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Abstract

The coupling of macroscopic objects via the optical near-field can generate strong

attractive and repulsive forces. Here, I explore the static and dynamic optomechan-

ical interactions that take place in a geometry consisting of a silicon nanomembrane

patterned with a square-lattice photonic crystal suspended above a silicon-on-insulator

substrate. This geometry supports a hybridized optical mode formed by the coupling

of eigenmodes of the membrane and the silicon substrate layer. This system is capable

of generating nanometer-scale deflections at low optical powers for membrane-substrate

gaps of less than 200 nm due to the presence of an optical cavity created by the pho-

tonic crystal that enhances both the optical force and a force that arises from photo-

thermal-mechanical properties of the system. Feedback between Brownian motion of the

membrane and the optical and photo-thermal forces lead to dynamic interactions that

perturb the mechanical frequency and linewidth in a process known as “back-action.”

The static and dynamic properties of this system are responsible for optical bistability,

mechanical cooling and regenerative oscillations under different initial conditions. Fur-

thermore, solid objects separated by a small distance experience the Casimir force, which
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results from quantum fluctuations of the electromagnetic field (i.e. virtual photons).The

Casimir force supplies a strong nonlinear perturbation to membrane motion when the

membrane-substrate separation is less than 150 nm. Taken together, the unique prop-

erties of this system makes it an intriguing candidate for transduction, accelerometry,

and sensing applications.

Second, near field optical forces were explored in two geometries involving surface

plasmons. The first looked at the forces generated between two plasmonic waveguides at

visible frequencies where flat metallic surfaces support tightly confined interface waves

and at mid-infrared frequencies, where surface corrugations allow the propagation of

surface waves known as “spoof” surface plasmons. The second involves the generation

of a repulsive force on a low refractive index particle in a high refractive index fluid above

a metal surface. This second geometry opens up a potential new avenue for frictionless

waveguiding and the study of chemical and biological binding processes where it is

desirable to have surfaces in the proximity of one another but not in contact.
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Chapter 1

Introduction

1.1 Near Field Optical Forces

1.1.1 Overview

The work presented in this thesis covers experiments and theory tied together by the

involvement of near-field photonic forces and their importance in the growing field of

nanoscale optomechanical systems. In this chapter, I will first provide an introduction

to the concept of optical forces, followed by an overview of the projects in which I was

involved. These projects can be divided into three major areas: silicon optomechanics,

surface plasmon waveguide forces, and the Casimir effect.

1.1.2 A Historical Perspective of Optical Forces

Researchers have long held interest in converting electromagnetic energy into mechanical

motion. Kepler was the first to hypothesize that solar radiation is responsible for the

deflection of comet tails away from the sun. By 1903, Lebedew [1] and Nichols and
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Chapter 1. Introduction

Hull [2] had proved Maxwell’s hypothesis that light impinging on a thin metallic disk

in a vacuum would induce measurable motion. Over the course of the next century,

applications for harnessing the energy of light were seen in systems ranging from the

“Solar Sail” [3] to optical traps and tweezers [4, 5]. In the last decade, the interest in

near field optical interactions increased, as on-chip optical circuitry has presented viable

alternatives to slower electronic systems[6].

The initial single-beam trapping experiment by Ashkin et al. [4] was the the first to

demonstrate the power of the optical field gradient on macroscopic objects. In the ex-

periment, Ashkin demonstrated that a tightly focused laser beam could trap a spherical

dielectric particle in both normal and tangential directions. This concept is illustrated

using ray optics in Figure 1.1 and 1.2, where a lens is placed along the z-axis just above

the graphic such that it is able to tightly focus a collimated laser beam a short distance

beneath it. The width of the beam is represented by rays 1 and 2 and the point where

the rays intersect represents the focal point of the beam. If we place a dielectric parti-

cle (with refractive index higher np than that of the surrounding medium n0) near the

beam’s focus, we can use the trace of the rays to find how the beam is perturbed by the

particle.

In Fig. 1.1(a), the particle is placed just below the beam’s focal point. The two rays

refract as they pass into and out of the particle, resulting in new trajectories for the

rays. Ignoring reflections (which are minimal if the index contrast between the particle

and surrounding medium is small), the momentum −→p carried by the optical field along

rays 1 and 2 will have a magnitude of Nh/λ in the directions of the rays, where N is

the number of photons following the ray’s path. The changes in momentum of the two

rays, ∆−→p 1 and ∆−→p 2 (thin red arrows), are represented in momentum diagrams just

below the main figure. We can see from the sum of ∆−→p 1 and ∆−→p 2 that the light field

2
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Figure 1.1: Ray optics diagrams tracing two rays (labeled 1 and 2) of a focused
beam, demonstrating trapping in the vertical direction. In this diagram, the index of
refraction of the particle is larger than that of the surrounding medium. The crossing
of the two rays represents the focal point of the beam. The net changes in momentum
∆p1,2 (thin red arrows) of each ray are represented in ray diagrams below the main
figure. (a): When a particle is placed just below the focus of the beam, the rays, with
incident unit-vector momenta pin, bend inward, increasing the vertical component of
the unit vector of each ray and decreasing the horizontal component of the outbound
momentum vector pout. Due to symmetry, the horizontal components of the two rays
cancel, and the net change in momentum of the light field is downward (thick red
arrow). Due to momentum conservation, this results in an upward force on the particle
(thick blue arrow). (b). When the particle is placed above the focus of the beam, the

rays bend outward, resulting in a net downward force on the particle.

has gained downward momentum (∆plight, thick red arrow), corresponding to a transfer

of momentum to the particle in the upward direction (thick blue arrow). Similarly, in

Fig. 1.1(b), where the particle is placed just above the beam’s focal point, momentum is

transfered from the light field to the particle resulting in a downward displacement. In

both cases, the light field acts to push the particle toward the focal point of the objective,

corresponding to a stable equilibrium for the particle and a trap in the z-direction.

We can evaluate the horizontal momentum transfer in a similar way. Fig. 1.2 shows the

beam’s focal point centered on the right hand side of the particle. The paths of rays 1

3
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Figure 1.2: Ray optics picture of trapping in the horizontal direction. The sum of the
momentum changes ∆p1 and ∆p2 of two two rays when the focus of the beam is on the
right hand side of the particle result in a transfer of momentum to the particle in the
+x direction, moving the particle toward the focus of the beam. Because of symmetry

in the x-y plane, the particle will always be attracted to the focus of the beam.

and 2 no longer have mirror symmetry across the z-axis, as they did in Fig. 1.1. Instead,

it is precisely this asymmetry that results in a lateral momentum transfer. Looking at

the momentum diagrams for the two rays, it becomes clear that the light field has a

net momentum gain in the −x-direction, resulting in a momentum gain of the sphere

in the +x-direction, again pushing the particle toward the beam’s focal point. Because

the picture presented here has rotational symmetry around the z-axis, the lateral forces

generate a particle trap in the x-y plane as well.

One does not have to look at optical forces simply through the lens of ray optics, however.

It is equally equivalent to think of this system from a materials perspective. Dielectric

materials exposed to an external electric field can be thought of as an ensemble of tightly

packed electric dipoles, where each dipole is created by the displacement of an atom’s

negatively charged electron cloud from its positively charged nucleus by the incident

field[7]. The “ease” with which this displacement occurs is given by the material’s

4



Chapter 1. Introduction

susceptibility ξe, such that the internal field generated by these dipoles can be written

as P = ε0ξpE, where ε0 is the permittivity of free space and we can write the particle’s

dielectric function as εp = 1 + ξp.

From here we can begin to understand how and why a macroscopic object responds to an

external electric field. Consider once again the case of spherical particle in a non-uniform

electric field. Even as the overall particle remains charge-neutral, part of the particle is

exposed to a stronger electric field than another part, resulting in neighboring dipoles

that no longer cancel each other out. Instead, a charge gradient is created across the

particle. Recalling that a charged object in an electric field experiences the Lorentz force

F = qE, we can see that this macroscopic, charge-neutral sphere will also experience a

force due to the gradient in the electric field. This force can be written as

F = α∇E2, (1.1)

where α is the polarizability of the particle, which itself can be expressed in terms of its

dielectric function, εp and that of the surrounding medium, εm as

α = 3ε0V0
εp − εm
εp + 2εm

, (1.2)

where V0 is the particle volume[8]. Note that Eq. 1.1 and the ray-optics picture generate

the same result: a particle which experiences a force from a gradient electric field, and

reaches a stable equilibrium in the region of highest field intensity. Within this frame,

we can begin to evaluate the forces in more complex systems, such as one of relevance

to the bulk of this thesis: parallel dielectric waveguides.

5
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Figure 1.3: Field profiles of a mode in a single waveguide (a) and of the bonding
(b) and antibonding (c) states of coupled dielectric waveguides. The bonding mode
features a field maximum in the center of the waveguides while the antibonding mode

features a field node.

1.1.3 The Forces Between Parallel Dielectric Waveguides

Dielectric optical waveguides operate due to the principle of total internal reflection: if

a high-refractive index dielectric medium (n1 =
√
ε1) is surrounded by a low-dielectric

medium (n2), light will remain in the high-index medium as long as the angle of the wave

with respect to the interface normal is larger than the critical angle θc = sin−1 (n2/n1).

At the interface, however, electromagnetic boundary conditions require that the electric

field component tangential to the interface is conserved across the boundary, resulting in

an evanescent field in the surrounding low-index medium. An example of this is pictured

in Fig. 1.3(a), which shows the cross-section of a 0.8 µm × 0.8 µm square waveguide

made of dielectric material with n1 = 1.5 surrounded by air, supporting a waveguide

mode at λ = 1500 nm polarized in the x-direction.

As described in the previous section, the (gradient) evanescent field extending into the

air around the waveguide can be used to exert forces on charge-neutral dielectric objects.

Consider a situation where a second, identical waveguide is introduced and placed in

6



Chapter 1. Introduction

proximity to the first, with each waveguide supporting a mode at λ = 1500 nm with

the field profile shown in Fig. 1.3(a). When the waveguides are close enough together,

the mode profiles overlap, with the field extending from each waveguide inducing an

additional polarization in its neighbor, resulting in coupling. Depending on the relative

phase of the fields in the two waves, the coupling will either form bonding (in-phase)

or antibonding (out-of phase) states, which will have opposite P field symmetry, in

a manner similar to a coupling between two hydrogen atoms. Correspondingly, the

modes will generate different forces. In the bonding mode, the in-phase polarization

field oscillations result in the inner surfaces of the two waveguides to be oppositely

charged, generating an attractive force, while in the antibonding mode, the induced

fields are out of phase with one another, producing like charges on the inner surfaces

and generating a repulsive force.

The initial study by Povinelli, et al. in 2005 [9] has since lead to an explosion of work on

near-field optical forces. Eichenfield et al.[10] first demonstrated optomechanical cou-

pling between a photonic waveguide and a ring resonator, while Li et al.[11] were the first

to demonstrate optomechanical coupling between a single waveguide and a substrate in

a photonic circuit . Riboli et al.[12] analytically investigated these forces in a 2-D geom-

etry while Li et al.[13] experimentally verified Povinelli’s earlier result in parallel silicon

waveguides. Eichenfield et al.[14]and Deotare et al.[15] demonstrated coupling between

optical cavities in parallel dielectric waveguides; Rosenberg et al.[16] and Wiederhecker

et al.[17] demonstrated bonding and antibonding interaction in coupled ring resonators,

and Yang et al.[18] demonstrated forces in hybrid surface plasmon waveguides.

The work presented here is complimentary to much of this work and expands upon it

in new and interesting directions. In Chapter 2, I explore the optomechanical proper-

ties of a silicon photonic crystal nanomembrane suspended above a silicon-on-insulator

7
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substrate. The geometry supports large area, high optical quality factor modes which

generate strong attractive and repulsive forces and can couple to the mechanical degrees

of freedom of the suspended membrane, resulting in cooling and amplification of the

mechanical motion. I explore the interplay between opto-mechanical and photo-thermal

mechanical dynamics as well as the static behavior of the membrane, revealing hysteresis

and bistability due to an optical resonance which shifts as the membrane is displaced.

Chapter 3 explores the forces generated by surface plasmons, first investigating the forces

between guided surface plasmon waveguides in an analog to the work by Povinelli et al.

[9] Second, I extend this work into mid-infrared and terahertz frequencies ranges using

structured metal surface which support surface plasmon-like waves called “spoof” surface

plasmons. Finally, I discuss preliminary theoretical work on repulsive plasmon forces

in high-refractive index fluids on particles near an interface, presenting the possibility

for frictionless photon-assisted particle waveguiding. This work was inspired by previous

work in the Capasso group by Munday et al. [19–21], who investigated repulsive Casimir

forces in fluids.

Chapter 4 explores the Casimir force, which results from quantum electromagnetic fluc-

tuations (i.e. “virtual photons”) and its potential for real-world applications. Specifi-

cally, I discuss the influence of the Casimir force on the devices presented in Chapter

2, which have tunable membrane-substrate separations around 200 nm. The Casimir

force, which scales as the inverse fourth power of separation, can become a dominant

effect in devices with gaps around 100 nm. Simulations and preliminary results reveal

the nonlinear effect that the Casimir force can have on a mechanical oscillator in close

proximity to another surface.
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Chapter 2

Near Field Optical Forces

2.1 Resonant Optomechanical Dynamics

Devices exhibiting resonant mechanical dynamics have applications ranging from high-

precision mass and force sensing in nanoelectromechanical systems (NEMS) [22–26] to

novel quantum manipulation enabled by ground-state cooling of sub-micron-scale me-

chanical objects. [27–30] Additionally, the concentration of light into small volumes has

been shown to have broad applications due to the sensitivity of the optical mode prop-

erties to its local environment.[14, 31] Recently, there have been rapid developments in

the field of optomechanics that utilize light to actuate a new class of low-mass compact

resonators[24, 31–34] and that push the limits of device scalability.[13, 22, 26, 35, 36] In

particular, optomechanical devices that can be fully integrated onto a silicon chip can act

as active sensors or reconfigurable elements in chip-based systems.[11, 13, 17, 33] Here,

we present a versatile optomechanical structure fabricated with novel stress management

techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal mem-

brane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below

9
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200 nm. Our devices are able to generate strong attractive and repulsive optical forces

over a large surface area and feature the strongest repulsive optomechanical coupling in

any geometry to date (gOM/2π ≈ -65 GHz/nm). The interplay between the optome-

chanical and photo-thermal-mechanical dynamics is explored, and the latter is used to

achieve cooling of the mechanical mode from room temperature down to 5 K with ap-

proximately one milliwatt of power and amplification of the mode to achieve three orders

of magnitude of linewidth narrowing and oscillation amplitudes of approximately 1 nm.

We achieve these figures by leveraging a delocalized “dark” mode of our optical system

that minimize the impact of two-photon absorption while simultaneously generating

large forces in our devices. Owing to the simplicity of the in- and out-coupling of light

as well as its large surface area, our platform is well-suited for applications in both mass

sensing (with sub-femtogram resolution), and refractive index sensing (δλ/δneff ≈ 100

nm per unit refractive index) and optomechanical accelerometry.

2.1.1 Bonding and Antibonding Modes

It has been previously shown[9, 37, 38] that two co-propagating modes at optical fre-

quency ωin parallel dielectric waveguides separated by a distance sinteract evanescently,

resulting in “bonding” and “antibonding” eigenmodes of the structure. As sdecreases,

the coupling between the two waveguides increases, decreasing the eigenfrequency of the

bonding mode and increasing the eigenfrequency of the antibonding mode. The force

between the two waveguides can be written as Fopt = UphgOM/ω, where Uph= N}ω is

the energy flowing in the waveguides, N is the number of photons in the mode, and gOM

is the optomechanical (OM) coupling coefficient, defined as dω/ds. In the “bonding”

configuration, the fields in the two waveguides are in-phase and generate an attractive

force (dω/ds > 0), while the “antibonding” configuration corresponds to out-of-phase

10
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fields and a repulsive (dω/ds < 0) interaction. Because the above expression for the

force is general,1 we can extend it beyond the parallel waveguide geometry and apply it

to our platform, shown in Figure 2.2(a).

2.1.2 Device Design and Fabrication

The platform consists of a square silicon photonic crystal (PhC) slab containing a 30

× 30 array of holes with periodicity p = 0.92µm and hole diameter d = 0.414µm, as

defined in the illustration in Fig. 2.2(b), suspended a few hundred nanometers above a

Silicon-on-Insulator (SOI) substrate and is capable of generating strong attractive and

repulsive forces.[39] Our devices were fabricated as follows. First, two high resistivity

Silicon-on Insulator (SOI) wafers (SOITEC, device layer thickness = 220 nm, Buried

Oxide (BOx) thickness = 2 µm) were thinned down using thermal oxidation, reducing

the silicon device layer thickness to 185 nm. Next, oxide-oxide bonding was used to bind

the two wafers together. After low-stress nitride passivation, we then dry etch away the

backside of one of the handle silicon wafers using KOH to wet-etch the exposed handle

silicon. This is followed by a Buffered Oxide (7:1 H20:HF) etch to remove the exposed

box layer to reveal two 185 nm silicon device layers separated by 260 nm of thermal oxide,

above the 2 µm BOx layer. Devices patterns were then written using conventional 100

keV e-beam lithography on ZEP-520 positive photoresist and transferred to the top

device layer using inductively-coupled plasma reactive-ion etching. Finally, the oxide

layer between the two Si slabs is removed by Hydrogen Fluoride Vapor-phase Etching to

release the top device layer and provide the gap between the top and bottom membrane.

The process is described visually in (Figure 2.1(a)). A cross section of the layer stack

taken using a Scanning Electron Microscope is shown in Fig. 2.1(b).

1The expression for the force is only strictly true when the (complex) wavevector is constant under
translation, though it can still be used when the change in optical Q is small over the distance ds.
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Figure 2.1: (a) Fabrication process. Two SOI wafers are bonded together with an
oxide-oxide bonding process, creating a sandwich structure with two thin silicon device
layers in the middle. SEM image of the sandwich shown in (b). Removal of one of the
handle wafers with KOH and the thick oxide layer with BOE leaves a double-device
layer chip, with the two Si layers separated by a 260 nm oxide gap. E-beam lithography
followed by Reactive Ion Etching of the top silicon layer and HF Vapor Etching of the
thermal-oxide gap layer create the final device (last panel of (a)). (c): HFVE selectively
etches at a higher rate along the oxide-oxide bond interface (red-dashed line) than it

etches through the oxide layer, resulting in SiO2 residue along the Silicon surfaces.

The whole process of thermal oxidation, oxide-oxide bonding, and removal of the handle

silicon results in stresses in the multi-thin film layer structure, which leads to buckling

of the silicon device layer when it is released. As a consequence of these processing and

fabrication steps, we have also observed faster oxide HFVE rates in the bond-interface

region that result in the presence of residual oxide close to the silicon membrane, which

can be wider than 1 µm at the edges of the etch area (Figure 2.1(c)). A bending moment

M‖ due to the residual stress in the device layer (curved purple lines, Figure 2.4(a)i)

causes a strong upward force on the devices fabricated with simple arms (Fig. 2.3(a)

and 2.4(b)i), forcing them to deflect more than 300 nm. An additional annealing step

was performed on some devices at 500 C for 1 hour in a nitrogen environment in order

to maximize optical and mechanical quality factors.

The device parameters p and d were chosen to result in an antibonding mode (profile
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Chapter 2. Near Field Optical Forces

shown in Fig. 2.2(c)) in the wavelength range accessible by our lasers (1480-1680 nm).

We note that the field symmetry indicates that this is a dark mode of the structure

and thus should not couple directly to free space. However, due to the finite size of

our membrane, we are able to break the structural symmetry to access the mode.[40]

The optical resonance frequency can be tuned by controlling the membrane-substrate

separation s (red line in Figure 2.2(d). Using numerical modeling performed in COMSOL

Multiphysics, we find that the gOM (blue line, Figure 2.2(d)) of the mode is 2π × -3.3

GHz/nm at s = 350 nm and increases to 2π × -150 GHz/nm at s = 50 nm.

We explore this range of separations using novel techniques that we developed to leverage

built-in stresses in the substrate. Commercial SOI wafers often have high levels of built

in stress introduced during the process that bonds the device layer and buried oxide

layer to the handle substrate,[41] but the sign and precise strength of the stress are

often unknown. Furthermore, devices made in our double-SOI platform experience an

additional bending moment tangential to the SiO2 surfaces exposed during the HFVE

process that produces an upward force on all undercut structures (see Supplement). To

control these effects, we first introduce “accordion-like” arrays of narrow beams (Fig.

2.2(a) inset) to each arm that relieve the compressive (tensile) stress and prevent out-of

plane buckling (breaking) through in-plane deformation of the accordion structure.[41]

Next, we introduce a rectangular array of etch-holes at the base of each arm that rotate

the axis of the bending moment by 90 degrees (M⊥) and thus control the resulting

force on the membrane arms. A simple rectangular etch-hole pattern (Figure 2.4(a) ii.)

forms a “bridge” and forces the bending moment to act in a direction of much greater

mechanical stiffness (red arrows), resulting in a significantly smaller upward deflection of

the device (Fig. 2.3(d) and 2.4(b) ii.). Devices which do not contain either of these stress

management techniques, such as the one pictured in Fig. 2.3(a), deflect upward by >350
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Figure 2.2: (a) SEM image of a device consisting of a h = 185 nm thick silicon
membrane patterned with a square-lattice photonic crystal with a 30×30 periodic hole
array of period p = 0.92 µm and hole diameter d = 0.414 µm suspended 165 nm above
a Silicon-on-Insulator (SOI) substrate (h = 185 nm, buried oxide layer = 2 µm, cross-
section shown schematically in (b)). The membrane is supported by four arms (L =
19.3 µm, W = 2.75 µm) that are terminated on their far ends by arrays of etch holes and
on their near ends by “accordion-like” structures (inset i) which provide lithographic
control of membrane-substrate separation. (c) A 3D optical mode simulation shows the
x-component of the electric field of a single unit cell of the geometry in (b) with s = 100
nm for an antibonding mode of the structure at λ0=1570 nm. The antisymmetric field
symmetry with respect to the gap between the membrane and the substrate implies that
this optical mode generates a repulsive force. (d) The calculated resonance wavelength
λ0 (red line) of the mode in (c) is plotted with data points (red circles) representing
16 different devices with identical membrane designs but different membrane-substrate
separations. The separations were determined by interferometric measurements using
an optical profilometer. The blue line is optomechanical coupling coefficient of the

mode and is proportional to the slope of the red line (gOM∝ -dλ/ds).

14



Chapter 2. Near Field Optical Forces

nm, as shown in the optical profilometer measurement in Fig. 2.3(b). Introduction of the

accordion-like structure and a rectangle-like array of etch-holes decrease the membrane

deflection by over an order of magnitude (Fig. 2.3(d,e)). Importantly, by replacing the

rectangle-like etch-hole pattern with a triangular one, we make the bridge less stiff farther

from the device arm, resulting in a large upward deflection in the back of the bridge

(large green arrow), while only generating a small deflection in the front (small green

arrow). More importantly, however, is that this geometry generates a downward force on

the device, whose strength is controllable by the pitch of the triangular array shape. On

this device, we are able to deflect the membrane downward as seen in Fig. 2.3(g,h) by

105 nm. Fig 2.4(c) and (d) show optical and profilometer images of structures made up

of two device arms and two sets of accordion structures in the center. As is clear in the

images, the devices with the widest triangle etch-hole pattern (i.) generate the largest

downward deflection (blue color in (d)). The narrower triangle pattern (ii.) generates

a small downward deflection, the rectangular pattern (iii.) results in a small upward

deflection, and the etch-hole free device (iv.) suffers from a large upward deflection.

These experimental observations were verified by numerical modeling of the devices un-

der the same compressive stress conditions performed in COMSOL Multiphysics (Fig.

2.3(c,f,i)).This is an important and novel feature of our platform that gives us indepen-

dent lithographic control of the membrane-substrate separation of different devices on

the same chip. We have fabricated devices (red circles, Fig. 2.2(d)) with separations as

small as 135 nm, corresponding to a gOM of -2π × 65 GHz/nm, which is the largest yet

value of gOM seen in a repulsive system[17] by a factor of four. Finally, we note that our

devices are designed such that the majority of device deflection occurs in the support

arms. Simulations show that the membrane has a radius of curvature of 2 cm for 100

nm deflections, such that it remains essentially flat during our experiments. However,
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Figure 2.3: Scanning Electron Microscope (SEM) images (a,d,g), optical profilometer
images showing interferometric measurements of height (b,c,h) and mechanical simula-
tions in COMSOL Multiphysics confirming the behavior measured by the profilometer
(d,f,i) are shown for three separate devices. The first device (a) has simple support
arms which offer no control over the stresses inherent in the wafer. The result is a
membrane which deflects strongly upward by 365 nm (b,c) due to compressive stress in
the membrane and an upward torque caused by a bending moment at the Si-SiO2 etch
boundary. The second device (b) has an accordion-like structures between the arms
and the membrane (see inset, Fig. 2.2(a)) and an approximately rectangular etch-hole
pattern at the base of each arm to combat compressive stress and the bending moment
at the etch boundary. The result is a device which only deflects upward 35 nm (e,f), an
order of magnitude improvement over the device in (a). The triangular design of the
etch-hole pattern in the third device (g) utilizes the torque induced at the etch bound-
ary to generate a controllable downward deflection. The result (h,i) is a membrane

which deflects downward 105 nm from the surrounding silicon layer.

confocal measurements using an optical profilometer on fabricated devices indicate that

anisotropy intrinsic to the HFVE process can induce tilts in our devices that can be as

large as 10 nanometers from side to side. Further modifications to the device design and

fabrication process should be able to minimize this tilt, making this system a good can-

didate not only for current MEMS technologies but also for other innovative structures

requiring parallel-plate geometries, such as plate-plate Casimir oscillators.
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Figure 2.4: (a) Force diagram demonstrating our method for counterbalancing and
counteracting the upward deflection caused by the oxide residue. i. With no modifica-
tions, the bending moment M‖ (purple arrows) caused by the undercut SiO2 (rendered
in blue) etch-boundary produces a strong upward force (green arrows) on the mem-
brane arms. ii. Etch-holes are introduced in a rectangular array at the base of the
arm, forming “bridges” and changing the axis of the bending moment (M⊥, red ar-
rows). This results in an upward torque along the much stiffer axis which results in
a smaller upward deflection of the device arms. iii. The shape of the hole array is
triangular, making the bridge less stiff farther from the device arm, which results in a
larger upward deflection in the back of the bridge than in the front of the bridge. The
net effect of this tilt is to deflect the device arms downward (orange arrows). Devices
corresponding to the diagrams in (a) are shown in (b), as well as Fig. 2 in the main text.
Optical image (c) and interferometric measurement of the height profile (d) taken using
the optical profilometer of four devices consisting of only two support beams and the
“accordion” structure meant to absorb compressive/tensile stress. The termination of
the arms varies and corresponds to the net deflection of the device, as follows: i. Wide
triangle (large downward deflection) ii. Narrow triangle (small downward deflection)

iii. Rectangle (small upward deflection) iv. No etch holes (large upward deflection).

2.1.3 Optomechanical and Photothermal Dynamics

Actuation in our system is achieved by a combination of optical and photothermal

forces, the latter of which arises from absorption of light in the cavity that generates

displacements through thermal expansion at the Silicon-SiO2interface.[27, 33, 34, 42]

Light absorption can also directly change the optical properties of the mode by mod-

ifying the refractive index of the silicon through the thermal-optic effect (dn/dT). In

previous studies, which featured wavelength-scale mode-volumes (≈ (λ0/n)3) and poor

thermal transport properties,[43, 44] the thermo-optic effect obscured the underlying
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optomechanics,[45] due in large part to the strong two-photon absorption in silicon

at near-IR frequencies. By employing a system containing extended photonic crystal

modes[39, 46] with large optical mode volumes (≈ 1500(λ0/m)3) and thermal diffusion

rates γt (≈ 450 kHz) orders of magnitude larger than those of microcavity geometries,

we avoid the problems commonly associated with silicon optomechanical systems while

still achieving optical forces comparable to those achieved with microcavities.

To quantify the photo-thermal-mechanical (PtM) effects relative to the optomechanical

(OM) effects, we define coefficients

LOM =
ω0

gOM
(2.1)

and

LPtM =
[
DC−1

th Γabs
]−1 Ω2

m + γ2
t

γt
(2.2)

as the inverse of the optical and photo-thermal forces, respectively, per unit stored

optical energy in the cavity, where D is the material- and geometry-dependent thermal-

mechanical force coefficient in units of Newtons per Kelvin (positive or negative for

attractive or repulsive forces, respectively), Cthis the heat capacity, and Γabs is the

total absorption coefficient of the material. In our devices, thermal expansion causes

a downward deflection, effectively generating an attractive force (Fpth) between the

membrane and the substrate, which puts the photo-thermal force in competition with

the repulsive optical force. We note that Fpth and LPtM are essentially independent of
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membrane-substrate separation,2 while, as shown in Fig 2.2(c), Fopt and LOM are highly

sensitive to changes in s.

Coupled-mode theory [47] is used to study how the coupling of the thermal, optical

and mechanical degrees of freedom affects a device’s mechanical angular frequency, Ωm

and its linewidth, Γm. (For full derivation, see Eq. 1-19 in supplement.) Physically,

an optical cavity with linewidth κin a free-standing membrane undergoing Brownian

motion (with an RMS amplitude δs at Ωm) is perturbed by the optical field or thermal

gradient such that the resonant frequency shifts (ω
′
0 = ω0 + gOMδs + dω

dT δT ), thus

modulating the detuning ∆′0 ≡ ωl − ω′0 between an incident laser source at ωl and the

shifted cavity resonance. This modulation in ∆′0 further modulates the stored cavity

energy Uph, the forces Fopt and Fpth and hence the overall displacement, which in turn

modulates the optical resonance frequency and forms a feedback loop. This feedback

has both in-phase and quadrature (out-of-phase) components that result in a mechanical

frequency perturbation Ωm and a mechanical linewidth perturbation Γm, respectively,

both of which have odd symmetry with respect to ∆′0.

Modifications to Ωm can take two forms. The applied forces can act in the same di-

rection of the vibrational restoring force, resulting in a stiffening (δΩm > 0), or in the

opposite direction, resulting in softening (δΩm< 0). Similarly, modifications to Γm,

known as “induced back-action[28],” describe the direction of energy flow between the

mechanical mode and the optical or thermal field. A net energy flow into the mechani-

cal mode decreases Γm and corresponds to mechanical amplification, while a net energy

flow out of the mechanical mode increases Γm and corresponds to increased damping

(i.e. mechanical cooling). The strengths and signs of the modifications to the mechan-

ical motion due to PtM and OM effects depend on the magnitudes of the respective

2Near-field thermal heat-transfer will modify t by a small amount, though we ignore this small effect
in our analysis here for simplicity.
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forces (L−1
OM ,L−1

PtM ) as well as the strength of the optomechanical coupling, gOM . This

results in OM perturbations which are independent of the sign of the force (gOM/LOM )

and PtM perturbations which depend on the signs of both the optical and photothermal

forces (gOM/LPtM ).

2.1.4 Measurements

To study these dynamics and characterize our devices, we use the setup illustrated in

Figure 2.5. Briefly, an optical fiber mounted on a z-translation stage with φx and φy

angle control centered above the suspended membrane in the Rugar configuration[48]

(detail in inset i.) is used to couple light into a device and also collect the signal back-

reflected by the device. The chip containing the device rests on a four-axis (x,y,θx,θy)

stage platform. The motorized x-y stage contains closed-loop feedback that allows us to

repeatably align the fiber to the sample with sub-100 nm resolution, while the manual

θx and θy tilt stages are used to keep the fiber-substrate distance constant under x-y

translation. The whole setup is placed inside a high vacuum chamber (10−5 torr) to

eliminate gas damping of the mechanical vibrations.

The stage construction and the vacuum chamber can be seen in panels (a) and (b),

respectively, of Figure 2.6. We visually confirm fiber-substrate alignment using a camera

which provides a side-on view of the fiber and substrate Fig. 2.6(c). To image the sample,

we step the x-y stage and collect the reflected signal at each step, building up the image

pixel by pixel. We are able to clearly image devices Fig. 2.6(d) with this technique

with 1µm feature resolution to obtain optimal fiber-sample alignment. After using the

θx and θy stages to flatten the x-y stage motion with respect to the optical fiber, we

use the motorized φx and manual φy axes mounted on the z-stage to align the cleaved

facet of the fiber to the substrate. The method for doing this is depicted in (e). To
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Figure 2.5: Experimental apparatus. The outputs from two tunable near IR lasers (λ
= 1480 nm-1580 nm and λ = 1580 nm-1680 nm) are combined using a fiber-directional
coupler. Half of the signal is diverted to Photodetector 2 as a reference and half is
coupled into a high –vacuum chamber (HVC) via a custom made fiber-feedthrough
port. The cleaved fiber is positioned above the center of the device, so that the cleaved
fiber facet is parallel to the membrane (inset i., not to scale). The reflected optical signal
is measured at Photodetector 1. Optical reflection spectra are taken by sweeping the
lasers’ wavelengths across the optical resonances and collecting the signal via the Data
Acquisition (DAQ) board. The optical resonance centered at λ0 = 1561.1 nm (inset ii)
has a Fano shape (black line) and Qopt = 2500. Mechanical spectra are obtained by
taking the Fourier transform of the photodetector signal using the spectrum analyzer
(SA) to measure the small thermal vibrations of the membrane. The fundamental
mechanical resonance (inset iii), defined by resonance frequency Ωm and linewidth Γm,

is shown for a low-power measurement at λ=1561.2 nm (red dot, inset ii.).

start, we sweep the phix axis forward and backward while the fiber is positioned over

an unpattered portion of the silicon wafer, resulting in a reflection curve showing fringes

generated by the fiber-substrate cavity, such as the one pictured. When the fiber facet

is perfectly parallel with the substrate (positions A, D, and in the middle of B and C

in the graphic), we expect the signal to be maximized due to the build up of multiple

reflections and we expect the fringes to be widest, since the facet-substrate separation

should be at a minimum. After aligning the φx axis, we manually adjust the φy axis to

maximize the amplitude of the φx sweep.

Optical spectra (Fig. 2.5, inset ii) were collected by sweeping the tunable laser sources

across the optical resonance. Mechanical spectra (Fig. 2.5, inset iii) were collected
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Figure 2.6: (a) Picture of multi-axis positioning system. This solid construction is
placed inside of the vacuum chamber (b). Viewports on the side and top allow us to
visually align the fiber to the sample when the system is under vacuum. A camera
outside the side viewport provides images of the fiber and sample (c), which we use for
coarse positioning and alignment. Stepping the x-y stage in a square grid, and collecting
the back-reflected signal, we can image the devices (d) to obtain optimal fiber-sample
alignment. (e) Graphic and signal data describing the planarization of the fiber to the

substrate

at fixed excitation wavelengths on either side of the optical resonance by analyzing

the signal reflected off of our membranes in a real-time spectrum analyzer (Tektronix

RSA3303B). We measure the dynamic shifts in Ωm and Γm of the fundamental vibra-

tional mode of two different devices by fitting the measured mechanical resonance to a

Lorentzian lineshape, and the best-fit parameters for Ωm and Γm are plotted in Figure

2.7 (green circles) as a function of laser wavelength.

2.1.5 Results

We first explore an upward-deflected device (Fig. 2.2(d)) with membrane-substrate

separation s = 300 nm at an incident optical power of 50 µW, in Fig 2.7(a). We observe

blue-detuned (∆′0 > 0) cooling and softening and red-detuned (∆′0 < 0) amplification

and stiffening, which fit well to theoretical predictions (black lines) for LOM = -95
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µm (gOM = 2π × -3.3 GHz/nm) and LPtM = 15 µm. As expected, PtM effects (red

dashed lines) to dominate the dynamics due to the large membrane-substrate separation.

Furthermore, we see no OM contributions (blue-dashed line) to the linewidth dynamics

as a consequence of operating in the deep “sideband-unresolved” limit[28] where κ/Ωm

> 106. In this regime, the optical force acting on the mechanical oscillator is effectively

instantaneous with respect to the oscillator period. All back-action in our devices is

provided by PtM effects.

In a downward-deflected device with s = 160 nm, (Fig. 2.7(b), image in Fig. 2.3(e)), the

increased OM contributions (blue-dashed line) to the overall dynamics (black line) flips

the sign of the δΩmcurve compared to the upward-deflected device. The magnitudes

of δΓmand δΩmare similar to those in Fig. 2.7(a) but were achieved with an order of

magnitude less optical power (6 µW). This is attributed to an increase in gOM to 2π × -

30 GHz/nm (LOM= -6.4 µm), while LPtM remained constant. When the incident optical

power is increased to 30 µW (Figure 2.8(a)), a range of wavelengths (grey shaded region)

exists in which Γm reaches its experimental minimum.[49] In this region energy is being

added to the mode faster than it can dissipate, resulting in a “regenerative oscillation”

amplitude on the order of a nanometer that scales linearly with power. This regime is of

interest for applications in mass-sensing. For example, the mechanical response at λ =

1561.5 nm (red star), plotted in Fig 2.8(b), has Γm/2π = 70 mHz, which corresponds to a

mass sensing limit of 0.3 fg. Further optimization of the structure, with this application

in mind, may result in even better mass sensitivity.

On the other side of the optical resonance, optical cooling takes place. The strength

of the cooling is quantified by the mode’s effective temperature Teff ,[27] which, from

the equipartition theorem, we can write as Teff/T0 = Ω2
m0/Ω

2
m × Γm0/Γm, where,Γm =

Γm0 + δΓm = Γm0(1 + βP ) T 0 is room temperature and β is a collection of constants
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Figure 2.7: Optomechanical coupling curves for two devices with different membrane-
substrate separations experiencing photothermal and optical forces. Data (green circles)
were collected by measuring the vibrational spectra (Fig. 2.5, inset iii.) for several
wavelengths around the cavity resonance. The data in (a) correspond to the device
in Fig. 2.3(d), whose cavity resonance is centered at λ0=1576.4 nm. The data in
(b) correspond to the device in Fig. 2.3(g), whose cavity resonance is centered at
λ0=1561.1nm. The photothermal force Fpth (red arrows, top insets) is attractive and
approximately constant in both devices. The repulsive optical force Fopt (blue arrows),
increases in magnitude from (a) to (b), as the magnitude of gOM/2π increases from -3.3
GHz/nm to -30 GHz/nm. In our system, Fopt and Fpth have opposing effects on Ωm (top
panels). In (a), photo-thermal-mechanical (PtM) dynamics (red dashed lines) dominate

and the device undergoes softening (δΩm < 0) when the laser is blue-detuned (∆
′

0 > 0,

blue shaded region) and stiffening (δΩm > 0) when red-detuned (∆
′

0 < 0, red shaded
region). In (b), optomechanical (OM) dynamics (blue dashed lines) dominate and the
device undergoes blue-detuned stiffening and red-detuned softening. Bottom panels:
Both devices undergo blue-detuned cooling (δΓm > 0) and red-detuned amplification
(δΓm < 0) due to PtM effects only. The maximum values of δΩm and δΓm shown
in both (a) and (b) are approximately equal in magnitude, but the dynamics in (b)
were achieved with an order of magnitude less optical power due to the of strength of

opto-mechanical coupling (gOM ) in (b).
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defined precisely in the Supplementary Materials. We quantify the strength of the

mechanical cooling by exciting the structure at a fixed wavelength (λ = 1560.8 nm,

blue star in Fig. 2.8(a)) and at six optical powers in the range of 6 µW (red line)

to 200 µW (purple line). We note that Teff is also proportional to the area under

the mechanical resonance curves (blue shaded regions). As other processes can cause

linewidth broadening without cooling, it is important to perform this check to confirm

that we are indeed cooling the vibrational mode. The effective temperature of the mode

at the six measured powers is shown in the Fig. 2.8(c) inset, where the colors of the circles

correspond to the colors of the curves in the main figure. We find that Teff reaches 22

K at 200 µW and 5.8 K at 1 mW, according to the curve fit (black line). These values,

coupled with the large device mass, large gOM , and ease of in- and out-coupling of light,

make this platform an intriguing candidate for optical accelerometry,[31] which utilizes

optomechanical cooling to damp mechanical ringdown.

2.1.6 Derivation of Dynamics

Cavity optomechanical dynamics can be represented by a system of two equations de-

scribing the stored cavity energy and the mechanical motion:

da

dt
= −κ

2
a− i (∆ + gOMx) a+

√
κe (2.3)

d2x

dt2
+ Γm

dx

dt
+ Ω2

mx = −
gOM

∣∣a2
∣∣

meffω0
(2.4)

Equation 2.3 describes the properties of the optical cavity, where ais the amplitude of

the optical field in the mode, εis the amplitude of the field incident on the structure
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λl = 1561.5 nm

(a)P = 30 µW

(b)(c)

λl = 1560.8 nm

Figure 2.8: (a): Mechanical linewidth of the device (green circles) in Fig 2.7(b) as a
function of laser wavelength at an incident power of 30 µW, showing blue-detuned cool-
ing and red-detuned amplification. The overall dynamics (black line) are dominated by
photo-thermal mechanics (red dashed line, not seen), since optomechanical interactions
(blue dashed line) are negligible. On the red side of the resonance between 1561.2 nm
and 1562.1 nm (grey shaded region of (a)), the mechanical linewidth hits a floor as the
system undergoes generative oscillations. (b): The vibrational spectrum of the mode
when λl= 1561.5 nm is shown (pink circles) with the lorentzian fit (red line), where
Γm/2π = 70 mHz. (c): On the other side of the resonance, the mechanical vibration is
cooled. The mechanical resonance is plotted (dark blue dots) and fit for six powers: 6
(red line), 12 (orange line), 30 (yellow line), 40 (green line), 100 (blue line), and 200 µW
(purple line). In our system, linewidth broadening is due to mechanical cooling only.
Thus, Γm and the area under the mechanical resonance curves (blue shaded regions) are
both be proportional to the effective temperature of the mode (Teff ), which is plotted
as a function of power in the inset. The colors of the data points correspond to the
colors of the lines in (c), and the points are fit to the expression in the text. At 1 mW,
the effective temperature of the mode is 5.6 K when cooled from room temperature.

at,ωl κeis the external coupling rate such that κe|ε| 2 is the incident optical power, and.

Equation 2.4 describes the mechanical behavior, where is the oscillation amplitude, and

are the mechanical linewidth and frequency, respectively, and is the effective mass of the

mechanical element. The perturbations to Ωm and Γm from opto-mechanical coupling

arise from in-phase (∝ x(t)) and quadrature (∝ x (̇t)) driving terms driving the harmonic

oscillator, and can be obtained by linearizing (1) and (2). These expressions can be

written as functions of ∆ in the so-called “sideband-unresolved” limit[28] (Ω m� κ/2 )
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as

δΩm = Ωm
g2
OM

ω2
0Km

(
κe
2 |ε|

2

κ
2

2 + ∆2
0

)
2∆ω0
κ
2

2 + ∆2
0

(2.5)

and

δΓ = −Ωm
g2
OM

ω2
0Km

(
κe
2 |ε|

2

κ
2

2 + ∆2
0

)
2∆ωo(
κ
2

2 + ∆2
0

) 2Ωm
κ
2(

κ
2

2 + ∆2
0

) (2.6)

where Km = Ω2
mmeff is the mechanical spring constant, and.∆0 = ∆ − gOMx In this

limit, it is clear from the above equations that the change in the linewidth of the resonator

must be significantly smaller than the change in the mechanical frequency. The two

equations differ only by the term at the far right of Eq. 2.6, relating Ωm to,κ/2 which

by definition is � 1 in this limit. When thermal-optical and thermal-mechanical effects

are included, equations 2.3 and 2.4 must be modified and a third equation describing

the system’s thermal properties must be added. The system then becomes:

da

dt
= −κ

2
a− i

(
∆− gOMx−

dω0

dT
δT

)
a+
√
κe (2.7)

d2x

dt2
+ Γm

dx

dt
+ Ω2

mx = −
gOM

∣∣a2
∣∣

meffω0
− D

meff
T (2.8)

dT

dt
= −γthT + C−1

th

(
Γlin + Γ

′
TPA|a|

2
)
|a| 2 (2.9)
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where D is the thermal mechanical force coefficient in units of N/K, (D>0 for downward

thermally-induced displacements), γth is the thermal time constant, Cth is the thermal

heat capacity, Γlin is the linear absorption rate of silicon and Γ
′
TPA is the two-photon

absorption rate (included for competition) with the dependence on field intensity |a|2

explicitly removed from the expression for clarity, such that the total absorption rate

is Γabs = Γlin + Γ
′
TPA|a|

2 To solve this system for its mechanical dynamics, we must

first linearize it5, rewriting x(t)=x0+δx(t), a(t)=a0+δa(t), and T(t)=T0+δT(t). The

linearization of Eq. 2.9 results in separate expressions for T0 and for δT(t), though for

this derivation, we are only interested in the equation for δT(t), which takes the form

d

dt
δT (t) = −γthδT (t) + c−1

th Γabs (a0δa
∗ (t) + a∗0δa (t)) . (2.10)

Converting into Fourier space, this expression becomes

δT (ω) =
c−1
th Γabs
−iω + γth

(a0δa
∗ + a∗0δa) , (2.11)

where the expression for a0δa
∗ + a∗0δa can be found by linearizing Eq. 2.7 and solving

for a0 and δa independently, then converting to Fourier space. Doing this, one finds

a0δa
∗ + a∗0δa = i |a0| 2

(
gOMδx (ω) +

dω

dT
δT (ω)

)
×

[
1

Γ
2 + i

(
ω + ∆

′
0

) − 1
Γ
2 + i

(
ω −∆

′
0

)] . (2.12)

Plugging Eq. 2.11 into Eq. 2.12 we find that
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a0δa
∗ + a∗0δa = i|a0| 2gOMδx (ω)H

(
ω,∆

′
0, |a0| 2

)
(2.13)

where

H
(
ω,∆

′
0, |a0| 2

)
=

[ 1
Γ
2 + i

(
ω + ∆

′
0

) − 1
Γ
2 + i

(
ω −∆

′
0

)]−1

− i|a0| 2
dω

dT

c−1
th Γabs
−iω + γth

−1

.

(2.14)

Ultimately we are interested in the perturbations to Ω m and Γ m, which will need to

be expressed as in-phase and quadrature driving terms in Eq. 2.8. In order to show this,

we now force δx(t) and δa(t) to be harmonically oscillating functions at Ω m, allowing

us to write δx(ω) as 1/2 (δ(ω-Ω m )+δ(ω+Ω m )). Using this and separating the real

and imaginary parts of H(Ω m), we can rewrite Eq. 2.13 as

a0δa
∗ + a∗0δa =

1

2
gOM |a0| 2

(
iR [H (Ωm)] (δ (ω − Ωm)− δ (ω + Ωm))

− I [H (Ωm)] (δ (ω − Ωm) + δ (ω + Ωm))

)
,

(2.15)

which in the time domain becomes

a0δa
∗ (t) + a∗0δa (t) = gOM |a0| 2

(
R [H (Ωm)]

Ωm
δẋ (t)− I [H (Ωm)] δx (t)

)
. (2.16)
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From here we plug Eq. 2.15 back into Eq. 2.11 and find

δT (ω) = −
c−1
th Γabs|a0| 2gOM

Ω2
m + γ2

th

[(
γthR [H (Ωm)]

−ΩmI [H (Ωm)]

)
δ (ω − Ωm)− δ (ω + Ωm)

2i

−
(

ΩmR [H (Ωm)] + γthI [H (Ωm)]

)
δ (ω − Ωm) + δ (ω + Ωm)

2

]
,

(2.17)

which in the time domain is

δT (ω) = −
c−1
th Γabs|a0| 2gOM

Ω2
m + γ2

th

[
δẋ (t)

γthR [H (Ωm)]− ΩmI [H (Ωm)]

Ωm

+ δx (t) (ΩmR [H (Ωm)] + γthI [H (Ωm)])

]
.

(2.18)

We can now go back to our original system of equations and linearize Eq. 2.8, finding

d2

dt2
δx (t)+Γm

d

dt
δx (t)+Ω2

mδx (t) = − gOM
meffω0

(a0δa
∗ (t) + a∗0δa (t))+

D

meff
δT (t) (2.19)

After plugging Eqs. 2.16 and 2.18 into the RHS of Eq. 2.19 it becomes clear that Eq.

2.19 can be rewritten as a simple driven harmonic oscillator with perturbations to Ω m

and Γ m by grouping the terms on the RHS that contain δx (̇the quadrature terms ) with

Γ m and the terms that contain δx (the in-phase terms) with Ω mˆ2. Doing this, we

find that the system of equations involving thermal, optical, and mechanical dynamics
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results in mechanical perturbations of the forms

δΩm

Ωm
= − |a|

2

2Km

gOM
LOM

Im [H (Ωm)]− |a|
2

2Km

gOM
LPtM

(
Ωm

γth
Re [H (Ωm)] + Im [H (Ωm)]

)
(2.20)

δΓm
Ωm

=
|a| 2

Km

gOM
LOM

Re [H (Ωm)] +
|a| 2

Km

gOM
LPtM

(
Re [H (Ωm)]− Ωm

γth
Im [H (Ωm)]

)
(2.21)

We define LPtM ≡
[
DC−1

th Γabs
]−1

(Ω2
m + γ2

t )/γt and LOM≡ ω0/gOM , which can be

physically understood as the inverse of the photo-thermal and optical forces per unit

stored optical energy, respectively. From linearizing Eq. 2.7, we find that the circulating

optical field can be expressed in terms of the incident power as |a| 2 =
κe
2
|ε|2

κ
2
2+∆

′
0

2 . Eqs. 18

and 19 are used to fit the data in shown in the main paper and the curves in Figure

2.9. We plot in Fig. 2.9 the Ωm and Γm dynamics for the deflected down device at

four different optical powers: 6 µW (red circles), 12 µW (orange circles), 20 µW (yellow

circles), and 100 µW (blue circles).The best fit parameters reveal a photo-thermal force

which scales linearly with power, and thus corresponds to linear absorption. However,

the absorption rate Γabs seems to be larger than that expected from bulk silicon, most

likely due to absorption from surface defects and surface adsorbents introduced during

the fabrication process[50, 51], though it is difficult to decouple Γabs from D and thus

know Γabs precisely. Measuring a set of devices before and after an annealing process

seemed to confirm this, as both the mechanical quality factor and optical quality factor

improved slightly after baking. We can find an upper bound on Γabs by finding the rate

at which the thermal-optic effect (last term in Eq. 2.14) becomes notable, as our data

reveals the effect to be quite small in our system. From this, we can estimate a value of

the absorption quality factor: (Qabs= ω0/Γabs≈ 105).
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Figure 2.9: Mechanical frequency and linewidth at four different power levels (colors
correspond to colors in Fig. 2.8(c)). The same fit parameters were used in all fitting
curves, demonstrating a quality fit across multiple data sets and powers on the same
device. Note that the fit to the photo-thermal-mechanical dynamics has linear power
dependence, seen most clearly in the Γm dynamics (bottom panel) thus demonstrating

the lack of two-photon absorption, which would have quadratic dependence.

2.1.7 Discussion and Conclusions

In summary, we have demonstrated a novel optomechanical platform based on a silicon

photonic-crystal membrane suspended above an SOI substrate that exhibits a strong re-

pulsive optical force. Using simple lithographic stress management techniques, we were

able to control the membrane-substrate separation of our structures as well as their

resulting optical and mechanical properties (e.g. resonance). The interplay between

opto-mechanical and photo-thermal-mechanical effects was investigated, and both me-

chanical cooling and amplification have been demonstrated. Owing to its large size, our

structure has many unique features including a large mass, ease of in- and out- cou-

pling of light, and lack of two-photon absorption effects. Therefore, we believe that this

structure is suitable for a range of applications. In addition to accelerometry and mass
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sensing mentioned above, our devices can function as large-area liquid or gas-phase sen-

sors, sensitive to refractive index changes of the environment.[52] The antibonding mode

studied here is uniquely suited for this application, as the electric field distribution is

extremely sensitive to the refractive index around the holes in the suspended membrane

(Fig. 2.2(c)). Preliminary simulations in COMSOL Multiphysics indicate that the spec-

tral sensitivity of the cavity resonance is ≈ 100 nm per refractive index unit, on par

with previous values seen in similar geometries.[53] With control over both the optical

and mechanical degrees of freedom, our membranes are good candidates for selective

sensing technologies, where differences in mass and optical properties of analytes can be

distinguished from one another and where the trade-off between large surface area and

mechanical sensitivity can be tolerated.[54, 55]

Perhaps the most intriguing application of our platform is the investigation and con-

trol of the Casimir force. The Casimir effect causes two parallel surfaces separated by

vacuum to be attracted to one another with a force proportional to s−4 and can cause

failure in MEMS and NEMS systems. High, negative modes offer a method to coun-

terbalance the Casimir and electrostatic pull-in forces that cause stiction. Additionally,

the Casimir force can profoundly modify the mechanical dynamics of the system[56, 57]

at separations of 100 nm or smaller, making this platform ideal for studying plate-plate

Casimir dynamics. For example, the Casimir force acts as a nonlinear driving term to

the mechanical oscillator, modifying Ωm and introducing mechanical hysteresis, further

improving the mass-sensing ability of the system by introducing bistability without the

need for large oscillation amplitudes.[39] An integrated, tunable Casimir-mechanical os-

cillator is also desirable for testing of fundamental aspects of the Casimir effect, such as

deviation from the proximity-force approximation[58, 59] for an arbitrarily structured

surface.
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While our platform has many potential applications, we note that this system has not

been optimized for any one specific application, and the estimates presented here should

not be taken as the limits of this new geometry. Most of the device parameters (Qopt,

Qmech, gOM ) can be improved by modifications to the design and fabrication process[50,

51]. For instance, annealing of some devices at 500 C for 1 hour in a nitrogen environment

improved Qopt and Qmech by about a factor of two. Actuation and sensing abilities both

improve as the membrane-substrate separation decreases, leading to the possibility of

low-power devices that can take advantage of the large area of the suspended membrane,

such as optical accelerometers and combined mass and refractive-index sensors that are

enhanced by the Casimir effect. By building these devices on silicon, we have opened

up a new pathway for integration of novel optical components into MEMS and NEMS

systems.

2.2 Optomechanical Hysteresis and Bistability

2.2.1 Overview

We demonstrate actuation of a silicon photonic crystal membrane with a repulsive op-

tical gradient force. The extent of the static actuation is extracted by examining the

optical bistability as a combination of the optomechanical, thermo-optic and photo-

thermo-mechanical effects using coupled-mode theory. Device behavior is dominated by

a repulsive optical force which results in displacements of > 1 nm/mW. By employing an

extended guided resonance which effectively eliminates multi-photon thermal and elec-

tronic nonlinearities, our silicon-based device provides a simple, non-intrusive solution

to extending the actuation range of MEMS devices.
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2.2.2 Introduction

Rapid developments in the field of optomechanics have opened up avenues for fundamen-

tal research on quantum state manipulation with macroscopic structures [30] and show

promise for novel optomechanical sensors [31] and technologies for both radio-frequency

(RF) [60] and telecom applications.[61] While most attention has been devoted to com-

pact structures featuring low (picogram) mass and ultrahigh-frequency (gigahertz) me-

chanical modes,[25, 26] the technological implication of static deformation due to optical

forces has been less explored.[17] In coupled photonic waveguide geometries,[9, 62] bond-

ing and anti-bonding optical modes are supported and the corresponding attractive and

repulsive optical forces exerted on a pliant structure (low mechanical frequency) could

serve to broaden the range of motion of integrated microelectromechanical devices. This

translates to improvement in the detection range of pressure and displacement sensors

and the actuation range of electrostatic actuators. In particular, the pull-in limit of

electrostatic actuators could be extended by increasing the plate separation with a re-

pulsive optical force. Additionally, novel schemes for preventing stiction, which occurs

when attractive forces like the Casimir force and electrostatic force become overwhelm-

ingly large compared to the mechanical restoring force, have been proposed [39] using

a real-time monitoring of the structure’s displacement and a counteracting feedback

repulsive force (of the order of nano-Newtons and linear with excitation power). In

this paper, we demonstrate nanometer-pulling of a thin silicon photonic crystal (PhC)

membrane under high vacuum with a repulsive optical gradient force and an attrac-

tive photo-thermo-mechanical force. Furthermore, optical bistability induced by optical

forces and thermo-optic effect is observed with large excitation powers while minimizing

multi-photon nonlinearities.
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2.2.3 Theory of Hysteresis and Bistability

Our devices – one of which is pictured in Fig. 2.10(a) and described in Fig. 2.10(b) –

consist of a square silicon PhC slab suspended by four support arms ≈ 250 nm above a

Silicon-on-Insulator (SOI) substrate. They are fabricated from a double-SOI platform,

formed by oxide-oxide bonding of two thermally oxidized SOI wafers at atmospheric

conditions. A sacrificial silicon dioxide layer between the two silicon layers is s0 = 265

nm thick. Electron-beam lithography is performed on a layer of resist (ZEP-520A) to

define the pattern. To combat the strong buckling of the silicon device layer by the

compressive stress and upward turning moments of the oxide layer underneath, novel

stress management techniques[41] were incorporated to obtain structures with litho-

graphically determined membrane-substrate gaps. After developing, a fluorine-based

reactive-ion etch is employed to transfer the patterns to the top silicon layer. The de-

vice is then released by undercutting the patterned silicon layer with the vapor-phase

hydrofluoric acid etch. Finally, an annealing step was performed on at 500 C for 1 hour

in a nitrogen environment to limit surface losses and maximize optical and mechanical

quality factors. The height profiles of the released membranes from the substrate are

characterized by a confocal microscope (Olympus LEXT OLS-4000).

The structure was designed to support an optical antibonding mode in the wavelength

range of 1480-1680nm that results from the hybridization of waveguide modes in the

membrane and substrate. The precise spectral location of the resonance is determined

by the optomechanical coupling between the two modes, the strength of which is de-

fined as gOM ≡ dω/ds. The distribution of the x-component of the electric field in the

top membrane is out-of-phase from that in the bottom membrane as pictured in Figure
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Figure 2.10: (a) Scanning Electron Microscope image of a device. (b) Schematic of
membrane geometry consisting of a suspended silicon membrane above a silicon-on-
insulator substrate. The top membrane is perforated by a 30×30 array of holes with
diameter d = 0.414µm and period p= 0.92µm. Both silicon layers have thickness h =
185 nm. (c) 3D representation of the Ex field for the antibonding mode at λ0 = 1584.85
nm in a single unit cell of the geometry. The solid color lines represent surfaces of equal
field amplitude. (d) Calculated stable locations of the optical resonance as a function
of laser wavelength, for four optical powers: 0.5 mW (cyan line), 3 mW (green line), 7
mW (blue line) and 11 mW (red line). At P >= 3 mW, the system has three solutions
(two stable – solid line, one unstable – dashed line) for a certain range of wavelengths.
Due to the intracavity-power dependence of optical detunings from optomechanical
and thermo-optic effects, the system is bistable in this wavelength range, and displays
hysteresis when the laser is swept continuously from short to long wavelengths (forward
sweep) or vice versa (backward sweep). Two hysteretic transition points occur at λf

for the forward sweep and λb for the backward sweep.

2.10(c), which corresponds to the generation of a repulsive gradient force. Addition-

ally, the field symmetries along the x-z and y-z planes indicate that we are operating

with a “dark” mode [40, 63], which theoretically does not couple to normally incident

light because of mismatch in field symmetry. Optical dark modes exhibit high optical

quality factors (Qopt) and can be coupled into with normally incident light by breaking

the periodicity of the full structure. Such devices have been the subject of numerous

theoretical and experimental investigations on subjects ranging from the lowering of the

laser thresholds [64] to increasing the sensitivity of photonic-crystal-based sensors [53].

Here, the dark mode is made accessible due to the finite size of the membrane and slight

fabrication imperfection. The high Qopt of the dark mode, together with the mode’s
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large optomechanical coupling coefficient gOM = 18 GHz/nm, boosts the strength of the

optical force and hence the range of actuation.

As previously described[39], the potential of a mechanical harmonic oscillator with equi-

librium position s0, when perturbed by the potential of an optical “spring” [65] centered

at sl for a laser wavelength λl can create a multiwell potential with two stable mechanical

equilibria. The transition between these mechanical equilibria is reflected by the occur-

rence of optical bistability, due to the the dependence of the resonance frequency on s.

Yet, the direct observation of the optomechanically-induced optical bistability can easily

be obscured in actual systems by other competing mechanisms including thermo-optic

effects, free-carrier dispersion and the Kerr nonlinearity [43]. While these effects have

been actively pursued for realizing ultra-fast low-power optical switches and memory,

such effects limit the the ability to take advantage of mechanical displacements. We

designed our geometry to minimize these effects by exciting a guided resonance which

is delocalized throughout the PhC membrane. We estimate the total mode volume to

be ≈ 400(λ/ng)
3 from simulations of the whole superstructure performed in Lumeri-

cal. Due to its large modal volume, the thermal and electronic nonlinearities (which

inversely scale with the modal volume) are dramatically reduced. This is in contrast

with many of the optomechanical structures being studied, which have modal volumes

≈ (λ/ng)
3) and where thermal nonlinearities could be readily observed at even modest

input powers. In our coupled PhC membrane, optomechanical detuning is larger than

thermo-optic detuning even though our devices suffer from linear absorption due to de-

fects introduced by fabrication processes, which is two orders of magnitude larger than

the material absorption of silicon.

We can solve for the the optical and mechanical equilibria in the presence of the thermo-

optic effect within the coupled-mode theory framework. We can find the stable solutions
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by parameterizing the detuning ∆ between the incident laser frequency ωl and the

resonance frequency. At an arbitrary value of ∆, we can calculate stored energy in

the system |a|2 as

|a|2 =
κe

(κ/2)2 + ∆2
Pin (2.22)

where κ is the full-width half-max (FWHM) linewidth of the optical resonance, κe is the

external coupling rate such that κe/k represents the fraction of incident power that gets

coupled into the cavity, and Pin is the power incident on the structure. We use this to

calculate the absorbed optical power and hence the temperature change of the system

∆T =
Γabs|a|2

Cthκt
(2.23)

where Γabs is the absorption coefficient of the system, Cth is the heat capacity, κt is

the thermal diffusion rate, and the displacement of the membrane due to the respective

photo-thermo-mechanical force and the repulsive gradient force

∆x =
D∆T

K
+
|a|2gOM
ωlK

(2.24)

where K is the spring constant of the mechanical resonator and D is the thermal-

mechanical force coefficient in units of Newtons per Kelvin.[42] Both the temperature

shift and mechanical displacement directly result in a change in the optical resonant

frequency, such that we can express the expected change in the resonant frequency as

∆ω0 = gOM∆x+(dω/dT )∆T , where dω/dT = (dω/dn)(dn/dT ), n is the refractive index

of silicon, dω/dn is obtained from simulations and is equal to −2π× 5.05× 1013 Hz and
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dn/dT is the thermo-optic coefficient of silicon, which is equal to 2×10−4K−1.[45] From

here, we can find the steady state solutions by solving for where the parameter ∆ is

equal to the difference between the laser frequency and the perturbed optical resonance

frequency ω′0 = ω0 + ∆ω0:

∆ = ωl − ω′0. (2.25)

The values of λ′0 = 2πc/ω′0 at which solutions of Eq. 2.25 exist are plotted in Fig.

2.10(d), as a function of laser wavelength λl = 2πc/ωl for laser powers of 0.5 (cyan line),

3 (green line), 7 (blue line) and 11 mW (red line). The unperturbed optical resonance

occurs at λ0 = 1584.85 nm. The dashed portions of the curves correspond to unstable

equilibria. At high powers, a clear bistable region exists in which there are two stable

configurations of the membrane for fixed power and laser wavelength. The boundaries

of the bistable region are denoted by λf and λb, representing the hysteretic transition

wavelengths for a laser swept forward (left to right) and backward (right to left) across

the resonance.

To investigate the hysteresis and bistability in our devices, we employ a free-space cou-

pling setup described in Figure 2.11. A low power (60 µW) wavelength sweep is shown in

the inset of Figure 2.11 (red curve), revealing a cavity resonance centered at λ0 = 1584.85

nm. To account for interference fringes from parasitic reflections off of the vacuum

chamber’s window and other surfaces, we carefully fit both the optical resonance and

the oscillating background (black line) to an expression which has the form[]
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Laser 1

1480 � 1580	�	

Laser 2

1580 � 1680	�	

White 

Light 

Source

20x 

Objective

Vacuum 

Chamber IR Power 

Meter

CCD 

Camera

RSA

DAq Board

Monitor

PD

Figure 2.11: Free-space coupling setup. A white-light source and output from a near-
IR laser are combined and sent through a 50-50 beam splitter, sending half of the signal
to an IR power meter and half through a 20x objective placed above a vacuum chamber.
The reflected signal is sent back through the beam splitter and can be directed onto
a CCD camera allowing us to carefully align the laser spot to the membrane and to
a photodetector (PD) to collect optical spectra via the DAq board and mechanical
spectra via the real-time spectrum analyzer (RSA). Inset at right shows the reflection

spectra of the device around the resonance centered at λ0 = 1584.85 nm.

R = |r|2 =

∣∣∣∣rd(λ)e−iφ +
κe

−i∆′0 + κ/2

∣∣∣∣2 (2.26)

where rd(λ) is the background reflectivity, and φ is the relative phase between the

underlying background reflection and the optical cavity. Fitting parameters correspond

to an optical cavity with κe = 0.5κ and Qtotoptω0/κ = 4400.

2.2.4 Freespace Mechanical Characterization

While the analysis in this section is primarily concerned with static dynamics of our

membranes, this free space geometry is capable of producing extremely sensitive me-

chanical spectra. The fiber coupled geometry presented in Section 2.1 is comprised of

almost entirely paraxial rays, which are collected at a small (≈ 25µm) distance from the
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substrate, making the reflected intensity particularly insensitive to higher order, non-

symmetric mechanical modes which would increase the angular spread of the reflected

signal. This is tolerable, and perhaps even ideal, if we are only interested in dynamics

surrounding the fundamental breathing mode of the structure, as we were earlier. How-

ever, higher order mechanical modes can be useful for studying the complex thermal

dynamics of the membranes, as the amplitude of thermal-mechanical dynamics depends

on the relative scales of the mechanical frequency and the thermal diffusion rate. When

the mechanical frequency is much larger than the thermal diffusion rate, heat cannot

diffuse away from the membrane over the course of one mechanical oscillation period,

keeping the temperature oscillations fully in-phase with the amount of light contained

in the optical cavity.

Mechanical resonance spectra of the first eighteen modes of the geometry are plotted

in Figure 2.12. As expected, the fundamental mechanical mode has the largest spec-

tral amplitude, 10 dBm larger than the next most prominent mode: the second-order

breathing mode at Ω ≈ 1.05 MHz. Spectral peaks were matched to mechanical eigen-

mode profiles via simulations of the geometry performed in COMSOL Multiphysics,

showing good agreement (within 5% on most modes with experiment. While we do not

yet have the ability to directly address these higher order modes (i.e. we can only cool or

amplify the fundamental mode due to the strong overlap between the optical mode and

the mechanical mode), further study of this geometry or of a slightly modified geometry

could permit excitation of these modes and a study of this geometry without influence

of thermal dynamics.
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Figure 2.12: Mechanical resonance spectrum from 0 to 5 MHz. Measurements taken
with the real-time spectrum analyzer reveal the first eighteen mechanical modes of the
geometry, including the first five breathing modes at 180 kHz, 1.05 MHz and 1.9 MHz,
3 MHz and 3.75 MHz. In the fiber coupled setup, only the first two breathing modes

were visible.

2.2.5 Results

Using these parameters, we can model the reflectance of the system as a function of

laser wavelength at multiple powers (P = 0.04 to 6 mW), shown in Fig. 2.13(a) and

offset for clarity, and compare the results to our experimental observations, shown in

Fig. 2.13(b). The experimental data were collected by sweeping the tunable laser

output from short to long wavelength (red curve) and then back (blue curve) at a fixed

tuning speed of 1 nm/s. At 0.1 mW and higher, the mechanical resonator experiences

regenerative oscillation when the laser wavelength is red-detuned (ωl < ω′0) from the

optical resonance due to positive feedback between Brownian motion of the membrane

at the membrane’s fundamental mechanical resonance frequency Ωm = 180 kHz and

the thermal-mechanical force with a thermal diffusion rate γt ≈ 450kHz, taken from

simulations and careful fitting to optical and mechanical spectra. This can be seen in

Fig. 2.13(b) as the thick red and blue sections of the curves, corresponding to periodic

oscillation of the reflectance at Ωm. Negative feedback between the membrane’s motion
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Figure 2.13: Theoretical (a) and experimental (b) reflection spectra for forward (red
lines) and backward (blue lines) swept lasers from P =0.04 mW to 6 mW. Hysteresis
is predicted to onset around 2 mW. (c) Locations of bistable transitions during for-
ward and backward wavelength sweeps. The transition wavelength during the forward
sweep λf (red triangles) is linear, and matches well to theory (red line). The backward
transition wavelength (λb (blue triangles) predicts hysteresis at lower powers than the-
oretically predicted (blue line) and smaller hysteresis than expected at higher powers.
Both of these discrepancies can be attributed to the static nature of the model, which
does not take into account the effect of regenerative oscillations on hysteretic transi-

tions.

and the photo-thermal-mechanical force occurs on the blue-detuned side of the resonance

and works to damp the membrane oscillations in a process known as cooling [28, 66],

allowing us to adequately treat the system as static at these detunings. While the

optical spring effect and dynamic back-action have been thoroughly investigated in our

system, this paper focuses on evaluating the static effect of the repulsive optical and

photo-thermo-mechanical forces.

Abrupt transitions in the forward sweep direction occurring at λf can be seen in Fig.

2.13(b) for P = 4 and 6 mW, matching well with the transitions predicted by theory. The

location of the backward transition at λb shows discrepancies with predictions, however,

as the system appears to become bistable at lower powers than indicated by theory while
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displaying a narrower bistable range than predicted at higher powers (Fig 2.13(c)). We

believe that this discrepancy can be explained by the system’s parametric instability.

During the backward sweep, regenerative oscillation of the membrane supplies kinetic

energy to the mechanical mode. When this mechanical energy is larger than the poten-

tial energy barrier separating the two stable equilibria, the system will jump into the

second stable potential well. Upon doing so, the optical excitation abruptly becomes

blue-detuned causing cooling of the motion of the membrane which is thus unable to

recross the potential barrier. In effect this shrinks the bistable region, as it forces the

backward transition to occur while the system is still bistable (i.e. before λl reaches λb).

Alternately, we can investigate the range of actuation of the optical force by sweeping

the laser power up and down at fixed wavelengths slightly red-detuned from the unper-

turbed cavity resonance. Theoretical predictions and experimental results are plotted

in Fig. 2.14(a) and (b), respectively, showing the reflected power plotted against the

incident laser power at six red detuned wavelengths: 1585 nm (cyan lines), 1585.1 nm

(green lines), 1585.2 nm (blue lines), 1585.3 nm (red lines), and 1585.4 nm (magenta

lines). The curves for the four longer wavelengths are each vertically offset from the

λl = 1585 nm curves for clarity. For small detunings (λl = 1585 nm), the path traversed

during an increase in input power from 0-10 mW (solid line) and a decrease in power

(dashed line) coincide. At larger detunings, Pout experiences hysteresis. As the power

is increased, the membrane enters the bistable region in the lower mechanical state and

remains there until λb has redshifted such that λb = λl, at which point the membrane

jumps to the upper curve. When decreasing the power, the membrane remains in the

up-state until λf blueshifts back to λl, forcing the membrane to jump back down to the

lower curve.

The agreement between theory and experiment in the upward and downward bistable
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Figure 2.14: Predicted (a) and experimental (b) Pin-Pout curves of the device with
the low power optical spectra seen in 2.10. Curves are plotted for five red-detuned wave-
lengths: λ = 1585 nm (cyan line), 1585.1 nm (green line), 1585.2 nm (blue line), 1585.3
nm (red line) and 1585.4 nm (magenta line). Solid lines represent the power output
as a function of increasing laser power, while dashed lines represent power output as a
function of decreasing input power. Modeling predicts hysteresis will occur at all wave-
lengths longer than 1585.1 nm. Some hysteresis is seen at 1581.1 nm experimentally,

though this can be explained by the influence of dynamics on device behavior.

transitions is again affected by system dynamics as the bistable transitions also corre-

spond to a jump between cooling and amplification. When the power is swept from high

to low, λl goes from being blue detuned (in the bistable region) to being red-detuned,

resulting in a cooling to amplification transition, with good agreement between theory

and experiment. When the power is increased, the system goes from red-detuned to

blue-detuned and from amplification to cooling, forcing the transition to occur at a

lower power than predicted by theory. While both upward and downward transitions

are visible in the data in Fig. 2.14(b) for all powers, only the downward transition is

visible in Fig. 2.14(a) for λl > 1585.1 nm, as the upward transition occurs at P > 8

mW for these detunings, according to the theory.

When we decompose the perturbation to the optical resonance into its constituent parts,

we find optomechanically-induced bistability to be the dominant effect. For example, at

Pin = 7 mW, optomechanical effects correspond to a peak resonance shift ∆λOM = 0.5
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nm, while thermo-optic contributions lead to ∆λPT = 0.33 nm and photo-thermal-

mechanical contributions lead to ∆λPTM = 0.13 nm. Furthermore, the membrane is

mechanically pushed upward 4 nm by optomechanical effects and 1 nm downward by

photo-thermal-mechanical effects, resulting in a net maximum displacement of 3 nm.

These results hold promise for designing membranes which are less mechanically stiff

and generate larger repulsive forces by increasing Qopt. For instance, Qopt is currently

limited by fabrication imperfections and the finite size effect of the PhC and could be

boosted by simply increasing the number of unit cells in the membrane [64]. To maintain

the same compactness of the structure which is related to its dynamic range, the optical

design could be modified with a smaller lattice constant and/ or graded hole modulation

suggested by Srinivasan, et al.[67].

2.2.6 Conclusions

In conclusion, we demonstrated actuation of a micron-scale membrane with a repulsive

optical force using an extended guided resonance in a coupled silicon PhC membrane.

The net red-shift displayed in the optical resonance of our doubly-bonded SOI platform

is a result of an optomechanically-induced red-shift, a thermo-optic red-shift, and a

photo-thermo-mechanically induced blue-shift. Furthermore, simulations indicate that

absorption in our system is dominated by surface defects and adsorbents, resulting

in a linear absorption coefficient two orders of magnitude larger than that expected

from bulk silicon. By minimizing these effects through fabrication process and design

modifications, we can further isolate and exploit the unique optomechanical properties

of this platform. Since multi-photon nonlinearities do not occur until the excitation

power exceeds ≈ 1 W, the extent of pulling of the PhC membrane can be many tens
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of nanometers. Our silicon-based device provides a simple, non-intrusive solution to

extending the actuation range of MEMS devices.
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Surface Plasmons

3.1 Surface Plasmon Waveguide Forces

3.1.1 Overview

We analytically investigate the forces due to Surface Plasmon Polariton (SPP) modes

between finite and infinitely thick metal slabs separated by an air gap. Using the Drude

model and experimentally determined values of the dielectric functions of gold and silver,

we study how frequency dispersion and loss in the metals affects the behavior of the SPP

modes and the forces generated by them. We calculate the force using the Maxwell Stress

Tensor for both the attractive and repulsive modes.

3.1.2 Introduction

Recent applications for harnessing the energy of light has explored the nature of radia-

tion pressure in high Q-factor microresonators [10, 68], negative index systems [69, 70],
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metamaterials [71], photonic crystals [72] and in dispersive dielectrics [70, 73, 74]. Ad-

ditionally, studies have explored the evanescent wave bonding and antibonding between

parallel dielectric optical waveguides [9, 12] and microresonators [37] and the enhance-

ment of radiation pressure in waveguides due to slow-light effects [75].

Surface Plasmon Polaritons (SPPs) offer another avenue for generating mechanical mo-

tion from light [76]. SPPs are the result of coherent coupling of photons to free electron

oscillations at the boundary between a metal and a dielectric. A significant amount of

work has been devoted to studying the coupling of SPPs on surfaces that are in close

proximity to one another [77, 78]. Long Range Surface Plasmon Polaritons (LRSPPs)

[79–81], which result from the coupling of SPPs on opposite surfaces of a thin – on the

order of the skin depth – metal slab in what is known as the Insulator-Metal-Insulator

geometry (IMI), can propagate for distances up to 1 cm when excited at near-infrared

frequencies [82]. SPP-induced field enhancement in gaps between metallic nanoparticles

[83, 84] and between large planar surfaces in the Metal-Insulator-Metal (MIM) geometry

[85–87] have been used for Surface Enhanced Raman Spectroscopy (SERS) [88–90] and

the creation of nanoantennas [91].

The forces on metal and dielectric nanoparticles generated by SPP excitation on planar

metal surfaces have previously been studied [92–96]. Progress has also been made on the

nature of SPP forces in metal nanoparticle clusters [62, 97–100], though to our knowl-

edge, no work thus far has addressed the forces between planar metal surfaces. In this

paper we analytically investigate the forces generated by SPPs in the two-dimensional

MIM and Insulator-Metal-Insulator-Metal-Insulator (IMIMI) geometries in the cases in-

volving both “lossless” and lossy metals.

This chapter is structured as follows: in section 3.1.3, we derive the expressions for the
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dispersion of the SPP modes in idealized metal-dielectric systems. We compare the SPP

dispersion using the Drude model for the dielectric function of the metal to the SPP

dispersion calculated with the tabulated dielectric data of silver and gold from Palik

[101]. In section 3.1.4, we calculate the forces in the IMIMI geometries, and in section

3.1.5, we discuss the characteristics of the force curves the and applications of SPP

waveguide forces.

3.1.3 Calculation of the Dispersion of SPP Waveguides

SPPs are transverse magnetic (TM) polarized modes that exist at the interface of two

materials when the real part of the electric permittivity, ε(ω), changes sign across the

interface. The most common example of such a system is the boundary between a

metal and a dielectric at optical frequencies. The field profile of an SPP at an interface

is a solution of the wave equation,
(
∇2 − [µε(ω)]−1∂2/∂t2

)
E(r, t) = 0, where µ is the

magnetic permeability and is equal to the permeability of free space, µ0, for nonmagnetic

materials at optical frequencies, and E(r, t) is the electric field. When ε(ω) changes sign

across an interface, the continuity of the normal component of the displacement vector,

D(r, t), implies a solution with evanescent fields on both sides of the interface.

Using the coordinate system of Fig. 3.1, we express the electric field as E(r, t) =

E0exp(ik · r− iωt), where k = k0nr̂ = kzẑ + κŷ is the wavevector of SPPs, −ẑ is the

direction of propagation and

k2
0n

2 = k2
z + κ2. (3.1)
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Figure 3.1: The Metal-Insulator-Metal (MIM, (a)) and Insulator-Metal-Insulator-
Metal-Insulator (IMIMI, (b)) geometries. ε1 is the electrical permittivity of the metal
and ε2 is the permittivity of the dielectric. The roman numerals in the IMIMI geometry
correspond to the regions defined in Eq. 3.3. In both geometries, the origin is placed at
the center of the dielectric gap of width 2w, and SPP propagation is in the -z-direction

in the calculations.

In Eq. (3.1), k0 = ω/c, n is the refractive index of the medium, kz is wavevector in the

direction of SPP propagation, which is conserved across the interface. We can write kz

as β+ iα, where β is the propagation constant and α is the loss factor. Im{κ} > Re{κ}

for SPPs. For convenience, we define ky ≡ iκ so that for SPPs we can rewrite Eq. (3.1)

as

k2
0n

2 = k2
z − k2

y. (3.2)

Using these conventions, we can calculate the field profiles for SPPs supported in the

two geometries shown in Fig. 3.1. The subscripts 1 and 2 will always be used to denote

the metallic and dielectric regions, respectively in the equations throughout this paper,

as labeled in Fig. 3.1.

The SPP fields in the IMIMI geometry can be expressed by the following set of equations:
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Hx (y, z, t)=



A exp (−ky2y) i. y > d+ w

B exp (−ky1y) + C exp (ky1y) ii.w < y < d+ w

D exp (−ky2y) + F exp (ky2y) iii.−w < y < w

G exp (−ky1y) +H exp (ky1y) iv.−(d+ w) < y < −w

J exp (ky2y) v. y < −(d+ w)

(3.3)

Ey (y, z, t)=− kz
ωε
Hx (y, z, t) (3.4)

Ez (y, z, t)=
1

iωε

∂

∂y
Hx (y, z, t) (3.5)

where A . . .J are the field amplitudes which satisfy the boundary conditions for the

fields, ky1, ky2 are the y-components of the k-vectors in the two materials, and the factor

exp [−i(ωt+ kzz)] has been dropped from the expressions for clarity. The equations for

the MIM geometry are obtained by taking d→∞.

At interfaces between nonmagnetic materials, Ez and Hx are continuous. Because of

the symmetry of the IMIMI structure, there are two independent solutions which satisfy

its boundary conditions: one corresponding to D = F and one to D = −F . We chose

to define the overall mode symmetry in terms of the parallel electric field component,

Ez, which matches the symmetry of the charge distribution in the structure. Thus,

D = −F corresponds to symmetric modes and D = F corresponds to antisymmetric

modes. Solving the system defined by Eq. (3.3)-(3.5) and the boundary conditions for

the antisymmetric modes, we find the following relation:

ky2ε1
ky1ε2

tanh(ky2w)=−


ky1

ε1
sinh(ky1d) +

ky2

ε2
cosh(ky1d)

ky1

ε1
cosh(ky1d) +

ky2

ε2
sinh(ky1d)

 . (3.6)
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When combined with Eq (3.2) for each of the two media, Eq. (3.6) gives a transcendental

equation for the dispersion, ω(kz). The dispersion relation for the symmetric modes is

given by replacing tanh(ky2w) with coth(ky2w) in the left hand side of Eq. (3.6). We

find that Eq. (3.6) and its symmetric counterpart each give rise to two fundamental

solutions corresponding to a SPP mode.

These four IMIMI geometry modes – two symmetric and two antisymmetric – represent

the couplings between the four metal-dielectric interfaces in the geometry. To under-

stand these modes, it is helpful to treat the geometry as coupled IMI SPP waveguides,

as shown in Fig. 3.2. The Ez field profiles of the two LRSPP modes (Fig. 3.2(a)) are

antisymmetric with respect to the center of the metal slabs, and can couple together

symmetrically (Fig. 3.2(b)) and antisymmetrically (Fig. 3.2(c)). We refer to these

modes as Sa and Aa, respectively, where the capital character denotes the overall sym-

metry of the mode and the subscript corresponds to the symmetry of the constituent

IMI waveguide modes.

IMI waveguides also support Short Range Surface Plasmon Polaritons (SRSPP), which

have shorter propagation lengths due to a larger mode overlap with the metal slabs

and have symmetric Ez field profiles with respect to the center of the metal slab (Fig

3.2(d)). Two SRSPP waveguide modes will couple symmetrically (Fig. 3.2(e)) and

antisymmetrically (Fig. 3.2(f)). These modes are referred to as Ss and As, respectively.

In the MIM limit (d→∞), Ss and Sa are degenerate, so only one symmetric mode exists

(Fig. 3.2(g)). We refer to it here as S0, where the subscript 0 implies this degeneracy.

Similarly, the MIM geometry supports only one antisymmetric mode, A0 (Fig. 3.2(h)).

At this point, we can use the field symmetry to find the sign of the force generated by each

of our modes. Since a symmetric mode corresponds to symmetric charge oscillations,
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Figure 3.2: Ez field shapes and naming conventions for the modes supported by
the IMIMI and MIM geometries. (a) shows two isolated IMI stripe waveguides each
supporting a Long-Range Surface Plasmon Polariton (LRSPP) mode. When these
waveguides are brought in proximity to one another, LRSPP1 and LRSPP2 will couple
symmetrically (b) and antisymmetrically (c). The symmetric Short Range Surface
Plasmon Polariton (SRSPP) modes supported by the IMI waveguide (d) will also couple
symmetrically (e) and antisymmetrically (f). The MIM geometry supports only two

modes, known here as S0 (g) and A0 (h).

we expect modes with symmetric profiles to generate repulsive forces between the slabs.

Likewise, we expect the antisymmetric modes to be attractive.

In the limit of d→∞, the right hand side of Eq. (3.6) equals −1, yielding the transcen-

dental MIM dispersion relation. It is worth noting that by taking both d and w → ∞,

the single planar surface plasmon dispersion relation, β = (ω/c)Re[
√
ε1ε2/(ε1 + ε2)], is

recovered.

In order to solve the dispersion relation, we need to model the dielectric function of the

meal and the insulator. By letting the insulator be air, we can set ε2 = ε0. The simplest

model for the metal is the Drude model, which allows us to write the dielectric function

as:
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ε1(ω)

ε0
= 1−

ω2
p

ω2 + γ2
+ i

ω2
pγ

ω(γ2 + ω2)
. (3.7)

The Drude model treats a metal as a damped free electron gas where ωp = 2πνp =√
Ne2/ε0m0 is the plasma frequency and γ = Ne2/σ0m0 is the damping coefficient.

In these expressions, N is the density of free electrons in the metal, e is the electron

charge, m0 is the electron mass and σ0 is the DC conductivity of the metal. The damping

coefficient, γ, is very small compared to ωp for lightly damped systems like noble metals.

We find that we can simplify things further by ignoring the loss and taking only the real

part of Eq. (3.7), maintaining the key characteristics of the model and noting that below

ωp, ε
′′ � ε′. By substituting the real part of Eq. (3.7) into Eq. (3.6), we solve for the

dispersion relations of the modes described in Fig. 3.2, and plot β(ω) in Fig. 3.3 for

both the MIM and the IMIMI geometries, for gap widths of 25 nm and 100 nm.

The S0 mode (cyan lines, Fig. 3.3(a) and (c)) exhibits a cutoff and does not exist at

optical frequencies for values of w of interest to us, i.e., w < π/β, where π/β is equal

to half of the SPP wavelength. For this reason it will not be discussed in this paper.

The A0 mode wavevector (red lines) increases asymptotically toward a cutoff frequency,

νp/
√

2 = ωp/
√

8π2 = 1.54 × 1015 Hz for both gap widths plotted, though it approaches

the asymptote more quickly for larger gap widths.

Figure 3.3(b) and 3.3(d) show the frequency dispersion of the two symmetric modes –

Ss (blue lines) and Sa (cyan lines) – and the two antisymmetric modes – As (red lines)

and Aa (green lines) – for gap widths of 2w = 30 nm and 2w = 100 nm, respectively, and

a slab thickness of 20 nm in the IMIMI geometry. Comparing Fig. 3.3(b) to Fig. 3.3(a)

reveals that the IMIMI Sa and As modes have dispersive properties similar to those
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Figure 3.3: Drude Plasmon dispersion for the MIM ((a) and (c)) and IMIMI ((b)
and (d)) geometries for gap widths, 2w, of 30 nm (a) and (b) and 100 nm (c) and
(d), respectively, modeled with the plasma frequency and damping coefficient for gold:
ωp = 1.37×1016 s−1 (νp = ωp/2π) and γ = 3.68×1013 s−1. The values for silver do
not differ from these values enough to produce plots that are distinguishable from
those shown here. The thicknesses of the metal slabs in the IMIMI geometry are held

constant at 20 nm.

of the MIM S0 and A0 modes, respectively, particularly at small gap widths. For this

reason we will also not discuss Sa in this paper. As and the remaining IMIMI modes all

approach the νp/
√

2 asymptote. Aa exhibits the least dispersion at low frequencies, as

evidenced by the fact that below 1015 Hz, the wavevector remains close to the light line.

As the gap width increases, we see that the Aa and Sa modes and the As and Ss modes

each approach degeneracy (Fig. 3.3(c) & (d)). At large gap widths, the interaction of

the SPPs between the two slabs weakens, so the remaining two degenerate modes are

those of the IMI LRSPP and SRSPP.

The bulk plasmon appears in red in all four panels of Fig. 3.3 above the light line

(β > ω/c) and above the plasma frequency (νp = 2.18×1015Hz), where metals experience

ultraviolet transparency.
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Figure 3.4 shows the dispersion relations for the MIM (3.4(a),(c)) and IMIMI (3.4(b),(d))

geometries modeled with the tabulated date for gold from Ref. [101], and Fig. 3.5

shows the same modes modeled with the tabulated dielectric functions for silver (also

from Ref. [101]), for the same two gap widths depicted in Fig. 3.3. The data in Ref.

[101] is compiled from multiple researchers and from samples fabricated under different

conditions. The slight bump in the dispersion curves for SPPs on silver slabs (Fig. 3.5)

around 7× 1014Hz is due to a change in the data set tabulated by Palik, and is not due

to an actual physical characteristic of silver. The dielectric function – particularly the

imaginary part – of amorphous, polycrystalline and single crystal metals will be notably

different from one another, with a variance of up to 20% [102], so it is important to

realize that this tabulated data will not precisely match the actual dielectric function of

a fabricated metal film.

We note that in both of these figures, we have only plotted the A0 mode in the MIM

geometry (red lines, panels (a) and (c)) and the As (red lines, panels (b) and (d)) and

Ss (blue lines, panels (b) and (d)) modes in the IMIMI geometry. Once again, the MIM

S0 and the IMIMI Sa modes do not exist at optical frequencies for these gap widths

and the IMIMI Aa mode has such weak dispersion that the force generated by it will

be at least an order of magnitude smaller than the As and SS modes. We have also

included the Drude model dispersion (gray dots) for the two modes in both figures for

comparison.

Figure 3.4 shows that the Drude model is an excellent approximation for gold below

4×1014 Hz (λ0 ≈ 750 nm), but becomes increasingly worse above that frequency. The

reason is that the free electron model for a metal does not account for interband absorp-

tion, which begins for gold around the aforementioned frequency, and for silver around

6e14 Hz (λ0 ≈ 500 nm). When absorption increases to the point that ε′′(ν) = ε′(ν), the

58



Chapter 3. Surface Plasmons

0 1 2 3 4

x 10
7

0

2

4

6

8

10
x 10

14

β (m−1)

F
re

qu
en

cy
, ν

 (
H

z)
 

 

0 1 2 3 4

x 10
7

0

2

4

6

8

10
x 10

14

β (m−1)

F
re

qu
en

cy
, ν

 (
H

z)

 

 

0 1 2 3 4

x 10
7

0

2

4

6

8

10
x 10

14

β (m−1)

F
re

qu
en

cy
, ν

 (
H

z)

 

 

0 1 2 3 4

x 10
7

0

2

4

6

8

10
x 10

14

β (m−1)

F
re

qu
en

cy
, ν

 (
H

z)

 

 

A
0

Light Line

A
s

S
s

Light Line

A
0

Light Line

A
s

S
s

Light Line

IMIMI
2w = 30 nm

MIM
2w = 30 nm

MIM
2w = 100 nm

IMIMI
2w = 100 nm

(a)

(c) (d)

(b)

 ν
t

 ν
t

 ν
t

 ν
t

Figure 3.4: SPP Dispersion for the MIM A0 (red lines (a), (c)) and IMIMI As (red
lines, (b), (d)), and Ss (blue lines, (b), (d)) modes for gap widths of 30 nm (a) and (b)
and 100 nm (c) and (d), respectively, modeled with the dielectric data for gold, taken
from Ref. [101]. Grey dots represent the modes calculated with the Drude model. The

thicknesses of the metal slabs are held constant at 20 nm.

SPP mode switches from having normal dispersion to having anomalous dispersion. We

refer to this frequency, where dβ/dν = ∞, as the turnaround frequency, νt, which for

gold is approximately ≈ 6×1014 Hz. For silver, νt ≈ 9×1014 Hz.

In both the MIM and IMIMI geometries, the analysis of the modes in Fig. 3.3 for Drude

metals applies to gold and silver. The A0 wavevector between the slabs is larger below νt

when the gap width is small (Fig. 3.4(a), Fig 3.5(a)) than when it is large (Fig. 3.4(c),

Fig3.5(c)). In the IMIMI geometry, as the frequency increases toward νt, the wavevectors

of both modes become significantly larger than predicted by the Drude model. However,

they still behave in the same way. The Ss wavevector at a given frequency decreases

as the gap width decreases, while the As wavevector increases. While gold is more

dispersive than silver below ν ≈ 6×1014Hz, silver exhibits significant dispersion between

νt,Au and νt,Ag. Extremely large wavevectors are achievable in small-gap width (Fig.

3.4(a),(c)) silver-insulator plasmonic structures. In the IMIMI geometry, both As and
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Figure 3.5: SPP Dispersion for the MIM A0 (red lines, (a), (c)) and IMIMI As (red
lines, (b), (d)) and Ss (blue lines, (b), (d)) modes for gap widths of 30 nm (a) and (b)
and 100 nm (c) and (d), respectively, modeled with the dielectric data for silver, taken
from Ref. [101]. Grey dots represents the modes calculated using the Drude model.
The thicknesses of the metal slabs in the IMIMI geometry are held constant at 20 nm.

Ss are extremely dispersive beneath νt at small and large gap widths, while once again,

these modes approach degeneracy at large gap widths (Fig. 3.4(d), Fig. 3.5(d)).

Figure 3.6 further illustrates this point. The wavevectors of the three modes are plotted

using the Drude model and the Palik data for gold and silver as a function of gap

width, β(2w), at a freespace wavelength of λ0 = 600 nm. The effective mode index,

neff = βc/ω, is plotted along the right y-axis.

The wavevectors for the MIM A0 mode (Fig. 3.6(a)) calculated using the different mod-

els differ only slightly, with the wavevector calculated with Palik’s data for gold being

predictably larger due to the proximity of the operating frequency to νt. By contrast,

the IMIMI As wavevector (Fig. 3.6(b)) calculated with Palik’s gold data is significantly

larger than the wavevectors calculated with the Drude mode and Palik’s data for silver.

Comparing (a) to (b), however, reveals that As behaves like A0, especially when dis-

persion and loss are low, as is true for silver and Drude metals at λ0 = 600 nm. The
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Figure 3.6: SPP Wavevectors for the MIM A0 (a) and IMIMI As (b) and Ss (c)
modes for as the gap width is varied, modeled with the dielectric data for gold (green
lines) silver (blue lines), taken from Ref. [101], and the Drude model (red lines). The

thickness of the metal slabs in the IMIMI geometry is 20 nm.

similarity of these modes implies that the As mode represents a strong coupling between

the inner surfaces of the thin metal slabs of the IMIMI geometry, and that the mode’s

behavior is only weakly dependent on the thickness of the slabs.

Independent of the metal model, the wavevector of these two modes increases exponen-

tially, meaning the group velocity, vg = c(neff +ωdneff/dω)−1, decreases exponentially

as the gap width between the slabs decreases. Thus these two modes, for extremely

small gap widths, can generate slow light, as well as the enhanced field “hot spots” at

optical frequencies that has been described in previous MIM waveguide studies [86–89].

The Ss wavevector (Fig. 3.6(c)) decreases as the gap width decreases for all dielectric

models of the metal. This behavior, in contrast to that of the antisymmetric modes, is

asymptotic, not exponential. The wavevector, β, is largest between two gold slabs due

to the proximity of the operating frequency to νt. As the gap width approaches zero,

the Ss wavevector approaches the value of an IMI SRSPP waveguide of thickness 2d,

implying that this mode corresponds to a depletion of optical energy from in between
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the two slabs, in contrast to the enhancement from the antisymmetric modes. We will

discuss this further in section 4 when we analyze the energy profiles of the modes. We

can also see clearly that at large gap widths – approaching the region of weak coupling

between the two gold slabs – the As and Ss wavevectors approach the same value – the

value of the SRSPP wavevector in the IMI waveguide geometry.

3.1.4 Calculations of SPP Forces in the MIM and IMIMI Geometries

With the values of the SPP wavevectors obtained with Eqs. (3.2)-(3.6) (and plotted

in Figs. 3.3-3.6), we can solve for A,B, C,F ,G,H and J in terms of D. By taking

advantage of the symmetry of the geometry, we know that F = ±D, G = ±C, H = ±B,

J = ±A, where the ‘+’ solutions correspond to the antisymmetric modes and the ‘−’

solutions correspond to the symmetric modes. The antisymmetric solutions have the

following amplitudes:

A = 2D

ky1

ε1
cosh(ky2w)

ky1

ε1
cosh(ky1d) +

ky2

ε2
sinh(ky1d)

exp (ky2[w + d]) (3.8)

B = D
cosh(ky2w)

(
ky1

ε1
+
ky2

ε2

)
ky1

ε1
cosh(ky1d) +

ky2

ε2
sinh(ky1d)

exp (−ky1[w + d]) (3.9)

C = D
cosh(ky2w)

(
ky1

ε1
− ky2

ε2

)
ky1

ε1
cosh(ky1d) +

ky2

ε2
sinh(ky1d)

exp (ky1[w + d]). (3.10)

The symmetric solutions can be obtained by replacing cosh(ky2w) with sinh(ky2w) in

Eqs. (3.8)-(3.10).
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We can relate the field amplitudes for each of the modes to the power flowing in them

along the z-axis:

Pz = Re

{∫∫
S · ẑdxdy

}
(3.11)

where S = (1/2)E × H∗ is the Poynting vector for complex fields and * denotes the

complex conjugate. We can rewrite Eq. (3.11) as the power per unit waveguide width

(see Fig. 3.1) using the relationship between Ey and Hx expressed in Eq. (3.4) as

P =
Pz
W

= Re

{
kz
ωε

}∫ ∞
0
|Hx|2dy, (3.12)

then solve Eq. (3.12) for |D2| in terms of P:

|D|2 = ωP×{
β

ε2

[
|Ā|2 exp (−2k′y2[w + d])

2k′y2

+
sinh (2k′y2t)

k′y2

±
sin (2k′′y2t)

k′′y2

]

+
βε′1 + αε′′1
|ε1|2

×[( |B̄|2 exp (−k′y1[2w + d])

k′y1

+
|C̄|2 exp (k′y1[2w + d])

k′y1

)
sinh (k′y1d)

+
2Re{B̄C̄∗ exp[−ik′′y1(2w + d)]}

k′′y1

sin(k′′y1d)

]}−1

(3.13)

where X̄ ≡ X/D for X = A,B, C. Additionally, kyj ≡ k′yj + ik′′yj , and εj ≡ ε′j + iε′′j where

j = 1, 2, and ‘±’ corresponds to the antisymmetric and symmetric mode solutions,

respectively. We will hold P constant at 1 mW/µm throughout this paper.
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With the field amplitudes in terms of power, we can solve for the force using the Maxwell

Stress Tensor (MST). Starting with microscopic Maxwell’s Equations, we can calculate

the macroscopic dielectric properties of our system by representing the materials as an

ensemble of dipole resonators and taking the average of response. From this, a statement

of conservation of momentum can be obtained [74, 103]:

∫
A

←→
T (r, t) · n (r) da =

d

dt

∫
V

(E×H)

c2
d3r +

∫
V

[
(ρ−P · ∇) E +

(
J +

∂P

∂t

)
×B

]
d3r,

(3.14)

where

←→
T =

[
ε0EE + µ0HH− 1

2

(
ε0
∣∣E ·E∣∣+ µ0

∣∣H ·H∣∣)←→I ] (3.15)

is the MST, EE represents the outer product of the two vectors, P is the polarization

vector, with D = ε0E + P, ↔ denotes a second rank tensor and
←→
I is the identity

tensor. The first term on the right hand side of Eq. 3.14 can be expressed in terms of

the momentum of the electromagnetic field, Gfield, as

d

dt

∫
V

1

c2
(E×H) d3r =

dGfield

dt
, (3.16)

which is equal to zero when averaged over one period of oscillation. The second term

on the right hand side of Eq. 3.14 represents the mechanical force, and in a sourceless

geometry (ρ = 0,J = 0) is written as:
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〈F〉 =

〈
dGmech

dt

〉
=

∫
V

〈
(−P · ∇) E +

(
∂P

∂t

)
×B

〉
d3r, (3.17)

where 〈. . . 〉 denotes the time average. We can see from this equation that the force can

be expressed in terms of the local, oscillating charges and currents that result from the

polarizability of the material. However, since we do not care about the distribution of

the force density throughout our volume, we can use the left hand side of Eq. 3.14 to

find the force in the y-direction, between the metal slabs. We can write the force for the

symmetric mode as

〈Fy〉 =
µ0

2

(
1− |neff |2

)
|D|2 , (3.18)

and the antisymmetric mode forces as

〈Fy〉 =
µ0

2

(∣∣∣∣cky2

ω

∣∣∣∣2
)
|D|2 , (3.19)

where Eq. 3.19 becomes the negative of Eq. 3.18 in the lossless limit. Previous work [9,

75] showed that one could equivalently calculate the force between dielectric waveguides

by taking the spatial gradient of the electromagnetic energy:

F = −dU

dw

∣∣∣∣
kz

, (3.20)

where U = N~ω and N is the photon density in the mode, and the derivative is taken at

constant wavevector, kz, due to translational invariance of the modes. This method is

not accurate in plasmonic systems for two reasons. First, translational invariance along

65



Chapter 3. Surface Plasmons

the direction of propagation as well as conservation of the adiabatic invariant U/ω, which

is proportional to N , cannot be assumed any longer due to optical losses. Secondly, a

change in ω and the corresponding change in ε(ω) will lead to a shift in kz, making Eq.

3.20 nonphysical. Therefore, we must rely on the Stress Tensor to calculate forces.

The forces generated by the As and Ss modes in the IMIMI geometry are plotted in

Fig. 3.11(a) and (b) for the freespace wavelength λ0 = 600nm. We plot the force

between 20nm thick gold (green lines), silver (blue lines) and Drude metal (red lines)

slabs. In Fig. 3.11(c) and (d), we plot the As and Ss mode forces between silver slabs

at three freespace wavelengths: λ0 = 450 nm (cyan lines), λ0 = 600 nm (blue lines), and

λ0 = 1000 nm (magenta lines). We plot the force in units of pN/µm2 and note that

1 pN/µm2 = 1 Pa. We note that the modes in (a) and (b) of this figure correspond

directly to the modes plotted in Fig. 3.6 (b) and (c). Additionally, we have only plotted

the magnitudes of the forces, noting that the Ss mode is repulsive and the As mode is

attractive.

There are two distinct coupling regimes for the two modes. The first, at large gap

widths, is characterized by weak mode coupling and weak forces. The magnitudes of

the forces generated by both the As and Ss modes in this regime are identical, as seen

by comparing the force curves in Fig. 3.11(a) to those in Fig. 3.11(b) and the curves in

Fig. 3.11(c) to those in Fig. 3.11(d). The gap width at which the forces generated by

the As and Ss modes are no longer identical is on the order of 1µm.

The gap width at which the attractive and repulsive modes begin to behave differently

depends on the penetration depth of the mode in the dielectric, δ2 = 1/ky2, for large

w. This value is directly related to the point where the SRSPP modes on the two slabs

begin to overlap with each other. At λ0 = 600nm (Fig. 3.11(a) and (b)), δ2 is largest
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Figure 3.7: (a) and (b): The force from the SPP modes in the IMIMI geometry,
calculated using three models for the metal: tabulated data for gold (green lines) and
silver (blue lines), and the Drude Model (red lines) at an operating wavelength of
λ0 = 600 nm. Plotted in (a) is the magnitude of the attractive As mode force, while
the repulsive Ss mode force is plotted in (b). (c) and (d): The As and Ss mode forces
between silver slabs at λ0 = 450 nm (cyan lines), λ0 = 600 nm (blue lines), λ0 = 1000 nm
(magenta lines). The MIM A0 mode behaves like the IMIMI As mode, and so is not

plotted here.

for Drude metal slabs and smallest for gold slabs. For silver slabs (Fig. 3.11(c) and

(d)), δ2 is largest at λ0 = 1000nm and smallest at λ0 = 450nm. In both of these cases,

δ2 is largest when the operating frequency is closest to the turnaround frequency of the

metal, νt. This agrees with what we would expect by looking at Eq. 3.2, where we can

see that δ2 should vary inversely with β. We can also see that the force in this regime

at a given gap width is stronger when δ2 is larger.

The second coupling regime is at small gap widths, where the coupling between the two

slabs is strong and the attractive and repulsive modes behave quite differently. The
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force generated by the attractive, As, mode increases exponentially, but at a slower rate

than when the coupling was weak. The strength of the As mode force is only weakly

dependent on the dielectric function (Fig. 3.11(a)) and the freespace wavelength (Fig.

3.11(a)), with the stronger force occurring when the wavevector, β, is largest.

The force generated by the repulsive, Ss, mode peaks at the boundary between weak and

strong coupling and decreases as the slabs are brought closer together. At λ0 = 600nm

(Fig. 3.11(b)), the force peak is highest for gold and smallest for Drude metals. For

silver slabs (Fig. 3.11(d)), the force peak is highest at λ0 = 450nm and smallest at

λ0 = 1000nm. The peak is highest when β is largest, which occurs at frequencies closest

to νt for the metal being used.

The strength of the repulsive force in the strong coupling regime corresponds directly

to the change that the wavevector undergoes as the gap width changes, as shown in

Fig. 3.6(c). As the gap width 2w → 0, the wavevector asymptotically approaches the

value corresponding to a geometry where the two metal slabs are in contact, effectively

creating an IMI structure with a metal thickness 2d = 40nm. For silver and Drude

metals, the change in wavevector β is small, but it is significantly larger for gold slabs

at λ0 = 600nm.

3.1.5 Discussion and Conclusions

To understand the difference between in behavior of the As and Ss modes more con-

cretely, it is helpful to look at how the distribution of energy changes in the mode as the

gap width changes. The electromagnetic energy density in a linear, dispersive material

has been thoroughly discussed theoretically [7, 104, 105] and can be expressed as
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u(r) =
1

4
ε′
(

1 +
ω

ε′
dε′

dω

)
[E (r, t) ·E∗ (r, t)] +

1

4
µ0 [H (r, t) ·H∗ (r, t)] . (3.21)

We can solve this equation in the metal region using the Drude model and in the dielectric

region where dispersion is negligible (dε′/dω = 0) for the two modes at an operating

wavelength (λ0 = 450 nm) and plot the cross-sections for a range of gap widths in Fig.

3.8. We choose Drude metal slabs in Fig. 3.8 because they most clearly illustrate the key

features of the energy distribution within the modes. This analysis applies independent

of the metal or frequency, however, as long as it is below νt. The energy density inside

the metal slabs is plotted as having negative value for clarity.

Figure 3.8(a) shows the energy cross-sections for the As mode and Fig. 3.8(b) shows

the cross-section for the Ss mode. Note that the colormaps in the two panels are not

of the same scale. At large gap widths, the SPPs on the two metal slabs are essentially

uncoupled. The value of the energy density at the inner and outer surface of each metal

slabs is approximately equal for both modes, displaying little mode overlap and little

interaction between the two modes on the IMI waveguides.

At small separations, the strong coupling across all four metal-dielectric interfaces is

evident. In Fig. 3.8(a), as the gap width decreases below 100 nm, the energy density

in the As becomes concentrated in the space between the slabs, and becomes more

than an order of magnitude larger than the energy density outside the slabs. This

redistribution of energy, from outside to inside the slabs, is due to the antisymmetric

surface charge distribution across the gap, and explains the attractive nature of the As

mode. Additionally, the amount of energy carried in the metal increases at small gap

widths, corresponding to the higher neff and β seen in Fig. 3.6(b).
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Figure 3.8: IMIMI energy density cross-sections at λ0 = 450nm for geometries using
Drude metals. The plots show the energy density of the modes for gap widths between
10 and 400 nm. In (a), the cross-sections for the As mode. In (b), the cross-sections
for the Ss mode. Note that the colormaps in the two panels are not of the same scale.

Conversely, the energy density of the Ss mode (Fig. 3.8(b) decreases to zero as the

gap width decreases, while the amount of energy outside of the slabs increases. This

redistribution is due to the symmetric surface plasmon charge oscillations across the

gap, and corresponds to the repulsive nature of this mode. Furthermore, the energy

carried in the metal slabs simultaneously decreases, resulting in the smaller neff and β

seen in Fig. 3.6(c).

Nanomechanical forces will play important roles in future devices, both as an avenue

for discovery and as a hindrance. SPPs offer an on-chip, optical, solution, to actuation

and detection of motion in a nanomechanical resonator, for charge and mass sensing and

switching applications. Furthermore, at the length scales relevant to optical forces, one

will also have to contend with the Casimir force. For comparison, the Casimir force –

−~cπ2/3840w4 – between parallel ideal metal plates separated by 100 nm is 13 pN/µm2

and decreases to ≈ 5.5 pN/µm2 between two 20 nm thick gold slabs. This value is only

slightly smaller than the optical forces presented here at the power level assumed in this

paper. We can imagine a system, however, where we can control the power level of our
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excitation source, and selectively excite the repulsive Ss mode to cancel out the attractive

Casimir interaction. The ability to generate a net-neutral interaction between supported

metallic nanostructures offers new directions for preventing stiction in nanomechanical

devices.

We have shown detailed calculations of the dispersion of SPP modes in two geometries:

Metal-Insulator-Metal and Insulator-Metal-Insulator-Metal-Insulator. We have treated

the metals using the Drude model and with tabulated data for silver and gold from Ref.

[101]. From the wavevector dispersion, we have calculated the field profiles, energy, and

forces for the modes of these two geometries. Because of the significant dispersion of

gold at green-to-red visible frequencies, SPP mode forces are significantly larger than

seen with the Drude model and the tabulated data for silver. While the MIM geometry

supports attractive forces, the IMIMI geometry support modes with both attractive

and repulsive characteristics, making it potentially desirable for many nanomechanical

applications.

3.2 Spoof Surface Plasmon Forces

3.2.1 Overview

Spoof surface plasmon (SSPs) are surface plasmon-like waves that propagate along metal

surfaces with deeply sub-wavelength corrugations and whose dispersive properties are

determined primarily by the corrugation dimensions. Two parallel corrugated surfaces

separated by a sub-wavelength dielectric gap create a “spoof” analog of the plasmonic

metal-insulator-metal (MIM) waveguide. These structures, dubbed “spoof-insulator-

spoof” (SIS) waveguides, allow for the extension of plasmonic waveguiding concepts
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beyond visible and near-infrared (IR) frequencies and into the mid-IR and terahertz

frequency ranges, where light is harder to confine. Here, we study the attractive and

repulsive forces generated by the propagating “bonding” and “anti-bonding” waveguide

modes of the SIS geometry, respectively, and the role that surface structuring plays in

controlling the modal properties. By changing the depth of the grooves, strong attrac-

tive and repulsive optical forces between the surfaces can be generated at nearly any

frequency, paving the way for a new class of on-chip mid-IR and terhertz optomechanical

devices.

3.2.2 Spoof Plasmon Dispersion

Surface plasmons (SPs) are the result of the coupling between photons and free electron

oscillations in a metal at its interface with a dielectric and have been extensively stud-

ied over the past decade [106, 107]. SPs in metal-insulator-metal (MIM) waveguides

can lead to extreme sub-wavelength confinement [89], strong field enhancement [86],

and even negative refraction [108, 109]. Additionally, the field of active plasmonics has

seen significant growth in recent years as researchers have attempted to integrate plas-

monic elements into micro- and nano-electromechanical systems (MEMS and NEMS)

for applications including optical circuitry[110], ultrafast optical switching [111], and

optomechanics [112]. However, these studies have been limited almost entirely to the

visible and near-infrared (IR) frequency ranges where materials like gold, silver, and

transparent conducting oxides have strong plasmonic resonances [113, 114] but are also

highly lossy. Subwavelength corrugations on the surfaces of metals allow for the exten-

sion of these concepts to lower frequencies where absorption losses can be much smaller

[115–118]. Corrugated surfaces support SP-like waves known as spoof surface plasmon
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(SSPs), which are TM-polarized waves whose behavior depends primarily on the geom-

etry of the corrugations instead of the optical properties of the metal. The dispersion

equation for SSPs on a corrugated perfect electric conductor (PEC) has been analytically

calculated [116] as

κgz
k0

=
a

d
tan

(
k0
√
εdh
)

(3.22)

where k0 = 2π/λ0, λ0 is the free space wavelength, εd is the dielectric function of the

bounding dielectric, set here to 1 to represent air, κgz = ikgz =
√
β2 − k2

0εd, β is the

propagation constant, and h, d and a are defined in Figure 3.9(a) with d << λ0. The

solution to Eq. 3.22 is shown in Figure 3.9(b) for h = 2 µm, d = 0.5 µm, and a/d =

(0.002, 0.2, 0.4, 0.6, 0.8, 0.98) (dark to light green lines). The single SSP dispersion curve

is formed by the “anticrossing” of the dispersion curve of a plane wave propagating along

the corrugated surface and the curve corresponding to a localized λ/4 cavity resonance

of a single corrugation at the so-called spoof surface plasmon frequency (wavelength),

ωssp,0 = πc/2h (λspp,0 = 4h). Thus the SSP can be thought of as a propagating mode

when ω << ωssp,0 and a localized mode when ω ≈ ωssp,0 [117, 119], with the transition

between these two regimes becoming more gradual with increasing duty cycle a/d (Fig.

3.9(b)).

Two corrugated metal surfaces separated by a dielectric gap create a metamaterial analog

to the plasmonic MIM waveguide, which we refer to as a spoof-insulator-spoof (SIS)

waveguide (Figure 3.9(a)) [117, 120, 121]. The dispersion equation for this geometry

can be calculated using the transfer matrix method described in Refs. [116, 121], which

requires us to define an effective permeability and permittivity of the corrugated layer of

thickness h which is valid under TM excitation. We do this using two simple heuristics.
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Figure 3.9: (a): The coupled SSP waveguide geometry, with height h, period d, duty
cycle a/d, and gap g. The offset between the upper and lower grooves is represented
by dx. (b): The dispersion relation of an uncoupled SSP mode as determined by Eq.
3.22, for h = 2 µm, d = 0.5 µm and a/d = (0.002, 0.2, 0.4, 0.6, 0.8, 0.98). (c,d): The
bonding (red) and antibonding (blue) modes in a spoof-insulator-spoof (SIS) waveguide
for g = 0.4 µm (c) and g = 4 µm. For comparison, the modes of a MIM waveguide
consisting of artificial Drude metals with plasma frequency ωp =

√
2ωssp,0 are plotted

as faded dashed lines in (c) and (d).

First, we recall that the reflectivity of a layer is defined by its impedance η =
√
µs/εs.

For the corrugated layer, this must be equal to the duty cycle of the corrugations a/d,

since the PEC sections are perfectly reflective and the gaps are perfectly transmittive.

Second, the fraction of the light that is transmitted travels through the layer at c (with

ksz = k0) since the gaps are filled with air, implying that neff =
√
εsµs = 1. From these

two expressions, we can infer that εs = d/a and µs = a/d. Plugging these values into

the transfer matrix for the multilayer stack yields the dispersion relation [121]
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κgz
k0

=
εd
εs

tan
(
k0
√
εdh
)

tanh±1
(
κzg
)

(3.23)

where g is the gap in the waveguide and the ± corresponds to the bonding and anti-

bonding modes, respectively. These modes are plotted in Figure 3.9(c) and (d) as the

red (bonding) and blue (antibonding) lines for the values of h and d given earlier and

a/d = 0.5. For comparison, we also plot the bonding and antibonding modes of a non-

corrugated MIM waveguide modeled with a lossless artificial “Drude” metal (dashed

lines, εDrude = 1− ω2
p/ω

2, ωp =
√

2ωssp,0).

At small gaps (g = 0.4 µm, Fig. 3.9(c)), SSPs in the bonding mode behave like the

bonding-mode SPs in the MIM waveguide geometry, exhibiting strong dispersion and

approaching the asymptote at ωssp,0 as β → ∞. Spoof plasmons in the antibonding

mode, however, exhibit dispersive properties distinct from antibonding MIM-waveguide

plasmons. As g → 0, the SIS antibonding mode has nearly flat dispersion, corresponding

to nearly zero group velocity, with vg = dω/dβ → 0+, whereas the MIM-waveguide

antibonding mode has strong anomalous dispersion (dω/dβ < 0) at these gaps. At

large gaps (g = 4 µm, Fig. 3.9(d)), the SIS waveguide modes and MIM waveguide

modes are nearly identical, implying the “plasmon-like” designation is valid in this limit.

As g → ∞ the bonding and antibonding modes approach degeneracy, where the only

difference between the two modes is the relative phase of the waves on the two corrugated

surfaces. The bonding mode corresponds to in-phase waves, while the antibonding mode

corresponds to out-of-phase waves, with a corresponding field intensity node in the center

of the waveguide. We note that Eqs. 3.22 and 3.23 are valid only for SSPs on PECs

when β is less than π/d by approximately a factor of two, since we can no longer treat

the corrugated layer in the effective medium limit when the wavelength in the structure
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approaches the periodicity of the corrugations. Additionally, the preceding analysis

avoided the impact of losses that are present in systems involving real metals.

3.2.3 Spoof Plasmons on Real Metals

In order to account for all geometric and material effects, we use numerical techniques.

We simulate a single unit cell of an SIS waveguide with gold surfaces using the finite

element method as implemented in COMSOL Multiphysics, enforcing Floquet period-

icity at the unit cell boundaries, fixing the wavevector β in each individual simulation.

Because COMSOL does not account for material dispersion, we employ an iterative

method to accurately determine the eigenfrequencies of the geometry. We start by solv-

ing Eq. 3.23 for a fixed β to obtain ωb0 and ωa0 , the initial guesses for the resonant

frequencies of the bonding and antibonding modes, respectively and use these values to

obtain εAu(ωb0) and εAu(ωa0) from the Drude model for gold (εAu(ω) = 1−ω2
p/(ω

2 + iγω)

with ωp/2π = 2.18e15 Hz, γ/2π = 4.34e12 Hz [112]). We then solve in COMSOL for the

bonding and antibonding modes separately, obtaining our new eigenfrequency guesses,

ωb1 and ωa1 . We then repeat this process until the values of the eigenfrequencies converge

(i.e.: (ωb,an − ωb,an−1)/ωb,an < 0.01). We do this at values of β ranging from 0.05π/d to

0.55π/d. The resulting dispersion relations are plotted in Figure 3.10(a) for g = 0.4µm

(circles) and g = 4µm (squares).

Comparing Fig. 3.10(a) to Fig. 3.9(c,d), we see that the real-metal dispersion relations

are qualitatively similar to the dispersion relations of SSPs on PECs, though the differ-

ences are noteworthy. First, light inside the grooves does not propagate at c (i.e., ksz 6= k0,

as we assumed earlier). Instead, the grooves act as short MIM waveguides of gap a and

have a corresponding effective mode index, neff > 1[122, 123] which changes the cavity

resonance condition. Second, the periodicity of the structure introduces a band edge at
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Figure 3.10: (a) Dispersion curves for the bonding (red lines) and antibonding (blue
lines) modes of the SIS geometry simulated with corrugated gold surfaces corresponding
to the geometry in Fig 1(a). Modes were solved at g = 0.4µm (circles) and g = 4µm
(squares), corresponding to the parameters in Fig. 1(c) and (d). (b) Electric field
profiles of a unit cell of the structure for the bonding and antibonding modes at g =

0.4µm and β = 1µm−1

βedge = π/d causing the spoof plasmon frequency to occur at ωspp = ω(βedge) < ωssp,0.

We also note that our results also show a negligible dependence on the lateral offset

dx between the corrugations on the two surfaces (Fig. 3.9(a)), confirming that the

structures are in the effective medium limit.

Simulations of the field profiles (Fig. 3.10(b)), at g = 0.4µm and β = 1µm−1 illustrate

the differences between the two modes. The bonding mode is well confined within the

small gap between the two corrugated surfaces and is dominated by the y-component of

the electric field, similar to a parallel plate capacitor, or the TEM mode of a parallel-

plate waveguide[124]. Like in a capacitor, the surface charge distribution with respect

to the center of the gap is antisymmetric and corresponds to an attractive force between

the surfaces. Light in the antibonding mode, on the other hand, oscillates back and

forth within the deep corrugations and has symmetric charge symmetry with respect to

the gap, resulting in a repulsive force.

We can calculate the force between the two spoof surfaces by integrating the Maxwell

Stress Tensor (MST) across a plane P separating the two surfaces [7],
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F =

∫
P

←→
T · nda, (3.24)

where n is normal to P and
←→
T is the second-rank MST expressed as

←→
T =

[
εdEE + µ0HH− 1

2

(
εd
∣∣E ·E∣∣+ µ0

∣∣H ·H∣∣)←→I ], (3.25)

with E and H as the electric and magnetic fields, respectively. We plot the magnitude

of the force |Fz| as a function of g in Figure 3.11(a) for the bonding (red lines) and

antibonding modes (blue lines) at λ = 10 µm (solid lines, circles), 11 µm (dashed lines,

squares), and 12 µm (dash-dot lines, triangles), normalizing the force per unit area to

the power flowing through the waveguide. At large gaps (g > λ/4), the bonding and

anti-bonding forces have approximately the same magnitude but opposite sign, corre-

sponding to gaps where the dispersion curves approach degeneracy (see inset). As the

gap decreases, the splitting between the modes increases and the bonding and antibond-

ing force magnitudes diverge. The repulsive force generated by the antibonding mode

grows asymptotically as β → 0 and the separation approaches the value corresponding

to cutoff for the mode gc. gc corresponds to the lowest order mode of a vertical cavity

defined as the range extending from the bottom of a corrugation on the bottom surface

to the top of a corrugation on the top surface, such that at small gaps, where the cou-

pling between neighboring grooves can be ignored, cutoff occurs when λ/2 ≈ 2h + g.

(At larger gaps, the full structure of the surface must be taken into account, making

this formula illustrative, but imprecise.) The bonding mode also experiences a cutoff

as β → π/d due to the growth of the band gap, though this occurs at a much smaller

separation. The force generated by the bonding mode increases exponentially as the

gap width decreases, corresponding to the increase in field intensity in the gap, and
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Figure 3.11: (a): Attractive (red lines) and repulsive (blue lines) forces generated by
the bonding and antibonding modes, respectively, at three wavelengths: λ = 10 µm
(solid lines), 11 µm (dashed lines), and 12 µm (dash-dot lines), as a function of gap
width. The wavevectors of these modes are plotted in the inset, showing degeneracy at
large gaps, and splitting at small gaps. The antibonding mode has a clear cutoff gap.
(b): The propagation length of the bonding (red) and antibonding (blue) modes plotted
in (a). The propagation length of the bonding mode deceases as the gap decreases, while

the propagation length of the antibonding mode increases as it approaches cutoff.

the build-up of surface charge along the surface, mimicking the properties of the MIM

waveguide bonding mode [112]. Both modes are capable of generating forces orders of

magnitude larger than radiation pressure, which is 6.67pN/µm2 per mW.

3.2.4 Discussion and Conclusions

Applications of these structures, like conventional surface plasmon waveguides, will ulti-

mately be limited by absorption. MIM waveguides that achieve subwavelength confine-

ment [89] have propagation lengths on the order of only one free-space wavelength at

visibile and near-IR frequencies, introducing significant heating and limiting the possibil-

ities for optical interconnects or active-plasmonic devices at these frequencies. Further-

more, other options for mid-IR and terahertz surface waveguidng, such as surface phonon

polaritons, still suffer from significant absorption due to their proximity to a material

resonance [125]. We quantify the absorption in our modes by calculating the propagation

length L from the complex eigenfrequency given by our simulations, ω̃ = ω′ + iω′′ at a

fixed and purely real value of β. The resulting expression, L−1 = −ω′′/2vp, is plotted in
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Figure 3.12: Spoof structure (left) and example of a spoof-equivalent structure (right)
to simplify fabrication. The spoof-equivalent structure consists of resonant metallic

elements separated from a metal back-plane by a thin dielectric spacer layer.

Fig 3.11(b) for the modes in (a). Much like standard surface plasmons, the propagation

length of the bonding mode (red lines) decreases as the mode confinement increases, and

is longest farther from the plasmon resonance frequency (i.e. longer wavelengths). The

propagation length of the antibonding mode (blue lines), on the other hand, increases as

it approaches cut-off. Recalling the plot in Fig. 3.10(a), this can be understood as the

transition of the mode from plasmonic to photonic, as the wavevector (inset, Fig. 3.11(a)

moves from outside to inside the light cone. Even when g << λ0, both modes can prop-

agate distances longer than 10λ0, with the antibonding mode propagating longer than

100λ0 as it approaches cutoff, making these modes viable for waveguiding applications.

Experimental realization of these structures will be necessary to demonstrate a new

array of optomechanical devices at mid-IR and terahertz frequencies. While single SSP

waveguides have been demonstrated [118–120], none have truly been in the metamaterial

limit (d < λ/10), as the aspect ratio of the grooves required to reach this limit is difficult

to achieve experimentally. However, structures equivalent to spoof surfaces have been

demonstrated by placing a periodic array of metallic elements, such as patch antennas

[126] or potentially v-antennas [127], above a metallic backplane, separated by a thin

dielectric layer (Fig 4). Instead of controlling the depth of the grooves to determine the

SSP resonance, the shape of the metallic elements changes the phase response of the

surface, and thus also controls the resonance condition.
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In conclusion, we have described the dispersion of spoof surface plasmon modes in spoof-

insulator-spoof waveguides, demonstrating that MIM waveguiding concepts can be ex-

tended into the mid-IR and terahertz frequency ranges where losses are comparatively

smaller. We investigated the forces generated by spoof surface plasmons and showed

that forces greater than radiation pressure are attainable for highly confined mid-IR op-

tical fields. The attractive and repulsive forces generated within SIS waveguides have a

wide range of applications, as they extend optomechanical functionality to any frequency

range while maintaining tight confinement of the optical field.

3.3 Repulsive Surface Plasmon Forces in Fluids

3.3.1 Introduction

Surface plasmon (SP) radiation forces were first experimentally investigated in the con-

text of fluids. Volpe, et al. [93] published the first study on the forces from SPs on a

glass sphere near a gold surface in water, using the so-called Kretchman configuration,

shown in Figure 3.13. In this geometry, SPs can be excited at the gold-water interface

through a prism, as long as the refractive index of the prism (np) is higher than that

of the fluid (nf ) and the gold layer thickness is on the order of the skin depth so that

light can couple from one side of the film to the other. Under these conditions, surface

plasmons can be excited according to the following expression:

ω

c
np sin(θ) = ωc

√(
εf εg
εf + εg

)
(3.26)

where θ is the angle between the incident field and the interface normal, and εi = n2
i

for i = g, f . Volpe et al. demonstrated that plasmons coupled in this matter were
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Figure 3.13: Kretchmann geometry. A high refractive index prism is coated with
a thin metallic layer whose thickness is near the skin depth of the metal (typically
20 nm < t < 50 nm. Transverse-magnetic polarized light incident on the metal film
through the prism at the resonance angle θspp will excite SPPs on the top surface of
the metal. Dielectric particles near the surface will interact with the surface plasmon
field, scattering some of the light but also experiencing a force from the field gradient.

responsible for two forces on the particles in the fluid. First, a force due to light scattering

off of the particle worked to push the particle along the surface, while the gradient

worked to attract the particle to the surface. While some questions were raised about

the methodologies used in analyzing this data, subsequent work by this and other groups

demonstrated the power of surface plasmon forces in fluids [94, 128, 129].

In previous experiments, glass or polymer particles with refractive indexes around n =

1.5 were studied in water, which has a very low refractive index (n ≈ 1.33) at visible

frequencies. Recalling Eqs. 1.1 and 1.2, we see that the sign of the gradient force is

a direct consequence of this refractive index contrast: the sign of the polarizability α

of the particle depends on the relative values of the dielectric functions of the particle

and its surrounding environment. By simply inverting this relationship, we can generate

a repulsive gradient force, akin to a negative optical trap [130, 131]. Negative plas-

mon trapping - or negative total internal reflection trapping - have yet to be explored

experimentally, yet it offers new avenues for spectroscopy using the optical near field,

particularly in applications which wish to avoid direct interaction with the substrate. By
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using repulsive forces, an optical field can effectively act as a buffer between the particle

and the surface, where the minimum particle-substrate separation is determined by the

power in the optical field.

3.3.2 Beyond the Dipole Limit: Forces on Large Particles

We chose to explore repulsive surface plasmon forces on particles larger than the optical

wavelength such that Eqs. 1.1 and 1.2 fail to quantitatively represent the behavior of

the particle in the fluid. In particular, Eqs. 1.1 and 1.2 assume that the particle does

not significantly perturb the optical field. This assumption does not hold when the

decay length of the plasmon Ld is smaller than the particle radius R but larger than the

particle-substrate separation t. To get an analytical understanding of the behavior of

the system in this limit, we can look at the 1-D case, where a metallic half-space and a

solid-dielectric half-space are separated by a fluid of thickness t, as shown in Fig. 3.14.

Using the transfer matrix method discussed in Section 3.2, we can write the dispersion

relation for this geometry as

1 + tanh(ky2t)

(
ky2

ε2

)2

+
ky1ky3

ε1ε3

ky2ky3

ε2ε3
+
ky1ky2

ε1ε2

= 0 (3.27)

where kyi =
√

(β2 − (ω/c)2εi), i = 1, 2, 3, β is the wavevector, and ε1, ε2, and ε3 are

defined in Fig. 3.14.

For the following analysis, we chose to study a geometry consisting of a silicon dioxide

particle (nSiO2 =
√
εSiO2 = 1.45) in bromobenzene (nbromo = 1.55) above a gold film

(nAu = 0.19 + 3.1i) on a high-index glass prism (nprism = 1.78). We plot the dispersion

relation calculated using Eq. 3.27 in Figure 3.15 for two different fluid thicknesses:
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Figure 3.14: (a) Geometry consisting of a dielectric particle submerged in a fluid
above a metallic surface such that dielectric function of the fluid is larger than that
of the particle ε2 > ε1. (b): 1-D equivalent of the geometry in (a). As long as the
particle radius is larger than the optical wavelength, one can reasonably approximate

the cyllender-plate geometry as a plate-plate geometry.

t = 20 nm (red line) and t = 600 nm (blue line). The air light line (β = ω/c – solid

black line), glass light line, (β = ωnglass/c – large dashes) and bromobenzene light

line (β = ωnbromo/c (small dashes)) are plotted for reference. The range of frequencies

plotted corresponds to visibile and near-IR wavelengths between 470 nm and 1250 nm.

Across this range, gOM = dω/ds < 0 (red-to-blue colored arrow), corresponding to a

repulsive interaction. We plot the force F (Eq. 3.20 and Section 2.1.1) per unit optical

power as a function of gap for three separate wavelengths: λ = 633 nm (red cirlces), 750

nm (blue squares), and 950 nm (green triangles) in Figure 3.16.

The trends shown in Fig. 3.16 reveal that at small separations, shorter wavelengths

produce greater force, while at larger separations, longer wavelengths produce greater

force, with an exponential dependence on the separation. This is an intuitive result when

we consider that the main contributor to the force is the strength of the field gradient.

Longer wavelengths have a longer evanescent decay length l = 1/ky2, resulting in a

more gradual gradient but longer reach than shorter wavelengths, which have a short,

sharp, evanescent fields in the fluid. At visible frequencies (λ <750 nm), the repulsive

plasmon gradient force out-performs radiation pressure (Frad = 2RiP/c, where Ri is the
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Figure 3.15: Dispersion relation for the repulsive plasmon geometry between ω =
1.5e15 rad/sec (λ = 1250 nm) and 4e15 rad/sec (470 nm). Gold has a surface plasmon
resonance near λ = 450 nm, causing strong dispersion at the longer wavelengths near
this resonance. The air light line (solid black line), glass light line (dash-dot line) and
bromobenzene light line (dashed line) represent the speed of light in each medium. The
dispersion curve of the plasmon when the gap is small (t = 20 nm, red line) follows
the glass light line, while the dispersion curve at large gaps (t = 600 nm, blue line)
follows the bromobenzene light line. At constant wavevector, the resonance frequency
decreases as the separation increases (red-to-blue arrow), implying a gOM < 0 and a

repulsive force.

reflectivity of the glass-bromobenzene interface) by as much as an order of magnitude. At

close separations, the plasmon field is almost entirely contained within the sold material,

and the dispersion curve approaches that of a system in which there was no fluid at all.

In this limit, the electric field amplitude at the fluid-dielectric interface is approximately

equal to that on the metal-fluid interface, corresponding to the flattening of the force

curves seen in Fig. 3.16.

While this 1-D simulation presents a rather simplistic picture of the sphere-plate geom-

etry, the analysis provides results consistent with more rigorous numerical calculations

and simulations. A 2-D geometry, Fig. 3.17, was modeled in COMSOL Multiphysics

in order to account for the effects of the prism and of the curvature of the particle.

The geometry consists of a infinite dielectric cylinder (directed in the plane of the page)

with a 2.5 µm radius above a high-refractive index (np = 1.78) material coated with
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Figure 3.16: Repulsive plasmon forces. At visible frequencies, (λ =633 nm – red cir-
cles, λ =750 nm – blue squares), the surface plasmon force is capable of out-performing
radiation pressure by an order of magnitude at separations smaller than 250 nm. At
near-IR wavelengths (λ = 950 nm – green triangles), the plasmon force is smaller than
radiation pressure but can generate larger forces at larger separation due to the longer

evanescent tail of the field.

a 50 nm thick layer of gold. The simulations looked at modes at λ = 1500 nm propa-

gating normal to the simulation plane and included periodic boundary conditions to in

the x-direction to approximate the effect of an infinite surface in the x-direction. (The

simulation geometry was made wide enough so that there would be no coupling across

the periodic boundary.) Fig. 3.17 shows electric field profiles for two different values

of t: 3 µm (a) and 200 nm (b). Both modes leak out into the prism, indicating that

the mode can be coupled into through the prism in the Kretchmann geometry. In (a),

the cylinder is well above the substrate and does not significantly perturb the evanes-

cent plasmon field in the bromobenzene. In (b), the perturbation is quite strong. As

discussed in Chapter 1, this effect can be understood by looking at the dipole picture

of materials. The surface plasmon induces dipoles in both the fluid and the cylinder,

though the fluid dipoles are stronger due to its higher refractive index. As a result, the

strong displacement field generated in the fluid effectively induces an out-of-phase dipole

in the particle at the fluid-particle interface, resulting in a screening of the field inside
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Figure 3.17: Field perturbation by a low index dielectric particle in bromobenzene
above a gold coated glass prism. (a) A particle high above the substrate results in only
a weak perturbation to the field. (b) A particle near the surface strongly perturbs the
field, pushing the field concentration away from the particle. The force in both cases
can be calculated by integrating the Maxwell Stress tensor on a boundary around the

particle (square box around circle).

Figure 3.18: (a) Plasmon force on a glass particle in bromobenzene calculated using
the Maxwell Stress Tensor on the boundary seen in Fig. 3.17 as a function of separation.
The force decreases at small separations, differing from the curves in Fig. 3.16 due to
finite size effects of the particle. (b) Equilibrium separation as a function of input power
formed by the repulsive plasmon force and gravity, calculated using the proximity force

approximation for an R=2.5µm particle.

the particle and a repulsive interaction.

Rather than use the Eq. 3.20 to calculate the force from the change in free energy as we

did previously, we instead calculate the force via the Maxwell Stress Tensor on a square

boundary surrounding the cylinder (as shown in Fig. 3.17). The results, shown in Fig.
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3.18(a) as a function of separation, qualitatively agree with the analytic calculations

for separations larger than 1 µm. At smaller separations, finite size effects come into

play, causing in the magnitude of the force to decrease slightly. This decrease can be

understood via the Proximity Force Approximation (PFA), which says that the force

between a sphere and a plate can be calculated by representing the spherical surface

as a stepped planar surface, as long as the t << R. Mathematically, the relationship

between the plate-plate force and the sphere-plate force calculated using PFA is

Fplate−plate
FPFA

=
3t

R
. (3.28)

This expression is illustrated in Fig. 3.19.

Figure 3.19: Graphical representation of the Proximity Force Approximation. The
force between a sphere and a plate (left) can be obtained from calculating the force
between two parallel plates (right) using Eq. 3.28 as long as s << R, allowing the

sphere-plate geometry to be solved analytically.

Therefore, it follows that as the plate-plate interaction flattens out as t→0, the sphere-

plate force should decrease in the same limit. Using this approximation, we can find

the equilibrium height of the cylinder above the substrate under the influence of the

plasmon force and gravity as a a function of optical power. The result is plotted in Fig.

3.18(b) for λ = 633 nm, showing a plasmon force which can overcome gravity at optical

powers greater than 1 mW.
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The repulsive plasmon force provides a unique new tool for investigating the behavior of

dielectric particles near - but not against a surface, by allowing the combination of cur-

rent surface plasmon resonance spectroscopy methods to be paired with optical trapping

to study binding mechanisms [132, 133] and interface dynamics [79, 134] of chemicals or

biomolecules. Furthermore, it allows for a kind of ”frictionless waveguiding,” where a

particle could be guided along a strip of metal on a surface without touching the metal

strip.
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The Casimir Effect

4.1 Introduction

The Casimir effect describes the force that arises between neutral objects from quantum

and thermal fluctuations of the electromagnetic field. Due to the presence of a finite

“zero-point” energy – i.e. the energy of a system in its quantum ground state – electric

dipoles in an ensemble will be in a state of constant flux, spontaneously jostling about in

space[135]. These spontaneous fluctuations generate fluctuating fields – exponential in

time rather than sinusoidal – which in turn induce dipoles moments in nearby particles.

These fluctuating fields must still obey the electromagnetic boundary conditions of their

environment set by Maxwell’s Equations. Hendrik Casimir predicted this effect based

on a simple model involving two parallel, thin, perfectly conducting plates in vacuum

separated by a distance s [136]. The boundary conditions of this system are simple:

electric fields normal to the plates go to zero at the plate-vacuum interface, restricting

modes within the gap which are evenly spaced in frequency: νn = cn/2s, where n =

0, 1, 2, 3, .... Outside of the plates, there are no such restrictions, resulting in a uniform
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Figure 4.1: Two parallel, perfectly conducting plates, seen at left, separated by a
distance s support equally space modes starting at ω0 = πc/s, separated by ∆ω = πc/s
and continuing to infinity. Decreasing the separation to s/2, as seen at right, results
in evenly spaced modes starting at ω=2πc/s and separated by ∆ω = 2πc/s continuing
to infinity. The narrower plates contain fewer modes than the wider plates due to the

lower density (larger spacing) and larger fundamental frequency.

continuum of modes. Inside the plates, as the separation decreases, the fundamental

frequency ω0 increases, as does the spacing between the modes, resulting in a mode

density which decreases with s, as pictured in Figure 4.1.

With this picture, we can think of the Casimir force heuristically. The modes outside

of the plates exert a pressure on the plates which is out of balance with the pressure

exerted by the modes inside the plates. This imbalance increases as the separation

decreases, leading to an exponentially larger force as the separation decreases. Casimir

demonstrated that the pressure between these plates could be written as

Pc =
~cπ2

240s4
. (4.1)

Lifshitz, Dzyaloshinskii and Pitaevskii later [137, 138] generalized Casimir’s formulation,

deriving an analytic expression for calculating the force between two parallel plates of

any isotropic material known as the Lifshitz equation. The formulation relates the

fields generated by the spontaneous dipole fluctuations to the dielectric functions of
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the materials in the system. Because these fluctuations are broad-band - they happen

spontaneously at all time scales - this formulation requires information on the entire

dielectric function of the material. Additionally, the fields emitted by spontaneous dipole

fluctuations are exponential rather than sinusoidal in time. We can thus study the system

at imaginary frequencies ξ ≡ iω, where the dielectric function at imaginary frequencies

ε(iξ) can be obtained from ε(ω) using the Kramers-Kronig relation:

ε(ξ) = 1 +
2

π

infty∫
0

ωIm[ε(ω)]

ω2 + ξ2
dω. (4.2)

The Lifshitz equation finds the Helmhotz free energy G of a system consisting of two

thick slabs of identical isotropic material separated by a distance s and is written as:

G(s) =
kbT

2π

∞∑′

m=0

∞∫
0

kdkln
[(

1−
[
rTE2,1

]2
e−2k2s

)(
1−

[
rTM2,1

]2
e−2k2s

)]
(4.3)

where c and kb are the speed of light and Boltzmann’s constant, respectively, T is the

temperature of the system, rTE2,1 and rTM2,1 are the TE and TM reflection coefficients for

the air-slab interface given by

rTE2,1 =
k1 − k2

k1 + k2
(4.4)

and

rTM2,1 =
k1ε2 − k2ε1
k1ε2 + k2ε1

. (4.5)
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In Eqs. 4.3-4.5, subscript 1 refers to the slab material while subscript 2 refers to the gap

material and

ki =

√
k2 +

εiξ2
m

c2
(4.6)

is the wavevector component in layer i normal to the interface. The prime on the sum

in Eq. 4.3 indicates giving a half weight to the m = 0 term, which prevents double

counting the TEM mode contribution (where the TE and TM modes are degenerate).

We note that Eq. 4.3 is evaluated at discrete imaginary frequencies ξm = 2πkbT
~ m

(which appear in Eq. 4.6), known as Matsubara frequencies [137]. While it may seem

at first as though we are skipping over key information by summing over ξ rather than

integrating, recall that due to Eq. 4.2, the dielectric function at any one value of iξ

contains information about ε at all ω. Furthermore, this construction allows us to see

the connection between the underlying quantum and thermodynamic bases for Casimir

by relating discrete energy levels at ~ξm to the system’s thermal energy kbT [135].

The Casimir pressure between two parallel plates can be calculated by taking the spatial

derivative of the free energy,

Pcas =
1

A

dG

ds
, (4.7)

where A is the interaction area of the plates, and which is plotted in Fig. 4.2 for four

materials: gold (blue line), silicon nitride (green line), high and low-doped silicon (red

and cyan lines, respectively), and silicon dioxide (magenta line). The electric permit-

tivities of the materials as a function of imaginary frequencies are plotted in the inset,

and monotonically decrease as a function of iξ. The Casimir force is strongest when the
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Figure 4.2: Pressure between two halfspaces comprised of different materials: Gold
(blue line) high and low doped p-type silicon (red and cyan lines, respectively), Silicon
Nitride (Si3N4, green line) and Silica (SiO2, magenta line). The force between silicon
slabs is independent of doping density and is approximately 75% the force between gold
slabs. In general, the strength of the force scales with the magnitude of the dielectric

function at imaginary frequencies (seen at inset).

slabs have the highest dielectric function (i.e. are the most metallic). The doping level

of silicon, which only effects ε at low imaginary frequency, has negligible effects on the

Casimir force. For scale, the pressure between two parallel perfect electric conductors

separated by s = 10 nm is approximately 1 atm (105 pN/µ m2), which is ≈ 30% greater

than the Casimir force between two gold plates.

Because this force becomes so strong at small gaps, it can be a source of failure in MEMS

and NEMS devices [139]. However, the Casimir force can also be a source of nonlinearity

which can be utilized to make dynamic mechanical elements that are extremely sensitive

to changes in their local environment [39, 56]. In this chapter, I discuss the Casimir

force as it pertains to the optomechanical devices discussed in Chapter 2 discussing

preliminary experimental results as well as plans for future experiments.
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4.2 Casimir MEMS

4.2.1 Theory

Note: Analysis in this section was taken primarily from Rodriguez, Woolf, et al. [39].

This work was conceived and executed by Rodriguez and Woolf, with Rodriguez imple-

menting the Casimir modeling and Woolf implementing the mechanical modeling.

The optomechanical structure studied in Chapter 2 consists of a silicon membrane per-

forated with a square lattice of holes suspended above an SOI substrate by four arms.

Initial simulations characterized a square membrane of width W = 23.4µm and thick-

ness h = 130 nm supported by four arms of length L = 35µm and cross-sectional area

130 nm × 2 µm, containing a photonic crystal hole array of periodicity p = 650 nm.

These parameters correspond to an attractive optical mode with Qopt ≈ 1000, gOM ≈ 50

GHz/nm, and a mechanical stiffness of K = 5e−2 N/m. In what follows, we consider

quasistatic membrane deformations induced by static and spatially uniform optical and

Casimir forces. The mode profile is illustrated in Fig. 4.3 and consists of an approxi-

mately flat membrane with deformed supports, making this structure less susceptible to

optical losses stemming from curvature.

For an initial membrane-surface separation s0 and in the absence of optical forces, the

membrane will experience two forces as a function of separation s: a restoring mechanical

force Fm = −K(s0− s) and the attractive, monotonically decaying Casimir force Fc. Fc

was computed via the standard proximity-force approximation (PFA, see Chapter 3.3.2)

which we have checked against exact time-domain calculations and found to be accurate

to within 3%. The sum of these two forces corresponds to a harmonic oscillator potential

(U = K(s0 − s)2) which is perturbed by a decaying exponential as s→ 0. The Casimir
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Figure 4.3: Preliminary geometry studied for investigation of the Casimir force in
an integrated MEMS systems, consisting of a W = 30µm square silicon membrane
supported by four arms of length L = 35µm. This membrane is initially suspended
150 nm above a silicon substrate. A 100 nm deflection of the membrane (seen in lower
panel) results in a 35 cm radius of curvature of the membrane. The Casimir force for
this curvature is 97% the plate-plate Casimir force, making this system a good a good

candidate for plate-plate Casimir force experiments. (From [39])

effect shifts the potential minima to a slightly smaller separation while introducing an

unstable “Casimir equilibrium” at the point where the mechanical restoring force and

Casimir force are equal and in opposite directions. The optical force introduces an

additional perturbation to the potential whose shape resembles an error function, in

what is known as the optical spring effect [65].

Figure 4.4 displays the total potential, including the mechanical spring, the optical

spring, and the Casimir effect, for a laser emitting 7 mW of power at wavelengths

between 1537 nm and 1574 nm for two initial values of s0: 155 nm (Fig. 4.4(a)) and 140

nm (Fig. 4.4(b)). At s0 = 155 nm, the perturbation to the potential from the Casimir

force (which introduces an unstable equilibrium at s = 75 nm and the drop-off in the
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potential at smaller gaps) is small and can be ignored so that we can study the behavior

of the system in the absence of the Casimir force. Because the optical resonance shifts

as a function of separation, the incident laser frequency greatly determines the overall

potential of the system. Furthermore, the system is bistable and exhibits hysteresis

between λl = 1551 nm (cyan line) and 1559 nm (purple line), featuring a “mechanical

equilibrium” near s0 and an “optical equilibrium” at a smaller separation corresponding

to when λl = λ0. The equilibria at all wavelengths are labeled with circles.

If we decrease the initial membrane-substrate to s0 = 140 nm (Fig. 4.4(b)), the Casimir

force is no longer negligible. The system is still bistable at λl = 1566 nm and 1559 nm.

However, at λl = 1574 nm (black line), the stable “optical equilibrium” merges with the

unstable “Casimir equilibrium.” In other words, sweeping the laser from 1537 nm to

1574 nm will result in stiction, as the Casimir force becomes stronger than the restoring

mechanical force near λl = 1574 nm.

The equilbrium separations, labeled with circles in Fig. 4.4(a),(b), are plotted as a

function of laser wavelength in the absence and presence of the Casimir force, in Fig.

4.5(a) and (b) respectively, for light incident at laser powers of 4 mW (black line), 7

mW (red line) and 15 mW (green line). Two bifurcation wavelengths, denoted by λ+

and λ− as indicated in the figure, represent the boundaries of the bistable region and

thus correspond to abrupt jumps in the system’s equilibrium as the laser wavelength

is swept up (λ+) or down (λ−) across the optical resonance. The arrows indicate the

hysteretic path followed during forward and backward sweeps of the laser. The dashed

portions of the curves represent the location of an unstable equilibrium (i.e. the peak of

the potential barrier between the two stable equilibria seen at the bistable wavelengths

in Fig. 4.4). The inset in Fig. 4.5(a) shows the height of this potential, measured from

the bottom of the “optical equilibrium” potential well to the peak of the barrier.
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Figure 4.4: (a): Potential energy diagrams for a mechanically free silicon membrane
155 nm above a silicon substrate experiencing an optical force and the Casimir effect.
The curves are shown for seven wavelengths: λ = 1574 nm (black line), 1566 nm (yellow
line), 1559 nm (purple line), 1551 nm (cyan line), 1544 nm (red line) and 1537 nm (green
line). Local minima are labeled with circles matching the color of the curve. The
optical potential, which resembles an error function, shifts with wavelength according
to the gOM of the mode. For a range of wavelengths (1554 nm - 1559 nm), there are
two stable solutions, indicating bistability. Correspondingly, forward and backward
wavelength sweeps would display mechanical hysteresis. The Casimir force, responsible
for the downward bend near s = 50 nm, is too small to significantly affect dynamics
in this devce. (b): If we decrease the initial separation to 140 nm, the Casimir effect
plays a more significant role. A wavelength sweep from 1537 nm to 1574 nm would
lead to stiction, as the local minima generated by the optical potential disappears and

is funneled into a global minima at s = 0.

The presence of the Casimir force (Fig. 4.5(b)) affects the membranes response to the

optical force via the introduction of an additional unstable equilibrium between s = 0 and

the separation corresponding to the “optical resonance” (dashed lines at the bottom of

the figure). Increasing the laser wavelength in a continuous sweep results in a downward

optical pressure on the membrane, decreasing the equilibrium, until the laser reaches λs,

the bifurcation point where the stable “optical equilibrium” merges with the unstable
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Figure 4.5: Equilibrium separation as a function of laser wavelength at P = 7 mW.
A bistable region exists between λ+ and λ−. The arrows in this region indicate the
hysteretic path traveled by the membrane as the laser is swept back and forth across

the resonance. (From [39])

equilibrium caused by the Casimir force. Hysteresis may still appear in this configuration

under the right conditions, however. If the membrane has enough kinetic energy to

overcome the potential barrier (see analysis in Chapter 2.2.5), probabilistic transitions

can occur between the two stable equilibria, roughly following the path denoted by the

arrows in the figure.

4.2.2 Dynamics

Beyond studying the location of the stable mechanical equilibria, we can also discuss the

effects of the Casimir force on the mechanical dynamics. A damped, driven harmonic

oscillator feeling a strong Casimir force can me modeled as follows:
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m
d2x(t)

dt2
+m

Γ

2

dx(t)

dt
+mΩ2

0x(t) = Fd + Fc (4.8)

Where Fd is the harmonic driving force, and Fc is the Casimir force, m is the oscillator

mass and x(t) is the motion of the oscillator as a function of time. The Casimir force is

highly nonlinear, so for small amplitudes x0 of mechanical oscillation, we can Taylor ex-

pand Fc(s−x0) around s such that Fc ≈ Fc(s)+F ′c(s)x(t)+F ′′c (s)x(t)2/2+F ′′′c (s)x(t)3/6.

From here we can regroup the terms and rewrite Eq. 4.8 as

d2x(t)

dt2
+

Γ

2

dx(t)

dt
+ (Ω2

0 − F ′c(s))x(t) = Fd + Fc(s) +
F ′′c (s)

2
x(t)2 +

F ′′′c (s)

6
x(t)3 (4.9)

where we see that the zeroeth order contribution of the Casimir force will change the

initial separation s0, and the first order contribution will modify the mechanical reso-

nance frequency Ω′0 =
√

Ω0 − F ′c(s). Beyond this, Eq. 4.9 can be solved [104], resulting

in the following expression:

A2

[(
ωi −

[
Ω′0 + κA2

])
+

Γ

2

]
=

(
Fd
m

)2 1

4Ω′0
(4.10)

where A is the oscillation amplitude and the nonlinear contributions are expressed as

κ = −F
′′′
c (s)

16Ω′0
+

5F ′′c (s)

24Ω′30
. (4.11)

Eq. 4.10 relates the oscillation amplitude A to the driving frequency ωi, and reveals

hysteresis and bistability introduced by a large κ. If we use parameters which represent

100



Chapter 4. The Casimir Effect

the device explored in Chapter 2, we can see how we expect the Casimir force to affect

device dynamics as the membrane-substrate separation decreases. The results, plotted in

Fig. 4.6, were generated assuming Ω0 =180 kHz, a Casimir force between two 31×31 µm

silicon membranes, and a driving force capable of generating oscillation amplitudes of a

few nanometers. (These oscillation amplitudes are attainable with a few milliwatts of

power, according to the data presented earlier.) Most significantly, Ωm is highly sensitive

to the membrane substrate separation, particularly at membrane-substrate separations

near and below 100 nm. At these separations, a 1 nm change in s corresponds to more

than a 1 kHz change in Ω′0, making these devices incredibly mechanically sensitive to s.

Along with the mechanical frequency, the mechanical stiffness decreases as a function of

membrane substrate separation, leading to larger oscillation amplitudes as the Casimir

force grows. Additionally, strong hysteresis makes operation of a device at a fixed value

of s strongly sensitive around the bistable transitions.

4.2.3 Preliminary Experiments

Chan, Capasso, and collaborators [56, 57] first investigated the effects of the Casimir

force on a mechanical element in a similar system, consisting of a sphere suspended a

short distance above a torsional oscillator, and demonstrated the potential power of such

a system as a nonlinear switch. Their geometry required an AFM cantilever suspended

above a MEMS resonator - an impractical geometry from potential applications due

to the necessity of bulky external hardware. The geometry presented in Chapter 2 is

uniquely suited for these sorts of Casimir experiments. The geometry, which consists

of two parallel silicon plates separated by a lithographically defined small distance, is

fabricated from a single chip and requires no external apparatus like the AFM in the

previous experiments. We propose that the Casimir force can be measured by optically
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Figure 4.6: The mechanical response to a system experiencing a strong Casimir effect.
The Casimir force perturbs the mechanical motion of the device, causing a decrease
in mechanical frequency as the membrane-substrate separation decreases. Mechanical
hysteresis and bistability occur for separations below 120 nm (blue, red and green lines),

where the device behavior becomes increasingly nonlinear.

controlling the equilibrium separation in real time by illuminating the membrane with

normally incident light at a tunable wavelength λ, where the resonant force allows one

to dynamically determine the Casimir-induced threshold for stiction.

The previous section discussed the dependence of the mechanical resonance frequency on

the membrane-substrate separation (Fig. 4.7(a)). We previously demonstrated the sen-

sitivity, measured as gOM , of the optical resonance location to the membrane-substrate

separation (Fig. 4.7(b)).The combination of these two give us in-situ determination of

the separation and of the strength of the Casimir force.

Figure 4.8 plots the two in-situ measurable quantities - optical resonance wavelength, and

mechanical resonance frequency, against one another for various values of s. The colors

of the circles correspond to the colors of the curves in Fig. 4.6, while the yellow triangles
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Figure 4.7: The mechanical resonance frequency (above) and optical resonance wave-
length (below) as a function of separation. The mechanical resonance frequency is
perturbed due to the Casimir force, while the optical resonance wavelength shifts due

to the gOM of the mode.

each correspond to measurements of individual devices. Over the range of separations

achieved thus far, our experimental results match quite well with theoretical predic-

tions: the mechanical frequency of the membrane decreases with membrane-substrate

separation. Simulations of the mechanical modes with COMSOL Multiphysics taking

into account the differences in the etch-hole patterns of the support structure indicate

that design differences cannot account for this trend, nor can potential contributes from

deformation of the membrane due to large deflections [140], which would result in a

change in the stiffness of the membrane with respect to the absolute value of the mem-

brane deflection. We cannot, however, rule out electrostatics, which, like the Casimir

effect, results in an attractive force which gets stronger at smaller separations.

Further experiments will be needed to separate the Casimir effect from electrostatics.

The Casimir force follows a s−4 power law, while the electrostatic force follows a s−2

power law, making then distinguishable from one another if data at smaller separations

can be collected. Initial attempts to fabricate devices with separations as small as 100 nm
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Figure 4.8: The optical resonance wavelength as a function of mechanical frequency
due to displacement by the Casimir force for separations between s = 85 and s =
300 nm (black line). Devices with membrane-substrate separation below 150 nm are
strongly affected by the Casimir effect. Current fabricated devices (yellow triangles)
with separations between 300 nm and 150 nm follow the λ−Ωm curve well, though the

trend may include effects other than Casimir.

have experienced full or partial collapse, as methods of controlling membrane tilt remain

unoptimized. However, the potential remains for the creation of a nonlinear Casimir-

optomechanical oscillator, which could take advantage of both optical and mechanical

hysteresis to become a highly sensitive gas-phase mass, force, and refractive-index sensor.

Additional applications lie in the field of optofluidics. By replacing the thick, under-

lying buried oxide layer with a flow cell, biological or chemical binding events at the

silicon-water interface would modify the optical resonance frequency, and, in turn, the

mechanical resonance frequency, elegantly combining a free-space or vacuum mechanical

element with liquid-phase refractive index sensing.
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