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Critical period plasticity and sensory function in a neuroligin-3 model of autism 

Abstract 

Extensive experience-dependent refinement of cortical circuits is restricted to critical periods of 

plasticity early in life. The timing of these critical periods is tightly regulated by the relative levels of 

excitatory and inhibitory (E/I) neurotransmission during development. Genetic disruption of synaptic 

proteins that normally maintain E/I balance can result in severe behavioral dysfunction in 

neurodevelopmental disorders like autism, but the mechanisms are unclear. We propose that abnormal 

critical periods of sensory circuit refinement could represent a key link between E/I imbalance and the 

cognitive and behavioral problems in autism. 

In order to test this hypothesis, we characterized visual function and the critical period for 

ocular dominance in the neuroligin-3-R451C mouse model of autism. This autism-associated point 

mutation in the postsynaptic cell adhesion molecule neuroligin-3 (R451C) has been shown to enhance 

cortical inhibition. We first evaluated baseline vision using in vivo electrophysiological recording in the 

visual cortex (V1) of anesthetized adult mice. Many properties of V1 cells were normal, including 

retinotopy, ocular dominance, signal-to-noise ratio, and orientation and direction selectivity. 

Surprisingly, visual spatial acuity was unstable throughout development and dramatically increased in 

young adult mutant mice when compared with wild-type littermates, indicating abnormal local circuit 

processing. 

Ocular dominance plasticity was tested over development with monocular deprivation at 

different ages. Plasticity was limited to the end of the first postnatal month in wild-type mice, but this 
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critical period was extended into adulthood in the mutants. This aberrant adult plasticity was measured 

by a reduction in deprived eye acuity and a shift in the ocular dominance of cells. These changes in visual 

function and plasticity were accompanied by increased GAD65 levels and enhanced parvalbumin-

positive inhibitory circuitry in adult V1. Accordingly, we also observed a substantial enhancement of the 

inhibitory component of the visual evoked potential (VEP) waveform in vivo. 

In this study, we identified novel effects of increased inhibition on visual processing and critical 

period plasticity in NL3-R451C mutant mice. These results provide evidence that vision can be used as a 

biomarker for autism, and offer insight into how E/I imbalance may alter cortical function and ultimately 

lead to behavioral impairments. 
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INTRODUCTION 

  



2 
 

 Neuronal cortical circuits are refined by experience during critical periods early in postnatal life. 

The relative levels of excitatory and inhibitory (E/I) neurotransmission tightly regulate the timing of 

these sensitive periods during development. This makes them vulnerable to disruption if E/I balance is 

tipped in either direction without compensatory homeostatic changes. There is now increasing evidence 

that neurodevelopmental disorders of early postnatal development, such as autism spectrum disorder 

(ASD), are accompanied by genetic disruption of synaptic proteins responsible for proper E/I 

equilibrium. How this imbalance results in abnormal sensory, cognitive and social behavior is still largely 

unclear. 

Here, we propose that alteration of the expression and/or timing of critical period circuit 

refinement could represent a key link between E/I imbalance and the cognitive and behavioral problems 

found in ASD.  In this chapter, I will review what is currently known about critical periods, focusing in 

particular on the well-characterized critical period for ocular dominance plasticity. Next, I will explore 

the emerging view that autism is a synaptic disorder that results from cortical E/I imbalance, 

concentrating on the role that neuroligins may play in autism. Finally, I will discuss evidence of sensory 

processing abnormalities in autism. 

The remaining chapters will describe the approach I took to address our hypothesis and 

potential implications of our results.  Chapter 2 outlines in detail the different methods used throughout 

my thesis work. In Chapter 3, we characterize the visual system of the NL3-R451C mutant mice in order 

to understand sensory processing in autism. In Chapter 4, we evaluate ocular dominance plasticity, map 

the critical period, and begin to investigate the connectivity of specific GABAergic circuits in order to 

better understand the effect of this mutation on local circuits. To conclude, Chapter 5 contains an in 

depth discussion of our results and their broader implications. 
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Early brain development and circuit refinement 

 The developing brain is remarkably malleable, capable of restructuring synaptic connections in 

response to changing experiences. The basic layout of the brain is first established by genetic programs 

and intrinsic activity, and is then actively refined by the environment in which the individual is immersed 

(Katz and Shatz, 1996). This experience-dependent sculpting of neuronal circuits occurs during distinct 

time windows called critical periods (Hensch, 2004). There is evidence of independent postnatal critical 

periods for different modalities, ranging from basic visual processing to language and social skills. They 

occur sequentially in a hierarchical manner, beginning in primary sensory areas (Fig. 1.1). 

 These sensitive periods of elevated plasticity are times of opportunity, but also of great 

vulnerability, for the developing brain. As many have experienced, it is easier to learn a new language, 

musical instrument, or sport as a child rather than in adulthood. On the other hand, early disruption of 

proper sensory or social experiences can result in miswired circuits that will respond suboptimally to 

experience in the future. The devastating effects of early deprivation are scientifically documented 

(Harlow et al., 1965; Nelson et al., 2007). A study of socially and emotionally-deprived children raised in 

Romanian orphanages demonstrated that neglect causes severe developmental delay, mental 

retardation, and neuropsychiatric symptoms (Nelson et al., 2007). This study showed that orphans need 

to be placed with caring foster families before two years of age in order to develop cognitive, social, and 

intellectual skills. Otherwise, neglected children are unable to recover normal function even if they are 

placed in similar foster homes later in life. 
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Figure 1.1. Critical periods occur in succession over the course of development. 

Sensitivity to experience peaks during critical periods. The timing and duration of these windows differs 

depending on the domain. Critical periods for senses, like vision and hearing, occur early during infancy 

and have definitive closures. Critical periods for language and higher cognition occur later and do not 

close all of the way, permitting some plasticity to persist late in life. This sequence allows for more 

complex skills to build on a stable foundation of basic processing. 

  

Adapted by permission from Macmillan Publishers Ltd: NATURE Vol. 487 (2012)
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 Comparable effects are evident for the development of senses as well. Conductive hearing loss 

often associated with childhood ear infections can produce long-lasting deficits in auditory perceptual 

acuity if not treated before the age of seven (Popescu and Polley, 2010; Harrison et al., 2005; Svirsky et 

al., 2004). Similarly, if binocular vision is compromised by strabismus or cataract in one eye and is not 

treated during early childhood, loss of acuity in the deprived eye is permanent and irreversible (Banks et 

al., 1975; Mitchell and Mackinnon, 2002). However, if corrected promptly, restoration of normal 

binocular vision is possible. 

 Why is this type of large-scale plasticity robust early in life but restricted in adulthood? What are 

the mechanisms underlying experience-dependent circuit refinement? If the timing of critical periods is 

disrupted, how might perception and behavior be affected? These intriguing questions prompted the 

birth of a whole field in neuroscience dedicated to understanding critical periods. In recent years, it has 

been discovered that a precise balance of cortical E/I neurotransmission regulates critical period 

plasticity (reviewed in Hensch, 2005; Le Magueresse and Monyer, 2013). 

 

The critical period for ocular dominance 

 One of the most mechanistically well-characterized critical periods is for ocular dominance 

plasticity in the mammalian visual cortex. Here, I will focus my discussion on the ocular dominance 

critical period because the underlying molecular and cellular mechanisms have been extensively 

dissected, making it the best model system for testing our hypothesis that critical periods may be 

abnormal in autism. 

 Abnormal visual input to one eye during infancy results in permanent loss of visual acuity, or 

amblyopia, if not corrected during childhood. If perturbation of vision occurs in adulthood, the visual 
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impairments are significantly milder or absent (Lewis and Maurer, 2009). This observation in humans 

inspired the development of a simple laboratory paradigm to test for the existence of a critical period in 

animals. David Hubel and Torsten Wiesel began investigating ocular dominance plasticity in a series of 

Nobel Prize-winning experiments in the 1960s (reviewed in Hubel and Wiesel, 1998). They found that 

the closure of one eye (monocular deprivation) in kittens during a specific time window early in 

postnatal life results in an experience-dependent loss of visual acuity from the deprived eye, despite no 

physical damage to the eye itself (Wiesel and Hubel, 1963; Hubel and Wiesel, 1970). This is due to a 

competitive invasion of cortical territory previously responsive to the deprived eye by inputs from the 

nondeprived eye. A functional loss of responsiveness to the deprived eye and an increase of 

responsiveness to the open eye are followed first by pruning and then regrowth of dendritic spines on 

cortical pyramidal neurons (Oray et al., 2004; Mataga et al., 2004). Further structural reorganization 

takes place in the form of shrinkage of thalamocortical projections (ocular dominance columns) serving 

the deprived eye and expansion of those serving the open eye (LeVay et al., 1978; LeVay et al., 1980; 

Antonini and Stryker, 1996; Antonini et al., 1998; Antonini et al., 1999). 

 This type of large-scale plasticity is only present during a restricted critical period (Hubel and 

Wiesel, 1970; Daw et al., 1992; Gordon and Stryker, 1996; Prusky et al., 2000b). However, plasticity is 

possible at other points during life. The visual cortex maintains the ability to detect changes in sensory 

experience, such as monocular deprivation, in adulthood as well (Lehmann et al., 2012; reviewed in 

Morishita and Hensch, 2008; Sato and Stryker, 2008; Chen and Nedivi, 2010). This adult plasticity can be 

measured using methods that are sensitive to subthreshold synaptic changes, such as imaging of 

intrinsic activity, activation of immediate early genes like Arc and cfos, and the contralateral/ipsilateral 

ratio of visual evoked potential (VEP) amplitude in response to low spatial frequency stimuli (reviewed in 

Morishita and Hensch, 2008). We can differentiate juvenile "critical period" plasticity from adult 
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plasticity by the presence of permanent suprathreshold functional changes in vision, including loss of 

acuity, a shift in the ocular dominance of single cells, and the rearrangement of thalamocortical axons.  

 The ocular dominance critical period is present in all mammals tested so far, from humans to 

mice, and the duration of the critical period correlates with lifespan and brain weight (Berardi et al., 

2000). The establishment of rodents as models of amblyopia has made possible a fine dissection of the 

mechanisms underlying critical period expression. In particular, by taking advantage of genetically 

modified mouse models, a specific inhibitory circuit has been identified that controls the timing of 

ocular dominance plasticity (Fagiolini et al., 2004). Historically, the postnatal development of inhibitory 

neurotransmission was believed to progressively restrict plasticity, but the following key experiments 

proved that GABA is actually necessary for a normal ocular dominance critical period, prompting further 

investigation into the role of inhibition in brain plasticity. 

Manipulation of inhibitory transmission is difficult in vivo because enhancing inhibition silences 

the brain, while reducing inhibition can trigger seizures. With the generation of a mouse lacking only one 

of the two enzymes that synthesizes GABA (GAD65), researchers were able to titrate down the level of 

inhibition and test its role in the ocular dominance critical period (Hensch et al., 1998). Strikingly, the 

visual cortex of GAD65 knockout mice remains in an immature, pre-critical period state throughout life 

(Fagiolini and Hensch, 2000). At any age, functionally enhancing GABAergic transmission with 

benzodiazepine (diazepam) treatment triggers the onset of a normal-length critical period. In addition, 

administering diazepam to pre-critical period age wild-type mice can cause the critical period to open 

prematurely (Fagiolini and Hensch, 2000). Diazepam binds to the α-subunits of the GABAA receptor and 

increases channel open probability. Further studies revealed that plasticity is induced through the 

binding of diazepam to α1 and not α2 subunits (Fagiolini et al., 2004). GABAA receptors containing the 

α1 subunit are found on the soma and proximal dendrite region of pyramidal cells, and they are 
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targeted by parvalbumin-positive basket cells (Nusser et al., 1996; Klausberger et al., 2002). 

Consequently, these results launched a series of studies investigating the role of parvalbumin cells in 

critical period regulation. 

 

Parvalbumin cell regulation of critical periods 

 Inhibitory interneurons account for approximately 20% of cortical neurons and exhibit 

heterogeneous morphological and physiological characteristics (Markram et al., 2004). Included in this 

large variety of inhibitory interneurons is a specific subset of GABAergic neurons that expresses the 

calcium-binding protein parvalbumin (Fig 1.2). Fast-spiking parvalbumin-positive basket cells (PV cells) 

develop with a late postnatal time course in anticipation of critical period onset across brain regions (del 

Rio et al., 1994; Chattopadhyaya et al., 2004). In the visual cortex, PV cells mature in an experience-

dependent manner, and dark-rearing delays their maturation and critical period expression (Huang et 

al., 1999; Sugiyama et al., 2008). On the other hand, overexpression of brain-derived neurotrophic factor 

(BDNF) promotes the maturation of PV cells and speeds up the onset of the critical period (Huang et al., 

1999; Hanover et al., 1999). Di Cristo et al. (2007) found that premature removal of polysialic acid (PSA), 

a carbohydrate polymer presented by the neural cell adhesion molecule (NCAM), results in a precocious 

maturation of perisomatic innervation of pyramidal cells by PV cells, enhanced inhibitory synaptic 

transmission, and an earlier onset of the critical period. Recent results indicate that PV cell maturation is 

regulated by the Otx2 homeoprotein, an essential morphogen for embryonic head formation (Sugiyama 

et al., 2008). Otx2 is stimulated by visual experience to pass from the retina to PV cells in the visual 

cortex, thereby promoting PV cell maturation and consequently triggering the onset of the ocular 

dominance critical period in the visual cortex. 
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Figure 1.2. Local inhibitory circuits in the cortex. 

A diversity of interneurons exists in the cortex. Specific subtypes can be identified by their morphology, 

connectivity, intrinsic properties, and calcium binding protein or neuropeptide expression. The 

parvalbumin-positive large basket cell targets GABAA receptors containing the α1 subunit on the soma of 

pyramidal cells (shown in green). 1-6, cortical layers; Ais, axon initial segment; CRC, Cajal–Retzius cell; 

DB, double bouquet cell; CCK, cholecystokinin expressing cell; Ch, chandelier cell; Ng, neurogliaform cell; 

PV, parvalbumin-positive cell; M, Martinotti neuron. 

  

Adapted by permission from Macmillan Publishers Ltd: NATURE Vol. 877 (2005)
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 PV cells receive direct thalamic input and connect to each other in large networks across brain 

regions by chemical synapses and gap junctions (Cruikshank et al., 2007; Galarreta and Hestrin, 1999). 

Moreover, PV cells form numerous synapses onto the somata of pyramidal cells, which in turn enrich 

these sites with GABAA receptors containing the α1-subunit (Fagiolini et al., 2004; Hensch, 2005; Katagiri 

et al., 2007; Sugiyama et al., 2008; Klausberger, 2009). This makes PV cells perfectly situated to detect 

changes in sensory input, to regulate the spiking of excitatory pyramidal cells, and to synchronize brain 

regions (DeFelipe and Farinas, 1992; Kawaguchi and Kubota, 1997; Somogyi et al., 1998). 

 

Closure of the critical period 

 Once the critical period is initiated, plasticity is only possible for a set length of time, and then 

the critical period closes (Hubel and Wiesel, 1970; Daw et al., 1992; Gordon and Stryker, 1996; Prusky et 

al., 2000b). Functional and structural brakes on plasticity have been identified in recent years (reviewed 

in Bavelier et al., 2010), and disruption of these brakes in the adult brain allows critical periods to 

reopen and neuronal circuits to be reshaped by experience. Interestingly these brakes share a common 

theme of regulating E/I balance, and particularly the GABAergic system. Locally reducing inhibition in 

adulthood restores plasticity in visual cortical circuits (He et al., 2006; Harauzov et al., 2010). Treatment 

with the antidepressant drug fluoxetine also reopens plasticity, potentially by increasing BDNF levels and 

altering inhibitory transmission (Maya Vetencourt et al., 2008; Chen et al., 2011). Finally, knocking out 

lynx1, an endogenous prototoxin that promotes desensitization of the nicotinic acetylcholine receptor 

(nAchR), extends the critical period into adulthood (Morishita et al., 2010). Lynx1 likely modulates E/I 

balance because treatment with diazepam in lynx1 knockout mice abolishes adult plasticity by restoring 

E/I balance to normal adult levels. On the other hand, transplanting immature GABAergic cells into the 

visual cortex can allow for ocular dominance plasticity later in life (Southwell et al., 2010). This second 
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sensitive period only emerges once the newly transplanted GABAergic cells reach a certain stage of 

connectivity. This study reveals that the level of maturation of inhibitory cells plays a crucial role in 

creating an environment that is permissive for plasticity. 

 Structural factors also restrict remodeling of circuits with the closure of critical periods. For 

example, PV cells become increasingly enwrapped in perineuronal nets (PNN) of extracellular matrix 

with the progression of the critical period, and enzymatic removal of these nets or disruption of their 

formation restores plasticity in adulthood (Sugiyama et al., 2008; Pizzorusso et al., 2002; Carulli et al., 

2010). PNNs are hypothesized to regulate the firing of PV cells by controlling extracellular ion 

concentrations, or by sequestering molecules, like Otx2 (Beurdeley et al., 2012), that influence PV cell 

maturation. In addition, myelination throughout the layers of the visual cortex increases as the critical 

period closes, as measured by the levels of myelin basic protein (MBP) (McGee et al., 2005). Myelin 

signaling through Nogo receptors (NgRs) limits plasticity in adulthood, and genetic or pharmacological 

disruption of these receptors allows for persistent ocular dominance plasticity later in life (McGee et al., 

2005; Morishita et al., in review). In addition to reopening plasticity, disruption of some of these brakes 

also allows for recovery from deprivation-induced loss of acuity in adulthood. This includes enzymatic 

degradation of PNNs (Pizzorusso et al., 2006), disruption of NgR signaling (Morishita et al., in review), 

administration of fluoxetine (Maya Vetencourt et al., 2008), and enhanced cholinergic signaling by lynx1 

knockdown or treatment with acetylcholinesterase inhibitors (Morishita et al., 2010). Treatment with 

fluoxetine and acetylcholinesterase inhibitors offers particularly promising therapeutic potential 

because they these drugs are already FDA-approved for human use. 

 The exquisite care with which critical periods are regulated suggests that their proper 

expression is crucial for normal brain function. Disruption of E/I balance could lead to poorly refined or 

consolidated circuits, ultimately resulting in neurodevelopmental disorders like autism. Dissection of the 
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cellular and molecular mechanisms governing well-established critical periods represents a powerful 

tool with which to identify potential therapeutic targets to normalize plasticity and function in affected 

neuronal circuits. 

 

Excitatory/inhibitory imbalance in autism 

Signal transmission in the postnatal central nervous system is ultimately regulated by the 

opposing forces of excitatory glutamatergic (E) and inhibitory GABAergic (I) inputs. Individual neurons 

and circuits must maintain a proper E/I balance for normal function, and the exact nature of this balance 

varies depending on the brain region, neuronal subtype, and developmental stage (Gatto and Broadie, 

2010). This is a dynamic process, and the brain has developed mechanisms to modulate synaptic 

strength in order to maintain homeostasis (reviewed in Turrigiano and Nelson, 2004; Maffei and 

Fontanini, 2009). However genetic alterations that affect the transcriptional or translational control of 

synaptic molecules can disrupt homeostatic processes by altering synapse formation, organization, 

maintenance, or function. Such uncorrected E/I imbalance is implicated in a range of neural disorders, 

including autism. 

 The symptoms of ASD arise within the first three years of life, during a time of intense 

synaptogenesis and experience-dependent circuit refinement (Huttenlocher, 1990; Hensch, 2004), and 

include abnormal socialization, impaired communication, repetitive behaviors, and increased or 

decreased sensitivity to sensory stimuli (APA-DSMIV, 1994; APA-DSM5, 2011). Autistic individuals range 

from intellectually disabled to high-functioning, and exhibit a wide range in the manifestation and 

severity of symptoms. Despite a recent surge in the incidence of ASD (currently 1 in 88 children, 

www.cdc.gov, 2012), there is relatively little known about the neurobiological basis of autism. 
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 In the study of human diseases, the generation and characterization of animal models is an 

essential bridge between understanding the molecular features of the disease and the development of 

therapeutics. The idea of autism mouse models has been controversial because of the difficulty in 

recapitulating the construct, face, and predictive validity of autism in mice (Crawley, 2004). There is, 

however, a genetic basis to autism, which allows for the introduction of ASD mutations into mice. There 

is a 70-90% concordance rate between monozygotic twins, a 10% rate for dizygotic twins, and siblings of 

children with autism are 25 times more likely to develop ASD (Abrahams and Geschwind, 2008; 

Geschwind, 2008). There is also a high incidence of ASD in some monogenetic neurodevelopmental 

disorders, including Rett, Fragile X, Tuberous Sclerosis, and Angelman syndromes, which are known to 

be caused by genetic mutations in MeCP2 (Amir et al., 1999), Fmr1 (Verkerk et al., 1991), Tsc1/2 (van 

Slegtenhorst et al., 1997; European Chromosome 16 Tuberous Sclerosis Consortium, 1993), and 15q11-

13/Ube3a (Magenis et al., 1987; Kishino et al., 1997; Matsuura et al., 1997), respectively. The most well-

accepted ASD mouse models have been generated based on mutations associated with autism and have 

show some evidence of altered behavior, like abnormal communication or socialization (reviewed in 

Robertson and Feng, 2011; Crawley, 2012). 

 Many ASD-linked genes converge on common pathways that regulate synapse function and 

experience-dependent plasticity (reviewed in Rubenstein and Merzenich, 2003; Walsh et al., 2008; 

Betancur et al., 2009; Ye et al., 2010; Zoghbi and Bear, 2012; Peça and Feng, 2012). Thus, ASD is often 

considered to be a synaptic disorder. The most striking outward indication of E/I imbalance in autism 

and its associated disorders is a shared susceptibility to epilepsy (Gillberg and Billstedt, 2000). Many 

studies demonstrate broad alterations in both glutamatergic and GABAergic systems in ASD humans and 

animal models (Table 1; reviewed in Gatto and Broadie, 2010; LeBlanc and Fagiolini, 2011; Le 

Magueresse and Monyer, 2013).  
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Table 1.1 Evidence of excitatory/inhibitory imbalance in autism spectrum disorder. 

Some examples of excitatory and inhibitory signaling alterations in syndromic and non-syndromic ASD, 
based on studies across different ages and brain regions in human patients (denoted with an asterisk*) 
and animal models. 

Disorder Gene Evidence of changes in excitation and inhibition References 

ASD Unknown - 
general 
studies of 
autism 
patients 

*Elevated plasma GABA levels 
 
*Reduced GAD65 and GAD67 levels 
 
*GABAA and GABAB receptor disruption 
 
 
 
*Altered modulation of GABAA receptors in the 

presence of GABA 
*Increased number and decreased width of 

neocortical minicolumns 
*Increased dendritic spine density in cortex 

Dhossche et al., 2002; 
Dhossche et al., 2005 
Fatemi et al., 2002; Yip 
et al., 2007 
Collins et al., 2006; 
Fatemi et al., 2009a; 
Fatemi et al., 2009b; 
Fatemi et al., 2010 
Guptill et al., 2007 
 
Casanova et al., 2002; 
Casanova et al., 2003 
Hutsler and Zhang, 
2010 

ASD Neuroligin-3 Increased spontaneous and evoked inhibitory 
transmission in cortex 

Increased excitatory transmission in 
hippocampus 

Tabuchi et al., 2007 
 
Etherton et al., 2011 

ASD Neuroligin-1 Reduced NMDA/AMPA ratio at cortico-striatal 
synapses 

Blundell et al., 2010 

ASD Neurexin-1 Reduced excitatory synaptic strength Etherton et al., 2009 

ASD Shank3 Reduced cortico-striatal neurotransmission 
Altered postsynaptic density composition 

Peça et al., 2011 

Rett Mecp2 Altered somatosensory evoked potentials 
Abnormal EEG recordings 
Decreased cortical minicolumn size 
Reduced dendritic spine number 
 
*Altered glutamate and GABA receptors 
Decreased spontaneous activity 
 
Increased PV cell innervation of excitatory cells 
Enhanced inhibitory gating 
LTP deficits 
 
Reduced GABAA receptor subunit levels 

Moser et al., 2007 
 
Casanova et al., 2003 
Belichenko et al., 1994; 
Chapleau et al., 2009 
Blue et al., 1999 
Durand et al., 2012; 
Dani et al., 2005 
Durand et al., 2012 
 
Moretti et al., 2006; 
Dani and Nelson, 2009 
Medrihan et al., 2008 

Fragile X 
 
 

Fmr1 
 
 

*Long, thin dendritic spines 
 
Reduced AMPAR levels and  LTP 

Hinton et al., 1991; 
Irwin et al., 2000 
Li et al., 2002; 
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Table 1.1 (Continued) 

 
 
 

 
 
 

 
 
 
Increased mGluR-dependent LTD 
 
Increased glutamatergic vesicle fusion frequency 

and enhanced exocytic vesicle cycling 
 
Increased intrinsic excitability of excitatory 

cortical neurons 
Decreased number of parvalbumin interneurons 
Decrease in GABAAR subunit mRNA and 

decreased tonic inhibition 

Zhao et al., 2005; Desai 
et al., 2006; Wilson and 
Cox, 2007 
Nosyreva and Huber, 
2006; Zhang et al., 2009 
Zhang et al., 2001;  
Gatto and Broadie, 
2010 
Gibson et al., 2008 
 
Selby et al., 2007 
Curia et al., 2009 

Tuberous 
sclerosis 

Tsc1/2 Thickened dendritic arbors of cortical pyramidal 
cells 

Increased excitability of cortex 
Decreased cerebellar purkinje cell excitability 

Meikle et al., 2007 
 
 
Tsai et al., 2012 

Angelman Ube3a, 
15q11-13 

Abnormal spine morphology and spine density 
Defective experience-dependent development of 

excitatory circuits 

Dindot et al., 2008 
Yashiro et al., 2009 
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The autistic synapse: disruption of common synaptic cell adhesion pathways 

 Synapse formation is an elaborate process that requires initial cell contact, differentiation of 

pre- and postsynaptic terminals, and organization of many different proteins. On the presynaptic side, 

neurotransmitter, vesicles, and release machinery must be assembled at the terminal. At the 

postsynaptic density, scaffolding molecules must anchor receptors and signaling proteins. After a 

synapse is formed, it must be stabilized and mature in order to function properly. Cell adhesion 

molecules (CAMs) can signal in a bidirectional manner across the synapse through their intracellular and 

extracellular domains, and have been shown to play roles in all stages of the life of a synapse (reviewed 

in Bukalo and Dityatev, 2012). CAMs play a crucial role in synaptic development by initiating contact 

between pre- and postsynaptic cells, maintaining adhesion, and anchoring scaffolding proteins that 

assemble the essential components of a synapse. CAMs can determine the identity and function of 

synapses, thereby having a direct influence on E/I balance. 

 It is estimated that a significant proportion of the genes linked to ASD encode CAMs or CAM-

related molecules, establishing them as an important subset of ASD risk factors (reviewed in Betancur et 

al., 2009; Ye et al., 2010; Van Spronsen and Hoogenraad, 2010). These ASD-associated genes encode for 

include members of the immunoglobulin family (CNTN3-4, NRCAM, CADM1, ROBO1-4), cadherin family 

(CDH9-10, CDH18, PCDH9-10), integrin family (ITGB3, ITGA4), neurexin family (NX1, CNTNAP2, 

CNTNAP5), neuroligin family (NL1, NL3-4), and others (ASTN2, SHANK1-3, SLC6A4, LAMB1) (Ye et al., 

2010). The neurexin (NX) and neuroligin (NL) genes are considered strongly associated with ASD and are 

among the most extensively studied CAMs. Much recent work has focused on understanding how 

mutations in these molecules can lead to autism. 
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Neuroligins 

 Neuroligins are type I membrane proteins that are composed of an extracellular non-functional 

esterase homology domain, a single transmembrane domain, and a short cytoplasmic tail with a PDZ-

binding motif (Ichtchenko et al., 1996). There are 4 genes encoding NLs in mice (NL1-4) that undergo 

alternative splicing (Ichtchenko et al., 1996). Using immunostaining and electron microscopy, the 

location of each isoform has begun to be elucidated. NL1 is primarily located at excitatory synapses 

(Song et al., 1999; Chih et al., 2005) and NL2 at inhibitory synapses (Varoqueaux et al., 2004; Chih et al., 

2005). The localization of NL3 is less clear due to the poor quality of existing antibodies, but there is 

evidence that it can be found at both inhibitory and excitatory synapses (Budreck and Scheiffle, 2007; 

Heller et al., 2012). NL4 localizes to glycinergic inhibitory synapses in the retina and inhibitory synapses 

throughout the central nervous system (Hoon et al., 2011). Alternative splicing in the extracellular 

domain of both NLs and NXs can create a diverse code and can also influence whether an excitatory or 

inhibitory synapse is formed (Dalva et al., 2007). 

 Studies of NL function in vitro initially suggested a crucial role in synapse formation. 

Heterologous expression of NLs in non-neuronal cells induces morphological and functional presynaptic 

differentiation in axons contacting these cells (Scheiffele et al., 2000; Graf et al., 2004). Likewise, 

heterologous expression of neurexins in non-neuronal cells induces the formation of postsynaptic 

specializations in co-cultured neurons (Dean et al., 2003; Graf et al., 2004; Nam and Chen, 2005). 

Overexpression of NLs in cultured neurons increases the total number of synapses (Chih et al., 2005), 

while RNAi knockdown decreases synapse number (Chih et al., 2005). Together, these studies suggest 

that NLs are sufficient to induce synapse formation. 

 However, subsequent analysis of the function of NLs in vivo revealed that synapses can be 

established even in the absence of NLs. Thus, they are sufficient but not necessary for synapse 
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formation. Instead, NLs are crucial for normal functioning of synapses, playing roles in the maturation, 

maintenance, and function of synapses (reviewed in Sudhof, 2008). NL1-2-3 triple knock-out mice die 

within 24 hours of birth, and although they form typical numbers of morphologically normal synapses, 

there are severe deficits in synaptic transmission and reduced expression of synaptic proteins 

(Varoqueaux et al., 2006). Analysis of neurotransmission in single NL KO mice has allowed for a more 

nuanced investigation of the functional role of different NL isoforms. In the hippocampus, NL1 KO mice 

have impaired excitatory NMDA receptor signaling (Chubykin et al., 2007), but there is very little effect 

on inhibitory signaling (Chubykin et al., 2007; Gibson et al., 2009). NL2 KO mice have impaired inhibitory 

transmission, selectively affecting input from parvalbumin fast-spiking neurons and not somatostatin-

positive interneurons (Chubykin et al., 2007; Gibson et al., 2009). Accordingly, NL1 and NL2 

overexpression in cultured hippocampal neurons increases excitatory and inhibitory synaptic 

transmission, respectively (Chubykin et al., 2007). NL3 KO mice show a decrease in mEPSC frequency 

and increase in mIPSC frequency in the hippocampus (Etherton et al., 2011), but no changes in the 

somatosensory cortex (Tabuchi et al., 2007). 

 NLs bind to presynaptic NXs with different affinities depending on the isoform and alternative 

splicing pattern (Koehnke et al., 2010). Signaling via the NL-NX complex assembles the presynaptic and 

postsynaptic machinery of the synapse (Scheiffele et al., 2000; Dean et al., 2003; Graf et al., 2004; Nam 

and Chen, 2005). Consistent with their localization, NL1 interacts with PSD95 (Prange et al., 2004; 

Levinson et al., 2005) and NL2 interacts with gephyrin and collybistin (Poulopoulos et al., 2009). In fact, 

intracellular scaffolding proteins may play an important role in recruiting the appropriate NL isoform to 

excitatory or inhibitory synapses (Levinson et al., 2010). 

Interest in NLs has grown recently due to their association with autism (reviewed in Sudhof, 

2008; Van Spronsen and Hoogenraad, 2010; Ye et al., 2010; Jun-Yu et al., 2012). The first report of 
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autism-related NL mutations was by Jamain et al. (2003), when they identified one mutation in NL3 

(R451C) and one in NL4 (D396X) in two different families. Since then, many other studies have also 

identified genetic disruption of NL1 (Glessner et al., 2009), NL3 (Yu et al., 2011), and NL4 (Laumonnier et 

al., 2004; Yan et al., 2005; Talebizadeh et al., 2006; Yan et al., 2008; Lawson-Yuen et al., 2008; Zhang et 

al., 2009; Daoud et al., 2009; Yanagi et al., 2012) (but see Vincent et al., 2004; Gauthier et al., 2005; 

Ylisaukko-oj et al., 2005; Blasi et al., 2006; Wermter et al., 2008). Given the crucial role that NLs play in 

synaptic function, much work in the past few years has focused on understanding the neurobiological 

consequences of ASD-associated mutations in NLs using mouse models. Many studies have focused on 

the R451C point mutation in NL3. 

 

The autism-associated neuroligin-3 R451C point mutation 

 The R451C mutation was discovered in a Swedish family, where it was present in two brothers 

and inherited from the mother (Jamain et al., 2003). The older brother was diagnosed at 3-years-old 

with typical autism and severe mental retardation, and later developed epilepsy, whereas the younger 

brother was diagnosed at 10-years-old with Asperger's syndrome. In vitro cell culture studies found that 

this single amino acid change (arginine to cysteine) in the extracellular portion of NL3 results in a 

trafficking defect where 90% of the protein is retained in the endoplasmic reticulum (ER) and degraded 

(Chih et al., 2004; Comoletti et al., 2004; Chubykin et al., 2005; De Jaco et al., 2006). This trafficking 

defect may result from local protein misfolding or altered interaction with ER chaperones (De Jaco et al., 

2006; De Jaco et al., 2010). The small percent of the protein (10%) that reaches the cell surface is still 

able to induce synapse formation (Chubykin et al., 2005) and form heterodimers with NL1 (Poulopoulos 

et al., 2012), but has been reported to exhibit diminished NX1β binding (Comoletti et al., 2004), even 

though the mutation maps to a location that is distinct from the NX1β binding site (De Jaco et al., 2010). 
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Figure. 1.3. The NL3-R451C mutation enhances inhibitory neurotransmission in vitro. 

A. Schematic of a synapse that demonstrates the effect of the R451C mutation on NL3 protein. (a) 

NL3 transcription is normal, as mRNA levels do not change. More than 90% of mutated NL3 

protein does not pass quality control in the endoplasmic reticulum (ER) (b) and consequently 

less than 10% of NL3 protein exits the ER and is inserted into the membrane (c, d). 

B. Inhibitory signaling is enhanced in the somatosensory cortex in vitro. Spontaneous miniature 

synaptic events (mIPSCs) are increased in frequency (left), and evoked responses (eIPSCs) in 

response to current injection are increased in amplitude (right). 

  

Adapted by permission from Macmillan Publishers Ltd: NATURE Vol. 455 (2008)
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Tabuchi et al. (2007) introduced this mutation into the mouse genome by gene targeting and 

found an increase in inhibitory synaptic transmission with no apparent changes in excitatory signaling in 

the somatosensory cortex (Fig. 1.3). Spontaneous miniature synaptic events (mIPSCs) occurred more 

frequently, and the amplitude of evoked inhibitory responses (eIPSCs) was increased. Surprisingly, 

subsequent analysis revealed a contrasting phenotype in a different brain region. While inhibition was 

enhanced in the somatosensory cortex, excitation was enhanced in the hippocampus (Etherton et al., 

2011). Specifically, the frequency of mEPSCs was higher, AMPA and NMDA receptor-mediated synaptic 

transmission was increased, and long-term potentiation (LTP) was enhanced. Thus, the consequences of 

the R451C mutation are not uniform for all synapses and instead depend on region and context.  

 Interestingly, these NL3-R451C mutant mice also exhibit changes in behaviors relevant to autism 

(Tabuchi et al., 2007; Etherton et al., 2011; but see Chadman et al., 2008). In the 3-chamber socialization 

test, wild-type and mutant mice showed a similar preference for interacting with a visiting mouse over 

an object (Etherton et al., 2011). When the object was replaced a novel mouse, wild-type mice preferred 

to spend time with the new mouse but mutant mice failed to distinguish between the novel and familiar 

mouse. Perhaps due to enhanced excitatory signaling and LTP in the hippocampus, the NL3-R451C mice 

also showed evidence of enhanced spatial learning and memory in the Morris water maze (Tabuchi et 

al., 2007). 

 It is currently unclear how changes in E/I balance, as a result of mutations like NL3-R451C, 

ultimately contribute to the expression of autistic behaviors. The execution of normal cognition and 

behavior relies on a meaningful and accurate representation of the external environment. Incidentally, 

the experience-dependent development of sensory processing, which is the link between the 

environment and the brain, is regulated by cortical E/I balance. Therefore, we believe that in depth 
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study of sensory processing will provide us with valuable insight into the neurobiological mechanisms 

underlying autism. 

 

Sensory function in autism 

 Much research has focused on understanding cognitive processing in the autistic brain. 

However, it is important to recognize that these higher order brain functions rely on integration of 

inputs from lower cortical regions, building off a reliable and accurate representation of the world 

generated by primary sensory areas. Critical period disruption, resulting in a slight degradation in the 

quality of any or all of these senses, would compromise the ability to successfully execute behaviors 

relying on this information. Indeed, sensory abnormalities have been reported in autistic individuals, 

indicating improper sensory perception (reviewed in Marco et al., 2011). 

 Common features of autistic individuals include aggressively avoiding or actively seeking out 

sensory stimulation, demonstrating a spectrum of hyper- or hyposensitivity to sensory input in multiple 

domains (Marco et al., 2011; Kanner, 1943; APA-DSM5, 2011). There are many anecdotal accounts of 

sensory processing disruption in autism (Grandin, 1992; Grandin, 2009; Williams, 1998; Bogdashina, 

2003). A recent meta-analysis of 14 parent-report studies on sensory modulation suggests that autistic 

individuals exhibit significantly more sensory symptoms than control groups, particularly between the 

ages of 6 and 9 (Ben-Sasson et al., 2009). Interestingly, it is suggested that sensory processing is more 

commonly disrupted in autism than in other developmental disorders, that these symptoms lessen with 

age, and that their severity correlates with the degree of social impairment (Simmons et al., 2009). 

 Many studies of sensory phenotypes in autism have focused on the auditory system because of 

the language deficits characteristic of patients. There do appear to be lower-level cortical auditory 
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processing abnormalities as measured by electroencephalograms (EEG) and magnoenetcephalography 

(MEG), but the nature of these differences is variable and depends on the specifics of each experiment 

(Marco et al., 2011). For example, while some studies have found that autistic subjects have increased 

latency of cortical response to tones (Ferri et al., 2003; Martineau et al., 1984), others observed a 

decreased latency of cortical response (Bruneau et al., 2003; Oram Cardy et al., 2008; Roberts et al., 

2010). These contrasting results may reflect the different experimental paradigms used, or could simply 

reflect the wide spectrum of autism phenotypes. 

 Abnormal somatosensory experiences are commonly reported in autistic individuals (Cascio, 

2010). One psychophysical study by Tommerdahl et al. (2007) tested the ability of a small group of 

autistic subjects to spatially discriminate two vibrotactile stimuli applied to the skin of the hand. After a 

priming stimulus, subsequent spatial discrimination in that same area of skin improved for controls but 

not for autistic subjects, due to recruitment of inhibitory circuits. The authors suggested that this may 

reflect a deficit in cortical inhibition of neighboring minicolumns, but this claim was not directly tested. 

Psychophysical studies rely on the behavioral report of the subject, and therefore may be complicated 

by behavioral impairments in autistic subjects. Several somatosensory studies have directly measured 

brain activity instead as a means to evaluate sensory processing. Miyazaki et al. (2007) found abnormal 

short-latency somatosensory evoked potentials (S-SEPs) in response to median nerve stimulation in 

about half of the autistic patients they tested. However, it must be noted that there were no controls 

tested in this study, and instead autistic S-SEPs were compared to S-SEPs from controls in a previous 

study. Another group used MEG to map the cortical representation of the hand and face regions of high-

functioning autistic and control subjects (Coskun et al., 2009). Brain activity was recorded in response to 

physical stimulation of the skin. Interestingly, autistic subjects had a spatially distorted cortical 

representation of the hand and face compared with controls. Overall, abnormal somatosensory 

processing may play a large role in the avoidance of affective contact in autism (Cascio, 2010).  
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 Abnormal processing of visual information may also contribute to deficient social and 

communicative behavior in autism. Autistic individuals exhibit particular impairments in the processing 

of socially-relevant visual information. For example, children with ASD fail to show an orienting 

preference towards biologically-relevant motion (Klin et al., 2009). The lack of this instinctual response 

could deprive these children of critical social experiences during sensitive windows of development. In 

addition, it has been found that lower-order visual abnormalities may contribute to the impairment of 

higher-order visual processing of faces (Simmons et al., 2009; Behrmann et al., 2006). A study by 

Vlamings et al. (2010) recorded visual evoked potentials (VEPs) in autistic and control children while 

they looked at two types of stimuli—simple horizontal gratings, and faces with neutral or fearful 

expressions. The gratings or faces were composed of either high or low spatial frequency lines. Autistic 

children, as opposed to controls, had an enhanced VEP response to high spatial frequencies and 

performed better at facial expression categorization when the faces were high-pass filtered. In contrast, 

non-autistic children generally used low spatial frequency information to categorize the emotions of the 

facial expressions. This difference observed in autistic children is in agreement with previous findings 

that autistic perception is more detail-oriented (Dakin and Frith, 2005; Happe and Frith, 2006; Mottron 

et al., 2006; Behrmann et al., 2006). 

 In addition to atypical unisensory experiences in autism, growing evidence points towards 

abnormalities in multisensory processing, which is the integration of information from different senses 

into one perceptual experience (Marco et al., 2011). Considering that the development of different 

sensory modalities share common mechanisms (Hensch, 2004), it would make sense that cortical E/I 

imbalance in autism might also affect the integration of senses. The development of senses, as well as 

their integration into meaningful behavior, requires experience-dependent plasticity. A disruption of 

neuronal circuit refinement during critical periods may represent the mechanistic link leading to the 

abnormal behaviors in autism. 
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Animals 

 Neuroligin-3-R451C and knock-out (KO) mice were provided by Dr. Thomas Sudhof (Stanford 

School of Medicine) (Tabuchi et al., 2007). Heterozygous R451C female and wild-type (WT) male crosses 

produced WT (Y/+) and mutant (Y/R451C) male littermate mice that were used for experiments. For the 

KO experiments, heterozygous females were crossed with WT males to produce WT (Y/+) and KO (Y/-) 

male mice. Animals were raised in a 12/12 h light/dark cycle in standard housing. All procedures were 

approved by the Institutional Animal Care and Use Committee (IACUC) at Boston Children’s Hospital. 

Experiments and analysis were performed blind to genotype. In the text and figures, the term “juvenile” 

refers to 1-month-old mice and “young adult” refers to 2-3-month-old mice. 

 

Retinal histology 

 These experiments were performed by Y. Kate Hong in the laboratories of Dr. Joshua Sanes and 

Dr. Chinfei Chen. Detailed histology methods have been previously described (Kim et al., 2010; Hong et 

al., 2011). Retinae were dissected from perfused 2-3-month-old NL3-WT and R451C mutant mice and 

post-fixed for 20-30 min in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS). For 

whole-mount retinae, tissue was rinsed and incubated with mouse IgG1 anti-Brn3a antibody (1:500, 

Millipore) for 1-2 days at 4°C, rinsed in PBS, and incubated in Alexa 488-conjugated goat anti-mouse 

secondary antibody (Invitrogen) for 2-3 hrs at room temperature (RT). For retinal cross-sections, retinae 

were incubated with 30% sucrose in PBS for 1 hr, frozen, and cut on a cryostat into 16-18 µm thick 

sections. Sections were blocked with 2% donkey serum/0.1% Triton X-100/PBS for 30 min, followed by 

primary antibody incubation at 4°C overnight. The sections were then washed in PBS and incubated in 

secondary antibody for 2 hrs at RT. Primary antibodies included mouse anti-Bassoon (1:500, Enzo Life 

Sciences), rabbit-anti glutamate decarboxylase (GAD65/67) (1:1000, Millipore), mouse IgG2a antibody 
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Znp1 for labeling synaptotagmin II (1:100, Zebrafish International Resource Center), and rabbit anti 

Calbindin (1:3000, Swant). Secondary antibodies were conjugated to Alexa 488 (Invitrogen) and used at 

1:500. Images were acquired on a confocal microscope (Zeiss LSM700) with a 25X oil objective and 0.5X 

zoom. 

 

Retinal ganglion cell (RGC) density analysis 

 These experiments were performed by Y. Kate Hong in the laboratories of Dr. Joshua Sanes and 

Dr. Chinfei Chen. The density of Brn3a-positive RGCs was compared in WT and mutant retinae overall 

and in 3 regions based on the distance from the optic head (center, middle, and edge). A 500x500 µm 

window of tissue was imaged in each zone. In order to count the density of Brn3a-positive nuclei, 

images were processed and analyzed in ImageJ using the intermodes method of thresholding and the 

Particle Analysis feature. 

 

Eye-specific segregation in the lateral geniculate nucleus (LGN) 

 These experiments were performed by Y. Kate Hong in the laboratories of Dr. Joshua Sanes and 

Dr. Chinfei Chen. Young adult NL3-WT and R451C mutant mice were anesthetized by intraperitoneal 

injection of ketamine/xylazine. Eyes were injected with 1.5 µl of cholera toxin B subunit conjugated to 

Alexa-488 in one eye and Alexa-594 in the other (1 mg/ml, Invitrogen). Animals were allowed to recover 

and were perfused 2-3 days later. Brains were dissected, post-fixed overnight at 4°C, and washed in PBS. 

Then 50 µm sagittal sections were cut with a vibratome. Fluorescence images were taken with a 5X 

objective (Nikon 80i) at sub-saturation levels. Images were analyzed using a threshold-independent 

quantitative method as previously described (Torborg and Feller, 2004). Colocalization was determined 
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by finding the variance of R values for each pixel, where R is the log of the ratio of ipsilateral to 

contralateral pixel intensities in the axons (R=log(Iipsi/Icontra)). The variance, defined as the width of the 

distribution of R values, was used to compare the level of colocalization or segregation across different 

samples.  

 

Electrophysiology 

 Electrophysiological recordings were made from the binocular visual cortex (V1b) of 

anesthetized mice (50 mg/kg nembutal and 0.12 mg chlorprothixene) using standard methods (Gordon 

and Stryker, 1996; Hensch et al., 1998). Light anesthesia was maintained throughout the duration of the 

experiment with an isoflurane/oxygen mixture delivered to the mouse through a trachea tube. Visual 

stimuli were presented on a cathode ray tube (CRT) computer monitor placed in front of the mouse. 

Multi-channel single-unit recordings 

 A 16-channel probe spanning all layers of the cortex (Neuronexus Technologies, A1x16-3mm50-

177) was lowered into V1b at 3 to 4 different locations between 2.6 and 3.4 mm lateral to the midline in 

each mouse (Fig. 2.1). Signals were filtered from 400 to 5000 Hz and amplified 5000 times, and a 

threshold was set to separate spikes from noise (SortClient, Plexon Technologies). Visual stimuli were 

delivered to the contralateral eye and consisted of 3-second-long presentations of drifting (2 Hz) black 

and white bars (100% contrast, 0.025 cpd) at 12 different orientations (0-360°) spaced 30° apart. Each 

orientation presentation was repeated 8 times in random order. Eight repetitions of a blank stimulus of 

intermediate luminance were interspersed throughout the session in order to evaluate spontaneous 

activity. 
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Figure 2.1. Schematic of the mouse visual system and V1b electrophysiological recording sites. 

A. Visual information enters the visual system through the retina and is transmitted to the lateral 

geniculate nucleus (LGN) through the optic nerve. The majority of optic nerve fibers cross the 

midline at the optic chiasm. Inputs from the two eyes are distinctly segregated in the LGN 

(contralateral inputs in red and green and ipsilateral inputs in pink and light green). The visual 

cortex (V1) is separated into a medial monocular zone (solid red and green) that receives 

exclusive input from the contralateral eye, and a lateral binocular zone (striped red and green) 

that receives input from both eyes. V1 is retinotopically organized to represent different 

locations in the visual field, as indicated by the numbers 1-5. The lateral edges of the visual field 

are represented by cells in the monocular zone and the center is represented by cells in the 

binocular zone. 

B. Diagram of V1 showing the monocular zone (V1m, red) and the binocular zone (V1b, striped 

red). The yellow circles indicate electrophyisiological recording sites across the extent of V1b. 

  

Reprinted from Curr. Opin. Neurobiol., Vol. 13, M. Hubener, Mouse 
Visual Cortex, pp. 413-420, 2003, with permission from Elsevier.

A B

0.8 mm
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Spikes were sorted based on waveform characteristics (Offline Sorter, Plexon Technologies), and a 

minimum interstimulus interval of 1.5 ms was imposed to ensure single unit isolation. Spiking rates in 

response to visual stimuli were determined using Matlab via SigTOOL (Lidierth, 2009). Spontaneous 

activity (SA) was calculated as the mean firing rate in response to blank stimuli. Maximum evoked 

response (Rmax) was defined as the maximum firing rate during any stimulus presentation. Signal-to-

noise ratio = (Rmax-SA)/Rmax. The orientation selectivity index (OSI) = (Rmax-Rortho)/(Rmax+Rortho), where Rortho 

was the response to the orientation that was orthogonal (±90°) to the preferred orientation. The 

direction selectivity index (DSI) = (Rmax-Ropp)/(Rmax+Ropp), where Ropp was the  response to the direction 

that was opposite (±180°) to the preferred direction. Only visually responsive cells were included in the 

analysis (Rmax ≥ 1.5 x SA; Rmax ≥ 0.5 spikes/s, unless OSI ≥ 0.33). Fast-spiking putative inhibitory cells were 

excluded from analysis based on trough to peak time ≤ 0.37 ms and peak to trough amplitude ratio ≥ 

0.43 (Fig. 2.2; Bartho et al., 2004; Hasenstaub et al., 2005; Niell and Stryker, 2008). 

Extracellular recording  

 Multiple penetrations (3 to 4) across the lateral extent of V1b were made with a tungsten 

electrode (FHC, Inc.) and 5 to 8 cells spaced at least 70 µm apart were recorded for each penetration 

(Fig. 2.1). The stimulus was a vertical bar of light, 3° wide, moving horizontally across the screen at a 

velocity of 19 °/s. The signal was filtered from 300 to 5000 Hz and amplified 1000 times. The stimulus 

was repeated 6 times for each cell and for each eye, and the responses were averaged across all 

repetitions (software developed by C. Orsini, Pisa, Italy). Baseline activity was determined based on 

spiking during 2.5 seconds of blank screen between each repetition of the stimulus. 

 The ocular dominance score of each cell was calculated based on the relative spiking in response 

to stimulation of each eye. Ocular dominance score = [(PI-BI) - (PC-BC)] / [(PI-BI) + (PC-BC)], where 

P=peak, B=baseline, C=contralateral eye, and I=ipsilateral eye (Hensch et al., 1998). Each cell was also  
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Figure 2.2. Putative excitatory vs. inhibitory cell sorting based on waveform shape  

Schematic of the waveform parameters used to sort putative inhibitory from excitatory cells (Bartho et 

al. 2004, Hasenstaub et al. 2005, Mitchell et al. 2007, Niell and Stryker 2008). The blue arrows indicate 

the amplitude of the trough (b) and peak (c) and the green arrows indicate the trough to peak time (a). 

A. Putative excitatory cells had a trough to peak time (a) that was greater than 0.37 ms and a ratio 

of peak to trough amplitude (c/b) that was less than 0.43. 

B. Putative inhibitory cells had a trough to peak time (a) that was less than or equal to 0.37 ms and 

a ratio of peak to trough amplitude (c/b) that was greater than or equal to 0.43. 

 

  

0.125 ms

a

b

c

a

b

c

Putative excitatory cell Putative inhibitory cell

A B



32 
 

assigned a value on the qualitative 7-point ocular dominance classification scale originally developed by 

Hubel and Wiesel (1962). A cell would be ranked 1 if it only responded to the contralateral eye, 4 if it 

responded equally to both eyes, 7 if it only responded to the ipsilateral eye, and so on. A contralateral 

bias index (CBI) was calculated to represent the weighted average of overall ocular dominance in a 

population of cells. CBI = [(n1-n7)+2/3(n2-n6)+1/3(n3-n5)+N]/2N, where N=total number of cells and 

nx=number of cells with a ranking of x on the 7-point scale (Gordon and Stryker, 1996). The receptive 

field locations of a subset of cells were determined by the location in degrees from the vertical meridian 

of the visual field where the maximum firing rate was evoked by the passing bar of light. 

Visual evoked potential recordings  

 VEP recordings were performed as previously described (Porciatti et al., 1999). A tungsten 

electrode (FHC, Inc.) was placed at 2.8 mm from the midline in V1b where the visual receptive field was 

approximately 20° from the vertical meridian (Fig. 2.1). The contralateral eye of the mouse was 

presented with horizontal black and white sinusoidal bars that alternated contrast (100%) at 1 Hz 

(square wave). Local field potentials were recorded by filtering the signal from 0.1 to 100 Hz and 

amplifying 10,000 times. Signals were averaged over 20 repetitions of the visual stimulus (software 

developed by C. Orsini, Pisa, Italy). Acuity was measured at the cortical depth where the largest 

amplitude signal was obtained in response to a 0.05 cpd stimulus (Fig. 2.3). For each different spatial 

frequency ranging from 0.05 to 0.9 cpd, 3 to 4 trials consisting of 20 contrast reversals each were 

performed in random order. The mean peak amplitude of the negative component of the waveform 

(NC) was plotted against the log of the spatial frequency, and the threshold of visual acuity was 

determined by linear extrapolation to 0 mV. 
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Figure 2.3. VEP signal amplitude throughout the depth of the cortex in one mouse. 

For each VEP recording, the response of the contralateral eye to a low spatial frequency stimulus (0.05 

cpd) was tested at multiple depths. The depth at which the largest amplitude response was recorded 

was used for the remainder of the recording. In this example it is 350 µm (marked by the red arrow).  
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Ocular Deprivation 

 Eyelids were trimmed and sutured under isoflurane anesthesia as previously described (Gordon 

and Stryker, 1996). The integrity of the suture was checked daily and mice were used only if the eyelids 

remained closed throughout the deprivation period. The eyelids were reopened immediately before 

recording and the cornea was checked for clarity. Depending on the experiment, either one eye was 

closed (monocular deprivation) or both eyes were closed (binocular deprivation). The duration of 

deprivation was either 4 days (short-term) or more than 1 month (long-term). To test the permanence 

of acuity loss, the eye was reopened at P33 or P40 following long-term deprivation and checked daily 

(for 25 to 40 days) to ensure the pupil remained unobstructed until the day of recording. 

 

Western Blot 

 The brain was quickly removed and both hemispheres of V1b (2-4 mm lateral, 0-2 mm posterior) 

of each animal were dissected and combined in one tube. The tissue was flash-frozen in liquid nitrogen 

and homogenized by sonication in RIPA-NaPO4 lysis buffer. The samples were centrifuged at 4 °C at 

13,200 rpm for 10 min to isolate the supernatant. The concentration of protein in each sample was 

determined using a micro BCA protein assay kit (Thermo Scientific). Equal amounts of protein (20-60 ug) 

were separated by size by 8-18% SDS-PAGE. Proteins were transferred overnight at 4°C at 50 mA onto 

nitrocellulose membranes (Whatman). Membranes were blocked in 5% milk in TBST for 1 h at RT, 

incubated with primary antibody for 2 hrs at RT, and with secondary horseradish peroxidase-conjugated 

antibodies (1:5000, abcam) for 45 min at RT. Bands were visualized using enhanced chemiluminescence 

(ECL) reagents (VisiGlo) and exposure to film. The mean intensities of the bands were quantified using 

MacBiophotonics ImageJ software (http://www. Macbiophotonics.ca/imagej/) and normalized to the 

GAPDH levels of each sample. Primary antibodies included mouse anti-Neuroligin-1 (1:5, Neuromab); 
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goat anti-Neuroligin-2 (1:750, Abcam); mouse anti-Neuroligin-3 (1:500, Neuromab); mouse anti-GAD67 

(1:5000, Chemicon); mouse anti-GAD65 (1:200, Abcam); rabbit anti-VGAT (1:2500, GeneTex); mouse 

anti-PSD95 (1:500, Thermoscientific); rabbit anti-NR2A (1:1000, Frontier Science); rabbit anti-NR2B 

(1:1000, Frontier Science); rabbit anti-GABAA γ2 (1:1000, Thermoscientific); rabbit anti-GABAA α2 

(1:500, Alomone); mouse anti-GAPDH (1:50,000, Abcam); rabbit anti-Calbindin (1:5000, Swant); rabbit 

anti-Calretinin (1:2500, Swant); rabbit anti-Kv3.1 (1:100, Alomone); rabbit anti-Vglut1 (1:1000, Abcam); 

rabbit anti-GluR2/3 (1:1000, Millipore); rabbit anti-gephyrin (1:1000, Chemicon). 

 

Immunohistochemistry 

 Mice were anesthetized with 50 mg/kg nembutal and transcardially perfused with ice-cold 0.9% 

saline followed by 50 mL of 4% PFA. Brains were post-fixed for 3 h at 4°C, cryoprotected in 30% sucrose 

for 24 hrs, and frozen in OCT resin. Coronal sections 30 µm thick were cut on a cryostat and frozen in 

PBS. Free-floating V1b sections were incubated in blocking solution (10% NGS, 0.5% Triton-X in PBS) for 

30 min at RT, primary antibody overnight at RT, and secondary antibody for 1 h at RT in the dark. 

Sections were mounted in DAPI Fluoromount-G mounting medium (Southern Biotech) onto glass slides. 

Primary antibodies included rabbit anti-PV (1:000, Swant); mouse anti-GAD65 (1:1000, Developmental 

Studies Hybridoma Bank). Secondary antibodies included Alexa Fluor 488 goat anti-rabbit (1:1000, 

Invitrogen) and Alexa Fluor 594 goat anti-mouse (1:500, Invitrogen). 

Confocal microscopy 

 Sections were imaged with a laser scanning confocal microscope (Olympus FluoView, FV1000) 

using the multi-channel acquisition mode. All imaging and analysis was done blind to genotype. Images 

in V1b (Fig. 2.4) were taken with 1024x1024 pixel resolution and the same acquisition parameters were  
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Figure 2.4. Location in binocular visual cortex used for immunostaining studies. 

A composite of 10X images covering a 50 µm thick coronal slice in a NL3-WT brain is shown. Cell nuclei 

are labeled with DAPI. The yellow boxes indicate the location inV1b that was used for immunostaining 

analysis. Interaural location, -0.24 mm; bregma location, -4.04 mm (Figure 64 in Paxinos and Franklin, 

2001). Scale bar=1 mm. 
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used for all sections stained with the same antibodies. At 20X, a 0.75 numerical aperture and 1 Airy unit 

pinhole were used. At 100X, a 1.4 numerical aperture and 1 Airy unit pinhole were used. Images were 

analyzed using MacBiophotonics ImageJ software. Overall mean pixel intensity of PV and GAD65 staining 

were measured on 20X images.   

Analysis of perisomatic puncta 

 Individual pyramidal cells innervated by PV cells in layer 2/3 or layer 5 within V1b were 

identified by their triangular-shaped morphology and imaged at 100X (oil immersion). Approximately 35 

cells were imaged and analyzed for each animal across multiple sections. Cells were included in the 

analysis if the soma was DAPI-positive, PV-negative, and was encircled entirely by PV- and GAD65-

positive boutons. The cell perimeter was measured and the numbers of PV-positive and GAD65-positive 

boutons were counted independently of each other by eye. The puncta density was calculated by 

dividing the number of boutons for each cell by the mean perimeter of the cells within each genotype. 

Finally, each PV+/GAD65+ bouton was traced and the mean pixel intensity was measured for both PV 

and GAD65. 

 

Statistical analysis 

 Statistical analysis was performed with GraphPad Prism software. Data are represented in the 

figures as the mean ± the standard error of the mean (SEM). All data were initially analyzed with the 

d'Agostino & Pearson omnibus normality test. For data consisting of 2 groups, an unpaired t-test was 

performed for normally distributed data and a Mann-Whitney test was performed for data that were 

not normally distributed. Continuous cumulative distributions were compared with the Kolmogorov-

Smirnov test and categorical distributions were compared with the Chi-squared test. Three or more 
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groups were compared using a one-way ANOVA (Kruskal-Wallis test with Dunn's comparisons) or two-

way ANOVA with Bonferroni post-tests. Correlation analysis was performed with the Pearson r test. The 

following symbols were used to indicate the level of significance: *P<0.05; **p<0.01; ***p<0.001. All 

statistical information is included in the figure legends.
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CHARACTERIZATION OF THE VISUAL PATHWAY AND 

PROCESSING 
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INTRODUCTION 

The proper execution of cognitive behaviors depends on normal processing of sensory 

information (Belmonte et al., 2004). Behaviors relevant to autism, such as communication and 

socialization, involve integration of auditory, visual, and somatosensory input. Indeed, abnormal 

sensitivity to sensory stimuli is an important component of the symptoms that comprise autism (Kanner, 

1943; Marco et al., 2011), and is now proposed to be included as one of the key diagnostic criteria (APA-

DSM5, 2011). The severity of sensory symptoms often correlates with the level of social impairment in 

autistic individuals (Simmons et al., 2009). 

 Different sensory domains have been reported to be affected in autism, including 

somatosensation, hearing, vision, and multisensory integration (Kanner, 1943; Marco et al., 2011). Of 

these domains, many studies have focused on vision because of its relevance to socialization and 

communication. In addition, many tools exist for noninvasively assessing visual function in autistic 

children, including eye tracking, psychophysical tasks, fMRI, and visual evoked potentials (VEP) 

(Simmons et al., 2009; Jeste and Nelson, 2009). Therefore, studying senses in autism could help to 

identify key alterations in basic brain function that then may cumulate to cause deficits in higher order 

cortical processes. 

The rodent visual system is an excellent model with which to study sensory function in autism 

models because the basic organization and response properties are well-characterized and can be 

readily tested. Visual information from the outside world enters the visual system of the mouse through 

the retina. The retina is organized into multiple layers that contain different cell types (reviewed in 

Wässle, 2004; Sanes and Zipursky, 2010). The outer-most layer of the retina, or the outer nuclear layer 

(ONL), contains rod and cone granules. The inner nuclear layer (INL) is composed of interneurons, which 

include horizontal, amacrine, and bipolar cells, and is separated from the ONL by the inner plexiform 
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layer (IPL). Finally, the ganglion cell layer (GCL) is separated from the INL by the outer plexiform layer 

(OPL) and contains ganglion cells, which project to the lateral geniculate nucleus (LGN) of the thalamus 

and other targets via the optic nerve. 

 The majority of fibers in the optic nerve cross sides at the optic chiasm and innervate the 

contralateral LGN. Initially, projections from the contralateral and ipsilateral eye overlap significantly in 

the dorsal LGN (Godement et al., 1984; Penn et al., 1998; Shatz and Kirkwood, 1984), but through a 

process of activity-dependent synaptic pruning, eventually segregate into a distinct ipsilateral patch 

surrounded by a larger contralateral region (Fig. 2.1; reviewed in Torborg and Feller, 2005). This process 

of refinement takes place during the first week of life, before eye opening, and is guided by intrinsic 

patterned spontaneous activity called retinal waves. Total blockade or de-correlation of retinal activity 

results in incomplete eye-specific segregation (Shatz and Stryker, 1988; Bansal et al., 2000; Chapman, 

2000; Rossi et al., 2001; reviewed in Torborg and Feller, 2005).  

 From the LGN, visual information is transmitted to the primary visual cortex (V1) and then to 

higher visual areas (Wang and Burkhalter, 2007). Mouse V1 is separated into a medial monocular zone 

that receives exclusive input from the contralateral eye, and a lateral binocular zone that receives 

mostly contralateral and some ipsilateral input (Fig. 2.1). Visual cortical cells are organized in a 

topographic fashion. Cells in the monocular zone respond best to stimulation of the lateral edge of the 

contralateral visual field, whereas cells in the binocular zone represent the central portion of the visual 

field (Drager, 1975; Gordon and Stryker, 1996; Schuett et al., 2002; reviewed in Hubener, 2003). The 

receptive field properties of V1 cells, including ocular dominance, receptive field location, orientation 

selectivity, and direction selectivity, can be measured in mice using electrophysiological recording of cell 

spiking in response to varied visual stimuli (Drager, 1975; Gordon and Stryker, 1996). 



42 
 

 Neuroligin-3 is expressed throughout the visual system (http://www.brain-map.org), but it is 

currently unknown if disruption of this cell adhesion molecule affects vision. Here, we thoroughly 

examined the organization of the retina, LGN, and cortex in young adult NL3-R451C and wild-type 

littermate mice to fully characterize baseline vision. We then tested the functional output of the visual 

cortex by measuring acuity. 

 

RESULTS 

Retinal lamination and ganglion cell density analysis 

 We examined the composition and organization of the retina in young adult (2-3-month-old) 

NL3-R451C WT and mutant mice by staining retinal cross sections for different synaptic and cellular 

markers. First, frozen sections of retinae were stained with DAPI to label the nuclei of all cells in order to 

distinguish the layers (Fig. 3.1A). The thickness of each cellular and synaptic layer was measured, 

including the ONL, INL, GCL, OPL, and IPL. The thickness of each layer was normalized to the total 

thickness of the retina, from the GCL to the outer edge of the ONL. There were no significant differences 

between the WT and mutant mice (Fig. 3.1B). 

 Next, retinal sections were stained with markers for specific cell and synapse types (Fig. 3.1C). 

GABAergic amacrine cells were labeled with GAD65/67, the two GABA-synthesizing enzymes. 

Photoreceptor ribbon synapses were labeled with Bassoon and OFF bipolar cells were marked with 

Synaptotagmin II (SytII) (Fox and Sanes, 2007). Finally, Calbindin was used to label horizontal cells, as 

well as cholinergic amacrine cells and a smaller subset of non-cholinergic amacrine and retinal ganglion 

cells (RGCs) (Haverkamp and Wässle, 2000). Calbindin staining resulted in a characteristic pattern of 3  
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Figure 3.1. No differences were detected in the cellular or synaptic lamination of the retina in young 

adult NL3-R451C mutant mice. 

A. Sample cross sections of one WT and one mutant retina stained with DAPI in order to distinguish 

the retinal layers. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; 

IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar=50 µm.  

B. Thickness measurements are normalized to the total thickness of the retina at each sampled 

location. Mann-Whitney or unpaired t-test between genotypes for each layer, no significance. 

N=2 mice, 6 sections (WT); n=3 mice, 9 sections (R451C). 

C. Sample retinal sections stained for markers of the different cell and synapse types of the retina. 

GAD65/67 (GABAergic amacrine cells), Bassoon (ribbon synapses), SytII (Synaptotagmin II, OFF 

lamina of IPL), Calbindin (horizontal and amacrine cells). Scale bar=50 µm. 
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Figure 3.2. Retinal ganglion cell density is normal in young adult NL3-R451C mutant mice. 

A. Images of a sample whole-mount retina stained with Brn3a to label RGCs. The bottom image is 

an overall view of the retina and indicates the location of the center (1), middle (2), and edge (3) 

regions used for quantification. Scale bar=500 µm. The top shows zoomed in images of each 

region. Scale bar=50 µm. 

B. Representative images of one WT and one mutant whole-mount retina section showing Brn3a-

labeled retinal ganglion cells. Scale bar=100 µm. 

C. The density of cells was quantified in the total retina and in the center, middle and edge 

sections of the retina. Unpaired t-tests between genotypes for each region, no significance. N=5 

mice and 25-30 images for WT and R451C. 
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bands in the IPL. Comparison of these markers did not reveal any notable differences in laminar 

organization between WT and mutant mice. 

 The density of RGCs can influence aspects of visual function like spatial acuity (Wässle, 2004). 

We labeled RGCs in young adult NL3-WT and R451C mutant retinae with Brn3a, which marks the 

majority of RGCs in the postnatal retina that specifically project to the LGN and the superior colliculus 

(Xiang et al., 1995; Badea et al., 2009; Quina et al., 2005). Because RGC density decreases significantly 

with eccentricity, we quantified the density in 3 regions (center, middle, edge; Fig. 3.2A), as well as 

overall RGC density. There were no significant differences between WT and mutant mice (Fig. 3.2C). 

 

Eye-specific segregation in the lateral geniculate nucleus of the thalamus 

 Axons from the retina project to the dorsal LGN in a characteristic pattern that is refined over 

development. In order to characterize LGN eye-specific segregation, we injected each eye of multiple 

young adult WT and mutant mice with labeled tracers (cholera toxin B conjugated to Alexa-488 or 594). 

The extent of overlap between the two eyes was quantified using the threshold-independent Torborg 

and Feller method (Torborg and Feller, 2005; see Chapter 2). Briefly, the R value for each pixel was 

calculated by taking the log of the ratio of ipsi to contra fluorescence intensities, and the variance of 

each R-distribution was calculated. A high R variance means that there are more pixels that are 

dominated by one eye or the other, and therefore indicates more segregation. On the other hand, a low 

R variance means that more pixels are double-positive and therefore the LGN is less segregated. 

Although there was a slight decrease in mean R variance in the mutants, indicating a possible increase in 

overlap, this difference did not reach significance (Fig. 3.3). 
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Figure 3.3. Eye-specific segregation in the LGN is not significantly different in young adult NL3-R451C 

mutant mice. 

A. Representative 5x images of sagittal sections of the dorsal LGN in mice that received retinal 

injections of cholera toxin B subunit conjugated to Alexa-488 in one eye and Alexa-594 in the 

other. Contralateral and ipsilateral retinal projections are labeled in red and green, respectively. 

Scale bar=100 µm. 

B. Colocalization analysis was done using a threshold-independent method (Torborg and Feller, 

2004). Colocalization was determined by finding the variance of R values across pixels, where R 

is the log of the ratio of ipsilateral to contralateral pixel intensities (I) in the axons 

(R=log(Iipsi/Icontra)). Unpaired t-test, p=0.08. N=7 mice, 14 images (WT); n= 8 mice, 16 images 

(R451C). 
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Organization and receptive field properties of visual cortical neurons 

 We characterized the basic organization and receptive field (RF) properties of visual cortical cells 

in NL3-R451C mutant and WT littermate mice using extracellular recordings from the binocular visual 

cortex (V1b). Young adult male mice were anesthetized and the activity of single excitatory cells was 

recorded in response to computer-generated visual stimuli. Basic firing properties were similar between 

the two groups. We recorded comparable rates of spontaneous activity (SA) in response to a blank 

stimulus and maximum evoked activity (Rmax) in response to drifting black and white bars (Fig. 3.4A 

inset). As a result, there was no significant difference in the signal-to-noise ratio distribution, suggesting 

that evoked signals are equally effective over background noise in the NL3-R451C mutants (Fig. 3.4A). 

In order to determine if cortical organization was affected by the NL3-R451C mutation, we 

systematically mapped the RF azimuth locations and ocular dominance of neurons across V1b by 

analyzing each cell's response to a drifting bar of light. In WT mice, the RF location moved from the 

periphery to the center of the visual field as the recording site moved medial to lateral in the cortex (Fig. 

3.4B, gray), as expected (Fig. 2.1). This organization was not significantly different in the NL3-R451C 

mutants, indicating a normal cortical representation of visual space (Fig. 3.4B, black). 

Next, ocular dominance was evaluated by stimulating each eye independently with a drifting bar 

of light and assigning each cell a value on the 7-point ocular dominance classification scale based on the 

relative responsiveness of each eye (Hubel and Wiesel, 1962). The contralateral bias index (CBI), which is 

a weighted average of ocular dominance within a population of cells, was calculated for each recording 

location across the mediolateral V1b axis (see Chapter 2). For WT mice, the representation of the 

ipsilateral eye increased as the recording location moved laterally from the monocular zone to the 

binocular zone, as previously reported (Gordon and Stryker, 1996). This was reflected by a progressive 

decrease in the CBI from 1 (contralateral-dominated) to 0.5 (both eyes equal) (Fig.3.4C, gray). The same  
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Figure 3.4. Normal organization and receptive field properties of neurons in the binocular visual 

cortex of young adult NL3-R451C mutant mice. 

A. The signal-to-noise ratio distribution was similar between genotypes. Signal-to-noise ratio was 

calculated as (Rmax-SA)/Rmax. Kolmogorov-Smirnov test, p=0.21. Inset: spontaneous activity (SA) 

and maximum evoked response (Rmax) of cells remained at normal levels in mutant mice. Mann-

Whitney test for each property, no significance. N=6 mice, 111 cells (WT); n=7 mice, 112 cells 

(R451C). 

B. Receptive field azimuth position in the contralateral visual field (in degrees lateral to the vertical 

meridian) is plotted against the location of the electrode lateral to the midline. There was no 

significant difference in receptive field organization between WT and mutant mice. 2-way 

ANOVA with Bonferroni post-tests, no significance. N=6 mice, 11-30 cells per location (WT); n=6 

mice, 9-37 cells per location (R451C). 

C. The contralateral bias index (CBI; see Chapter 2) is plotted against the location of the electrode 

lateral to the midline for a subset of cells. The dashed line at CBI=0.5 indicates an equal 

response between the two eyes. There was no significant difference in the organization of 

ocular dominance between WT and mutant mice. 2-way ANOVA with Bonferroni post-tests, no 

significance. N=6 mice, 19-38 cells per location (WT); n=6 mice, 12-39 cells per location (R451C). 

D. Overall ocular dominance distribution on the 7-point ocular dominance classification scale was 

not significantly different from WT mice. The dashed line at 4 indicates an equal response 

between the two eyes. Chi-squared test, p=0.66. N=6 mice, 143 cells (WT); n=6 mice, 127 cells 

(R451C). 
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Figure 3.4 (Continued) 
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ocular dominance pattern was observed in the NL3-R451C mutants (Fig. 3.4C, black), further supporting 

that the organization of V1 is normal. In addition, when all cells were pooled together across V1b 

locations and mice for each genotype, the overall ocular dominance distribution was in favor of the 

contralateral eye (Fig. 3.4D), as expected, and not significantly different from the WT distribution. 

Therefore, the NL3-R451C mutation does not appear to affect the general organization of the visual 

cortex or the basic response properties of individual neurons. 

 We then analyzed the receptive field properties of orientation selectivity and direction 

selectivity. We presented the mice with drifting bars of 12 different orientations and directions (0-360°) 

and calculated an index that quantified the extent to which each cell modulated its firing based on 

orientation (OSI) or direction (DSI) (Fig. 3.5; see Chapter 2). These indices were near 0 for cells that were 

not selective and near 1 for cells that were highly selective. There was no difference in the OSI or DSI 

distribution between WT and NL3-R451C mutant mice (Fig. 3.5B and D, respectively). 

 

Spatial acuity as a measure of the functional output of the visual system 

 Spatial acuity, or the resolution of vision, is often used to assess local cortical processing. Acuity 

of the contralateral eye was measured in vivo in V1b of anesthetized mice using visual evoked potentials 

(VEPs). First, the response to a 0.05 cycles/degree (cpd) stimulus was recorded at different depths 

throughout the cortex. The location where we obtained the largest amplitude response, generally at 

300-400 µm (corresponding to the bottom of layer 3 or the top of layer 4), was then used for measuring 

acuity (Fig. 2.3; Porciatti et al., 1999). We tested acuity by progressively increasing the spatial frequency 

of the stimulus until a signal could no longer be detected. 2-3-month-old WT mice reached a threshold 

of spatial acuity at 0.5 cycles/degree (cpd) (Fig.3.6A, gray), which is in agreement with previous studies  
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Figure 3.5. Normal orientation and direction selectivity in young adult NL3-R451C mutant visual 

cortex. 

A. Sample non-selective and orientation selective cell. Horizontal solid and dotted lines represent 

mean SA and SA SEM, respectively. 

B. The orientation selectivity index (OSI) distribution was similar between genotypes. OSI = (Rmax-

Rortho)/(Rmax+Rortho), where Rortho is the response to the orientation that is orthogonal (±90°) to 

the preferred orientation. Kolmogorov-Smirnov test, p=0.87. N=6 mice, 111 cells (WT); n=7 

mice, 112 cells (R451C).  

C. Sample non-selective and direction selective cell. Horizontal solid and dotted lines represent 

mean SA and SA SEM, respectively. 

D. The direction selectivity index (DSI) distribution was similar between genotypes. DSI = (Rmax-

Ropp)/(Rmax+Ropp), where Ropp is the  response to the direction that is opposite (±180°) to the 

preferred direction. Kolmogorov-Smirnov test, p=0.91. N=6 mice, 111 cells (WT); n=7 mice, 112 

cells (R451C).  
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Figure 3.6. Enhanced VEP spatial acuity in young adult NL3-R451C mutant mice.  

A. Average acuity plots from 7 WT and 8 mutant mice are shown. Each point represents the mean 

response to multiple stimulus presentations across mice at that spatial frequency. The mean 

amplitude of the negative component of the waveform (NC) was plotted against the log of the 

spatial frequency, and the threshold of visual acuity was determined by linear extrapolation to 0 

mV. Inset: Mean acuity at 2-3 months of age, Mann-Whitney test, **p=0.004. N=7 mice (WT); 

n=8 mice (R451C). 

B.  Average acuity over development is shown. There was a significant but unstable increase in 

spatial acuity in 2-3 month-old mutant mice. Two-way ANOVA with Bonferroni post-tests, 

**p<0.01 at 2-3 months. N=4-7 mice for each time point (WT); n=5-8 mice for each time point 

(R451C).  
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using both VEP (Porciatti et al., 1999) and behavioral tests (Prusky et al., 2000a). Strikingly, the visual 

spatial acuity of NL3-R451C mice measured in this way was significantly increased to approximately 0.77 

cpd (Fig. 3.6A inset). In order to further investigate this phenotype, we measured acuity at different ages 

to characterize the developmental profile. In WT mice, spatial acuity was stable at 0.5 cpd from P20 until 

1 year of age (Fig. 3.6B, gray). On the other hand, acuity in the mutants was high but variable early in life 

(P20 and 1 month), significantly increased at 2-3 months of age, and then decreased down to WT levels 

by 6 months of age (Fig. 3.6B, black). These results indicate a hypersensitivity of NL3-R451C mutant mice 

to high spatial frequencies that is unstable throughout development. 

 

DISCUSSION 

 NL3 transcript is expressed throughout the brain (http://www.brain-map.org), including the 

retina and LGN. Therefore, we considered that the R451C mutation may affect the visual system on a 

global level. Overall, the general structure and lamination of the retina appeared normal based on 

immunostaining for cellular and synaptic markers (Fig. 3.1, 3.2), but we cannot rule out the possibility 

that the NL3-R451C mutation may impact retinal processing. Interestingly, other isoforms of neuroligins 

have been found to play roles in information processing in the retina. Loss of NL2 protein also did not 

affect the basic organization of the retina (Hoon et al. 2009). However, because NL2 is preferentially 

localized to GABAergic synapses of the retina, NL2 knock-out mice exhibited reduced GABAA receptor 

clustering and subtle effects on retinal information processing (Hoon et al., 2009). In particular, 

oscillatory electroretinogram (ERG) potentials, which reflect the combined activity of glycinergic 

amacrine cells in the IPL, showed a trend towards smaller amplitudes at high light intensities. In addition 

RGCs showed increased baseline firing and impaired responses to light onset. NL4 is preferentially 

localized to glycinergic synapses in the retina, and loss of NL4 protein produced a reduction in 
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glycinergic receptor number, slower glycinergic mIPSCs, and altered glycinergic inhibition in the IPL, as 

shown by changes in RGC firing and ERG responses (Hoon et al., 2011). The exact synaptic location of 

NL3 in the retina is still unclear (Gilbert et al., 2001; Paraoanu et al., 2006), due to the poor quality of 

available antibodies. The development of better antibodies will help to predict if or how the NL3-R451C 

mutation might affect retinal processing. Furthermore, the role of NL3 in the retina could also be 

addressed using multielectrode array recordings of RGCs or electroretinogram recordings in NL3-R451C 

mutant mice. 

 Labeling contralateral and ipsilateral eye inputs in the LGN revealed no significant change in the 

segregation of the two eyes (Fig. 3.3). This process of segregation is activity-dependent and disruptions 

could indicate deficits in retinal waves or synaptic pruning mechanisms (reviewed in Torborg and Feller, 

2005). There was a slight trend towards overlap in the mutants (p=0.08). It could be worth performing a 

more in depth analysis of synaptic pruning by reconstructing retinogeniculate arbors or performing 

retinogeniculate recordings to further assess the functional pruning of afferents (reviewed in Hong and 

Chen, 2011). However, the ocular dominance distribution across multiple locations in the binocular 

cortex was not different from WT littermate mice or C57BL/6 animals (Fig. 3.4C and D; Gordon and 

Stryker, 1996). This suggests that any differences in LGN eye-specific segregation are subtle and do not 

transfer any major defect to the primary visual cortex. In addition, the retinotopic organization of V1 

was conserved in the mutants (Fig. 3.4B), indicating that the representation of visual space was normal. 

 No differences were observed in the spontaneous and visually evoked firing rates of single 

neurons (Fig. 3.4A). In addition, mutant excitatory cells exhibited normal levels of orientation and 

direction selectivity (Fig. 3.5). Throughout the course of these experiments, some fast-spiking inhibitory 

neurons were also recorded. Unfortunately, because these only comprised about 5% of visually 

responsive cells (based on waveform analysis, Fig. 2.2), there were too few cells to reach conclusive 
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results. In the future, intracellular recording from excitatory and fast-spiking inhibitory cells in vivo 

(Yazaki-Sugiyama et al., 2009) could allow for a nuanced comparison of intrinsic and evoked responses in 

both types of cells. 

 Overall, these results suggest that NL3 does not play any role in setting up the components of 

the visual pathway, or in the development of response properties of visual cortical cells. Instead, it plays 

important roles in modulating circuit properties, as demonstrated by the increase in spatial acuity in 

young adult NL3-R451C mutants when measured with the VEP (Fig.3.6). This increased acuity threshold 

in the mutants may result from higher gain, as response amplitudes to all spatial frequencies are 

enhanced, resulting in similar best fit line slopes for averaged WT and mutant data. This could suggest 

an increased signal-to-noise ratio at the level of local field potentials. In light of this, we are currently 

testing other properties, like contrast sensitivity or temporal resolution, to see if enhanced functioning is 

a common feature of the mutant visual cortex. 

 To our knowledge, the only other manipulation consistently reported to enhance acuity is 

environmental enrichment (Prusky et al., 2000c; Cancedda et al., 2004; Sale et al., 2004; Beaulieu and 

Cynader, 1990). Environmental enrichment increases BDNF levels in the visual cortex (Cancedda et al. 

2004; Sale et al., 2004), so it is possible that this mutation in NL3 positively impacts the BDNF-TrkB 

receptor signaling pathway. Alternatively, this mutation could render the cortex hypersensitive to 

stimuli, thereby simulating enriched surroundings. Interestingly, this enhanced acuity was unstable over 

development; acuity was high but variable in juveniles and then reduced back to WT levels at 6 months 

of age. This could suggest that having such high acuity is not sustainable and is perhaps maladaptive for 

the animal. 

It is generally accepted that VEP acuity accurately reflects behavioral acuity (Porciatti et al., 

2002), but we cannot rule out the possibility that this increase in VEP acuity reflects subthreshold 
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changes that do not impact behavior. However, it is interesting to note that the NL3-R451C mice 

performed better on the Morris water maze (Tabuchi et al., 2007), which could be attributed to 

increased acuity or visual plasticity, as this task relies heavily on visual cues. In addition, it is intriguing 

that enhanced visual acuity has been reported in autistic individuals (Ashwin et al., 2009a), but this 

result has been highly controversial and unable to be replicated by other groups (Bolte et al., 2012; but 

see Ashwin et al., 2009b). Several studies have concluded that children with autism focus more on local, 

detail-oriented aspects of visual stimuli because of a relative hyper-processing of high spatial frequency 

information (Deruelle et al., 2004; Deruelle et al., 2008; Vlamings et al., 2010). This abnormal processing 

could prevent autistic children from extracting the gestalt from socially-relevant visual stimuli, like faces 

(Behrmann et al., 2006). 

 It is clear that many different aspects of visual processing are affected in ASD in manners that 

vary depending on the individual (Behrmann et al., 2006; Simmons et al., 2009). Fortunately, excellent 

tools for noninvasively assessing visual function in children, like the visual evoked potential, are already 

being used to evaluate low and high level visual processing and screen for ASD risk (Jeste and Nelson, 

2009; Jeste et al., 2012). Our results predict that vision may serve as an easily testable biomarker for 

autism, and emphasize the need for longitudinal studies in children at risk for developing autism.
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CHAPTER 4 

 

THE CRITICAL PERIOD FOR OCULAR DOMINANCE PLASTICITY 
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INTRODUCTION 

 The brain has a remarkable ability to be shaped by experience, but this capacity generally 

decreases with age. Windows of heightened plasticity occur at distinct times for different modalities 

throughout early development (Fig. 1.1; reviewed in Hensch, 2004). These sensitive periods exist for 

complex phenomena, such as filial imprinting (Lorenz, 1958), acquisition of courtship song in birds 

(Doupe and Kuhl, 1999; Brainard and Doupe, 2002), sound localization (Knudsen et al., 2000), and fear 

extinction (Kim and Richardson, 2007; Gogolla et al., 2009a). They also occur for sensory modalities, 

such as tonotopic map refinement in the auditory cortex (Chang and Merzenich, 2003) and cortical 

barrel formation (Van Der Loos and Woolsey, 1973) and tuning to whisker stimulation (Fox, 1992; Stern 

et al., 2001) in rodent somatosensory cortex. 

 One of the most well-understood examples, present in both humans and animal models, is the 

critical period for ocular dominance plasticity. Compromised input to one eye permanently reduces 

vision from that eye unless corrected during childhood (Banks et al., 1975; Mitchell and Mackinnon, 

2002). Hubel and Wiesel, in a series of Nobel Prize winning experiments in the 1960s, found that sewing 

one eye shut in kittens during a distinct period caused loss of acuity and reduced responsiveness to that 

eye in the visual cortex, despite no physical damage to the eye itself (Wiesel and Hubel, 1963; reviewed 

in Hubel and Wiesel, 1998). This occurs as a result of the nondeprived eye out-competing the deprived 

eye for cortical territory (LeVay et al., 1980; Antonini and Stryker, 1996). Further studies following these 

seminal experiments confirmed that a similar critical period exists in rodents as well (Drager, 1978; 

Fagiolini et al., 1994; Gordon and Stryker, 1996). Genetic manipulation in mice has allowed researchers 

to dissect the molecular mechanisms governing critical periods (Hensch, 2005). 

 Decades of experiments have suggested a unique role for inhibitory circuits in regulating critical 

period plasticity (reviewed in Hensch, 2005). Parvalbumin (PV) cells receive direct thalamic input, are 
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connected in networks with each other, envelop the soma of excitatory pyramidal cells, and can target 

many pyramidal cells at once (Lazarus and Huang, 2011). This connectivity develops with a late postnatal 

activity-dependent onset that follows the maturation of vision (Chattopadhyaya et al., 2004). PV cells 

are particularly suited to detect disparities between the two eyes and to control the output and 

synchrony of excitatory cells, thereby enabling experience-dependent plasticity (Lazarus and Huang, 

2011). Accelerating PV cell development causes the critical period to occur prematurely, while delaying 

the maturation of PV cells also delays the onset of the critical period (reviewed in Levelt and Hubener, 

2012; Le Magueresse and Monyer, 2013). In addition, manipulations that titrate the level of inhibition 

during adulthood can reopen the critical period and allow for juvenile-like plasticity (reviewed in 

Bavelier et al., 2010). 

 We hypothesized that the NL3-R451C mutation might alter critical periods by disrupting the 

balance of excitation and inhibition in the cortex. In order to test this, we challenged the visual system 

with monocular deprivation at different time points to determine if and when ocular dominance 

plasticity was possible in the R451C mutant mice.  We used in vivo recording to measure visual acuity 

and the ocular dominance of single cells. In addition, we explored the effect of this mutation on E/I 

balance by quantifying synaptic protein levels, and we specifically investigated the effect on PV cells 

using confocal imaging of immunostained visual cortex. 

 

RESULTS 

The effect of long and short-term monocular deprivation on ocular dominance in the visual cortex 

 We first tested for the presence of ocular dominance plasticity throughout life by depriving 

input to one eye with long-term monocular deprivation (MD) from the time of eye-opening (P13) until 
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young adulthood (Fig. 4.1A). This is a well-characterized manipulation that has been shown to trigger 

circuit rewiring in contralateral V1b, resulting in a permanent reduction of acuity from the contralateral 

eye (Prusky and Douglas, 2003). We compared acuity in non-deprived and deprived animals with the 

VEP in adulthood. As expected, WT mice showed a significant loss of acuity after long-term MD that was 

not recoverable following a period of deprived eye reopening (Fig. 4.1B, gray). NL3-R451C mice also 

showed a permanent loss of acuity in response to long-term MD (Fig. 4.1B, black). It is interesting to 

note that the decrease from baseline adult acuity after long-term MD was actually larger in the NL3-

R451C mutant mice (37%) than in the WT mice (17%), indicating that there may be either a larger 

capacity or longer window for plasticity (Fig. 4.1C). 

Competition between the eyes is a necessary component of ocular dominance plasticity (Wiesel 

and Hubel, 1965). Closure of both eyes does not result in a loss of acuity because the two eyes are 

affected equally and neither has an advantage. Indeed, short-term 4-day binocular deprivation (BD) 

during the classical peak of ocular dominance plasticity (P24-30) did not affect acuity in WT mice, 

whereas 4-day MD did cause a significant decrease of acuity from the deprived eye (Fig. 4.2B, gray). We 

next tested if plasticity in mutant animals was similar in nature. Indeed, NL3-R451C mutant mice also 

demonstrated a specific effect of MD versus BD at this age (Fig. 4.2B, black). These results demonstrate 

two important points: First, mutant mice are plastic during the peak of the canonical critical period, i.e. 1 

month of age; Second, this ocular dominance plasticity requires imbalanced input from the two eyes. A 

comparison of the magnitude of plasticity revealed that 4-day MD during the canonical critical period 

also elicited a more dramatic loss of acuity in the mutants than in WT mice, but this difference was 

smaller and not significant (Fig. 4.2C compared with 4.1C). This result indicates that the mutants may 

have a larger cumulative plastic effect after long-term deprivation due to a longer duration critical 

period. We tested this possibility next. 
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Figure 4.1. Long-term monocular deprivation induces more robust ocular dominance plasticity in NL3-

R451C mutant mice.  

A. Acuity of the contralateral eye was measured with VEP at 2-3 months of age after 3 conditions: 

No MD, Long-term MD from eye-opening until adulthood, and long-term MD from eye-opening 

until P40, followed by reopening of the deprived eye until P60 (2-3 months of age). 

B. Acuity was normalized to the mean of the No MD condition for each genotype. For WT and 

mutant mice, loss of acuity was induced after long-term MD and recovery was impossible 

following reopening of the eye. One-way ANOVA (Kruskal-Wallis test with Dunn's comparison to 

No MD condition), comparisons were made within genotypes, *p<0.05, **p<0.01. N=5-11 mice 

for each group (WT); n=8-13 mice for each group (R451C). 

C. The magnitude of plasticity after long-term MD was compared by calculating the percent 

decrease of acuity from the No MD mean for each genotype. There was a larger decrease from 

baseline acuity in the mutants. One-way ANOVA with Bonferroni post-tests. WT+LTMD vs. 

R451C+LTMD, **p<0.01. 

A

B C
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Figure 4.2. Competition-induced ocular dominance plasticity is present during the peak of the 

canonical critical period.  

A. Three conditions were compared during the canonical critical period: No MD, 4-day monocular 

deprivation (MD), and 4-day binocular deprivation (BD). Deprivation was performed between 

P24 and P30. 

B. For both WT and mutant mice, loss of acuity only occurred after MD and not BD. One-way 

ANOVA (Kruskal-Wallis test with Dunn's comparison to No MD condition), comparisons were 

made within genotypes, *p<0.05, **p<0.01. N=4-6 mice for each group (WT); n=4-8 mice for 

each group (R451C). 

C. The magnitude of plasticity after 4-day MD was compared by calculating the percent decrease of 

acuity from the No MD mean for each genotype. There was a trend towards a larger decrease 

from baseline acuity in the mutants but this was not significant. One-way ANOVA (Kruskal-Wallis 

test with Dunn's comparison), WT+MD vs. R451C+MD, not significant. 
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Mapping the critical period for ocular dominance plasticity 

 In mice, the critical period for ocular dominance plasticity in response to brief MD opens after 

the third postnatal week, peaks around P24-28, and closes by P35 (Gordon and Stryker, 1996). We 

tested if ocular dominance plasticity in the mutant mice is restricted to this period by performing 4-day 

MD at different ages. Strikingly, while the critical period closed after 1 month of age in WT mice as 

expected, the mutants exhibited plasticity well into adulthood (Fig. 4.3). In fact, some degree of 

plasticity was present throughout the entire life of the mutant mice, though most strongly from 1 to 3 

months of age and tapering off after 6 months. Therefore, the NL3-R451C mutation causes the critical 

period for ocular dominance plasticity to extend into adulthood. 

 Ocular dominance plasticity is also characterized by a shift in the responsiveness of individual 

cells towards the ipsilateral non-deprived eye (Wiesel and Hubel, 1963; Hensch et al., 1998). In order to 

confirm this presence of aberrant plasticity in adult NL3-R451C mutants, we tested the ocular 

dominance of single cells after 4-day MD using extracellular recording in young adulthood. We used two 

independent methods to quantify the relative responsiveness of each eye to a drifting bar of light. First, 

as previously described (Fig. 3.4C and D), we assigned each cell a value on the 7-point ocular dominance 

classification scale and compared the pooled ocular dominance distributions between deprived and 

non-deprived conditions. WT mice did not show any change, while mutants significantly shifted towards 

the ipsilateral non-deprived eye after MD (Fig. 4.4A). In order to assess the relative degree and 

variability of ocular dominance shift between mice, we calculated a contralateral bias index (CBI) for 

each mouse based on the 7-point values of their cells (see Chapter 2). This also revealed a significant 

shift in response to MD only in the mutants (Fig. 4.4B). 

Second, we used a more quantitative method by calculating an ocular dominance score for each 

cell based on peak firing rates in response to stimulation of each eye (see Chapter 2), and we compared  
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Figure 4.3. The critical period is extended into adulthood in NL3-R451C mutant mice. 

Acuity was measured with VEP following 4-day MD at different ages. Acuity was normalized to the mean 

of the No MD condition for each genotype and time point (represented by solid black line at 100%). The 

gray column at 1 month of age represents the peak of the canonical critical period. There was a 

significant loss of acuity for both WT and mutant mice during the canonical critical period (1 month) but 

the mutants also exhibited a significant loss of acuity at 2-3 months of age. Two-way ANOVA with 

Bonferroni post-tests, all comparisons were made within genotype, *p<0.05, **p<0.01 (gray 

asterisk=WT, black asterisk=R451C). N=4-7 mice for each time point (WT); n=5-8 mice for each time 

point (R451C).  

 

  



65 
 

 

 

 

 

 

 

 

 

Figure 4.4. Young adult plasticity is confirmed at the single cell level in NL3-R451C mutant mice. 

A. Ocular dominance distribution on the 7-point ocular dominance classification scale was 

significantly shifted towards the non-deprived eye after 4-day MD during young adulthood in 

mutant but not WT mice. Chi-squared test, WT vs. WT MD, p=0.87; R451C vs. R451C MD, 

***p<0.001; WT vs. R451C, p=0.66; WT MD vs. R451C MD, ***p=0.0002. N=6 mice, 143 cells 

(WT no MD); n=6 mice, 128 cells (WT MD); n=6 mice, 127 cells (R451C no MD); n=6 mice, 132 

cells (R451C MD). 

B. Individual contralateral bias indexes (CBI; see Chapter 2) are plotted for each mouse. The 

shadowed area represents the mean ± SEM for the WT no MD condition. There was a significant 

reduction in the CBI in mutants after MD, indicating an ocular dominance shift towards the 

ipsilateral non-deprived eye. One-way ANOVA (Kruskal-Wallis test with Dunn's comparisons), 

R451C no MD vs. R451C MD, **p<0.01. N=6 mice, 143 cells (WT no MD); n=6 mice, 128 cells (WT 

MD); n=6 mice, 127 cells (R451C no MD); n=6 mice, 132 cells (R451C MD). 
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Figure 4.4 (Continued) 
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Figure 4.5. Ocular dominance scores also show a shift towards the ipsilateral eye after short-term 

monocular deprivation in young adult mutant mice. 

The cumulative distribution of ocular dominance scores is plotted (see Chapter 2). Ocular dominance 

score=[(PI-BI)-(PC-BC)]/[(PI-BI)+(PC-BC)], where P, peak; B, baseline; C, contralateral eye; I, ipsilateral 

eye. An ocular dominance score of -1 indicates complete dominance of the contralateral eye, and a 

score of 0 indicates equal responsiveness to both eyes. There was a significant difference after MD in 

mutant adults (right). Kolmogorov-Smirnov test within genotype, WT vs. WT MD: p=0.34; R451C vs. 

R451C MD: ***p<0.001. N=6 mice, 118 cells (WT); n=6 mice, 116 cells (WT MD); n=6 mice, 105 cells 

(R451C); n=6 mice, 130 cells (R451C MD). 

 

  

Ocular dominance score Ocular dominance score
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the cumulative distributions in animals with and without MD. An ocular dominance score of -1 indicates 

complete dominance of the contralateral eye, and a score of 0 indicates equal responsiveness to both 

eyes. As expected, WT mice did not show any significant difference between non-deprived and MD 

conditions (Fig. 4.5, gray). Mutants, on the other hand, shifted the responsiveness of cells towards the 

ipsilateral non-deprived eye after MD (Fig. 4.5, black). To conclude, this data shows that the critical 

period for ocular dominance is extended into adulthood in the NL3-R451C mutant mice, and this can be 

measured by both a loss of acuity and a shift in the ocular dominance of single cells following MD. 

 

Synaptic protein expression in the young adult binocular visual cortex 

 The balance of excitation and inhibition is crucial for normal sensory processing and plasticity. 

The NL3-R451C mutation has been shown to differentially affect E/I balance depending on the specific 

brain region; inhibition is enhanced in the somatosensory cortex (Tabuchi et al., 2007), while excitation 

is enhanced in the hippocampus (Etherton et al., 2011). In order to begin to understand how the NL3-

R451C mutation may affect E/I balance in the visual cortex, and how it may lead to the changes we see 

in the visual system, we next quantified the levels of different excitatory and inhibitory synaptic proteins 

in V1b homogenates from 2-3-month-old mice using western blot. NL3 protein levels were substantially 

decreased (Fig. 4.6A) as previously reported, because most of the protein is degraded upon failure to 

exit the endoplasmic reticulum (Tabuchi et al., 2007; De Jaco et al., 2006; De Jaco et al., 2010; Comoletti 

et al., 2004). NL1 levels were also decreased as previously reported (Tabuchi et al., 2007), most likely 

due to dimerization of a subset of NL1 with defective NL3 (Poulopoulos et al., 2012). NL2 protein levels 

were not significantly affected. 

 We next examined a variety of pre- and postsynaptic excitatory and inhibitory proteins. 

Excitatory protein levels were normal, including vesicular glutamate transporter 1 (Vglut1), postsynaptic  
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Figure 4.6. Expression levels of neuroligins and excitatory synaptic proteins in young adult NL3-R451C 

binocular visual cortex. 

Protein levels in V1b are quantified by western blot and represented as the percent of WT levels. 

Representative blots are below, including GAPDH levels used for loading controls. Unpaired t-test or 

Mann-Whitney test was performed for each marker, **p<0.01, n= 4-8 mice (WT); n= 4-8 mice (R451C). 

A. NL3 and NL1 levels were decreased and NL2 was not significantly altered. 

B. Excitatory markers, including vesicular glutamate transporter 1 (Vglut1), postsynaptic density 

protein 95 (PSD95), NMDA receptor subunits NR2A and NR2B, and AMPA receptor subunits 

GluR2/3, were not significantly changed. 
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Figure 4.7. Expression levels of presynaptic and postsynaptic inhibitory proteins in young adult NL3-

R451C binocular visual cortex 

Protein levels in V1b are quantified by western blot and represented as the percent of WT levels. 

Representative blots are below, including GAPDH levels used for loading controls. Unpaired t-test or 

Mann-Whitney test was performed for each marker, **p<0.01, n= 4-9 mice (WT); n= 4-11 mice (R451C). 

A. Postsynaptic inhibitory markers were examined, including gephyrin, GABAA receptor subunits 

γ2, α1, α2, and the potassium channel Kv3.1. There were no significant changes. 

B. Presynaptic inhibitory markers were examined, including glutamic acid decarboxylase 65 and 67 

(GAD65, GAD67), parvalbumin (PV), calbindin (CB), calretinin (CR), and vesicular GABA 

transporter (VGAT). There was a significant increase in GAD65 levels. 

A
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density protein 95 (PSD95), NMDA receptor subunits NR2A and NR2B, and AMPA receptor subunits 

GluR2/3 (Fig. 4.6B). Postsynaptic inhibitory markers were normal, including the scaffolding protein 

Gephyrin and the GABA receptor subunits γ2, α1, and α2 (Fig. 4.7A). There was no change in the 

expression of the potassium channel Kv3.1, which contributes to the fast-spiking ability of parvalbumin-

positive interneurons (Rudy and McBain, 2001). Measuring the levels of calcium-binding proteins that 

are specific to different interneuron subsets revealed no change in calbindin (CB) or calretinin (CR), but a 

trend towards an increase in parvalbumin (PV) that did not reach significance (Fig. 4.7B). Interestingly, 

GAD65, which is the presynaptic activity-dependent GABA-synthesizing enzyme responsible for fast 

intrinsic inhibitory signaling (Soghomian and Martin, 1998), was significantly increased, suggesting an 

enhancement of presynaptic inhibition. Many studies have demonstrated that the development and 

activity of PV-positive basket cells regulates the timing of critical period plasticity (reviewed in Levelt and 

Hubener, 2012; Le Magueresse and Monyer, 2013). For this reason, we decided to further investigate PV 

synapses in NL3-R451C mice. 

 

Parvalbumin-positive perisomatic innervation of pyramidal cells in young adult binocular visual cortex 

 We analyzed parvalbumin circuitry in detail using confocal imaging of immunostained sections 

of adult V1b. The overall mean intensity of PV staining in NL3-R451C mice was not significantly different 

from WT levels (Fig. 4.8A). However, the intensity of GAD65 was significantly enhanced, suggesting a 

possible increase in synaptic inhibition (Fig. 4.8B). PV basket cells form perisomatic synapses onto 

excitatory pyramidal cells, which allows them to significantly control the precision of spiking and the 

engagement of plasticity (Fig. 4.9A and B; Lazarus and Huang, 2011). We analyzed these putative 

synapses by counting the number of PV-positive and GAD65-positive puncta surrounding NL3-R451C  
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Figure 4.8. Mean intensity of GAD65 is increased in immunostained visual cortical sections in NL3-

R451C mice. 

A. Sample 20X images from young adult V1b stained with PV (green). Mean PV intensity is 

quantified. AU, arbitrary units. Unpaired t-test, p=0.18, n=6 mice, 58 sections (WT); n= 6 mice, 

53 sections (R451C). 

B. Sample 20X images from adult V1b stained with GAD65 (red). Scale bar=100 µm. Mean GAD65 

intensity is quantified. There is an increase in the level of GAD65 in mutant mice. Unpaired t-

test, ***p<0.001, n=6 mice, 58 sections (WT); n= 6 mice, 53 sections (R451C). 
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Figure 4.9.  Parvalbumin circuitry in young adult NL3-R451C mutant binocular visual cortex is 

enhanced and hyperconnected. 

A. Sample 100X images of pyramidal cells surrounded by PV puncta. PV is in green, GAD65 is in red, 

and DAPI is in blue. The white asterisks indicate cells that would be included in the analysis. 

Scale bar=10 µm. 

B. Zoomed in sample 100X images showing PV and GAD65 puncta surrounding the soma of a 

pyramidal cell. 

C. Quantification of the density of PV and GAD65 puncta surrounding pyramidal cells. There is a 

layer-specific (2/3) increase in PV and GAD65 puncta density. Mann-Whitney test within layer, 

**p<0.01, ***p<0.001, n=6 mice, 202 cells (WT); n=6 mice, 204 cells (R451C). 

D. Quantification of the mean intensity (AU, arbitrary units) of fluorescence in double-positive 

puncta. There is an increase in the intensity of PV and GAD65 in puncta on cells in layers 2/3 and 

5. Mann-Whitney test within layer, ***p<0.001, n=6 mice, 202 cells, 3095 puncta (WT); n=6 

mice, 204 cells, 3256 puncta (R451C). 
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Figure 4.9 (Continued)
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mutant pyramidal cell somas in superficial (2/3) and deeper (5) cortical layers. The density of PV-positive 

and GAD65-positive puncta were both increased specifically on layer 2/3 pyramidal cells (Fig. 4.9C). We 

also measured the mean intensity of GAD65 and PV content in double-positive puncta and found a 

consistent increase in intensity for both markers in layer 2/3 and layer 5 (Fig. 4.9D). Therefore, this 

analysis suggests that presynaptic inhibition at the PV-pyramidal cell synapse may be enhanced and this 

circuit may be hyperconnected. 

 

VEP waveform shape may reflect in vivo E/I balance in the visual cortex 

Our western blot and immunostaining data support previous findings that cortical inhibition is 

increased in the NL3-R451C mutant mice (Tabuchi et al., 2007). Based on the firing properties of single 

V1 cells, we did not see any change in spontaneous or evoked activity that would indicate an increase in 

inhibition (Fig. 3.4A). However, analysis of the VEP waveform in response to a low spatial frequency 

stimulus revealed a dramatic change in local cortical processing. WT mice exhibited a classical response 

to a low spatial frequency stimulus (1 Hz alternating black and white bars at 0.05 cpd), consisting of an 

initial negative component (NC) as neurons were excited by the onset of the stimulus, and a subsequent 

positive component (PC) following the offset of the stimulus (Figure 4.10, gray; Porciatti et al., 1999). In 

the NL3-R451C mutants, NC latency was similar but there was a slight increase in NC amplitude and a 

dramatic increase in PC amplitude (Figure 4.10A, black and 4.10B). The NC and PC of the VEP waveform 

are believed to represent the engagement of excitatory and inhibitory circuits, respectively (Zemon et 

al., 1980; Haider et al., 2013). This result indicates an alteration in the way that the mutant cortex 

processes simple visual stimuli and suggests a potential increase in inhibition. 
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Figure 4.10. Abnormal VEP waveform shape provides evidence of enhanced inhibition in vivo in NL3-

R451C mutant mice. 

A. Average VEP waveform in response to 0.05 cpd stimuli in young adult mice. The width of the 

trace represents mean ± SEM. NC indicates the negative component and PC indicates the 

subsequent positive component. N=7 mice, 3500 individual contrast reversals (WT); n=8 mice, 

4120 individual contrast reversals (R451C). 

B.  The mean NC latency, absolute value of maximum NC amplitude, and maximum PC amplitude 

were quantified. NC latency was unaffected, whereas NC and PC amplitudes were enhanced in 

the mutants. Mann-Whitney test, p=0.97 (NC latency), p=0.0002 (NC amplitude), p=0.0007 (PC 

amplitude). 
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Developmental changes in inhibition in the visual cortex 

 We performed our analysis of E/I balance in the young adult brain (2-3 months old) because this 

is the age at which we saw the most dramatic phenotype, including significantly enhanced acuity and 

aberrant ocular dominance plasticity. In order to understand how or if this increased inhibition 

contributes to this phenotype, we also examined VEP waveform shape and PV circuitry in 1-month-old 

juvenile mice. Strikingly, although the NC amplitude was already slightly enhanced, we did not observe 

the same dramatic increase in PC amplitude that young adult mutants exhibited (Fig. 4.11A). In addition, 

the mean intensity of PV and GAD65 puncta was already increased (Fig. 4.11B). However, there was no 

change in PV puncta density and only a slight increase in GAD65 puncta density in layer 2/3 (Fig. 4.11C). 

Thus, we observe an increase in inhibition that was most prominent in adulthood, at a time when acuity 

is enhanced and the critical period is abnormally open. 

 The most apparent difference between the two ages was an increase in PV synapse density on 

layer 2/3 cells in adults that was not present at 1 month (Fig. 4.12A and B). Interestingly, we found that 

there was a decrease in PV puncta density that occurred over development, from 1 month to 2-3 

months, and this change was highly significant in both genotypes (Fig. 4.12C). This result presents novel 

evidence that PV synapses may undergo some form of pruning in young adulthood. Such a phenomenon 

has never before been investigated to our knowledge. 
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Figure 4.11. Juvenile NL3-R451C mutant mice exhibit less evidence of increased inhibition. 

A. Average VEP waveform in response to 0.05 cpd stimuli in 1-month-old mice. The width of the 

trace represents mean ± SEM. NC indicates the negative component and PC indicates the 

subsequent positive component. N=6 mice, 3280 individual contrast reversals (WT); n=8 mice, 

4100 individual contrast reversals (R451C). There are minimal differences between WT and 

mutant waveforms.  

B.  Quantification of the density of PV and GAD65 puncta surrounding pyramidal cells in 1-month-

old mice. There is no change in PV puncta density and a layer-specific (2/3) increase in GAD65 

puncta density. Mann-Whitney test within layer, *p<0.05, n=4 mice, 215 cells (WT); n=4 mice, 

235 cells (R451C). 

C. Quantification of the mean intensity (AU, arbitrary units) of fluorescence in double-positive 

puncta. There is an increase in the intensity of PV and GAD65 in puncta on cells in layers 2/3 and 

5. Mann-Whitney test within layer, ***p<0.001, n=4 mice, 215 cells, 4581 puncta (WT); n=4 

mice, 235 cells, 5233 puncta (R451C). 
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Figure 4.11 (Continued) 
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Figure 4.12. Comparison of PV puncta density over development on layer 2/3 mutant pyramidal cells. 

A. There is no change in PV puncta density on layer 2/3 cells at 1 month of age. Mann-Whitney 

test, p=0.47; n=4 mice, 215 cells (WT); n=4 mice, 235 cells (R451C). 

B. There is a significant increase in PV puncta density on layer 2/3 cells at 2-3 months of age. 

Mann-Whitney test, **p<0.01, n=6 mice, 202 cells (WT); n=6 mice, 204 cells (R451C). 

C. Both genotypes exhibit a significant decrease in PV puncta density with age. Red dotted line 

indicates the final puncta density reached in WT mice at 2-3 months of age. Kruskal-Wallis test, 

WT 1-month vs. WT 2-3-months, ***p<0.0001; R451C 1-month vs. R451C 2-3-months, 

***p<0.0001; WT 1-month vs. R451C 1-month, not significant; WT 2-3-months vs. R451C 2-3-

months, not significant. 
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DISCUSSION 

 While alterations in ocular dominance plasticity have been reported in at least three different 

animal models of syndromic autism, including Angelman (Yashiro et al., 2009; Sato and Stryker, 2010), 

Rett (Tropea et al., 2009), and Fragile X syndrome (Dölen et al., 2007), none of these studies 

systematically mapped the critical period for ocular dominance plasticity over development. By 

performing a thorough characterization of ocular dominance plasticity in the NL3-R451C mice, we were 

able to assess the nature of this plasticity as well as the timing. We found that deprivation-induced loss 

of acuity was driven by competition and was permanent, as in WT mice. However, a careful mapping 

over development revealed that the critical period remained open in adult mutant mice. 

 The fact that the critical period does not close at the normal time suggests that there is a failure 

of the normal brakes on adult plasticity. Other mouse models that are reported to exhibit aberrant 

ocular dominance plasticity in adulthood are often also able to recover from amblyopia (reviewed in 

Morishita and Hensch, 2008). Therefore, it was surprising that the mutant mice were unable to regain 

acuity after a period of reopening following prolonged MD, considering that their critical period was still 

open as adults. Our study provides the first evidence to our knowledge that deprivation-induced loss of 

function and recovery from this loss of function may be two separable forms of plasticity that employ 

different mechanisms. Alternatively, it is possible that we did not optimize the conditions for recovery. 

Perhaps a shorter deprivation combined with a longer period of reopening could allow for some rescue 

of acuity. In addition, engaging competition by simultaneously closing the non-deprived eye and 

reopening the deprived eye (reverse suture) could prove more effective in stimulating similar 

mechanisms used for loss of acuity, in order to regain function. 

We found evidence of enhanced inhibition in the binocular visual cortex at an age when the 

critical period was abnormally open. Quantification of synaptic protein levels in V1 revealed that GAD65 
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levels were significantly increased by approximately 20%, and there were no changes in excitatory 

markers. In comparison, Tabuchi et al. (2007) also found specific changes in inhibitory markers in these 

mice, but their results differed from ours in several ways. They did not quantify GAD65 or 67 levels and 

they did not look at calcium binding proteins. Instead, they found significant increases in both VGAT and 

gephyrin (approximately 20%), whereas we did not find similar changes. Discrepancies between the two 

studies are not unexpected, as Tabuchi et al. examined protein levels in the total brain and we 

specifically looked in the binocular visual cortex. Indeed, when the same group looked in the 

hippocampus, they found completely different results that supported an increase in excitation instead 

(Etherton et al., 2011). Therefore, it is clear that the R451C mutation has region-specific effects, 

indicating that NL3 may play different roles depending on the location or circuit type. 

 The shape of the local field potential waveform in response to visual stimuli provides valuable 

information about the speed and strength of excitatory and inhibitory circuit processing (Porciatti et al., 

1999; Zemon et al., 1980). Topical bicuculline application during VEP recording in cats increased the 

equivalent of the NC peak and diminished the equivalent of the PC peak of the waveform (Zemon et al., 

1980). As bicuculline is a GABAA receptor antagonist, this suggests that GABAergic inhibition normally 

dampens the NC and is responsible for the PC.  We found that the amplitude of the excitatory negative 

VEP peak was slightly enhanced and the amplitude of the ensuing positive peak was strongly increased 

(Fig. 4.10). It is interesting that we see a slight increase in NC amplitude that accompanies the dramatic 

PC increase. If we interpret the PC increase to mean an increase in inhibition, we might also expect there 

to also be a decrease in NC. Perhaps there is compensation by the circuit in the presence of this 

increased inhibition that could explain why NC is increased and why we don’t see any decrease in the 

spontaneous or evoked firing rate of single cells. It is interesting to note that a preliminary study on 

vision in girls with Rett Syndrome found distinct changes in the VEP waveform that correlate with the 
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severity of symptoms (DeGregorio, O. Khwaja, W. Kaufmann, M.F., and C.A. Nelson, unpublished data). 

Therefore, the VEP waveform shape could be used as a biomarker to test for autism risk.  

Ongoing experiments in our lab are attempting to further investigate the role that inhibition 

(particularly parvalbumin-mediated inhibition) plays in generating the positive component of the VEP 

waveform. Some methods we are testing include acute administration of the GABAA receptor agonist 

diazepam, optogenetics to specifically and reversibly activate or depress PV cells, and the expression of 

DREADDs (Designer receptors exclusively activated by designer drugs) in PV cells to acutely silence or 

activate them with the administration of a drug (Armbruster et al., 2007). 

 Using confocal imaging of immunostained visual cortex, we found that PV cells formed more 

perisomatic boutons onto pyramidal cells, and these boutons contained more PV and GAD65 protein. 

This could reflect an enhancement of inhibition that allows excitatory cells to better discriminate 

changes in binocular input, allowing for continued plasticity after changes in visual experience in 

adulthood. Interestingly, juvenile mutant mice already exhibited enhanced GAD65 and PV content in 

perisomatic boutons, but did not show an increase in PV puncta number. Perhaps this early increase in 

GAD65 and PV intensity in juvenile mice serves to strengthen these synapses, thereby preventing some 

of the normal synaptic pruning of PV synapses that occurs with the closure of the critical period. Our 

results do not provide any direct evidence of defective pruning, as the difference in PV synapse density 

in young adulthood loses significance when tested in the context of development (Fig. 4.12C). However, 

this may be an interesting avenue to pursue in the future. 

We do not know if the functional output of PV cells is actually enhanced, but the enhancement 

of the positive VEP component and previous analysis of inhibitory synaptic transmission by Tabuchi et al. 

(2007) in layer 2/3 of the cortex supports this conclusion. In the future, paired recordings from PV cells 

and pyramidal cells in an in vitro slice preparation could provide valuable insight into functional circuit-
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specific changes. PV cells are also connected in networks with each other (Galarreta and Hestrin, 1999). 

Therefore, it would be interesting to examine PV synapses onto PV cells as well. In addition, although we 

found changes at PV synapses, we cannot rule out effects at other types of inhibitory synapses.  

 The maturation state of PV cells is a crucial factor in determining whether plasticity is possible or 

not. For example, the homeoprotein Otx2 is stimulated by visual experience to travel from the retina to 

PV cells in the visual cortex, promoting PV cell maturation and triggering the onset and closure of the 

ocular dominance critical period (Sugiyama et al., 2008). Beurdeley et al. (2012) recently showed that 

the perineuronal nets (PNNs) surrounding PV cells trap Otx2 and allow for its uptake. Disruption of Otx2 

binding to PNNs in adult mice reduces PV and PNN expression, and reopens the critical period for ocular 

dominance. It may be that PV cells in the NL3-R451C mice are maintained in a juvenile-like state, and 

infusion of Otx2 could stimulate their full maturation and close the critical period. Alternatively, PNNs 

may not form completely around PV cells, preventing the proper uptake of Otx2, and thereby stalling PV 

cell maturation and the close of the critical period. These possibilities present interesting future 

directions to pursue in order to understand why the critical period does not close. 
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 The onset of autism spectrum disorder (ASD) occurs early in life, during a period of heightened 

experience-dependent plasticity. We hypothesized that E/I imbalance during this sensitive postnatal 

phase of brain development alters the timing of critical periods, resulting in aberrant plasticity and 

atypical circuit refinement, ultimately leading to problems in sensory processing and cognitive 

behaviors. We found that the NL3-R451C autism-associated mutation enhanced GABAergic parvalbumin 

circuits in the mouse visual cortex, providing further evidence of a functional enhancement of cortical 

inhibitory signaling (Tabuchi et al., 2007). Although the basic response properties and organization of 

the visual cortex were grossly unaffected, the NL3-R451C mutation caused increases in visual acuity, the 

degree of ocular dominance plasticity, and the duration of the critical period. 

 The results of this study have furthered our understanding of how sensory processing and 

plasticity may be affected by E/I imbalance in some cases of autism, and lead to many interesting 

questions. Here, we will discuss how we might begin to synthesize our results in the broader context of 

experience-dependent cortical development and autism. 

 

Role of inhibitory signaling in visual acuity 

 In the young adult visual cortex, we found a simultaneous enhancement of spatial acuity 

(discussed in Chapter 3) and an increase in inhibition (discussed in Chapter 4) in the NL3-R451C mutant 

mice. We wondered if these phenotypes were related. In other words, does inhibition regulate acuity? 

For each mouse in which VEPs were recorded, we were able to obtain both an acuity value and an 

average waveform in response to low spatial frequency stimuli. We tested if changes in the shape of the 

waveform correlated with the level of acuity in each mouse. The NC amplitude, which is believed to 

represent excitatory signaling, was not correlated with acuity in WT mice but exhibited a negative 

correlation in the mutant mice (Fig. 5.1). The inhibitory PC amplitude exhibited a trend towards a  
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Figure 5.1. The amplitude of the NC and PC VEP waveform peaks are correlated with acuity in young 

adult NL3-R451C mutant mice. 

A. Correlation analysis of the amplitude of the NC with acuity in individual WT mice. There is no 

significant correlation. Pearson r, p=0.48; n=7 pairs. 

B. Correlation analysis of the amplitude of the NC with acuity in individual R451C mutant mice. 

There is a significant negative correlation. Pearson r, *p=0.03; n=8 pairs. 

C. Correlation analysis of the amplitude of the PC with acuity in individual WT mice. There is a 

trend but no significant correlation. Pearson r, p=0.06; n=7 pairs. 

D. Correlation analysis of the amplitude of the PC with acuity in individual R451C mutant mice. 

There is a significant positive trend. Pearson r, **p=0.009; n=8 pairs. 
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positive correlation in WT mice and a significant positive correlation in the mutants. This suggests that a 

decrease in the E/I ratio, due to a strong enhancement of inhibition, is likely to contribute to the 

increase in acuity that we see in the mutant mice. 

A recent study from the Fagiolini lab on the Mecp2 KO mouse model of Rett Syndrome found a 

decrease in adult visual acuity, while PV perisomatic puncta density was increased (Durand et al., 2012). 

This seems to be in apparent conflict with our results in the NL3-R451C mouse. However, several crucial 

differences exist between the two models. First, the PV hyperconnectivity in Mecp2 KO mice was 

significantly enhanced already at eye opening and progressively increased throughout life, while other 

inhibitory circuits (calretinin and calbindin) and GAD65 in general decreased over development, perhaps 

as a compensatory mechanism to rebalance the level of inhibition. In the NL3-R451C mutant mice, PV 

hyperconnectivity is accompanied by enhanced GAD65 and presumably stronger perisomatic synapses 

onto pyramidal cells. This could result in more precise, targeted inhibition that enhances spatial 

discrimination. Indeed, juvenile NL3-R451C mutant mice have a less dramatic change in acuity, and they 

do not yet exhibit any change in PV synapse density. Second, in the Mecp2 KO mice, the expression of 

NMDA receptor subunits was misregulated, resulting in an increase in the ratio of NR2A to NR2B 

subunits. Acuity was rescued by crossing Mecp2 KO mice with mice heterozygous for NR2A, thus 

normalizing this ratio. Therefore, the disruption of acuity in the Mecp2 KO mice may involve complex 

changes in both excitatory and inhibitory circuits. The NL3-R451C mice, on the other hand, do not 

appear to have altered expression of excitatory markers, suggesting a more selective impact on 

inhibitory circuits. 

Our results suggest that there may be a relationship between inhibition and acuity. It would be 

informative to measure mean PV puncta density and acuity within the same NL3-R451C mutant mice 

and see if they are also correlated. What remains to be tested is whether this increase in PV synapse 
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density represents more convergence of input from multiple different PV cells or simply more input 

from the same PV cell. A distinction between these two scenarios could help us to understand how the 

nature of inhibition is changing on a network level. In fact, the exact reciprocal connectivity of PV and 

pyramidal cells is still unclear, and several studies that have attempted to address this in vitro have 

found conflicting results (for example, Wang et al., 2002; Holmgren et al., 2003; Yoshimura and 

Callaway, 2005; Thomson and Lamy, 2007; Packer and Yuste, 2011). While it is generally accepted that 

one PV cell can innervate many pyramidal cells, it is unclear how many PV cells target a single pyramidal 

cell. In order to investigate PV-pyramidal cell connectivity more thoroughly, we are currently generating 

mice in which Brainbow is expressed exclusively in PV cells in the NL3-R451C mice (Livet et al., 2007) to 

distinguish inputs from multiple PV cells in different fluorescent colors. 

The contribution of PV-mediated inhibition to sensory processing has not been fully elucidated, 

but tools are now being developed to address this question. One study found that optogenetic 

activation of PV cells in vivo sharpened direction and orientation selectivity of nearby excitatory cells, 

and enhanced orientation discrimination in awake behaving mice (Lee et al., 2012). In contrast, two 

other groups used optogenetics to modify the activity of PV cells in vivo, and showed that PV cells 

linearly transform the response of pyramidal cells by modulating cortical gain, with only modest effects 

on stimulus selectivity (Attalah et al., 2012; Wilson et al., 2012). According to Lee et al. (2012), this 

discrepancy could result in part from the relatively low level of PV activation used in the latter two 

studies. 

 

More thorough investigation of excitatory/inhibitory balance is warranted 

 Based on the critical period phenotype observed in the NL3-R451C mutant mice, we chose to 

investigate potential alterations in parvalbumin cells as a first step because of their known role in 
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regulating plasticity. However, it is possible that other interneuron subtypes are also affected. In the 

future, we would like to do a similar analysis of the connectivity of interneurons expressing 

somatostatin, calbindin, and calretinin. In this way, we could determine if the hyperconnectivity of PV 

neurons is specific or general to all GABAergic cells. In addition, it is imperative to determine if the 

changes we observed using immunostaining techniques actually reflect functional increases in 

inhibition. In order to properly test this in the future, a comprehensive analysis of mIPSC and mEPSC 

frequency and amplitude in visual cortex slices at different ages will be conducted. In addition, paired 

recordings from excitatory and inhibitory neurons would reveal if there is a true functional 

hyperconnectivity in the visual cortex of the mutant mice.  Finally, intracellular recording from excitatory 

and fast-spiking inhibitory cells in vivo (Yazaki-Sugiyama et al., 2009) could allow for a nuanced 

comparison of intrinsic and evoked responses in both types of cells.  

 Our experiments revealed a clear extension of the critical period for ocular dominance plasticity, 

accompanied by evidence of increased inhibition in the adult visual cortex. This result is actually quite 

surprising and counterintuitive based on the critical period literature. Many studies have found a 

correlation between decreased adult inhibition and adult ocular dominance plasticity. For example, two 

different direct methods for reducing inhibition - infusion of the GAD inhibitor 3-mercaptopropionic acid 

(MPA) and infusion of the GABAA receptor antagonist picrotoxin - allowed for weak but significant ocular 

dominance plasticity after 7 days of monocular deprivation in adult rats (Harauzov et al., 2010). In 

addition, other manipulations, including treatment with the antidepressant drug fluoxetine (Maya 

Vetencourt et al., 2008), dark exposure (He et al., 2006), environmental enrichment (Sale et al., 2007; 

Baroncelli et al., 2010), and genetic ablation of lynx1 (Morishita et al., 2010), have all been shown to 

promote adult ocular dominance plasticity and reduce inhibition. Notably, enhancing inhibition with 

diazepam is able to preclude the effects of all of these manipulations on adult plasticity.  
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 One theory that exists in the critical period field is that there is an optimal level of inhibitory 

circuit maturation that allows for plasticity during a specific time window. Transplantation of embryonic 

inhibitory cells into the visual cortex opens a second critical period when the cells reach a stage of 

maturation that is equivalent to endogenous inhibitory neurons during the normal critical period 

(Southwell et al., 2010). A possible explanation for the extended critical period in the NL3-R451C mice 

could be that PV cells are maintained in a critical period-like maturation state throughout early 

adulthood. Although we have not directly tested this hypothesis, it is interesting to note that we see a 

reduction of PV bouton density with age in WT mice, and this may be less pronounced in the mutants 

because they have a higher PV bouton density at 2-3 months of age. More in-depth analysis of how PV 

puncta density changes with development, as well as investigation of other factors that directly regulate 

PV cell maturation, like Otx2 and perineuronal nets, could help us to better understand the maturation 

state of PV cells in the NL3-R451C mutant mice. 

 

BDNF-TrkB pathway as a possible alternative explanation for extended critical period 

 Alternatively, the changes we see in inhibition could be unrelated or secondary to the visual 

phenotype of the NL3-R451C mutant mouse. One intriguing alternative explanation for our data, 

accounting for increased acuity, extended critical period, and enhanced parvalbumin circuits, could be 

an upregulation of the BDNF-TrkB signaling pathway. BDNF (brain-derived neurotrophic factor) is a 

secreted neurotrophin that signals through its receptor, TrkB (tyrosine-related kinase B). This pathway is 

of particular interest because upregulation of BDNF is implicated in autism (Nishimura et al., 2007; 

Miyazaki et al., 2004; Tsai et al., 2005; Correia et al., 2010). In addition, many studies implicate BDNF 

signaling in the regulation of acuity. To our knowledge, the only manipulation reported to enhance 

acuity is environmental enrichment. Environmental enrichment upregulates BDNF levels and induces 
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precocious development of acuity (Cancedda et al., 2004; Sale et al., 2004). It also results in increased 

adult acuity, as measured with behavior (Prusky et al., 2000c; Cancedda et al., 2004; Sale et al., 2004), 

VEP (Cancedda et al., 2004; Sale et al., 2004), and enhances the spatial frequency preference of single 

cells (Beaulieu and Cynader, 1990). Genetic overexpression of BDNF results in precocious development 

of acuity (Huang et al., 1999). In addition, activity-dependent BDNF transcription plays a role in the 

enhancement of acuity following conditioning with visual stimulation in developing Xenopus (Schwartz 

et al., 2011). On the other hand, overexpression of a dominant-negative TrkB protein in pyramidal cells 

reduces visual acuity (Heimel et al., 2010). Interestingly, monocular deprivation during the critical period 

reduces acuity (Prusky et al., 2000b) and concurrently reduces BDNF mRNA and protein levels (Bozzi et 

al., 1995; Rossi et al., 1999) in the contralateral visual cortex. 

 This pathway is also implicated in regulation of the critical period for ocular dominance. BDNF 

mRNA levels increase during development with the opening of the critical period, and then decrease 

following the closure of the critical period after P40 (Katoh-Semba et al., 1998, Gorba et al., 1999). 

Artificially increasing BDNF levels early in life in transgenic mice shifts the critical period earlier (Huang 

et al., 1999; Hanover et al., 1999), whereas increasing BDNF in adulthood by cortical infusion or 

treatment with the antidepressant drug fluoxetine reopens the critical period (Maya Vetencourt et al., 

2008). In addition, environmental enrichment during adulthood increases BDNF and allows for recovery 

from amblyopia (Sale et al., 2007). Therefore, recreating the high BDNF environment of the critical 

period can allow for adult plasticity. 

 Finally, the BDNF-TrkB pathway regulates the development of inhibition, and in particular, of 

parvalbumin-positive interneurons (Rutherford et al., 1997; Seil and Drake-Baumann, 2000; Hartman et 

al., 2006; Marty et al., 2000; Rico et al., 2002; Patz et al., 2004; Hong et al., 2008; Sakata et al., 2009). 

BDNF overexpression increases GAD65 expression, PV cell number, and IPSC amplitude (Huang et al., 
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1999), and increasing BDNF levels via environmental enrichment increases GAD65/67 protein levels 

(Sale et al., 2004; Cancedda et al., 2004). Disrupting this signaling pathway in layer 2/3 pyramidal cells by 

knocking out BDNF (Kohara et al., 2007) or overexpression of a dominant-negative TrkB receptor 

(Heimel et al., 2010) reduces the number of parvalbumin-positive perisomatic synapses on the 

manipulated cells. In order to begin to test the possibility that this pathway is altered in the NL3-R451C 

mutant mice, we could quantify levels of BNDF and TrkB mRNA with RT-PCR or protein with western blot  

or ELISA as a first step. 

 

Other possible alternative explanations for extended critical period 

 One physical mechanism believed to mediate ocular dominance plasticity is deprived eye spine 

loss as a result of proteolysis of the extracellular matrix. Following 2 days of monocular deprivation, 

there is increased spine motility due to proteolytic activity by tissue-type plasminogen (tPA) in the 

binocular visual cortex of mice (Mataga et al., 2002; Mataga et al., 2004; Oray et al., 2004). Genetic 

deletion of tPA prevents MD-induced spine loss and ocular dominance plasticity (Mataga et al., 2004). 

Interestingly, tPA release appears to be regulated upstream by GAD65, as knocking-out GAD65 abolishes 

MD-induced tPA activity, spine motility, and ocular dominance plasticity (Mataga et al., 2002). One 

theory to explain adult ocular dominance plasticity in the NL3-R451C mice could be that tPA activity is 

elevated due to increased GAD65 levels in the NL3-R451C mutant mice. This could render the cortex 

more sensitive to changes in experience due to the ability to respond to monocular deprivation with 

structural changes, even as adults. A first step to investigate this possibility would be to compare 

proteolytic activity using a chromogenic assay kit in baseline and post-MD juvenile and adult NL3-R451C 

WT and mutant binocular visual cortex. Future studies could delve into this question deeper by imaging 

dendritic spines in vivo with two-photon microscopy. 
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 The extended critical period in the NL3-R451C mutants could also result from changes in 

hebbian homosynaptic plasticity. One explanation for MD-induced ocular dominance plasticity lies in the 

rapid LTD-induced weakening of the deprived eye and subsequent strengthening of the open eye 

through LTP (reviewed in Smith et al., 2009). In the normal adult visual cortex, prolonged MD can still 

induce LTP of inputs from the open eye, but LTD of deprived-eye inputs fails to occur. It is possible that 

NL3-R451C mutant mice still retain the capacity for LTD in adulthood, thus maintaining ocular 

dominance plasticity past the normal closure of the critical period. To our knowledge, LTD has never 

been tested in the NL3-R451C mice, but they were found to have enhanced NMDA receptor-dependent 

LTP in the CA1 region of the hippocampus (Etherton et al., 2011). Interestingly , in mice in which the NL3 

has been completely knocked out, there is an misregulation of mGluR-dependent LTD in the cerebellum 

(Baudouin et al., 2012). Misregulation of LTD appears to be a common theme in autism, present in 

mouse models of Fragile-X syndrome and Tuberous sclerosis (Auerbach et al., 2011), and therefore may 

merit investigation in the NL3-R451C mutant mice. 

 

Specific effect of the autism-associated R451C mutation 

 In order to begin to understand how this particular mutation may lead to altered visual function 

and plasticity, we considered the effect of the R451C mutation on neuroligin-3 protein. While the R451C 

point mutation was identified in genetic studies of autistic individuals, complete loss of the NL3 gene has 

not been linked to ASD. However, the R451C destabilizes the protein and results in almost complete 

intracellular retention and degradation of the NL3 protein (Fig. 4.6A; Chih et al., 2004; Comoletti et al., 

2004; Chubykin et al., 2005; De Jaco et al., 2006). Previous studies have compared the NL3-R451C and 

NL3 knock-out (KO) mice and found changes in behavior and synaptic transmission in the R451C mutants 
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that were completely absent in the KO mice (Tabuchi et al., 2007; Etherton et al., 2011). This suggests 

that the R451C mutation exerts gain-of-function effects. 

 This held true in the visual system as well. KO mice were indistinguishable from their WT 

littermates. They had normal baseline acuity and no ocular dominance plasticity at 2-3 months (Fig. 

5.2B), and there was no dramatic difference in the shape of the VEP waveform (Fig. 5.2A). Therefore, 

our results confirm previous findings that, unlike R451C mice, NL3 KO mice do not have an increase of 

inhibition in the cortex (Tabuchi et al., 2007). How might this specific point mutation result in gain-of-

function effects? The small percent of the protein that reaches the cell surface (about 10%) is still able 

to induce synapse formation (Chubykin et al., 2005) and form heterodimers with NL1 (Poulopoulos et 

al., 2012). However, one study found a decrease in the ability of NL3 to bind with presynaptic NX1β 

(Comoletti et al., 2004). One possibility is that the R451C mutation causes aberrant binding with other 

presynaptic partners. Alternatively, the small amount of protein that is left could prevent homeostatic 

compensation that may occur in the complete absence of NL3. 

 It is quite possible that NL3 protein is either restricted to particular types of synapses or plays 

distinct roles at different synapses. There is evidence that NL3 can be found at both excitatory and 

inhibitory synapses (Budreck and Scheiffle, 2007; Heller, 2012), but due to the insufficient quality of 

available antibodies, this still remains debated. We might expect from our results that NL3 would be 

located at perisomatic synapses formed by PV cells onto layer 2/3 pyramidal cells, due to the increase in 

perisomatic puncta that we observed. Heller et al. (2012) isolated inhibitory synaptosomes from deeper 

layer cortical pyramidal cells and confirmed the presence of both NL2 and NL3 at inhibitory synapses. 

Interestingly, they found some evidence that NL2 and NL3 may be preferentially localized to synapses on 

the soma and on the base of apical dendrites of pyramidal cells, respectively. Further support for NL2 

being localized to synapses on the soma comes from a paper that showed that deletion of NL2 
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Figure 5.2. Young adult NL3 KO mice do not show changes in VEP waveform shape or baseline visual 

acuity, and do not exhibit adult ocular dominance plasticity. 

A. Average VEP waveform in response to many repetitions of a 0.05 cpd stimulus. There is no 

increase in the positive component of the waveform, as was seen in the R451C mutants (see Fig. 

4.10A). N=3 mice, 1520 individual contrast reversals (WT); n=5 mice, 2080 individual contrast 

reversals (KO). 

B. Acuity was measured in response to non-deprived and deprived situations. There was no 

difference in baseline acuity, and there was no plasticity after 4 days of monocular deprivation 

at 2-3 months of age. One-way ANOVA (Kruskal-Wallis test with Dunn's comparisons), no 

significance. N=3 mice (WT); n=5-6 mice (KO). 
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onto pyramidal cells in the somatosensory cortex (Gibson et al., 2009). If NL3 is not at PV synapses, it 

could also be that it is localized to synapses that receive input from other types of inhibitory cells, like 

somatostatin cells. In fact, layer 4 somatostatin cells actually inhibit PV cells, which themselves inhibit 

pyramidal cells (Xu et al., 2013). Therefore, altered NL3 activity at somatostatin synapses could decrease 

inhibition of PV cells, which could in turn increase PV cells' innervation of pyramidal cells.  

 

Disrupted critical period expression in autism 

 What might altered parvalbumin circuitry and critical periods in the visual system mean for the 

brain in general? Interestingly, similar mechanisms appear to regulate critical periods across brain 

regions. For example, the maturation of PV cells in the barrel cortex peaks during the critical period for 

whisker tuning (del Rio et al., 1994). Whisker trimming exclusively during this critical period in mice 

results in decreased PV expression and reduced inhibitory transmission in vitro (Jiao et al., 2006). In the 

zebra finch, brain regions dedicated to singing exhibit progressive perineuronal net formation around PV 

cells with a time course that parallels the critical period (Balmer et al., 2009).The maturity of the song 

correlates with the percentage of PV cells that are enwrapped in PNNs, and this can be manipulated 

with experience by altering exposure to tutor song. In the rodent auditory cortex, spectrally limited 

noise exposure prevents the closure of the critical period for regions of auditory cortex that selectively 

respond to those interrupted frequencies, and PV cell number is also reduced in those regions (De 

Villers-Sidani et al., 2008). In the rodent, conditioned fear can be eliminated during early life but is 

protected from erasure in adulthood (Kim and Richardson, 2007). A developmental progression of PNN 

formation around PV cells coincides with this switch and enzymatic degradation of PNNs allows juvenile-

like fear extinction in adulthood (Gogolla et al., 2009a), similar to the reopening of ocular dominance 

plasticity in the adult visual cortex (Pizzorusso et al., 2002). In light of these findings, it is interesting to 
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note that at least nine different mouse models of autism share common alterations in PV cells (Gogolla 

et al., 2009b). Therefore, we believe that the failure to properly regulate critical periods may be a 

general feature of the autistic brain. 

 Constant plasticity that persists into adulthood may be advantageous in normal environments, 

but a weakness when an individual is challenged by deprivation or abnormal experience. This could lead 

to a large spectrum of phenotypes, varying in severity depending on the individual. Indeed, two brothers 

carrying the same R451C mutation in NL3 exhibited drastically different functional outcomes; one 

brother was diagnosed at 3-years-old with typical autism, severe mental retardation, and epilepsy, while 

the other was diagnosed at 10 years of age with more mild Asperger's syndrome (Jamain et al., 2003). 

This highlights the importance of experience in understanding and managing autism. If the autistic brain 

is indeed hyperplastic, it would be prudent to keep the environment as stable as possible to avoid 

overstimulation and instability of brain function.  In fact, it has been suggested that autism is an "intense 

world syndrome", where hypersensitivity to stimuli can ultimately render an individual debilitated 

unless these symptoms can be managed (Markram et al., 2007). On the other end of the spectrum, the 

autistic brain may be hypoplastic in some individuals, and in this case, enriching the environment as 

much as possible may help the brain to gain the necessary experience to properly refine its circuitry. It 

must also be considered that one of the core symptoms of autism includes repetitive behaviors and 

restricted interests early in life. Therefore, as a result of these types of behaviors, a child could end up 

deprived of necessary experiences during critical periods. 

 It would be interesting to manipulate the environment of the NL3-R451C mice, for example by 

dark-rearing, and see how brain function is affected. We might hypothesize that by reducing sensory 

input with dark rearing, we could prevent enhancement of inhibition and thereby renormalize acuity 

and plasticity and allow for closure of the critical period. Indeed, this type of sensory deprivation has 
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been shown to rescue symptoms in other mouse models of autism (Yashiro et al., 2009; Durand et al., 

2012). 

 

Conclusion 

 The careful regulation of critical periods indicates that their precise expression is crucial for 

normal development. For the first time, we have demonstrated robust evidence that critical periods are 

misregulated in autism. A brain that is too plastic at the wrong times could result in noisy and unstable 

processing of external inputs. On the other hand, a brain that lacks the right level of plasticity early in 

life might remain hyper- or hypo-connected and unsuited to its surroundings. Together with the existing 

literature, our results support the necessity and value of a systematic investigation of sensory function 

in ASD and associated neurodevelopmental disorders. Screening for sensory function should be included 

in ongoing studies of children at risk for developing ASD due to affected siblings in the family. By first 

understanding basic circuit processing in autism, a cumulative chain reaction of abnormalities could be 

prevented early on and save consequent behavior. Further investigation of sensory processing in mouse 

models of autism will clarify the underlying molecular mechanisms and bring us closer to developing 

effecting treatments for autism. 
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