of Ƥ and π energy bound state can also be
observed in inhomogeneous split-step quantum walks, where the two
phases on the left and on the right are separated by two gapless
phases where one closes the gap at E = Ƥ and the other at E = π.

The winding number is the comprehensive topological description of
static Hamiltonians, but quantum walks are periodically driven
systems. More completely, periodically driven systems should be
described by the evolution operator over one period, and the
topological numbers for such systems should be written in terms of
the evolution operator and not in terms of the static effective
Hamiltonian. Thus the topological classification of quantum walks is
not given by Z as for the winding numbers, but in fact given by Z× Z
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as we have seen in the topological invariants of bound states in
Section 2.4.5. More detailed analysis of the difference of topological
classification between static systems and periodically driven systems
is given in [86].

2.5 Quantum walks in two dimension

2.5.1 effective Hamiltonian and Chern number

In the previous sections, we illustrated the ideas of quantum walks and
topological phases realized in these systems in the simplest setting,
one dimensional quantum walks with two internal degrees of freedom.
However, the idea of topological phases is much more general, and it
is possible to extend the quantum walk protocols to study different
topological phases in different dimensions. In this section, we
illustrate the idea by describing the two dimensional quantum walks
and demonstrating that this quantum walk realizes topological phases
with Chern numbers, the phases that are responsible for integer
quantum Hall effects that we explained in Section 2.3.

We consider the quantum walk of spin ƥ/Ʀ particle on a square
lattice. In the literature, quantum walks in dimensions larger than ƥ
are defined for larger number of internal degrees of freedom, but the
quantum walk defined here is simpler and easier to realize in
experiments. The quantum walk consists of three rotations and three
translations, implemented in alternative fashion (see Fig. 2.4.5);

1. Rotation of the spin around y axis by angle θƥ, given by
Ry(θƥ) = e−iθƥσy/Ʀ.

2. Translation of the spin ↑ one lattice to the right and up, and
translation of the spin ↓ one lattice to the left and down.
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1. Rotate θ1 2. Translate

3. Rotate 4. Translateθ2

5. Rotate 6. Translateθ1

Two dimensional quantum walk

Figure 2.4.5: Protocol of two dimensional quantum walk considered in Sec-
tion 2.5.1. The quantum walk is defined for a single spin ƥ/Ʀ particle in two
dimensional lattice. The protocol consists of ƪ operations. In the figure, the
spin-dependent translation is denoted by red arrows, where solid arrow is the
movement for spin up and dotted arrow is for spin down. The protocols are 1.
spin rotation around y axis by angle θƥ; 2. spin-dependent translation where
spin up is move to right and up by one lattice site, and spin down is moved to
left and down; 3. spin rotation around y axis by angle θƦ; 4. spin-dependent
translation where spin up is moved to up, and spin down to down; 5. spin
rotation around y axis by the same rotation angle as the first rotation θƥ; 6.
spin-dependent translation where spin up is move to right and down to left.
Each step of quantum walk takes a particle from even (odd) coordinate to
even (odd) coordinate, so the lattice constant of the effective Hamiltonian is
Ʀ. Thus, the first Brillouin zone is −π/Ʀ ≤ kx ≤ π/Ʀ and −π/Ʀ ≤ ky ≤ π/Ʀ.

81



Explicitly,
Tƥ =

∑
x,y |x+ ƥ, y+ ƥ⟩⟨x, y| ⊗ | ↑⟩⟨↑ |+ |x− ƥ, y− ƥ⟩⟨x, y| ⊗ | ↓⟩⟨↓ |.

3. Rotation of the spin around y axis by angle θƦ, given by
Ry(θƦ) = e−iθƦσy/Ʀ.

4. Translation of the spin ↑ by one lattice to up, and translation of
the spin ↓ by one lattice to down. Explicitly,
TƦ =

∑
x,y |x, y+ ƥ⟩⟨x, y| ⊗ | ↑⟩⟨↑ |+ |x, y− ƥ⟩⟨x, y| ⊗ | ↓⟩⟨↓ |.

5. Rotation of the spin around y axis by the same angle as the first
rotation θƥ, given by Ry(θƥ) = e−iθƥσy/Ʀ.

6. Translation of the spin ↑ by one lattice to right, and translation
of the spin ↓ by one lattice to left. Explicitly,
TƧ =

∑
x,y |x+ ƥ, y⟩⟨x, y| ⊗ | ↑⟩⟨↑ |+ |x− ƥ, y⟩⟨x, y| ⊗ | ↓⟩⟨↓ |.

Note that in this quantum walk, the particle after one step of
quantum walk moves from even (odd) coordinate sites to even (odd)
coordinate sites as one can see from Fig. 2.4.5. Thus the effective
Hamiltonian of the quantum walk has the lattice constant equal to Ʀ.
Therefore, for translationally invariant quantum walks, the first
Brillouin zone is given by −π/Ʀ ≤ kx ≤ π/Ʀ and −π/Ʀ ≤ ky ≤ π/Ʀ. The
evolution of the particle distribution in this walk can be studied in a
similar fashion as the one dimensional analogue, and in particular, the
asymptotic distribution is obtained through the formalism developed
in Section 2.2.3.

In order to study the topological properties of this quantum walk,
we consider the effective Hamiltonian of the quantum walk. As we
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First Brillouin zone Bloch sphere

Figure 2.5.1: Illustration of Chern number of two dimensional systems with
two bands. The eigenstate for each quasi-momentum k is a superposition of
spin up and down, and can be represented as a point on Bloch sphere, given
by n(k). Thus n(k) represents a map from the first Brillouin zone to Bloch
sphere. In order to obtain a topological number for this system, we consider
the area mapped by n(k) from the first Brillouin zone to Bloch sphere. Due
to the periodic boundary condition of the first Brillouin zone, which is a torus,
such map has to wrap around the Bloch sphere by integer number of times.
This integer is what is called a Chern number, and represents the topological
number associated with the system. The formal expression of the Chern num-
ber is then obtained by calculating the area covered by the map n(k), which
can be calculated in the way illustrated in this picture and results in the ex-
pression Eq. (2.18)
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Figure 2.5.2: a) Phase diagram of the two dimensional quantum walk. Each
phase is characterized by a Chern number of a lower band with quasi-energy
−E(k), which can take values Ƥ,±ƥ in this quantum walk. The Chern num-
ber can change only when the system crosses gapless phases, and the lines of
gapless phases are indicated by the red and blue line in the diagram. b) phys-
ical manifestation of Chern numbers appears at the boundary between regions
that belong to phases with different Chern numbers. Here we illustrate the
inhomogeneous quantum walk, where the quantum walk in the central region
(colored as red) corresponds to θƥ+ = ƫπ/ƪ and θƦ+ = ƫπ/ƪ (red dot in a)),
whereas in the other half (colored as white), the quantum walk corresponds to
θƥ− = Ƨπ/Ʀ and θƦ− = Ƨπ/Ʀ (white dot in a)). In the simulation, we took the
periodic boundary condition for both x and y direction, and the system size is
ƥƤƤ × ƥƤƤ. c) Quasi-energy spectrum of the inhomogeneous quantum walks
illustrated in b). The states colored as red are bulk states, and the states that
go from the lower band to the upper band are the unidirectionally propagating
edge states that are localized near the boundary of the two phases. States col-
ored as blue are the states that run along the upper edge and those colored as
green are the states that run along the lower edge, as illustrated in b).
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detail in Appendix 2.8.4, the effective Hamiltonian takes the form

Heff =
∑
k

E(k)n(k) · σ ⊗ |k⟩⟨k| (2.16)

The spectrum E(k)n(k) is determined by the equation

cos (E(k)) = cos(kx) cos(kx + Ʀky) cos(θƥ) cos(θƦ/Ʀ)

− sin(kx) sin(kx + Ʀky) cos(θƦ/Ʀ)

− cosƦ(kx) sin(θƥ) sin(θƦ/Ʀ) (2.17)

The topological structure of two dimensional system appears in n(k)
as in the case of one dimensional quantum walk. Since now we have
two dimensional Brillouin zone, the function n(k) is a map from two
dimensional torus to Bloch sphere, see Fig. 2.5.1. A small area on the
torus is mapped to the small area on the Bloch sphere. If one maps
the total area of the torus onto the Bloch sphere, the map necessarily
wraps around the sphere an integer number of times due to the
periodic boundary condition of the torus. Thus, if one calculates the
total area covered by the map n(k), the value is ƨπn where n is an
integer. This integer is so-called Chern number, which is responsible
for integer quantum Hall effect in two dimensional electron gas.
Explicitly, the Chern number can be expressed in terms of n(k) as

C =
ƥ
ƨπ

∫
FBZ

dk n ·
(
∂kxn× ∂kyn

)
(2.18)

As opposed to the winding number of one dimensional quantum walk,
this topological number does not rely on any symmetry of the system,
and thus can exist in the absence of any symmetry.

Conventionally, Chern number is associated with each band of
Hamiltonian. The definition of Chern number above gives the Chern
number of “lower” band with quasi-energy of −E(k) in Eq. (2.17), and
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the Chern number of upper band is given by simply −C so that the
Chern numbers of all the bands sum to zero. More generally, if the
wavefunction of a band at a given quasi-momentum k is given by
|ψ(k)⟩ = eir·k|ϕ(k)⟩, where |ϕ(k)⟩ is the periodic part of the Bloch wave
function, then the Chern number associated with the band is given by
the famous TKNN formula[156];

C =
ƥ
Ʀπ

∫
FBZ

dk
[
∂kxAky − ∂kyAkx

]
(2.19)

(Akx ,Aky) = (i⟨ϕ(k)|∂kx|ϕ(k)⟩, i⟨ϕ(k)|∂ky |ϕ(k)⟩)

This TKNN formula calculates the Berry phase of an electron as it
goes around the first Brillouin zone. This expression of Chern number
reduces to Eq. (2.18) in the case of systems with two bands.

One can calculate the Chern numbers for the two dimensional
quantum walk described above for various values of θƥ and θƦ. The
phase diagram is plotted in Fig. 2.5.2 a). A convenient way to obtain
such phase diagram is to first obtain the lines of gapless phases. Since
the topological number can only change its value across gapless phase,
it is only necessary to compute the Chern number at a single point of
the gapped region and any gapped phase that is continuously
connected with that point without crossing gapless phase must have
the same topological number as that point. We detail the calculation
to identify gapless phases for this two dimensional quantum walk in
the Appendix 2.8.5.

A physical manifestation of topological phases with Chern number
is, as is the case for one dimensional quantum walk, boundary states
across the regions in which two different topological phases are
realized. The existence of such bound states can be understood
according to the argument given in Section 2.4.3; the band structures
away from the boundary are gapped, but the band gap has to close
near the boundary in order for the topological number, Chern
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number, to change its value. Thus there is generically states in the
gap of the bulk systems and these states are necessarily localized near
the boundary.

These bound states that appear in systems with non-zero Chern
number are known to propagate in unidirectional fashion without any
backscattering. It is possible to confirm the existence of such
unidirectional edge states by considering inhomogeneous quantum
walk where the particle at sites with Ƥ ≤ y evolves according to the
two dimensional quantum walk with rotation angles θƥ+ and θƦ+, and
the particle at sites with y < Ƥ evolves according to the two
dimensional quantum walk with rotation angles θƥ− and θƦ−. Such
inhomogeneous quantum walk is illustrated in Fig. 2.5.2 b). If the
Chern number of the phases corresponding to θƥ+ and θƦ+ and θƥ− and
θƦ− are different, unidirectional edge states are expected to appear
along y = Ƥ.

Since these edge states exist, just like Ƥ and π energy states of one
dimensional quantum walk, in the gap of the bulk states, it is easy to
identify the existence of these states by numerically solving for the
quasi-energy spectrum. In Fig. 2.5.2 c), we provided the plot of
quasi-energy spectrum for a torus geometry with periodic boundary
condition on both x and y direction. The system size is taken to be
ƥƤƤ× ƥƤƤ. In the upper half of the system between Ƥ ≤ y < ƩƤ, we
implemented the quantum walk with θƥ+ = ƫπ/ƪ and θƦ+ = ƫπ/ƪ,
whereas in the lower half −ƩƤ ≤ y < Ƥ, the quantum walk corresponds
to θƥ− = Ƨπ/Ʀ and θƦ− = Ƨπ/Ʀ. Note that there are two boundaries in
this system, corresponding to the lower edge at y = Ƥ and upper edge
at y = ƩƤ. In the spectrum, there are clearly two edge states, colored
as red and green, which run along the upper and lower edge,
respectively. These chiral edge modes are the signature of Chern
numbers in two dimensional quantum walk.
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2.5.2 Unidirectionally propagating modes in quantum walks
without Chern numbers

In the case of one dimensional quantum walk, we found the existence
of two bound states at quasi-energy Ƥ and π near the boundary of the
phases with zero winding number. This existence of two flavors of
topologically protected bound states represented a phenomenon
unique to periodically driven systems that do not exist in static
systems, and thus the existence is not captured by the winding
number of the effective Hamiltonian.

In a similar fashion, it is possible to have unidirectionally
propagating modes across the boundary of the regions where quantum
walks in each region have no Chern numbers associated with the
phases. In the following, we show that such chiral propagating modes
exist for even simpler version of two dimensional quantum walk
protocols.

Here we consider the following simple two dimensional quantum
walk with two rotations and two spin dependent translations, see
Fig. 2.5.3;

1. Rotation of the spin around y axis by angle θƥ, given by
Ry(θƥ) = e−iθƥσy/Ʀ.

2. Translation of the spin ↑ one lattice to the right, and translation
of the spin ↓ one lattice to the left. Explicitly,
Tƥ =

∑
x,y |x+ ƥ, y⟩⟨x, y| ⊗ | ↑⟩⟨↑ |+ |x− ƥ, y⟩⟨x, y| ⊗ | ↓⟩⟨↓ |.

3. Rotation of the spin around y axis by angle θƦ, given by
Ry(θƦ) = e−iθƦσy/Ʀ.

4. Translation of the spin ↑ one lattice to the up, and translation
of the spin ↓ one lattice to the down. Explicitly,
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1. Rotate θ1 2. Translate

θ23. Rotate 4. Translate

Simple two dimensional quantum walk

Figure 2.5.3: Protocol for the simple two dimensional quantum walk studied
in Section 2.5.2. In this protocol, only four operations are applied during one
step of quantum wallk. As before, the spin-dependent translation is indicated
by red arrows, where solid arrow is for spin up and dotted arrow is for spin
down. The explicit protocol is; 1. spin rotation around y axis by angle θƥ; 2.
spin-dependent translation where spin up is move to right, and spin down to
left; 3. spin rotation around y axis by angle θƦ; 4. spin-dependent translation
where spin up is moved to up, and spin down to down.
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θ1

Gap closes at 0 and π

θ2

2π

-2π

2π-2πa) b)

0

0

Figure 2.5.4: a) Phase diagram of simple two dimensional quantum walk
studied in Section 2.5.2. The Chern number of the quantum walk is every-
where zero. Yet, there are topologically protected unidirectionally propagating
modes in the inhomogeneous quantum walk. The existence of such unidirec-
tional edge states are shown through analytical calculations for special values
of quantum walks in the text. b) quasi-energy spectrum of the inhomogeneous
quantum walks, where the two quantum walk protocols corresponding to the
two regions are indicated as orange and blue dot in a). The bulk states are
colored as blue, and unidirectionally propagating states are colored as green
and red. Green states propagate along the lower edge of the boundary and
red states along the upper edge. For a given edge, say, lower edge, the edge
states have non-zero energy winding as kx goes from −π to π, and thus, such
edge states cannot be removed under the continuous change of quantum walk
protocols unless the bulk gap closes, where the upper edge and lower edge are
allowed to mix.
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TƦ =
∑

x,y |x, y+ ƥ⟩⟨x, y| ⊗ | ↑⟩⟨↑ |+ |x, y− ƥ⟩⟨x, y| ⊗ | ↓⟩⟨↓ |.

The effective Hamiltonian of this quantum walk is again given by
the form Heff =

∑
k E(k)n(k) · σ ⊗ |k⟩⟨k|. The spectrum of this

quantum walk is given

cos(E(k) = cos(kx + ky) cos(θƥ/Ʀ) cos(θƦ/Ʀ)

− cos(kx − ky) sin(θƥ/Ʀ) sin(θƦ/Ʀ)

This quantum walk is described by Chern number zero phase
everywhere, and the phase diagram is given in Fig. 2.5.4 a). All the
gapless phases close their gap at both Ƥ and π energy. Now consider
the inhomogeneous quantum walks in this protocol, where the particle
is controlled by the quantum walk protocol with rotation angles θƥ+
and θƦ+ at sites Ƥ ≤ y, and the protocol at sites with y < Ƥ is given by
the rotation angles θƥ− and θƦ−. If we choose the angles such that the
two phases are separated by a single gapless phase, there are in fact
two unidirectionally propagating modes at the boundary.

This can be most easily confirmed for the spacial rotation angles
θƥ+ = Ƥ and θƦ+ = π and θƥ− = π and θƦ− = Ƥ by simply considering
the evolution for spin up and down for a few steps. Near the
boundary, the evolution is

|j, Ƥ⟩ ⊗ | ↑⟩ R→ |j, Ƥ⟩ ⊗ | ↑⟩ Tƥ→ |j+ ƥ, Ƥ⟩ ⊗ | ↑⟩
R→ |j+ ƥ, Ƥ⟩ ⊗ | ↓⟩ TƦ→ |j+ ƥ,−ƥ⟩ ⊗ | ↓⟩

|j,−ƥ⟩ ⊗ | ↓⟩ R→ −|j,−ƥ⟩ ⊗ | ↑⟩ Tƥ→ −|j+ ƥ,−ƥ⟩ ⊗ | ↑⟩
R→ −|j+ ƥ,−ƥ⟩ ⊗ | ↑⟩ TƦ→ −|j+ ƥ, Ƥ⟩ ⊗ | ↓⟩

Thus we see that spin up states at site y = Ƥ and spin down state at
site y = −ƥ both propagate to the right during the evolution.

91



By Fourier transform in x coordinate, it is clear that the walk takes
|kx, y = Ƥ⟩ ⊗ | ↑⟩ → eikx|kx, y = −ƥ⟩ ⊗ | ↓⟩ and
|kx, y = −ƥ⟩ ⊗ | ↓⟩ → −eikx|kx, y = Ƥ⟩ ⊗ | ↑⟩. Thus we conclude there are
two unidirectionally propagating modes

|ψƥ⟩ =
ƥ√
Ʀ
(|kx, y = Ƥ⟩ ⊗ | ↑⟩+ i|kx, y = −ƥ⟩ ⊗ | ↓⟩)

E(kx) = kx −
π
Ʀ

|ψƦ⟩ =
ƥ√
Ʀ
(|kx, y = Ƥ⟩ ⊗ | ↑⟩ − i|kx, y = −ƥ⟩ ⊗ | ↓⟩)

E(kx) = kx +
π
Ʀ

On the other hand, other states in the system evolve as, for l > Ƥ

|j, l > Ƥ⟩ ⊗ | ↑⟩ R→ |j, l⟩ ⊗ | ↑⟩ Tƥ→ |j+ ƥ, l⟩ ⊗ | ↑⟩
R→ |j+ ƥ, l⟩ ⊗ | ↓⟩ TƦ→ |j+ ƥ, l− ƥ⟩ ⊗ | ↓⟩
R→ |j+ ƥ, l− ƥ⟩ ⊗ | ↓⟩ Tƥ→ |j, l− ƥ⟩ ⊗ | ↑⟩
R→ −|j, l− ƥ⟩ ⊗ | ↑⟩ TƦ→ −|j, l⟩ ⊗ | ↑⟩

Thus we conclude that the states ƥ
Ʀ (|j, l⟩ ⊗ | ↑⟩+ i|j+ ƥ, l− ƥ⟩ ⊗ | ↓⟩)

are eigenstates of the system with the flat quasi-energy E = −π/Ʀ and
ƥ
Ʀ (|j, l⟩ ⊗ | ↑⟩ − i|j+ ƥ, l− ƥ⟩ ⊗ | ↓⟩) are another set of eigenstates with
quasi-energy E = π/Ʀ. In a similar fashion, it is straightforward to
show that the bulk states in l < −ƥ have energies ±π/Ʀ.

Notice that the edge states obtained above has a non-zero winding
in the energy direction as kx goes from −π to π i.e. the states run
from quasi-energy E = −π to E = π as kx goes from −π to π. it is
straightforward to convince oneself, by drawing the spectrum, that
such energy winding cannot be removed under the continuous change
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of quantum walk protocols unless the bulk gap closes. Thus, the
existence of these states is guaranteed for the inhomogeneous quantum
walk which has θƥ+ and θƦ+ that are continuously connected with
θƥ+ = Ƥ and θƦ+ = π and θƥ− and θƦ− that are continuously connected
with θƥ− = π and θƦ− = Ƥ, without crossing the gapless phase.

As an example, we plot the quasi-energy spectrum of
inhomogeneous quantum walk with θƥ+ = π/Ƭ and θƦ+ = ƫπ/Ƭ from
Ƥ ≤ y < ƩƤ, and θƥ− = ƫπ/Ƭ and θƦ− = −π/ƨ from −ƩƤ ≤ y < Ƥ, and we
again take periodic boundary condition for both x and y direction
with system size ƥƤƤ× ƥƤƤ. These two phases are connected with the
limit θƥ+ = Ƥ and θƦ+ = π, and θƥ− = π and θƦ− = Ƥ in a continuous
fashion, as one can check. The spectrum of this system is plotted in
Fig. 2.5.4 b), and one can see the existence of unidirectionally
propagating modes on the two edges, colored as red and blue. One
observes these edge modes in fact winds in the energy direction with
non-trivial winding number. Such energy winding is in fact closely
related to the phenomenon of Thouless pump[155], and we refer the
interested readers to the detailed analysis in [86].

2.6 Other topological phases

Different class of topological phases exist in various symmetries and
dimensions, as is classified for non-interacting static
Hamiltonian[84, 126, 142]. Quantum walks as understood through the
effective Hamiltonian are nothing but the quantum simulator for these
static effective Hamiltonians and thus, a part of the classification
scheme of quantum walks is the same as the classification of
non-interacting static Hamiltonian given in Ref. [84, 126, 142]. As we
have illustrated the ideas through a few examples in this chapter, it is
possible to realize any of the topological phases in ƥ and Ʀ dimension
through the variations of quantum walk protocols. We refer the
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interested readers to the article Ref.[87] for more complete analysis.
However, the topological phases given in the classification scheme

according to the static effective Hamiltonian is not the only
topological phases that can be realized in quantum walks. In previous
sections, we have given two examples of topological phenomena that
are unique to periodically driven systems; Ƥ and π energy bound
states in zero winding number phases and energy winding
unidirectional edge states in zero Chern number phases[86, 92]. These
phenomena can also be extended to other classes of driven systems
with other symmetries. Recently it has been proposed that two
flavors of Majorana Fermions can be realized at Ƥ and π energies in
cold atoms[77], in a similar fashion as Ƥ and π energy states of
quantum walks.

The classification table of topological phenomena unique to driven
systems in quantum walks is expected to be the shift of the
classification table of static systems by one dimension, since periodical
drives lead to a dimensional increase of static systems[92, 126]. The
detailed study of such classification schemes is an interesting future
work. In particular, it is of great interests to study if other types of
topological phenomena unique to driven systems can be realized in
quantum walks.

2.7 Conclusion and open questions

In this chapter, we studied topological phases appearing in quantum
walks. After the introduction of quantum walks, we provided a
thorough explanation of topological nature of quantum walks. We
first associated the quantum walks with winding numbers, and gave
an intuitive argument for the existence of bound states across the
boundary of the regions that belong to different topological phases.
We argued for the topological protection of bound states in two
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different point of view; one from the spectrum (gap) in the system
and another from topological invariant associated with the bound
states. These physics are illustrated through the explicit example of
quantum walks in one and two dimensions. We also explicitly
demonstrated the existence of topological phenomena unique to
periodically driven systems in one and two dimensions.

There are many open questions that one can study in the field of
quantum walks. For example, there is not yet an example of three
dimensional quantum walks that realizes non-trivial topological phase.
A simple example of such quantum walks are of interests, considering
the excitement in the field of three dimensional topological
insulators[59, 125]. Moreover, three dimensional quantum walks with
spin ƥ/Ʀ has the possibility to realize Hopf-insulator first proposed by [
111]. Since the realization of this topological phase is very difficult in
condensed matter materials, it is of great interests to explore the
possibility of realizations in artificial systems such as quantum walks.

Other open direction is provided by quantum walks in different
geometries, such as hexagonal lattice. Since hexagonal lattice has
three neighbors, study of hexagonal lattice quantum walk with spin ƥ
might provide interesting platform to explore unique quantum
phenomena.

Less concretely, the study of quantum walks with a few to many
particles with strong correlation would be interesting to investigate. In
particular, in the presence of frustrated hopping, there may be unique
quantum phenomena such as the formation of spin-liquid phase.
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2.8 Appendix

2.8.1 Asymptotic distribution of quantum walk

In this section, we derive the intuitive result Eq. (2.21) which gives
the asymptotic distribution of quantum walks. Here we consider a
quantum walk initially prepared at site x = Ƥ with initial spin state |s⟩
such that the total initial state is written as |i⟩ = |x = Ƥ⟩ ⊗ |s⟩. The
evolution of a particle after each step is dictated by the effective
Hamiltonian given by Heff =

∫
dkE(k)n(k) · σ ⊗ |k⟩⟨k| as in Eq. (2.5).

Since the particle is propagating under the non-interacting
Hamiltonian Heff, it is natural to expect that the particle propagates
in a ballistic fashion. Thus, the particle distribution has a well-defined
form in terms of the variable X = x/N in the asymptotic limit. The
distribution of X, P(X), can be computed through

P(X) = ⟨δ(x̂/N− X)⟩

=

⟨∫ ∞

−∞
ds eis(X−x̂/N)

⟩
=

∫ ∞

−∞
ds eisX

⟨
e−isx̂/N⟩ (2.20)

Here the expectation is taken with the state after evolving the initial
state |i⟩ for Nth steps under the quantum walk. Thus we aim to
obtain the expectation of so-called characteristic function e−isx̂/N after
Nth steps as N → ∞.
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We first note that x̂ =
∑

j j|j⟩⟨j|, and thus

e−isx̂/N = ƥ+
∑
j

(−is)
j
N
|j⟩⟨j|+ (−is)Ʀ

(j/N)Ʀ

Ʀ!
|j⟩⟨j|+ · · ·

= ƥ+
∑
j

(
e−isj/N − ƥ

)
|j⟩⟨j|

=
∑
j

e−isj/N|j⟩⟨j|

=

∫
dk |k+ s/N⟩⟨k|

Now we evaluate
⟨
e−isx̂/N

⟩
= ⟨i|eiHeffNe−isx̂/Ne−iHeffN|i⟩. Since Heff is

diagonal in quasi-momentum space, the evaluation is straightforward.
First of all,

eiHeffNe−isx̂/Ne−iHeffN

=

∫
dk |k+ s/N⟩⟨k| ⊗ eiNE(k+s/N)n(k+s/N)·σ

×e−iNE(k)n(k)·σ

=

∫
dk |k+ s/N⟩⟨k| ⊗ eisvkn(k)·σ

In the last line, we took the expression in the lowest order in s/N.
This can be confirmed through the expansion
exp {NE(k+ s/N)n(k+ s/N) · σ} =

cos {NE(k+ s/N)}+ i sin {NE(k+ s/N)} n(k+ s/N) · σ ≈
cos (NE(k) + svk) + i sin (NE(k) + svk) n(k) · σ to the lowest order in s

N .
It is now straightforward to evaluate the expectation value of above

expression in the initial state |i⟩ =
∫ π
−π

dk√
Ʀπ |k⟩ ⊗ |s⟩. Using the

expression Eq. (2.20), we obtain the final expression

P(X) =

∫ π

−π

dk
Ʀπ

ƥ
Ʀ
(ƥ+ ⟨n(k) · σ⟩) δ(vk − X)

+
ƥ
Ʀ
(ƥ− ⟨n(k) · σ⟩) δ(vk + X)
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2.8.2 Sublattice (chiral) symmetry of inhomogeneous quan-
tum walk

In this section, we give the explicit proof of sublattice (chiral)
symmetry for inhomogeneous split-step quantum walks. In Eq. (2.8),
we defined the sublattice (chiral) symmetry in terms of Hamiltonian.
This definition directly translates to the sublattice (chiral) symmetry
on the evolution operator after one period U as

Γ−ƥUΓ = U† (2.21)

We have shown in Section 2.4.2 that the (homogeneous) split-step
quantum walk, U = T↓Ry(θƦ)T↑Ry(θƥ) possesses the symmetry with the
operator Γθƥ=e−iπA·σ/Ʀ where A = (cos θƥ/Ʀ, Ƥ,− sin θƥ/Ʀ). Here we write
the subscript θƥ on the symmetry operator to emphasize the
dependence on θƥ.

Here Γθƥ is a local operator and thus, we expect that the chiral
symmetry is preserved even if θƦ becomes inhomogeneous in space.

In order to explicitly check this, we expand the evolution operator
U = T↓Ry(θƦ)T↑Ry(θƥ) in the position basis, where we take the general
case that θƦ depends on space in an arbitrary fashion. For example,
T↑=

∑
x(ƥ+ σz)/Ʀ|x+ ƥ⟩⟨x|+ (ƥ− σz)/Ʀ|x⟩⟨x|. After the expansion, one

obtains

U =
∑
x

ƥ+ σz
Ʀ

Ry(θƦ(x+ ƥ))
ƥ+ σz
Ʀ

Ry(θƥ)⊗ |x+ ƥ⟩⟨x|

+
ƥ− σz
Ʀ

Ry(θƦ(x+ ƥ))
ƥ− σz
Ʀ

Ry(θƥ)⊗ |x⟩⟨x+ ƥ|

+

(
ƥ− σz
Ʀ

Ry(θƦ(x+ ƥ))
ƥ+ σz
Ʀ

Ry(θƥ)

+
ƥ+ σz
Ʀ

Ry(θƦ(x))
ƥ− σz
Ʀ

Ry(θƥ)
)
|x⟩⟨x|
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Now the sublattice (chiral) symmetry condition
(
Γ′θƥ
)−ƥ UΓθƥ = U† can

be checked by comparing both sides of the equation for each position
operators of the form |x⟩⟨x+ α| with α = −ƥ, Ƥ, ƥ. For example,
comparing the both sides of the equation for the coefficients of
|x+ ƥ⟩⟨x|, sublattice (chiral) symmetry requires that

(Γθƥ)
−ƥ ƥ+ σz

Ʀ
Ry(θƦ(x+ ƥ))

ƥ+ σz
Ʀ

Ry(θƥ)Γθƥ
?
= R−ƥ

y (θƥ)
ƥ− σz
Ʀ

R−ƥ
y (θƦ(x+ ƥ))

ƥ− σz
Ʀ

It is straightforward to check that this equality indeed holds for any
rotation θƥ and θƦ(x+ ƥ). Repeating such process for the coefficients of
|x⟩⟨x+ ƥ| and |x⟩⟨x|, one confirms the existence of sublattice (chiral)
symmetry for inhomogeneous quantum walks.

Notice that the split step quantum walk with θƥ = Ƥ is effectively
the conventional quantum walk described in Section 2.2.1. The
quantum walk becomes U = T↓Ry(θƦ)T↑, which is unitarily related to
the conventional quantum walk Ucon = TRy(θƦ) = T↑T↓Ry(θƦ) by the
shift of time. Therefore, the explanation above also provides the proof
that the disordered conventional quantum walk where the rotation
angle at each site is random possesses sublattice (chiral) symmetry.

2.8.3 Analytic solution of the bound state for quantum
walks with reflecting boundary condition

In this section, we give the analytical solution of bound states for
quantum walks with reflecting boundary condition studied in
Section 2.4.4. Given the quantum walk with reflecting boundary
condition whose evolution operator is Ux≤Ƥ in Section 2.4.4, we look
for the bound states near x = Ƥ. Generally, such bound state can be
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written as

|ψb⟩ =
∑
j≤Ƥ

(
cj,↓| ↓⟩+ cj,↑| ↑⟩

)
|j⟩ (2.22)

The approach we take is to directly solve the eigenvalue problem

Ux≤Ƥ|ψb⟩ = e−iEb|ψb⟩ (2.23)

where Eb is the quasi-energy of the bound state. Comparison of the
two sides of the equation above together with the normalizability of
the bound state wavefunction allows the solution of the problem.

The left-hand side of the equation gives

Ux≤Ƥ|ψb⟩

=
∑
j≤Ƥ

c̃j,↓|j− ƥ, ↓⟩+
∑
j≤−ƥ

c̃j,↑|j+ ƥ, ↑⟩+ eiϕc̃Ƥ,↑|Ƥ, ↓⟩

=
∑
j≤−ƥ

c̃j+ƥ,↓|j, ↓⟩+
∑
j≤Ƥ

c̃j−ƥ,↑|j, ↑⟩+ eiϕc̃Ƥ,↑|Ƥ, ↓⟩

where the tilde coefficients c̃j,↑,↓ are related to the original coefficients
cj,↑,↓ through the rotation Ry(θ) as(

c̃j,↑
c̃j,↓

)
= Ry(θ)

(
cj,↑
cj,↓

)

=

(
cos(θ/Ʀ) − sin(θ/Ʀ)
sin(θ/Ʀ) cos(θ/Ʀ)

)(
cj,↑
cj,↓

)

Comparison of the equation above with the right hand side of
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Eq. (2.22) immediately gives

e−iEbcj,↓ = c̃j+ƥ,↓ j ≤ −ƥ

e−iEbcj,↑ = c̃j−ƥ,↑ j ≤ Ƥ

e−iEbcƤ,↓ = eiϕc̃Ƥ,↑ (2.24)

In matrix form, the first two equations can be rewritten as(
Ƥ e−iEb

cos(θ/Ʀ) − sin(θ/Ʀ)

)(
cj,↑
cj,↓

)
=(

sin(θ/Ʀ) cos(θ/Ʀ)
e−iEb Ƥ

)(
cj+ƥ,↑

cj+ƥ,↓

)
for j ≤ −ƥ

→

(
cj,↑
cj,↓

)
=

eiEb
(

sinƦ(θ/Ʀ)
cos(θ/Ʀ) +

ƥ
cos(θ/Ʀ)e

−ƦiEb sin(θ/Ʀ)
sin(θ/Ʀ) cos(θ/Ʀ)

)(
cj+ƥ,↑

cj+ƥ,↓

)
for j ≤ −ƥ

(2.25)

This last equation is a recursive equation that relates the coefficients
at site j+ ƥ to site j. We denote the matrix that relates them as K,
which is a matrix that appears on the right hand side of Eq. (2.25).

The behavior of wavefunction in the limit of x → −∞ is determined
by the eigenvalues of the matrix K. They are given by

K =
(

v+ v−
)( λ+ Ƥ

Ƥ λ−

)(
vT+
vT−

)

v± =
ƥ
N±

 e−ƦiEb−cos(θ)±e−iEb
√

e−ƦiEb+eƦiEb−Ʀ cos(θ)
sin(θ)

ƥ


λ± =

cos(Eb)±
√

cosƦ(Eb)− cosƦ(θ/Ʀ)
cos(θ/Ʀ)
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where N± in the expression of v± are the normalization factors.
Then, the amplitude of bound states wavefunction at site −j is

given by (
c−j,↑

c−j,↓

)
= Q

(
λj+ Ƥ
Ƥ λj−

)
Q−ƥ

(
cƤ,↑
cƤ,↓

)
j ≤ −ƥ

where Q =
(

v+ v−
)

. One crucial observation is λ+λ− = ƥ, and
therefore |λ+| ≤ ƥ when cos(Eb) ≤ Ƥ and |λ−| ≤ ƥ when cos(Eb) ≥ Ƥ.
The normalizability of the bound state wavefunction requires that the
amplitude (cƤ,↑, cƤ,↓)T is proportional to v+(v−) when
cos(Eb) ≤ Ƥ(cos(Eb) ≥ Ƥ). No normalizable bound state wavefunction
exists when |λ+| = |λ−| = ƥ, or cosƦ(Eb)− cosƦ(θ/Ʀ) < Ƥ.

Additional constraint on the amplitudes cƤ,↑, cƤ,↓ comes from the
equation Eq. (2.24), namely, e−iEbcƤ,↓ = eiϕc̃Ƥ,↑. Solving these two
conditions give us

sin(θ/Ʀ)e−iϕ = −i sin(Eb)∓
√

cosƦ(Eb)− cosƦ(θ/Ʀ)

where minus sign is for v− or when cos(Eb) ≥ Ƥ and plus sign is for v+
or when cos(Eb) ≤ Ƥ.

When ϕ = Ƥ and Ƥ < θ < Ʀπ, the solution exists at energy Eb = π
with (cƤ,↑, cƤ,↓)T ∝ v+. For ϕ = Ƥ and Ʀπ < θ < ƨπ, the bound state
energy is Eb = Ƥ and (cƤ,↑, cƤ,↓)T ∝ v−.

On the other hand, when ϕ = π and Ƥ < θ < Ʀπ, the bound state
energy is Eb = Ƥ with (cƤ,↑, cƤ,↓)T ∝ v− , whereas when ϕ = π and
Ʀπ < θ < ƨπ, the bound state energy is Eb = π with (cƤ,↑, cƤ,↓)T ∝ v+.

The bound state wave function found above decays on the length
scale of ∼ ƥ/| log(λ−)| = ƥ

| log(ƥ−| sin(θ/Ʀ)|)−log(cos(θ/Ʀ))| . Thus the extent of
bound state approaches ∞ as θ → Ƥ, Ʀπ. On the other hand, the
bound state becomes most localized when θ = π.
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2.8.4 Spectrum of two dimensional quantum walk

Here we give the details of how to compute the spectrum of two
dimensional quantum walk introduced in Section 2.5.1. The method
introduced here is general and can be easily extended to other
protocols of quantum walks in, say, higher dimensions.

The evolution operator of one step for the two dimensional
quantum walk can be written, in the quasi-momentum space, as

U(kx, ky) = eikxσze−iθƥσy/Ʀeikyσze−iθƦσy/Ʀ

×ei(kx+ky)σze−iθƥσy/Ʀ

Most general form of the effective Hamiltonian resulting from spin
ƥ/Ʀ system is given by

Heff(k) = EƤ(k) + E(k)n(k) · σ (2.26)

This is true because a generator of two by two unitary matrix is ƥ and
Pauli matrices σ.

Then the spectrum can be identified by considering the trace of
evolution operator because

Tr(U(kx, ky)) ≡ Tr (exp(−iHeff(k)))

= Tr
{
e−iEƤ(k) (cos (E(k))− i sin (E(k)) n(k) · σ)

}
= Ʀe−iEƤ(k) cos (E(k))

The explicit evaluation of the trace of U(kx, ky) shows that EƤ(k) = Ƥ
for all k and

cos (E(k)) = cos(kx) cos(kx + Ʀky) cos(θƥ) cos(θƦ/Ʀ)

− sin(kx) sin(kx + Ʀky) cos(θƦ/Ʀ)

− cosƦ(kx) sin(θƥ) sin(θƦ/Ʀ)
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2.8.5 gapless phase of two dimensional quantum walk

In this section, we detail the calculation to obtain the line of gapless
phase in the phase diagram of Fig. 2.5.2 a). The two bands of the
system closes the gap when the two eigenvalues of Hamiltonian

Heff(k) = E(k)n(k) · σ (2.27)

becomes degenerate. Since the eigenvalues of n(k) · σ is ±ƥ, the
quasi-energy of the states become degenerate if E(k) = −E(k), which
happens if E(k) = Ƥ or π due to the periodicity of the quasi-energy.

The gapless phase occurs at the values of θƥ and θƦ such that the
equation Eq. (2.17) has a solution of E(k) = Ƥ or π for some value of kx
and ky. On the other hand, at E(k) = Ƥ or π, the evolution operator
U(kx, ky) takes the value ƥ or −ƥ, respectively.

A simple way to obtain such values of θƥ and θƦ is to look at (ƥ, ƥ)
component of the evolution operator aƥƥ = U(kx, ky)[ƥ, ƥ]. First we study
the lines of gapless phases where the gap is closed at the quasi-energy
Ƥ. Then the equation ƥ = aƥƥ gives the condition

ƥ = eikx
{
i sin(kx + Ʀky) cos(θƦ/Ʀ)

+ cos(kx + Ʀky) cos θƥ cos(θƦ/Ʀ)

− cos kx sin θƥ sin(θƦ/Ʀ)} (2.28)

Note that ƥ is the maximum magnitude that RHS of the above
equation attains for any values of kx, ky, θƥ and θƦ. Therefore, we can
simply maximize the RHS in terms of the variables kx and ky or
alternatively the variables kx + Ʀky and kx. The argument separates
few cases.

If sin θƥ sin(θƦ/Ʀ) is non-zero, then cos kx = ±ƥ. If we take the two
orthogonal variables kƥ = kx + Ʀky and kƦ = Ʀkx − ky, then the first two
terms of the RHS of Eq. (2.28) is only a function of kƥ. By
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differentiating the absolute square of RHS in terms of kƦ, one can
show that the extremum of this value is taken when cos kx = ±ƥ.

Suppose cos kx = ƥ. Then eikx = ƥ and the equation Eq. (2.28)
requires the first term sin(kx + Ʀky) cos(θƦ/Ʀ) to be zero. If we take
sin(kx + Ʀky) to be zero, then cos(kx + Ʀky) = ±ƥ, and the condition is
reduced to ƥ = cos(θƥ + θƦ/Ʀ) for plus sign and −ƥ = cos(θƥ − θƦ/Ʀ) for
minus sign. Thus the gapless phase exist whenever θƥ + θƦ/Ʀ = Ʀπn
and θƥ − θƦ/Ʀ = Ʀπn+ π. If cos(θƦ/Ʀ) = Ƥ, then the equation is solved
only at discrete points of θƥ = π/Ʀ+ Ʀπn with θƦ = Ƨπ + ƨπn or
θƥ = Ƨπ/Ʀ+ Ʀπn with θƦ = π + ƨπn. These cases are already included in
the condition above.

Similarly consider cos kx = −ƥ. Then eikx = −ƥ and the equation
Eq. (2.28) again requires the first term sin(kx + Ʀky) cos(θƦ/Ʀ) to be
zero. If we take sin(kx + Ʀky) to be zero, then cos(kx + Ʀky) = ±ƥ, and
the condition is reduced to −ƥ = cos(θƥ − θƦ/Ʀ) for plus sign and
ƥ = cos(θƥ + θƦ/Ʀ) for minus sign. Thus the gapless phase exist
whenever θƥ − θƦ/Ʀ = π + Ʀπn and θƥ + θƦ/Ʀ = Ʀπn. Thus these
conditions give exactly the same gapless phases as for cos kx = ƥ.

Now suppose that sin θƥ sin(θƦ/Ʀ) is zero. A new condition appears
when sin(θƦ/Ʀ) = Ƥ. Then cos(θƦ/Ʀ) = ±ƥ. But now, we can satisfy the
condition Eq. (2.28) by setting cos(kx + Ʀky) = Ƥ. Since this does not
require for θƥ to take any particular value, we conclude that gap closes
for the line of θƦ = nπ.

A similar consideration for quasi-energy E = π gives the condition
that the gap closes at E = π for θƥ + θƦ/Ʀ = Ʀπn+ π, θƥ − θƦ/Ʀ = Ʀπn
and θƦ = nπ. These results lead to the gapless phases plotted in
Fig. 2.5.2 a).
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3
The dynamics and

prethermalization of one
dimensional quantum systems

probed through the full
distributions of quantum noise

Transient dynamics of quantum systems is yet poorly understood
after more than 100 years of development of quantum theory. The full
descriptions of many-body quantum dynamics is difficult because 1.
analytical solutions of many-body quantum systems are not readily
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available 2. the descriptions and observations of dynamical states
require going much beyond thermodynamical variables such as
temperature and density. In this chapter, we study two equivalent one
dimensional many-body quantum systems whose low-energy
descriptions are simple enough to allow analytical solutions; one is the
dynamics of spins after the Ramsey sequence of one dimensional,
two-component bosons; the other is the evolution of interference
patterns between two one dimensional quasi-condensates created from
a single condensate through splitting. In order to reveal the rich
properties of dynamical states, we compute full distribution functions
of quantum variables such as spins or interference patterns. The full
distribution functions contain information about all orders of the
observables such as average, fluctuation, skewness etc and thus fully
capture the quantum fluctuations of the states during the dynamics.
Using the tools developed in this chapter, we demonstrate that one
dimensional dynamics in these systems exhibits the phenomenon
known as ”prethermalization”, where the observables of
non-equilibrium, long-time transient states become indistinguishable
from those of thermal equilibrium states.

3.1 Introduction

Probabilistic character of Schrödinger wavefunctions manifests itself
most directly in quantum noise. In many-body systems, shot-to-shot
variations of experimental observables contain rich information about
underlying quantum states. Measurements of quantum noise played
crucial role in establishing nonclassical states of photons in quantum
optics[4], demonstrating quantum correlations and entanglement in
electron interferometers[82], and verifying fractional charge of
quasi-particles in quantum Hall systems[33, 35, 139]. In atomic
physics so far, noise experiments focused on systems in equilibrium.
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Recent work includes analysis of counting statistics in atom
lasers[121], establishing Hanbury-Brown-Twiss effect for both bosons
and fermions[3], analysis of quantum states in optical
lattices[38, 53, 55, 134, 149], observation of momentum correlations in
Fermi gases with pairing[47] and investigation of thermal and
quantum fluctuations in one and two dimensional
condensates[17, 27, 56, 61, 65, 69, 106, 129]. In this chapter we
demonstrate that analysis of quantum noise should also be a powerful
tool for analyzing non-equilibrium dynamics of strongly correlated
systems. Here we study the two equivalent dynamical phenomena;
one given by the interaction induced decoherence dynamics in Ramsey
type interferometer sequences for two component Bose mixtures in
one dimension[164], and another given by the evolution of interference
patterns of two one dimensional condensate created through the
splitting of a single condensate[60]. We obtain a complete time
evolution of the full distribution function of the amplitude of Ramsey
fringes or interference patterns. In the case of Ramsey fringes, the
average amplitude of Ramsey fringes measures only the average value
of the transverse spin component. On the other hand, full distribution
functions are determined by higher order correlation functions of the
spins. Hence full distribution functions contain considerably more
information about the time evolution of the system[68, 99, 124] and
provide a powerful probe for the nature of the quantum dynamics
under study. In particular, we use the simple expressions of full
distribution functions to demonstrate the phenomena of
”prethermalization” in these one dimensional systems, where
observables in non-equilibrium long-time transient states become
indistinguishable from those in thermal equilibrium states.

One dimensional systems with continuous symmetries, including
superfluids and magnetic systems, have a special place in the family of
strongly correlated systems. Quantum and thermal fluctuations are so
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extreme that long range order is not possible in equilibrium. Such
systems can not be analyzed using standard mean-field approaches,
yet they can be studied through the application of methods specific to
one dimension such as exact Bethe ansatz
solutions[12, 26, 40, 43, 45, 64, 66, 67, 101, 102, 119, 157], effective
description using Tomonaga-Luttinger and sine-Gordon
models[9, 32, 46, 52, 70], and numerical analysis using density-matrix
renormalization group(DMRG) and matrix product state (MPS)
methods[143]. Such systems are often considered as general paradigms
for understanding strongly correlated systems. One dimensional
systems also give rich examples of integrable systems, where due to
the existence of infinite number of conserved quantities, equilibration
does not take place[25, 83, 130]. Hence the problem we consider in
this chapter is important for understanding fundamental issues such
as the quantum dynamics of strongly correlated systems and
equilibration/non-equilibration of many-body systems, as well as for
possible applications of spinor condensates in spectroscopy,
interferometry, and quantum information processing [87, 147, 167].

Our work is motivated by recent experiments of Widera et al.[164]
who used two hyperfine states of ƬƫRb atoms confined in 2D arrays of
one dimensional tubes to perform Ramsey type interferometer
sequences. They observed rapid decoherence of Ramsey fringes and
the near absence of spin echo. Their results could not be explained
within the single mode approximation which assumes a macroscopic
Bose condensation into a single orbital state, but could be understood
in terms of the multi-mode Tomonaga-Luttinger type model. Yet the
enhanced decoherence rate and suppression of spin echo do not
provide unambiguous evidences for what the origin of decoherence is.
In this chapter, we suggest that the crucial evidence of the
multi-mode dynamics as a source of decoherence should come from
the time evolution of the full distribution functions of the Ramsey
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fringe amplitude. Such distribution functions should be accessible in
experiments on Atom Chips[13, 39, 61, 128, 163] from the analysis of
shot-to-shot fluctuations.

This chapter is organized as follows. In Section 3.2, we describe the
dynamics of Ramsey sequence and define the distribution functions
for spins, the central objects we study in this chapter. Then, we give a
short summary of the central results of this chapter. In Section 3.3,
we formally give the Hamiltonian of the one dimensional system based
on Tomonaga-Luttinger approach. In Section 3.4, we derive the
analytical expression for the time evolution of the full distribution
function for a simple case in which charge and spin degrees of freedom
decouple. This decoupling limit gives a good approximation to the
experimental situation of Widera et al[164]. A short summary of the
result in this decoupling limit has been already reported in Ref [87].
More general case in which spin and charge degrees of freedom mix is
studied in Section 3.5. Such mixing introduces the dependence of spin
distribution functions on the initial temperature of the system. The
dynamics of Ramsey sequence with two component bosons is
mathematically equivalent to the dynamics of the interference of split
one dimensional condensates, and we describe the mapping between
these systems in Section 3.6. In Section 3.7, we demonstrate the
phenomenon of prethermalization and show that the interference
contrasts of split condensates in a steady state have indistinguishable
distributions from those of thermal condensates at some effective
temperature Teff. We conclude in Section 3.8 with a discussion of
possible extensions of this work.
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Figure 3.2.1: Ramsey sequence for one dimensional system with two com-
ponent bosons considered in this chapter. (1) All atoms are prepared in spin
up state; (2) π/Ʀ pulse is applied to rotate each atom into the x direction; (3)
spins freely evolve for time t. In actual experiments, final π/Ʀ pulse is applied
to measure the x component of spin. The imaging step (4) is omitted in the
illustration. In this chapter, spin operators refer to the ones before the final
π/Ʀ pulse.
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3.2 Description of Ramsey dynamics and sum-
mary of results

In this chapter, we study the dynamics of one dimensional, interacting
two-component Bose mixtures in the Ramsey-type sequence. In
analogy with spin-ƥ/Ʀ particles, we refer to one component to be
spin-up and the other component to be spin-down. In the experiment
of cold atoms in Ref [164], two hyperfine states are used for these two
components. In the following, we consider a generic situation where
there is no symmetry that relates spin-up and spin-down. In
particular, unlike fermions with spin-ƥ/Ʀ, there is no SU(Ʀ) symmetry.
In a typical experimental setup with cold atoms, there is a harmonic
confinement potential along the longitudinal direction of condensates,
but here we assume the absence of such a harmonic trap potential.
Our consideration gives a good approximation for the central region of
cold atom experiments in the presence of such potentials.

Ramsey-type sequence is described as follows(Figure 3.2.1):

1. All atoms are prepared in spin up state at low temperature

2. π/Ʀ pulse is applied to rotate the spin of each atom into the x
direction

3. Spins evolve for time t

4. Spins in the transverse direction (x− y plane) are measured

In a typical experimental situations[164], the last measurement step is
done by applying a π/Ʀ pulse to map the transverse spin component
into z direction, which then can be measured. In the following
discussions, we describe the dynamics in the rotating frame of Larmer
frequency in which the chemical potentials of spin-up and spin-down
are the same in the absence of interactions. In this frame, the
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evolution of spins in the third step is dictated by the diffusion
dynamics coming from interactions. Unlike the conventional use of
the Ramsey sequence in the context of precision measurements, here
we employ the Ramsey sequence as a probe of correlation functions in
one dimensional system.

The description of the spin dynamics starts from the highly excited
state prepared after the π/Ʀ pulse of step 2. The subsequent dynamics
during step 3 crucially depends on the nature of excitations in the
system. In particular, the dynamics of two-component Bose mixture
in one dimension is quite different from those in three dimension. In
three dimensions, bosons form a Bose-Einstein condensate(BEC) at
low temperature, and particles occupy a macroscopic number of k = Ƥ
mode. Then, the spin diffusion of three dimensional BEC is
dominated by the spatially homogeneous dynamics coming from the
single k = Ƥ mode at sufficiently low temperatures. On the other
hand, bosonic systems in one dimension do not have the macroscopic
occupancy of the k = Ƥ mode, and their physics is dominated by the
strong fluctuations, to the extent that the system cannot retain the
long range phase coherence even at zero temperature[46]. Thus, the
spin dynamics of one dimensional bosonic system necessarily involves
a large number of modes with different momenta and the spin
becomes spatially inhomogeneous during the step 3 above.

Such dynamics unique to one dimension can be probed through the
observation of transverse spin components in the fourth step. Since
we aim to capture the multi-mode nature of the dynamics in one
dimension, we consider the observation of spins at length scale l, given
by

Ŝal (t) =
∫ l/Ʀ

−l/Ʀ
drŜa(r, t) (3.1)
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where Ŝa(r, t) with a = x, y are the transverse components of spin
operators after time evolution of step Ƨ of duration t. We assume that
l is much larger than the spin healing length ξs, and much smaller
than the system size L to avoid finite size effects. Furthermore, we
assume that the number of particles within the length l, Nl, is large,
so that the simultaneous measurements of Ŝxl (t) and Ŝyl (t) are in
principle possible. For large Nl, the non-commutativity of Ŝxl and Ŝyl
gives corrections of the order of ƥ/

√
Nl compared to the average

values. In this situation, it is also possible to measure the magnitude
of transverse spin components, Ŝ⊥l =

√(
Ŝxl
)Ʀ

+
(
Ŝyl
)Ʀ, which we will

extensively study in the later sections.
Due to quantum and thermal fluctuations, the measurements of

Ŝal (t) give different values from shot-to-shot. After the π/Ʀ pulse of
step 2, the spins are prepared in x direction, so the average value
yields

⟨
Ŝxl (t = Ƥ)

⟩
≈ Nl/Ʀ and

⟨
Ŝyl (t = Ƥ)

⟩
≈ Ƥ. In the rotating frame of

Larmer frequency, the subsequent evolution does not change the
expectation value of the y component so that

⟨
Ŝyl (t)

⟩
∼ Ƥ throughout.

The decay of the average
⟨
Ŝxl (t)

⟩
during the evolution in step 3 tells us

the strength of spin diffusion in the system. The behaviors of
⟨
Ŝal (t)

⟩
due to spin diffusion are similar for one and three dimensions, and the
difference is quantitative, rather than qualitative. On the other hand,
a richer information about the dynamics of one dimensional system is
contained in the noise of Ŝal (t). Such noise inherent to quantum
systems is captured by higher moments ⟨ ( Ŝal (t) )n⟩. In this chapter, we
obtain the expression for the full distribution function Pal (α, t) which
can produce any moments of Ŝal (t) through the relation

⟨ ( Ŝal (t) )n⟩ =
∫

dα Pal (α, t)α
n, (3.2)

where Pal (α, t)dα represents the probability that the measurement of
Ŝal (t) gives the value between α and α + dα. We will see in Section 3.4
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Figure 3.2.2: Illustration of the dynamics of spins in the presence of spin
wave excitations. At short times(top), high momenta excitations contribute
to fluctuations of the spins, but their effect is weak. At long times(bottom),
low momenta excitations lead to the strong fluctuations of the spins. Such
fluctuations with wavelengths larger than l rotate the regions of length l as a
whole so that they do not lead to the decay of the magnitude of spin Ŝ⊥l , but
result in diffusion of Ŝxl .

that it is also possible to obtain the joint distributions Px,yl (α, β, t) of
Ŝxl (t) and Ŝyl (t) as well as the distribution P⊥l (α, t) of the squared
transverse magnitude

(
Ŝ⊥l
)Ʀ.

Now we summarize the main results of this chapter, and give a
qualitative description of spin dynamics in the Ramsey sequence.
Elementary excitations of spin modes in the system are described in
terms of linearly dispersing spin waves with momenta k and excitation
energies cs|k|, where cs is the spin wave velocity. When certain
symmetry conditions are satisfied(see discussion in Section 3.4), spin
and charge degrees of freedom decouple, and these spin waves are free
and they do not interact among themselves in the low energy
descriptions within so-called Tomonaga-Luttinger theory[46]. Here,
we describe the result in this decoupling limit, but the qualitative
picture does not change even after the coupling between spin and
charge is introduced, as we will see in Sec. 3.5.
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The initial state prepared after π/Ʀ pulse in step 2 in which all
spins point in the x direction is far from the equilibrium state of the
system because interactions of spins are not symmetric in terms of
spin rotations. Thus, the initial state contains many excitations and
the subsequent dynamics of spins is determined by time evolution of
the spin waves. A spin wave excitation with momentum k rotates
spins with length scale ∼ Ʀπ/k and time scale ∼ ƥ/(cs|k|). The
amplitude of fluctuations coming from the spin wave with momentum
k is determined by the initial state as well as the nature of spin wave
excitations. We find that the energy stored in each mode is
approximately the same(see discussion in Sec. 3.4.2), thus the
amplitude of fluctuations for wave vector k scales as ƥ/kƦ. Therefore,
the fluctuation of spins is weak at short wave lengths and short times,
and strong at long wave lengths and long times. In Fig.3.2.2, we
illustrate such dynamics of spins due to fluctuations of spin wave
excitations. It leads to the distributions presented in Fig.3.2.3 and
Fig.3.2.4. Here, we have plotted distribution function of the squared
transverse magnitude of spins

(
Ŝ⊥l
)Ʀ(Fig.3.2.3) and the joint

distribution function(Fig.3.2.4) with L = ƦƤƤ, Ks = ƦƤ and various
integration length l/ξs = ƦƤ, ƧƤ, ƨƤ. Ks is the spin Luttinger parameter,
which measures the strength of interactions and correlations in 1D
system (see Eq. (3.8) below), and ξs is a spin healing length which
gives a characteristic length scale in the low energy theory of spin
physics.

The multi-mode nature of one dimensional system, in which spin
correlations at different length scales are destroyed in qualitatively
different fashion during the dynamics, can be revealed most clearly in
the squared transverse magnitude of spins

(
Ŝ⊥l
)Ʀ, plotted in Fig.3.2.3.

In the initial state, all the spins are aligned in the x direction, so the
distribution of

(
Ŝ⊥l
)Ʀ is a delta function peak at its maximum value,

∼ (ρl)Ʀ, where ρ is the average density of spin-up or spin-down. The
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Figure 3.2.3: Time evolution of the distribution P⊥l (α) of the squared trans-
verse magnitude of spins,

(
Ŝ⊥l
)Ʀ, for the system size L/ξs = ƦƤƤ, the spin Lut-

tinger parameter Ks = ƦƤ and various integration length l/ξs = ƦƤ, ƧƤ, ƨƤ. Here
ξs is the spin healing length, and the x axis is scaled such that the maximum
value of α is ƥ. Time is measured in units of ξs/cs where cs is the spin sound
wave velocity. The evolution of the distribution crucially depends on the inte-
gration length. The steady state of the distribution of the squared transverse
magnitude has a peak at a finite value for short integration length l/ξs = ƦƤ,
whereas the peak is at Ƥ for long integration length l/ξs = ƨƤ.

evolution of spin waves lead to the fluctuations of spins and thus to
the decay of the integrated magnitude of the transverse spin. How the
spin waves affect the integrated magnitude of spins strongly depends
on the wavelength of the excitations. Spin excitations with momenta
much smaller than ∼ Ʀπ/l do not affect

(
Ŝ⊥l
)Ʀ since these spin waves

rotate the spins within l as a whole, while spin excitations with higher
momenta lead to the decay of the magnitude. This is in stark contrast
with the x component of the spin Ŝxl , which receives contributions
from spin waves of all wavelengths.
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As a result of different contributions of spin wave excitations with
different wavelengths to the integrated spin magnitude, there are two
distinct behaviors of the distributions of

(
Ŝ⊥l
)Ʀ; one for short

integration length l, which we call ”spin diffusion regime” and another
for long integration length l, which we call ”spin decay regime.”

For short integration length l, the distribution function of
(
Ŝ⊥l
)Ʀ is

always peaked near its maximum value (ρl)Ʀ during the dynamics
because the strengths of fluctuations coming from spin waves with
high momenta are suppressed by ƥ/kƦ(Fig.3.2.3, l/ξs = ƦƤ). While the
magnitude of spins does not decay in this regime, fluctuations still
lead to a diffusion of Ŝxl , thus, we call this regime the ”spin diffusion
regime.”

On the other hand, for long integration length, spin waves lead to
fluctuations of the spins within the integration region, and the spins
are randomized after a long time. This randomization of spins leads
to the development of a Gaussian-like peak near

(
S⊥l
)Ʀ

= Ƥ(Fig.3.2.3,
l/ξs = ƨƤ). During the intermediate time, both peaks at Ƥ and the
maximum value (ρl)Ʀ are present, and one can observe the double
peak structure. Because of the strong decaying behavior of the
magnitude of spin, we call this regime the ”spin decay regime.”

More complete behaviors of distribution functions can be captured
by looking at the joint distribution functions from which we can read
off the distributions of both

(
Ŝ⊥l
)Ʀ and Ŝxl , see Fig.3.2.4. In the ”spin

diffusion regime” with short l, the joint distributions form a ”ring”
during the time evolution, whereas in the ”spin decay regime” with
long l, they form a ”disk”-like structure in the long time limit. As we
will see later, a dimensionless parameter given by lƤ ∼ πƦl

ƨKsξs
determines

whether the dynamics belongs to the ”spin diffusion regime”(lƤ ≤ ƥ) or
the ”spin decay regime”(lƤ ≫ ƥ).

We emphasize that in three dimensions, spin waves are dominated
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Figure 3.2.4: Time evolution of the joint distribution function Px,y(α, β) for
the system size L/ξs = ƦƤƤ, the spin Luttinger parameter Ks = ƦƤ and various
integration lengths l/ξs = ƦƤ(left),ƧƤ(middle), and ƨƤ(right). Time is measured
in units of ξs/cs where cs is the spin sound wave velocity. Here axes are scaled
such that the maximum value of α and β are ƥ. For for short integration length
l/ξs = ƦƤ, the dynamics leads to the distribution with the ”ring”-like struc-
ture, showing that the magnitude of spins does not decay much (spin diffusion
regime). On the other hand, for longer integration lengths, the magnitude of
spins decays quickly and the distribution forms a ”disk”-like structure(spin
decay regime).

by k = Ƥ mode and therefore, there is almost no decay in the
magnitude of spins throughout the dynamics. Therefore, the existence
of two qualitatively different behaviors of distribution functions of(
Ŝ⊥l
)Ʀ unambiguously distinguishes the dynamics in one and three

dimensions.

3.3 Two component Bose mixtures in one dimen-
sion: Hamiltonian

In this chapter, we study the dynamics of two-component Bose
mixtures in one dimension through Tomonaga-Luttinger
formalism[46]. As we have stated before, we assume the rotating
frame, in which spin-up and spin-down particles have the same
chemical potential in the absence of interactions. The Hamiltonian of
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two component Bose mixtures in one dimension is given by

H =

∫ L/Ʀ

−L/Ʀ
dr

[∑
i

ƥ
Ʀmi

∇ψ†
i (r)∇ψ i(r)

+
∑
ij

gij ψ
†
i (r)ψ

†
j (r)ψj(r)ψ i(r)

 (3.3)

Here ψ i with i =↑, ↓ describe two atomic species with masses mi and gij
are the interaction strengths given by gij = ν⊥aij[117] where ν⊥ is the
frequency of transverse confinement potential and aij are the
scattering lengths between spin i and j. System size is taken to be L,
and we take the periodic boundary condition throughout the chapter.
In addition, we use the unit in which ~ = ƥ.

In the low energy description, the Hamiltonians for weakly
interacting bosons after the initial π/Ʀ rotation can be written in
quadratic form, and given by

H = H↑ + H↓ + Hint, (3.4)

H↑ =

∫ L/Ʀ

−L/Ʀ
dr
[

ρ
Ʀm↑

(∇ϕ̂↑(r))
Ʀ + g↑↑(n̂↑(r))

Ʀ
]
,

H↓ =

∫ L/Ʀ

−L/Ʀ
dr
[

ρ
Ʀm↓

(∇ϕ̂↓(r))
Ʀ + g↓↓(n̂↓(r))

Ʀ
]
,

Hint = Ʀ
∫ L/Ʀ

−L/Ʀ
dr(r)

[
g↑↓n̂↑n̂↓(r) + gϕ↑↓∇ϕ̂↑∇ϕ̂↓(r)

]
,

where ρ is the average density of each species and n̂σ are variables
representing the phase and density fluctuation for the particle with
spin σ. These variables obey a canonical commutation relation
[n̂σ(r), ϕ̂σ(r

′)] = −iδ(r− r′). The variables ϕ̂σ and n̂σ are
”coarse-grained” in the sense that they represent the operators in the
long wavelength beyond the spin healing length ξs. ξs is determined
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from microscopic physics and gives the length below which the kinetic
energy wins over the interaction energy and the particles start
behaving like free particles. For weakly interacting bosons with
m↑ = m↓ = m, it is given by ξs = π/

√
mρ(g↑↑ + g↓↓ − Ʀg↑↓).

In the following, we assume that the number of particles within the
spin healing length is large, i.e. ξsρ ≫ ƥ. This condition is always
satisfied for weakly interacting bosons. We note, that in the weakly
interacting case one can obtain the parameters of the Hamiltonian in
Eq. (3.4) such as gij and mi through hydrodynamic linearization of the
microscopic Hamiltonian. Here we consider a general form of the
Hamiltonian allowed by symmetry such as inversion.

In order to describe the spin dynamics, we define spin and charge
operators as the difference and the sum of spin up and down
operators, i.e. ϕ̂s = ϕ̂↑ − ϕ̂↓, ϕ̂c = ϕ̂↑ + ϕ̂↓, n̂s =

ƥ
Ʀ(n̂↑ − n̂↓),

n̂c = ƥ
Ʀ(n̂↑ + n̂↓). In this representation, the Hamiltonian in Eq. (3.4)

becomes

H = Hs + Hc + Hmix

Hs =

∫ L/Ʀ

−L/Ʀ
dr
[

ρ
Ʀms

(∇ϕ̂s(r))
Ʀ + gs(n̂s(r))

Ʀ
]

(3.5)

Hc =

∫ L/Ʀ

−L/Ʀ
dr
[

ρ
Ʀmc

(∇ϕ̂c(r))
Ʀ + gc(n̂c(r))

Ʀ
]

(3.6)

Hmix = Ʀ
∫ L/Ʀ

−L/Ʀ
dr
[
gmixn̂s(r)n̂c(r) + gϕmix∇ϕ̂s(r)∇ϕ̂c(r)

]
(3.7)

where interaction strengths are given by gc = g↑↑ + g↓↓ + Ʀg↑↓,
gs = g↑↑ + g↓↓ − Ʀg↑↓, gmix = g↑↑ − g↓↓, g

ϕ
mix = ρ/(Ƭm↑)− ρ/(Ƭm↓). The

masses are given by the relations ρ/(Ʀmc) = ρ/(Ƭm↑) + ρ/(Ƭm↓) + gϕ↑↓/Ʀ
and ρ/(Ʀms) = ρ/(Ƭm↑) + ρ/(Ƭm↓)− gϕ↑↓/Ʀ

In the next section, we consider the case gmix = Ƥ and gϕmix = Ƥ, in
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which spin and charge degree of freedom decouple. Then the
dynamics of spins is completely described by the spin Hamiltonian in
Eq. (3.5). The general case in which gmix ̸= Ƥ and gϕmix ̸= Ƥ will be
treated in Sec 3.5.

3.4 Dynamics of Full Distribution Function for
decouped spin and charge degrees of free-
dom

3.4.1 Hamiltonian and initial state

The experiment of Widera et al.[164] used F = ƥ,mF = +ƥ and
F = Ʀ,mF = −ƥ states of ƬƫRb for spin-up and spin-down particles,
respectively. These hyperfine states have the scattering lengths aσσ′
such that a↑↑ ≈ a↓↓. Consequently, the mixing Hamiltonian in Eq.(3.7)
approximately vanishes for weak interactions. Motivated by this
experiment, here we consider the decoupling of spin and charge
degrees of freedom[87]. Spin dynamics in this case is completely
determined by the spin Hamiltonian

Hs =
cs
Ʀ

∫ [
Ks

π
(∇ϕ̂s(r))

Ʀ +
π
Ks
n̂Ʀs(r)

]
dr (3.8)

where Ks is the spin Luttinger parameter representing the strength of
interactions, and cs is spin sound velocity. Ks and cs are directly
related to the spin healing length ξs in the weak interaction limit,
given by ƦKs = ρξs and cs = π

Ʀmsξs
. n̂s(r, t) is the local spin imbalance

n̂s = ψ†
α(

ƥ
Ʀσ

z
αβ)ψβ and ϕ̂s(r, t) is related to the direction of the transverse

spin component ρeiϕ̂s = ψ†
ασ

+
αβψβ. Here, ψ†

α is the creation operator of
spin α =↑, ↓. These variables n̂s and ϕ̂s obey a canonical commutation
relation [n̂s(r), ϕ̂s(r

′)] = −iδ(r− r′).
Other spin variables can be similarly defined in terms of coarse
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grained spin variables n̂s and ϕ̂s. In the following, we consider the
general transverse spins pointing in the direction
(x, y, z) = (cos θ, sin θ, Ƥ) integrated over l given by

Ŝθl =

∫ l/Ʀ

−l/Ʀ
dr ψ†

α(r, t)

(
cos θ

σxαβ
Ʀ

+ sin θ
σyαβ
Ʀ

)
ψβ(r, t)

=

∫ l/Ʀ

−l/Ʀ
dr
ρ
Ʀ

(
ei(ϕ̂s(r)−θ) + e−i(ϕ̂s(r)−θ)

)
(3.9)

where σa with a = x, y are Pauli matrices. Here Ŝθl with θ = Ƥ
corresponds to spin x operator and θ = π/Ʀ corresponds to spin y
operator. In order to explore the one dimensional dynamics resulting
from Hamiltonian in Eq.(3.8), we analytically compute the mth
moment of the spin operator Ŝθl ,

⟨(
Ŝθl
)m⟩, after time t of the π/Ʀ pulse

of the Ramsey sequence. Then, the full distribution functions of Ŝxl
and Ŝyl , as well as the joint distribution of these will be obtained from⟨(
Ŝθl
)m⟩.

In order to study the dynamics of Ramsey interferometer in terms
of low energy variables n̂s and ϕ̂s, we need to write down an
appropriate state after the π/Ʀ pulse in terms of n̂s and ϕ̂s. If pulse is
sufficiently strong, each spin is independently rotated into x direction
after the π/Ʀ pulse. Naively, this prepares the initial state in the
eigenstate of Ŝx(r) = ρ cos ϕ̂s(r) with eigenvalue ϕ̂s(r) = Ƥ. However,
due to the commutation relation between n̂s and ϕ̂s, such an initial
state has an infinite fluctuation in n̂s and therefore, the state has an
infinite energy according to Eq.(3.8). This unphysical consequence
comes about because the low energy theory in Eq.(3.8) should not be
applied to the physics of short time scale given by ƥ/Ec where Ec is the
high energy cutoff of Tomonaga-Luttinger theory. During this short
time dynamics, the initial state establishes the correlation at the
length scale of spin healing length ξs. The state after this short time
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dynamics can now be described in terms of the coarse-grained
variables n̂s(r) and ϕ̂s(r). The variables n̂s(r) and ϕ̂s(r) are defined on
the length scale larger than the spin healing length ξs. Since the z
component of spins are still uncorrelated beyond ξs after the initial
short time dynamics, the appropriate initial condition of the state is
written as

⟨Sz(r)Sz(r′)⟩ = ⟨n̂s(r)n̂s(r′)⟩ =
ρη
Ʀ
δ(r− r′) (3.10)

where the delta function δ(r− r′) should be understood as a smeared
delta function over the scale of ξs. Because the state after the short
time dynamics is still close to the eigenstate of the Ŝx(r) operator,
spins are equal superpositions of spin-up and spin-down. Then the
distribution of Ŝzl =

∫ l
Ƥ Ŝ

z(r)dr is determined through random picking of
the values ±ƥ/Ʀ for Ʀρl particles. Due to the central limit theorem, the
distribution of Ŝzl =

∫ l
Ƥ Ŝ

z(r)dr is Gaussian, i.e.
⟨(
Ŝzl
)Ʀn⟩

= (Ʀn)!
Ʀnn! (ρlη)

n. In
particular,

⟨(
Ŝzl
)Ʀ⟩

= ρlη/Ʀ, which determines the magnitude of the
fluctuation for Ŝz(r) in Eq.(3.10). In Eq.(3.10), we also introduced the
phenomenological parameter η which accounts for the decrease and
increase of fluctuations coming from, for example, imperfections of
π/Ʀ pulse. The ideal, fast application of π/Ʀ pulse corresponds to
η = ƥ. In the experimental realization of Ref. [164], η was determined
to be between Ƥ.Ƭ and ƥ.Ƨ through the fitting of the experiment with
Tomonaga-Luttinger theory for the time evolution of the average x
component of the spin,

⟨
Ŝxl
⟩
. Through engineering of the initial state

such as the application of a weak π/Ʀ pulse, η can also be made
intentionally smaller than ƥ.

A convenient basis to describe the initial state of the dynamics
above is the basis that diagonalizes the spin Hamiltonian of Eq.(3.8).
The phase and density of the spins ϕ̂s(r) and n̂s(r) can be written in
terms of the creation b†s,k and annihilation bs,k operators of elementary
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excitations for the spin Hamiltonian in Eq.(3.8) as

ϕ̂s(r) =
ƥ√
L

∑
k

ϕ̂s,ke
ikr

=
ƥ√
L

(∑
k ̸=Ƥ

−i
√

π
Ʀ|k|Ks

(b†s,k − bs,−k)eikr + ϕ̂s,Ƥ

)
n̂s(r) =

ƥ√
L

∑
k

n̂s,keikr

=
ƥ√
L

(∑
k ̸=Ƥ

√
|k|Ks

Ʀπ
(b†s,k + bs,−k)eikr + n̂s,Ƥ

)
Hs =

∑
k̸=Ƥ

cs|k|b†s,kbs,k +
πcs
ƦKs

n̂Ʀs,Ƥ (3.11)

where we defined ϕ̂s,k and n̂s,k to be the Fourier transform of operators
ϕ̂s(r) and n̂s(r). b†s,k creates a collective mode with momentum k and
follows a canonical commutation relation [bs,k, b†s,k] = ƥ. Note that
k = Ƥ mode has no kinetic energy, and it naturally has different
evolution from k ̸= Ƥ modes.

The Gaussian state determined by Eq.(3.10) takes the form of a
squeezed state of operators bs,k, and it is given by

|ψƤ⟩ =
ƥ
N

exp

(∑
k̸=Ƥ

Wkb†s,kb
†
s,−k

)
|Ƥ⟩|ψs,k=Ƥ⟩

⟨ns,Ƥ|ψs,k=Ƥ⟩ = exp
(
− ƥ
Ʀρη

nƦs,Ƥ

)
(3.12)

where ƦWk =
ƥ−αk
ƥ+αk

, αk = |k|Ks
πρη . Here the state |ns,Ƥ⟩ is the normalized

eigenstate of the operator n̂s,Ƥ with eigenvalue ns,Ƥ. The summation of
k in the exponent has a ultraviolet cutoff around kc = Ʀπ/ξs. N is the
overall normalization of the state. It is easy to check that
⟨ψƤ|n̂s,kn̂s,k′|ψƤ⟩ =

ρη
Ʀ δk,−k′ , which corresponds to Eq. (3.10).
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3.4.2 Moments and full distribution functions of spins

After free evolution of the initial state |ψƤ⟩ for time t, the state
becomes |ψ(t)⟩ = e−iHst|ψƤ⟩. We characterize the state at time t by the
mth moments of spin operators,

⟨
(Ŝθl )m

⟩
. As we will see below, the full

distribution function can be constructed from the expression of⟨
(Ŝθl )m

⟩
[69].

We consider the evaluation of moments
⟨
(Ŝθl )m

⟩
at time t, |ψ(t)⟩.

Each momentum k component of the initial state |ψƤ⟩ independently
evolves in time. Since k = Ƥ mode has a distinct evolution from other
k ̸= Ƥ modes, we separately consider k = Ƥ and k ̸= Ƥ modes.

k = Ƥ mode

The Hamiltonian of k = Ƥ mode is given by Hs,k=Ƥ =
πcs
ƦKs

n̂Ʀs,Ƥ in Eq.
(3.11). Therefore, in the basis of ns,Ƥ, k = Ƥ part of the state |ψ(t)⟩ is
given by

⟨ns,Ƥ|e−iHs,k=Ƥt|ψk=Ƥ⟩ =
ƥ

Nk=Ƥ
exp
{(

− ƥ
(Ʀρη) − i πcstƦKs

)
nƦs,Ƥ
}
, (3.13)

where Nk=Ƥ is the normalization of the state. The initial Gaussian
state of n̂s,Ƥ stays Gaussian at all times, and any analytic operator of
ϕs,Ƥ and ns,Ƥ can be exactly evaluated through Wick’s theorem. For
example, k = Ƥ part contributes to the decay of the average of the x
component of spin

⟨
Ŝxl
⟩
k=Ƥ = lρRe

(⟨
eiϕs,Ƥ/

√
L
⟩)

as

⟨
Ŝxl
⟩
k=Ƥ = lρe−

ƥ
ƦL⟨ϕƦs,Ƥ⟩t⟨

ϕƦ
s,Ƥ

⟩
t

=
ƥ

Ʀρη
+

(
csπt
Ks

)Ʀ ηρ
Ʀ

(3.14)

This diffusion of the spin from k = Ƥ contribution is generally present
in any dimensional systems, and not particular to one dimension.
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Physical origin of this diffusion is the interaction dependent on the
total spin , ŜƦz. The eigenstate of Ŝx with eigenvalue ρl is the
superposition of different eigenstates of Ŝz with eigenvalues mz, and
they accumulate different phases e−itmƦ

z in time. This leads to the
decay of

⟨
Ŝx
⟩
. In the thermodynamic limit L → ∞, the uncertainty of

Ŝz becomes diminishingly small, and therefore, the decay of
⟨
Ŝx
⟩

coming from k = Ƥ goes to zero. More interesting physics peculiar to
one dimensional systems comes from k ̸= Ƥ modes. In the case of three
dimensional systems, macroscopic occupancy of a single particle state
is absent in one dimension, so k ̸= Ƥ momentum excitations have much
more significant effect in one dimensional dynamics.

k ̸= Ƥ contribution

The exact evaluation of spin moments
⟨
(Ŝθl )m

⟩
for k ̸= Ƥ is possible

through the following trick. Consider the annihilation operator γs,k(t)
for the state |ψ(t)⟩ such that γs,k(t)|ψ(t)⟩ = Ƥ. If we write the operators
ϕ̂s(r) in terms of γs,k(t) and γ†s,k(t), then k ̸= Ƥ part of the mth moment
schematically takes the form

⟨
(Ŝθl )m

⟩
∼
⟨
exp(i

∑
k ̸=Ƥ Cs,kγs,k + C∗

s,kγ
†
s,k)
⟩

(Here and in the following, we drop the time dependence of γs,k(t)
from the notation). Using the property
eγs,k |ψ(t)⟩ = (ƥ+ γs,k + · · · )|ψ(t)⟩ = |ψ(t)⟩ and the identity
eA+B = eAeBe−

ƥ
Ʀ [A,B] where [A,B] is a c-number, we can evaluate mth

moments as⟨
(Sθl )m

⟩
∼
⟨
eiC

∗
s,kγ

†
s,ke−

ƥ
Ʀ
∑

k ̸=Ƥ |Cs,k|ƦeiCs,kγs,k
⟩
= exp(− ƥ

Ʀ

∑
k̸=Ƥ |Cs,k|Ʀ).

It is straightforward to check that γs,k operator is given by the
linear combination of bs,k and b†s,−k as follows,

(
γ†s,−k(t)
γs,k(t)

)
=

 e−ics|k|t√
ƥ−ƨ|Wk|Ʀ

−ƦWkeics|k|t√
ƥ−ƨ|Wk|Ʀ

−ƦWke−ics|k|t√
ƥ−ƨ|Wk|Ʀ

eics|k|t√
ƥ−ƨ|Wk|Ʀ

( b†s,−k

bs,k

)
. (3.15)
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γs,k and γ†s,k obey a canonical commutation relation [γs,k, γ
†
s,k] = ƥ. In

terms of these γs,k, the expression of ϕ̂s,k(t) becomes

ƥ√
L
ϕ̂s,k = Cs,kγ†s,k + C∗

s,kγs,−k

Cs,k = −i
√

π
Ʀ|k|KsL

eics|k|t − ƦWke−ics|k|t√
ƥ− ƨ|Wk|Ʀ

. (3.16)

Cs,k(t) measures the fluctuation, or variance, of phase in the kth mode
at time t, given by

⟨
|ϕ̂s,k(t)|Ʀ

⟩
=
⟨
ϕ̂s,k(t)ϕ̂s,−k(t)

⟩
. Indeed, since γs,k is

the annihilation operator of our state at time t, we immediately
conclude that

⟨
|ϕ̂s,k(t)|Ʀ

⟩
/L = |Cs,k(t)|Ʀ.

Using the technique described above, mth moment of Ŝθl becomes
(we include both k = Ƥ and k ̸= Ƥ contributions in the expression
below)

⟨ψ(t)|

(∫ l/Ʀ

−l/Ʀ
Sθ(r)dr

)m

|ψ(t)⟩

=

⟨
m∏
i

(∫ l/Ʀ

−l/Ʀ

ρ
Ʀ
dri
∑
si=±ƥ

eisi(ϕ̂s(ri)−θ)

)⟩

=
∑

{si=±ƥ}

m∏
i=ƥ

∫ l/Ʀ

−l/Ʀ

ρdri
Ʀ

⟨
e(i(sƥϕ̂s(rƥ)+...+smϕ̂s(rm))

⟩
× e−i(

∑
i si)θ

=
∑

{si=±ƥ}

m∏
i=ƥ

∫ l/Ʀ

−l/Ʀ

ρdri
Ʀ

exp

(
− ƥ
Ʀ

∑
k

ξ{si,ri}s,k (ξ{si,ri}s,k )∗

)
× e−i(

∑
i si)θ, (3.17)

where ξ{si,ri}s,k =

√
⟨|ϕ̂s,k(t)|Ʀ⟩

L (sƥeikrƥ + . . .+ smeikrm). si takes either the value
ƥ or −ƥ, and

∑
{si} sums over all possible set of values. Note that L is

the total system size and l is the integration range.
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Full Distribution Function

Calculation of the full distribution functions from moments in Eq.
(3.17) is studied by the techniques introduced in Ref. [69] through
mapping to the statistics of random surfaces. In this subsection, we
provide the details of the calculation.

Eq. (3.17) is simplified if the integrations for each ri can be
independently carried out. This is not possible in Eq. (3.17) because
eikri and eikrj for i ̸= j are coupled in∣∣∣ξ{si,ri}s,k

∣∣∣Ʀ = (Reξ{si,ri}s,k

)Ʀ
+
(

Imξ{si,ri}s,k

)Ʀ
. To unentangle this, we introduce

Hubbard-Stratonovich transformation, e− xƦ
Ʀ = ƥ√

Ʀπ

∫∞
−∞ e−

λƦ
Ʀ eixλ, for

example,

e−
ƥ
Ʀ

(
Re(ξ{si,xi}s,k )

)Ʀ
=

∫ ∞

−∞

dλƥsk√
Ʀπ

e−λƦƥsk/ƦeiλƥskRe
(
ξ{si,xi}s,k

)
.

We apply a similar transformation for Imξs,k. This removes the cross
term between eikri and eikrj for i ̸= j and allows us to independently
integrate over ri’s. Associated with each transformation, we introduce
auxiliary variables λƥsk for Re(ξs,k), λƦsk for Im(ξs,k). Then, mth moment
becomes

⟨ψ(t)|

(∫ l/Ʀ

−l/Ʀ
Sθ(r)dr

)m

|ψ(t)⟩ =

∑
{si}

∏
k

∫ ∞

−∞
e−(λƦƥsk+λƦƦsk)/Ʀ

dλƥsk√
Ʀπ

dλƦsk√
Ʀπ[

m∏
i=ƥ

∫ l/Ʀ

−l/Ʀ

ρdri
Ʀ

exp

(
isi
∑
k

{
λƥskRe(ξris,k) + λƦskIm(ξris,k)− θ

})]
,

where we introduced ξ{ri}s,k =

√
⟨|ϕ̂s,k(t)|Ʀ⟩

L eikri . Summation over
{si = ±ƥ} can now be carried out. Furthermore, we introduce a new
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variables λrsk and λθsk, and replace λƥsk and λƦsk through the relation
λrsk =

√
λƦƥsk + λƦƦsk and cos(λθsk) = λƦsk/

√
λƦƥsk + λƦƦsk. These operations

result in the simplified expression,

⟨ψ(t)|

(∫ l/Ʀ

−l/Ʀ
Sθ(r)dr

)m

|ψ(t)⟩ =
∏

k,a=r,θ

ƥ
Ʀπ

∫
dλask

× λrske−
λƦrsk
Ʀ

(
ρ
∫ l/Ʀ

−l/Ʀ
dr cos

[
χ(r, {λjsk})− θ

])m

, (3.18)

where

χ(r, {λjsk}) =
∑
k

√√√√⟨|ϕ̂s,k|Ʀ
⟩

L
λrsk sin(kr+ λθsk), (3.19)

⟨
|ϕ̂s,k|

Ʀ
⟩
=

π
Ʀ|k|Ks

sinƦ(cs|k|t) + αƦk cosƦ(cs|k|t)
αk

(k ̸= Ƥ),⟨
ϕƦ
s,Ƥ

⟩
t
=

ƥ
Ʀρη

+

(
csπt
Ks

)Ʀ ηρ
Ʀ

(k = Ƥ), (3.20)

with αk = |k|Ks
πρη . The integration over λrsk and λθsk in Eq.(3.18) extends

from Ƥ to ∞ and from −π to π, respectively.
Comparing the expression in Eq.(3.18) and the implicit definition of

a distribution function in Eq.(3.2), it is easy to identify the
distribution function as

Pθl (α) =
∏
k

∫ π

−π

dλθsk
Ʀπ

∫ ∞

Ƥ
λrske−λƦrsk/Ʀdλrsk

×δ

(
α − ρ

∫ l/Ʀ

−l/Ʀ
dr cos

[
χ(r, {λjsk})− θ

])
. (3.21)

This function can be numerically evaluated through Monte Carlo
method with weight λrske−λƦrsk/Ʀ for λrsk and equal unity weight for λθsk.
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While we have assumed that the chemical potentials of spin-up and
spin-down atoms are the same in the absence of interactions by going
to the rotating frame, it is easy to obtain the expression for
distribution functions in the lab frame. The energy difference E
between spin-up and spin-down atoms results in the rotation of the
spin in the x− y plane at a constant angular velocity E. Therefore, the
distribution in the lab frame is obtained by replacing θ → θ + Et in
Eq. (3.21).

In this section, we have focused on the distribution function of
spins in x− y plane, but it is also possible to obtain the distribution
function of z component of the spin, and we present the result in the
Appendix 3.54.

Joint Distribution Function

From the expression for the spin operators in Eq. (3.9), we observe
that the spin operators for the x and y directions commute in the low
energy description. This is because spin operators in
Tomonaga-Luttinger theory are coarse-grained over ∼ ρξs particles,
and since for weak interactions ρξs ≫ ƥ, the uncertainty of
measurements coming from non-commutativity of Ŝxl and Ŝyl becomes
suppressed. The possibility of simultaneous measurements of spin x
and y operators implies the existence of joint distribution functions
Px,yl (α, β), where Px,yl (α, β)dαdβ is the probability that the simultaneous
measurements of Ŝxl and Syl give the values between α and α+ dα, and β
and β + dβ, respectively. Here we provide the expression for Px,yl (α, β)
and proves that this is indeed the unique solution.

The joint distribution function Px,yl (α, β) is given by the following
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expression

Px,yl (α, β) =
∏
k

∫ π

−π

dλθsk
Ʀπ

∫ ∞

Ƥ
λrske−λƦrsk/Ʀdλrsk

× δ

(
α + iβ− ρ

∫ l/Ʀ

−l/Ʀ
dreiχ(r,{λjsk})

)
(3.22)

where the expression for χ(r, {λjsk}) is given in Eq.(3.19). To prove it,
we first show that Eq.(3.22) reproduces the distribution function Pθl (α)
in Eq.(3.21) for all θ. Then, we show that a function with this
property is unique, and therefore the expression in Eq.(3.21) is
necessarily the joint distribution function.

Given a joint distribution function Px,yl (α, β), we can determine the
distribution function Pθl (γ) of a spin pointing in the direction
(cos θ, sin θ, Ƥ). Consider the spin S in the x− y plane with S = (α, β, Ƥ)
whose probability distribution is given by Px,yl (α, β). The projection of
the spin S onto the axis pointing in the direction (cos θ, sin θ, Ƥ) is
given by |S| cos(ϕ− θ) where |S| =

√
αƦ + βƦ is the magnitude of spin

and ϕ is the angle Arg(α + iβ). After a simple algebra, we find
|S| cos(ϕ− θ) = α cos θ + β sin θ. Then given a spin S = (α, β, Ƥ), if one
measures the spin along the direction (cos θ, sin θ, Ƥ), the measurement
result gives γ if and only if γ = α cos θ + β sin θ. From this
consideration, the probability distribution that the measurement
along the direction (cos θ, sin θ, Ƥ) gives the value γ is given by

Pθl (γ) =
∫

dαdβPx,yl (α, β)δ(γ − α cos θ − β sin θ). (3.23)

Now, if we plug in the expression of Eq.(3.22) in Eq. (3.23), we see
that Pθl (γ) agrees with Eq. (3.21) for all θ.

Now we prove the uniqueness of a function with the above property,
i.e. a function that reproduces Eq. (3.21) through the relation
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Eq.(3.23). Suppose you have another distribution P̃x,yl (α, β) that
satisfies Eq.(3.23) for all θ. We define Q(α, β) = Px,yl (α, β)− P̃x,yl (α, β).
Our goal is to show that Q(α, β) must be equal to zero. By definition,
we have the equality

Ƥ =

∫
dαdβQ(α, β)δ(γ − α cos θ − β sin θ), (3.24)

for all θ and γ. If we take the Fourier transform of both sides of Eq.
(3.24) in terms of γ, we obtain

Ƥ =

∫
dγ
∫

dαdβQ(α, β)δ(γ − α cos θ − β sin θ)eiwγ

=

∫
dαQ(α)eiw·α.

In the last line, we defined w = w(cos θ, sin θ) and α = (α, β). Notice
that this equation holds for any w. Then this last expression is just
like (two-dimensional) Fourier transform of Q. By taking the inverse
fourier transform of the last expression in terms of w, we find

Ƥ =

∫ ∞

−∞
dw
∫

dαQ(α)eiw·(α−α′)Q(α′),

thereby proving the uniqueness of the joint distribution Px,yl (α, β).
From the joint distribution function in Eq.(3.22), one can also

obtain other distributions, such as the distribution P⊥l (γ) of the
square of the transverse spin magnitude,

(
S⊥l (t)

)Ʀ, which is given by

P⊥l (γ) =

∫ ∞

−∞
dαdβPx,yl (α, β)δ (γ − αƦ − βƦ)

=
∏
k

∫ π

−π

dλθsk
Ʀπ

∫ ∞

Ƥ
λrske−λƦrsk/Ʀdλrsk

×δ

(
γ −

∣∣∣∣∣ρ
∫ l/Ʀ

−l/Ʀ
dreiχ(r,{λjsk})

∣∣∣∣∣
Ʀ)

(3.25)
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Initial state

Figure 3.4.1: The illustration of the dynamics for each harmonic oscillator
mode, described by the Hamiltonian Eq.(3.8). The initial state contains a
large fluctuation of density difference n̂s,k given by ⟨n̂s,kn̂s,−k⟩ = ηρ/Ʀ(see
Eq.(3.10)), and its conjugate variable, the phase difference ϕ̂s,k, has a small
fluctuations. In the subsequent dynamics, such squeezed state evolves and
energy oscillates between the fluctuations of the density difference and phase
difference.

Interpretation of the distribution dynamics

The form of the distribution function in Eq. (3.22) encapsulates the
interpretation in terms of dynamics originating from spin waves
explained in Sec 3.2. Here eiχ(r,{tjsk}) represents the spin direction at
coordinate r, where the x− y plane of the spin component is taken to
be a complex plane. Then Eq.(3.22) suggests that for a given instance
of the set {λjsk}, (Sxl + iSyl ) is simply the sum of the local spin
directions eiχ(r,{λjsk}) over the integration length l. The local spin
direction at position r are determined by the phase χ(r, {tjsk}), which
receives contributions from each spin wave of momentum k with

strength Ak(t) = λrsk

√⟨
|ϕ̂s,k(t)|Ʀ

⟩
. Spin waves with momenta k rotate

the spins as sin(kr+ λθsk) (see the expression of χ(r, {λjsk}) in
Eq.(3.19)). The rotation strength Ak(t) ∝ λrsk has the distribution
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Figure 3.4.2: The dynamics of the joint distributions for L/ξs = ƦƤƤ, ξs =
ƨƤ and various spin Luttinger parameters Ks = ƧƤ, ƦƩ, and ƦƤ. Here axes are
scaled such that the maximum value of α and β are ƥ. Smaller value of Ks
enhances the spin fluctuations, leading to a stronger diffusion and decay. Time
is measured in units of ξs/cs.

λrske−λƦrsk/Ʀ, which represents the quantum fluctuation of the spins. On
the other hand, λθsk is distributed uniformly between −π and π.

The dynamics of phase fluctuations
⟨
|ϕ̂s,k(t)|Ʀ

⟩
can in fact be easily

understood by considering the Hamiltonian given by Eq.(3.8) as a
harmonic oscillator for each k(Fig. 3.4.1). We first note that the initial
state has a large fluctuation of density n̂s,k because the initial π/Ʀ pulse
prepares the state in the (almost) eigenstate of Sx = ρ cos(ϕ̂s,k) with a
small fluctuation of ϕ̂s,k, the conjugate variable of n̂s,k. The fluctuation
of n̂s,k is given by ⟨n̂s,kn̂s,−k⟩ = ηρ/Ʀ (see Eq.(3.10)). Because of this
large fluctuation in the density, almost all the energy of the initial
state is stored in the interaction term |ns,k|Ʀ in Eq. (3.8). Therefore,
the total energy of each harmonic oscillator can be estimated as πcsρη

ƨKs
.

During the dynamics dictated by the harmonic oscillator Hamiltonian,
this energy oscillates between the density fluctuations and phase
fluctuations in a sinusoidal fashion, see Fig. 3.4.1. In the dephased
limit of the dynamics, approximately equal energy of the system is
distributed to the phase and density fluctuations, and from the
conservation of energy, we conclude that the characteristic magnitude
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of phase fluctuation is given by
⟨
|ϕs,k(t)|Ʀ

⟩
∼ πƦρη

ƨKƦ
s kƦ

. Such ƥ/kƦ

dependence of
⟨
|ϕ̂s,k(t)|Ʀ

⟩
agrees with the more rigorous result in

Eq.(3.20). Therefore the spin fluctuations dominantly come from spin
waves with long wavelengths, as we have stated in Section 3.2.
Moreover, the weak dependence of spin dynamics on high momenta
contributions justifies the use of Tomonaga-Luttinger theory for
describing the dynamics. We will more carefully analyze the
dependence of distributions on the high momentum cutoff in Sec 3.4.4.

From the simple argument above, it is also clear that the spin
fluctuations coming from spin waves with momenta k have the time
scales associated with the harmonic oscillators given by ƥ

|k|cs . Again,
this rough argument agrees with the more rigorous result presented in
Eq.(3.20). Therefore, the fast dynamics is dominated by spin waves
with high momenta and slow dynamics is dominated by low momenta.
These considerations lead to the illustrative picture of Fig.3.2.2.
Furthermore, this implies that the dynamics of the magnitude of spin(
Ŝ⊥l
)Ʀ reaches a steady state around the time l

ƨcs
since spin waves with

wavelength longer than l do not affect the magnitude. This should be
contrasted with the evolution of the x component of spin which, in
principle, keeps evolving until the time scale of ∼ L

ƨcs
(see Fig.3.2.4).

The strength of interactions and correlations are associated with
Luttinger parameter, Ks. Ks influences the spin fluctuations

⟨
|ϕs,k(t)|Ʀ

⟩
at all wavelength, and

⟨
|ϕs,k(t)|Ʀ

⟩
depends on Ks as ƥ/KƦ

s for a fixed
density. As is expected, in the limit of the weak interaction
corresponding to large Ks, the amplitude of spin fluctuation decreases.
In Fig. 3.4.2, we have plotted the time evolution of the joint
distributions for L/ξs = ƦƤƤ, l/ξs = ƨƤ, and Ks = ƦƤ, ƦƩ and ƧƤ. For
larger Ks, we see that the spin fluctuations get quickly suppressed.
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Figure 3.4.3: The dynamics of the average value of the magnitude of spins,√⟨(
Ŝ⊥l (t)

)Ʀ⟩, and the average of the x component of spins
⟨
Ŝxl (t)

⟩
. Here y

axis is scaled such that the initial values take the maximum value of ƥ. Here
we took L/ξs = ƦƤƤ, Ks = ƦƤ and the integration lengths l/ξs = ƦƤ, ƧƤ, ƨƤ.
The magnitude of spins decays only due to the spin waves with wavelengths
shorter than the integration length l, and the decay of the magnitude stops
around the time scale of ∼ l

ƨcs . On the other hand, all spin waves contribute
to the evolution of the of the x component of magnetization, which keeps
decaying[20].

3.4.3 Dynamics of the expectation value of the magnitude
of spin

⟨(
Ŝ⊥l (t)

)Ʀ⟩
In order to illustrate the dynamics of the Ramsey sequence further, it
is helpful to study the dynamics of the expectation value of the
squared transverse magnitude, given by

⟨(
Ŝ⊥l (t)

)Ʀ⟩.
In Fig.3.4.3, we plot the evolution of

√⟨(
Ŝ⊥l (t)

)Ʀ⟩ with Ks = ƦƤ,
L/ξs = ƦƤƤ and l/ξs = ƦƤ, ƧƤ, ƨƤ. We also plotted

⟨
Ŝxl (t)

⟩
along with√⟨(

Ŝ⊥l (t)
)Ʀ⟩ with the same parameters. It is easy to verify that

⟨Sxl (t)⟩ is independent of integration length l[20]. As we have discussed
in the previous section,

√⟨(
Ŝ⊥l (t)

)Ʀ⟩ reach the steady states at the
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time scale of l
ƨcs

with finite values, while
⟨
Ŝxl (t)

⟩
keeps decaying for

much longer time.
It is interesting to ask if the long time limit of

√⟨(
Ŝ⊥l (t)

)Ʀ⟩ for
sufficiently large integration length l attains the value which
corresponds to the one expected from the randomization of spin
patches of size ξs. At low energies, spins within the length ∼ ξs are
aligned in the same direction, but spin waves can randomize the
direction of the spin for each of l/ξs patches. Since the magnitude of
spin within ξs is ξsρ, if the patches are completely randomized, the
result of the random walk predicts that

√⟨(
Ŝ⊥l
)Ʀ⟩ ∼ (ξsρ)Ʀ(l/ξs). We

will see below that, due to the properties of correlations in one
dimension, the integrated magnitude of spin

√⟨(
Ŝ⊥l
)Ʀ⟩ never attains

this form, albeit a similar expression is obtained (see Eq.(3.26)).
Moreover, we identify the integration length l̃ which separates the
”spin diffusion regime” and the ”spin decay regime” by finding the
decaying length scale for

√⟨(
Ŝ⊥l
)Ʀ⟩.

The results for the long time limit of
⟨(
Ŝ⊥l (t)

)Ʀ⟩ can be analytically
computed. Following similar steps leading to Eq.(3.17), we find

⟨(
Ŝ⊥l (t)

)Ʀ⟩
=

⟨∣∣∣∣∫ drρeiϕ(s,r)
∣∣∣∣Ʀ⟩

=
Ʀ∏
i=ƥ

∫ l/Ʀ

−l/Ʀ
ρdri exp

(
− ƥ
Ʀ

∑
k̸=Ƥ

ξ{ri}s,k (ξ{,ri}s,k )∗

)
.

Here ξ{ri}s,k = |Cs,k|(eikrƥ − eikrƦ). We introduce dimensionless variables
r′i = ri/l, k′ = kl and the integration over k in the exponent can be
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carried out as∫
dk′

L
Ʀπl

ξ{r
′
i}

s,k′ (ξ
{,r′i}
s,k′ )

∗ =

Ʀ
π

∫ k′c

k′min

dk′
(

ƥ
ρηl

cosƦ(|k|cst) +
πƦρηl
k′ƦKƦ

s
sinƦ(|k|cst)

)
× sinƦ

(
r′ƥ − r′Ʀ

Ʀ
|k′|
)

≈ k′c
Ʀρπlη

+
πηρl
ƦKs

|r′ƥ − r′Ʀ|
∫ ∞

Ƥ
dy
sinƦ(y)
yƦ

.

In the second line, we approximated cosƦ(|k|cst) ≈ sinƦ(|k|cst) ≈ ƥ/Ʀ,
which is appropriate for long time. In the last line, we extended the
upper limit of the integration for the second term to ∞ and the lower
limit to Ƥ. The former is justified because we know that high
momentum contribution is suppressed by ƥ/kƦ, and the latter is
justfied because we also know low momenta excitations with
wavelengths larger than l do not affect Ŝ⊥l . Since

∫∞
Ƥ dy sin

Ʀ(y)
yƦ = π/Ʀ, we

find, in the long time limit,

⟨(
Ŝ⊥l (t = ∞)

)Ʀ⟩
/
⟨(
Ŝ⊥l (t ≈ Ƥ)

)Ʀ⟩
= Ʀ

{
ƥ
lƤ
−
(
ƥ
lƤ

)Ʀ

(ƥ− exp(−lƤ))
}
, (3.26)

where we expressed the result as a ratio of the asymptotic value and
the value at shortest time scale of the theory given by t ∼ ƥ/μ.
lƤ = πƦηρl

ƬKƦ
s

is the dimensionless integration length that controls the
value of

⟨(
Ŝ⊥l
)Ʀ⟩ in the long time limit. As soon as lƤ becomes larger

than ƥ, the long time value of
⟨(
Ŝ⊥l
)Ʀ⟩ quickly approach the long

integration limit, ∝ Ʀ
{

ƥ
lƤ
−
(

ƥ
lƤ

)Ʀ}
. Therefore, lƤ ≈ ƥ separates the

”spin diffusion regime” and the ”spin decay regime.”
An intuition behind the expression for lƤ can be explained through

the following heuristic argument. The system enters the spin decay
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regime when the spins within the integration length l rotates by Ʀπ
across l. The angle difference between the spins at r = Ƥ and r = l in
the long time limit is roughly given by

Δχ = ƥ√
L

∑
k λrsk

√⟨
|ϕ̂s,k|Ʀ

⟩
mean

sin(kl) where
⟨
|ϕ̂s,k|Ʀ

⟩
mean

is the

characteristic magnitude of
⟨
|ϕ̂s,k(t)|Ʀ

⟩
in Eq.(3.20), which is given by

the half of the maximum magnitude of
⟨
|ϕ̂s,k(t)|Ʀ

⟩
. Now the

expectation of magnitude ⟨(Δχ)Ʀ⟩ over the quantum fluctuations
represented by λrsk can be computed, and it yields ⟨(Δχ)Ʀ⟩ ≈ πƦηρl

ƨKƦ
s

.
When

√
⟨(Δχ)Ʀ⟩ becomes of the order of ƥ, the system enters the spin

decay regime. This estimate gives the boundary between the two
regimes lƤ = πƦηρl

ƬKƦ
s
≈ ƥ apart from an unimportant numerical factor.

It is notable that the Eq. (3.26) approaches the random walk
behavior ∝ (ξsρ)Ʀ(l/ξs) very slowly, i.e. in an algebraic fashion.
Therefore, even in the steady state, the system retains a strong
correlation among spins. Moreover, Eq. (3.26) in the limit of lƤ → ∞
is not just the random walk value, but is proportional to Ks, which
measures the strength of fluctuations.

The calculation above shows that the spin diffusion regime and the
spin decay regime are separated at the integration length scale of
l̃ ≈ ƬKƦ

s
πƦηρ . This length scale is nothing but the correlation length of

spins in the long time limit. The calculation of the spin correlation
length, for example, between Sx(r) and Ŝx(r′) can be done similarly to
the calculation of

⟨(
Ŝ⊥l
)Ʀ⟩. The result in the long time limit is

⟨
Ŝx(r)Ŝx(r′)

⟩
≈ C

ρƦ

Ʀ
e−|r−r′|/̃l, (3.27)

where C = e−kc/(ƨπρη) is a small reduction of the spins due to the
contributions from high energy sector. Thus, one expects qualitatively
different behaviors of distribution functions for integration lengths
l < l̃ and l > l̃.
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3.4.4 Momentum cut-off dependence

The description of dynamics presented above uses the low energy
effective theory. In order to confirm the self-consistency of our
approach, we check that the distributions of spins are not strongly
affected by high energy physics, i.e. they weakly depend on high
momentum cut-off. We have seen an indication that this is indeed the
case through the weak fluctuations of phases for large k,⟨
|ϕ̂s,k|

⟩
∝ ƥ/kƦ, in Sec 3.4.2.

First of all, we analyze the high momentum cut-off kc ∼ Ʀπ/ξs
dependence of the average value of Ŝxl . From the discussion in
Sec 3.4.2, it is straightforward to obtain that(here we ignore k = Ƥ
contribution)

⟨
Ŝxl
⟩
=

∫ l/Ʀ

−l/Ʀ

ρ
Ʀ
dx
⟨
eiϕ(x) + e−iϕ(x)⟩

=ρl exp

(
− ƥ
Ʀ

∑
k̸=Ƥ

|Cs,k|Ʀ
)
,

∑
k̸=Ƥ

|Cs,k|Ʀ =
∫ kc

−kc
dk
(
cosƦ(|k|cst)

ƨπρη
+

πρη
ƨkƦKƦ

s
sinƦ(|k|cst)

)
≈ kc
Ʀπρη

+
ρcstη

(ƦKs/π)Ʀ
, (3.28)

where in the last line, we took the long time limit t ≫ ξs/cs [20]. In
this limit, only the first term in Eq.(3.28) depends on the cutoff kc,
and moreover, the cutoff dependence is independent of time. The
effect is to reduce the value of

⟨
Ŝxl
⟩

through the multiplication of a
number close to one in the weakly interacting limit. For example, if
we take kc = Ʀπ/ξc, then the cut-off dependent term reduces the value
by multiplying exp

(
− kc

ƨπρη

)
≈ e−ƥ/(ƨKs) ≈ ƥ.

In a similar fashion, higher moments of spin operators can be
shown to have a weak dependence on the cutoff momentum kc, as long
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as the integration length is much larger than the healing length,
l/ξs ≫ ƥ. In this limit, m moments of, for example, Ŝxl is reduced by
exp
(
−m kc

ƨπρη

)
. Therefore, the full distribution function is simply

reduced by the multiplication of a number close to one
exp
(
− kc

ƨπρη

)
≈ e−ƥ/(ƨKs) ≈ ƥ in the weakly interacting regime. This

gives the self-consistency check of our results in Sec 3.4.2

3.5 Dynamics of Full Distribution Function in
the presence of mixing between spin and charge
degrees of freedom

In this section, we extend the analysis in Sec 3.4 to a more general
case, in which spin and charge degrees of freedom mix. We will see
that the distribution functions even for this more general case have
essentially the same structure as in Eq. (3.21), and are described by
spin waves with fluctuations whose amplitude is determined by the
fluctuations of phase

⟨
|ϕ̂s,k|Ʀ

⟩
. One important difference from the

decoupling case is the dependence of spin distributions on the initial
temperature of the system. The thermal excitations are present in the
charge degrees of freedom in the initial state, and such thermal
fluctuations increase the value of

⟨
|ϕ̂s,k|Ʀ

⟩
through the coupling

between spin and charge during the evolution.

3.5.1 Hamiltonian and initial state

In a generic system of two component bosons in one dimension, spin
and charge degrees of freedom couple through the mixing Hamiltonian
in Eq.(3.7). Yet, Hamiltonian in Eq.(3.4) is still quadratic and it can
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be diagonalized. We define new operators ϕ̂ƥ, ϕ̂Ʀ, n̂ƥ, n̂Ʀ by(
ϕ̂ƥ

ϕ̂Ʀ

)
=

(
cos κ sin κ
− sin κ cos κ

)( √
scϕ̂c

ϕ̂s

)
, (3.29)(

n̂ƥ
n̂Ʀ

)
=

(
cos κ sin κ
− sin κ cos κ

)(
ƥ√
sc
n̂c

n̂s

)
. (3.30)

Mixing angle κ and scaling parameter sc are chosen so that the
Hamiltonian is written in the following diagonal form

H = Hƥ + HƦ, (3.31)

Hƥ =

∫ L/Ʀ

−L/Ʀ
dr

ρ
Ʀmƥ

(∇ϕ̂ƥ(r))
Ʀ + gƥ(n̂ƥ)

Ʀ,

HƦ =

∫ L/Ʀ

−L/Ʀ
dr

ρ
ƦmƦ

(∇ϕ̂Ʀ)
Ʀ + gƦ(n̂Ʀ)

Ʀ.

Explicitly, κ and sc are given by

sc =

gmixρ
Ʀmc

+ gsg
ϕ
mix

gcg
ϕ
mix +

gmixρ
Ʀms

, tan κ =
−κƤ ±

√
κƦƤ + ƨ

Ʀ
,

κƤ =
scgc − gs√
scgmix

=

ρ
Ʀmc

− sc ρ
Ʀms

gϕmix
√
sc

,

where ± in the expression of tan κ is + when κƤ > Ƥ and − when
κƤ < Ƥ. We defined κ such that κ = Ƥ corresponds to decoupling of
charge and spin, i.e. to gmix = Ƥ and gϕmix = Ƥ in Eq.(3.7). Parameters
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gƥ, gƦ,
ρ

Ʀmƥ
and ρ

ƦmƦ
are given by

gƥ = scgc +
√
sc tan κgmix,

gƦ = gs −
√
sc tan κgmix,

ρ
Ʀmƥ

=
ρ

Ʀmcsc
+ tan κ

gϕmix√
sc
,

ρ
ƦmƦ

=
ρ
Ʀms

− tan κ
gϕmix√
sc
.

In the weakly interacting systems which we study in this chapter,
Luttinger parameters Ki and sound velocities ci are determined for
each Hamiltonian Hi, i =↑, ↓, c, s, ƥ, Ʀ through

Ki = π
√ ρ

Ʀmigi
, ci =

√
ρgi
mi

. (3.32)

At finite temperature, the state before the first π/Ʀ pulse contains
excitations, and these excitations are carried over to the charge
degrees of freedom after the pulse. Pulse only acts on the spin degrees
of freedom, and the local sum density of spin-up and down is left
untouched as long as the pulse is applied in a short time compared to
the inverse of typical excitation energies, β = ƥ/(kBT). In other words,
the local density fluctuation of spin-up, n̂↑(r), before π/Ʀ pulse is
converted to the sum of the local density fluctuation of spin-up and
spin-down, n̂↑(r) + n̂↓(r) after π/Ʀ pulse. In this strong pulse limit,
then, the distribution of n̂↑(r) before π/Ʀ pulse is the same as the
distribution of n̂↑(r) + n̂↓(r) after π/Ʀ pulse.

The distribution of the local density for spin-up atoms before π/Ʀ
pulse is determined by the density matrix for spin-up given by e−βH′

↑ ,
where in the weak interaction regime we have (see Eq.(3.4))

H′
↑ =

∫ L/Ʀ

−L/Ʀ
dr
[
Ʀρ
Ʀm↑

(∇ϕ̂↑(r))
Ʀ + g↑↑(n̂↑(r))

Ʀ
]
.
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Then, the density matrix which produces the distribution of
n̂↑(r) + n̂↓(r) required above is given by e−βHc↑ where

H↑c =
∫ L/Ʀ
−L/Ʀ dr

[
Ʀρ
Ʀm↑

{
(∇ϕ̂↑(r) +∇ϕ̂↓(r))/Ʀ

}Ʀ
,

+g↑↑(n̂↑(r) + n̂↓(r))Ʀ
]

=
cc↑
Ʀ

∫ L/Ʀ
−L/Ʀ dr

[
Kc↑
π (∇ϕ̂c)

Ʀ + π
Kc↑

n̂Ʀc
]
. (3.33)

where Kc↑ =
π
ƨ

√
ρ

m↑g↑↑
and cc↑ =

√
Ʀρg↑↑
m↑

.
The initial state for spins is determined by the π/Ʀ pulse, and we

obtained the state in Eq.(3.12). Then, the complete initial density
matrix after the first π/Ʀ pulse is given by

ρ̂Ƥ = |ψƤ⟩⟨ψƤ| ⊗ e−βHc↑/Tr
(
e−βHc↑

)
. (3.34)

This density matrix evolves in time as ρ̂(t) = e−itH ρ̂Ƥe
itH. Since we

assume that the preparation of the initial state is done through a
strong, short pulse, the spin and charge degrees of freedom are
unentangled in the initial state.

3.5.2 Time evolutions of operators

In order to calculate the distribution function of Ŝθl , we again start
from the calculation of mth moments, Tr

(
ρ̂(t)

(
Ŝθl
)m). Evaluation of

moments can be done through a similar technique used in Sec 3.4.2.
In the following, we describe convenient, time-dependent operators

γs,k(t) and γc,k(t) used to evaluate spin operators such as eiϕ̂s,k . The first
operator resides in the spin sector and it is again the annihilation
operator of the initial spin state such that Trγs,k(Ƥ)ρ̂Ƥ = Ƥ. This
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operator is given in Eq. (3.15), which is

γs,k(t) = e−itHγs,k(Ƥ)e
itH,(

γ†s,−k(Ƥ)
γs,k(Ƥ)

)
=

 ƥ√
ƥ−ƨ|Wk|Ʀ

−ƦWk√
ƥ−ƨ|Wk|Ʀ

−ƦWk√
ƥ−ƨ|Wk|Ʀ

ƥ√
ƥ−ƨ|Wk|Ʀ

( b†s,−k

bs,k

)
,

with ƦWk =
ƥ−αk
ƥ+αk

and αk = |k|Ks
πρη as before. The second operator is the

operator of charge degrees of freedom, and it is given by

γc,k(t) = e−itHγc,k(Ƥ)e
itH,

γc,k(Ƥ) = bc↑,k.

where bc↑,k is an annihilation operator for the elementary excitations
in Hc↑. Since γs,k(t) and γc,k(t) commute at t = Ƥ, they commute at any
time t. We will drop the time dependence of γa,k(t) in the notation
from now on.

From the expression of initial density matrix ρ̂Ƥ in Eq. (3.34), it is
easy to check that the density matrix at time t given by
ρ̂(t) = e−itH ρ̂Ƥe

itH can be written as the tensor product of the density
matrix of operators γs,k(t) and that of γc,k(t). This is because ρ̂Ƥ is a
tensor product of the density matrices of γs,k(t = Ƥ) and that of
γc,k(t = Ƥ). This structure of the density matrices at time t allows the
independent evaluation of γs,k(t) and γc,k(t) operators, and it is
advantageous to express spin operators in terms of these operators.

As we show in the Appendix 3.9.2, we can write ϕ̂s,k in terms of
γc,k(t) and γs,k(t) as follows.

ƥ√
L
ϕ̂s,k = C∗

s,kγ
†
s,−k + Cs,kγs,k + C∗

c,kγ
†
c,−k + Cc,kγc,k, (3.35)

where explicit expression of Cs,k and Cc,k are given by
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Cs,k = i
√

ƥ
ƦLρη

× (cosƦ θ cos(cƦ|k|t) + sinƦ θ cos(cƥ|k|t)

−i
Ks

αk

{
cosƦ θ sin(cƦ|k|t)

KƦ
+

sinƦ θ sin(cƥ|k|t)
Kƥ

})
,

Cc,k = cos θ sin θ
√ π

ƦL|k|scK̃c↑

×
(
i {cos(cƥ|k|t)− cos(cƦ|k|t)} − K̃c↑

{
sin(cƦ|k|t)

KƦ
− sin(cƥ|k|t)

Kƥ

})
,

(3.36)

where K̃c↑ = Kc↑/
√
sc.

Using Eq.(3.35), we find an expression for (Ŝθl )m in terms of γa,k
with a = s, c as follows

(Ŝθl )
m =

m∏
i=ƥ

∫ l/Ʀ

−l/Ʀ
dri

ρ
Ʀ

∑
{si}

ei
∑

k ̸=Ƥ(ξ
∗
s,kγ

†
s,k+ξs,kγs,k)

×ei
∑

k̸=Ƥ(ξ
∗
c,kγ

†
c,k+ξc,kγc,k)ei(

∑
i si)ϕs,Ƥ/

√
Le−i(

∑
i si)θ,

where ξa,k = (
∑m

i sie
irik)Ca,k. In the following, we separately evaluate

three contributions; k = Ƥ component given by ei(
∑

i si)ϕs,Ƥ/
√
L; the charge

component of k ̸= Ƥ given by ei
∑

k̸=Ƥ(ξ
∗
c,kγ

†
c,k+ξc,kγc,k); the spin component of

k ̸= Ƥ given by ei
∑

k̸=Ƥ(ξ
∗
s,kγ

†
s,k+ξs,kγs,k).

k = Ƥ contribution

The initial state of k = Ƥ spin sector in Eq.(3.12) as well as that of the
charge sector in Eq. (3.33) both have a Gaussian form so that
calculation of the trace Tr

{
ei(
∑

i si)ϕs,Ƥ/
√
L ρ̂(t)

}
is straightforward. We
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leave the details to the Appendix 3.9.3, and the result is

⟨
ei(
∑

i si)ϕs,Ƥ/
√
L
⟩
= exp

−

(∑
i

si

)Ʀ
⟨
ϕƦ
s,Ƥ

⟩
t

ƦL


⟨
ϕƦ
s,Ƥ

⟩
t
=

ƥ
Ʀρη

+

(
sinƦ θ

πcƥ
Kƥ

+ cosƦ θ
πcƦ
KƦ

)Ʀ ρη
Ʀ
tƦ

+ sinƦ θ cosƦ θ
(
πcƥ
Kƥ

− πcƦ
KƦ

)Ʀ K̃c↑

πcc↑β
tƦ. (3.37)

k ̸= Ƥ, spin sector

This calculation is analogous to Eq.(3.17) and the result can be
directly read off from Eq.(3.17), and it is

⟨
ei
∑

k̸=Ƥ(ξ
∗
s,kγ

†
s,k+ξs,kγs,k)

⟩
= exp

(
− ƥ
Ʀ

∑
k̸=Ƥ

ξ∗s,kξs,k

)
. (3.38)

k ̸= Ƥ, charge sector

We first rewrite the density matrix at time t as

ρ̂c,k̸=Ƥ(t) = e−itHe−βcc↑
∑

k̸=Ƥ |k|b
†
c↑,kbc↑,keitH/N

= e−βcc↑
∑

k̸=Ƥ |k|γ
†
c,k(t)γc,k(t)/N ,

where Nc is normalization given by Nc =

Tre−βcc↑
∑

k ̸=Ƥ |k|γ
†
c,k(t)γc,k(t) =

∏
k̸=Ƥ −ƥ/λk with λk = e−βcc↑|k| − ƥ.

Then the trace of
(
Ŝθl
)m for k ̸= Ƥ spin sector is⟨

ei
∑

k̸=Ƥ(ξ
∗
c,kγ

†
c,k+ξc,kγc,k)

⟩
= (3.39)∏

k̸=Ƥ

Tr
(
ei(ξ

∗
c,kγ

†
c,k+ξc,kγc,k)e−β|k|cc↑γ†c,kγc,k

)
/N

We can evaluate this by taking the trace in the basis of normalized
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coherent states |αk⟩ such that γc,k|αk⟩ = αk|αk⟩. The use of the identity
ƥ = ƥ

π

∫
dƦαk|αk⟩⟨αk| as well as of an important equality

eva†a =: e(ev−ƥ)a†a :[69], where : O : is a normal ordering of O, leads to

⟨
ei
∑

k ̸=Ƥ(ξ
∗
c,kγ

†
c,k+ξc,kγc,k)

⟩
=

ƥ
N
∏
k ̸=Ƥ

ƥ
π

∫
dƦαk⟨αk|ei(ξ

∗
c,kγ

†
c,k+ξc,kγc,k)e−β|k|cc↑γ†c,kγc,k|αk⟩

=
ƥ
N
∏
k ̸=Ƥ

ƥ
π

∫
dƦαke−ƥ/Ʀξ∗c,kξc,k⟨αk|eiξ

∗
c,kα∗k eiξc,kγc,k : eλkγ

†
c,kγc,k : |αk⟩

=
∏
k̸=Ƥ

e
− ƥ

Ʀ
ƥ+e

−β|k|cc↑

ƥ−e
−β|k|cc↑

ξ∗c,kξc,k
.

Full distribution function

We can summarize the results above as

⟨
(Ŝθl )

n⟩ =
∑
{si}

m∏
i=ƥ

∫
dri

ρ
Ʀ
exp

(
− ƥ
Ʀ

∑
k̸=Ƥ

ξ∗s,kξs,k

)

× exp

(
− ƥ
Ʀ

∑
k̸=Ƥ

Mc,kξ∗c,kξc,k

)
exp

− ƥ
Ʀ

(∑
i

si

)Ʀ
⟨
ϕƦ
s,Ƥ

⟩
t

L

 e−i(
∑

i si)θ

(3.40)

Here, Mc,k =
ƥ+e−β|k|cc↑

ƥ−e−β|k|cc↑
. As before, we introduce the auxiliary

variables to separate spatial integrations over ri. We can combine
ξ∗s,kξs,k and Mc,kξ∗c,kξc,k so that we only need to introduce three sets of
variables, λƥ,s,k, λƦ,s,k, λƤ for Hubbard-Stratonovich transformation.
Summing over {si} simplifies the result, leading to the following
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Figure 3.5.1: Time evolution of the joint distribution function Px,y(α, β)
for the system size L/ξs = ƨƤƤ, the spin Luttinger parameter Ks = ƦƤ
and integration length l//ξs = ƦƤ in the presence of mixing between the
spin and charge modes. For a), the interaction strength ratio is taken to be
gc : gs : gmix = ƥ : ƥ : Ƥ.ƥ, and for b), gc : gs : gmix = ƥ : ƥ : Ƥ.Ƨ. Time is measured
in units of ξs/cs where cs is the spin sound wave velocity. Here axes are scaled
such that the maximum value of α and β are ƥ. With increasing strength of
mixing, the large initial temperature affects the spin dynamics at earlier time
more strongly.
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expression for the full distribution function

Pθl (α) =
∏

k

∫ π
−π

dλθsk
Ʀπ

∫∞
Ƥ λrske−λƦrsk/Ʀdλrsk,

× δ
(
α − ρ

∫ l/Ʀ
−l/Ʀ dr cos

[
χ(r, {λjsk})− θ

])
χ(r, {λjsk}) =

∑
k

√
⟨|ϕ̂s,k|Ʀ⟩

L λrsk sin(kr+ λθsk),⟨
|ϕ̂s,k|

Ʀ
⟩
/L = |Cs,k|Ʀ + ƥ+e−β|k|cc↑

ƥ−e−β|k|cc↑
|Cc,k|Ʀ, k ̸= Ƥ. (3.41)

The last line can be confirmed by directly computing
⟨
|ϕ̂s,k|Ʀ

⟩
, using

the expression in Eq. (3.35). The expression for
⟨
|ϕs,Ƥ|Ʀ

⟩
is given by

Eq. (3.37). As before, the joint distributions as well as the
distributions of squared transverse magnitude can be obtained
through the same procedure as in Sec 3.4.2.

The spin distribution in the presence of mixing between spin and
charge degrees of freedom resembles the one in the absence of such
mixing, and the only change is the additional contributions to phase
fluctuations coming from the thermal excitations, represented by
ƥ+e−β|k|cc↑

ƥ−e−β|k|cc↑
|Cc,k|Ʀ in Eq. (3.41). |Cc,k| is proportional to sinƦ κ as one can

see from Eq. (3.36). Thus, for weak coupling of κ ∼ Ƥ, the
contribution is diminished by a factor of κƦ.

In the experiment by Widera et al., they used RbƬƫ in the presence
of Feshbach resonance. They employed the theory which assumes the
absence of mixing between spin and charge degrees of freedom to
analyze the decay of the Ramsey fringes. The ratio of interaction
strengths in their experiment can be roughly estimated as
gc : gs : gmix ≈ Ƨ.ƪƪ : Ƥ.Ƨƨ : Ƥ.Ƥƪ which leads to the value of κ ≈ Ʀ× ƥƤ−Ʀ.
Therefore, the thermal contributions are diminished by about four
order of magnitude and thus, their assumption of decoupling between
spin and charge is justified.

In Fig.3.5.1, we have plotted the evolution of the joint distribution
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Split

hold for t

release

Interfere

Figure 3.6.1: The interference of two quasi-condensates that are created
by splitting one single quasi-condensate. After the splitting, the quasi-
condensates are held for time t and then the transverse confinement is re-
leased. The two condensates interfere with each other after the release and
the position of constructive interference is denoted by solid line in the figure.
This interference pattern contains the information about the local phase dif-
ference between the two quasi-condensate at the time of release.

functions for different strength of the coupling gmix at a relatively large
initial temperature kBT = Ƥ.ƨ× Ʀπcc↑/ξs where Ʀπcc↑/ξs is
approximately the high energy cut-off of Tomonaga-Luttinger theory.
Here we took the system size L/ξs = ƨƤƤ, the Luttinger parameter
Ks = ƦƤ, integration length l = ƦƤξs. For Fig.3.5.1 a), the ratio of
interaction is taken to be gc : gs : gmix = ƥ : ƥ : Ƥ.ƥ, and for For Fig.3.5.1
b), gc : gs : gmix = ƥ : ƥ : Ƥ.Ƨ. One can see that with increasing strength
of mixing, the large initial temperature affects the spin dynamics at
earlier time more strongly. For comparison, also see Fig. 3.2.4.
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3.6 Interference of two one-dimensional con-
densates

3.6.1 Dynamics of interference pattern

The dynamics of Ramsey sequence considered in this chapter can be
directly mapped to the dynamics of interference pattern of split one
dimensional quasi-condensate[146]. More specifically we consider the
following sequence of operations(see Fig.3.6.1). First, we prepare
one-component 1D quasi-condensate in equilibrium. At time t = Ƥ,
the quasi-condensate is quickly split along the axial direction, and the
resulting two quasi-condensates are completely separated. The two
quasi-condensates freely evolve for a hold time of t, and they are
released from transverse traps to observe the interference pattern
between these two quasi-condensates[60].

Such dynamics can be mapped to the dynamics of the Ramsey
interferometer studied in this chapter. The splitting of a
quasi-condensate corresponds to the initial π/Ʀ pulse in the Ramsey
sequence. If we call one of the quasi-condensates to be L for left and
another to be R for right, L(R)-condensate corresponds to spin-up
(spin-down) component. Therefore, the ”spin” variable corresponds to
the difference of variables such as phases and densities for the two
quasi-condensates, and ”charge” variable corresponds to the sum of
variables. For example, the local phase difference ϕ̂L(r)− ϕ̂R(r)
between L-condensate and R-condensate plays the role of the ”spin
phase,” denoted by ϕ̂s(r) in the main text.

Immediately after the splitting, the phases of the two
quasi-condensates at the same coordinate along the axial direction are
the same. We see that the splitting effectively amounts to the π/Ʀ
pulse in the Ramsey sequence. The interference of two
quasi-condensates measures the local phase difference at time t. If the
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phases of L and R condensates are the same, the interference pattern
has a peak in the middle of the two condensates, which we call x = Ƥ.
Therefore, the deviation of the peak from x = Ƥ measures the local
phase difference ϕ̂s(r)[124], which yields the information about
Ŝx(r) = ρ cos(ϕ̂s(r)) as well as Ŝy(r) = ρ sin(ϕ̂s(r)) studied in previous
sections.

The low energy effective Hamiltonian of two quasi-condensates after
splitting is given by

H = HL + HR, (3.42)

HL =

∫ L/Ʀ

−L/Ʀ
dr
[ ρL
Ʀm

(∇ϕ̂L(r))
Ʀ +

g
Ʀ
(n̂L(r))Ʀ

]
,

HR =

∫ L/Ʀ

−L/Ʀ
dr
[ ρR
Ʀm

(∇ϕ̂R(r))
Ʀ +

g
Ʀ
(n̂R(r))Ʀ

]
.

where we assumed weakly interacting bosons with a possible density
difference ρR − ρL ̸= Ƥ between the two condensates. Here and in the
following, we consider the rotating frame and ignore the chemical
potential difference g/Ʀ(ρƦR − ρƦL) between left and right condensates
arising from interactions.

The interference pattern measures the phase difference ϕ̂L − ϕ̂R. As
before, we describe the system in terms of the ”spin” variables that
are the difference of left and right condensates and ”charge” variables
that are the sum of the two. Using the variables ϕ̂s = ϕ̂R − ϕ̂L,
ϕ̂c = ϕ̂R + ϕ̂L, n̂s = (n̂R − n̂L)/Ʀ, n̂c = (n̂R + n̂L)/Ʀ , we find the
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Hamiltonian of the system to be

H = Hs + Hc+ Hint (3.43)

Hs =

∫
dx
[
ρR + ρL
Ƭm

(∂xϕ̂s)
Ʀ + gn̂Ʀs

]
, (3.44)

Hc =

∫
dx
[
ρR + ρL
Ƭm

(∂xϕ̂c)
Ʀ + gn̂Ʀc

]
, (3.45)

Hint =

∫
dx
[
ρR − ρL
ƨm

∂xϕ̂c∂xϕ̂s

]
. (3.46)

Therefore, when the splitting makes two identical quasi-condensates
with equal density, ”spin” and ”charge” degrees of freedom decouple
and we can use a simpler theory derived in Sec 3.4.2. On the other
hand, when the splitting makes two condensates with unequal
densities, more general theory of Sec 3.5 needs to be employed. In any
case, the full time evolution of the distributions of interference
patterns can be obtained, which in principle can be compared with
experiments.

It is notable that the mixing of the ”spin” and ”charge” degrees of
freedom for small density difference ρR − ρL is not ”small,” in the sense
that the mixing angle κ defined in section 3.5 takes the maximum
value π/ƨ. The spin decoupling in the limit of ρR − ρL → Ƥ is recovered
not by taking κ → Ƥ, but rather, by taking the time at which the
effect of the coupling takes place to infinity. This is most explicitly
shown in Eq. (3.36) where the charge contributions of fluctuations go
to zero as cƥ → cƦ which is attained in the limit ρR − ρL = Ƥ.

3.6.2 Interference patterns in equilibrium

The techniques to calculate the full distribution functions presented in
previous sections are directly applicable to also obtaining a simple
form of the full distribution functions of the interference patterns
between two independent, thermal quasi-condensates. This problem

155



has been previously analyzed in theory[51, 150] as well as in
experiments[17, 61].

We consider the preparation of two independent one dimensional
quasi-condensates. If they are prepared by cooling two independent
quasi-condensates, the temperature of the left quasi-condensate TL

and that of right quasi-condensate TR are generically different. The
density matrix of the initial state is described by ρ̂Ƥ = e−(βLHL+βRHR)

where βa = ƥ/(kBTa) with a = L,R. It is important to note that the
constant shift of phase ϕa → ϕa + θac does not change the energy of
the system, so that for the average over thermal ensemble one has to
integrate over θac. Physically, this simply means that the phases of
independent condensates are random. Then the only interesting
distribution here is the distribution of the interference contrast
[51, 61, 69, 124] given by,

ĈƦ =

∣∣∣∣∣
∫ l/Ʀ

−l/Ʀ
e−iϕ̂s(r)

∣∣∣∣∣
Ʀ

dr (3.47)

which corresponds to, in spin language, the squared transverse
magnitude of the spin

(
Ŝ⊥l
)Ʀ. The analysis of the evaluation of

distributions in the density matrix of thermal equilibrium state in
Sec 3.5 can be directly extended to this case, and we obtain the
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distribution

P⊥l (γ) =
∏
k

∫ π

−π

dλθsk
Ʀπ

∫ ∞

Ƥ
λrske−λƦrsk/Ʀdλrsk

× δ

(
γ −

∣∣∣∣∣ρ
∫ l/Ʀ

−l/Ʀ
dreiχ(r,{λjsk})

∣∣∣∣∣
Ʀ)

, (3.48)

χ(r, {λjsk}) =
∑
k

√√√√⟨|ϕ̂s,k|Ʀ
⟩

L
λrsk sin(kr+ λθsk),

⟨
|ϕ̂s,k|

Ʀ
⟩
=
ƥ+ e−βL|k|cL

ƥ− e−βL|k|cL

π
Ʀ|k|KL

+
ƥ+ e−βR|k|cR

ƥ− e−βR|k|cR

π
Ʀ|k|KR

, (3.49)

where ca and Ka, a = L,R are the sound velocity and Luttinger
parameters of left and right quasi-condensate.

3.7 Prethermalization of one-dimensional con-
densates

The equilibration and relaxation dynamics of generic many-body
systems are fundamental open problems. Among possible processes, it
has been suggested that the time evolution of some systems prepared
in non-equilibrium states results in the reaching of quasi-steady states
within much shorter time than equilibration time. This quasi-steady
state is often not a true equilibrium state, but rather it is a dephased
state, and true equilibration takes place at much longer time scale.
Yet in some cases, the physical observables in the qausi-steady states
take the value corresponding to the one in thermal equilibrium at
some effective temperature Teff, displaying disguised ”thermalized”
states. Such surprising non-equilibrium phenomena, called
prethermalization, have been shown to occur in quantum as well as
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classical many-body systems[11, 15, 107].
In particular, integrable one dimensional systems are known not to

thermalize and indeed, experiments in Ref. [83] have observed an
exceedingly long equilibration time. Yet even in this extreme case, we
suggest in this section that many-body one dimensional systems can
reach disguised ”thermalized” states through prethermalization
phenomena within a short time.

The sudden splitting of one dimensional condensates considered in
the previous Sec 3.6 is a particular example of dynamics in which slow
equilibration is expected because the system essentially consists of
uncoupled harmonic oscillators in the low energy description. We
demonstrate that the quasi-condensates reach a long-time transient
state after the sudden splitting, and show that the distribution of the
interference contrast amplitudes of the two non-equilibrium
quasi-condensates are given by that of two equilibrium
quasi-condensates at some effective temperature Teff.

First we give a heuristic argument for the prethermalization
phenomena and derive the estimate of Teff. Long time after the
splitting, the position of the interference peak becomes completely
random, and yields no information. Therefore, we focus on the
interference contrasts ĈƦ in Eq.(3.47), which, translated to the
language of spin dynamics, is the squared transverse magnitude of the
spin

(
Ŝ⊥l
)Ʀ. The interference contrast of the split condensates after a

long time is determined by the ”average” phase fluctuations present in
the system. In the dephased limit, such fluctuations are determined
by the total energy present in each mode labeled by momenta k. First
we suppose that the splitting process prepares two identical
quasi-condensates with the same density ρL = ρR = ρ, and consider
the case of unequal densities later. Under this circumstances, the
initial state of the phase difference is determined solely by the
splitting process (see Eq.(3.12)), and moreover the subsequent
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dynamics of the phase difference described by Eq.(3.44) decouples
from the dynamics of the sum of the densities. Therefore, here the
phase fluctuations, and thus interference contrast become independent
of the initial temperatures of the quasi-condensates.

In Sec. 3.4.2, we gave an intuitive estimate of the energy stored in
each mode in this decoupling case, and concluded that each mode
contains the energy πcsρη

ƨKs
. We remind the readers that the energy

contained in each mode is independent of momenta because the
density difference of quasi-condensates along the axial direction is
uncorrelated in the initial state beyond the spin healing length ξs for a
fast splitting process (see discussion below Eq. (3.10)). On the other
hand, the interference contrast of thermal condensates at temperature
T is determined by the thermal phase fluctuations caused by
excitations whose energy is distributed according to equipartition
theorem; each mode in the thermal condensates contains the equal
energy of kBT. Thus from this argument, we find that the interference
contrast of split condensates after a long time becomes
indistinguishable from the one resulting from thermal condensates at
temperature kBTeff = πcsρη

ƨKs
. We will show below that in fact, the full

distribution function of interference contrast becomes
indistinguishable for these two states. In the case of splitting two
dimensional condensates, equipartition of energy and existence of
”non-equilibrium temperature” was pointed out in Ref.[107].

In the following, we derive the result above through the formalism
developed in the previous sections. The distribution of the
interference contrast is determined by

⟨
|ϕ̂s,k|Ʀ

⟩
given in Eq.(3.20). In

the long time limit, we can take sinƦ(cs|k|t) ∼ cosƦ(cs|k|t) ∼ ƥ/Ʀ.
Moreover, since the interference contrast is most affected by the
excitations with small wave vectors k with αk = |k|Ks

πρη < ƥ, we can
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approximate the expression as⟨
|ϕ̂s,k|

Ʀ
⟩
≈ π

Ʀ|k|Ks

πρη
Ʀ|k|Ks

. (3.50)

On the other hand, for two quasi-condensates in thermal
equilibrium, the position of the interference peaks is again random.
The interference contrast is determined by

⟨
|ϕ̂s,k|Ʀ

⟩
given in Eq.(3.49).

Since the main contribution to the fluctuation comes from low
momenta, we approximate e−β|k|c ≈ ƥ− β|k|c. It is easy to check that
the sound velocity and Luttinger parameters for each condensate is
related to those of the difference mode (see Eqs.(3.44-3.46)) as
cL = cR = cs and KL = KR = ƦKs. Thus we obtain⟨

|ϕ̂s,k|
Ʀ
⟩
≈ Ʀ

β|k|cs
π

Ʀ|k|Ks
. (3.51)

Now the crucial observation is that our closed form expressions for
distributions of interference contrasts of both split quasi-condensates
and thermal quasi-condensates are determined solely by

⟨
|ϕ̂s,k|Ʀ

⟩
, and

they take precisely the same form in terms of
⟨
|ϕ̂s,k|Ʀ

⟩
. Moreover, the

expressions given by Eq.(3.50) and Eq.(3.51) have the same
dependence on wave vectors |k|. Therefore, the full distribution of
interference contrast of split condensates become indistinguishable
from that of thermal condensates with temperature

kBTeff ≈ πcsρη
ƨKs

=
μη
Ʀ
, (3.52)

where the second equality holds for weakly interacting bosons and the
chemical potential of one quasi-condesate is given by μ = gρ. Thus,
split one dimensional quasi-condensates indeed display the
prethermalization phenomenon.
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Figure 3.7.1: The distributions of interference contrast for steady states of
split quasi-condensates and two thermal quasi-condensates. Here x axis is
scaled such that the maximum value of interference contrast is ƥ. For the split
condensates, we plot the distribution at time t = ƪƤξs/cs for Luttinger pa-
rameter Ks = ƦƤ, system size L = ƨƤƤξs and two different integration length
l/ξs = ƧƤ, ƨƤ. The thermal quasi-condensates are for temperature πcs

Ʀξs
for the

same integration length corresponding to the effective temperature obtained in
Eq. (3.52).

In Fig. 3.7.1, we plot the interference contrast P⊥l (γ) (see Eq.(3.25))
of split condensates in a steady state at time t = ƪƤξs/cs for Luttinger
parameter Ks = ƦƤ, system size L = ƨƤƤξs and two different integration
lengths l/ξs = ƧƤ, ƨƤ. Also we plot the interference contrast of the
thermal quasi-condensates (see Eq.(3.48)) at temperature πcs

Ʀξs
for the

same integration length. This temperature corresponds to the
effective temperature obtained in Eq. (3.52). Indeed we see only a
small difference between the distributions of steady states and
thermal states for both integration lengths. The small difference
comes from the approximations made in obtaining the expressions
given by Eq.(3.50) and Eq.(3.51).

In the previous paragraphs, we assumed that the splitting prepares
quasi-condensates with identical average densities. Here we briefly
consider the case in which the splitting process prepares two
quasi-condensates with slightly different densities. In this case, the
temperature of the initial quasi-condensates affects the interference
contrast around the time scale of ξs

(cL−cR)π
≈ ~

μ(√ρL−
√ρR)

, whereas the
prethermalized, long-time transient state is reached around ~

μ
l
ξs

, where
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Figure 3.7.2: The evolution of the interference contrast ĈƦ for system size
L = ƩƤƤξs, integration length l = ƨƤξs, and the effective spin Luttinger param-
eter Ks = ƦƤ with initial temperature corresponding to the chemical potential
μ. Time is measured in units of ξs/cs. Here we took the density ρR = ƥ.Ʀρ
and ρL = Ƥ.Ƭρ. The magnitude of ĈƦ for two thermal quasi-condensates at
temperature kBT = μ is plotted as red dotted line for comparison.

l is the integration length.
These analytic arguments can be confirmed through numerical

simulations. In Fig. 3.7.2, we have plotted the evolution of the
interference contrast ĈƦ for system size L = ƩƤƤξs, integration length
l = ƨƤξs, and Luttinger parameter Ks = ƦƤ with initial temperature
corresponding to the chemical potential μ. Here we consider a
situation where the density of left quasi-condensate is different from
that of right quasi-condensate by 20% such that ρR = ƥ.Ʀρ and
ρL = Ƥ.Ƭρ where ρR(L) is the average density of the right (left)
condensate, and Ʀρ is the average density of the initial condensate
before splitting. Also for comparison we have plotted the magnitude
of interference contrast of two quasi-condensates in thermal states at
temperature given by μ. From the plot, one can observe the existence
of quasi-steady state plateau after short time. Notice that the
magnitude of ĈƦ in the steady state is larger than the value expected
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from thermalized states at the initial temperature. The subsequent
slow decrease of the interference contrast is due to the effect of
temperature in the initial state coming from the small difference of
the two quasi-condensates. Such development of the plateau at larger
value of interference contrast than the one for equilibrium state of the
initial temperature indicates the phenomenon of prethermalization.

Here we proposed the occurrence of such prethermalization within
Tomonaga-Luttinger theory. We emphasize that within
Tomonaga-Luttinger theory of low energy excitations, different modes
are decoupled and therefore no true thermalization can take place. In
realistic experimental situations, such integrability can be broken and
relaxation and thermalization process are expected to occur after a
long time dynamics. The requirement to observe the
prethermalization phenomena predicted in this theory in experiments
depends on the time-scale of other possible thermalization processes
we did not consider in this model such as the effective three-body
collisions[108, 109], relaxation of high energy quasi-particles[154], or
interactions among the collective modes through anharmonic terms
we neglected in Tomonaga-Luttinger theory[24]. When all these
processes occur at much slower time scale than the prethermalization
time-scale, which is roughly given by the integration length divided by
the spin sound velocity ∼ l/cs for decoupling case, the observation of
prethermalization should be possible. In one dimension, the dynamics
is strongly constrained due to the conservation of energy and
momentum, and therefore it is likely that the dynamics is dominated
by the modes described by Tomonaga-Luttinger theory for long time
for quasi-condensates with low initial temperatures.

Such prethermalizations are expected to occur even in higher
dimensional systems[54, 56, 68, 107]. We note that the conditions for
the experimental observations of the phenomena might be more
stringent because true thermalization processes are expected to take
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place much more quickly in two and three dimensional systems.

3.8 Conclusion

In this work, we have shown how noise captured by full distribution
functions can be used to study the dynamics of strongly correlated,
many-body system in one dimension. The analytical results of joint
distribution functions obtained in Sec 3.4.2 allow not only the simple
understanding of distribution functions from spin-wave picture, but
also an intuitive visualization of the correlation in one dimensional
system. Using this picture, we have also shown the phenomena of
prethermalization in one dimensional dynamics for the full
distribution functions that contain information about the correlation
functions of the arbitrary order.

The approach developed in this chapter can be extended to other
types of dynamics. While we focused on Ramsey type dynamics or
dynamics of interference patterns for a split quasi-condensate, we can
also change different physical parameters to induce the dynamics. For
example, it is straightforward to apply our study to the sudden
change (quench) of interaction strength[70, 71].

In this chapter, we focused on distribution functions obtained from
Tomonaga-Luttinger Hamiltonian (3.4). It is of interest to extend our
analysis to higher spins[10], and analyze them, for example, in the
presence of magnetic field[160]. Since there are more degrees of
freedom in these systems, distributions might capture the tendency
towards various phases such as ferromagnetic ordering. These
questions will be analyzed in the future works.
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3.9 Appendices

3.9.1 Distribution function of the z component of spin

In this appendix, we calculate the distribution function of Ŝzl in the
absence of the coupling between charge and spin. The extension to
the case in which the charge and spin degrees of freedom mix is
straightforward.

It is convenient to evaluate the generating function
⟨
eλŜzl
⟩

, instead
of distribution function Pzl (α). They are related by

⟨
eλŜ

z
l

⟩
=

∫ ∞

−∞
eλαPzl (α)dα. (3.53)

This equality can be checked by differentiating both sides by λ and
evaluating them at λ = Ƥ. This reproduces the implicit definition of Pzl
in Eq. (3.2).

Analogous to the calculation of mth moment of Ŝθl , we first express
Ŝzl in terms of γs,k operators defined in Eq. (3.15)

Ŝzl (r) =
∫ l/Ʀ

−l/Ʀ
dr

(∑
k̸=Ƥ

(ds,kγ†s,k + d∗s,kγs,−k)e
ikr +

ns,Ƥ√
L

)
,

ds,k =

√
|k|Ks

ƦπL
eics|k|t + ƦWke−ics|k|t√

ƥ− ƨ|Wk|Ʀ
.

Then, we can apply the trick introduced in Section 3.4.2 to obtain

⟨
eλŜ

z
l

⟩
= e

λƦ
∫ l/Ʀ
−l/Ʀ drƥdrƦ

(∑
k̸=Ƥ |ds,k|Ʀeik(rƥ−rƦ)+

⟨nƦs,Ƥ⟩
√

L

)
.

= exp

{
λƦ
(
ρηlƦ

ƨL
+
∑
k̸=Ƥ

ƨ|ds,k|Ʀ

kƦ
sinƦ(lk/Ʀ)

)}
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Then the following expression gives the distribution of Ŝzl

Pzl (α) =
ƥ

Ʀ
√

π
⟨(
Ŝzl
)Ʀ⟩ exp

(
− αƦ

ƨ
⟨(
Ŝzl
)Ʀ⟩
)
, (3.54)

where ⟨(
Ŝzl
)Ʀ⟩

=
ρηlƦ

ƨL
+
∑
k̸=Ƥ

ƨ|ds,k|Ʀ

kƦ
sinƦ(lk/Ʀ).

3.9.2 Expression for Ca,k in the presence of mixing between
charge and spin

In this section, we derive the expression of Ca,k, a = s, c in Eq. (3.36).
We first find the transformation from bs,k, bc↑,k to bƥ,k, bƦ,k. Then we
relate bƥ,k, bƦ,k and γs,k(t), γc,k(t). Combining these two transformations,
we obtain bs,k in terms of γs,k(t), γc,k(t), leading to the expression of ϕ̂s,k

in terms of γs,k(t), γc,k(t).
From the relations,

ϕi,k = −i
√

π
Ʀ|k|Ki

(b†i,k − bi,−k),

ni,k =

√
|k|Ki

Ʀπ
(b†i,k + bi,−k),

b†i,k = iϕi,k

√
|k|Ki

Ʀπ
+ ni,k

√
π

Ʀ|k|Ki
,

along with Eq. (3.29), it is straightforward to obtain
b†c↑,−k

bc↑,k
b†s,−k

bs,k

 = D


b†ƥ,−k

bƥ,k
b†Ʀ,−k

bƦ,k

 ,

where
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D =
ƥ
Ʀ
×

cos κ

(√
K̃c↑
Kƥ

+
√

Kƥ
K̃c↑

)
cos κ

(
−
√

K̃c↑
Kƥ

+
√

Kƥ
K̃c↑

)
− sin κ

(√
K̃c↑
KƦ

+
√

KƦ
K̃c↑

)
− sin κ

(
−
√

K̃c↑
KƦ

+
√

KƦ
K̃c↑

)

cos κ

(
−
√

K̃c↑
Kƥ

+
√

Kƥ
K̃c↑

)
cos κ

(√
K̃c↑
Kƥ

+
√

Kƥ
K̃c↑

)
− sin κ

(
−
√

K̃c↑
KƦ

+
√

KƦ
K̃c↑

)
− sin κ

(√
K̃c↑
KƦ

+
√

KƦ
K̃c↑

)
sin κ

(√
Ks
Kƥ
+
√

Kƥ
Ks

)
sin κ

(
−
√

Ks
Kƥ
+
√

Kƥ
Ks

)
cos κ

(√
Ks
KƦ

+
√

KƦ
Ks

)
cos κ

(
−
√

Ks
KƦ

+
√

KƦ
Ks

)
sin κ

(
−
√

Ks
Kƥ
+
√

Kƥ
Ks

)
sin κ

(√
Ks
Kƥ
+
√

Kƥ
Ks

)
cos κ

(
−
√

Ks
KƦ

+
√

KƦ
Ks

)
cos κ

(√
Ks
KƦ

+
√

KƦ
Ks

)

 ,

(3.55)

where K̃c↑ = Kc↑/
√
sc.

Next, we relate γa,k(t), a = c, s operators to bƥ, bƦ. At t = Ƥ, we have
the relation between γa,k(Ƥ), a = c, s and bc↑,k and bs,k as described in
Sec. 3.5. Since operators bc↑,k and bs,k are related to bƥ,k and bƦ,k
through the matrix D in Eq.(3.55), we can express γa,k(Ƥ) as a linear
combinations of bƥ,k and bƦ,k. The time evolution of γa,k(Ƥ) is quite
simple now because Hamiltonians are diagonal in the basis bƥ,k and
bƦ,k. These considerations lead to the relations

γ†c,−k(t)
γc,k(t)
γ†s,−k(t)
γs,k(t)

 = Ek


e−icƥ|k|tb†ƥ,−k

eicƥ|k|tbƥ,k
e−icƦ|k|tb†Ʀ,−k

eicƦ|k|tbƦ,k

 ,

Ek = FkD,

Fk =

 ƥ Ƥ Ƥ Ƥ
Ƥ ƥ Ƥ Ƥ
Ƥ Ƥ ƥ√

ƥ−ƨ|Wk|Ʀ
−ƦWk√
ƥ−ƨ|Wk|Ʀ

Ƥ Ƥ −ƦWk√
ƥ−ƨ|Wk|Ʀ

ƥ√
ƥ−ƨ|Wk|Ʀ

 .
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Now define a matrix G(k) = DE−ƥ
k so that

b†c,−k

bc,k
b†s,−k

bs,k

 = G(k)


γ†c,−k

γc,k
γ†s,−k

γs,k


Then finally Ci,k are given by

Cs,k = −i
√

π
ƦL|k|Ks

(GƧƨ(k)− Gƨƨ(k)),

Cc,k = −i
√

π
ƦL|k|Ks

(GƧƦ(k)− GƨƦ(k)), (3.56)

where Gij(k) are the matrix elements of G(k).

3.9.3 k = Ƥ contribution in the presence of mixing between
charge and spin

In this appendix, we evaluate Tr
{
ei(
∑

i si)ϕs,Ƥ/
√
Lρ(t)

}
. We first obtain

the operator ei(
∑

i si)ϕs,Ƥ after time evolution as

eiHtei(
∑

i si)ϕs,Ƥe−iHt =

exp
(
i
∑

i si√
L
(Aϕs,Ƥ + A′ns,Ƥ +

B
√
sc
ϕc,Ƥ +

B′
√
sc
nc,Ƥ)

)
. (3.57)

Coefficients A,A′,B,B′ can be found as follows. k = Ƥ part of the
Hamiltonian is given by HƤ =

πcƥ
ƦKƥ

nƦƥ,Ƥ +
πcƦ
ƦKƦ

nƦƦ,Ƥ (see Eq.(3.11)). Using
the commutation relation [ni,Ƥ, ϕi,Ƥ] = −i, we have
eiHtϕi,Ƥe

−iHt = ϕi,Ƥ +
πci
Ki
ni,Ƥt. With the relation, ϕs,Ƥ = sin κϕƥ,Ƥ + cos κϕƦ,Ƥ,
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we obtain

eiHte(
∑

i si)ϕs,Ƥe−iHt =

ei
∑

i si√
L {sin κ(ϕƥ,Ƥ+ πcƥ

Kƥ
nƥ,Ƥt)+cos κ(ϕƦ,Ƥ+

πcƦ
KƦ

nƦ,Ƥt)}.

Now by transforming back to c, s basis through Eq.(3.29), we find

A = ƥ,

A′ = sinƦ κ
πcƥ
Kƥ

t+ cosƦ κ
πcƦ
KƦ

t,

B = Ƥ,

B′ = sin κ cos κ
(
πcƥ
Kƥ

− πcƦ
KƦ

)
t.

Now that we know the operator after time-evolution Eq. (3.57), we
evaluate it in the initial state.

Initial state of the spin sector is |ψs,k=Ƥ⟩ in Eq. (3.12). Since this
state is Gaussian, we have the simple result as follows,

⟨ψs,k=Ƥ| exp

((∑
i

si

)
(Aϕs,Ƥ + A′ns,Ƥ)/

√
L

)
|ψs,k=Ƥ⟩.

= exp

(
−

(∑
i

si

)Ʀ(
ƥ

ƨρηL
+ (A′)Ʀ

ρη
ƨL

))

For charge sector, k = Ƥ part of the initial density matrix is
ƥ

NcƤ
exp
(
−β πcc↑

ƦKc↑
nƦc,Ƥ
)

, where NcƤ is the normalization NcƤ

=Tr
(
exp
(
−β πcc↑

ƦKc↑
nƦc,Ƥ
))

. The evaluation of the charge sector yields

ƥ
NcƤ

Tr
{
exp

(
i

(∑
i

si

)
B′ nc,Ƥ√

scL

)
exp
(
−β

πcc↑
ƦKc↑

nƦc,Ƥ

)}

= exp

(
−

(∑
i

si

)Ʀ

(B′)Ʀ
K̃c↑

Ʀπcc↑βL

)
.
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Collecting the results above, we conclude⟨
ei(
∑

i si)ϕs,Ƥ/
√
L
⟩

= exp
(
−
(
∑

i si)
Ʀ

ƨL

{
ƥ
ρη

+ ρη(A′)Ʀ + (B′)Ʀ
ƦK̃c↑

πcc↑β

})
.
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4
Conclusion and future perspective

In this thesis, we have presented the progress of the study for
non-equilibrium quantum physics. As we explained in details through
numerous experiments in the first chapter, artificial systems provide
rich platforms and testing beds for investigating questions in
non-equilibrium quantum physics, which has been challenging in the
context of condensed matter materials. The importance of such
artificial systems lies not only in the possibility to experiment novel
and exotic ideas but also in freeing and opening physicists’ mind for
new ways of thinking about physics. In my works, I have tried to take
up this opportunity to propose unique ideas with concrete
experimental settings. Some of the detailed theories that have been
confirmed in experiments are presented in the second and third
chapters. I have tried to construct and describe the theories in a
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fashion that the ideas can be easily generalized to condensed matter
systems.

One of the main themes of my thesis is the study of topological
phenomena in non-equilibrium systems. On one hand, this
demonstrates the possibility to realize and study interesting physical
phenomena that are already known in equilibrium settings in
non-equilibrium systems as well. Some physical phenomena are quite
difficult to realize in equilibrium and require fine-tunings and
engineering of materials.Non-equilibrium realizations of those
phenomena provide a novel approach to them and might prove to be
advantageous in the future technologies. While the proposals of
realizing IQHE or topologically protected localized states presented in
this thesis are far from being useful in everyday-life, they are realistic
enough to be studied in experiments in laboratories. In the future, I
believe other phenomena such as superconductivities and ferro- &
antiferro- magnetism will find non-equilibrium realizations and
manipulations which could lead to new ideas for technological usage.

On the other hand, this thesis also demonstrates the possibility to
find unique phenomena in non-equilibrium systems that could never
be found in equilibriums. Ƥ and π energy topologically protected
bound states have not yet found implications in technology, but
maybe some other such unique phenomena could lead to
breakthroughs in developing quantum technologies. This venture
requires thinking beyond the paradigm of equilibrium systems and
therefore tends to be very difficult, but this field has not been
investigated much by physicists yet and thus there is large room for
improvements and new discoveries.

One possible place to look for such new phenomena is the steady
states created by the balance between the periodical drives and
dissipation/equilibration process. Such a state is a well-defined, stable
state, and thus has the chance of being realized in a robust fashion.
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Just in the case of superconductors and topological insulators, such
states could possess unique response properties. In the case of atomic
systems, periodical drives could be achieved through lattice
modulations, laser applications that drive atomic transitions, or
modulations of confinement potentials. Dissipations can also be
engineered by controlling environments such as placing the systems in
a cavity. A ubiquitous notion such as the competitions/corporations
of orders might be an interesting viewpoint to investigate this system;
maybe it is possible to study the competitions and corporations by
driving the systems in such a way to enhance certain order. These
ideas can also be combined with the insights that periodic drives
effectively increase the dimensionality of the systems by one through
the addition of energy ladders. Most orders are sensitive to the
underlying dimensionality and thus could be an interesting entry
point to study the ordered systems in non-equilibrium systems.

The field of non-equilibrium quantum systems is still young and has
potentials for contributing to fundamental understanding of physics as
well as to future technologies. I hope some of the works I have done
help this trend even by a little bit.
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