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Abstract 

  
Prostate cancer is the second leading cause of cancer deaths among men. Targeted analyses of 

DNA from prostate cancers have identified recurrent somatic alterations that promote tumor growth and 

survival. Only recently, however, has the comprehensive analysis of cancer genomes become possible 

due to rapid advances in DNA sequencing technology.  

To identify somatic mutations that may drive prostate cancer, we sequenced the protein-coding 

DNA of 112 prostate tumor/normal tissue pairs enriched for aggressive localized disease. We identified 

novel recurrent mutations in several genes, including MED12 and FOXA1. The most frequently mutated 

gene was SPOP, which encodes a ubiquitin ligase complex subunit. Mutations altered the substrate-

binding cleft of the SPOP protein in 6-15% of tumors across multiple independent cohorts. SPOP-mutant 

prostate cancers lacked ETS gene rearrangements and exhibited a distinct pattern of genomic 

alterations, including frequent deletion of the chromatin modifying enzyme gene CHD1. Transcriptome 

profiling of prostate epithelial cells suggested that SPOP mutations and CHD1 loss may promote invasive 

cellular growth and genomic instability, respectively. Thus, SPOP mutations appear to define a new 

molecular subtype of ETS-negative prostate cancer. 

 In order to characterize the landscape of somatic alterations across the entire genome in prostate 

cancer, we also sequenced the full complement of DNA from 57 prostate tumors and matched normal 

tissue. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations 

and deletions that arise in a highly interdependent manner. This phenomenon, which we term 

“chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt 

multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable 

genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a 

model of punctuated cancer evolution. Together, the studies described in this thesis point toward novel 

prostate cancer genes and suggest a refined model of prostate tumor evolution.  
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Introduction  

 
Prostate cancer is the second most common malignancy in men and causes over 250,000 deaths 

each year worldwide (Jemal et al., 2011). At the same time, many men develop indolent prostate tumors 

that remain asymptomatic and do not require treatment. Thus, prostate cancer stands out in both its 

prevalence and markedly variable clinical course. Treatments for advanced prostate cancer center on 

chemotherapy and irradiation as well as hormone ablation therapies that reduce local levels of 

androgens. While these approaches shrink tumors and alleviate symptoms transiently, metastatic tumors 

eventually relapse, and often progress rapidly. On the opposite end of the spectrum, overtreatment of 

benign tumors can cause substantial morbidity from side effects such as impotence and urinary 

incontinence (Daskivich et al., 2011). Therefore, a deeper understanding of the molecular underpinnings 

of aggressive prostate cancer may prove valuable, both to distinguish life-threatening disease from 

benign cases and to elucidate targets for novel therapies.  

Like other neoplasms, prostate cancer is driven in part by alterations that accumulate in the DNA 

of a nascent or growing tumor. Specific mutations of protein-coding genes, gains or losses of gene 

copies, and chromosomal rearrangements promote the growth of prostate cancers and may differentiate 

aggressive versus indolent disease. By comparing DNA sequences from a tumor and matched normal 

tissue from the same individual, one can detect somatic mutations that arose between embryogenesis 

and removal of the tumor. Many studies have searched in a “targeted” fashion for cancer-associated 

mutations (reviewed in (Dong, 2006)); however, only in recent years has massively parallel DNA 

sequencing technology enabled the comprehensive analysis of alterations across the ~3 billion base-pairs 

in a tumor genome (Meyerson et al., 2010).  

The purpose of the research described in this thesis is to leverage recent advances in DNA 

sequencing technology to identify key alterations that arise in prostate tumor development. From these 

data, we aim to glean biological insights about the cellular processes and molecular pathways that drive 

the growth of prostate cancer, including potential nodes for therapeutic intervention. This thesis will 

describe three lines of research to this end. Following an introduction to the field of prostate cancer 

genomics in this chapter, Chapter 2 (based on Barbieri et al., 2012) will describe the sequencing all 
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protein-coding genes (“exomes”) from 112 prostate tumors. Through statistical analyses designed to 

distinguish “driver” mutations from incidental “passenger” mutations, we identified known and novel 

mediators of prostate tumorigenesis. In Chapter 3 (based on Baca et al., 2013), the analysis of 57 

prostate tumor whole genome sequences will be presented. Sequencing entire genomes (rather than the 

1-2% of DNA that encodes proteins) allowed us to identify chromosomal rearrangements that often arise 

in intergenic DNA and to study how they accumulate. We discuss the implications of these findings for 

tumor evolution and the accumulation of structural alterations in cancer genomes. Lastly, Chapter 4 will 

discuss the effects on gene transcription of cancer-associated alterations in two genes of interest: the 

chromatin-modifying enzyme gene CHD1 and the ubiquitin ligase subunit gene SPOP. 

To contextualize the research described in this thesis, this chapter (based on Baca and 

Garraway, 2012) will survey the understanding of prostate cancer genomics prior to this work. We will 

discuss exemplary somatic mutations in prostate cancer and highlight mutated cellular pathways with 

biological and possibly therapeutic importance. Examples include mutated genes involved in androgen 

signaling, cell cycle regulation, signal transduction and development. We will also discuss genetic 

alterations that may predict the clinical course of disease or response to therapy, as well as the 

challenges posed to genomic biomarker identification by the molecular heterogeneity of prostate tumors.  

 

The mutational spectrum of prostate cancer 

 

All categories of DNA sequence alterations contribute to prostate tumorigenesis, including point 

mutations, small insertions or deletions, copy number changes and chromosomal rearrangements (Figure 

1.1). An overview of each category of alteration and its contribution to prostate cancer biology, is 

presented below. 
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Figure 1.1. Genomic alterations in four high-risk prostate cancers  

Circos plot depiction of rearrangements and copy number alterations in four prostate tumor genomes. 

Intrachromosomal and interchromosomal rearrangements are depicted in green and pink, respectively. 

Somatic copy number alteration is indicated by red (amplification) and blue (deletion). Gleason scores are 

listed, indicating the two most prevalent histologic grades in each tumor. Pathological stage is noted as 

well, where pT3 indicates locally invasive disease. 
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Somatic copy number alterations 

 

Most prostate cancers exhibit somatic copy number alterations (SCNAs), with genomic deletions 

outnumbering amplifications in early stages of disease (Visakorpi et al., 1995). Early studies relied on 

cytogenetics, fluorescence in situ hybridiziation and molecular genetic approaches to map candidate 

cancer genes to regions of SCNA (Brothman et al., 1999). In recent years, comparative genomic 

hybridization and high-density oligonucleotide arrays have allowed high-resolution analysis of SCNAs 

across the genome. Statistical analyses of genome-wide copy number data from panels of tumors have 

pinpointed novel cancer genes in genomic regions that are recurrently deleted or amplified (Beroukhim et 

al., 2007; Robbins et al., 2011; Taylor et al., 2010).  

The extent of SCNA is generally modest in pre-cancerous prostatic intraepithelial neoplasia (PIN), 

but increases along the spectrum from localized adenocarcinoma to metastatic disease (Zitzelsberger et 

al., 2001). Particular recurrent SCNAs are enriched in advanced tumors. For example, tumors that fail 

androgen ablation therapy show frequent amplification of chromosomes 7, 8q and X (Alers et al., 2000; 

Holcomb et al., 2009; Visakorpi et al., 1995). Animal models of prostate cancer indicate that genes in 

these regions, such as the androgen receptor gene (X) and the MYC proto-oncogene (8q), contribute to 

cancer progression, as discussed in detail below.  

 

Point mutations and small insertions-deletions 

 

Relative to structural alterations, recurrent point mutations are less common in primary prostate 

cancers (Kan et al., 2010). Primary tumors generally harbor 1-2 somatic variants per million base pairs – 

far fewer than known carcinogen-driven tumors such as lung cancer or melanoma, but comparable to 

breast, renal, ovarian or microsatellite-stable colon cancers (Berger et al., 2011; Greenman et al., 2007; 

Pleasance et al., 2010a; Pleasance et al., 2010b). While most of these mutations confer no proliferative 

advantage, a handful of recurrent oncogenic mutations have been defined. 
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The reported prevalence of mutations in several known cancer genes varies widely and depends 

on tumor purity, stage, histological grade, and exposure to treatments. For example, RB1, TP53 and 

PTEN are preferentially mutated in locally advanced or metastatic tumors (Cairns et al., 1997b; Eastham 

et al., 1995; Tricoli et al., 1996) while the androgen receptor is mutated only in metastatic or treatment-

resistant disease (Linja and Visakorpi, 2004; Taylor et al., 2010). Ethnicity may influence mutation 

prevalence as well. Activating mutations in KRAS and BRAF occur in ~10% of Asian patients but are rare 

in Caucasian men, perhaps reflecting different environmental or genetic etiologies of cancers in these 

populations (Cho et al., 2006; Konishi et al., 1997; Watanabe et al., 1994).  

Defects in DNA mismatch repair (MMR) machinery have been reported in prostate cancers and 

may accelerate progression to castration-independence (Chen et al., 2001; Dahiya et al., 1997). Large-

scale sequencing studies have recently identified a subset of tumors with markedly elevated rates of point 

mutation (Barbieri et al., 2012; Kumar et al., 2011; Taylor et al., 2010). It remains to be determined 

whether the high levels of mutation in these tumors are caused by MMR deficiency, and whether hyper-

mutated cancers display more clinically aggressive behavior.  

 

Structural rearrangements 

 

The discovery of ETS family gene fusions in roughly half of prostate cancers heralded a novel 

class of alterations in epithelial malignancies as a whole (Tomlins et al., 2005). The most common and 

prototypical ETS fusion places the oncogenic ERG transcription factor under control of the androgen-

regulated TMPRSS2 gene, leading to high expression in the prostate epithelium. Subsequent research 

has identified a host of similar oncogenic fusions, where a proto-oncogene is adjoined to a highly active 

promoter (Kumar-Sinha et al., 2008; Palanisamy et al., 2010; Tomlins et al., 2007). Since mutation or 

amplification of oncogenes is less common in early-stage prostate cancer, genomic rearrangements may 

comprise an important means of cancer gene dysregulation in nascent tumors.  

Complete sequencing of seven prostate cancer genomes has provided further insight into 

chromosomal rearrangements in prostate cancer. Primary tumors harbor an average of roughly 100 

rearrangements, including translocations, deletions, insertions and inversions (Figure 1.1) (Berger et al., 
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2011). Some tumors also display “closed chains” of balanced rearrangements, which appear to arise 

when multiple DNA breaks occur throughout the genome and the resulting fragments are shuffled and 

rejoined to one another. These rearrangements may arise when the affected genetic loci are physically 

proximal to each other, possibly due to co-regulation by transcriptional machinery or nuclear co-

localization in open- or closed-chromatin compartments (Berger et al., 2011; Osborne et al., 2004). 

Consistent with this hypothesis, androgen stimulation can induce physical co-localization of TMPRSS2 

and ERG and permit fusion of these genes de novo via a topoisomerase 2B-mediate mechanism (Haffner 

et al., 2010).  

 The diverse categories of genomic aberrations underscore the need for comprehensive genomic 

analyses both to understand tumor biology, and perhaps to direct targeted therapies on a genotype-

specific basis in the future (Roychowdhury et al., 2011). 

 

Cellular pathways dysregulated by recurrent genomic alterations 

 

Genomic alterations in prostate cancer can increasingly be conceptualized in terms of the 

molecular processes and pathways on which they impinge (Taylor et al., 2010). Mutations in prostate 

cancer may affect signal transduction pathways that regulate growth and proliferation, as well as genes 

involved in the normal development of the prostate. Below, we highlight several themes and pathways 

that provide a framework for understanding genomic alterations in prostate cancer.   

 

PI3K and MAPK signaling 

 

The phosphoinositide 3-kinase (PI3K) pathway is a central mediator of cellular proliferation and 

growth that is aberrantly activated in prostate cancer. In response to pro-proliferative signals, PI3K 

catalyzes the formation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), which recruits Akt to the 

plasma membrane. Upon phospo-activation at the plasma membrane, Akt phosphorylates a wide array of 

substrates that promote proliferation and cell survival.  
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Prostate tumors achieve activation of PI3K signaling most frequently via inactivation of the tumor-

suppressor gene PTEN (Figure 1.2). PTEN encodes a lipid-protein phosphatase that counteracts 

signaling by PI3K via dephosphorylation of PIP3. Loss of heterozygosity at the PTEN locus is found in up 

to 70% of primary prostate cancers and inactivating mutations occur in 5-10% (Barbieri et al., 2012; 

Cairns et al., 1997b; Gray et al., 1998). Inactivation of PTEN is enriched in advanced tumors and 

correlates with decreased cancer-specific survival (McMenamin et al., 1999; Sircar et al., 2009). Pten 

disruption in the mouse prostate collaborates with other tumor-promoting events such as inactivation of 

Tp53 and overexpression of c-Myc or ERG (Chen et al., 2005; Kim et al., 2011a; King et al., 2009).  

Amplification of PIK3CA, which encodes the catalytic subunit of PI3K, occurs in 13% to 39% of 

primary tumors and 50% of castration-resistant tumors (Agell et al., 2011; Edwards et al., 2003; Sun et 

al., 2009). Activating mutations have been observed in ~5% of primary tumors (Barbieri et al., 2012; Sun 

et al., 2009). PIK3CA activation and PTEN loss tend to be mutually exclusive, which suggests functional 

redundancy—although larger sample sizes are needed to assess this relationship robustly (Sun et al., 

2009). Interestingly, PTEN loss and PIK3CA activation co-occur in other neoplasms such as endometrial 

cancer, suggesting that these events may engage disparate oncogenic mechanisms in some contexts 

(Oda et al., 2005). In support of this possibility, oncogenic Akt-independent signaling downstream of 

mutant PIK3CA has been observed in both primary tumors and cancer cell lines (Vasudevan et al., 2009).  

The PI3K pathway may be activated by genomic alterations at additional nodes or dysregulated 

expression of pathway genes (Figure 1.2) (Boormans et al., 2010; Cai et al., 2008; Dong et al., 2006; 

Taylor et al., 2010). Determining whether these lesions predict sensitivity or resistance to PI3K pathway 

inhibitors has become an active area of translational research. 

The mitogen-activated protein kinase (MAPK) pathway also plays a role in prostate cancer 

pathogenesis, especially in advanced and castration-resistant tumors. MAPK pathway activation is 

associated with higher tumor stage and grade and recurrent disease (Gioeli et al., 1999). In the setting of 

castration resistance, PI3K and MAPK signaling are often coordinately dysregulated (Gao et al., 2006; 

Kinkade et al., 2008). Evidence for collaboration between these pathways continues to emerge. For 

instance, PTEN-induced senescence may be overcome by up-regulation of MAPK signaling due to 

overexpression of HER2 (Ahmad et al., 2011).  
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Figure 1.2. Somatic alterations in the PI3K pathway in prostate cancer  

Selected members of the PI3K pathway are depicted, alongside the mechanisms by which they 

are dysregulated in prostate cancer. Putative proto-oncogenes are boxed in red and tumor suppressor 

genes in blue. The transcript expression of most genes in the pathway is altered (Taylor et al., 2010). The 

pathway is frequently activated by deletion of PTEN. In addition, recurrent deletions inactivate the 

FOXO1A gene, which encodes a transcription factor substrate of Akt that mediates PI3K signaling. 

PHLPP1 encodes a phosphatase that dephosphorylates activated Akt, and is frequently co-deleted with 

PTEN in metastatic tumors (Chen et al., 2011). Genomic rearrangements disrupt MAGI2, which encodes 

a scaffolding protein that stabilizes PTEN (Berger et al., 2011; Wu et al., 2000). Although rare, oncogenic 

point mutations in the receptor tyrosine kinase EGFR or AKT1 may activate the pathway upstream or 

downstream of PI3K (Boormans et al., 2010; Cai et al., 2008).) 
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Up-regulation of RAS family members, RAF1 and BRAF, and down-regulation of the counter-

regulatory SPRY1 or SPRY2 genes are commonly observed in prostate cancer metastases (Kwabi-Addo 

et al., 2004; McKie et al., 2005; Taylor et al., 2010). In some cases, expression of RAS, RAF1, and BRAF 

is activated by oncogenic fusion with promoters from highly expressed genes (Palanisamy et al., 2010; 

Wang et al., 2011). Repression of the RAS-GAP gene DAB2IP by EZH2 may activate MAPK signaling 

and drive progression and metastasis (Min et al., 2010). Defining the relevant mechanisms of pathway 

activation in greater detail will likely inform strategies for targeting castration-resistant tumors.  

 

Cell cycle regulatory genes 

 

Several cell cycle regulatory genes are disrupted in prostate cancer. Inactivation of cell cycle 

inhibitors appears to be required to avoid senescence induced by oncogenic signaling and possibly to 

bypass androgen dependence in metastatic or castration resistant tumors.  

The critical cell cycle regulatory genes TP53 and RB1 (which encode p53 and Rb) are commonly 

deleted or mutated in metastatic tumors (Bookstein et al., 1993; Heidenberg et al., 1995; Hyytinen et al., 

1999; Tricoli et al., 1996). p53 activates expression of the p21WAF1 cyclin-dependent kinase inhibitor. 

Inactivation of p53 is necessary to bypass cellular senescence mechanisms that are activated upon loss 

of PTEN (Chen et al., 2005). Likewise, Rb regulates the G1 to S cell cycle phase transition, and RB1 

inactivation is particularly common in castration-resistant tumors (Holcomb et al., 2009; Sharma et al., 

2010).  

Another key cell cycle regulator, CDKN1B, encodes the p27Kip1 cyclin-dependent kinase inhibitor, 

and resides within the 12p13 chromosomal region that is frequently deleted. Low p27Kip1 expression 

correlates with poor pathological prognostic markers (Dreher et al., 2004; Vis et al., 2000). Amplification 

of SKP2, which encodes a ubiquitin ligase that targets p27Kip1 for proteasomal degradation, may also 

serve to inactivate p27Kip1 (Robbins et al., 2011; Taylor et al., 2010). Disruption of Cdkn1b promotes 

prostate carcinogenesis coordinately with hemizygous deletion of Pten, suggesting an interaction 

between p27Kip1 and the PI3K pathway (Di Cristofano et al., 2001). Likewise, the cell cycle regulatory 

function of p27Kip1 induces senescence in PIN lesions driven by Akt1 in mice (Majumder et al., 2008).  
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Developmental and androgen-regulated genes 

 

Normal developmental and androgen-regulated processes appear to be co-opted during 

oncogenesis in the prostate. Several genes that participate in the development and differentiation of the 

prostate epithelium are dysregulated in prostate cancer (Prins and Putz, 2008).  

The androgen receptor regulates cellular proliferation and differentiation in response to hormonal 

signals in the prostate epithelium. While androgen receptor mutations are absent in primary tumors, the 

AR gene is frequently mutated or amplified in metastatic and castration-resistant disease (Koivisto et al., 

1997; Linja and Visakorpi, 2004; Visakorpi et al., 1995). Castration resistant tumors remain dependent on 

the androgen receptor, and overexpression of AR confers castration-resistant growth (Chen et al., 2005). 

AR point mutations allow promiscuous activation by steroid hormones such as estrogens, progestins, 

glucocorticoids and androgen antagonists in 10-30% of refractory cases (Gaddipati et al., 1994; Linja and 

Visakorpi, 2004). Dysregulation of androgen signaling may contribute to localized disease as well: 

mutation and altered expression of several AR-interacting genes including NCOR2, NRIP1, TNK2 and 

EP300 are observed in both primary tumors and metastases (Taylor et al., 2010).  

NKX3-1 encodes a prostate-specific transcription factor that is required for normal development 

of the prostate and is deleted or down-regulated in up to 90% of prostate cancers (Asatiani et al., 2005; 

Emmert-Buck et al., 1995; Vocke et al., 1996). Inactivation of this gene via hemizygous deletion of 

chromosome 8p appears to occur early and can be observed in PIN lesions (Asatiani et al., 2005; 

Emmert-Buck et al., 1995). Nkx3-1-deficient mice exhibit defective branching morphogenesis of the 

prostate gland and develop PIN-like lesions with age (Bhatia-Gaur et al., 1999). In addition, NKX3-1 

appears to protect the differentiated prostate epithelium from oxidative DNA damage (Bowen and 

Gelmann, 2010; Ouyang et al., 2005). Therefore, loss of NKX3-1 may both disrupt terminal differentiation 

and foster the mutational inactivation of collaborating cancer genes such as PTEN (Kim et al., 2002).  

The Wnt pathway regulates embryological development, and its contribution to prostate cancer is 

becoming increasingly recognized (Yardy and Brewster, 2005). Key pathway genes including APC, 

AXIN1 and the β-catenin gene CTNNB1 may be mutated at low frequency (Chesire et al., 2000; Voeller et 
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al., 1998; Yardy et al., 2009). APC undergoes LOH in roughly 20% of primary cancers and promoter CpG 

methylation in up to 90% (Brewster et al., 1994; Phillips et al., 1994; Yegnasubramanian et al., 2004). β-

catenin may promote proliferation through co-activation of AR-mediated transcription (Cronauer et al., 

2005; Truica et al., 2000). Additional mutations in Wnt pathway genes were recently documented in the 

progression to castration-resistant disease (Kumar et al., 2011). More pairs of pre- and post-relapse 

samples should be analyzed to clarify the importance of this pathway in refractory disease.   

 

Genomic heterogeneity of prostate cancer 

 

Prostate cancer is a clinically and genetically heterogeneous disease. Independent cancerous 

foci with distinct morphological features often coexist in a single prostate. The course of disease also 

varies widely: some cancers remain indolent for decades while others rapidly progress to lethality. Distinct 

molecular features appear to underlie the clinical and histological differences. Identifying genomic 

determinants of aggressive disease might improve experimental modeling and stratification of patients 

with intermediate-risk prostate cancer.  

Prostate cancer may arise in multiple foci from independent precursor cells that are driven to 

neoplastic transformation by carcinogenic exposures or genetic predisposition (Andreoiu and Cheng, 

2010). The presence of genomic lesions can vary between foci in a single tumor, including TMPRSS2-

ERG fusion, MYC amplification and TP53 mutation (Jenkins et al., 1997; Mehra et al., 2007; Mirchandani 

et al., 1995). Multiple distinct clones can be identified in a single biopsy (Ruiz et al., 2011), but most 

metastatic prostate cancers appear to originate from a single clone within a primary tumor (Holcomb et 

al., 2009; Liu et al., 2009b; Qian et al., 1995). Among other lesions, subclonal TP53 mutations may define 

cells in the primary tumor with metastatic potential (Mirchandani et al., 1995; Navone et al., 1999). Intra-

tumoral heterogeneity complicates efforts to define prognostic mutations or expression signatures from 

primary tumors, because the primary tumor subclone that gives rise to metastatic disease must be 

adequately sampled (Sboner et al., 2010).  
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Despite the challenges posed by tumor heterogeneity, expression signatures have been 

proposed that delineate histologically aggressive disease or predict outcome independently of clinical 

variables (Febbo, 2009; Glinsky et al., 2004; Singh et al., 2002; True et al., 2006). However, the overlap 

between signatures from independent studies is moderate. Some genomic alterations appear to have 

prognostic value as well. The TMPRSS2-ERG fusion, MYC amplification, and PTEN or p53 deletion 

predict cancer-specific death in at least some patient cohorts (Demichelis et al., 2007; Sato et al., 1999; 

Sircar et al., 2009). In some cases, a mutational signature may underlie expression-based sub-

classifications (Lapointe et al., 2004; Lapointe et al., 2007).  

 

Conclusion 

 
 In summary, the analysis of prostate cancer genomes using targeted sequencing approaches and 

gene copy number profiling has pointed toward molecular pathways and processes that are dysregulated 

in prostate cancers. Disrupted genes include mediators of androgen signaling and prostatic development 

as well as regulators of cell division. Importantly, genomic alterations target both generic cancer-

associated pathways and processes that impinge more specifically on prostate tissue. Therefore, the 

unbiased characterization of prostate cancer genomes through whole-exome and whole-genome 

sequencing may hold promise for the discovery of novel cancer genes that have not previously been 

identified in other cancer types. Along these lines, the following chapters discuss the use of massively 

parallel sequencing to analyze prostate cancer genomes and exomes, building upon the studies reviewed 

here to expand our view of the genomic landscape of prostate cancer.  
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CHAPTER 2 
 

Identification of driver mutations in prostate cancer using 

whole-exome sequencing 
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Introduction 

 
As described in the previous chapter, copy number alterations and oncogenic rearrangements 

are common in prostate cancer. These events include losses of NKX3.1 (8p21) (Bhatia-Gaur et al., 1999; 

He et al., 1997)
 
and PTEN (10q23) (Cairns et al., 1997a; Li, 1997), gains of the androgen receptor gene 

(AR) (Linja and Visakorpi, 2004; Visakorpi et al., 1995)
 
and fusion of ETS-family transcription factor 

genes with androgen-responsive promoters (Perner et al., 2006; Tomlins et al., 2007; Tomlins et al., 

2005). In contrast, recurrent somatic base-pair substitutions are believed to be less contributory in 

prostate tumorigenesis (Kumar et al., 2011; Taylor et al., 2010),
 
but have not been systematically 

analyzed in large cohorts. To identify somatic mutations that may drive prostate cancer and aid in 

molecular characterization, we sequenced the exomes of 112 tumor/normal pairs enriched for 

characteristics of aggressive localized disease (pathological stage ≥ pT2, Gleason score ≥ 7). Novel 

recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most 

frequently mutated gene, with mutations involving the SPOP substrate binding cleft in 6-15% of tumors 

across multiple independent cohorts. SPOP-mutant prostate cancers lacked ETS rearrangements and 

exhibited a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular 

subtype of prostate cancer. 

 

Whole exome sequencing of 112 primary prostate tumor–normal tissue 

pairs 

 

We performed exome capture followed by paired-end, massively parallel sequencing on DNA 

from 112 prostate adenocarcinomas and matched normal samples. We focused on treatment-naïve 

radical prostatectomy specimens from American and Australian patients that spanned a range of grades, 

stages, and risk of recurrence (Table S2.1; please see Appendix 1: Supplemental tables). The exon 
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capture baits targeted 98.2% of genes in the Consensus CDS database as of November 2010 

(http://www.ncbi.nlm.nih.gov/CCDS). A mean coverage depth of 118x per sample was achieved, with 

89.2% of targets covered at ≥ 20x depth (Table S2.2 and Figure S2.1; please see Appendix 2: 

Supplemental figures). Tumor and normal DNA were also analyzed by Affymetrix SNP 6.0 arrays to 

detect somatic copy number alterations. In addition, transcriptome sequencing (“RNA-Seq”) was 

performed on 22 exome-sequenced tumors and 41 independent samples (Figure S2.2). 

We identified 5,764 somatic mutations that were present in tumor DNA but absent in peripheral 

blood or non-cancerous prostate (Table S2.3). Of these, 997 variants occurred in a single tumor that 

harbored a frame-shift mutation of the mismatch-repair gene MSH6 (Figure S2.3). After excluding this 

highly-mutated sample, the remaining tumors contained a median of 10 silent and 30 non-silent mutations 

(range 10 to 105 total mutations) or ~1.4 per Mb covered (Figure S2.3). Analysis of 229 non-silent 

mutations by mass-spectrometric genotyping validated 95.6% of variants with allelic fraction ≥ 0.2 (C.I. 

92-98%) (Table S2.3). The mutation rate of this cohort exceeded that of seven published prostate tumor 

genomes (0.9 mutations per Mb) (Berger et al., 2011), perhaps because the increased exome sequence 

coverage improved detection of variants present at lower allelic fractions. 

 

Distinct mutational characteristics of tumor subclasses 

 

We investigated whether pathological features corresponded to different mutational spectra. 

Pathologic stage pT3 tumors contained more mutations than pT2 tumors (p = 1.2 x 10-3, rank sum test) 

despite equivalent tumor purity between these classes (Figures S2.4 and S2.5). Substitutions in PTEN 

and PIK3CA were enriched in pT3 tumors (p = 0.011, Fisher’s exact test) (Table S2.4), suggesting that 

these mutations may play a role in disease progression. Consistent with this possibility, activation of the 

PI3-Kinase pathway in mouse models accelerates the progression of prostate cancer (McMenamin et al., 

1999; Trotman et al., 2003). This finding will need to be extended to larger panels of tumors due to the 

relatively small number of PTEN and PIK3CA mutations reported here. Interestingly, the base mutation 
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rate showed no correlation with Gleason score (a histological measure of disease risk) (Figure S2.5), 

indicating that mutational burden does not track uniformly with disease aggressiveness. 

In addition, we noted that the mutational spectrum varied between prostate tumors harboring the 

TMPRSS2-ERG fusion and fusion-negative tumors. TMPRSS2-ERG fusion-positive tumors showed an 

increased proportion of CpG to T transitions (p = 2 x 10-4, Figure S2.5) but did not harbor more mutations 

overall. Since CpG to T transitions can arise from deamination of methylcytosine in cancer, this trend may 

reflect the differential methylation of DNA between ETS fusion-positive and fusion-negative tumors that 

was recently reported (Kim et al., 2011b)
 
or may indicate a distinct mutagenic process in fusion-positive 

tumors. 

 

Significantly mutated genes in prostate cancer 

 

We searched for genes that harbored more non-synonymous mutations than expected by chance 

given gene size, sequence context and the frequency of mutations for each tumor (Figure 2.1A and Table 

S2.5). Twelve genes were enriched for mutations at q-value < 0.1, the majority of which are highly 

expressed at the transcript level in prostate tumors (Figure S2.6). The identification of PIK3CA, TP53 and 

PTEN confirmed that our approach detected alterations known to promote tumorigenesis in prostate 

cancer and other malignancies. We also found evidence of enrichment for mutations in the PTEN 

pathway, cell cycle regulatory machinery, and other gene sets (Table S2.6). 

The most frequently mutated gene was SPOP (13% of cases; Figure 2.1), which encodes the 

substrate-binding subunit of a Cullin-based E3 ubiquitin ligase (Nagai et al., 1997; Zhuang et al., 2009). 

Although isolated SPOP mutations have been reported in prostate cancer (Berger et al., 2011; Kan et al., 

2010), this gene has not been found significantly mutated in any malignancy. Several novel genes not 

previously known to undergo somatic alteration in prostate cancer were enriched for mutations, including 

FOXA1, MED12, THSD7B, SCN11A and ZNF595. The p27Kip1 gene CDKN1B was somatically mutated in 

three samples and deleted in sixteen others (Figure 2.1B). p27Kip1 constrains prostate tumor growth in 

mice (Majumder et al., 2008) and harbors a germline prostate cancer risk allele (Kibel et al., 2003), but 



 19	
  

Figure 2.1. Significantly mutated genes in aggressive primary prostate cancer 

(A) (Top) A cohort of 111 primary prostate tumors is ordered by number of mutations per Mb sequenced. 

(Center) Mutations in significantly mutated genes, colored by the coding consequence of the mutation. 

Each column represents a tumor and each row a gene. (Left) Number and percentage of tumors with 

mutations in a given gene. (Right) The negative log of the q-values for the significance level of mutated 

genes is shown (for all genes with q < 0.1; see Methods).  

(B) Net frequency of gene deletion/amplification across 169 copy number-profiled tumors. Significantly 

mutated genes are indicated. Only autosomal genes with two or more mutations are shown. 
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somatic substitutions have not previously been observed in this cell cycle regulatory protein.  

The Forkhead transcription factor gene FOXA1 harbored nonsilent mutations in 4 of 111 exomes 

and 4 of 41 independent RNA-Seq samples. FOXA1 is required for epithelial cell differentiation in the 

murine prostate (Gao et al., 2005) and promotes cell cycle progression in castration-resistant prostate 

cancer (Zhang et al., 2011). Notably, FOXA1 modulates AR-driven transcription (Gao et al., 2003)
 
and 

activates expression of CDKN1B (Williamson et al., 2006). Mutations strictly affected residues in the 

Forkhead domain that reside near the DNA binding surface (Figure 2.2A and Table S2.5) (Clark et al., 

1993). The clustered nature of these mutations suggests that they may disrupt binding of FOXA1 DNA 

targets. 

Mutations affecting MED12 were observed in 6 out of 111 exomes, with a recurrent F1224L 

mutation in five samples (Figure 2.2B and Table S2.5). MED12 encodes a subunit of the mediator 

complex and the Cyclin-dependent kinase 8 (CDK8) sub-complex that regulates basal and stimulus-

specific transcriptional programs (Donner et al., 2007; Wang et al., 2002; Zhou et al., 2002). Recently, 

MED12 mutations were reported in 70% of uterine leiomyomas (Makinen et al., 2011), benign stromal 

tumors of the smooth muscle lineage. Mutations in prostate cancer affected distinct codons from those in 

leiomyoma and occurred in epithelial cells rather than stroma as determined by laser-capture 

microdissection (LCM) (Supplementary Figure S2.7). Conceivably, MED12 mutations may perturb CDK8-

dependent modulation of transcriptional programs linked to p53 and androgen signaling (Donner et al., 

2007; Wang et al., 2002). 

 

Low-frequency mutations in cancer-associated genes 

 

Multiple genes with established roles in other cancers were mutated at low frequency, including 

IDH1, AKT1 and HRAS (Table S2.5). An analysis of predicted “damaging” mutations (nonsense 

substitutions, frame-shift indels and splice site alterations) in potential tumor suppressor genes expressed 

in prostate tumors identified mutations in APC, PIK3R1 and EPHA7 (Table S2.5). In addition, several 

chromatin-modifying enzymes harbored low-frequency damaging mutations, including MLL1, MLL2,  



 22	
  

Figure 2.2 Recurrent somatic mutations in FOXA1 and MED12  

(A) Structural analysis of mutations in FOXA1. Mutated residues are mapped to the structure of the 

HNF3γ fork-head domain from coordinate file 1VTN.pdb (www.pdb.org) (Clark et al., 1993) and 

highlighted in red. In both (A) and (B), mutations detected by exome sequencing are depicted (red), as 

are variants from non-overlapping transcriptome sequencing data (blue). FH, Fork-head domain.  

(B) Recurrent MED12 mutations in prostate cancer (red, blue) are distinct from those reported in uterine 

leiomyeoma (shown in black) (Makinen et al., 2011). Domains of MED12 based on sequence content 

depicted based on Zhou et al. (Zhou et al., 2002). Multispecies conservation of the mutated sites is 

shown below the mutation. 



 23	
  

 

 

Figure 2.2 (continued) 
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MLL3, ARID1A, NCOR1 and the histone demethylase gene KDM6A (UTX). Two KDM6A mutations 

involved residues situated within the catalytic Jumonji domain (I1209 and G1212), while a third introduced 

a frame-shift deletion directly N-terminal to this region (Table S2.5). These findings underscore the 

emerging importance of chromatin-modifying genes in prostate cancer (Gao and Alumkal, 2010; Grasso 

et al., 2012). Notably, AR was not mutated in any primary tumor analyzed, consistent with prior studies 

suggesting that mutations in this gene are restricted to metastatic or castration-resistant disease (Linja 

and Visakorpi, 2004; Taylor et al., 2010).  

 

Recurrent mutations alter the substrate binding surface of the SPOP 

ubiquitin ligase complex protein 

 

Although SPOP mutations were originally reported in genomic studies of prostate cancer (Berger 

et al., 2011; Kan et al., 2010), their prevalence and functional relevance remained unknown. We therefore 

sequenced this gene in multiple additional cohorts comprising over 300 primary tumors and metastases 

from the US and Europe. Using RNA-Seq and Sanger sequencing of tumor and matched germline DNA, 

recurrent heterozygous SPOP substitutions were identified in 6 to 13% of primary prostate 

adenocarcinomas (Figures 2.3A and S2.8, Table S2.7). No mutations were identified in 36 benign 

prostate tissue samples, prostate stroma, or 6 common prostate cell lines. SPOP mutations were also 

found in 6 of 41 patients with metastatic disease (14.5%). Thus, SPOP mutations occur at a 6 to 15% 

frequency across localized and advanced prostate tumors. 

All SPOP mutations affected conserved residues in the structurally-defined substrate binding cleft 

(Figures 2.3B and Figure S2.9) (Zhuang et al., 2009). Several recurrently mutated residues exert key 

substrate-interacting roles; moreover, mutation of Y87, W131, and F133 disrupts substrate binding in vitro 

(Zhuang et al., 2009). These results strongly suggest that prostate cancer SPOP mutations are 

biologically consequential. To test this hypothesis, we examined the consequences of mutant SPOP 

protein expression or SPOP knock-down on tumorigenic phenotypes in vitro. Prostate cancer cells  
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Figure 2.3.  Structural and functional studies of recurrent SPOP mutations in prostate cancer  

(A) Positional distribution of somatic mutations in SPOP across the Weill Cornell Medical College 

(WCMC), University of Michigan (UM), Uropath, and University of Washington (UW) prostate tumor 

cohorts.  

(B) Mutated residues in the crystal structure of the SPOP MATH domain bound to substrate (PDB 3IVV). 

(C) Representative images of invasive 22Rv1 and DU145 cells transfected with control and SPOP siRNA 

in Matrigel invasion assays.  

(D) Quantitation of invaded cells transfected with SPOP siRNA.  

(E) Quantitation of invaded DU145 cells transfected with GFP, SPOP wt, and SPOP F133V. 
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transfected with the most common SPOP mutant (F133V) or SPOP siRNA showed increased invasion 

compared to controls (Figures 2.3C-E and S2.10), but cell growth and viability were largely unaffected 

(Figure S2.11). The SPOP-CUL3 complex affects a variety of substrates that impact multiple pathways, 

including hedgehog, JNK, and steroid receptor signaling cascades (Li et al., 2011; Liu et al., 2009a; Wang 

et al., 2002). SPOP undergoes amplification in other malignancies and may be overexpressed in renal 

cell carcinoma (Liu et al., 2009a); however multiple prostate cancer cohorts showed no evidence of 

SPOP amplification or up-regulation (Figure 2.1B, Figure S2.12). Conceivably, prostate cancer-

associated SPOP mutations exert de novo gain of function alterations (e.g., a distinct substrate profile), 

dominant negative effects, or more subtle alterations in substrate specificity. Further studies are 

necessary to determine the specific ubiquitin ligase functions and cellular pathways deregulated by SPOP 

mutation in prostate cancer. 

 

SPOP mutations define a molecular subtype of ETS fusion-negative 

prostate cancer  

 

Strikingly, all exomes with SPOP mutations lacked the TMPRSS2-ERG fusion or other ETS 

rearrangements (Figure 2.4, Figure S2.13), present in roughly 50% of prostate cancers (Mosquera et al., 

2009; Tomlins et al., 2005). This mutually exclusive relationship between SPOP mutation and ERG 

rearrangement (p < 0.001, Fisher’s exact test) was confirmed in evaluable samples across all five cohorts 

tested (Figure S2.13), and within two distinct foci from an individual prostate tumor (Figure S2.14). Thus, 

SPOP mutation and ETS fusions may represent early and divergent driver events in prostate 

carcinogenesis. SPOP mutations were identified in LCM-analyzed high-grade intraepithelial neoplasia 

(HG-PIN) adjacent to invasive adenocarcinoma, further strengthening the premise that SPOP mutation 

comprises an early event in prostate tumorigenesis (Figure S2.15).  

In light of prior studies suggesting that prostate cancer may be classified by co-occurring genomic 

alterations (Demichelis et al., 2009; Lapointe et al., 2007; Taylor et al., 2010) we investigated whether 

SPOP-mutant tumors were enriched for other genomic lesions (Figure 2.4). Recurrent somatic deletions  
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Figure 2.4.  SPOP mutation defines a distinct genetic subclass of prostate cancer   

(A) Frequency of genomic copy number alterations in SPOP-mutant and SPOP-wildtype tumors. Length 

of bars reflects the frequency of copy number loss (blue) or gain (red).  

(B) Heatmap showing selected recurrent somatic copy number aberrations (SCNA). Each row represents 

a single prostate cancer sample. Samples are annotated for mutations in SPOP, PTEN, PIK3CA, and 

TP53, deletions of PTEN, and ERG rearrangements. Deletions positively correlated (5q21, 6q21) or 

inversely correlated (21q22.3) with SPOP mutation are shown. p-values of peak association with SPOP 

mutation in both discovery and validation cohorts are displayed at bottom (Fisher’s exact test). Regions 

are not to scale; full coordinates available in Table S2.8. 
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at 5q21 and 6q21 were enriched in SPOP-mutant tumors (p = 1.4x10 -11 and p = 3.4x10 -7, respectively, 

Fisher’s exact test) both in the whole-exome cohort and an independent prostate cancer collection 

(Figure 2.4, Table S2.8). Thus, loss of tumor-suppressor genes in these regions may collaborate with 

SPOP mutation to promote tumorigenesis. The relevant 5q21 locus contains CHD1, which encodes a 

chromatin-modifying enzyme that also undergoes disruptive rearrangements in prostate cancer (Berger et 

al., 2011). The 6q21 region encompasses several genes including FOXO3, a FOXA1 homologue that has 

previously been implicated in prostate carcinogenesis and progression (Shukla et al., 2009), and PRDM1, 

a tumor suppressor in lymphoma (Mandelbaum et al., 2010). In contrast, TP53 lesions were generally 

absent in SPOP-mutant tumors (p = 0.015, Fisher’s exact test), despite the fact that this tumor suppressor 

gene was recurrently mutated and deleted (Figure 2.1). SPOP mutations also trended inversely with point 

mutations and/or copy number loss involving the PTEN locus in primary tumors (p = 0.044, Fisher’s exact 

test) (Fig. 2.4); this pattern was supported by FISH analysis for PTEN deletion (Figure S2.16). SPOP-

mutant tumors also lacked PIK3CA mutations (Figure 2.4). Although the inverse relationship between 

SPOP mutations and PTEN/ PIK3CA alterations was evident in primary tumors (p = 0.041, Fisher’s exact 

test), these events co-occurred more frequently in metastatic tumors (Figure S2.16). Further studies are 

needed to determine if these genetic relationships also occur in other patient populations, and to 

elucidate the biological interactions that may underlie this phenomenon. Taken together, these results 

suggest that SPOP mutations may anchor a distinct genetic subtype of ETS-negative cancers. 

 

Conclusion 

 

In summary, whole-exome sequencing has identified genes that are recurrently mutated in 

prostate cancer. These efforts have also revealed a distinct ETS fusion-negative subclass of prostate 

cancer characterized by recurrent SPOP mutations and enriched for both 5q21 and 6q21 deletions. In the 

future, this expanded genetic framework may articulate new mechanisms of carcinogenesis that inform 

both disease modeling and patient stratification for clinical trials of experimental agents. Together with 

additional comprehensive analyses of the prostate cancer genome, epigenome, and transcriptome, these 
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systematic approaches should illuminate the landscape of alterations that underlie disease biology and 

therapeutic vulnerability in this common and clinically heterogeneous malignancy. 
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Methods 

 

Description of prostate tumor cohorts 

 

Clinically localized primary prostate cancers were selected for exome- and transcriptome-

sequencing from two cohorts: Weill Cornell Medical College (WCMC; New York, NY) and Uropath (Perth, 

Australia), a commercial supplier of banked urological tissues. Patients were included only if they had not 

received previous treatment for prostate cancer, including radiation therapy, brachytherapy or hormone 

ablation therapy. 

Tumors from the WCMC cohort were collected by the Institutional Biobank from patients 

undergoing radical prostatectomy by one surgeon for clinically localized prostate cancer. Patient-matched 

normal DNA was obtained from whole blood samples as described below for this cohort. 

Tumors from the Uropath cohort were obtained from men undergoing radical prostatectomy for 

clinically localized prostate cancer across multiple medical centers in Western Australia. Radical 

prostatectomies were performed by one of 30 clinicians between 2000 and 2010. Samples from both 

cohorts were stored at -80°C. Paired normal DNA was derived and sequenced from benign prostate 
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tissue. Normal DNA, was extracted from frozen tissue blocks with no histological evidence of neoplasia to 

minimize the possibility of contamination from tumor DNA. 

For both cohorts, Hematoxylin and Eosin (H&E)-stained tissue sections were centrally reviewed 

by Juan-Miguel Mosquera, Kyung Park and Mark Rubin to verify Gleason score and to determine the 

percentage of Gleason pattern 4 and 5 histology at the site selected for DNA extraction. To characterize 

the ethnic composition of the cohorts, we analyzed high-density SNP array data by principal component 

analysis in combination with data from cohorts of known ethnicity from the HapMap database (CEU, YRI, 

CHB/JPT; http://hapmap.ncbi.nlm.nih.gov/) (Figure S2.17). All but five individuals chosen for exome 

sequencing clustered with CEU HapMap samples, indicating that patients were predominantly Caucasian. 

Four samples showed mixed or undetermined ethnicity and one clustered clearly with CHB/JPT (Han 

Chinese in Beijing/Japanese in Tokyo) HapMap samples. 

In addition to exome- and transcriptome-sequenced tumors, prostate tumor cohorts from 

University of Michigan (UM), University of Washington (UW) and University Hospital Zurich (UZH) were 

used for extension screening for SPOP mutation. Prostate samples from the UM cohort were obtained 

from the radical prostatectomy series at the University of Michigan and from the Rapid Autopsy Program 

(Rubin et al., 2000), University of Michigan Prostate Cancer Specialized Program of Research Excellence 

Tissue Core (Ann Arbor, MI). Tumors from the UW cohort were obtained from the Rapid Autopsy 

Program, University of Washington and Fred Hutchison Cancer Research Center University (Seattle, 

WA). Samples from the UHZ cohort included a series of radical prostatectomy specimens, metastases, 

and benign prostatic hyperplasia samples. H&E–stained slides of all specimens were reevaluated by two 

experienced pathologists (Peter Wild and Colm Morrissey) to identify representative tissue sections. 

Tumor stage and Gleason score of the Zurich cohort were assigned according to the International Union 

Against Cancer and World Health Organization/International Society of Urological Pathology criteria. 

All samples were collected with informed consent of the patients and prior approval of the 

institutional review boards (IRB) of respective institutions. Additionally, the sequencing and data release 

of all exome- and transcriptome- sequenced samples was reviewed and approved by local IRB. 

 

DNA extraction for exome sequencing 



 31	
  

 

H&E slides were cut from all frozen tissue blocks and examined by a board-certified pathologist to 

select for high-density cancer foci with <10% stroma or other noncancerous material to ensure high purity 

of cancer DNA. Biopsy cores were then taken from the corresponding frozen tissue block for DNA 

extraction. From each sample, 25-30mg of tissue was homogenized using a tissuelyser for 20 seconds at 

15Hz. DNA was then isolated from the homogenate using the QIAamp mini kit (Qiagen) following the 

manufacturer’s protocol. Samples were eluted in 150ul AE elution buffer and quantified using Picogreen 

dsDNA Quantitation Reagent (Invitrogen). Samples were qualified on an agarose gel (E-Gel, Invitrogen) 

to assess structural integrity. All DNA samples were stored at -20°C. 

 

Whole exome capture library construction 

 

Whole-exome hybrid capture libraries were constructed as described previously (Fisher et al., 

2011), with minor modifications. Concentrations of tumor and normal DNA were measured using 

PicoGreen dsDNA Quantitation Reagent (Invitrogen). We sheared 100ng of genomic DNA to a range of 

150-300bp using the Covaris E220 instrument. DNA fragments were end-repaired, phosphorylated, 

adenylated at the 3’ termini and ligated to Illumina sequencing adapters as describe (Fisher et al., 2011), 

except that standard paired end adapters were replaced with forked adapters containing unique 8 base-

pair index sequences (barcodes). Adapter-ligated DNA was then size-selected for lengths between 200-

350bp and subjected to exonic hybrid capture using SureSelect v2 Exome bait (Agilent) according to 

(Fisher et al., 2011). The targeted exome covered 44Mb and comprised 98.2% of the CCDS database as 

of November 2010. 

 

Library Quantitation and Sequencing 

 

The number of properly adapter-ligated fragments in each library was quantified using 

quantitative PCR (qPCR) (Kapa Biosystems) with specific probes for the ends of the adapters. Based on 

qPCR quantification, libraries were normalized to 2nM and then denatured using 0.1 N NaOH. Barcoded 
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whole-exome libraries were pooled at equal molarities prior to sequencing with up to 93 samples per pool. 

Cluster amplification of denatured templates was performed according to manufacturer’s protocol using 

V2 HiSeq Cluster Kits and V2 or V3 HiSeq Flowcells (Illumina). Paired end sequencing (2 x 76bp) was 

carried out on HiSeq Instruments, using V3 HiSeq Sequencing-by-Synthesis kits. The resulting data were 

analyzed with the current Illumina pipeline. Standard quality control metrics including error rates, % 

passing filter reads, and total Gb produced were used to characterize process performance prior to 

downstream analysis. The 8bp adapter index of each sequence read was used to match the read to its 

corresponding sample in the downstream data aggregation pipeline. 

 

Exome sequence data processing 

 

Two Broad Institute pipelines were used in succession to process and analyze exome 

sequencing data (Berger et al., 2011; Chapman et al., 2011; Stransky et al., 2011): 

 

(1) The sequencing data processing pipeline “Picard”, developed by the Sequencing Platform at the 

Broad Institute, starts with the reads and qualities produced by the Illumina software for all lanes and 

libraries and generates a BAM file (http://samtools.sourceforge.net/SAM1.pdf) representing each tumor 

and normal sample. The final BAM file stores all reads with well-calibrated qualities together with their 

alignments to the genome (only for reads that were successfully aligned). 

 

(2) The Broad Cancer Genome Analysis pipeline, also known as “Firehose”, starts with the BAM files for 

the tumor and matched normal samples and orchestrates various analyses, including quality control, local 

realignment, mutation calling, small insertion and deletion identification, coverage calculations and others 

(see details below). 

Several of the tools used in these pipelines were developed jointly by the Broad Institute 

Sequencing Platform, Medical and Population Genetics Program, and Cancer Program as part of the 

Genome Analysis Toolkit (GATK) (http://www.broadinsitute.org/gatk). Additional details regarding these 

pipelines are provided elsewhere (DePristo et al., 2011; McKenna et al., 2010). 
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Sequence data processing pipeline (Picard) 

 

For each sample, a BAM file was generated from Illumina sequence reads using the Picard 

pipeline (http://picard.sourceforge.net/) as previously described (Berger et al., 2011; Chapman et al., 

2011). Briefly, Picard executes four steps: (1) alignment of sequence reads to the genome; (2) 

recalibration of base qualities based upon the quality score given by the Illumina software, the read-cycle, 

the lane, the tile and the identity of the base and the preceding base; (3) aggregation of lane-level and 

library-level data into a single BAM file per sample; and (4) marking of artifactual duplicate read pairs. 

These steps were performed as in (Chapman et al., 2011), with the following modification: sequence 

reads were aligned to the NCBI Human Reference Genome GRCh37 using the Burrows-Wheeler Aligner 

(BWA) (http://bio- bwa.sourceforge.net) (Li and Durbin, 2009). 

The 224 BAM files produced by Picard, corresponding to 112 tumors and 112 normal samples, 

were deposited to dbGAP under accession no. phs000447.v1.p1. 

 

Cancer genome analysis pipeline (Firehose) 

 

We used Firehose, a cancer genome analysis pipeline infrastructure developed at the Broad 

institute, to analyze exome sequence data. The Firehose interface manages input files, output files and a 

variety of analysis tools. Firehose submits input files and parameters to GenePattern (Reich et al., 2006), 

which executes the specified modules or analyses. The analyses described below were performed as in 

(Berger et al., 2011; Chapman et al., 2011), with modifications where indicated. 

 

Quality control 

 

We used quality control modules in Firehose to ensure that each tumor and normal file 

corresponded to the correct individual, and that no mix-ups had occurred between tumor and normal data 

for a given individual. We compared genotypes from Affymetrix SNP 6.0 arrays and from tumor and 
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normal sequence data for each individual to ensure that all data corresponded to the correct patient. 

Genotypes from SNP arrays were also used to monitor for low levels of cross-contamination between 

samples from different individuals in sequencing data with the ContEst algorithm (Cibulskis et al., 2011). 

 

Identification of somatic single nucleotide variants (SSNVs) 

 

We used the MuTect algorithm from the Broad Institute Genome Analysis Toolkit (GATK) to 

identify SSNVs (https:// confluence.broadinstitute.org/display/CGATools/MuTect). As previously described 

(Berger et al., 2011; Stransky et al., 2011), MuTect identifies candidate SSNVs by performing a statistical 

analysis of the bases and their read qualities in the tumor and normal BAMs at the genomic locus under 

examination. Base-pairs were required to be covered by at least 14 reads in the tumor and 8 in the 

normal for mutation detection. 

 MuTect first filters out reads with low quality scores or excessive mismatches. A statistical 

analysis is then performed to identify somatic mutations using Bayesian classifiers for the tumor and 

normal sequences at a given locus: 

  

Thresholds were chosen for each statistic to achieve a sufficiently low false positive rate. Several post-

processing filters are applied to remove artifactual calls. For example, mutations are excluded that appear 

solely at the 5' or 3' end of reads or that are identified in panels of genomes from non-cancerous tissue. A 

subset of mutations was chosen for independent validation (see “Validation of selected mutations by 

mass spectrometry genotyping”). Mutations in known cancer-associated genes were reviewed manually 

using Integrative Genomics Viewer (IGV) (Robinson et al., 2011).  

 

Local realignment and detection of indels 

 

!"#!! = !"#!"
! observed!data!in!tumor! !site!is!mutated
! observed!data!in!tumor! !site!is!reference  

 

!"#! = !"#!"
! observed!data!in!normal! !site!is!reference
! observed!data!in!normal! !site!is!mutated  

  



 35	
  

To improve detection of small insertions and deletions (indels), reads in tumor and paired normal 

were jointly realigned at genomic locations harboring putative indels by the local realignment module in 

the GATK (DePristo et al., 2011). Putative indels were then considered at sites that were well covered in 

tumor and normal where the indel-containing allele was supported by 8 or more reads or 30% of all reads 

from the locus. Next, these indel calls were filtered based on local alignment statistics around the putative 

event, including the average number of additional mismatches per indel-supporting read, average 

mismatch rate and base quality in a small window around the indel (The Cancer Genome Atlas Network, 

2011).  

 

Determination of mutation rates 

 

We calculated rates of base mutations per Mb using the mutations detected (SSNVs and indels) 

and coverage statistics. Mutations were partitioned into categories based on their relative frequency such 

as (1) a C in a CpG dinucleotide mutated to T (CpG C to T transition), (2) all other Cs mutated to T (non-

CpG C to T transition), (3) mutation of any C to G or A and (4) mutation of A to any other base. Disruptive 

mutations such as frame-shift indels and nonsense mutations were also considered separately. 

Because mutations may accumulate in benign-appearing tissue, we determined whether the use of 

benign prostate as the source of normal DNA affected our ability to distinguish somatic alterations from 

germline events. Tumors with matched normal prostate (n = 89) did not show different rates of mutation 

from tumors with blood matched normal (n = 22) (Figure S2.4), suggesting that the use of normal prostate 

did not prevent the detection of tumor-specific mutations. 

 

Identification of significantly mutated genes 

 

We applied the MutSig algorithm from the Broad Institute to identify genes that were significantly 

enriched for mutations as previously described (Berger et al., 2011; Chapman et al., 2011)
 
with two 

modifications. First, at most one mutation per gene was considered from each sample. Second, the 

observed number of silent mutations was used as a guide to the local background mutation rate. Briefly, 
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MutSig identifies genes that harbor more mutations than expected by chance given sequence context and 

genic territory. Because certain base contexts exhibit increased mutation rates, such as cytosine in CpG 

dinucleotides, the context-specific mutation rates are considered for each class of mutation listed under 

“Determination of mutation rates” above. For each gene, we calculated the probability of detecting the 

observed constellation of mutations or a more extreme one, given the background mutation rates 

calculated across the dataset. This was done by convoluting a set of binomial distributions, as described 

previously (Getz et al., 2007). This p-value is then adjusted for multiple hypotheses according to the 

Benjamini-Hochberg procedure for controlling False Discovery Rate (FDR) (Benjamini, 1995) to obtain a 

q-value. The hyper-mutated sample (PR-00-1165) was excluded from this analysis.  

 

Identification of significantly mutated gene sets 

 

We also used MutSig to determine whether particular gene sets were enriched for mutations 

(Berger et al., 2011; Chapman et al., 2011). We downloaded the list of canonical pathways used in Gene 

Set Enrichment Analysis (GSEA) and analyzed 616 gene sets corresponding to known pathways or gene 

families. For each gene set, we tabulated the number of mutations occurring in any component gene, as 

well as the total number of covered bases in all genes in the gene set. A p-value was calculated for each 

gene set as for each gene, then a q–value was computed to account for the list of 616 hypotheses. The 

hyper-mutated sample (PR-00-1165) was excluded from this analysis. Indels called in significantly 

mutated genes and other cancer-associated genes were manually reviewed by inspecting the tumor and 

normal BAM files in IGV. 

 

Mutation annotation 

 

Point mutations and indels identified were annotated using Oncotator (Ramos et al, submitted) 

which integrates information from publicly available databases. In brief, a local database of annotations 

compiled from multiple public resources was used to map genomic variants to specific genes, transcripts, 

and other relevant features. The set of 73,671 reference transcripts used were derived from transcripts 
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from the UCSC Genome Browserʼs UCSC Genes track (Fujita et al., 2011) and microRNAs from 

miRBase release 15 (Kozomara and Griffiths-Jones, 2011) as provided in the TCGA General Annotation 

Files 1.0 library (https://wiki.nci.nih.gov/display/TCGA/RNASeq+Data+Format+Specification). Variants 

were also annotated with data from the following resources: dbSNP build 132 (Sherry et al., 2001), UCSC 

Genome Browserʼs ORegAnno track (Griffith et al., 2008), UniProt release 2011_03 (Uniprot Consortium, 

2011) and COSMIC v51 (Forbes et al., 2011). 

 

Validation of selected mutations by mass spectrometric genotyping 

 

In order to validate detected mutations with an orthogonal genotyping method, we chose 240 

non-silent mutations (231 SSNVs and 9 indels) across 48 T/N pairs to assay by mass spectrometric 

genotyping using the iPLEX platform (Sequenom). We targeted 74 mutations in significantly-mutated 

genes or gene sets with a q-value <0.1 and mutations reported in COSMIC. The remaining 166 non-silent 

mutations were chosen at random. Because the rate of validation using this technology falls significantly 

when the mutant allele is present at low allelic fraction (Berger et al., 2011; Stransky et al., 2011), we 

attempted to validate only mutations with AF ≥ 0.2 (i.e., where 20% of sequence reads from the tumor 

contain the mutation). 

Of the 240 assays attempted, 228 gave successful genotype calls and 218 somatic mutations 

were confirmed (listed in Table S2.3). All events called in the tumor were absent from the corresponding 

normal. We conclude that the overall accuracy for mutation calling was 95.6% (CI: 92%-98%; Clopper- 

Pearson 95% confidence interval), in close agreement with previous studies (Berger et al., 2011; 

Chapman et al., 2011). 

 

High-density SNP array analysis and detection of somatic copy number alteration 

 

Genomic DNA from tumor and paired blood samples was processed using Affymetrix Genome-

Wide Human SNP Array 6.0 (Affymetrix, Inc.) according to manufacturer’s protocols. The DNA was 

digested with NspI and StyI enzymes (New England Biolabs), ligated to the respective Affymetrix 
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adapters using T4 DNA ligase (New England Biolabs), amplified (Clontech), purified using magnetic 

beads (Agencourt), labeled, fragmented, and hybridized to the arrays. Following hybridization, the arrays 

were washed and stained with streptavidin- phycoerythrin (Invitrogen). Following array scanning, data 

preprocessing was performed using Affymetrix Power Tools. Copy number data was evaluated after 

segmenting the log2 ratios between tumor and paired normal levels on a sample basis. Quality control, 

data integrity, segmentation and copy number analysis were performed as previously described 

(Demichelis et al., 2009) with one additional step aimed at diminishing the number of recurrent lesions 

possibly caused by germline signal: we applied the same detection pipeline on the normal DNA samples 

alone. All peaks detected in both analyses were excluded from the recurrent somatic copy number 

aberration list. Cleared lesions with q-value < 0.1 were retained for association analysis with gene 

mutation status. Two-tail Fisher’s Exact Test was applied for all association tests. Copy number profile 

images were generated with IGV (Robinson et al., 2011). 

 

Assessment of tumor purity 

 

Because prostate tumors may contain significant amounts of admixed stroma, we determined 

whether the purity of cancer DNA limited our ability to detect mutations. We assessed tumor purity by 

considering the allelic fractions (AF) of mutations detected in each tumor, defined as the number of 

mutation- supporting reads divided by the total number of reads mapping to a mutated locus. AF can be 

influenced by several factors in addition to tumor purity, including copy number alterations at mutated 

sites and the presence of subclones within a tumor. Therefore, we used AF data to assess purity in two 

ways. First, we considered the maximum mutant AF across all mutations in each tumor after removing the 

top fifth percentile of AF values in order to exclude outliers with elevated AF due to copy number 

alterations or stochastic effects. Second, we considered the median AF for all mutations across a tumor.  

Both the maximum and median AF values correlated only slightly with the number of mutations 

detected, suggesting that tumor purity was not a systematic barrier to identifying mutations. In order to 

compare mutation rates across subgroups of tumors (e.g. Stage pT2 versus pT3), we verified that no 
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systematic differences in tumor purity existed between subgroups. To this end, we compared mutant and 

maximum AF for each subgroup and identified no differences (Figure S2.4). 

 

RNA extraction, RNA-Seq sample preparation and sequencing 

 

RNA was extracted from the frozen cancer tissue using TRIzol (Invitrogen) according to the 

manufacturer's protocol. Total RNA was prepared in accordance with Illumina's sample preparation 

protocol for paired end (PE) sequencing of mRNA as previously described (Pflueger et al., 2011). In brief, 

5–10 µg of total RNA was fragmented by heat between 2 and 3 min based on the desired insert size, 

reverse-transcribed using Superscript II (Invitrogen), and transformed to double-stranded cDNA. To 

improve PE RNA-Seq data quality, we introduced an additional gel-based size selection step after cDNA 

double-strand synthesis and before the ligation of the PE adapters. This was postulated by Quail et al. 

(Quail et al., 2008) as a means to reduce the inclusion of artifactual chimeric transcripts that are 

composed of two cDNA fragments into the sequencing library. We also integrated the use of T4 ligase 

(Enzymatics Inc.) to improve the efficiency of adapter ligation. Over the course of the study, we increased 

the library size range from 250 bp to 450 bp. The gel dissolutions of all gel-based purification steps were 

conducted at room temperature under slight agitation as described by Quail et al. (Quail et al., 2008). 

After the enrichment of cDNA template by PCR, the concentrations and the sizes of the libraries were 

measured using a Qubit fluorometer (Invitrogen) and DNA 1000 kit (Agilent Technologies) on an Agilent 

2100 Bioanalyzer, respectively. PE RNA- seq was performed with the Genome Analyzer II (Illumina) 

increasing the read size of the PE reads from 36 to 54 bp over the course of the study. Additionally, 

Illumina introduced improved sequencing reagents and upgraded imaging software over time to increase 

data quality and sequencing coverage. 

 

Processing of RNA-Seq data 
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PE reads were aligned to the human genome (hg18) using ELAND, part of the standard software 

suite from Illumina, as previously described (Pflueger et al., 2011). Data were visualized using IGV 

(Robinson et al., 2011), and candidate mutations were identified in SPOP coding regions. 

 

DNA extraction and SPOP genotyping 

 

DNA was extracted using phenol-chloroform and purified by ethanol precipitation method as 

previously described (Berger et al., 2011). Direct Sanger sequencing of putative SPOP somatic mutations 

in all tumor-blood pairs was performed by standard methods following PCR amplification using specific 

primers. Sequences of the primers used for amplifying and sequencing SPOP are given in Table S2.9. 

 

Laser-capture microdissection 

 

5µm-thick tissue sections were cut, fixed and stained on membrane coated slides followed by 

dissection with the ArcturusXTTM LCM Instrument (Life Technologies Corporation, California, USA). 

Tissue staining and Laser Capture Mircodissection (LCM) were performed by Mirjam Blattner and Kyung 

Park as described by Espina et al. (Espina et al., 2006). A combined IR capture and UV laser cutting was 

carried out to best recover a precise subset of cells. DNA was amplified as suggested by manufacturer 

with the Whole Genome Amplification kit (WGA4) for single cell approach (Sigma Aldrich). Standard PCR 

was used for targeted enrichment of SPOP exon 6 and 7 followed by Sanger sequencing. 

 

Fluorescence in situ hybridization 

 

The ETS rearrangement status and PTEN deletion status was assessed on tissue slides from the 

same tumor nodule used for RNA and DNA extraction.  Methods for fluorescence in situ hybridization 

(FISH) for TMPRSS2-ETS gene fusion have been previously described (Perner et al., 2006; Tomlins et 

al., 2005). We used ERG, ETV1, ETV4, and ETV5 break-apart FISH assays to confirm gene 

rearrangement on the DNA level (Svensson et al., 2011). To assess the status of PTEN, we used a locus 



 41	
  

specific probe and a reference probe as previously described (Berger et al., 2011).  All FISH probes are 

listed in Table S2.10. 

 

Quantitative RT-PCR 

 

RNA was extracted using the TRIzol reagent (Invitrogen), subjected to DNase treatment (DNA-

free kit; Applied Biosystems) according to the manufacturer's instructions, and used in quantitative RT-

PCR. Quantitative RT-PCR was performed using the ABI 7500 Real-Time PCR System (Applied 

Biosystems) following the manufacturer's RNA-to-CT 1-step protocol. Each target was run in triplicate, 

and expression levels relative to the housekeeping gene GAPDH were determined on the basis of the 

comparative threshold cycle CT method (2−ΔΔCT). The primer sequences used in these experiments are 

given in Table S2.9.  All experiments were run in triplicate; results are representative of three independent 

experiments. 

 

Immunohistochemistry 

 

ERG rearrangement status was confirmed by immunohistochemistry as previously described 

(Park et al., 2010).  Briefly, primary rabbit monoclonal antibody was obtained from Epitomics. Antigen 

recovery was conducted using heat retrieval and CC1 standard, a high pH Tris/borate/EDTA buffer 

(VMSI). Slides were incubated with 1:100 of the ERG primary antibody for 1 hour at room temperature. 

Primary antibody was detected using the ChromoMap DAB detection kit and UltraMap anti-Rb HRP 

(VMSI). The anti-Rb HRP secondary antibody was applied for 16 minutes at room temperature. Slides 

were counterstained with Hematoxylin II for 8 minutes followed by Bluing Reagent (VMSI) for 4 minutes at 

37°C. Subjective evaluation of ERG protein expression was scored as positive or negative by study 

pathologists (Kyung Park, Juan-Miguel Mosquera and Mark Rubin) 

 

SPOP wild-type and mutant plasmids 
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Wild-type SPOP construct was obtained from Origene with C-terminal myc and FLAG tags in a 

mammalian expression vector. The SPOP-F133V construct was generated using the QuikChange II site-

directed mutagenesis kit (Agilent).  All plasmids were confirmed with Sanger sequencing, and protein 

expression was confirmed with Western blot using antibodies to SPOP, myc, and FLAG.  

 

Cell culture and transfection 

 

The human prostate cancer cell lines 22Rv1, and DU145 and the benign prostate epithelial cell 

line RWPE were obtained from the American Type Culture Collection.  22Rv1 and DU145Cells were 

maintained in RPMI 1640 (Invitrogen) supplemented with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin.  RWPE cells were maintained in Keratinocyte-SFM (Invitrogen) supplemented 

with human recombinant Epidermal Growth Factor and Bovine Pituitary Extract (BPE).    

For siRNA transfection, RWPE (2.5 × 105 per well), 22Rv1 (4 × 105 per well), and DU145 (2 × 105 

per well), cells were seeded on 6-well tissue culture plates. The next day, cells were transfected with 100 

nM SPOP or nontargeting (control) siRNAs (ON-TARGETplus; Thermo Scientific) using Dharmfect 2 

reagent (Invitrogen) according to the manufacturer’s instructions. For plasmid transfection, DU145 (4 × 

105 per well), cells were seeded on 6-well tissue culture plates. The next day, cells were transfected with 

4 ug of pCMV6-WT SPOP or pCMV-SPOP-F133V using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. 

 

Cell viability and proliferation assays 

 

22Rv1 (2 × 103 per well) and DU145 (1 × 103 per well) cells transfected with control or SPOP 

siRNA or SPOP plasmids were seeded in 96-well tissue culture plates. Cell viability and growth was 

determined by performing WST-1 assay (Roche) reading absorbance at 450 nm according to the 

manufacturer's instructions. Values from three wells were obtained for each treatment and timepoint. 

Results are representative of three independent experiments. 
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Invasion assays 

 

For invasion assays, 7.5 × 104 22Rv1 and 5 × 104 DU145 cells transfected with control or SPOP 

siRNA or SPOP plasmids were resuspended in 0.5 mL of RPMI-1640 medium containing 1% FBS and 

placed into the top chamber of Matrigel-coated 8-µm Transwell inserts (BD Falcon). The bottom wells 

contained RPMI supplemented with 5-10% FBS.  After 24h (DU145) or 48h (22Rv1), the filters were fixed 

and stained with Crystal Violet 0.5% for 30 min, and cells on the upper surface of the filters were removed 

with a cotton swab. Migrated cells were quantified by counting the numbers of cells that penetrated the 

membrane in four microscopic fields (at 20X objective magnification) per filter. All experiments were run in 

triplicate; results are representative of three independent experiments. 
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CHAPTER 3 
 

Complex DNA rearrangements result from punctuated 

genome-damaging events 
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Introduction	
  

  

Genetic studies of prostate cancer have revealed numerous recurrent DNA alterations that 

dysregulate genes involved in prostatic development, chromatin modification, cell cycle regulation and 

androgen signaling, among other processes (Baca and Garraway, 2012). Chromosomal deletions 

accumulate early in prostate carcinogenesis and commonly inactivate tumor suppressor genes (TSGs) 

such as PTEN, TP53 and CDKN1B (Shen and Abate-Shen, 2010). In addition, exome sequencing of 

localized and castration-resistant prostate cancer has identified base-pair mutations in genes such as 

SPOP, FOXA1 and KDM6A, which implicate a range of deregulated cellular processes in prostate tumor 

development (Barbieri et al., 2012; Grasso et al., 2012; Kumar et al., 2011). 

  Structural genomic rearrangements also play a critical role in prostate carcinogenesis. Roughly 

half of prostatic adenocarcinomas overexpress an oncogenic ETS transcription factor gene (most 

commonly ERG) due to somatic fusion with a constitutively active or androgen-regulated promoter 

(Tomlins et al., 2007; Tomlins et al., 2005). In addition, disruptive rearrangements may inactivate TSGs 

such as PTEN or MAGI2 (Berger et al., 2011). Interestingly, analysis of prostate cancer genomes has 

revealed complex “chains” of rearrangements, which may result when broken DNA ends are shuffled and 

re-ligated to one another in a novel configuration (Berger et al., 2011). In theory, these DNA-shuffling 

events could simultaneously dysregulate multiple cancer genes, but the prevalence and consequences of 

rearrangement chains could not be assessed with the small panel of tumors sequenced.  

 Given the importance of structural genomic alterations in prostate cancer genesis and 

progression, we performed whole genome sequencing (WGS) and DNA copy number profiling of 57 

prostate cancers to define a spectrum of oncogenic events that may operate during prostate tumor 

development. Through integrated analysis of rearrangements and copy number alterations, we 

discovered that the chromosomal disarray in a typical tumor may accumulate over a handful of discrete 

events during tumor development. We employ the term “chromoplexy” to describe this phenomenon of 

complex genome restructuring (from the Greek pleko, meaning to weave or to braid). Chromoplexy 

occurs in the majority of prostate cancers and may commonly inactivate multiple tumor-constraining 



 47	
  

genes in concert, likely within a single clonogenic cell. This chapter describes the characterization of 

chromoplexy in prostate cancer genomes, and discusses how this knowledge informs a model for 

punctuated tumor evolution with relevance to prostate cancer and possibly other malignancies. 

 

The landscape of genomic rearrangement in prostate cancer 

 

We sequenced the genomes of 55 primary prostate adenocarcinomas and two neuroendocrine 

prostate cancer (NEPC) metastases that developed following castration-based therapy, along with paired 

normal tissue. We selected treatment-naïve adenocarcinomas across a range of clinically relevant tumor 

grades and stages (Gleason score 6 through 9; pathological stage pT2N0 through pT4N1; Table S3.1). 

Roughly 1.68x1013 sequenced base pairs aligned uniquely to the hg19 human reference genome (Table 

S3.2). Sequencing of tumor and normal DNA to mean coverage depths of 61x and 34x, respectively, 

revealed 356,136 somatic base-pair mutations, with an average of 33 non-silent exonic mutations per 

primary tumor (Figure 3.1 and Table S3.3A). We profiled somatic DNA copy number alterations (SCNAs) 

with high-density oligonucleotide arrays (Table S3.3B). Additionally, we conducted transcriptome 

sequencing on 20 tumors, along with matched benign prostate tissue for 16 cases.  

To identify genomic rearrangements, we analyzed paired-end sequencing reads that map to the 

reference genome in unexpected orientations using the dRanger algorithm (Berger et al., 2011). We 

observed 5596 high-confidence rearrangements that were absent from normal DNA in both this cohort 

and an extended panel of 172 non-cancerous genome sequences (Figure 3.1 and Table S3.3C). We 

validated 113 rearrangements by re-sequencing and/or PCR amplification of tumor and normal DNA 

(Table S3C). We did not discover novel recurrent gene fusions, but observed several singleton events 

that may lead to overexpression of oncogenes. For example, sense-preserving fusions joined NRF1 to 

BRAF (PR-4240) and CRKL to the ERK-2 kinase gene MAPK1 (P04-1084; Figure S3.1A), leaving the 

kinase domains of BRAF and MAPK1 primarily intact. Several genes underwent recurrent disruptive 

rearrangements with potential biological consequence, such as PTEN, RB1, GSK3B and FOXO1 (Figure  
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Figure 3.1. Somatic alterations in 57 prostate tumor genomes  

WGS was conducted on 55 prostate adenocarcinomas and two lung metastases from neuroendocrine 

prostate cancers (NEPC, *) along with paired normal DNA to detect somatic rearrangements and 

mutations. Gains and losses of DNA copy number at sites of recurrent SNCAs were detected with 

Affymetrix SNP 6.0 arrays (recurrent SCNAs were not assessed for sample P07-144, hatched lines). 

Bottom, cancer DNA purity was evaluated by assessing allelic ratios from sequence reads covering 

heterozygous single-nucleotide polymorphisms at sites of chromosomal deletion (see Methods). ETS 

gene fusions (ERG, ETV1) were detected by sequencing and validated by fluorescence in situ 

hybridization (FISH).   
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S3.1 and Table S3.4). Thus, rearrangement of these genes may contribute to development of localized 

prostate cancer. 

 

DNA deletions and rearrangements reveal signatures of complex genome-

restructuring events 

 

Rearrangements involving cancer gene loci often occurred in the context of a “chain”, in which the 

two rearrangement breakpoints map to the reference genome near breakpoints from other 

rearrangements (Figure 3.2A, left). Such characteristic breakpoint distributions were observed in our 

initial study of seven prostate cancer genomes (Berger et al., 2011) and appear to reflect collections of 

broken DNA ends that are shuffled and ligated to one another in an aberrant configuration. Given the 

involvement of prostate cancer genes in rearrangement chains, we set out to survey chained 

rearrangements systematically to clarify their prevalence, mechanistic underpinnings, and potential 

biological consequences. 

We first determined whether additional chains could be identified by integrative analysis of 

chromosomal deletions and rearrangements. Although rearrangement chains may arise with minimal loss 

of genetic material, substantial DNA deletions were often evident at the fusion junctions of chained 

rearrangements (Figure 3.2A, right). When these deletions are overlaid with somatic rearrangement 

locations on the reference genome, the deletions create “bridges” that span the sequence between 

breakpoints from two different fusions (Figure 3.2A, bottom right). In all informative tumors in our cohort, 

the breakpoints at either end of a deletion were more often fused to novel partners rather than to each 

other (thus creating “deletion bridges”, rather than “simple deletions”; Figure 3.S2A). Importantly, this 

observation indicates that the many rearrangements demonstrating DNA loss near a breakpoint may be 

linked by deletion bridges to additional rearrangements in a chain. 

We next considered whether rearrangements in a chain might arise independently of one 

another, for instance, at loci that are predisposed toward fusion due to DNA secondary structure or 

nuclear proximity (Burrow et al., 2010; De and Michor, 2011). To investigate this, we created a  
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Figure 3.2. Integrated analysis of genomic deletions and rearrangements reveals signatures of 

inter-dependent alterations 

(A) Three scenarios by which multiple DNA double-strand breaks may be repaired. Concerted repair with 

minimal loss of DNA (left) results in fusion breakpoints that map to adjacent positions in the reference 

genome. Loss of DNA at sites of double-strand breaks may result in simple deletions (middle) or “deletion 

bridges” (right) that span breakpoints from distinct fusions on the reference genome. Adjacent 

breakpoints or deletion bridges may provide evidence for chained rearrangements.  

(B) For the two breakpoints of each rearrangement (labeled A and B), the probability P of a second 

independently generated breakpoint (a or b) falling within the observed distance (L) was assessed based 

on the expected local rate of rearrangements (µlocal). The x- and y- coordinates represent the negative log 

of P for the two breakpoints in each fusion. Rearrangements near the upper right corner of the plot are 

unlikely to have arisen independently of other rearrangements. Observed rearrangements are compared 

to simulated and scrambled data. 
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probabilistic model for the independent generation of detectible rearrangements across the genome  

(Figure S3.2B). Using this model, we calculated the probability that any pair of neighboring DNA 

breakpoints X and Y would arise independently of each other (PXY) based on (1) their reference genome 

distance and (2) the local rate of rearrangements observed in our tumor panel (Figure 3.2B). As a control, 

we created ten simulated genomes for each tumor, with rearrangement locations matched for 

chromosome, local gene expression levels, sequence guanine/cytosine content and DNA replication 

timing, among other factors (see Methods). In addition, we generated “scrambled” genomes by drawing 

rearrangements from distinct tumors, preserving locus-specific effects that may promote double strand 

breakage. The observed rearrangements, but not the simulated or scrambled data, showed marked 

deviation from the independent model (Figure S3.2C) and statistical enhancement of chain-like patterns 

(Figure 3.2B). For 50% of rearrangements, the reference genome locations of both breakpoints were 

nearer to breakpoints of additional rearrangements than would be expected by chance (p < 10-4 for 

observed versus simulated or scrambled PXY values). To the extent that our model correctly predicts the 

genomic distribution of independent rearrangements, these results suggest that rearrangement chains 

are unlikely to arise from independent events, thus raising the hypothesis that they occur by a 

coordinated process.  

 

“Chromoplexy” generates chained chromosomal rearrangements and 

deletions 

 

Having identified chained patterns of adjacent rearrangements that may signify concerted 

alterations, we created an algorithm called ChainFinder to search for co-arising structural alterations 

(Figures 3.3A and S3.3). ChainFinder employs a statistically based search rooted in graph theory to 

identify genomic rearrangements and associated deletions that deviate significantly from our independent 

model described above, and thus appear to have arisen in an interdependent fashion (see Methods).  

We used ChainFinder to survey our panel of prostate tumors for rearrangement chains. Strikingly, 

this analysis revealed numerous chains involving widely variable numbers of rearrangements. Some  
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Figure 3.3 The ChainFinder algorithm 

(A) ChainFinder creates a graph representation of genomic breakpoints that may be linked in chains by 

somatic fusions, statistical adjacency or deletion bridges. ChainFinder assigns two neighboring 

breakpoints to the same chain if the p-value for their independent generation (P) is rejected with a false-

discovery rate below 10-2. For each cycle (closed path) within the graph, all scenarios are considered 

where one or more rearrangements in the cycle could have arisen independently. All rearrangements in a 

cycle are assigned to the same chain if every such scenario is rejected with a family-wise error rate below 

10-2 across all scenarios. Please see the Methods for additional details.   

(B) Circos plot of chained rearrangements in a prostate adenocarcima (P09-1042). Rearrangements 

depicted in the same color arose within the same chain; fusions in gray were not assigned to a chain. The 

inner ring depicts copy number gains and losses in blue and red, respectively.   

(C) The false positive rate of ChainFinder was assessed using simulated and scrambled genomes based 

on observed rearrangements. 

(D) For observed, simulated and scrambled genomes, the longest chain was compared along with the 

portion of breakpoints in any chain. 
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Figure 3.3 (continued) 
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chains involved only three fusions, while others revealed more than forty rearrangements that wove 

together five or more chromosomes (Table S3.5A; Figure 3.3B and S3.3C). We have termed the process 

of genomic restructuring that produces these complex chains “chromoplexy” (from the Greek pleko, 

meaning “to weave” or “to braid”). Chromoplexy-associated chains of five or more rearrangements (ten or 

more breakpoints) were detected in 50 out of 57 tumors (88%; Table S3.5B and Figure S3.3C), while 36 

tumors (63%) contained two or more such chains. Overall, 39% of rearrangements participated in chains, 

while ChainFinder detected chains in only 2.8% and 0.2% of rearrangements from simulated or 

scrambled genomes, respectively (Figure 3.3C-D). Thus, chromoplexy generates multiple structural 

alterations in a coordinated fashion, as inferred by statistical analysis of breakpoint distributions. 

We noted profound phenotypic differences in chromoplexy in subsets of prostate cancers. 

Chromoplexy in tumors harboring oncogenic ETS fusions (ETS+) produced significantly more inter-

chromosomal rearrangements than ETS- tumors (p < 10-4) and involved a greater maximum number of 

chromosomes in a single event (p = 9 x 10-3; Figure 3.4A-C). Interestingly, oncogenic ERG fusions 

frequently arose in the setting of chromoplexy (15 of 26 cases, 58%). Given that fusion of TMPRSS2 and 

ERG occurs in the setting of androgen receptor-driven transcription (Haffner et al., 2010), the intricate 

chains in ETS+ tumors could reflect DNA injury at transcriptional hubs occupied by loci from multiple 

chromosomes. Consistent with this possibility, chromoplexy in ETS+ nuclei primarily affected regions of 

the genome that are highly expressed in prostate tumors (Figure 3.4D) and that co-localize in interphase 

nuclei (Figure S3.4A). Thus, chromoplexy in ETS+ tumors appears to reflect a distinct process of genome 

restructuring that may be coupled to transcriptional processes.   

In contrast, chromoplexy in a subset of ETS-negative cancers resembled chromothripsis (Rausch 

et al., 2012; Stephens et al., 2011), a process of chromatin shattering yielding extensive DNA 

rearrangement, often of one or two focal chromosomal regions. In particular, seven ETS- tumors 

contained up to seven-fold more rearrangements than the whole-cohort average (Figure S3.4B). These 

tumors harbored focal deletions or disruptive rearrangements involving the chromatin-modifying enzyme 

gene CHD1, a putative tumor-suppressor gene that may regulate genomic stability (Huang et al., 2011; 

Liu et al., 2012). The rearrangements in CHD1del tumors were predominantly intra-chromosomal both 

within chains (p = 2 x 10-4) and overall (p = 4 x 10-4; Figure S3.4C). Moreover, the rearrangements in  
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Figure 3.4. Manifestations of chromoplexy vary by ETS fusion status 

(A) Circos plots of rearrangement chains in representative tumors, grouped by the presence of ETS 

rearrangements and CHD1 disruption. Rearrangements in the same chain are depicted in one color. 

Rearrangements in gray were not assigned to a chain. The inner ring shows copy number gain and loss 

in red and blue, respectively.  

(B) Rearrangement chains in ETS-positive tumors contain a greater proportion of inter-chromosomal 

fusions than chains in ETS-negative tumors.  

(C) The maximum number of chromosomes involved in a single rearrangement chain (y-axis), grouped by 

ETS status. The total number of breakpoints in chains in each tumor is depicted on the x-axis to allow 

comparison of tumors with similar degree of detectable chromoplexy.  

(D) ETS-positive chromoplexy breakpoints are enriched near DNA that is highly expressed in 16 prostate 

tumor transcriptomes.  
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Figure 3.4 (continued) 



 57	
  

 
CHD1del samples arose in late replicating DNA with low guanine and cytosine content (Figure S3.4B), 

generally corresponding to gene-poor heterochromatin. An extended cohort of 199 prostate 

adenocarcinomas revealed that CHD1 loss was associated with an increased number of recurrent 

SCNAs (p = 1.5 x 10-8; Figure S3.4C). Given the postulated roles of CHD1 in genome stability and 

maintenance of chromatin architecture (Gaspar-Maia et al., 2009), these findings raise the possibility that 

CHD1 deletion may contribute to the distinctive patterns of genomic instability observed in CHD1del 

tumors. 

We investigated whether chromoplexy is unique to prostate cancer by analyzing a panel of 59 

additional tumor genomes including melanoma, non-small cell lung cancer, head and neck squamous cell 

carcinoma, and breast adenocarcinoma (Table S3.5B and Figure S3.3C). Every tumor type demonstrated 

multiple instances of chains involving 5 or more rearrangements. Thus, a small number of chromoplexy 

events may account for the wide array of rearrangements and deletions in several common cancers.   

 

Chromoplexy commonly dysregulates cancer genes 

 

 To assess the role of chromoplexy in prostate cancer development, we examined the genomic 

regions altered by deletion or disruptive rearrangements in the context of chains. Using a list of 17 

potential prostate tumor suppressor genes from the KEGG database (Kanehisa et al., 2012), we found 

that 26 of the 57 tumors (46%) have either deletion or rearrangement of at least one gene in a chain of 

three or more rearrangements (Table S3.5C). Inclusion of the TMPRSS2-ERG fusion and 10 putative 

prostate cancer genes added 9 more samples. Several cancer genes were recurrently deleted or 

rearranged by chromoplexy, including PTEN (9 cases), NKX3-1 (8 cases), CDKN1B (3 cases), TP53 (4 

cases), and RB1 (2 cases). Thus, chromoplexy may drive prostate carcinogenesis by disrupting tumor 

suppressor genes and creating oncogenic fusions. 

The concurrent shuffling and deletion of multiple regions across the genome that may underlie 

chromoplexy could simultaneously inactivate tumor suppressor genes that are geographically distant from 

each other (i.e. on separate chromosomes). We noted several examples where multiple putative cancer  
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Figure 3.5. Chromoplexy generates widespread genomic alterations that coordinately dysregulate 

multiple cancer genes  

(A) Chromoplexy-associated chain of 27 somatic rearrangements across 6 chromosomes in tumor P05-

3852, involving fusion of TMPRSS2 and ERG and disruptive rearrangement of SMAD4.  

(B) The putative tumor suppressor genes CDKN1B, ETV6 and ETV3 were lost in the context of deletion 

bridges in a 25-rearrangement chain affecting 3 chromosomes in PR-05-3595.  

In both panels, selected rearrangements were assessed by PCR of tumor and normal DNA.  
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genes were disrupted by a single instance of chromoplexy. For instance, a chain of 27 rearrangements 

across 6 chromosomes coordinately fused TMPRSS2 and ERG (21q) and disrupted the SMAD4 (18q) 

prostate tumor suppressor gene (Ding et al., 2011) (Figures 3.5A and S3.5). In a second example, the 

adjacent CDKN1B/ETV6 tumor suppressor genes (12p) and the ETV3 locus (1q) were lost in the context 

of deletion bridges within one chain (Figure 3.5B). Additional instances of chromoplexy disrupted 

interacting genes in the same pathway: for instance, deletion of PIK3R1 (5q) with PTEN (10q) and TP53 

(17p) with CHEK2 (22q) occurred in two chains (Table S3.5C). Thus, chromoplexy may simultaneously 

dysregulate multiple cancer genes across the genome. Such events may provide selective advantages to 

incipient cancer cells, particularly given that the loss of some TSGs promotes prostate cancer only in the 

context of specific accompanying molecular lesions (Chen et al., 2005).  

 

Clonal evolution reveals paths of prostate cancer progression 

 

To provide additional insight into the genomic evolution of prostate tumors, we analyzed the 

clonal status of mutations and deletions in our cohort. Using an approach related to previously described 

methods (Carter et al., 2012; Nik-Zainal et al., 2012), we exploited the extensive germline SNP genotype 

data provided by WGS to assess tumor purity and the clonal status of genomic lesions (Figures 3.6A and 

S3.6). Our estimates of tumor purity based on WGS matched those produced by ABSOLUTE analysis of 

SNP array data (Carter et al., 2012) (R2 = 0.99; p < 10-4), with the exception of two samples where 

admixed normal DNA was detected only from WGS data (Table S3.1).  

We first compared the clonality of deletions involving prostate cancer genes, reasoning that 

lesions that arise early in tumorigenesis or that foster rapid outgrowth would tend to be clonal, while late-

arising deletions would more often be subclonal. Several common deletions were strictly clonal, including 

NKX3-1 and the 3Mb region of chromosome 21q that is frequently deleted to produce the TMPRSS2-

ERG fusion (Perner et al., 2006) (Figure 3.6B and Figure S3.6). These events are among the earliest 

detectible alterations in prostate cancer and are frequently observed in prostatic intraepithelial neoplasia 

(PIN), a prostate cancer precursor lesion (Emmert-Buck et al., 1995; Perner et al., 2007). By contrast,  
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Figure 3.6. Clonality and evolution of prostate cancer  

(A) Schematic representation of the clonality assessment. The allelic fractions (AFs) of sequencing reads 

covering heterozygous SNPs were analyzed in order to assess the clonality of somatic DNA alterations. A 

hypothetical tumor is shown, composed of normal cells, a caner clone and a derivative subclone. The 

histograms indicate the expected SNP AFs within two deleted genes, A and B. The subclonal deletion of 

B yields a distinct distribution of AFs compared to the clonal deletion of A.  

(B) Selected deletions (top) and mutations (bottom) were classified as clonal or subclonal. Proportion test 

p-value is listed for the indicated comparisons. Independent samples (Barbieri et al., 2012) are included 

for support. 

(C) Example of clonal (TMPRSS2-ERG) and subclonal (CDKN1B) deletions from the same tumor. 

Histograms show the proportion of sequencing reads containing the reference allele for heterozygous 

SNPs in the deleted regions. A representative immunohistochemical stain for the CDKN1B protein p27Kip1 

shows discrete subclonal positivity in prostate cancer.  

(D) Patterns of tumor evolution were inferred based on clonality estimates. Arrows indicate the direction 

of clonal-subclonal hierarchy between genes that are deleted in the same sample in multiple cases. 

Deleted genes are represented by circles with size and color intensity reflecting the frequency of overall 

deletions and subclonal deletions, respectively. Ratios along the arrows indicate the number of samples 

demonstrating directionality of the hierarchy out of samples with deletion of both genes (ratios in 

parentheses refer to additional samples; Barbieri et al., 2012). The inset shows a similar analysis of point 

mutations (Barbieri et al., 2012).  

(E) The number of recurrent SCNAs and cancer DNA purity were compared across tumors with major 

Gleason pattern 4 versus 3.  
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Figure 3.6 (continued) 
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deletions of PTEN were often subclonal (p = 10-5 for comparison with NKX3-1 deletion clonality), as were 

CDKN1B deletions (Figure 3.6C). This finding suggests that PTEN and CDKN1B inactivation promotes 

the early progression of prostate cancer, consistent with the association of these events with higher-stage 

disease (Barbieri et al., 2012; Halvorsen et al., 2003).  

We next used our clonality assessments to deconvolve the sequence of oncogenic events that 

gives rise to a typical prostate tumor. Reasoning that clonal alterations must originate prior to subclonal 

alterations within the same tumor, we examined pairs of genes that were deleted in the same sample 

across multiple tumors to determine the directionality of the clonal-subclonal hierarchy (Figure 3.6D). 

Where possible, we confirmed these relationships in independent exome-sequenced tumors. A 

“consensus path” of progression emerged, beginning with events including deletion of NKX3-1 or FOXP1 

and fusion of TMPRSS2 and ERG. These lesions may disrupt normal prostate epithelial differentiation 

(Bhatia-Gaur et al., 1999; Sun et al., 2008) and effect other oncogenic perturbations. Thereafter, lesions 

in CDKN1B or TP53 accumulate; these alterations may lead to enhanced proliferation, genomic instability 

and/or evasion of apoptosis. Finally, loss of PTEN may provide a gating event in the development of 

aggressive prostate cancers. A similar assessment of point mutation clonality (Figure 3.6B, lower) 

revealed higher overall rates of subclonal events, with the exception of early mutations as in SPOP and 

FOXA1. Together, these results imply that prostate carcinogenesis favors the dysregulation of cancer 

genes in defined sequences, as has been suggested by studies of developing tumors in colon cancer 

(Fearon and Vogelstein, 1990).  

Next, we investigated whether chromoplexy might continue after cancer initiation, and thereby 

contribute to the progression of a tumor down an oncogenic path. Interestingly, several chains appeared 

to involve strictly subclonal deletion bridges (Figure S3.7A), indicating that tumors may sustain multiple 

rounds of chromoplexy. Together with the observation that chromoplexy targets both early and late genes 

in the consensus path (e.g., ERG and PTEN) these findings suggest that chromoplexy continues to drive 

the outgrowth of tumor subclones. 
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Prostate cancer genomic derangement increases with histological grade 

 

Finally, we considered whether tumors with high-grade histology (indicative of high clinical risk) 

might occupy positions further along the consensus path. To this end, we quantified recurrent SCNAs in 

each genome by counting amplifications and deletions that overlapped with regions of significant SNCAs 

identified by GISTICv2 analysis (e.g., the TP53, PTEN and CDKN1B loci) across 199 tumors reported 

here and in a previous study (Barbieri et al., 2012; Beroukhim et al., 2010). Tumors with predominantly 

Gleason score (GS) 4 histology were significantly enriched for recurrent SCNAs compared to GS 3 

tumors (p = 5.9 x 10-3; Figure 3.6E) beyond the overall extent of SCNAs, despite similar purity of cancer 

DNA and mutational burden between the two groups. Altogether, these findings suggest that structural 

alterations affecting cancer genes, many of which result from chromoplexy, may contribute to the 

aggressive clinical behavior of high-grade prostate tumors.  

 

Discussion 

 

 We have characterized somatic alterations across the genomes of 57 prostate tumors. By 

systematically profiling rearrangements and copy number alterations, we identified chromoplexy as a 

common process by which multiple geographically-distant genomic regions may be disrupted at once. 

Chromoplexy is evident in several solid tumor types and in the majority of prostate cancers. In multiple 

instances, chromoplexy altered more than one cancer gene coordinately. In the future, systematic 

assessment of chromoplexy from WGS data could reveal groups of cancer gene alterations that confer a 

selective advantage when sustained all at once, but activate tumor-suppressing safeguards if sustained 

individually.  

Although chained rearrangements could theoretically arise over multiple cellular generations by a 

“sequential-dependent” mechanism, where the occurrence of each subsequent event depends on the 

presence of a prior event (Figure S3.7B), such a mechanism seems unlikely. In particular, a sequential-

dependent model fails to account for the many complete or “closed” chains we detected. For a closed 
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chain to arise in a sequential-dependent manner, multiple junctions from ancestral somatic fusions would 

have to be re-broken precisely and fused to each other (Figure S3.7B) to complete the chain. Even if 

breakpoints in a chain could only fuse to one another, to generate the 121 observed closed chains in a 

sequential-dependent process would require immensely elevated rates of rearrangement in a focused 

region of the genome (up to ~103 times the maximum observed rate; Figure S3.7C-D). While we cannot 

exclude this possibility, plausible biological mechanism(s) could parsimoniously account for chained 

rearrangements within a single cell cycle. The interpretation that chromoplexy coordinately generates 

chained rearrangements awaits experimental validation, which could involve FISH or chromosome 

conformation capture (3C) before and after inducing a predicted co-localizing event (e.g., testosterone 

exposure in prostate epithelial cells). 

 A unifying feature of chromoplexy-associated alterations is that they occur in a non-independent 

fashion; however multiple mechanisms may account for chromoplexy. Along these lines, our analyses 

have revealed distinctive patterns of chromoplexy in ETS-, CHD1del tumors. Tumors with deletion of CHD1 

demonstrated an excess of intrachromosomal chained rearrangements and gene deletions, with DNA 

breakpoints enriched in GC-poor, late-replicating and non-expressed DNA. These tumors showed 

abundant, clustered rearrangements often affecting only one or two chromosomes with two alternating 

copy number states, perhaps indicating a chromothripsis-like process.  

 In contrast, chromoplexy in ETS+ tumors differed in the aggregate from chromothripsis in several 

critical ways. For example, single events joined DNA from dispersed regions of six or more chromosomes 

in multiple tumors, whereas chromothripsis frequently involves focal rearrangement of one or two 

chromosomes (Forment et al., 2012). Overall, chromoplexy appears more prevalent in ETS+ prostate 

cancer than chromothripsis is in any neoplasm (Forment et al., 2012; Stephens et al., 2011). 

Chromoplexy frequently involves fewer rearrangements than the “catastrophic” chromothripsis defined by 

Stephens et al., but may continue throughout tumor development. Our analysis of breakpoint locations in 

ETS+ tumors suggests that chromoplexy in this setting may be linked to proposed transcriptional DNA-

damaging processes (Lin et al., 2009), potentially related to androgen receptor signaling. Our findings 

align with the observation that ERG-overexpressing cancer cells accumulate DNA damage and are 

sensitive to poly ADP-ribose polymerase inhibition (Brenner et al., 2011). Chromoplexy is often active 



 66	
  

prior to ETS gene fusions, however, and gave rise to ERG fusions in many instances. Ongoing analyses 

of cancer genomes may further elucidate mechanisms of chromoplexy and determine whether CHD1 loss 

might also denote PARP-dependency, given the high degree of intrachromosomal rearrangement in this 

context. 

Whole genome analysis also clarified the chronology of oncogenic events in prostate cancer 

progression, driven in part by chromoplexy. Genome-wide sequence coverage of germline SNPs allowed 

us to identify DNA lesions that arose after the founder clone was established. Subsequently, we 

demonstrated a progression of events within primary tumors that expands upon array-based SCNA co-

occurrence studies (Demichelis et al., 2009). A consensus path of tumor evolution begins with events 

such as loss of NKX3-1 or fusion of TMPRSS2 and ERG. The path proceeds with the loss of CDKN1B, 

TP53, and PTEN, among other progression-associated lesions. We found that the histological grade of 

cancer may partially reflect its progression down this path.  

 

A continuum model for tumor evolution 

 
Tumorigenesis is classically understood to progress by a gradual accumulation of oncogenic 

alterations in the genome of a pre-cancerous cell. This textbook view was recently challenged by the 

discovery of chromothripsis, in which catastrophic rearrangements are incurred by “shattering” and 

reassembly of focal regions of the genome (Forment et al., 2012; Rausch et al., 2012; Stephens et al., 

2011). 

We propose an expanded model for the evolution of prostate cancer, which may also apply to 

other cancers (Figure 3.7). As classically understood, passenger and driver alterations can accumulate in 

a cancer genome gradually over numerous cell divisions, via point mutations, simple translocations and 

focal copy-number alterations. On the opposite end of the spectrum, extreme instances of chromothripsis 

can induce massive (albeit relatively localized) DNA damage at once, often with oncogenic consequences 

(Rausch et al., 2012; Stephens et al., 2011). Between these two extremes lies a broad continuum across 

which chromoplexy may often restructure cancer genomes. We propose that oncogenic events along this 

continuum reflect “punctuated” tumor evolution, drawing an analogy from the observation that  
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Figure 3.7. A continuum model for the genomic evolution of prostate cancer  

Oncogenic aberrations may accumulate in cancer genomes gradually (left), by punctuated progression 

(middle) or in a single catastrophic event (right). Chromoplexy-associated rearrangements and deletions 

induce a modest to large degree of genomic derangement over several successive events. As indicated 

at bottom, larger-scale rearrangements that affect broader swaths of the genome may be more difficult for 

a cell to survive, and may tend to require co-occurring oncogenic lesions to become fixed in a tumor.  
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punctuated evolution of species may occur rapidly between periods of relative mutational equilibrium 

(Gould, 1977). By analogy, a tumor genome may sustain considerable damage over several sequential 

and punctuated events. Importantly, this framework accords with the observation that chromoplexy events 

(1) are common, (2) may involve a wide-ranging number of rearrangements, and (3) may continue after 

cancer-initiating lesions such as NKX3-1 deletion (Figure S3.7).  

A cancer might operate at any point along the continuum of progression at a given time. Tumors 

that develop primarily at the “catastrophic” end may require fewer events and could progress more 

quickly, because each such event could disrupt multiple cancer-constraining processes. At the same 

time, catastrophic events that cover diffuse genomic territory are more liable to disrupt essential or 

beneficial genes, thus imparting a selective disadvantage to (pre)malignant clones that sustain such 

events. Consequently, the model predicts that survivable chromoplexy (particularly near the catastrophic 

regime) is likely to involve oncogenic alterations that compensate for the incidental inactivation of 

essential genes (Figure 3.7). This prediction accords with the observation that most tumors show 

disruption of one or more putative prostate cancer genes within a chain. Moreover, this model raises the 

possibility that disruption of putative cancer genes by chromoplexy may heighten the probability that such 

genes represent “driver” events for that particular tumor. If so, this framework may hold important 

implications for the use of whole-genome sequencing in diagnostic and clinical studies. 

In summary, this study highlights the potential for WGS data to capture aspects of the “molecular 

archeology” of cancer development that are missed by gene- or exome-level sequencing. The 

characterization of clonal progression and chromoplexy in emerging large panels of cancer genomes may 

provide insights about cancer initiation and progression, with implications for cancer detection, prevention 

and therapy. 
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Methods 

 

Description of the tumor cohort 

 

Prostate cancers analyzed in this study originated from two of the cohorts described in Chapter 3 

(Barbieri et al., 2012) (Weill Cornell Medical College (WCMC; New York, NY) and Uropath Pty Ltd. (Perth, 

Australia), a provider of banked urological tissues). All prostate cancer samples were collected under an 

Institutional Review Board-approved protocol with the informed consent of patient donors. Sixteen tumors 

were characterized by exome-sequencing in a previous study (Table S3.1) (Barbieri et al., 2012). 

Previous analyses of SNP data from these cohorts indicated that patients were primarily of Caucasian 

ancestry (Barbieri et al., 2012). Primary adenocarcinomas were removed prior to any additional treatment 

for prostate cancer, including radiation therapy, brachytherapy or hormone ablation therapy. The two 

NEPC samples were reviewed by the study pathologists and confirmed as neuroendocrine carcinomas of 

prostatic origin based on clinical history and/or presence of ERG fusion (PR-7520). Immuno-

histochemistry was negative for PSA and positive for the neuroendocrine marker synaptophysin in both 

cases. 

 

Chromosomal copy number profiling 

 

Segmented copy number profiles were generated from Affymetrix SNP 6.0 human microarray 

data as described in Chapter 3 (Barbieri et al., 2012). Sites of significant recurrent copy number 

alterations were identified by GISTICv2 (Beroukhim et al., 2010), with a log2 threshold of +/- 0.1 for 

amplification/deletion signals.  

 

Sequencing data generation 
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WGS library construction 

 

Libraries were prepared as described previously (Fisher et al., 2011) with slight modifications. 

First, the genomic DNA input into shearing was reduced from 3µg to 100ng in 50µL of solution. In 

addition, for adapter ligation, Illumina paired-end adapters were replaced with palindromic forked 

adapters with unique 8 base index sequences embedded within the adapter. Size selection was then 

performed using Sage Bioscience’s Pippin Prep, with a target insert size of either 340bp or 370bp +/- 

10%.  

Following sample preparation, libraries were quantified using quantitative PCR (KAPA 

Biosystems) with probes specific to the ends of the adapters. This assay was automated using Agilent’s 

Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 2nM and then 

denatured with 0.1 N NaOH using Perkin-Elmer’s MiniJanus liquid handling platform.  

 

RNA-Seq library construction 

 

RNA was isolated using a Dynabeads® mRNA Purifcation Kit (Life Technologies). Two rounds of 

poly-A selection (with bead regeneration) were performed to achieve rRNA contamination of less than 

10%, as assessed by the Bioanalyzer mRNA Pico program (Agilent). Eluate was treated with DNase 

(TURBO DNA-free™ kit, Ambion) at 37°C for 30 minutes then immediately cleaned using RNAClean XP 

beads (Agencourt). RNA was fragmented in Fragmentation Buffer (Affymetrix) at 80˚C for 4 minutes. 

First- and second-strand cDNA synthesis were performed with SuperScript Double-Stranded cDNA 

Synthesis Kit (Life Technology). Library construction proceeded as described previously (Fisher et al., 

2011), except that SPRI beads were used in the end-repair cleanup and standard paired-end adapters 

were replaced with barcoded adapters each containing a unique 8-base index sequence. After adapter 

ligation, two sequential cleanups were performed to remove adapter dimers, followed by 8 cycles of 

cDNA PCR amplification and SPRI cleanup. Before sequencing, samples were pooled and normalized 

according to qPCR results.      
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Cluster amplification and sequencing 

 

Cluster amplification of denatured templates was performed according to the manufacturer’s 

protocol (Illumina) using HiSeq v3 cluster chemistry and flowcells. Flowcells were sequenced with 101-bp 

paired end reads on a HiSeq 2000 using HiSeq v3 Sequencing-by-Synthesis Kits and analyzed using 

RTA v.1.12.4.2.  

 

Genome sequence analysis 

 

Sequencing data management and processing 

 

A BAM file was generated for each sample from Illumina sequence reads using the Picard 

pipeline (http://picard.sourceforge.net/). Reads were mapped to the NCBI Human Reference Genome 

GRCh37 (hg19) with the Burrows-Wheeler Aligner (BWA) (http://bio-bwa.sourceforge.net). (BAM files 

from WGS data, as well as RNA-Seq and SNP array data were deposited in the database of Genotypes 

and Phenotypes (dbGaP; phs000447.v1.p1)) 

The cancer genome analysis pipeline known as Firehose (Principal author D. Voet) was used to 

manage and coordinate analysis of WGS data. Firehose submits input files and parameters to 

GenePattern (DePristo et al., 2011), which executes a series of analyses to verify data quality and detect 

somatic alterations by comparing tumor and normal sequences.  

 

Quality control 

 

 We employed several quality control modules to monitor for contamination or potential sample 

mix-ups. To ensure that tumor- and normal-DNA were properly matched for a given individual and free of 

contaminating human sequences, we generated SNP fingerprints from 24 highly polymorphic sites for 

each sequencing lane. Lanes with outlier fingerprint genotypes for a given individual were discarded. In 
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addition, we used the ContEst algorithm (Cibulskis et al., 2011) to analyze homozygous non-reference 

SNPs to estimate levels of contamination with foreign human DNA, and required that samples 

demonstrate >95% concordance. 

 Normal DNA sequences were assessed for admixture with cancer DNA by examining copy 

number profile estimates based on sequence coverage in 100kb bins across the genome. Three normal 

tissue samples (PR-07-3258, PR-09-3983 and P05-2709) demonstrated low-level contamination with 

tumor DNA, based on similar patterns of DNA gains and losses between tumor and normal in a pair. In 

these cases, the histologically benign prostate tissue used as a source of normal DNA likely contained 

neoplastic or pre-neoplastic cells. The detection of somatic alterations in these samples was therefore 

limited. We specifically analyzed discarded rearrangement calls from these samples for prostate cancer-

associated fusions, and identified cases in which the TMPRSS2-ERG fusion was filtered out due to its 

presence in normal (see below).  

 

Detection of chromosomal rearrangements 

 

Detection of somatic rearrangements was performed using the dRanger algorithm (Berger et al., 

2011) to identify sequence reads from paired ends that map to the reference genome with unexpected 

orientations or intervals between read pairs. Candidate rearrangements were identified from clusters of 

such reads. They were then assigned a score by multiplying the number of chimeric reads supporting the 

fusion by a quality multiplier between 0 and 1. The quality multiplier takes into account the following 

factors: (1) the fraction of nearby reads with a mapping quality of zero; (2) the number and diversity of 

other discordant pairs in the vicinity of the breakpoints; and (3) the standard deviation of the starting 

positions of the supporting read pairs. Rearrangements with score of 4 or greater that were absent from 

the corresponding normal and from an extended panel of 176 non-cancerous genome sequences were 

classified as high-confidence. Rearrangements were categorized as deletions, inversions, 

interchromosomal translocations or tandem duplications based on the locations and strand directions of 

reads at fusion breakpoints.  
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In three cases, the TMPRSS2-ERG fusion was detected but filtered out, either due to low levels 

of tumor contamination in the adjacent prostate tissue used as a normal comparator (PR-09-3983, P05-

2709), or to an abundance of breakpoints at the locus that resulted in a low quality multiplier (PR-

STID0000000415). The TMRPSS2-ERG fusion was confirmed by fluorescence in situ hybridization 

(FISH) in these and all other fusion-positive cases.  

Some loci that were rearranged in the context of a chain harbored many breakpoints that 

decreased the rearrangement quality score and caused the rearrangement to be rejected, despite support 

from multiple tumor reads and the absence of the rearrangement in normal DNA. To improve our ability to 

detect chains in these situations, we adjusted the parameters of dRanger so that rearrangements were 

considered if they demonstrate five supporting reads in tumor DNA, no reads in the panel of normal 

genomes and a score of 1 or greater. Rearrangements falling into this category were retained in the final 

dataset only if they were assigned to a chain.  

 Breakpoint fusion junctions were mapped to base-pair resolution where possible using the 

BreakPointer algorithm (Drier et al., 2012). BreakPointer searches for read pairs where one read maps 

near a breakpoint and the pair mate partially overlaps with the fusion junction, or fails to align anywhere. 

These unmapped reads are subjected to a modified Smith-Waterman alignment procedure with the ability 

to jump between the two reference sequences at the most fitting point. BreakPointer mapped the 

breakpoints to base pair resolution in 94% of the 5596 high-confidence rearrangements. In these cases, 

sequence homology at fusion junctions and any foreign sequence insertions were annotated. 

Rearrangements were annotated with transcript information from the UCSC Genome Browserʼs 

UCSC Genes track (Table S3.3C) (Fujita et al., 2011) and illustrated using Circos 

(http://mkweb.bcgsc.ca/circos)  

 

Identification and annotation of point mutations 

 

  We used the MuTect and IndelLocator algorithms to identify point mutations and small 

insertions/deletions (indels), respectively, as described in Chapter 3 (Barbieri et al., 2012).  Point 

mutations and indels were annotated with information about relevant genes, transcripts, proteins and 
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other features using publicly available databases. A set of reference transcripts was compiled for 

annotation from the UCSC Genome Browserʼs UCSC Genes track as provided in the TCGA General 

Annotation Files (GAF) hg19 June 2011 bundle (https://tcga-data.nci.nih.gov/docs/GAF/). Variants were 

also annotated using the following resources: dbSNP build 134 (Sherry et al., 2001), UCSC Genome 

Browserʼs ORegAnno track (Griffith et al., 2008), UniProt release 2011_09 (Consortium, 2011) and 

COSMIC v55 (Forbes et al., 2011).  

 

Validation of somatic mutations and rearrangements 

 

Mutation validation from transcriptome sequences 

 

We assessed 818 somatic point mutations covering annotated transcripts in RNA-Seq data from 

20 tumors profiled by transcriptome sequencing (Table S3.3A). Of the mutated sites, 92 were covered by 

40 or more RNA-seq reads and present in WGS reads at an allele fraction of 0.2 or greater. Of these 

mutations, 84 (91%) showed at least two reads supporting the alternate allele.  

 

Validation of somatic rearrangements 

 

Rearrangements were validated by two approaches. We assessed a set of 73 rearrangements, 

enriched for events affecting cancer genes, by PCR and deep sequencing on a MiSeq instrument (Table 

S3.3C). Reads from tumor and normal DNA were aligned to a custom genome that contained the hg19 

reference genome along with sequences of all predicted somatic fusion junctions across samples. 

Rearrangements were classified as somatic if tumor, but not normal alignments, showed multiple high-

quaity reads spanning the predicted fusion junction.  

 In addition, we selected 76 chromoplexy-associated rearrangements for validation by PCR alone 

(Figure S3.5, Table S3.3C). Primers were designed to amplify approximately 200bp containing the 

predicted fusion junction. Rearrangements were annotated as somatic if a band of the predicted size was 

amplified from tumor DNA but not from normal DNA. 



 75	
  

 

Fluorescence in situ hybridization validation of rearrangements 

 

ETS rearrangement was assessed using break-apart assays for ERG and ETV1 as described 

previously (Berger et al., 2011). To assess genomic deletion, gene fusion and disruptive translocations, 

we used locus-specific dual-color FISH assays following a previously described approach (Berger et al., 

2011; Perner et al., 2006). At least 50 nuclei were evaluated per tissue section using a fluorescence 

microscope (Olympus BX51; Olympus Optical). The following probes were used for FISH assays: 

 

Locus     BAC #  

CHD1     RP11-58M12 

CHD1 Reference (5p13.1) RP11-429D13 

  

GSK3B 3'   RP11-59M4 

GSK3B 5'   RP11-113H22 

   

JAK1 3'     RP11-1061K17 

JAK1 5'     RP11-76O023 

  

JAK2 3'     RP11-274A3 

JAK2 5'     RP11-259N10 

  

CRKL 3'   RP11-76I4 

CRKL 5'   RP11-1152E2 

  

MAPK1 3'   RP11-317J15 

MAPK1 5'   RP11-179H3 

  



 76	
  

PTEN     CTD-2047N14 

PTEN Reference (10q25) RP11-431P18 

  

FOXP1     RP11-410B2 

FOXP1 Reference (3p11) RP11-91M15 

  

BRAF 3'   RP11-248P7 

BRAF 5'   RP11-248O23 

 

Protein-protein interaction (PPI) analysis of somatically rearranged genes  

 

 To identify gene rearrangements of potential biological consequence in Figure S3.1, we searched 

for recurrently rearranged genes whose protein products occupy central positions in interaction networks. 

To assess protein-protein interaction (PPI) network centrality, we considered the product of two measures 

of degree centrality and betweenness centrality:  

 

1. Degree centrality: Given a protein p and a PPI network N, the index Degree(p,N) measures the 

number of interactions incident upon p. The index is normalized by dividing D(p,N) with the 

maximum index in the network. 

 

2. Betweenness centrality: Given a protein p and a PPI network N, the index Betweenness(p,N) 

measures the number of shortest paths from all proteins to all others that pass through protein p. 

The index is normalized by dividing Betweenness(p,N) with the maximum index in the network. 

 

 We assessed centrality with the STRING database (Szklarczyk et al., 2011), and considered two 

other databases for independent support (Human Protein Reference Database (HPRD) (Prasad et al., 

2009) and I2D (Brown and Jurisica, 2007)). The top quartile of centrality indexes in the entire network of 

18,583 proteins was significantly enriched with protein products of the 397 genes with rearrangements in 
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more than one sample (p = 2 x 10-3). 

 For rearranged genes that scored highly in the centrality analysis, we assessed gene expression 

levels in the subset of transcriptome-sequenced samples using RSEQtools (Habegger et al., 2011) (Table 

S3.4). To evaluate the effects of the rearrangements on gene transcription, we noted genes that were 

expressed in the bottom or top tenth percentiles in samples harboring rearrangement of the locus 

compared to all other tumors. 

 

Detection of chained rearrangements and deletions 

 

Overview of the ChainFinder algorithm 

 

ChainFinder analyzes somatic DNA rearrangements from WGS data (e.g., deletions, inversions 

or translocations) and infers whether the rearrangement likely occurred in the context of a “chain” with two 

or more other rearrangements. Chained rearrangements are identified by searching for sets of 

breakpoints that are distributed about the genome in a configuration that would be improbable if the 

rearrangements had occurred independently of one another. The ability to detect chains is enhanced by 

also considering copy number profiles for signatures of chained rearrangements. 

ChainFinder is implemented in MATLAB, and formulates the detection of rearrangement chains 

as a graph theory problem, in which breakpoints are treated as nodes that may be inter-connected by 

graph edges (Figures 3.3A and S3.3A). Edges connect pairs of breakpoints that are either (1) somatically 

fused to each other (2) involved in two distinct rearrangements that are unlikely to have arisen 

independently or (3) at either end of a deletion bridge. An initial graph is constructed by searching for sets 

of breakpoints and associated deletions for which the independent model can be rejected after correction 

for multiple hypothesis testing (see below). The initial graph is then refined by considering any alternative 

valid assignments of breakpoints and deletion segments to deletion bridges. In the final graph, 

breakpoints connected by edges correspond to collections of rearrangements that may have arisen 

concertedly in the context of a chain.  

These steps are described in detail in the following sections and diagramed in Figure S3.3A. 
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Assessment of adjacent breakpoints 

 

Each pair of breakpoints joined by a somatic DNA fusion is first connected by an edge on the 

graph (Figure S3.3A). For each pair of neighboring breakpoints on the reference genome within 1Mb of 

each other, the probability of two breakpoints arising independently within the observed distance of one 

another (PXY) is calculated as follows. We assume that the probability of a DNA breakage event per 

nucleotide is uniform near the breakpoint and equal to µlocal. The probability of a second event not 

occurring within a distance L from the reference event (either upstream or downstream) is (1-

2µlocal)L. Therefore, the probability PXY of observing a second breakpoint Y within distance L of an index 

breakpoint X is: 

 

 PXY = 1- (1 - 2µlocal)L 

 

The rate µlocal is calculated based on (1) the number of breakpoints per base-pair observed in a given 

tumor (µglobal) and (2) the density of breaks near the rearranged locus across the panel of 57 prostate 

tumors (ρ): 

 

µlocal = µglobal ρ 

 

We estimate the breakpoint density ρ as a function of genomic location by dividing the genome into 1Mb 

windows and counting the number of tumors with one or more breaks within a given window (Figure 

S3.2B). Values of ρ are scaled uniformly such that the sum of µlocal across all windows is equal to µglobal. 

For neighboring breakpoint pairs, PXY is considered as a p-value for the hypothesis that the two 

breakpoints arose independently. Pairs of breakpoints are connected by an edge (assigned to the same 

chain) if the corresponding PXY can be rejected with control of the false discovery rate at 10-2 (Benjamini, 

1995). 
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Assignment of deletion bridges 

 

Next, segmented copy number data are overlaid with breakpoint locations to identify 

rearrangement breakpoints that correspond to deletion events. This step connects breakpoints on the 

graph with edges corresponding to deletion bridges in cases where the breakpoints may have originated 

from the same DNA deletion event.  

Each breakpoint is provisionally paired to a boundary of a deletion segment if the breakpoint lies 

within 8 SNP probes of the boundary (typically a span of several thousand base-pairs). Breakpoints at 

either boundary of a deletion segment are potentially joined by a deletion bridge if:  

 

A. The breakpoints on either end of the deletion are not fused to each other; i.e., the deletion must 

correspond to a deletion bridge (involving two rearrangements) rather than a “simple deletion” 

(involving one rearrangement) (Figure 3.2A). 

B. The sequencing reads supporting the breakpoints at either end of the deleted segment must 

“point towards” the deletion, such that the deleted sequence would lie directly downstream of the 

reads.  

 

Edges are added to the graph to denote potential deletion bridges. In cases where pairs of breakpoints 

cannot be uniquely assigned to a single bridge, multiple interpretations are tested in a subsequent step 

(see “Finalization of the graph”, below) 

 

Evaluation of graph cycles 

 

In some cases, PXY is extremely small – for instance, when breakpoints from separate fusions 

map within several hundred base pairs of one another – and the breakpoints clearly did not originate 

independently. However, borderline cases often arise where PXY is not sufficiently small to reject the 

independent model for two breakpoints unequivocally. In such cases, additional evidence that 

rearrangements were generated coordinately can be obtained by considering sets of breakpoints whose 
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nodes on the graph are contained within cycles (paths along edges that begin and end at the same 

node). 

Each cycle is evaluated under the independent breakpoint model based on PXY values for 

adjacent breakpoints within the cycle (Figure S3.3A). Specifically, all possible scenarios are considered 

by which one or more rearrangements within the cycle could have arisen independently. For example, 

three rearrangements involving six breakpoints in a hypothetical cycle (Figure S3.3B) could have arisen 

by the following (non-mutually exclusive) scenarios, where subscripted numbers in parentheses denoted 

rearrangements that occurred independently: 

 

{H(1)23, H(2)13, H(3)12, H(1)(2)(3)} 

 

This set of scenarios represents the independent model for the cycle, which encompasses all alternative 

possibilities to the breakpoints in the cycle arising coordinately (H123). 

ChainFinder considers the probability of detecting the independently generated breakpoints under 

each scenario within the observed distance of each other. Each scenario in the independent model 

requires that two or more pairs of adjacent breakpoints from separate rearrangements arise 

independently, in order to “split” the cycle into two or more separate events. Each such scenario can be 

expressed in terms of combinations of PXY values from edges within the cycle corresponding to adjacent 

breakpoints (i.e., Pab, Pcd and Pef; Figure S3.3B) 

 

{(Pab Pcd), (Pab Pef), (Pcd Pef), (Pab Pcd Pef)} 

 

As shown in Figure S3.3B, all scenarios involving three or more independent events require the co-

occurrence of two or more scenarios involving only two events. Therefore, rejecting all scenarios involving 

only two events is sufficient to reject the independent model overall for the cycle. To assess all scenarios 

involving two independent events, ChainFinder tests the pairwise products of all PXY values within a cycle 

(corresponding to all two-event scenarios) with control of the family-wise error rate (FWER; (Holm, 1979)) 

at 10-2 across all scenarios. Control of the FWER ensures that, if the independent model is rejected for a 
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cycle, there is a 1% chance that one or more of the independent rearrangement scenarios for the 

corresponding cycle were mistakenly rejected. All cycles for which the independent model is rejected are 

linked within a chain.  

 

Finalization of the graph 

 

Finally, the graph is refined by considering deletion bridges that could not be uniquely assigned. 

Although a single deletion bridge may exist that connects two breakpoints, frequently multiple 

interpretations are possible due to overlapping regions of deletion from separate alleles or distinct tumor 

subclones. In these cases, a single choice must be made from a set of mutually exclusive possible 

bridges. Bridges are mutually permissible only if the following conditions are met: 

 

1. The bridges do not share the same breakpoints at either deletion segment boundary 

2. If the bridges overlap, the deletion segment in the region of overlap must demonstrate a 

consistently lower copy number than segments outside the region of overlap. 

 

ChainFinder tests permutations of mutually permissible bridges to find the combination that 

incorporates the most breakpoints into deletion bridges, because this solution best reconciles the copy 

number and rearrangement data. If a unique valid combination of bridges exists that maximizes the 

number of breakpoints in deletion bridges, the bridges are accepted and any distinct chains that they link 

are combined. If multiple optimal interpretations exist, only bridges that are included in all of these 

interpretations are kept.  

The graph is finalized by removing any edge between neighboring breakpoints for which the 

independent-generation model could not be rejected. In addition, deletion bridge edges are retained in the 

graph only if the breakpoints on either end of the deletion arose non-independently (e.g., within a cycle).  

  

Evaluation of genes disrupted in chains 
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 Once chains have been assigned, a list of genes disrupted in each chain is compiled. Genes are 

included if they fall at least partially within a deletion bridge in the chain or within 10kb of a copy-neutral 

rearrangement in the chain. Circos plots are generated in which all rearrangements in a given chain are 

depicted in the same color (e.g., Figure 3.2B).  

 

Assessment of false-positive rate with simulated tumor genomes 

 

 In order to test the false-positive rate of ChainFinder, we created “scrambled” tumor genomes by 

simulating the independent accumulation of rearrangements based on observed data. For each tumor, 

ten “scrambles” were created that combined rearrangements from other tumors. Each scramble 

contained the same number of rearrangements as the corresponding sequenced tumor. Any two 

rearrangements were combined in a scramble only if they were not part of the same chain from the same 

sequenced tumor. The scrambles served as “true negative” cases in which all rearrangements were 

generated independently, while preserving genome-position specific influences on breakage and fusion, 

since the data are drawn from observed rearrangements. Copy number profiles were simulated based on 

observed data as well. Segments of copy number alteration were generated that maintained (1) the 

number of breakpoints at the boundaries of potential deletion bridges and (2) the overall ratio of copy 

number gains to losses. The simulated rearrangement and copy number data were profiled with 

ChainFinder, and the proportion of breakpoints assigned to a chain was compared between observed and 

simulated data. 

For each sequenced tumor, we also created ten simulations matched for rearrangement number 

and chromosomal connectivity. The rearrangement breakpoints were further matched to observed data 

with respect to (1) sequence coverage, (2) guanine and cytosine content of local sequence, (3) 

expression levels of nearby genes, (4) replication timing of DNA and (5) reference genome distance 

between breakpoints for intrachromosomal rearrangements (within 5%). Coverage was matched within 5x 

to the coverage near the observed breakpoint. Suitable locations for simulated breakpoints were identified 

by creating bins for the values of parameters (2) through (5) for each chromosome, and randomly 

choosing a location that falls within the same bin as the corresponding observed breakpoint. For each 
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feature (e.g., GC content), we created bins containing the bottom and top fifth percentiles across the 

chromosome. We then split the middle 90% evenly into three additional evenly spaced bins. Copy 

number profiles were simulated such that breakpoints at edges of deletion segments were preserved. In 

most cases where ChainFinder identified chains within simulated tumors, the simulations were too 

restrictive, so that the only matched location for a set of rearrangements in a chain was near to the 

location where they were observed. 

 

Quantification of gene expression near rearrangement breakpoints 

 

Expression was quantified in terms of gene-level FPKM (Fragments Per Kilobase of transcript per 

Million mapped reads) values from 16 prostate tumor transcriptomes using CuffLinks (Trapnell et al., 

2012). The transcription levels near rearrangements were estimated from median values of log10
 

(1+FPKM) across the tumor transcriptomes in 10kb windows on either side of the breakpoint. Where this 

window overlapped multiple genes, the largest FPKM value was used. For the analysis shown in Figure 

3.4D, the statistical enrichment of chained breakpoints near highly expressed DNA in ETS-positive 

tumors was robust to exclusion of the TMPRSS2 and ERG loci from expression level estimates.  

 

Assessment of nuclear proximity of fused loci from Hi-C data 

 

We sought to determine whether breakpoints involved in structural rearrangements are in close 

physical proximity in nuclei in which these breakpoints have not yet occurred. For this, we used filtered 

chromatin interaction data (Hi-C) from experiments performed in prostate epithelial cells (RWPE1) stably 

expressing a GFP reporter (RWPE1-GFP) (Rickman et al., 2012). To determine whether a set of 

breakpoint pairs are in close proximity, we defined a 1Mb window centered on each breakpoint and 

counted the Hi-C reads connecting the two windows for all breakpoint pairs. The average Hi-C read 

counts were determined separately for chained rearrangement breakpoints and for breakpoints that were 

not assigned to a chain for comparison. Rearrangements were further subdivided by ETS-status of the 

tumor in which they were observed. 
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We then compared the observed average Hi-C count to Hi-C counts that would be observed by 

chance if the breakpoint pairs were randomly distributed on the genome. We generated random sets of 

breakpoints matched to the observed breakpoints for intra-chromosomal distances, chromosomal 

distribution and short read mappability. We again defined 1Mb windows centered in the random 

breakpoints and counted Hi-C reads connecting each pair of simulated breakpoints. We repeated this 

analysis 1,000 times to generate a null distribution of average Hi-C read counts for random breakpoint 

pairs. To generate a p-value, we counted how many of the 1,000 sets of random breakpoints had an 

average Hi-C read count greater than or equal to the average read count for the observed breakpoints. Of 

note, only intra-chromosomal rearrangements were considered for this analysis, as inter-chromosomal 

breakpoints were supported by very few Hi-C reads even when considering large windows centered on 

the breakpoints. 

 

Breakpoint enrichment analysis 

 

Enrichment and depletion of breakpoints was assessed across the genome with respect to 

replication time, guanine/cytosine (GC) content and distance to transcribed genes. Observed distributions 

were compared to randomly generated distributions controlled for chromosome and coverage. First, 

nearby breakpoints (up to 2,500bp away) were consolidated into a single “event.” For each event, 

100,000 locations (one per iteration) were generated uniformly from all locations on the same 

chromosome having the same coverage. The genome was considered in the following bins: low GC (0-

36%], medium GC (36%-45%] and high GC (45%-100%). Replication time was binned according to 

late/early ratio (Ryba et al., 2010) at (-∞,-0.8],(-0.8,0], (0,0.8],(0.8,∞). Changing the thresholds did not 

affect the essence of the results, other than losing sensitivity for very large or small bins (data not shown). 

For every bin we counted the number of breakpoints for both the observed breakpoints and the random 

breakpoints. All of these counts were used to compute nonparametric p-values (observed rates). 

Enrichment or depletion was determined by picking the lower of the one-sided p-values, and p-values 

were then corrected for multiple hypotheses by the Benjamini-Hochberg FDR procedure (Benjamini, 

1995). 
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An analogous procedure was used to detect enrichment near ChIP-Seq peaks (Yu et al., 2010), 

except that bins were substituted with windows spanning 50kb on either side of each peak.  

 

Quantification of tumor purity and subclonality 

 

Prior to sequencing, estimates of tumor purity and ploidy were derived from Affymetrix SNP6.0 

data using ABSOLUTE (Carter et al., 2012).  These estimates were used to select high purity samples for 

whole genome sequencing (median purity 70%; ploidy range 1.84 – 2.21; Table S3.1A).  

Analyses of tumor purity and subclonality from WGS data were performed by exploiting 

individuals’ genotypes at polymorphic loci within somatically altered regions of the genome, using 

considerations related to previously described methods (Carter et al., 2012; Landau et al., 2013; Nik-

Zainal et al., 2012). For each tumor sample included in the study, we estimated stromal DNA admixture 

and lesion clonality using CLONET (CLONality Estimate in Tumors; Prandi D. et al., manuscript in 

preparation). The approach behind CLONET and the MiSeq-based validation we performed are outlined 

hereafter.  

For a tumor sample TS containing a mixture of NTS normal (diploid) cells and TTS tumor cells, the 

percentage of admixed normal cells is:  

 

 

 

Based on the above equation, the admixture can be estimated from sequencing reads covering a site of 

hemizygous deletion s as: 

 

 

 

where βs(TS) is the proportion of reads at locus s that originated from normal cells in TS. 
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In order to calculate Adm(TS), we first selected informative heterozygous SNPs within regions of 

somatic deletion that were identified from copy number array data. For each hemizygous deletion H, we 

considered the distribution of the allelic fractions (i.e., the fraction of reference sequence reads) from 

selected SNPs within H. Using “particle swarm optimization” (Kennedy, 1995) we calculated a composite 

value βH(TS) for the deleted region that best accounted for the observed distribution of allelic fractions at 

each heterozygous SNP s across the region. For every deletion, a value Adm.apparentH(TS) was 

computed that describes the apparent admixture at that locus. Adm.apparentH(TS) reflects both stromal 

admixture and potentially subclonal lesions that increase the apparent level of normal DNA at that locus. 

For each hemizygous somatic deletion H, the values of Adm.apparentH(TS) were grouped if the difference 

between the values could be explained by the estimation error determined by simulation-based error 

estimations. The smallest mean value of Adm.apparentH(TS) across a set of grouped deletions was taken 

as the candidate value of Adm(TS).  

 Estimates of cancer DNA purity by this procedure are listed in Table S3.1 and compared to 

estimates from the same tumors by ABSOLUTE run on SNP array data. The estimates were highly 

consistent across the samples (R2 = 0.99; p < 10-4) with the exception of two samples (PR-

STID0000002682 and PR-07-360), where stromal admixture was detected in WGS data but not SNP 

array data. 

We analyzed the clonality of gene deletions based on normalized log2 ratios of tumor and normal 

WGS sequence coverage, after correction for the estimated normal DNA admixture in tumor samples. 

Deletions where Adm and Adm.apparentH differ beyond the error estimation are potential sub-clonal 

lesions. We estimated the percentage of tumor cells that harbor a somatic hemizygous deletion H, i.e., 

the clonality of H, as: 

 

 

 

In the case of a 100% clonal hemizygous somatic deletion H the value of ClonalityH(TS) is 1, as 

Adm.apparentH(TS) equals Adm(TS); otherwise ClonalityH(TS) is less than 1. In the presence of high 

coverage, small variations in ClonalityH(TS) can demonstrate differences in sub-clonality along a 

!"#$%"&'(! !" = !1− !!"#.!""!#$%&!(!")1− !"#(!")  
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continuous scale. Here, in order to avoid false positive calls for borderline subclonality, we adopted a 

conservative approach and only considered two classes of deletions: clonal (ClonalityH(TS) ≥ 0.8) and 

subclonal (ClonalityH(TS) < 0.8). After Adm was calculated,we executed a similar procedure to estimate 

the clonal status of somatic homozygous deletions and point mutations.  

The sensitivity of clonality detection depends upon the number of heterozygous SNPs within a 

deletion of interest and the depth of sequence coverage at these SNPs. We evaluated the uncertainty in 

clonality estimates as a function of these parameters by randomly sampling 1,800 simulations and 

averaging the difference between the true clonality and computed clonality for a given coverage and 

number of SNPs (Table S3.6). To ensure robust clonality calls, we considered only deletions with 20 or 

more informative SNPs with average sequence coverage of 20x (corresponding to a 5.4% estimation 

error). Table S3.7 lists the percentage of tumor cells found to harbor a specific lesion together with the 

associated uncertainty range. 

 

Validation of clonality estimates 

 

To assess our ability to estimate apparent DNA admixture from our WGS data, we generated 

independent validation data for a set of 18 aberrant genes with four heterozygous SNPs each from seven 

tumor samples by PCR and deep sequencing (>65,000x coverage). The deep coverage provided a 

precise estimate of the ratio of alleles at SNP sites. Figure S3.6A compares the local apparent DNA 

admixture for the 18 genes computed using WGS data to the estimates computed using deep sequencing 

data (R2 = 0.85, p = 3.55 x 10-8). The contingency table inset in Figure S6A demonstrates agreement 

between WGS- and deep sequencing-based calls of clonality status (Cochran test, p-value = 1).  

 

Additional statistical analyses 

 

Quantitative comparisons of groups (e.g. numbers of rearrangements or SCNAs) were conducted 

with the rank-sum Mann-Whitney test, unless indicated otherwise. Box plots indicate median values and 

middle quartiles. 
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CHAPTER 4 
 

Transcriptional effects of prostate cancer-associated SPOP 

mutations and CHD1 inactivation 
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Introduction 

 

The genomic analyses of prostate cancer described in the preceding chapters have identified 

several genomic alterations that occur primarily or exclusively in ETS fusion-negative (ETS-) prostate 

tumors. In particular, mutation of the ubiquitin ligase subunit gene SPOP is strictly mutually exclusive with 

ETS gene fusions. Similarly, the chromatin modifying enzyme gene CHD1 is deleted or rearranged 

primarily in ETS- tumors that also harbor SPOP mutations. These observations suggest that SPOP 

mutation and deletion of CHD1 may contribute to prostate carcinogenesis in a distinct molecular subset of 

ETS- prostate cancers. In vitro studies have demonstrated that inactivation of CHD1 and mutation of 

SPOP lead to invasive and morphological changes (Barbieri et al., 2012; Huang et al., 2011); however 

the oncogenic mechanisms engaged by these perturbations are unclear.  

  In order to study the consequences of SPOP mutation and CHD1 deletion, we assessed the 

transcriptional profiles of prostate epithelial cells upon expression of mutant SPOP or knock-down of 

CHD1. We employed the LHMAR prostate epithelial cell line, which expresses large T antigen, hTERT, c-

Myc and the androgen receptor. While LHMAR cells lack tumor-forming ability when injected 

subcutaneously into nude mice, they can be rendered oncogenic by overexpression of oncogenes such 

as H-Ras or the PI3-Kinase subunit p110α (Berger et al., 2004). LHMAR cells therefore represent a 

“partially transformed” cellular model for prostate oncogenesis that is useful for assessing the 

transforming effects of somatic DNA alterations observed in human tumors.  

 Given the postulated rolls in transcriptional regulation of SPOP and CHD1 (Gaspar-Maia et al., 

2009; Kwon et al., 2006; Li et al., 2011), we hypothesized that SPOP mutation and CHD1 inactivation 

could induce transcriptional changes in LHMAR cells that reflect the molecular pathways engaged by 

these events in prostate cancer. We therefore used transcriptome sequencing (RNA-Seq) to profile gene 

expression in LHMAR cells with knock-down of CHD1 or expression of prostate cancer-associated SPOP 

mutant alleles. This chapter describes our analysis of signatures associated with these perturbations and 

discusses mechanisms by which these events may drive ETS- prostate cancer. 
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CHD1 inactivation activates cellular DNA damage responses 

 

 To assess the effects of CHD1 inactivation in prostate epithelial cells, we suppressed CHD1 

expression with three independent short hairpin RNAs (shRNAs) targeting non-overlapping regions of the 

gene. Knock-down was verified by Western blot (Figure S4.1). We performed RNA-seq and used CuffDiff 

2.0 (Trapnell et al., 2012) to assess expression changes in 8,581 genes upon CHD1 knock-down in 

LHMAR cells compared to a non-targeting control hairpin. All three hairpins caused largely concordant 

changes in transcription. For example, the top 5th percentiles of up- and down-regulated genes, 

overlapped significantly across the hairpins (Figure 4.1, left, p < 10-4 for each pair-wise comparison). 

Similarly, significant overlap was observed among genes that were up- or down-regulated at least two-

fold by each hairpin as well (Figure 4.1, right).  

We used gene set enrichment analysis (GSEA; (Subramanian et al., 2005)) to search for curated 

gene sets or oncogenic expression signatures that were significantly up- or down-regulated with CHD1 

suppression. Eighteen gene sets were significantly overexpressed upon knock-down of CHD1 at a false 

discovery rate (FDR) of < 10-4 (Table 4.1). Strikingly, the majority of up-regulated gene sets (13/18) 

pertained to cellular DNA damage response and p53 signaling (Figure 4.2). Previous studies have 

suggested a role for CHD1 in maintaining genomic stability (Huang et al., 2011; Liu et al., 2012) and 

prostate tumor genomes with deletion of CHD1 demonstrate a significant excess of chromosomal 

rearrangements (Chapter 3; Baca et al., 2013). Therefore, inactivation of CHD1 may induce DNA damage 

or prevent repair of DNA double strand breaks (DSBs), perhaps as a consequence of aberrant chromatin 

compaction or impaired access of DSB repair machinery to heterochromatin. Along these lines, 

inactivation in the mouse germline of Chd2, a closely related homolog, disrupts DSB repair and confers 

susceptibility to leukemias. Thus, CHD1 loss might promote tumor growth by facilitating the inactivation of 

additional tumor suppressor genes. This hypothesis will need to be explored experimentally in further 

detail, but is in line with the observation that CHD1-deleted tumors are enrichmed with other recurrent 

DNA deletions, such as loss of PTEN and CDKN1B (Chapter 3, Figure S3.4). 
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Figure 4.1. Knock-down of CHD1 with three independent hairpins alters the expression of 

overlapping genes 

The overlap of transcriptional responses upon CHD1 knockdown by each of three hairpins was assessed 

from RNAseq data using CuffDiff 2.0. LHMAR cells with a non-targeting hairpin served as a comparator. 

Significant overlap was observed between the top and bottom fifth percentiles of up- and down-regulated 

genes with each hairpin. Similar overlap was evident in genes that were up- or down-regulated by twofold 

compared to the non-targeting hairpin control cells. 
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Table 4.1. Gene sets related to DNA damage and p53 signaling are up-regulated with knock-down 

of CHD1  

Expression changes were averaged across LHMAR cell lines with CHD1 knock-down by three 

independent hairpins compared to control shRNA. Gene set enrichment analysis was used to identify 

gene sets that are significantly up-regulated with CHD1 knock-down. All gene sets with FWER p-values 

and FDR q-values < 10-4 are listed.  

 

 

 

 

 

 

Gene set Genes 
Genes in 

enrichment signal 
Normalized 

enrichment score 
FDR q-
value 

FWER 
p-value 

WARTERS_RESPONSE_TO_IR_SKIN 48 34 3.14 < 10-4 < 10-4 

SMIRNOV_RESPONSE_TO_IR_6HR_UP 118 60 3.11 < 10-4 < 10-4 

PID_P53DOWNSTREAMPATHWAY 97 46 2.98 < 10-4 < 10-4 

KERLEY_RESPONSE_TO_CISPLATIN_UP 34 26 2.81 < 10-4 < 10-4 

WARTERS_IR_RESPONSE_5GY 26 17 2.74 < 10-4 < 10-4 

SCHAVOLT_TARGETS_OF_TP53_AND_TP63 14 13 2.56 < 10-4 < 10-4 

DER_IFN_GAMMA_RESPONSE_UP 59 27 2.54 < 10-4 < 10-4 

SANA_TNF_SIGNALING_UP 42 20 2.51 < 10-4 < 10-4 

GHANDHI_DIRECT_IRRADIATION_UP 46 26 2.50 < 10-4 < 10-4 

DER_IFN_ALPHA_RESPONSE_UP 59 23 2.47 < 10-4 < 10-4 

GENTILE_UV_LOW_DOSE_UP 23 11 2.46 < 10-4 < 10-4 

BRACHAT_RESPONSE_TO_CAMPTOTHECIN_UP 24 12 2.46 < 10-4 < 10-4 

BRACHAT_RESPONSE_TO_METHOTREXATE_UP 19 10 2.44 < 10-4 < 10-4 

KIM_GLIS2_TARGETS_UP 33 16 2.41 < 10-4 < 10-4 

BRACHAT_RESPONSE_TO_CISPLATIN 18 9 2.41 < 10-4 < 10-4 

PHONG_TNF_TARGETS_UP 39 22 2.40 < 10-4 < 10-4 

ONGUSAHA_TP53_TARGETS 26 12 2.37 < 10-4 < 10-4 

RPS14_DN.V1_UP 54 27 2.37 < 10-4 < 10-4 
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Figure 4.2. GSEA enrichment plots showing up-regulation of gene sets related to DNA-damage 

response and p53 signaling  

FDR q-values are indicated for the enrichment of each gene set.  

 

Exemplary gene sets up-regulated with CHD1 knock-down 

q < 10-4 q < 10-4 
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SPOP mutations activate transcriptional programs related to invasion, TGF-

β signaling and polycomb repression 

 

 We also used the LHMAR prostate epithelial cell line to probe the effects of SPOP mutation on 

cellular transcriptional output. SPOP mediates the ubiquitination of several transcriptional regulators such 

as DAXX and SRC3 (Kwon et al., 2006; Li et al., 2011) and SPOP mutations often occur in the absence 

of oncogenic lesions in prostate cancer genes such as TP53 or PTEN (Chapter 2). We therefore 

reasoned that SPOP mutation might activate oncogenic transcriptional programs. Furthermore, we 

hypothesized that distinct prostate cancer-associated SPOP mutations would exert similar effects, given 

their clustered distribution within the protein substrate binding pocket (Chapter 2). We therefore used 

RNA-Seq to assess whether two prostate cancer-associated SPOP mutants (F133L and Y87N) induce 

concordant changes in gene expression compared to wild-type SPOP.  

 To determine whether the two SPOP mutants had similar effects on transcription in prostate 

epithelial cells, we compared sets of genes with altered expression in both mutant-expressing cell lines 

according to our CuffDiff 2.0 analysis. We found significant overlap of genes up- or down-regulated by 

two-fold, or genes within the top fifth percentiles of differentially expressed genes (Figure 4.3). These 

results suggest that expression changes associated with SPOP mutation do not solely reflect “noisy” 

transcripts, and that the two mutants may have similar consequences at the transcriptional level.  

Our differential expression analysis pointed toward several cellular processes and pathways on 

which mutant SPOP might impinge in prostate cancer. Using GSEA, we identified 152 gene sets that 

were significantly up-regulated with mutant SPOP at an FDR q-value < 10-4 (Table 4.2). Many of these 

gene sets could be grouped into shared cancer-related pathways or processes. For example, multiple 

gene sets were enriched pertaining to cellular invasion and epithelial to mesenchymal transition (EMT) 

(Acloque et al., 2009). Additionally, TGF-β signaling pathways (which mediate invasive growth in several 

cancers (Elliott and Blobe, 2005)) were up-regulated. These findings are consistent with the observation  
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Figure 4.3. Two prostate cancer-associated SPOP mutations induce expression of an overlapping 

set of transcripts in prostate epithelial cells  

Differentially regulated genes were identified by CuffDiff 2.0 analysis of RNAseq data from SPOP mutant 

(F133L and Y87N) and SPOP wildtype-expressing LHMAR cells. To assess the overlap of transcriptional 

responses between the two SPOP mutants, we identified genes that were up- or down-regulated by either 

mutant compared to wild-type SPOP. 
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Table 4.2. SPOP mutation induces transcriptional changes related to cell invasion, polycomb 

repression, TGF-β signaling and Wnt/β-catenin signaling 

Enriched gene sets were identified by GSEA analysis of the average changes in gene expression with 

SPOPF133L and SPOPY87N compared to wild-type SPOP. Selected gene sets with FDR q-values < 10-4 are 

depicted and grouped by common molecular pathways or processes. 

 

 

 

 

 

 

Gene set Genes 
Genes in 

enrichment signal 
Normalized 

enrichment score FDR q-value FWER p-value Associated pathway(s) 
GU_PDEF_TARGETS_UP 45 23 2.33 < 0.001 < 0.001 EMT/invasion 
KEGG_CELL_ADHESION_MOLECULES_CAMS 35 26 2.26 < 0.001 < 0.001 EMT/invasion 
SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 123 70 2.68 < 0.001 < 0.001 EMT/invasion 
KEGG_ECM_RECEPTOR_INTERACTION 35 25 2.37 < 0.001 < 0.001 EMT/invasion 
ROZANOV_MMP14_TARGETS_UP 129 46 2.30 < 0.001 < 0.001 EMT/invasion 
WU_CELL_MIGRATION 90 48 2.29 < 0.001 < 0.001 EMT/invasion 
ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE 25 20 2.27 < 0.001 < 0.001 EMT/invasion 
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 29 24 2.17 < 0.001 0.002 EMT/invasion 
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 299 116 2.16 < 0.001 0.003 EMT/invasion 
JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP 38 20 2.13 < 0.001 0.006 EMT/invasion 
PID_INTEGRIN1_PATHWAY 34 25 2.33 < 0.001 < 0.001 Integrin 
REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 33 20 2.30 < 0.001 < 0.001 Integrin 
PID_INTEGRIN3_PATHWAY 26 17 2.27 < 0.001 < 0.001 Integrin 
MEL18_DN.V1_UP 64 46 2.79 < 0.001 < 0.001 Polycomb repressive complex 
BMI1_DN_MEL18_DN.V1_UP 63 42 2.70 < 0.001 < 0.001 Polycomb repressive complex 
BMI1_DN.V1_UP 69 47 2.67 < 0.001 < 0.001 Polycomb repressive complex 
WIEDERSCHAIN_TARGETS_OF_BMI1_AND_PCGF2 35 24 2.36 < 0.001 < 0.001 Polycomb repressive complex 
KONDO_EZH2_TARGETS 73 32 2.13 < 0.001 0.006 Polycomb repressive complex 
NUYTTEN_EZH2_TARGETS_UP 485 204 2.13 < 0.001 0.007 Polycomb repressive complex 
PLASARI_TGFB1_TARGETS_10HR_UP 75 35 2.38 < 0.001 < 0.001 TGFβ 
VERRECCHIA_DELAYED_RESPONSE_TO_TGFB1 26 16 2.31 < 0.001 < 0.001 TGFβ 
VERRECCHIA_EARLY_RESPONSE_TO_TGFB1 44 26 2.29 < 0.001 < 0.001 TGFβ 
LABBE_TGFB1_TARGETS_UP 46 24 2.22 < 0.001 < 0.001 TGFβ 
TGFB_UP.V1_UP 64 23 2.14 < 0.001 0.005 TGFβ 
SANA_TNF_SIGNALING_UP 37 23 2.40 < 0.001 < 0.001 TNF 
PHONG_TNF_RESPONSE_NOT_VIA_P38 191 87 2.35 < 0.001 < 0.001 TNF 
ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 82 42 2.26 < 0.001 < 0.001 TNF 
PHONG_TNF_RESPONSE_VIA_P38_PARTIAL 85 49 2.19 < 0.001 0.001 TNF 
PHONG_TNF_TARGETS_UP 35 25 2.19 < 0.001 0.001 TNF 
ONDER_CDH1_SIGNALING_VIA_CTNNB1 39 23 2.44 < 0.001 < 0.001 Wnt/β-catenin 
ONDER_CDH1_TARGETS_2_UP 119 50 2.34 < 0.001 < 0.001 Wnt/β-catenin 
LABBE_TARGETS_OF_TGFB1_AND_WNT3A_UP 51 26 2.22 < 0.001 < 0.001 Wnt/β-catenin; TGFβ 



 98	
  

that expression of mutant SPOP, but not wild-type SPOP, increases the invasion of prostate cancer cell 

lines (Chapter 2).  

Several pathways related to known or putative SPOP substrates were enriched as well. For 

example, polycomb repressive complex (PRC) signature genes were overexpressed in the setting of 

mutant SPOP, including targets of the BMI1 polycomb repressive protein (Table 4.2). This finding may be 

noteworthy given that BMI1 is a substrate of the SPOP-CUL3 ubiquitin ligase complex, and BMI1 is a key 

regulator of prostate stem cell self-renewal (Lukacs et al., 2010). Additionally, we recently identified the 

zinc finger protein WIZ as a potential SPOP substrate relevant to prostate cancer using a mass 

spectrometry-based screening approach. In LHMAR cells, F133L and Y87N mutant SPOP alleles 

significantly inhibit the ubiquitination of this protein, while wild-type SPOP increases ubiquitinated WIZ 

levels (J.P. Theurillat et al., manuscript in preparation). WIZ participates in the euchromatic histone H3K9 

methyl-transferase complex with C-terminal binding protein (CtBP) (Ueda et al., 2006), which may 

regulate transcription of genes involved in Wnt/β-catenin signaling, EMT and stem cell maintenance (Di et 

al., 2013; Fang et al., 2006). Both CtBP and Wnt/β-catenin related pathways were up-regulated with 

expression of mutant SPOP. Furthermore, analysis of human tumor RNA-Seq data from 16 cases (two 

SPOP mutant and 14 SPOP wildtype) showed activation of CtBP target genes in SPOP mutant tumors. 

These observations raise the possibility that SPOP mutations might perturb CtBP signaling in human 

tumors via effects on ubiquitination of WIZ.  

 

Discussion and conclusion 

 

We have examined the transcriptional output of prostate epithelial cells upon inactivation of CHD1 

or expression of mutant SPOP to study how these perturbations may mediate oncogenesis in human 

prostate cancer. We observed transcriptional profiles suggestive of DNA damage and p53 signaling upon 

knock-down of CHD1, which may suggest that CHD1 loss facilitates the accumulation of abundant 

SCNAs and rearrangements seen in CHD1-deleted tumors. Likewise, expression of mutant SPOP  
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Figure 4.4. Enrichment plots of gene sets up-regulated with mutation of SPOP  

(A) Enrichment plots of selected gene sets up-regulated in LHMAR cell lines with SPOP mutant 

expression (see Table 4.2).  

(B) Both LHMAR cells (top) and human prostate tumor tissues (bottom) expressing mutant SPOP were 

assessed for up-regulation of genes that showed increased expression with knock-down of CtBP-1 in 

prostate cancer cell lines in a previous study (Wang et al., 2012).  
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appeared to activate specific transcriptional modules compared to wild-type SPOP. Analysis of enriched 

gene sets in prostate epithelial cells expressing mutant SPOP suggested that SPOP mutation may drive 

EMT- and invasion-related gene transcription, and may activate genes that are normally repressed by the 

polycomb repressive complex and CtBP complex.  

Overall, these results suggest that SPOP mutation and CHD1 loss dysregulate distinct molecular 

processes, and provide hypotheses for ongoing experimental studies. It should be emphasized that our 

transcriptome analyses provide only preliminary insight into oncogenic mechanisms, and are limited by 

several factors. First, it is not known whether the LHMAR cells reflect the pathophysiological cell of origin 

of human SPOP-mutant or CHD1-deleted prostate cancers. In addition, collaboration of other oncogenic 

alterations may be required to fully unmask the effect of cancer-associated SPOP mutations. 

Furthermore, it is not yet known whether the transcriptional changes observed with these perturbations 

are responsible for the outgrowth of SPOP-mutant or CHD1-deleted cancer cell clones in human tumors. 

Nonetheless, the results of these experiments highlight several avenues for experimental study. Ongoing 

experiments will leverage transgenic mouse models to corroborate our findings, and will assess larger 

sets of SPOP-mutant or CHD1-deleted tumors for the transcriptional changes observed in our LHMAR 

model.  
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LHMAR cells were previously derived from primary prostate epithelial cells via stable expression 

of Large T antigen, hTERT, c-Myc and the androgen receptor (Berger et al., 2004). Three shRNA 

contstructs in the pLKO.1 vector targeting CHD1 were virally transduced into LHMAR cells. Two days 

after infection, cells were selected in puromycin until no viable cells remained in a non-infected control 

plate (two days). Cells were then cultured for 7 days in RPMI 1640 and 10 million cells per condition were 

snap frozen in liquid nitrogen. The non-silencing hairpin was ordered from Sigma (SHC002 Sigma 

MISSION pLKO.1-puro Non-Mammalian shRNA Control Plasmid DNA). CHD1-directed hairpins were 

obtained from The RNAi Constortium (http://www.broadinstitute.org/rnai/public/) and were designed to 

target the following CHD1 sequences:  

 

Hairpin 1: GCGGTTTATCAAGAGCTATAA  

Hairpin 3: GCGCAGTAGAAGTAGGAGATA 

Hairpin 4: GCAGTTGTGATGAAACAGAAT 

 

CHD1 knock-down was verified by western blot using goat polyclonal antibody (Novus Biological, NBP1-

00168).  

Wild-type and mutant SPOP constructs with a Kozac ACC-sequence were coned into the 

pCW107 plasmid with the mOrange fluorescence marker using Neh1 and Mlu1 restriction enzymes. 

100% infection efficiency was confirmed by fluorescence microscopy. SPOP expression was confirmed 

by western blot using rabbit polyclonal antibody (Abcam, ab81163). Cells were cultured for a week in 

RPMI 1640 and 10 million cells were snap frozen in liquid nitrogen. 

 

RNA-sequencing data generation 

 

RNA-Seq, including library synthesis, sequencing and data processing were performed as described in 

Chapter 4 (Methods). 

  

Analysis of differentially regulated genes and gene sets 
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We used CuffDiff 2.0 (Trapnell et al., 2012) to compare gene-level expression between cell lines. 

Transcript and gene annotations were obtained from Gencode Version 7 (http://www.gencodegenes.org). 

A “mask” file was used to exclude several categories of small RNA transcripts from consideration by 

CuffDiff 2.0, including transcripts annotated with “Mt_rRNA”, “Mt_tRNA”, “misc_RNA”, “rRNA”, “snRNA” or 

“snoRNA”. Additionally, genes annotated as “PUTATIVE” or “NOVEL” were excluded. In general, CuffDiff 

2.0 was configured to require a minimum of 200 reads from a gene to assess differential expression 

between conditions. For the analysis of CtBP1 knock-down signature enrichment, we decreased the 

minimum read requirement to 100 reads in order to increase the number of genes within the CtBP1 

knock-down gene set that could be assessed by CuffDiff 2.0.  

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was used to assess 

enrichment of up- or down-regulated transcripts between cell lines. GSEA was applied to the list of 

transcripts assessed by CuffDiff 2.0 that was “pre-ranked” based on average change in expression 

between the compared conditions (e.g., CHD1 hairpin versus control hairpin or SPOP mutant versus wild-

type). Our GSEA analysis included all gene sets within MSigDB containing between 15 and 500 members 

under the categories “C2: curated gene sets” and “C6: oncogenic gene sets” (3,624 sets total). In 

addition, we constructed a custom gene set corresponding to potential CtBP1 targets from a list of genes 

that were up-regulated > 2-fold with knock-down of CtBP1 in DU145, PC3 and LNCaP prostate cancer 

cell lines in a previous study (Wang et al., 2012).  

 

Statistical analysis 

 

Two-sided p-values from Fisher’s exact tests are indicated for comparison of up- and down-regulated 

transcripts between cell lines.  

 



 

 

 

 

 

 

 
 
 
 
 

CHAPTER 5 
 

Conclusions and future directions 
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 The studies described in this thesis provide an early sketch of the landscape of somatic 

alterations in prostate cancer genomes. This research builds upon studies over the last two decades that 

have probed prostate tumor DNA at ever-finer resolution to uncover alterations that drive disease 

initiation, progression, and therapeutic resistance (Shen and Abate-Shen, 2010). By sequencing the 

protein-coding genes in a large panel of tumors, we were able to identify positive selection for mutations 

in genes that were not previously implicated in cancer, such as FOXA1, MED12 and SPOP. By analyzing 

entire genomes from a smaller tumor panel, we gained insight into the clonal evolution of prostate 

cancers and discovered that genomic rearrangements may accumulate in a highly inter-dependent 

manner.  

 

Novel putative prostate cancer genes implicated by tumor DNA sequencing 
 
 
 
 Our analysis of 112 prostate cancer exomes revealed novel significantly mutated genes that may 

point to important molecular processes in the pathogenesis of this disease. For example, recurrent 

mutations in the substrate-binding cleft of the SPOP ubiquitin ligase subunit may prevent turnover of 

oncogenic proteins by ubiquitin-mediated proteolysis. Along these lines, several instances of altered 

proteolytic homeostasis have been documented in prostate cancer. For example, overexpression of the 

Skp2 ubiquitin ligase promotes degradation of tumor-constraining proteins such as p27Kip1 (Carrano et al., 

1999; Yang et al., 2002). Additionally, the truncated form of ETV1 that is expressed in the context of the 

TMPRSS2-ETV1 fusion escapes COP1-mediated ubiquitination and degradation, and may thereby 

accumulate to pathological levels (Vitari et al., 2011). Similarly, the accumulation of certain oncogenic 

proteins might drive SPOP-mutant prostate cancer, if the documented SPOP mutations prevent substrate 

binding as predicted. 

The relevant targets of SPOP in prostate oncogenesis are not yet known. Several substrates of 

the SPOP-CUL3 complex have been identified, including the transcriptional repressor DAXX (Kwon et al., 

2006), the hedgehog pathway transcription factor Gli (Zhang et al., 2009) and the histone variant protein 

MACROH2A (Hernandez-Munoz et al., 2005). Experiments are underway to assess the proteome-wide 
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changes in protein ubiquitination induced by SPOP mutations, and may shed light on the drivers of 

SPOP-mutant cancer. Preliminary results from transcriptome-sequencing studies described in Chapter 4 

point to processes associated with invasion and metastasis as well as polycomb and TGF-β signaling, all 

of which have been implicated in prostate tumorigenesis (Ding et al., 2011; Lukacs et al., 2010; Ru et al., 

2012). As discussed in Chapter 2, a dominant-negative effect of SPOP mutations seems likely given the 

cluster of mutated residues in SPOP, the absence of missense mutations or bi-allelic inactivation, and 

previous knowledge that SPOP functions in a homo-dimeric complex (Zhuang et al., 2009). Therefore, 

elucidating relevant SPOP substrates may not only inform our understanding of prostate cancer biology, 

but may also point to therapeutic targets that are upregulated due to decreased proteolytic turnover.  

The transcription factor gene FOXA1 was another novel cancer gene implicated by this work. 

FOXA1 functions in prostatic development (Gao et al., 2005) and facilitates lineage-specific transcription 

by binding to DNA enhancer elements (Lupien et al., 2008). The recurrent mutations that cluster within 

DNA-interacting residues of FOXA1 may disrupt transcriptional regulation by this protein. FOXA1 adds to 

a growing list of prostatic developmental genes that are somatically altered in prostate cancer. Two well-

characterized examples include NKX3-1, a regulator of prostatic developmental transcription that is 

frequently deleted, and the androgen receptor, which coordinates androgen-mediated transcriptional 

programs and is mutated in castration-resistant disease. Collectively, these alterations suggest that 

prostate oncogenesis involves the halted natural development and differentiation of prostate epithelial 

cells – a concept that has been explored in other cancers (Chou et al., 2010; Ferrero et al., 1982; Yang 

and Weinberg, 2008). Interestingly, FOXA1 mutations and NKX3-1 deletions were strictly clonal in our 

tumor panel, suggesting that they arise within a common ancestor of sequenced tumor cells and occur 

early in disease. These alterations might revert incipient prostate cancer cells into a de-differentiated 

state that renders them susceptible to subsequent oncogenic insults such as PTEN or CDKN1B 

inactivation (Chapter 3).  

 An important finding of our studies is that many genes underwent recurrent and/or oncogenic 

alterations in only a small subset of tumors. For example, several genes such as IDH1, HRAS, KDM6A 

revealed cancer-associated mutations in < 3% of samples (Chapter 2). Likewise, a number of potentially 

activating fusions were observed that could lead to overexpression of proto-oncogenic kinases (e.g., 
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CRKL-MAPK1 and NRF1-BRAF; Chapter 3), yet these events were only observed in a single tumor each. 

Thus, the distribution of driving lesions across prostate tumors may contain a long “tail” of infrequent 

events that are observed only once or twice among hundreds of tumors. An implication of this model is 

that large panels of tumors from diverse patient populations will need to be sequenced to identify 

additional significantly mutated genes. Therefore, ongoing large-scale cancer genome studies will likely 

prove fruitful for discovering rare driver mutations. In addition, burgeoning efforts to use tumor genomic 

information to guide clinical decisions may need to overcome the challenge of identifying patient-specific 

lesions that drive disease but are very rarely recurrent. A similar paradigm has emerged in non-small cell 

lung cancer. In this disease, oncogenic rearrangements of ALK and ROS1 are proving promising 

therapeutic targets (Camidge et al., 2012; Janne and Meyerson, 2012); however these lesions occur in 

roughly 3% and 2% of cases, respectively (Bergethon et al., 2012). Ultimately, both bioinformatics and 

experimental strategies may be required to identify infrequent, targetable driving lesions within a 

sufficiently short timeframe to benefit patient care. 

  

Molecular subtypes of prostate cancer and alternative paths of 

oncogenesis 

 

 Our studies add to a growing body of evidence that separable molecular subtypes of prostate 

cancer exist that harbor distinct sets of co-occuring genetic or epigenetic alterations. For example, we 

confirmed previous reports ERG rearrangement is associated with TP53 and PTEN lesions, as well as 

deletion or rearrangement of FOXP1 (Taylor et al., 2010). We observed that SPOP mutations are strictly 

mutually exclusive with ETS fusions, but co-occur with a distinct set of alterations such as CHD1 deletion, 

highlighting a distinct subclass of ETS-negative cancer. Previous studies have uncovered ETS-negative 

subclasses with distinctive transcriptional profiles. For example, roughly 10% of ETS-negative cancers 

appear to be driven in part by overexpression of the serine protease inhibitor gene SPINK1 (Tomlins et 

al., 2008). Similarly, tumors may be classified by expression profiles corresponding to ETS-driven 

transcription, stem cell-like signatures or activation of one of several other oncogenic pathways. These 
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classifications appear to portend different survival outcomes (Markert et al., 2011). Therefore, it could be 

fruitful to establish whether transcriptional profiles of ETS-negative tumors correspond to specific 

mutational subclasses, as the latter could be easier to assess reliably for clinical applications.  

 Our analysis of clonal evolution suggests that ETS gene fusions and SPOP mutations lead 

tumors down divergent pathways early in their development, because these alterations are strictly clonal 

and mutually exclusive. It may be worthwhile, therefore, to study whether these cancer groups are linked 

to different environmental or genetic risk factors or clinical behaviors. Previous studies comparing clinical 

outcomes of ETS-positive to ETS-negative tumors have given varying results depending on the 

populations compared (i.e., PSA-screened or not) and the endpoints assessed (PSA recurrence versus 

overall mortality) (Demichelis et al., 2007; Rubin et al., 2011; Saramaki et al., 2008). These studies may 

be aided by further stratification of tumors on a molecular genetic level to account for the genotypic 

variability of ETS-negative tumors.  

 

A model for transcription-associated DNA damage in ETS-positive prostate 

tumors 

 

 Our analysis of inter-dependent genomic rearrangements suggests that chromosomal 

abnormalities in prostate cancer may accumulate over a series of relatively few punctuated events 

(Chapter 3). This process, which we have termed “chromoplexy,” may be driven by different mechanisms 

in different genetic subclasses of cancers. For example, tumors with CHD1 disruption displayed an 

excess of DNA rearrangements and deletions. The breakpoints of these lesions were strongly enriched in 

gene-poor, late-replicating DNA distant from transcriptionally active chromatin. Our RNA-Seq studies of 

CHD1-depleted prostate epithelial cells (Chapter 4) suggested that CHD1 suppression induces similar 

transcriptional changes to genotoxic insults such as gamma irradiation or cisplatin treatment. Thus, CHD1 

disruption might increase the frequency or magnitude of chromoplexy events in a subset of incipient 

cancer cells, thereby promoting disruption of other cancer genes (Chapter 3) – a conjecture that will be 

addressed in future experimental studies.  
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 In contrast, chromoplexy in ETS-positive tumors produced distinctive patterns of structural 

alterations that may indicate a different generative mechanism. Chained rearrangements in ETS-

rearranged tumors frequently involved small clusters of breaks distributed across four or more 

chromosomes. Rearrangements in these tumors were somewhat enriched near actively transcribed DNA. 

A prior study from our lab indicated that some ETS-rearranged tumors showed enrichment of breaks near 

androgen receptor (AR) and ERG transcription factor binding sites (Berger et al., 2011), a finding that was 

replicated in this study. 

 The association of DNA breaks with active transcription led us to hypothesize that transcription-

coupled DNA damage may account for complex rearrangement chains in ETS-positive tumors. Several 

lines of experimental evidence have indicated that transcription can both engender transient DNA breaks 

and bring geographically distant foci into close proximity, allowing the formation of specific gene fusions. 

For example, the TMPRSS2 and ERG loci are brought into physical proximity by liganded AR, and the 

TMPRSS2-ERG fusion can be induced by concomitant irradiation or endonuclease activity of TOP2B, 

ORF2 or AID (Haffner et al., 2010; Lin et al., 2009; Mani et al., 2009). Similarly, active transcription and 

physical co-localization precedes the fusion of oncogenes involved in other cancers, such as anaplastic 

large-cell lymphoma, Burkitt’s lymphoma or chronic myeloid leukemia (Robbiani et al., 2008).  

 Our analysis of prostate cancer genomes suggests that such a process may underlie not only 

TMPRSS2-ERG fusions, but chromoplexy-associated rearrangements in general in ETS-positive tumors. 

By this model (Figure 5.1), genes throughout the genome that are regulated by the same transcription 

factor(s) (e.g., AR) are brought into close proximity at “transcription factories” (Cook, 2010). As 

transcription proceeds, DNA breaks are frequently generated and recognized by double strand break 

(DSB) repair machinery. Although such DSBs are usually repaired correctly, occasionally two broken 

DNA ends may be aberrantly joined in an unbalanced translocation. In this case, two DNA ends are left 

unrepaired and may fuse to additional DSB sites that arise nearby (Figure 5.1). This process could 

continue within a cell cycle until all broken ends are finally paired, resulting in a “closed chain” of 

rearrangements. Alternatively, if one or more broken DNA fragments are not re-ligated to a centromere 

prior to cell division, chains could result that are not “closed.” Most instances of chromoplexy would be 

detrimental to cell survival and proliferation. In rare cases, however, generation of an oncogenic fusion 
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Figure 5.1. Model for chromoplexy via transcription-associated DNA breaks at transcriptional 

hubs 

Closed chains of rearrangement breakpoints associated with chromoplexy could arise from DNA damage 

associated with transcription. Multiple genomic loci across distinct chromosomes (denoted by strands of 

different colors) may be brought into physical proximity at transcriptional hubs (“TH”, gray circles), for 

example, due to coordinate regulation by the androgen receptor or other transcription factors (1). Double-

strand breaks accumulating at transcription hubs could be recognized by double-strand break repair 

machinery (2). The aberrant repair of two broken loci in a non-reciprocal manner would leave unpaired 

DNA ends, that could aberrantly fuse to other DNA ends that arise within the same cell cycle (3). Thus 

multiple rounds of breaks and rearrangement could be “propagated” until the chain is closed by the last 

remaining free ends being fused to one another (step 4-9). 
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such as TMPRSS2-ERG or disruption of a tumor-suppressor gene such as PTEN could confer a selective 

advantage that drives the clonal expansion of a cancer cell. This model could be tested by inhibiting DSB 

repair in prostate epithelial cells in the presence and absence of stimulated AR transcription. The model 

would predict that chained rearrangements could be detected in the setting of AR activity by FISH or 

single-cell sequencing. If supported experimentally, this model could point to transcription-associated 

DSBs as a target for therapy or chemoprevention.  

 

Future directions: prostate cancer in the era of genomics-driven medicine 

 

High-throughput genomic profiling has advanced the understanding, prognostication and 

treatment of several tumor types. For example, identification of mutations in BAP1 in uveal melanoma 

(Harbour et al., 2010) or IDH1 in glioblastoma and acute myeloid leukemia (Mardis et al., 2009; Parsons 

et al., 2008) demonstrated the power of genome sequencing to pinpoint novel cancer-driving mutations. 

Risk-predictive transcriptional signatures have improved prognostication for patients with breast cancer 

(van 't Veer et al., 2002), while the mutational status of EGFR in non-small cell lung cancer predicts 

clinical response to inhibitors of this kinase (Paez et al., 2004). Prostate cancer may be similarly ripe for 

discovery of novel cancer genes and biomarkers as well, since genomic characterization of large cohorts 

of aggressive tumors has only recently become feasible. As a step in this direction, our exome 

sequencing study revealed that SPOP is among the most frequently mutated genes in primary tumors, 

though its role in cancer was heretofore unrecognized. Ongoing studies will likely identify additional 

mutations and rearrangements that occur infrequently but nonetheless promote oncogenic growth.  

Several hurdles must be overcome for genomic technologies to impact the clinical management 

of prostate cancer. For instance, biopsies produce scarce material for clinical genotyping and may not 

fully capture the relevant molecular heterogeneity within a tumor. Expression signatures have not yet 

demonstrated sufficient prognostic value to merit widespread use. In addition, recurrent genomic lesions 

identified thus far are largely not considered “druggable”.  
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These challenges can likely be surmounted by new approaches. For example, genomic 

characterization may identify opportunities to leverage synthetic lethality by inhibiting targets that are 

essential in the setting of a particular mutation, such as poly (ADP-ribose) polymerase in ETS-fusion 

positive prostate cancer (Brenner et al., 2011). The analysis of multiple samples from a primary tumor 

and perhaps from circulating tumor cells may allow aggressive tumor subclones to be identified. 

Ultimately, new paradigms for clinical trials may be required that incorporate cancer genomic information. 

In spite of these challenges, genomic profiling is likely to play an expanding role in the biological study of 

prostate cancer and eventually in the clinical management of this malignancy.   
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APPENDIX 1 
 

Supplemental tables 

 

 

The following tables are provided separately as Excel spreadsheets: 

Table S2.2. Exome sequencing statistic summaries  

Table S2.3. Somatic mutations in 112 primary prostate tumor-normal pairs  

Table S3.1. Clinical characteristics of genome-sequenced prostate tumors 

Table S3.2. Sequencing metrics of 57 prostate cancer whole genomes 

Table S3.3. Somatic DNA alterations in 57 prostate cancers 

Table S3.4. Outlier expression of rearranged genes 

Table S3.5. Summary of rearrangement chains 

Table S3.6. Clonality analysis of prostate tumor genomes 
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Table S2.1. Clinical characteristics of exome-sequenced primary prostate cancers 
 

 
 

Characteristic! Whole exome-sequenced tumors!

Age, years!
          Median (range)!

!
63!

!
(34 – 77)!

Pre-operative Serum PSA (ng/μL)!
          Median (range)!

!
7.8!

!
(2.7 – 31.5)!

Pathologic Stage, N %!
          Stage pT3 Total!
                    Stage pT2a!
                    Stage pT2b!
                    Stage pT2c!
          Stage pT3 Total          !
                    Stage pT3a!
                    Stage pT3b!
                    Stage pT3c!

!
44!
4!
1!
39!
68!
49!
18!
1!

!
39%!
4%!
1%!
35%!
61%!
44%!
16%!
1%!

Gleason Pattern (major + minor), N %*!
          Gleason 3+3!
          Gleason 3+4!
          Gleason 4+3!
          Gleason 4+4!
          Gleason 4+5!

!
13!
58!
29!
8!
4!

!
12%!
52%!
26%!
7%!
4%!

Percentage of Gleason Pattern 4 and 5, N %*!
          0-19%!
          20-39%!
          40-59%!
          60-79%!
          80-100%!

!
40!
23!
5!
12!
29!

!
36%!
12%!
5%!
11%!
26%!

TMPRSS2-ERG Fusion Status, N % †!
          Fusion-negative!
          Fusion with interstitial deletion!
          Fusion without interstitial deletion!

!
53!
34!
24!

!
48%!
31%!
22%!

* Gleason scores based on review of hematoxylin and eosin slides from site of tumor chosen for DNA 
extraction and sequencing!
†TMPRSS2-ERG fusion status assessed by fluorescence in situ hybridization (FISH)!



 115	
  

 
Table S2.4. Mutation of PIK3CA and PTEN is enriched in locally advanced tumors.  

(A) Tumors are grouped based on stage and presence or absence of mutations in PIK3CA or PTEN. Only 

stage pT3 tumors displayed mutation in either gene (two-sided p = 0.011, Fisher’s exact test).  

(B) Mutations in PTEN or PIK3CA detected by exome sequencing. The hyper-mutated tumor, PR-00-

1165, was included in this analysis and contained two mutations in PTEN, presumably affecting separate 

alleles. Amino acids are numbered based on RefSeq protein ID NP_000305 for PTEN and NP_006209 

for PIK3CA. Instances of all substitutions have been documented previously in prostate cancer or other 

cancer types in the Cosmic database (http://www.sanger.ac.uk/genetics/CGP/cosmic/). *, nonsense 

mutation. 

 
 
 

Stage pT2! Stage pT3! Total!
PIK3CA/PTEN mutant:! 0! 9! 9!
PIK3CA/PTEN wild-type:! 44! 59! 103!
Total:! 44! 68! 112!

PTEN mutations:! Reported in Cosmic! PIK3CA mutations:! Reported in Cosmic!
K128N! Yes! p.H1047R! Yes!
R130Q! Yes! p.G118D! Yes!
Y336*! Yes! p.Q546P! Yes!
G129R! Yes! p.Y1021H! Yes!
R173H, R233*! Yes, Yes!

A!

B!
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Table S2.5. Mutations in significantly-mutated genes and other selected genes  

Substitutions in significantly mutated genes are documented at the transcript and protein level for exome-

sequenced samples. Annotations are based on the UCSC Genome Browser identifier listed in the left 

column beneath each gene symbol. The right-most four columns summarize expression data for each 

gene from the panel of 63 tumors profiled by transcriptome sequencing; “RNA” refers to the log10(RPKM + 

1) value for each transcript. All genes except for SCN11A and THSD7B are expressed at comparatively 

high levels in prostate tumors at the mRNA level. fs, frame-shift mutation; del, deletion; CV, coefficient of 

variation. 
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Table S2.6. Significantly mutated gene sets 

Curated gene sets representing canonical pathways were analyzed for enrichment of mutations in their 

constituent genes (SOM). Sets that are significantly mutated above a q-value of 0.05 (Benjamini-

Hochberg adjustment) are listed. 

 

 

Gene Set! No. mutations! No. tumors 
with a mutation!

B-H q-value! Genes in set mutated (no. tumors affected)!

SA_G1_AND_S_PHASES! 11! 10! 0.00033! CDKN1B(3), TP53(8)!

RBPATHWAY! 14! 13! 0.00033! ATM(3), CDC25A(1), MYT1(1), TP53(8), WEE1(1)!
P53HYPOXIAPATHWAY! 14! 13! 0.0048! ABCB1(2), AKT1(1), ATM(3), TP53(8)!

TERTPATHWAY! 9! 8! 0.0048! SP1(1), TP53(8)!
PLK3PATHWAY! 11! 10! 0.0062! ATM(3), TP53(8)!
IGF1MTORPATHWAY! 14! 13! 0.0072! AKT1(1), GSK3B(1), IGF1R(1), INPPL1(1), PIK3CA(4), PIK3R1(1), PTEN(5)!

ARFPATHWAY! 13! 12! 0.008! PIK3CA(4), PIK3R1(1), TP53(8)!
G1PATHWAY! 16! 14! 0.008! ATM(3), CDC25A(1), CDKN1B(3), GSK3B(1), TP53(8)!
G2PATHWAY! 17! 16! 0.011! ATM(3), CDC25A(1), EP300(1), MYT1(1), PRKDC(1), RPS6KA1(1), TP53(8), WEE1(1)!

CHEMICALPATHWAY! 16! 14! 0.011! AKT1(1), ATM(3), CASP3(1), CASP9(1), TLN1(2), TP53(8)!

PTENPATHWAY! 17! 16! 0.011! AKT1(1), BCAR1(1), CDKN1B(3), ILK(1), PIK3CA(4), PIK3R1(1), PTEN(5), SHC1(1)!

RNAPATHWAY! 9! 8! 0.011! DNAJC3(1), TP53(8)!
P53PATHWAY! 11! 10! 0.017! ATM(3), TP53(8)!
COMPLEMENT_ACTIVATION
_CLASSICAL!

10! 10! 0.017! C1QB(1), C1S(1), C3(3), C6(1), C8A(1), C9(2), MASP1(1)!

CLASSICPATHWAY! 9! 9! 0.018! C1QB(1), C1S(1), C3(3), C6(1), C8A(1), C9(2)!
COMPPATHWAY! 10! 10! 0.018! C1QB(1), C1S(1), C3(3), C6(1), C8A(1), C9(2), MASP1(1)!
HCMVPATHWAY! 10! 10! 0.018! AKT1(1), CREB1(1), MAP2K6(1), MAPK14(1), PIK3CA(4), PIK3R1(1), SP1(1)!

TELPATHWAY! 14! 13! 0.025! AKT1(1), EGFR(1), IGF1R(1), POLR2A(1), TEP1(1), TP53(8), XRCC5(1)!

ALTERNATIVEPATHWAY! 7! 7! 0.027! C3(3), C6(1), C8A(1), C9(2)!

CDC42RACPATHWAY! 8! 7! 0.027! ACTR2(1), PDGFRA(2), PIK3CA(4), PIK3R1(1)!

SA_PTEN_PATHWAY! 12! 11! 0.04! AKT1(1), ILK(1), PIK3CA(4), PTEN(5), SHC1(1)!

RACCYCDPATHWAY! 11! 11! 0.04! AKT1(1), CDKN1B(3), HRAS(1), PIK3CA(4), PIK3R1(1), RAF1(1)!

CELL_CYCLE_KEGG! 29! 28! 0.042! ATM(3), BUB3(1), CDC20(1), CDC25A(1), CDC6(1), CDH1(1), EP300(1), ESPL1(1), 
GSK3B(1), HDAC2(2), HDAC3(1), HDAC5(2), MAD1L1(1), MCM4(1), PRKDC(1), 
SMAD4(1), TP53(8), WEE1(1)!

IGF1RPATHWAY! 11! 11! 0.042! AKT1(1), HRAS(1), IGF1R(1), IRS1(1), PIK3CA(4), PIK3R1(1), RAF1(1), SHC1(1)!
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Table S2.7. SPOP mutations in multiple cohorts 
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Table S2.9.  Primer sequences 
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Table S2.10. BAC probes used for FISH 
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Figure S2.1. Depth and breadth of exome sequencing coverage  

(Center) Sequencing coverage across all sites targeted by hybrid capture. Each row represents a 

targeted exonic site; each column represents a tumor-normal pair. Coloring reflects the depth of 

sequencing coverage. White coloring indicates a minimum of 14 reads in the tumor and 8 reads in the 

normal.  

(Left) GC content across targeted sites (GC content is equal to the number of C or G nucleotides divided 

by the total number of nucleotides).  
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Figure S2.2. Overlap of sample profiling across platforms  

Exome sequencing was conducted on 112 tumor-normal pairs. A single highly-mutated tumor (PR-00-

1165) was excluded from subsequent analyses, except where otherwise indicated, leaving 111 pairs. 

RNA-sequencing was performed on 22 of the exome-sequenced tumors and 41 independent tumors. All 

but four of the 112 exome-sequenced tumors, plus an additional 61 tumors, were analyzed for copy 

number alteration by high-density SNP array (169 total). 
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Figure S2.3. Rates of somatic substitutions in prostate exomes  

(A) Number of somatic mutations per Mb sequenced across the cohort of tumors. A single primary tumor 

(PR-00-1165) harbored a large excess of mutations compared to other tumors (32.1 per Mb versus 1.4 

per Mb median in the remaining primary tumors, red). A prostate cancer metastasis sequenced but not 

reported here showed a similar extent of mutation (PR-18248; 29.0 mutations per Mb, red). The two 

highly mutated tumors contained the indicated alterations in mismatch repair genes.  

(B) Median number of non-synonymous and synonymous mutations across 111 exomes (the single 

hyper-mutated primary tumor PR-00-1165, with 997 mutations, is excluded).  

(C) Mutations per million sites sequenced for the most frequent mutation categories in the dataset. *CpG 

to T, C to T transversion at a CpG dinucleotide; *CpG to A/C/T, C to T transversion not in the context of a 

CpG dinucleotide; C to (G/A), mutation of C to G or A; A to mut, mutation of A; Indel, small insertion or 

deletion. 
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Figure S2.3 (continued) 
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Figure S2.4. Relative ability to detect mutations in subgroups of tumors  

(A-D) The allelic fraction (AF) values of mutations were used to assess the relative purity of cancer DNA 

in each tumor (SOM). AF is the number of reads supporting a mutant allele divided by the total number of 

reads covering the mutated site. (A) and (B), maximum mutant AF observed in each tumor, grouped by 

Gleason score and stage. The top fifth percentile of AF values was removed in each tumor to exclude 

values that were elevated due to copy number variation at mutated sites. (C) and (D), as in (A) and (B), 

but showing median AF values across all mutations for each tumor. The relative purity of cancer DNA as 

assessed by AF did not vary by pathological stage or Gleason score.  

(E) Maximum mutant AF correlated only moderately with the number of mutations detected, implying that 

detection of mutations in most tumors was not systematically limited by admixture of normal DNA.  

(F) Mutations per Mb sequenced in tumors grouped by source of paired normal DNA: peripheral blood 

(n=22) or non-cancerous prostate (n=89). No difference in mutation rates was observed between the two 

groups. Two-tailed p-values were calculated using the Mann Whitney test (two groups) or Kruskal-Wallis 

(multiple groups) test and the Spearman test for correlation. n.s., not significant. Statistical analysis was 

performed using GraphPad Prism. 
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Figure S2.4 (continued) 
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Figure S2.5. Mutational landscape across a spectrum of primary prostate cancers   

(A-D) Mutations per Mb of covered DNA sequence for 111 primary prostatic adenocarcinomas grouped 

by clinical parameters. The horizontal axes denote: (A) Gleason score (major pattern + minor pattern); (B) 

Percent of cancer with Gleason pattern 4 or 5 histology; (C) Pathological tumor stage, where T3 indicates 

extra-prostatic extension; (D) Presence or absence of the TMPRSS2-ERG fusion based on fluorescence 

in-situ hybridization (FISH). Mutation rates are higher in pT3 tumors but do not vary by Gleason pattern or 

TMPRSS2-ERG fusion status.  

(E) Fraction of mutations in each tumor that are C to T transitions at CpG sites.  

(F) Number of CpG to T transitions per million CpG sites. Both the number and proportion of CpG to T 

mutations is increased in TMPRSS2-ERG fusion positive tumors. Two-tailed p-values from the Mann 

Whitney test (two groups) or Kruskal-Wallis test (multiple groups) are indicated for each comparison. 

Statistical analysis was performed using GraphPad Prism. n.s., not significant. 
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Figure S2.5 (continued) 
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Figure S2.6. Expression levels of select mutated genes 

Significantly-mutated genes and selected genes listed in Table S2.5 were analyzed for level of transcript 

expression in the RNA-Seq dataset. The histogram shows the number of transcripts with a given value of 

log10 (RPKM+1) (where RPKM is the number of reads per kilobase of exon per million mapped sequence 

reads), binned by increments of 0.1. The RPKM provides an estimate of the relative expression of 

transcripts. Vertical lines indicate the percentile of log10(RPKM+1) among all transcripts. Listed genes are 

grouped based on their percentile of log10(RPKM+1) value: <40%, 40-60%, 60-80% and >80%. Values 

and percentiles are listed in Table S2.5.  
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Figure S2.7. Laser capture microdissection and sequencing of MED12  

(Top) Laser capture micro-dissection and Sanger sequencing was performed on MED12-mutant tumors 

to determine whether the mutations were present in epithelial or stromal cells. H&E slide of frozen tissue 

from a MED12-mutant tumor (PR-3026) showing adenocarcinoma and surrounding mixed stroma. Exome 

sequence reads demonstrated an L1224F mutation in exon 26 of MED12. Laser capture micro-dissection 

was performed to separate epithelium from stroma (inset).  

(Bottom) The selected stromal area (dashed line, left) demonstrates wild-type MED12 sequence by 

Sanger sequencing, while the dissected tumor gland (dashed line, right) exhibits the L1224F mutation. 
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Figure S2.8.  Mutations in SPOP in RNA-Seq data and Sanger sequencing of genomic tumor DNA  

In each panel, RNA-seq reads mapping to SPOP Exon 6 or 7 from the indicated sample are shown. 

Coordinates (hg18) on chromosome 17 are at the top of each panel, and the reference genome (hg18) 

and wild-type SPOP amino acids are displayed at the bottom. Each horizontal gray bar represents one 

read. Nucleotide mismatches with respect to the reference genome in each read are highlighted by 

displaying the mismatched base. The Sanger tracing of genomic DNA from the same tumor focus is 

overlayed below the RNA-seq reads.



 139	
  

 

Figure S2.8 (continued)
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Figure S2.9.  Multiple sequence alignment of the MATH domain of SPOP across species   

Multiple sequence alignment was performed with ClustalW2 and visualized using Jalview.  Residues 

mutated in prostate cancer (Y87, F102, S119, F125, K129, W131, F133, K134) are highlighted. 
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Figure S2.10. Multiple independent siRNAs targeting SPOP have similar effects in prostate cell 

lines 

(A) Expression of SPOP mRNA in DU145 cells transfected with 2 different control siRNAs and 4 different 

SPOP siRNAs, normalized to GAPDH expression, by real-time RT-PCR.   

(B) Quantitation of invaded DU145 cells transfected with control and SPOP siRNAs in Matrigel invasion 

assays.   

(C) Growth curves of DU145 cells transfected with control and SPOP siRNAs, measured with WST-1 

assay.
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Figure S2.11.  Transfection with SPOP siRNA or SPOP mutant does not affect cell growth or 

viability   

(A) Expression of SPOP mRNA in 22Rv1 and DU145 cells transfected with control and SPOP siRNA, 

normalized to GAPDH expression, by real-time RT-PCR.  

(B) Growth curves of 22Rv1 and DU145 cells transfected with control and SPOP siRNA, measured with 

WST-1 assay.  

(C) Western blot showing SPOP expression in DU145 cells transfected with SPOP wild-type and F133V.   

(D) Growth curves of DU145 cells transfected with SPOP wild-type and F133V, measured with WST-1 

assay. 
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Figure S2.12. SPOP is not upregulated in prostate cancer.   

(A) SPOP mRNA expression measured by RNA-seq in 6 benign prostate samples and 53 prostate 

cancers (7 SPOP mutant, 46 SPOP wild-type).  Relative expression is displayed as reads per kilobase 

per million mapped reads (RPKM).   

(B-C) SPOP mRNA expression from a publicly available dataset (www.cbioportal.org/cgx/)12 in 150 

primary prostate cancers (B) and 19 metastases (C). Relative expression is displayed as Z-score versus 

matched normal; positive = increased expression, negative = decreased expression. 
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Figure S2.13.  Tumors with SPOP mutation lack ETS rearrangements 

Relationship of SPOP mutation and ERG rearrangement.  ERG rearrangement was determined by FISH 

and IHC.  

 

 

 

 

 

 



 145	
  

Figure S2.14. Separate foci of prostate adenocarcinoma with mutually exclusive ERG-rearranged 

and SPOP-mutated status  

(A) Low power view of two distinct foci 

of prostate adenocarcinoma in a 

prostatectomy specimen (H&E stained 

slide of frozen tissue, original 

magnification 2x).   

(B) The tumor on the left side (blue 

box) has Gleason score 3+4=7, is 

ERG-negative by 

immunohistochemistry (D) without 

ERG rearrangement by FISH (inset), 

and demonstrates the F133V SPOP-

mutation (F).   

(C) The tumor on the right side 

(orange box) has Gleason score 

3+3=6, is ERG-positive by 

immunohistochemistry (E) with ERG-

rearrangement by FISH (inset), and 

demonstrates SPOP wild-type 

sequence (G). 
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Figure S2.15. Detection of SPOP mutation in high-grade prostatic intraepithelial neoplasia (HGPIN) 

(A) Low power view of prostate adenocarcinoma (blue box) and HGPIN (orange box) in a prostatectomy 

specimen.  

(B-G) Cancer area before (B) and after (C) Laser Capture Microdissection (LCM). Images of HGPIN 

before (E) and after (F) LCM. DNA sequence demonstrates F133V SPOP-mutation in both 

adenocarcinoma (D) and HGPIN (G).  

 



 147	
  

 

 

 

 

 

 

Figure S2.16. Tumors with SPOP mutation lack PTEN deletion in primary but not metastatic 

prostate cancer  

(A) Relationship of SPOP mutation and PTEN deletion determined by FISH in primary prostate cancers 

from the WCMC cohort.   

(B) Relationship of SPOP mutation and PTEN deletion determined by CGH in prostate cancer 

metastases from the UW cohort.  
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Figure S2.17. Ethnicity analysis of exome-sequenced DNA  

Principal component analysis was performed to assess the origin of the study individuals using SNP array 

data. HapMap Phase II samples representing three distinct populations, European (CEU) (red), Yoruban 

(YRI) (blue) and Chinese/Japanese (CHB/JPT) (green), were included in the analysis. The study 

identifiers of the exome-sequenced individuals whose genetic profiles deviate from the CEU pattern are 

shown. 
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Figure S3.1. Recurrent rearrangements alter known and putative prostate cancer genes 

(A) Schematic of CRKL-MAPK1 and NRF1-BRAF fusions detected by WGS, along with validation by 

FISH assay.  

(B) Protein-Protein Interaction (PPI) data were analyzed to nominate rearrangements of potential 

biological consequence. The centrality in a PPI network (Szklarczyk et al., 2011) was assessed for 

protein products of genes that were rearranged in more than one sample (total 397). X- and Y-axes 

measure two indexes of centrality, where larger values indicate more central network positions. Circle 

color and size are proportional to the frequency of gene rearrangement across the tumor cohort. Genes 

scoring in the 95th percentile are depicted as filled circles. The two panels on the right show the centrality 

of recurrently rearranged genes (depicted as red circles in the bottom plot) compared to the entire PPI 

dataset. 

(C) Disruptive genomic rearrangement of JAK1, JAK2 and GSK3B. Dotted lines show intragenic 

breakpoints and corresponding text indicates the locus to which the breakpoint is fused (IGR; inter-genic 

region). Rearrangements depicted above the gene diagrams occurred in a sense-preserving orientation; 

rearrangements below gene diagrams occurred in an anti-sense orientation. Right, genomic 

rearrangements were validated by FISH.  

 

 

 

 

 

 

 

 

 

 

 



 150	
  

 

 

 

Figure S3.1 (continued) 
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Figure S3.2. Signatures of coordinately generated rearrangement chains 

(A) Percentage of DNA deletions bounded by fusion breakpoints that were uniquely identified as deletion 

bridges (blue) or simple deletions (white) in prostate tumors with ten or more deletions in either category.  

(B) Probabilistic model of independent rearrangements across the genome. The expected distribution of 

independent DNA breaks in a given tumor (ρ) is estimated by counting the number of tumors with one or 

more rearrangements within 1Mb tiling windows across the genome. ρ is used to calculate the value of 

µlocal used by ChainFinder in the null model of independent breakpoints. 

(C) Quantile-quantile (Q-Q) plot comparing the distribution of PXY values (the adjacency probabilities for 

independent breakpoints) for observed, simulated and scrambled rearrangements. 
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Figure S3.3. ChainFinder analysis of cancer genomes 

(A) ChainFinder creates a graph representation of somatic rearrangement breakpoints and corresponding 

deletions (see Methods for an extended explanation). (1) Breakpoints of somatic fusions are represented 

as nodes connected by edges. (2) The adjacency probability (PXY) is calculated for pairs of neighboring 

breakpoints based on their reference genome distance (L) and the local rate of rearrangements (µlocal). (3) 

Breakpoints at either boundary of a deletion bridge are joined by edges. (4) The graph is searched for 

cycles connecting breakpoints that are unlikely to have arisen independently, based on PXY values of 

corresponding intervals. (5) The final graph contains sets of rearrangements and associated deletions 

that are unlikely to have occurred independently.  

(B) For a hypothetical cycle involving three rearrangements, the independent breakpoint model 

constitutes all scenarios by which any rearrangement could have arisen independently of others in the 

cycle (see Methods). 

(C-D) Circos plots of rearrangements color-coded by chain for 57 prostate tumors and 59 previously 

sequenced cancer genomes (see Table S3.5B for references). Rearrangements in gray were not 

assigned to a chain. Copy number alteration is shown in blue (deletion) and red (amplification) in the 

inner ring of each plot. 
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Figure S3.3, continued 
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Figure S3.4. Rearrangement profiles of prostate tumor genomes  

(A) Chromoplexy arises in physically interacting chromatin. Chains are enriched for rearrangements that 

fuse portions of the genome in close physical proximity as determined by Hi-C analysis of the RWPE-1 

prostate epithelial cell line (Rickman et al., 2012). See Methods for further details. 

(B) Enrichment of rearrangement breakpoints near to and distant from various genomic features, 

including ChIP-seq peaks from ERG+ VCaP prostate cancer cells (Yu et al., 2010). Color hue reflects the 

degree of enrichment (red) or depletion (blue) and box area reflects statistical significance. “Near” and 

“Far” correspond to within 100kb and further than 1Mb, respectively. The number of rearrangements for 

each tumor is depicted in the gray columns (see Methods). 

(C) Recurrent somatic copy number alterations (SCNAs) across an extended panel of 199 prostate 

tumors grouped by CHD1 deletion status. For comparison, the same samples are also grouped by TP53 

deletion status. 
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Figure S3.4 (continued) 
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Figure S3.5. PCR validation of chained DNA rearrangements 

PCR reactions were run on tumor and normal DNA to amplify across the junctions of 76 somatic fusions. 

Rearrangements are numbered as in Table S3C. Please see Table S3C for a list of additional 

rearrangements that were validated by PCR and deep sequencing on the MiSeq platform.  
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Figure S3.6. Estimation of clonality and stromal DNA admixture 

(A) Apparent DNA admixture computed from WGS and MiSeq deep-sequencing data for 18 somatically 

deleted genes in 7 samples. Error bars for WGS estimations are computed according to Table S6A. 

Clonality calls on WGS data were made with a minimum of 20 informative hemizygous SNPs covered to 

an average depth of 20x or greater. MiSeq calls are based on 4 SNPs with average local coverage of 

>65,000x. The contingency table (bottom-right) shows the agreement for clonality and sub-clonality calls 

between MiSeq and WGS based data (Cochran test, p-value = 1). 

(B) Clonal status of deletions at 14 loci inferred across 49 prostate cancers. The central panel denotes 

the clonal status of a gene lesion in a sample. Empty dark gray rectangles indicate either that the gene 

was not deleted or that there were insufficient informative SNPs to determine clonality status. White 

circles indicate a 100% clonal deletion. Colored circles indicate sub-clonal deletions, where darker color 

indicates a more subclonal deletion. Top rows report Gleason scores, ranging from 6 (light blue) to 9 

(violet), and global stromal DNA admixture, where darker color signifies more admixture. Green bars 

summarize lesion clonality on a per-sample and per-gene basis. Dark and light green denote the 

proportion of clonal and sub-clonal deletions, respectively.  

 

 



 160	
  

 

 

Figure S3.6, continued 
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Figure S3.7. Chromoplexy continues during outgrowth of tumor sub-clones and may generate 

multiple rearrangements in closed chains at once 

(A) Three examples of subclonal chains identified by clonality analysis of deletion bridges. Allelic fraction 

distributions of heterozygous SNPs within the deleted segments are indicated. On the right, a clonal 

deletion bridge from the same sample is shown for comparison. 

(B) Closed chains of non-independent rearrangements could arise from (1) a series of balanced 

translocations over multiple cell generations (the “sequential-dependent model”) or (2) concerted 

rearrangements within one cell cycle (the “simultaneous model”). 

(C) For closed chains of rearrangements, bars indicate the median number of sequential balanced 

translocations required to close a chain under the sequential-dependent model (assuming translocations 

occur randomly between breakpoints within the chain). Average values from 10,000 simulations per chain 

size are shown in blue. Red bars indicate the number of rearrangements that disrupt a previously formed 

fusion junction.  

(D) For 121 observed closed chains, the values from (C) and genomic distances between chain 

breakpoints were used to calculate the local rate of rearrangements required to close the chain under the 

sequential-dependent model. This density is compared to the maximum density of rearrangements 

observed in the tumor containing the chain (assessed in 10kb windows genome-wide).  
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