
 

Regulation of Behavioral Arousal in C. elegans

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Choi, Seungwon.  2013.  Regulation of Behavioral Arousal in C.
elegans.  Doctoral dissertation, Harvard University.

Accessed April 17, 2018 4:08:51 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158244

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11158244&title=Regulation+of+Behavioral+Arousal+in+C.+elegans&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=4d52dbfc39072608989a65e7e93d5709&department=NONE
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Regulation of Behavioral Arousal in C. elegans 

 

A dissertation presented 

 

by 

 

Seungwon Choi 

 

to 

 

the Division of Medical Sciences 

 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

in the subject of 

Genetics 

 

Harvard University 

Cambridge, Massachusetts 

 

April 2013 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 - Seungwon Choi 

All rights reserved. 

 

	
  



 iii 

Dissertation Advisor: Prof Joshua M. Kaplan                                Author: Seungwon Choi 

 

Regulation of Behavioral Arousal in C. elegans 

 

ABSTRACT 

Animals undergo periods of behavioral quiescence and arousal in response to 

environmental, circadian, or developmental cues. During larval molts, C. elegans 

undergoes a period of profound behavioral quiescence termed lethargus. Locomotion 

quiescence during lethargus was abolished in mutants lacking a neuropeptide receptor 

(NPR-1), and was reduced in mutants lacking NPR-1 ligands (FLP-18 and -21). Wild 

type strains are polymorphic for the npr-1 gene, and their lethargus behavior varies 

correspondingly. Locomotion quiescence and arousal were mediated by decreased and 

increased secretion of an arousal neuropeptide (PDF-1) from central neurons. PDF 

receptors (PDFR-1) expressed in peripheral mechanosensory neurons enhanced touch-

evoked calcium transients. Thus, a central circuit stimulates arousal from lethargus by 

enhancing the sensitivity of peripheral mechanosensory neurons in the body. These 

results define a circuit mechanism controlling a developmentally programmed form of 

quiescence.  

Sensory experience is critical for structural and functional plasticity of neural 

circuits and proper behavioral responses to environmental stimuli. Cholinergic 

transmission drives body muscle activity and modulates locomotion in C. elegans. 

Cholinergic transmission at neuromuscular junctions was enhanced in mutants lacking 

NPR-1, which was mediated by heightened central sensory circuit activity. Both 
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glutamate and neuropeptide were required for the sensory-evoked potentiation of 

cholinergic transmission. Thus, a central sensory circuit activity increases excitatory 

transmission in the peripheral body muscles through a concerted action of glutamate and 

neuropeptide. These results define a circuit mechanism underlying sensory-evoked 

alteration in synaptic activity and locomotion.  	
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Animals coordinately adjust their behaviors in response to changes in their environment 

and metabolic state. Co-regulated behaviors (often termed behavioral states) can persist 

for minutes to hours. Increased activity (or arousal) is associated with fear, stress, hunger, 

and exposure to sexual partners (Pfaff et al., 2008a). Conversely, decreased activity (or 

quiescence) is associated with sleep and satiety (Cirelli, 2009).  

 

Circadian and homeostatic control of behavioral arousal 

Behavioral arousal is characterized by increase in motor activity, responsiveness to 

sensory stimuli, and emotional reactivity (e.g. motivation) (Pfaff, 2006). These aspects of 

behavioral arousal exhibit rhythmic patterns associated with circadian rhythm, a 

biological rhythm that oscillates with a period of approximately 24 hours (Allada and 

Chung, 2010). For example, nocturnal animals (e.g. rodents) exhibit aroused behaviors 

such as increased locomotion, olfactory responsiveness, and motivation to find food 

during nighttime, while diurnal animals (e.g. flies and humans) do during daytime. 

Disruption of circadian rhythm by lesion of suprachiasmatic nucleus (SCN) in 

hypothalamus, a master clock in mammals, or by mutations inactivating circadian genes 

alters timing and quality of behavioral arousal (Cirelli, 2009).   

 The mechanism underlying changes in behavioral arousal is best studied in 

sleep/wakefulness cycle (Silver and Lesauter, 2008). The dominant model for sleep 

regulation is the two-process model, where sleep and wakefulness is regulated by two 

factors, circadian rhythm and homeostatic pressure (Borbely, 1982). Homeostatic 

pressure increases proportionately with the time spent awake and decreases with the time 

spent asleep. Therefore, if wakefulness lasts for an extended time, homeostatic pressure 
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increases and triggers sleep rebound to compensate for sleep deprivation. On the other 

hand, circadian rhythm determines the phase - onset and duration - of sleep, thereby 

promoting consolidation of sleep in one major phase. Thus, disruption of circadian 

rhythm causes phase shift or fragmentation of sleep (Cirelli, 2009). 

 

Neuropeptide regulation of behavioral arousal 

Behavioral arousal of animals is modulated by multiple neurotransmitters. Cholinergic 

and noradrenergic activities positively regulate cortical activation and alertness (Jones, 

2008), and dopamine signaling is essential for motivated behaviors (Palmiter, 2008). In 

particular, neuropeptides play a key role in modulating brain and behavioral states (Pfaff 

et al., 2008b).  

Among the neuropeptides that modulate behavioral states, hypocretin/orexin 

peptides have the most profound effect on behavioral arousal, controlling sleep and 

wakefulness in vertebrates (Sutcliffe and de Lecea, 2002). The importance of 

hypocretin/orexin in regulating sleep/wakefulness first came from the genetic linkage 

study with a canine model of narcolepsy, where a mutation in hypocretin/orexin receptor 

2 was identified to cause narcolepsy in dogs (Lin et al., 1999). Similarly, 

hypocretin/orexin knockout mice exhibit narcoleptic behavior (Chemelli et al., 1999), 

while hypocretin/orexin overexpression triggers insomnia-like behavior in zebrafish 

(Prober et al., 2006). Human narcolepsy is also associated with hypocretin/orexin 

deficiency (Nishino et al., 2000; Peyron et al., 2000). Together, these studies suggest that 

hypocretin/orexin acts as a wake-promoting ‘arousal’ peptide in vertebrates.  
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Another peptide that affects behavioral states in mammals is corticotropin-

releasing factor (CRF). CRF signaling activates hypothalamic-pituitary-adrenal (HPA) 

axis and mediate endocrinal and behavioral arousal responses to stress (Bale and Vale, 

2004). Overexpression of CRF in mice induces anxiety-like behavior (Stenzel-Poore et 

al., 1994), whereas mice deficient for CRF receptor 1 exhibit decreased anxiety and 

impaired stress response (Smith et al., 1998; Timpl et al., 1998). Moreover, central 

administration of CRF increases sleep latency and decreases sleep duration in rats (Ehlers 

et al., 1997). These studies suggest that CRF largely favors aroused state in mammals.  

 In contrast to restricted expression of hypocretin/orexin in hypothalamus, 

Neuropeptide Y (NPY) is broadly expressed throughout the brain, and regulates diverse 

physiological function such as food intake, anxiolysis, heart rate, and pain transmission. 

In addition, NPY modulates behavioral arousal as well (Dyzma et al., 2010). For 

example, administration of NPY into the brain decreases locomotor activity in rodents 

(Heilig and Murison, 1987; Jolicoeur et al., 1991). Similarly, NPY administration 

reverses the wake-promoting effect of CRH (Ehlers et al., 1997) in rats, and increases 

sleep duration and decreases sleep latency and wake time in humans (Antonijevic et al., 

2000; Held et al., 2006). Moreover, NPY reduces spike frequency and hyperpolarize the 

membrane potential of hypocretin/orexin neurons in mouse hypothalamus, which serve as 

a wake-promoting center in the mammalian brain (Fu et al., 2004). These studies suggest 

that NPY inhibits behavioral arousal in mammals.  
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NPR-1 (Neuropeptide Receptor), a NPY receptor homolog in C. elegans  

The npr-1 gene encodes a predicted G protein-coupled receptor (GPCR) homologous to 

mammalian NPY receptors (de Bono and Bargmann, 1998). C. elegans NPR-1 shares 

~30% sequence identity and ~50% sequence similarity with mammalian NPY receptors. 

Despite the homology between NPR-1 and NPY receptors, NPY-like sequences do not 

exist in the C. elegans genome. Likewise, human NPY does not activate G-protein 

signaling in NPR-1 expressing heterologous cells (Kubiak et al., 2003). Instead, 

FMRFamide (Phe-Met-Arg-Phe-NH2)-related peptides (FaRPs), FLP-18 and FLP-21, 

bind and activate NPR-1 in transfected heterologous cells (Kubiak et al., 2003; Rogers et 

al., 2003). It has been reported that FaRPs can also serve as ligands for NPY-like 

receptors in flies and mammals (Feng et al., 2003; Hinuma et al., 2000).  

 

Polymorphism in the npr-1 gene  

NPR-1 was first identified whose natural variants caused distinct foraging behaviors in C. 

elegans (de Bono and Bargmann, 1998). C. elegans natural isolates harboring valine at 

215th amino acid position of NPR-1 (NPR-1 215V) exhibit solitary foraging behavior and 

disperse across a bacterial lawn. By contrast, natural isolates containing phenylalanine at 

the same position (NPR-1 215F) exhibit social foraging behavior and aggregate together 

on bacterial lawn. Thus, the npr-1 gene is polymorphic among wild type populations, 

with 215F allele being more frequently found (McGrath et al., 2009; Weber et al., 2010). 

215th amino acid of NPR-1 resides at the border of 5th transmembrane domain and 3rd 

intracellular loop that is critical for G-protein coupling. Consistently, the two NPR-1 wild 

type alleles encode receptors that differ in their affinity for NPR-1 ligands (FLP-18 and 



6 

FLP-21), with 215V exhibiting higher affinity (~4 fold) and lower EC50’s (~40 fold) 

than 215F receptors (Kubiak et al., 2003; Rogers et al., 2003). Consequently, inactivating 

NPR-1 ligand FLP-21 in worms expressing low affinity (and high EC50’s) NPR-1(215F) 

receptors had much greater effect on foraging behavior than inactivating FLP-21 in 

worms expressing high affinity (and low EC50’s) NPR-1(215V) receptors (Rogers et al., 

2003). Recent studies also suggested a possibility that 215V allele might be a laboratory-

derived polymorphism (McGrath et al., 2011; Weber et al., 2010). 

 

Role of NPR-1 in C. elegans behaviors  

npr-1 is expressed predominantly in the nervous system, in which its expression is largely 

concentrated in neurons in the sensory circuit (Coates and de Bono, 2002; de Bono and 

Bargmann, 1998). Expressed in sensory circuit, NPR-1 regulates diverse sensory 

behaviors, as evidenced by altered behavioral responses to environmental cues such as 

oxygen, carbon dioxide, pheromone, and pathogen in npr-1 mutant animals (Bretscher et 

al., 2008; Cheung et al., 2004; Cheung et al., 2005; Coates and de Bono, 2002; Gray et 

al., 2004; Hallem and Sternberg, 2008; Macosko et al., 2009; Reddy et al., 2009; 

Srinivasan et al., 2012; Styer et al., 2008). For example, repulsion from hyperoxia and 

attraction to certain types of pheromone is exaggerated in npr-1 mutants, which 

contributes to social foraging behavior (Cheung et al., 2005; Gray et al., 2004; Macosko 

et al., 2009; Srinivasan et al., 2012). Similarly, pathogen susceptibility is also increased 

in npr-1 mutants, as evidenced by decreased survival rate when exposed to Pseudomonas 

aeruginosa PA14 (Reddy et al., 2009; Styer et al., 2008). Blocking sensory transduction 

with mutations inactivating sensory transduction genes (CNG, TRPV channels, and 
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guanylate cyclase) or ablation of corresponding sensory neurons abolish all these altered 

sensory behaviors in npr-1 mutants. These results suggest that NPR-1 normally inhibits 

activity of sensory neurons, such that inactivating NPR-1 causes increase in sensory 

activities. Consistent with this idea, NPR-1 is coupled to Gi/Go proteins and 

hyperpolarizes membrane potential through G protein-activated inwardly rectifying K+ 

channels (GIRKs) (Rogers et al., 2003). 

 

Hub-and-spoke model for social foraging behavior of npr-1 mutants 

NPR-1 regulates diverse sensory modalities and related behaviors. How can a single gene 

activity alter such a diverse behavioral outputs? C. elegans nervous system is wired with 

highly stereotyped synaptic connections, which consists of 5000 chemical synapses, 2000 

neuromuscular junctions (NMJs) and 600 gap junctions (White et al., 1986). In the head 

sensory circuit, the RMG interneurons form gap junctions with several classes of sensory 

neurons (Fig 1.1). NPR-1 is expressed in a subset of these gap junction circuit (the RMG 

circuit) neurons including RMG (Fig 1.1), thereby controlling the sensory transduction 

occurring in the RMG circuit. Consistent with this idea, transgenes expressing NPR-1 in 

RMG neurons rescue the npr-1 foraging defect (aggregation and increased speed), while 

ablating RMG neurons abolishes the npr-1 defect (Macosko et al., 2009). Similarly, 

mutations inactivating NPR-1 increase pheromone-evoked calcium responses in ASK 

sensory neurons, even though ASK neurons do not express NPR-1.  

Interestingly, the sensory neurons anatomically coupled to RMG largely mediate 

responses to environmental repellents. For example, ASH neurons are polymodal 

nociceptive neurons that mediate responses to nose touch, high osmolarity, and aversive  
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Figure 1.1. A schematic illustrating the RMG circuit. 

Sensory neurons (triangles) mediating the indicated aversive responses form 

direct gap junctions with the RMG interneuron (hexagon). Cells expressing 

NPR-1are indicated (Coates and de Bono, 2002; Macosko et al., 2009). This 

diagram is modified from that shown previously (Macosko et al., 2009). 

 

chemicals (Hilliard et al., 2004; Kaplan and Horvitz, 1993; Sambongi et al., 1999). URX 

neurons mediate avoidance from hyperoxic environment (Cheung et al., 2005; Gray et al., 

2004). Repulsion from aversive odors is mediated by ADL and AWB neurons (Troemel 

et al., 1995; Troemel et al., 1997). The choice between attraction and repulsion responses 

to different types of pheromones is mediated by ASK, ASI, and ADL neurons (Jang et al., 

2012; Kim et al., 2009; Macosko et al., 2009; McGrath et al., 2011). The npr-1 foraging 

defect is suppressed by inactivating ion channels such as TAX-4/CNG, OSM-9 and 

OCR-2/TRPV channels that mediate sensory transduction in these sensory neurons 

(Coates and de Bono, 2002; de Bono et al., 2002; Macosko et al., 2009). These results 

suggest that altered sensory transduction in the RMG circuit causes the foraging defect in 

npr-1 mutants. Collectively, NPR-1 can regulate ‘spoke’ sensory neurons and related 

behavioral outputs by altering the activity of ‘hub’ RMG neurons.  
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Conserved role of NPY in inhibiting neural activity 

Most NPY receptors are also coupled to Gi/Go proteins and hyperpolarize membrane 

potential through activation of K+ currents mediated by GIRK channels and inhibition of 

Ca+ currents mediated by voltage-gated calcium channels in rodent brain (Fu et al., 2004; 

Sun and Miller, 1999; Sun et al., 2001). For example, NPY inhibits hypocretin/orexin 

neurons in hypothalamus, thereby tonically attenuating hypocretin-regulated arousal (Fu 

et al., 2004). In thalamus, NPY reduces activity of reticular thalamic neurons, thereby 

suppressing thalamic network oscillations (Sun et al., 2003), which is relevant to sleep 

and arousal (Steriade et al., 1993). Thalamus processes sensory information and relays 

the sensory signals to the associated cortical area, whose function is analogous to that of 

the RMG neurons in C. elegans (Fig 1.1). Thus, both NPY receptors and NPR-1 

modulate sensory inputs by controlling the activity of sensory-gatekeeping neurons, 

which are thalamic neurons in mammals and the RMG neurons in C. elegans.  

 

Dissertation overview 

Chapter 2 

In chapter 2, I describe a circuit mechanism controlling molting-associated behavioral 

quiescence and arousal in C. elegans. During larval molts, C. elegans undergoes a period 

of profound behavioral quiescence termed lethargus. A recent study provided several 

pieces of evidence that lethargus is a sleep-like state in C. elegans (Raizen et al., 2008), 

which is characterized by behavioral quiescence (feeding and movement), reduced 

responsiveness to external stimuli, and homeostatic rebound quiescence after perturbation.  
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We provide evidence that locomotion quiescence during lethargus is specifically 

abolished in mutants lacking a neuropeptide receptor (NPR-1), whereas feeding 

quiescence is normal. We then propose a neuropeptide-mediated circuit mechanism 

underlying ‘insomnia’ phenotype exhibited by npr-1 mutants. A series of experimental 

results based on behavioral analyses, imaging, and calcium recordings suggest that 

sensory-coupled secretion of neuropeptide PDF-1 from the RMG circuit dictates 

behavioral state through its action on PDF receptors (PDFR-1) expressed in peripheral 

mechanosensory neurons.   

I then discuss conserved role of functional NPY homologues as a ‘quiescence 

peptide’, and PDF homologues as an ‘arousal peptide’ in worms, flies, and rodents. I also 

discuss neuropeptide-mediated coupling of central sensory circuit to peripheral motor 

circuit. Altered PDF-1 secretion from central neurons engenders rhythmic locomotor 

activity associated with molting through activation of PDF receptors functioning in touch 

neurons and body muscles.  

 

Chapter 3 

Sensory experience modulates the function of neural circuits and behavioral outputs. In 

chapter 3, I describe a circuit mechanism controlling sensory-evoked enhancement of 

excitatory synaptic transmission at C. elegans NMJs. While I focus on behavioral 

outcome of altered sensory activity in C. elegans in chapter 2, I focus more on sensory 

input-driven change in synaptic activity in a defined neural circuit in chapter 3. I begin 

with an introduction of a couple of examples showing sensory experience-dependent 

plasticity in neural circuits studied in mammals. Then I briefly describe the structure of 
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nervous system in C. elegans, and pharmacological and electrophysiological tools we 

utilized to measure body muscle activity.  

We provide evidence that cholinergic transmission is enhanced in mutants lacking 

NPR-1. We then propose a circuit mechanism underlying sensory-evoked potentiation of 

cholinergic transmission. A series of experimental results based on both pharmacological 

and electrophysiological assays suggest that central sensory circuit activity increases 

excitatory transmission in the peripheral body muscles through a concerted action of 

glutamate and neuropeptide. 

I then discuss future experiments for identification of downstream target cells of 

glutamate signaling and potential neuropeptides that may mediate sensory-evoked 

increase in body muscle activity. I also discuss physiological role of sensory-evoked 

enhancement of cholinergic transmission at NMJs.  

 

Chapter 4 

In chapter 4, I comment on the implications of our findings, with an emphasis on 

sensory-evoked and neuropeptide-mediated regulation of neural circuit and behavior. I 

also comment on preliminary results and future experiments that must still be done to 

answer the following questions; (1) what sensory modalities promote arousal from 

lethargus? (2) Does lethargus regulate NPR-1 and the ligands? (3) What is the 

downstream effector of PDFR-1? (4) Does body muscle activity change during other 

forms of behavioral quiescence? (5) What is the pathogen effect on arousal? 
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Analysis of NPR-1 Reveals a Circuit Mechanism for Behavioral Quiescence in C. 

elegans 
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Neuron at the time of writing.   

 

Marios Chatzigeorgiou performed all of the touch-evoked calcium recordings. Seungwon 

Choi and Kelsey Taylor performed RNAi screen together. Seungwon Choi performed all 

of the other experiments. Seungwon Choi and Joshua Kaplan assembled the manuscript, 

with input from William Schafer and Marios Chatzigeorgiou. 
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INTRODUCTION 

 

Many aspects of behavior and metabolism exhibit rhythmic patterns with a periodicity of 

approximately 24 hours, which are generically referred to as circadian rhythms (Allada 

and Chung, 2010). Daily behavioral and metabolic rhythms are accompanied by a 

corresponding set of circadian changes in gene expression. Circadian rhythms are 

dictated by a cell autonomous clock that consists of a transcriptional feedback network 

that exhibits intrinsically oscillating activity. The period of this circadian clock is 

entrained by daily changes in light and temperature; although, daily rhythms persist even 

in constant conditions. Thus, circadian clocks provide a mechanism that allows animals 

to couple their behavior to anticipated changes in their environment.  

Rhythmic changes in behavior and metabolism are also often coupled to developmental 

clocks. In the nematode C. elegans, molting exhibits a rhythmic pattern with a periodicity 

of 8-10 hours. This molting cycle is dictated by cell intrinsic developmental clock genes 

(termed heterochronic genes) (Moss, 2007). The periodicity of the molting cycle is 

dictated by rhythmic changes in the expression of a heterochronic gene (lin-42), which is 

homologous to the fly circadian gene PERIOD (Jeon et al., 1999; Monsalve et al., 2011). 

Thus, circadian and heterochronic clocks are mediated by similar biochemical 

mechanisms.  

Although a great deal is known about the biochemical and genetic mechanisms 

controlling circadian and heterochronic timing, relatively little is known about how these 

clocks are coupled to changes in behavior, i.e. to their outputs. To address this question, 

we analyzed the rhythmic behaviors associated with the C. elegans molting cycle. 
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During each larval molt, C. elegans undergoes a prolonged period of profound behavioral 

quiescence, whereby locomotion and feeding behaviors are inactive for ~2 hours. This 

molt associated quiescence is termed lethargus behavior, and has been described for 

many wild type nematode species (Cassada and Russell, 1975). Lethargus has properties 

of a sleep-like state such as reduced sensory responsiveness and homeostatic rebound of 

quiescence following perturbation (Raizen et al., 2008). Several genes and molecular 

pathways involved in lethargus behavior have been identified (Monsalve et al., 2011; 

Raizen et al., 2008; Singh et al., 2011; Van Buskirk and Sternberg, 2007); however, a 

circuit mechanism controlling lethargus associated quiescence has not been defined.  

Here we identify a central sensory circuit that dictates entry into and exit from 

locomotion quiescence during lethargus. Quiescence is associated with decreased activity 

in this central circuit, while arousal is associated with increased circuit activity. This 

central circuit regulates motility through the action of a neuropeptide (Pigment 

Dispersing Factor-1, PDF-1), which enhances the sensitivity of peripheral 

mechanosensory receptors in the body. These results provide a circuit mechanism 

controlling arousal and quiescence of locomotion in C. elegans. 
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RESULTS 

 

Locomotion quiescence during lethargus is blocked in npr-1 mutants 

Mutants lacking the neuropeptide receptor NPR-1 have heightened responsiveness to 

oxygen and pheromones, which results in altered foraging behavior and accelerated 

locomotion (Cheung et al., 2005; Gray et al., 2004; Macosko et al., 2009). Thus, NPR-1 

is proposed to set the threshold for arousal of specific behaviors. Prompted by these 

results, we tested the idea that NPR-1 also regulates arousal from behavioral quiescence 

during lethargus. To analyze animals during the L4 to adult (L4/A) lethargus, we isolated 

a synchronous population of L4 animals and analyzed their behaviors during the 

subsequent molt. As in wild type animals, the pharyngeal pumping of npr-1 mutants was 

completely arrested during the L4/A lethargus (Fig. 2.1A). The duration of pharyngeal  

 

Figure 2.1. npr-1 mutants have normal feeding behavior. 

Pharyngeal pumping was analyzed in the indicated genotypes. (A) The duration 

of feeding quiescence during the L4/A lethargus (defined by the absence of 

pharyngeal pumping) was unaltered in npr-1 mutants.  (B) Adult pharyngeal 

pumping rate was also unaltered in npr-1 mutants. The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. (ns, not 

significant). 
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Figure 2.2. NPR-1 regulates locomotion quiescence during lethargus. 

(A-C) Locomotion behavior of single worms during the L4/A lethargus was 

recorded for 60-75 seconds and velocity was measured (2 Hz sampling). 

Instantaneous locomotion velocity (A), average motile fraction (B), and average 

locomotion velocity (C) are plotted. npr-1 null mutants had higher locomotion 

during the L4/A lethargus than WT (N2). (D-E) Representative traces of motile 

fraction during L4/A lethargus are shown for wild type (D) and npr-1 mutants 

(E). Gray boxes indicate lethargus, as determined by absence of pharyngeal 

pumping. Locomotion of npr-1 mutants was continuously active during 

lethargus. The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (***, p <0.001). 

 

pumping quiescence was unaltered in npr-1 mutants, indicating that the duration of 

lethargus had not been altered (Fig. 2.1A). Pharyngeal pumping rate was also unaltered in 

npr-1 adults (Fig. 2.1B). To assess changes in locomotion during the L4/A lethargus, we 

analyzed the fraction of time animals undergo active motility (motile fraction) and  
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locomotion velocity. Unlike wild type animals, npr-1 mutants exhibited fast and nearly 

continuous locomotion during the L4/A lethargus (Fig. 2.2A-C). The effects of npr-1 on 

locomotion persisted throughout the entire L4/A lethargus (as defined by pumping 

quiescence) (Fig. 2.2D-E). Inactivation of npr-1 had a significantly larger effect on 

locomotion during the L4/A lethargus (motile fraction, 17-fold increase; velocity, 50-fold 

increase) than in adults (motile fraction, 1.2-fold increase; velocity, 2-fold increase) (Fig. 

2.3). These results suggest that NPR-1 is required for locomotion quiescence during 

lethargus, but not for feeding quiescence. 

 

 

Figure 2.3. Inactivation of npr-1 has a larger effect on locomotion during 

the L4/A lethargus than in adults. 

Locomotion of adults and animals during L4/A lethargus were compared. 

Motile fraction (A) and average speed (B) are shown. During lethargus, npr-1 

mutants had a 17-fold increase in motile fraction and a 50-fold increase in 

average speed, whereas significantly smaller changes were observed in adults 

(motile fraction 1.2-fold increase, p = 0.24; speed 2-fold increase, p <0.001). 

The number of animals analyzed is indicated for each genotype.  Error bars 

indicate SEM. Values that differ significantly are indicated (***, p <0.001; ns, 

not significant). 
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Wild type strains are polymorphic for lethargus locomotion behavior 

The npr-1 gene is polymorphic among wild type populations, with two frequent alleles 

observed (215V and 215F) (McGrath et al., 2009; Weber et al., 2010).  These wild type 

alleles encode receptors that differ in their affinity for NPR-1 ligands (FLP-18 and FLP-

21), with 215V exhibiting higher affinity (and lower EC50’s) than 215F receptors 

(Kubiak et al., 2003; Rogers et al., 2003). To determine if wild type strains are also 

polymorphic for lethargus behavior, we analyzed locomotion during the L4/A lethargus 

(Fig. 2.4). All 215V containing strains exhibited similar levels of quiescence and were  

 

 

Figure 2.4. Wild type strains are polymorphic for lethargus locomotion 

behavior. 

Locomotion behavior of single worms during the L4/A lethargus was recorded 

for 30-75 seconds and velocity was measured (2 Hz sampling). Average motile 

fraction (A), and average locomotion velocity (B) are plotted. Wild type strains 

were polymorphic for L4/A locomotion, with 215V strains being more 

quiescent than 215F strains. The number of animals analyzed is indicated for 

each genotype. Error bars indicate SEM. Values that differ significantly are 

indicated ((*, p <0.05; ***, p <0.001). 
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significantly more quiescent than 215F strains. The quiescence observed in 215F strains 

was more variable, with one strain (RC301) exhibiting L4/A locomotion similar to npr-1 

null mutants while others (AB3 and CB4856) exhibited intermediate levels of quiescence. 

Thus, the extent of behavioral quiescence during lethargus is polymorphic among wild 

type strains. A strain carrying a 215F allele (g320) in the Bristol genetic background had 

significantly stronger quiescence than was observed in unrelated 215F wild type strains 

(e.g. CB4856 and RC301). These results suggest that variation in genes other than npr-1 

also contributed to differences in the lethargus behaviors of wild type strains. 

 

Figure 2.5. The NPR-1 ligands FLP-21 and FLP-18 regulate lethargus 

behavior. 

Locomotion behavior of single worms during the L4/A lethargus was recorded 

for 30-75 seconds and velocity was measured (2 Hz sampling). Average motile 

fraction (A), and average locomotion velocity (B) are plotted. Mutations 

inactivating NPR-1 ligands, FLP-18 and FLP-21, decreased L4/A locomotion 

quiescence in animals expressing NPR-1(215F) receptors, but not in those 

expressing NPR-1(215V) receptors, i.e. npr-1(g320) mutants and N2 

respectively. The number of animals analyzed is indicated for each genotype. 

Error bars indicate SEM. Values that differ significantly from npr-1(g320) 

L4/A are indicated (*, p <0.05; **, p <0.01; ***, p <0.001; ns, not significant). 
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The NPR-1 ligands FLP-21 and FLP-18 regulate lethargus behavior 

Two NPR-1 ligands have been identified, the neuropeptides FLP-18 and FLP-21 (Kubiak 

et al., 2003; Rogers et al., 2003). Both neuropeptides bind and activate NPR-1 receptors 

expressed in transfected cells; however, NPR-1 exhibits significantly stronger affinity for 

FLP-21. We found that mutations inactivating FLP-18 and FLP-21, and double mutants 

inactivating both ligands, had no effect on the L4/A locomotion behavior of worms 

expressing high affinity NPR-1(215V) receptors (Fig. 2.5). By contrast, inactivating 

either FLP-18 or FLP-21 significantly decreased locomotion quiescence in a Bristol 

strain expressing low affinity NPR-1(215F) receptors, i.e. npr-1(g320) mutants (Fig. 2.5). 

These results suggest that FLP-18 and FLP-21 function as endogenous NPR-1 ligands to 

regulate lethargus behavior in strains expressing NPR-1(215F) receptors.  

 

Figure 2.6. A diagram illustrating the RMG circuit. 

Sensory neurons (triangles) mediating the indicated aversive responses form 

direct gap junctions with the RMG interneuron (hexagon). Cells expressing NPR-

1, TAX-4/CNG channels, PDF-1, and the flp-21 promoter (sensory rescue) are 

indicated (Barrios et al., 2012; Coates and de Bono, 2002; Janssen et al., 2009; 

Komatsu et al., 1996; Macosko et al., 2009; Rogers et al., 2003). ASI neurons are 

not directly connected to RMG but are also a potential source of PDF-1. This 

diagram is modified from that shown previously (Macosko et al., 2009). 
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The npr-1 lethargus defect is mediated by increased sensory activity 

NPR-1’s effects on foraging are mediated by its expression in a sensory circuit in the 

head that is defined by gap junctions to the RMG interneuron (Fig. 2.6) (Macosko et al., 

2009). Hereafter, we refer to this circuit as the RMG circuit. In addition to the RMG 

circuit, NPR-1 is also expressed in GABAergic motor neurons in the ventral nerve cord 

(Coates and de Bono, 2002). We did two experiments to determine where NPR-1 

functions to regulate motility during lethargus. First, an npr-1 transgene expressed in the 

RMG circuit (using the flp-21 promoter) (Fig. 2.6) completely rescued the lethargus 

locomotion defect of npr-1 mutants, whereas a transgene expressed in GABAergic motor 

neurons (using the unc-30 promoter) had no rescuing activity (Fig. 2.7). Second, the  

 

Figure 2.7. NPR-1 functions in the RMG circuit to regulate lethargus 

locomotion. 

Locomotion behavior of single worms during the L4/A lethargus was analyzed in 

the indicated genotypes. Instantaneous locomotion velocity (A), average motile 

fraction (B), and average locomotion velocity (C) are plotted. The npr-1 L4/A 

locomotion quiescence defect was rescued by transgenes expressing NPR-1 in 

the RMG circuit (Sensory rescue, flp-21 promoter) but not by those expressed in 

GABAergic neurons (GABA rescue, unc-30 promoter), using the indicated 

promoters. The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (***, p <0.001). 
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lethargus locomotion defect of npr-1 mutants was abolished by mutations inactivating ion 

channels required for sensory transduction, such as TAX-4/CNG and OSM-9/TRPV  

channels (Fig. 2.8). A transgene expressing TAX-4 in the RMG circuit re-instated the 

L4/A quiescence defect in tax-4; npr-1 double mutants (Fig. 2.8). These results suggest  

 

Figure 2.8. The npr-1 lethargus defect is mediated by increased sensory activity. 

Locomotion behavior of single worms during the L4/A lethargus was analyzed in the 

indicated genotypes. Instantaneous locomotion velocity (A), average motile fraction 

(B,D), and average locomotion velocity (C,E) are plotted. (A-C) The npr-1 L4/A 

locomotion quiescence defect was suppressed in double mutants lacking TAX-

4/CNG channels and was reinstated by transgenes expressing TAX-4 in the RMG 

circuit (Sensory rescue, flp-21 promoter). (D-E) The npr-1 L4/A locomotion 

quiescence defect was also suppressed in double mutants lacking OSM-9/TRPV1 

channels. The number of animals analyzed is indicated for each genotype. Error bars 

indicate SEM. Values that differ significantly are indicated (***, p <0.001).  
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that the npr-1 defect in locomotion quiescence during lethargus was caused by 

heightened sensory activity in the RMG circuit. 

 

PDF (Pigment Dispersing Factor) is required for the npr-1 lethargus defect 

Neuropeptides play a pivotal role in sleep and wakefulness in other systems. For 

example, hypocretin/orexin regulates sleep, arousal, feeding, and metabolism in 

vertebrates (Sutcliffe and de Lecea, 2002). Thus, we tested if neuropeptides are required 

for the npr-1 lethargus defect. Consistent with this idea, the npr-1 lethargus quiescence 

defect was eliminated by mutations inactivating egl-3 PC2 and pkc-1 PKCε (Fig. 2.9), 

which are required for pro-neuropeptide processing and dense core vesicle (DCV) 

exocytosis, respectively (Husson et al., 2006; Kass et al., 2001; Sieburth et al., 2007).  

 

Figure 2.9. Neuropeptides mediate arousal from locomotion quiescence during 

lethargus. 

Locomotion behavior of single worms during the L4/A lethargus was analyzed in 

the indicated genotypes. Instantaneous locomotion velocity (A), average motile 

fraction (B), and average locomotion velocity (C) are plotted. The npr-1 L4/A 

locomotion quiescence defect was suppressed by mutations that block neuropeptide 

processing (egl-3 PC2 mutants) and dense core vesicle exocytosis (pkc-1 PKCε 

mutants). The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (***, p <0.001).  
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These results suggest that the npr-1 lethargus defect was mediated by an endogenous 

neuropeptide. 

In Drosophila, the neuropeptide Pigment Dispersing Factor (PDF) regulates 

circadian rhythms and promotes wakefulness (Parisky et al., 2008; Renn et al., 1999). 

Prompted by PDF’s role in Drosophila, we tested the idea that PDF mediates the 

lethargus quiescence defect in npr-1 mutants. C. elegans PDF peptides (PDF-1 and PDF-

2) and their receptor (PDFR-1) were previously identified (Janssen et al., 2008; Janssen 

et al., 2009). PDF-1 is expressed in several classes of sensory neurons and interneurons, 

including ASK chemosensory neurons and RMG interneurons in the RMG circuit 

(Barrios et al., 2012; Janssen et al., 2009) (Fig. 2.6). The locomotion rate and motile 

fraction of pdf-1;npr-1 and pdfr-1;npr-1 double mutants during the L4/A lethargus were 

significantly lower than in npr-1 single mutants (Fig. 2.10). Inactivating PDF-1 and  

 

Figure 2.10. PDF-1 and PDFR-1 mediate arousal from locomotion quiescence 

during lethargus. 

Locomotion behavior of single worms during the L4/A lethargus was analyzed in 

the indicated genotypes. Instantaneous locomotion velocity (A), average motile 

fraction (B), and average locomotion velocity (C) are plotted. The npr-1 L4/A 

locomotion quiescence defect was suppressed by mutations inactivating PDF-1 and 

PDFR-1. The number of animals analyzed is indicated for each genotype. Error bars 

indicate SEM. Values that differ significantly are indicated (***, p <0.001).  



25 

PDFR-1 had a much less dramatic effect on adult locomotion in pdf-1;npr-1 and pdfr-

1;npr-1 double mutants (Fig. 2.11). Thus, increased signaling by PDF-1 and PDFR-1 in 

npr-1 mutants was required for the increased motility during lethargus. The npr-1 

foraging defect was unaltered in pdf-1;npr-1 and pdfr-1;npr-1 double mutants (Fig. 2.11), 

indicating that PDF was not required for other npr-1 phenotypes. Inactivating PDF-2 had  

 

Figure 2.11. Inactivating PDF-1 and PDFR-1 have little effect on the npr-1 

defect of adult locomotion and foraging behavior. 

(A) The change in average locomotion velocity (normalized to npr-1 mutants) is 

summarized for the indicated genotypes. A pdf-1 and pdfr-1 mutations had more 

dramatic effect on the npr-1 locomotion during the L4/A lethargus than in adults. 

(B) Representative images of foraging behavior on bacterial lawns are shown for 

the indicated genotypes. Neither pdf-1 nor pdfr-1 mutations prevented clumping 

of npr-1 mutants, whereas clumping was abolished by an osm-9 TRPV mutation 

as expected (de Bono et al., 2002). Scale bar indicates 1 mm. The number of 

animals analyzed is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (***, p <0.001; ns, not significant). 
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little effect on the locomotion of npr-1 mutants during lethargus (Fig. 2.12), indicating 

the PDF-1 is the major form of PDF involved in lethargus behavior. Collectively, these 

results suggest that PDF-1 functioned as an arousal peptide in npr-1 mutants, preventing 

locomotion quiescence during lethargus. PDF-1’s effects on arousal were specific 

because knockdown of 14 other neuropeptides expressed in the RMG circuit had no 

effect on the npr-1 lethargus defect (Fig. 2.13). 

 

Figure 2.12. Inactivating PDF-2 does not suppress the npr-1 lethargus 

locomotion defect. 

Locomotion behavior of single worms during the L4/A lethargus was analyzed 

in the indicated genotypes. Average motile fraction (A) and average locomotion 

velocity (B) are plotted. The npr-1 locomotion quiescence defect during 

lethargus was not suppressed by inactivating PDF-2. The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. (ns, not 

significant). 

 

NPR-1 inhibits PDF-1 secretion during lethargus 

If PDF-1 functions as an arousal peptide, PDF-1 expression or secretion should be 

inhibited during lethargus, when animals are quiescent. We did several experiments to 

test this idea. The abundance of pdf-1 and pdfr-1 mRNAs (assayed by quantitative PCR) 

was unaltered during the L4/A lethargus, whereas expression of mlt-10 (a gene required  
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Figure 2.13. RNAi screen for the neuropeptide genes expressed in the RMG 

circuit whose knockdown suppresses the npr-1 lethargus locomotion defect. 

(A) The fraction of motile animals during the L4/A lethargus was plotted 

following treatment with the indicated RNAi clones. RNAi was carried out 

using RNAi hypersensitive strains (nre-1 lin-15b). Knockdown of pdf-1 

significantly suppressed the npr-1 lethargus locomotion defect, whereas 

knockdown of 14 other neuropeptides expressed in the RMG circuit had no 

effect on the npr-1 lethargus defect. L4440 indicates the empty vector control. 

The number of animals analyzed is indicated for each RNAi clone. Error bars 

indicate SEM. Values that differ significantly are indicated (***, p <0.001). 

 

for molting) was significantly increased, as expected (Fig. 2.14) (Frand et al., 2005). To  

assay PDF-1 secretion, we expressed YFP-tagged proPDF-1 with the pdf-1 promoter 

(Fig. 2.15). During DCV maturation, the YFP linked to proPDF-1 is cleaved by 

proprotein convertases, and is subsequently secreted by DCV exocytosis. To assess the 

level of PDF-1 secretion, we analyzed PDF-1::YFP fluorescence in the endolysosomal 

compartment of coelomocytes, which are specialized scavenger cells that internalize 

proteins secreted into the body cavity (Fares and Greenwald, 2001; Sieburth et al., 2007). 

The PDF-1::YFP secretion reporter produced high levels of coelomocyte fluorescence in 

both L4 larvae and adults, whereas dramatically lower coelomocyte fluorescence was  
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Figure 2.14. The abundance of pdf-1 and pdfr-1 mRNAs is not altered 

during lethargus. 

(A) The abundance of pdf-1, pdfr-1, and mlt-10 mRNAs in worm extracts was 

analyzed by quantitative PCR. For each gene, values reported were normalized 

to those observed in wild type young adults. The abundance of pdf-1 and pdfr-1 

mRNAs in lethargus and young adults were not significantly different, whereas 

mlt-10 mRNA abundance was significantly increased during lethargus, as 

expected. 6 biological replicates were analyzed for each genotype and mRNA. 

Error bars indicate SEM. Values that differ significantly are indicated (***, p 

<0.001; ns, not significant).  

 

observed during the L4/A lethargus (Fig. 2.15). Coelomocyte fluorescence produced by a 

second secretion probe (mCherry-tagged RIG-3 expressed in cholinergic motor neurons) 

(Babu et al., 2011) was unaltered during lethargus (Fig. 2.16), indicating that secretion 

and coelomocyte function were not globally inhibited during lethargus.  

If decreased PDF-1 secretion during lethargus is a cellular mechanism for inducing 

quiescence, we would expect that mutants retaining or lacking locomotion quiescence 

would exhibit reciprocal patterns of PDF-1 secretion during lethargus. We did several 

experiments to test this idea. In npr-1 mutants, which lack quiescence, the decrease in  
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Figure 2.15. NPR-1 inhibits PDF-1 secretion during lethargus.  

PDF-1 secretion (A,B) was analyzed in the indicated genotypes. (A,B) YFP-

tagged PDF-1 was expressed with the pdf-1 promoter. Representative images 

(A) and summary data (B) are shown for coelomocyte fluorescence in L4, 

L4/A, young adult (0-2 eggs in uterus), and gravid adults of the indicated 

genotypes. PDF-1::YFP coelomocyte fluorescence was dramatically reduced 

during the L4/A lethargus of wild type animals, but not in npr-1 mutants. 

Decreased PDF-1::YFP coelomocyte fluorescence during lethargus was 

reinstated by transgenes expressing NPR-1 in the RMG circuit (Sensory rescue, 

flp-21 promoter). The number of animals analyzed is indicated for each 

genotype. Scale bar indicates 10 µm. Error bars indicate SEM. Values that 

differ significantly are indicated (*, p <0.05; ***, p <0.001; ns, not significant). 

 

PDF-1::YFP coelomocyte fluorescence during the L4/A lethargus was eliminated, and 

was restored by a transgene expressing NPR-1 in the RMG circuit (Fig. 2.15). Similarly, 

tax-4; npr-1 double mutants exhibited locomotion quiescence and decreased PDF-1  
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Figure 2.16. RIG-3 secretion is not reduced during lethargus.  

(A) Coelomocyte fluorescence produced by RIG-3::mCherry (expressed in 

cholinergic neurons) was analyzed in L4, L4/A, and adult animals for the 

indicated genotypes. RIG-3::mCherry coelomocyte fluorescence was not altered 

during lethargus, and was reduced in L4 and L4/A npr-1 mutant animals. The 

number of animals analyzed is indicated for each genotype. Error bars indicate 

SEM. Values that differ significantly are indicated (*, p <0.05; ns, not 

significant). 

 

 

Figure 2.17. PDF-1 secretion is regulated by sensory activity in the RMG 

circuit. 

(A) Coelomocyte fluorescence produced by PDF-1::YFP (expressed with the pdf-1 

promoter) was analyzed in L4, L4/A, and adult animals for the indicated genotypes. 

PDF-1::YFP coelomocyte fluorescence was decreased during the L4/A lethargus of 

tax-4 single and tax-4;npr-1 double mutants, which was reversed by transgenes 

expressing TAX-4 in the RMG circuit (Sensory rescue, flp-21 promoter). The 

number of animals analyzed is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (*, p <0.05; **, p <0.01; ***, p <0.001). 
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secretion during lethargus, and both effects were reversed by a transgene expressing 

TAX-4 in the RMG circuit (Fig. 2.8A-C and 2.17). By contrast, RIG-3 coelomocyte 

fluorescence was decreased in npr-1 mutants, in both L4 and L4/A animals (2.16).  

Consequently, the effects of NPR-1 and TAX-4 on PDF-1 coelomocyte fluorescence are 

unlikely to be caused by general changes in the stability of secreted proteins, nor by 

general changes in coelomocyte activity. Instead, these results suggest that heightened 

RMG circuit activity in npr-1 mutants produced a corresponding increase in PDF-1 

secretion from head sensory neurons, thereby increasing motility during lethargus. 

The preceding results suggest that decreased and increased PDF-1 secretion during 

lethargus are correlated with and required for locomotion quiescence and arousal. To  

 

Figure 2.18. Forced secretion of PDF-1 during lethargus is sufficient to 

arouse locomotion behavior. 

Forced depolarization of PDF-1 expressing neurons decreased L4/A locomotion 

quiescence. PDF-1 and rat TRPV1 were ectopically expressed in ASH neurons 

(using the sra-6 promoter). Locomotion behavior of transgenic worms during 

the L4/A lethargus was analyzed with or without capsaicin treatment (6-7 

hours). Average motile fraction (A), and average locomotion velocity (B) are 

plotted. Capsaicin treatment decreased L4/A quiescence in transgenic animals 

expressing both TRPV1 and PDF-1 in ASH neurons, but not in those expressing 

only TPRV1. The number of animals analyzed is indicated for each genotype. 

Values that differ significantly are indicated (**, p <0.01; ns, not significant) 
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determine if increased PDF-1 secretion is sufficient to arouse locomotion, we constructed 

transgenic animals in which PDF-1 secretion can be pharmacologically induced (Fig. 

2.18). A prior study showed that capsaicin treatment depolarizes ASH neurons expressing  

rat TRPV1 channels (Tobin et al., 2002). When TRPV1 and PDF-1 were co-expressed in 

ASH neurons, capsaicin treatment significantly decreased locomotion quiescence during 

lethargus (Fig. 2.18). This effect was not observed when only TRPV1 was expressed in  

ASH. These results suggest that forced secretion of PDF-1 during lethargus was 

sufficient to arouse locomotion behavior. 

 

PDF-1 can function in ASK neurons to mediate arousal  

Because RMG circuit activity controls PDF-1 secretion and locomotion arousal, a simple 

explanation for our data would be that PDF-1 is secreted by cells in the RMG circuit. 

Several results are consistent with this idea. The pdf-1 promoter is expressed in RMG 

interneurons, and in ASK sensory neurons, which form direct gap junctions with RMG 

(Fig. 2.6) (Barrios et al., 2012; Janssen et al., 2008). Transgenes expressing PDF-1 in 

ASK neurons re-instated the locomotion quiescence defect in pdf-1;npr-1 double mutants 

(Fig. 2.19A-B). Similarly, coelomocyte fluorescence produced by PDF-1::YFP expressed 

in ASK neurons was decreased during lethargus in wild type animals but not in npr-1 

mutants (Fig. 2.19C). Thus, PDF-1 expression in ASK neurons was sufficient to 

reconstitute NPR-1’s effects on locomotion quiescence and PDF-1 secretion during 

lethargus. Because PDF-1 is secreted (and consequently acts in a cell non-autonomous 

manner), PDF-1 secretion from other cells may also regulate lethargus behavior. 
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Consistent with this idea, PDF-1 expression in ASI neurons also restored the L4/A 

quiescence defect in pdf-1;npr-1 double mutants (Fig. 2.19A-B). 

 

Figure 2.19. PDF-1 can function in ASK neurons to mediate arousal. 

The effect of pdf-1 rescue in ASK neurons on the npr-1 lethargus locomotion 

defect (A-B) and PDF-1 secretion from ASK neurons (C) were analyzed in the 

indicated genotypes. (A-B) Locomotion behavior of single worms during the 

L4/A lethargus was analyzed in the indicated genotypes. Average motile 

fraction (A), and average locomotion velocity (B) are plotted. The npr-1 

locomotion quiescence defect was reinstated in pdfr-1; npr-1 double mutants by 

transgenes expressing PDF-1 in ASK (sra-9 promoter) and ASI (str-3 

promoter) sensory neurons using the indicated promoters. (C) YFP-tagged 

PDF-1 was expressed in ASK neurons using the sra-9 promoter. Summary data 

(C) are shown for coelomocyte fluorescence in L4, L4/A, and gravid adults of 

the wild type and npr-1 mutant animals. PDF-1::YFP coelomocyte fluorescence 

was reduced during the L4/A lethargus of wild type animals, but not in npr-1 

mutants. The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (*, p <0.05; 

***, p <0.001; ns, not significant).  

 

PDFR-1 acts in mechanosensory neurons to mediate arousal  

How does enhanced PDF-1 secretion alter locomotion? The pdfr-1 promoter is expressed 

in mechanosensory neurons that sense vibration of the body wall (the touch neurons), in 
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body wall muscles, and in a few other classes of neurons (Janssen et al., 2008). 

Transgenes expressing PDFR-1 in touch neurons or in body wall muscles both partially 

reinstated the lethargus locomotion quiescence defect in npr-1; pdfr-1 double mutants 

(Fig. 2.20A, C and D). These results suggest that PDFR-1 acts in both touch neurons and  

 

Figure 2.20. PDFR-1 receptors expressed in touch neurons and body muscles 

mediate locomotion arousal.  

Locomotion behavior of single worms during the L4/A lethargus was analyzed in 

the indicated genotypes. Instantaneous locomotion velocity (A,B), average motile 

fraction (C), and average locomotion velocity (D) are plotted. The npr-1 

locomotion quiescence defect was partially reinstated in pdfr-1; npr-1 double 

mutants by transgenes expressing PDFR-1 in touch neurons (mec-3 promoter) and 

body muscles (myo-3 promoter) using the indicated promoters (A,C,D). Mutations 

disrupting touch neuron differentiation (mec-3 mutants) partially suppressed the 

npr-1 locomotion quiescence defect (B-D). The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (**, p <0.01; ***, p <0.001).  
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body wall muscles to promote arousal from locomotion quiescence during lethargus. The 

six touch neurons form gap junctions with the ventral cord command interneurons that 

control locomotion (Chalfie et al., 1985). Mutations that impair the mechanosensitivity of 

the touch neurons (termed Mec mutants) cause locomotion to become lethargic (Chalfie 

and Sulston, 1981). For these reasons, we focused our analysis on PDFR-1 function in 

touch neurons. 

Is the npr-1 lethargus defect mediated by increased activity of the touch neurons? 

We did several experiments to test this idea. First, we analyzed the lethargus behavior of 

mec-3; npr-1 double mutants. The MEC-3 transcription factor is required for 

differentiation of touch neurons; consequently, touch responses are disrupted in mec-3 

mutants (Way and Chalfie, 1988). Mutations inactivating mec-3 partially suppressed the 

lethargus locomotion defect of npr-1 mutants (Fig. 2.20B-D). These results suggest that 

touch neuron function was required for NPR-1’s effect on motility during lethargus. 

Partial suppression of the lethargus defect in mec-3; npr-1 double mutants was expected 

because rescue experiments suggest that PDFR-1 function is required in both touch 

neurons and body muscles (Fig. 2.20A, C and D).  

Second, we measured touch-evoked calcium transients in the anterior touch 

neuron (ALM) of adult animals using the genetically encoded calcium indicator 

cameleon (Fig. 2.21 and 2.22). Cameleon expression in touch neurons did not disrupt 

NPR-1 and PDFR-1 effects on L4/A locomotion quiescence (Fig. 2.23). Thus, calcium 

buffering by cameleon did not interfere with NPR-1 mediated regulation of touch cell 

function. PDF-1 secretion was increased in npr-1 adults (Fig. 2.15); consequently, NPR-

1’s effects on touch sensitivity should be evident in adults. Consistent with this idea, the  
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Figure 2.21. PDFR-1 is required for enhanced ALM touch sensitivity in npr-1 mutant 

adults.  

Touch-evoked calcium transients in ALM were analyzed using cameleon as a calcium 

indicator.  Responses were analyzed in adult animals. Averaged responses (A), and the 

amplitudes of individual trials (B) are shown for each genotype. Each red trace represents 

the average percentage change in YFP/CFP fluorescence ratio. The black triangle indicates 

the time at which the mechanical stimulus was applied. Gray shading indicates SEM of the 

mean response. (A-B) Touch-evoked calcium transients in adult ALM neurons were 

significantly larger in npr-1 mutants. This defect was rescued by transgenes expressing 

NPR-1 in the RMG circuit (sensory rescue), and was suppressed by mutations inactivating 

PDF-1 and PDFR-1. Touch-evoked calcium transients in pdfr-1 mutants were not 

significantly different from wild type controls. Enhanced touch-evoked calcium transients 

in adult ALM neurons were reinstated in pdfr-1; npr-1 double mutants by transgenes 

expressing PDFR-1 in touch neurons but not by those expressed in body muscles. The 

number of animals analyzed is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (***, p <0.001; ns, not significant). 
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magnitude of touch-evoked calcium transients in ALM was significantly increased in 

npr-1 mutant adults and this defect was rescued by transgenes expressing NPR-1 in the 

RMG circuit (Fig. 2.21). The enhanced ALM touch-sensitivity exhibited by npr-1 adults 

was eliminated in pdfr-1; npr-1 double mutants (Fig. 2.21) and was reinstated by 

transgenes expressing PDFR-1 in touch neurons but not by those expressed in body wall 

muscles (Fig. 2.21). By contrast, in pdf-1; npr-1 double mutants, heightened ALM touch 

responsiveness was reduced but not eliminated (Fig. 2.22). The residual effect of NPR-1 

on ALM touch sensitivity in pdf-1; npr-1 double mutants was likely mediated by other  

 

Figure 2.22. PDF-1 is required for enhanced ALM touch sensitivity in npr-1 

mutant adults. 

Touch-evoked calcium transients in adult ALM neurons were analyzed using 

cameleon as a calcium indicator. Averaged responses (A) and the amplitudes of 

individual trials (B) are shown for each genotype. Each red trace represents the 

average percentage change in YFP/CFP fluorescence ratio. The black triangle 

indicates the time at which the mechanical stimulus was applied. Gray shading 

indicates SEM of the mean response. The heightened touch-evoked calcium 

transient observed in npr-1 mutants was reduced but not eliminated in pdf-1; 

npr-1 double mutants. The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. Values that differ significantly are indicated 

(*, p <0.05; ***, p <0.001).  
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Figure 2.23. Cameleon expression in touch neurons does not disrupt NPR-1 

and PDFR-1 effects on L4/A locomotion quiescence 

Locomotion behavior of single worms carrying cameleon expressed in touch 

neurons was analyzed during the L4/A lethargus in the indicated genotypes. 

Average motile fraction (A), and average locomotion velocity (B) are plotted. 

Cameleon expression in touch neurons did not disrupt NPR-1 and PDFR-1 

effects on L4/A locomotion quiescence. The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (***, p <0.001). 

 

PDFR-1 ligands (e.g. PDF-2). Collectively, these results suggest that increased PDF-1  

secretion in npr-1 adults was associated with enhanced touch sensitivity. 

Because PDF-1 and PDFR-1 enhanced touch sensitivity in npr-1 mutants, we 

would expect that pdf-1 and pdfr-1 single mutants would exhibit decreased touch 

sensitivity. Contrary to this idea, adult ALM touch responses were unchanged in either 

single mutant (Fig. 2.21 and 2.22). These results do not exclude the idea that touch 

sensitivity was altered in these mutants. We may fail to detect differences in ALM 

responses for technical reasons. For example, an effect on touch sensitivity in single 

mutants may only be apparent at lower stimulus intensities, or upon repetitive 

stimulation.  To further address this issue, we analyzed locomotion in the single mutants. 
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Adult pdf-1 and pdfr-1 single mutants exhibited significantly slower locomotion and 

decreased motile fractions (Fig. 2.24) (Meelkop et al., 2012), both of which could result 

from diminished touch sensitivity. Consistent with this idea, the decreased locomotion 

rate and motile fraction of pdfr-1 mutants was partially rescued by transgenes expressing 

PDFR-1 in touch neurons (Fig. 2.24). These results support the idea that PDF-1 and 

PDFR-1’s effects on touch sensitivity are not restricted to npr-1 mutants. 

 

Figure 2.24. The pdfr-1 adult locomotion defect is partially due to altered 

touch sensitivity. 

Locomotion behavior of single adult worms was analyzed in the indicated 

genotypes. Instantaneous locomotion velocity (A), average motile fraction (B), 

and average locomotion velocity (C) are plotted. Both pdf-1 and pdfr-1 single 

mutants showed reduced locomotion in adult. The pdfr-1 adult locomotion 

defect was partially rescued by transgenes expressing PDFR-1 in touch 

neurons, but not in body wall muscles. The number of animals analyzed is 

indicated for each genotype.  Error bars indicate SEM. Values that differ 

significantly are indicated (***, p <0.001; **, p <0.01; ns, not significant). 

 

To determine if NPR-1 also regulates touch sensitivity during lethargus, we 

analyzed ALM calcium transients during the L4/A lethargus (Fig. 2.25). A recent study 

reported that touch neuron calcium transients are significantly reduced during lethargus  
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Figure 2.25. NPR-1 and PDFR-1 regulate ALM touch sensitivity during 

lethargus.  

Touch-evoked calcium transients in ALM were analyzed in L4, L4/A, and adults 

of the indicated genotypes. Averaged responses (A) and the amplitudes of 

individual trials (B) are shown for each genotype. Each red trace represents the 

average percentage change in YFP/CFP fluorescence ratio. The black triangle 

indicates the time at which the mechanical stimulus was applied. Gray shading 

indicates SEM of the mean response. (A-B) Touch-evoked ALM calcium 

transients were significantly reduced during L4/A lethargus, and this effect was 

abolished in npr-1 mutants. Enhanced touch-evoked calcium transients in npr-1 

mutants were suppressed by inactivating PDFR-1. Values that differ 

significantly are indicated (*, p <0.05; **, p <0.01; ns, not significant). 

 

(Schwarz et al., 2011). Consistent with this prior study, we found that ALM touch-

evoked calcium transients were significantly smaller during the L4/A lethargus; however, 

this effect was eliminated in npr-1 mutants (Fig. 2.25). The enhanced ALM touch 

responses during lethargus exhibited by npr-1 mutants was eliminated in pdfr-1; npr-1 
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double mutants (Fig. 2.25). Thus, NPR-1 inhibition of PDF signaling is required for 

inhibition of touch sensitivity during lethargus.  
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DISCUSSION 

 

We describe a circuit mechanism controlling arousal from a developmentally 

programmed form of behavioral quiescence in C. elegans. Increased RMG circuit activity 

in npr-1 mutants was accompanied by increased PDF-1 secretion and heightened 

peripheral sensitivity to touch, thereby increasing motility during lethargus. Below we 

discuss the significance of these results. 

Related neuropeptides mediate quiescence and arousal/motivation in worms, flies, 

and rodents. Peptides homologous to NPY induce locomotion quiescence in C. elegans  

(FLP-18 and -21), inhibit locomotion and foraging on food in Drosophila (NPF) (Wu et 

al., 2003), and inhibit the arousing effects of hypocretin expressing neurons in mice 

(NPY) (Fu et al., 2004). By contrast, peptides homologous to PDF arouse locomotion in 

C. elegans (PDF-1), arouse circadian locomotor activity and decrease sleep duration in 

Drosophila (PDF) (Parisky et al., 2008; Renn et al., 1999), and regulate circadian 

behaviors and sleep in rodents (VIP) (Hu et al., 2011a; Maywood et al., 2007). Thus, 

conserved molecular mechanisms are employed to regulate arousal and quiescence in 

developmentally programmed, metabolically driven, and circadian behavioral states.  

If lethargus is a sleep-like state, as previously proposed (Raizen et al., 2008; Van 

Buskirk and Sternberg, 2007), one would expect that disrupting quiescence during 

lethargus would be deleterious. Contrary to this notion, the fertility and development of 

npr-1 mutants were not grossly altered, indicating that locomotion quiescence during 

lethargus is not essential for normal development or molting. These results do not 
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exclude the idea that quiescence during lethargus has significant effects on health in 

native environments (where conditions are more variable). 

How are arousal peptides functionally coupled to circadian and developmental 

cycles? VIP and PDF are expressed in central clock neurons: rat VIP in the 

suprachiasmatic nucleus (SCN) of the hypothalamus, fly PDF in LNv neurons, and worm 

PDF in the RMG circuit (Helfrich-Forster, 1995; Maywood et al., 2007). Rhythmic 

changes in pdf mRNA levels were not observed in the Drosophila circadian and C. 

elegans molting cycles (Janssen et al., 2009; Park and Hall, 1998). Instead, PDF-1 

secretion was dramatically reduced during lethargus. Inhibition of PDF-1 secretion and 

inhibition of locomotion during lethargus were both abolished in npr-1 mutants. Thus, 

altered PDF-1 secretion provides a cellular mechanism for coupling changes in locomotor 

activity to the molting cycle. 

How is PDF-1 secretion inhibited during lethargus? In npr-1 mutants, pheromone, 

and oxygen responses mediated by the RMG circuit are enhanced (Cheung et al., 2005; 

Gray et al., 2004; Macosko et al., 2009) and we observed a corresponding enhancement 

of PDF-1 secretion. Similarly, inactivation and restoration of TAX-4 CNG channel 

expression in the RMG circuit was accompanied by parallel changes in PDF-1 secretion. 

Based on these results, we propose that RMG circuit activity is diminished during 

lethargus, thereby inhibiting PDF-1 secretion. Consistent with this idea, forced 

depolarization of ASH neurons expressing PDF-1 was sufficient to arouse locomotion 

during lethargus. 

How do central clock neurons engender rhythmic behaviors? A great deal is 

known about how the activity and expression profile of central clock neurons are 
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regulated. Much less is known about how clock neurons dictate circadian behaviors. In C. 

elegans, responsiveness to several sensory cues is reduced during lethargus. In particular, 

touch sensitivity and touch-evoked calcium transients in the touch neurons are decreased 

during lethargus (Raizen et al., 2008; Schwarz et al., 2011; Singh et al., 2011). Our 

results provide a cellular mechanism for these effects. During lethargus, NPR-1 inhibited 

PDF-1 secretion from the RMG circuit, thereby decreasing touch neuron sensitivity. 

PDF-1’s effect on locomotion arousal was also mediated in part by activation of PDFR-1 

receptors in body muscle. Interestingly, fly PDF and rodent VIP also have direct effects 

on muscle function (Talsma et al., 2012).  

Although NPR-1, TAX-4, and PDF have profound effects on lethargus behavior, 

several results suggest that other signaling pathways must also contribute to both 

quiescence and arousal. For example, L4/A quiescence was restored in pdfr-1; npr-1 

double mutants (Fig. 3D-F); consequently, changes in NPR-1 and PDF signaling are not 

absolutely required to induce locomotion quiescence or arousal. Similarly, the 

locomotion of pdfr-1 mutants during lethargus was significantly more quiescent than in 

adults. Thus, inactivating PDF signaling is unlikely to be the only mechanism producing 

L4/A quiescence. These results suggest that arousal and quiescence are behavioral states 

governed by multiple inputs, whose activities are integrated in the RMG circuit. 

NPR-1 regulates several physiologically important traits. Inactivating NPR-1 

alters sensitivity to environmental repellents (e.g. pheromones and oxygen), foraging 

behavior, innate immune responses, and lethargus behavior (Cheung et al., 2005; de Bono 

and Bargmann, 1998; Gray et al., 2004; Reddy et al., 2009; Styer et al., 2008) (Fig. 2A). 

Because NPR-1 sits at the nexus of multiple physiologically important traits, changes in 
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NPR-1 activity and natural variation in the npr-1 gene provide a mechanism for coupling 

changes in behavioral quiescence to the demands of the local environment. Specifically, 

changes in NPR-1 signaling could allow isolated populations to optimize growth 

properties in environments with increased exposure to specific repellents or bacterial 

pathogens.  
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MATERIALS AND METHODS 

 

Strains 

Strain maintenance and genetic manipulation were performed as described (Brenner, 

1974). Animals were cultivated at 20°C on agar nematode growth media seeded with 

OP50 E.coli. Wild type reference strain was N2 Bristol. Strains used in this study are as 

follows: 

Wild type strains 

CB4555, TR389, AB3, CB4856, and RC301 

Mutant strains and integrants 

DA609 npr-1(ad609) X 

KP6080 npr-1(g320) X 

KP6048 npr-1(ky13) X 

AX1410 flp-18(db99) X (Gift from Mario de Bono) 

KP6077 flp-21(pk1601) V 

PR678 tax-4(p678) III 

KP3183 osm-9(ky10) IV 

KP5966 egl-3(nr2090) V 

KP5989 pkc-1(nj3) V 

LSC27 pdf-1(tm1996) III 

KP6340 pdfr-1(ok3425) III 

KP6416 pdf-2(tm4393) X 

CB1338 mec-3(e1338) IV 



47 

KP7044 flp-21(pk1601) V;flp-18(db99) X 

KP7041 flp-18(db99) npr-1(g320) X 

KP7042 flp-21(pk1601) V;npr-1(g320) X 

KP7059 flp-21(pk1601) V;flp-18(db99) npr-1(g320) X 

KP6060 tax-4(p678) III;npr-1(ky13) X 

KP6841 osm-9(ky10) IV;npr-1(ky13) X 

KP6054 egl-3(nr2090) V;npr-1(ky13) X 

KP6682 pkc-1(nj3) V;npr-1(ky13) X 

KP6100 pdf-1(tm1996) III;npr-1(ky13) X 

KP6410 pdfr-1(ok3425) III;npr-1(ky13) X 

KP6417 pdf-2(tm4393) npr-1(ky13) X 

KP5364 nre-1(hd20) lin-15b(hd126) X 

KP6050 npr-1(ky13) nre-1(hd20) lin15b(hd126) X 

CX4978 kyIS200[sra-6p::VR1, elt-2p::NLS-gfp] (Gift from Cori Bargmann) 

KP6426 mec-3(e1338) IV;npr-1 (ky13) X 

KP6693 nuIS472[pdf-1p::pdf-1::YFP, vha-6p::mCherry] 

KP6744 tax-4(p678) III;nuIS472 

KP6745 tax-4(p678) III;npr-1(ky13) X;nuIS472 

KP6743 npr-1(ky13) X;nuIS472 

AQ906 bzIS17[mec-4p::YC2.12] 

KP6679 pdfr-1(ok3425) III;bzIS17 

KP6680 pdfr-1(ok3425) III;npr-1(ky13) X;bzIS17 

KP6681 npr-1(ky13) X;bzIS17 
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KP6699 pdf-1(tm1996) III;npr-1(ky13) X;bzIS17 

KP6700 pdf-1(tm1996) III; bzIS17 

Strains containing extrachromosomal arrays 

CX9396 npr-1(ad609) X;kyEX1966[flp-21p::npr-1 SL2 GFP, ofm-1p::dsRed] (Gift from 

Cori Bargmann) 

KP6053 npr-1(ad609) X;nuEX1520[unc-30p::npr-1::gfp, myo-2p::NLS-mCherry] 

KP7144 tax-4(p678) III;npr-1(ky13) X;nuEX1601[flp-21p::tax-4, vha-6p::mCherry] 

KP7141 npr-1(ky13) X;nuIS472;nuEX1607[flp-21p::npr-1, myo-2p::NLS-mCherry] 

KP7143 tax-4(p678) III;npr-1(ky13) X;nuIS472;nuEX1612[flp-21p::tax-4, myo-2p::NLS-

mCherry] 

KP6819 nuEX1560[unc-17p::rig-3(-GPI)::mCherry] 

KP6820 npr-1(ky13) X; nuEX1560 

KP7053 kyIS200;nuEX1610[sra-6p::pdf-1::venus, myo-2p::NLS-mCherry] 

KP6678 pdf-1(tm1996) III;npr-1(ky13) X;nuEX1547[sra-9p::pdf-1::venus] 

KP6741 pdf-1(tm1996) III;npr-1(ky13) X;nuEX1552[str-3p::pdf-1::venus, vha-

6p::mCherry]  

KP6860 nuEX1611[sra-9p::pdf-1::venus, myo-2p::NLS-mCherry] 

KP7146 npr-1(ky13);nuEX1611 

KP6423 pdfr-1(ok3425) III;npr-1(ky13) X;nuEX1526[mec-3p::pdfr-1b, myo-2p::NLS-

mCherry] 

KP6594 pdfr-1(ok3425) III;npr-1(ky13) X;nuEX1534[myo-3p::pdfr-1a, vha-

6p::mCherry] 
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KP6733 pdfr-1(ok3425) III;npr-1(ky13) X;bzIS17; nuEX1526 [mec-3p::pdfr-1b, myo-

2p::NLS-mCherry] 

KP6734 pdfr-1(ok3425) III;npr-1(ky13) X;bzIS17;nuEX1534[myo-3p::pdfr-1a, vha-

6p::mCherry] 

KP6736 npr-1(ad609) X;bzIS17; kyEX1966[flp-21p::npr-1 SL2 GFP, ofm-1p::dsRed] 

KP6815 pdfr-1(ok3425) III;nuEX1526[mec-3p::pdfr-1b, myo-2p::NLS-mCherry] 

KP6816 pdfr-1(ok3425) III;nuEX1534[myo-3p::pdfr-1a, vha-6p::mCherry]  

 

Constructs 

pdf-1 expression constructs (pdf-1p::pdf-1::YFP (KP#1861), sra-9p::pdf-1::YFP 

(KP#1923), str-3p::pdf-1::YFP (KP#1924), and sra-6p::pdf-1::YFP (KP#1925)) 

cDNAs corresponding to pdf-1 and YFP (VENUS) containing a stop codon were each 

amplified by PCR and ligated into pPD49.26 (Addgene) containing the pdf-1 (~5.4kb 5’ 

regulatory sequence), sra-9 (~3kb 5’ regulatory sequence: ASK expression), str-3 (~3kb 

5’ regulatory sequence: ASI expression), and sra-6 (~3.8kb 5’ regulatory sequence: ASH 

expression) promoters. 

npr-1 rescue constructs (unc-30p::npr-1::GFP (KP#1857) and flp-21p::npr-1 

(KP#1921)) 

npr-1 cDNA (215V) was amplified by PCR and ligated into expression vectors 

(pPD49.26) containing the unc-30 promoter (~2.5kb 5’ regulatory sequence) and GFP at 

the 3’ end of MCSII or the flp-21 promoter (~4.1kb 5’ regulatory sequence). 

tax-4 rescue construct (flp-21p::tax-4 (KP#1922)) 
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tax-4 cDNA was amplified by PCR and ligated into expression vector (pPD49.26) 

containing the flp-21 promoter (~4.1kb 5’ regulatory sequence). 

pdfr-1 rescue constructs (mec-3p::pdfr-1b (KP#1863) and myo-3p::pdfr-1a 

(KP#1866)) 

pdfr-1 cDNAs were amplified by PCR and ligated into expression vectors (pPD49.26) 

containing the mec-3 promoter (3.4kb upstream of the start codon of mec-3 genomic 

region) or myo-3 promoter (~2.4kb 5’ regulatory sequence).   

 

Transgenes and germline transformation 

Transgenic strains were generated by microinjection of various plasmids with coinjection 

markers (myo-2p::NLS-mCherry (KP#1480) and vha-6p::mcherry (KP#1874)). Injection 

concentration was 40 - 50 ng/µl for all the expression constructs and 10 ng/µl for 

coinjection markers. The empty vector pBluescript was used to bring the final DNA 

concentration to 100 ng/µl. Integration of transgenes was obtained by UV irradiation of 

strains carrying extrachromosomal arrays. All the integrants were outcrossed to wild type 

strains (N2 bristol) 10 times.   

 

Lethargus locomotion and behavior analysis 

Well-fed late L4 animals were transferred to full lawn OP50 bacterial plates. After 1 

hour, locomotion of animals in lethargus (determined by absence of pharyngeal pumping) 

was recorded on a Zeiss Discovery Stereomicroscope using Axiovision software. 

Locomotion was recorded at 2 Hz for 30-75 seconds. Centroid velocity of each animal 

was analyzed at each frame using object-tracking software in Axiovision. Motile fraction 
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of each animal was calculated by dividing the number of frames with positive velocity 

value with total number of frames. Speed of each animal was calculated by averaging the 

velocity value at each frame. For long-term lethargus locomotion analysis (Fig. S1A-B), 

1 min-long video was recorded every 20 minutes for each animal after the transfer to full 

lawn OP50 bacterial plates, and motile fraction was calculated for each time point. For 

the forced secretion of PDF-1 (Fig. 4C-D), early L4 animals were transferred to NGM 

plates containing 50 µM capsaicin (with food) and treated with capsaicin for 6-7 hours. 

Duration of L4/A pumping quiescence was calculated by summating the time period from 

the cessation to the resumption of pharyngeal pumping. Statistical significance was 

determined using one-way ANOVA with Tukey test for multiple comparison and two-

tailed Student’s t test for pairwise comparison.  

 

Adult locomotion and behavior analysis 

Locomotion of adult animals was analyzed with the same setup as lethargus locomotion 

analysis described above, except that well-fed adult animals were monitored within 5-10 

minutes after the transfer to full lawn OP50 bacterial plates. Pharyngeal pumping rate of 

adult animals was calculated by counting the number of pharyngeal pumping for 10 

seconds under the Leica MS5 routine stereomicroscope. Foraging behavior was analyzed 

as described (de Bono and Bargmann, 1998). Briefly, approximately 150 well-fed adult 

animals were placed on NGM plates seeded with 200 µl OP50 E.coli 2 days before the 

assay. After 3 hours, images were taken for each genotype. Statistical significance was 

determined using one-way ANOVA with Tukey test for multiple comparison and two-

tailed Student’s t test for pairwise comparison. 
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RNAi feeding screen 

A small-scale RNAi feeding screen was performed as described (Kamath et al., 2003). 

The screen was performed in the neuronal RNAi hypersensitive mutant background (nre-

1 lin-15b)(Schmitz et al., 2007). 15 neuropeptide genes known to be expressed in RMG 

circuit were selected for the screen (Li and Kim, 2008). After 5 days of RNAi treatment 

(2 generation) at 20°C, well-fed late L4 animals were transferred to full lawn OP50 

bacterial plates. After 1 hour, animals in lethargus (determined by absence of pharyngeal 

pumping) were scored for their motility. Statistical significance was determined using 

chi-square test.  

 

Quantitative PCR 

Total RNA was purified from synchronized animals in L4/A lethargus (determined by 

absence of pharyngeal pumping) and synchronized young adult animals (4-5 hours after 

L4/A lethargus) using standard protocol. 6 biological replicates of wild type (N2 Bristol) 

and npr-1(ky13) samples were collected on 3 different days. 2 µg of total RNA was used 

to synthesize cDNA using RETROscript (Ambion). Real-time PCR was performed using 

iTaq SYBR Green Supermix with ROX (BioRad) and a 7500 Fast Real-Time PCR 

System (Applied Biosystems). Statistical significance was determined using two-tailed 

Student’s t test.  

 

Fluorescence microscopy and image analysis 

Quantitative imaging of coelomocyte fluorescence was performed using a Zeiss 

Axioskop equipped with an Olympus PlanAPO 100x (NA=1.4) objective and a 
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CoolSNAP HQ CCD camera (Photometrics). Worms were immobilized with 30 mg/ml 

BDM (Sigma). The anterior coelomocytes were imaged in L4, L4/A lethargus 

(determined by absence of pharyngeal pumping), young adult (0-2 eggs), and gravid adult 

animals. Image stacks were captured and maximum intensity projections were obtained 

using Metamorph 7.1 software (Universal Imaging). YFP fluorescence was normalized to 

the absolute mean fluorescence of 0.5 mm FluoSphere beads (Molecular Probes). 

Statistical significance was determined using one-way ANOVA with Tukey test.  

 

Calcium imaging and analysis 

To image touch-evoked calcium transients in the ALM cell body, we used a transgenic 

line (bzIs17) that expresses the calcium-sensitive protein cameleon in touch neurons 

(using the mec-4 promoter). Calcium imaging was performed on a Zeiss Axioskop 2 

upright compound microscope equipped with a Dual View Beam Splitter and a Uniblitz 

Shutter. Images were recorded at 10 Hz using an iXon EM camera (Andor Technology) 

and captured using IQ1.9 software (Andor Technology).  Individual worms were glued 

using Dermabond topical skin adhesive glue to pads composed of 2% agarose in 

extracellular saline (145mM NaCl, 5mM KCl, 1mM CaCl2, 5mM MgCl2, 20mM D-

glucose, 10mM HEPES buffer, pH7.2). Gentle touch stimuli were delivered using a M-

111.1DG micromanipulator. The micromanipulator was used to drive a pulled glass 

microcapillary with a 15µm diameter rounded tip against the side of the glued worm. The 

tip was positioned adjacent to the body wall and was driven forward to cause a 10µm 

(adults, Fig. 6) or 20µm (L4/A lethargus, Fig. 7) deflection of the cuticle. Optical and 

mechanical stimuli were synchronized by flashing a white LED on the sample a second 
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before the stimulus was delivered. Analysis was done using a custom written Matlab 

(Mathworks) program. A rectangular region of interest (ROI) was drawn surrounding the 

cell body and for every frame the ROI was shifted according to the new position of the 

center of mass. Fluorescence intensity, F, was computed as the difference between the 

sum of pixel intensities and the faintest 10% pixels (background) within the ROI. 

Statistical significance was determined using one-way ANOVA with Tukey test.  
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Chapter 3 

 

NPR-1 Regulates Excitatory Synaptic Transmission at C. elegans Neuromuscular 

Junctions 

 

 

The experiments discussed in this chapter are unpublished work resulting from 

collaboration between Seungwon Choi and Zhitao. 

 

Seungwon Choi learned electrophysiological recordings on body muscles of dissected 

worms under the guidance of two postdocs in Joshua Kaplan lab, Edward Pym and 

Zhitao Hu. Seungwon Choi and Zhitao Hu equally contributed to electrophysiology data 

in this chapter. Seungwon Choi performed electrophysiological recordings presented in 

Fig 3.1, Fig 3.3, Fig 3.6, and Fig 3.10, while Zhitao Hu performed electrophysiological 

recordings presented in Fig 3.1, Fig 3.4, Fig 3.5, and Fig 3.9. Seungwon Choi performed 

all of the other experiments.  
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INTRODUCTION 

 

Animals perceive diverse sensory stimuli from environment throughout life. Sensory 

experience plays a key role in the proper development and function of nervous system. 

The perturbation of sensory perception not only impairs cognitive function by disrupting 

normal development of relevant neural circuits, but also prevents animals from properly 

responding to environmental cues and adapting to new environmental conditions, 

endangering health and survival of animals.  

Sensory experience is required for both structural and functional plasticity of 

neural circuits. A great deal is known about sensory experience-dependent structural 

change in neural circuits. For example, monocular deprivation during critical period 

shifts ocular dominance columns in the visual cortex in mammals (Hensch, 2005; Wiesel 

and Hubel, 1963). Similarly, whisker trimming alters the turnover of dendritic spines in 

mouse barrel cortex (Holtmaat and Svoboda, 2009). However, relatively little is known 

about sensory experience-dependent changes in electrophysiological properties at 

individual synapses in relevant neural circuits. To address this question, we analyzed 

sensory-evoked change in synaptic transmission at C. elegans neuromuscular junctions 

(NMJs). 

The C. elegans nervous system consists of 302 neurons that develop a stereotyped 

pattern of synaptic contacts. 32 sensory neurons receive sensory inputs from environment 

and make synaptic connections with downstream interneurons. Among those, command 

interneurons innervate cholinergic motor neurons along the ventral cord of worms, which 

in turn form dyadic synaptic contacts with both GABAergic motor neurons and body wall 
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muscles. At C. elegans NMJs, body muscles receive two distinct synaptic inputs, 

excitatory inputs mediated by acetylcholine (ACh) and inhibitory inputs mediated by 

GABA.  

Synaptic activity in C. elegans body muscles can be assayed by measuring 

sensitivity to acetylcholine esterase inhibitor aldicarb. Aldicarb treatment causes 

accumulation of ACh at NMJs, leading to paralysis of worms. The time course of 

paralysis shifts depending on the synaptic strength in body muscles. Decreased ACh 

release confers to aldicarb resistance, whereas increased ACh release confers to aldicarb 

hypersensitivity (Gracheva et al., 2006; McEwen et al., 2006). By contrast, decreased 

GABA release confers to aldicarb hypersensitivity, whereas increased GABA release 

confers to aldicarb resistance (Loria et al., 2004). Systematic RNAi screens for aldicarb 

resistance and hypersensitivity have identified many genes that are required for general 

synaptic transmission as well as genes that specifically regulate excitatory or inhibitory 

synapses (Sieburth et al., 2005; Vashlishan et al., 2008).  

Another and more direct approach to assay synaptic activity at C. elegans NMJs is 

to measure postsynaptic currents in body muscles using electrophysiological recordings 

(Richmond et al., 1999). Live worms can be dissected in a way that allows access to 

NMJs and patch-clamp recordings on muscle cells. Excitatory ACh-gated currents and 

inhibitory GABA-gated currents can be separated from each other by holding muscle 

cells at reversal potential of GABA-gated currents (-60 mV) and ACh-gated currents (0 

mV), respectively. In this way, one can distinguish cholinergic and GABAergic 

contribution to body muscle activity.   
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Although a great deal is known about the molecular mechanism controlling 

synaptic activity in local neural circuits, relatively little is known about how sensory 

inputs modulate synaptic activity in the neural circuits located at a distance from sensory 

organs, and what signaling entities mediate this sensory-evoked change in synaptic 

activity. Here we identify a central sensory circuit that regulates cholinergic transmission 

at C. elegans NMJs. Increased sensory activity in the central circuit is associated with 

enhancement of endogenous EPSC rate at NMJs. This central circuit regulates 

cholinergic transmission in body muscles through the concerted action of glutamate and 

neuropeptide. These results provide a circuit mechanism controlling sensory-evoked 

enhancement of cholinergic synapses in C. elegans. 
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RESULTS 

 

Endogenous excitatory synaptic transmission is increased in npr-1 mutants 

In the previous RNAi screen, npr-1 was identified whose knockdown caused aldicarb 

hypersensitivity (Vashlishan et al., 2008). Aldicarb sensitivity is assayed by monitoring 

the time course of paralysis of a population of animals during a 2 hour aldicarb treatment. 

We first repeated aldicarb assay with npr-1 mutants, and confirmed npr-1 mutants are 

hypersensitive to aldicarb as previously reported (Fig. 3.1A). Based on 

electrophysiological recordings that revealed decreased endogenous IPSCs (synaptic 

events mediated by the endogenous activity of GABAergic motor neurons) in npr-1 

mutants, it was originally suggested that aldicarb hypersensitivity of npr-1 mutants is 

caused by decreased GABA transmission at NMJs (Vashlishan et al., 2008). However, 

only a small number of npr-1 mutant animals were analyzed in the previous study, 

requiring more extensive electrophysiological recordings on npr-1 mutants.  

We recorded both EPSCs evoked by a depolarizing stimulus and endogenous 

EPSCs (synaptic events mediated by the endogenous activity of cholinergic motor 

neurons) from adult body wall muscles. The endogenous EPSC rate was greatly 

increased, and the amplitude was also slightly increased in npr-1 mutants (Fig. 3.1D-F). 

By contrast, the amplitude of evoked EPSCs (Fig. 3.1B-C), the rate and the amplitude of 

endogenous IPSCs were unaltered in npr-1 mutants (Fig. 3.1G-I), suggesting that 

endogenous cholinergic transmission is specifically enhanced in npr-1 mutants. The 

density of SNB-1 (synaptobrevin) puncta in cholinergic axons was normal in npr-1 
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mutants, suggesting that the increased cholinergic transmission was not caused by 

increase in the number of cholinergic NMJs (Vashlishan et al., 2008).  

 

Figure 3.1. NPR-1 regulates endogenous cholinergic transmission at NMJs. 

(A) Time course of paralysis for npr-1(ky13) mutant versus wild-type animals on 

1 mM aldicarb (n=13 and 15 trials, respectively, and 20-30 worms per trial). npr-

1 mutants were hypersensitive to aldicarb. (B-I) Stimulus-evoked EPSCs (B, C), 

endogenous EPSCs (D-F), and endogenous IPSCs (G-I) were recorded from body 

wall muscles of the adult worms for the indicated genotypes. Averaged traces of 

stimulus-evoked EPSCs (B), representative traces of endogenous EPSCs (D) and 

IPSCs (G), and summary data are shown (C, E, F, H, and I). Endogenous EPSCs 

were increased in npr-1 mutants (D-F), whereas stimulus-evoked EPSCs and 

endogenous IPSCs were normal (B, C, G, H, and I). The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. Values that 

differ significantly are indicated (*, p <0.05; ***, p <0.001; ns, not significant). 
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The NPR-1 ligands FLP-21 and FLP-18 have no effect on aldicarb sensitivity 

Two NPR-1 ligands, FLP-21 and FLP-18, have been identified in the screen for 

neuropeptides that are capable of activating NPR-1 in Xenopus oocytes, C. elegans 

pharyngeal muscles, and heterologous cells (Kubiak et al., 2003; Rogers et al., 2003). To 

determine if these two neuropeptides function as NPR-1 ligands and regulate cholinergic 

transmission, we performed aldicarb assays with flp-18 and flp-21 mutants. Both flp-18 

and flp-21 single mutants showed normal sensitivity to aldicarb (Fig. 3.2A). To exclude 

the possibility of functional redundancy between FLP-18 and FLP-21, flp-21;flp-18 

double mutants were also analyzed. Like single mutants, flp-21;flp-18 double mutants 

had no significant alteration in aldicarb sensitivity (Fig. 3.2A), suggesting that these two 

neuropeptides can not activate NPR-1, at least, in worms expressing high affinity NPR-

1(215V) receptors (N2 Bristol) (Kubiak et al., 2003; Rogers et al., 2003). However, as in  

other npr-1 phenotype such as social foraging (Rogers et al., 2003) and lethargus  

 

Figure 3.2. The NPR-1 ligands FLP-21 and FLP-18 have no effect on aldicarb 

sensitivity. 

(A-C) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=7, 5, 5, 5, 5, 4, and 4 trials for wild-type, flp-18(tm2179), 

flp-21(pk1601), npr-1(ky13), flp-21;flp-18, flp-18 npr-1, and flp-21;npr-1 

animals, respectively, and 20-30 worms per trial). Mutations inactivating FLP-18 

and FLP-21 had no effect on aldicarb sensitivity.  
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behavior (Fig. 2.2), there remains a possibility that inactivating FLP-18 and/or FLP-21 

may affect aldicarb sensitivity in a Bristol strain expressing low affinity NPR-1(215F) 

receptors (npr-1(g320) mutants). This possibility should be further explored by 

examining flp-21;npr-1(g320) and flp-18 npr-1(g320) double mutants. As a control, we 

first analyzed aldicarb sensitivity of flp-21;npr-1(null) and flp-18 npr-1(null) double 

mutants, and confirmed that inactivating neither FLP-21 nor FLP-18 affected aldicarb-

induced paralysis of npr-1 null animals (Fig. 3.2B-C). 

 

The npr-1 cholinergic transmission defect is mediated by increased sensory activity 

NPR-1’s effects on foraging (Macosko et al., 2009) and lethargus behavior (Fig. 2.2) are 

mediated by its expression in the RMG circuit in the head. In addition to the RMG 

circuit, NPR-1 is also expressed in GABAergic motor neurons in the ventral nerve cord 

(Coates and de Bono, 2002). We did two experiments to determine where NPR-1 

functions to regulate cholinergic transmission at NMJs. First, an npr-1 transgene 

expressed in the RMG circuit (using the flp-21 promoter) completely rescued both 

aldicarb hypersensitivity and cholinergic transmission defect of npr-1 mutants, whereas 

transgenes expressed in GABAergic motor neurons (using the unc-30, a gene encoding 

homeodomain protein involved in the differentiation of GABAergic motor neurons, and 

unc-25, a gene encoding glutamic acid decarboxylase (GAD), promoters) had no rescuing 

activity (Fig. 3.3). Interestingly, transgenes expressed in GABAergic motor neurons 

made npr-1 mutants more hypersensitive to aldicarb than npr-1 mutants without the 

transgenes (Fig. 3.3A), which is likely caused by NPR-1’s inhibition of GABA  
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Figure 3.3. NPR-1 expressed in the RMG circuit regulates endogenous 

cholinergic transmission at NMJs. 

(A) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=11, 6, 8, and 15 trials for wild-type, npr-1(ad609), 

Sensory rescue, and GABA rescue, respectively, and 20-30 worms per trial). 

npr-1 aldicarb hypersensitivity was rescued by transgenes expressing NPR-1 in 

the RMG circuit (Sensory rescue, flp-21 promoter) but not by those expressed 

in GABAergic neurons (GABA rescue, unc-25 and unc-30 promoters), using 

the indicated promoters. (B-D) Endogenous EPSCs were recorded from body 

wall muscles of the adult worms for the indicated genotypes. Representative 

traces of endogenous EPSCs (B) and summary data are shown (C, D). The npr-

1 cholinergic transmission defect was rescued by transgenes expressing NPR-1 

in the RMG circuit (Sensory rescue) but not by those expressed in GABAergic 

neurons (GABA rescue). The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. Values that differ significantly are indicated 

(**, p <0.01; ns, not significant). 
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transmission through Go signaling pathway (Miller et al., 1999; Nurrish et al., 1999). 

Second, both aldicarb hypersensitivity and cholinergic transmission defect of npr-1 

mutants were abolished by mutations inactivating ion channels required for sensory 

transduction, such as TAX-4/CNG, OSM-9 and OCR-2/TRPV channels (Figs. 3.4 and 

3.5). Together, these results suggest that cholinergic transmission defect in npr-1  

 

Figure 3.4. Sensory transduction mediated by TAX-4/CNG channels is 

required for sensory-evoked enhancement of cholinergic transmission in 

npr-1 mutants.  

(A) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=7 trials for all the genotypes, and 20-30 worms per trial; 

wild-type, npr-1(ok1447), tax-4(p678), and tax-4;npr-1). The npr-1 aldicarb 

hypersensitivity was blocked by mutations inactivating TAX-4/CNG channels. 

(B-D) Endogenous EPSCs were recorded from body wall muscles of the adult 

worms for the indicated genotypes. Representative traces of endogenous EPSCs 

(B) and summary data are shown (C, D). The npr-1 cholinergic transmission 

defect was abolished by mutations inactivating TAX-4. The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. Values that 

differ significantly are indicated (***, p <0.001; **, p <0.01). 
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Figure 3.5. Sensory transduction mediated by OSM-9 and OCR-2/TRPV channels is 

required for sensory-evoked enhancement of cholinergic transmission in npr-1 

mutants.  

(A-B) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotype (n=7, 4, 7, 4, 6, 3, 6, and 3 trials for wild-type (A), wild-type (B), npr-

1(ok1447) (A), npr-1(ok1447) (B), osm-9(ky10), ocr-2(ak47), osm-9;npr-1, and ocr-

2;npr-1 animals, respectively, and 20-30 worms per trial). The npr-1 aldicarb 

hypersensitivity was blocked by mutations inactivating OSM-9 and OCR-2/TRPV 

channels. (C-E) Endogenous EPSCs were recorded from body wall muscles of the adult 

worms for the indicated genotypes. Representative traces of endogenous EPSCs (C) and 

summary data are shown (D, E). The npr-1 cholinergic transmission defect was abolished 

by mutations inactivating OCR-2. The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. Values that differ significantly are indicated (***, p 

<0.001). 
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mutants was caused by heightened sensory activity in the RMG circuit.  

 

Glutamate signaling mediates sensory-evoked enhancement of cholinergic 

transmission at NMJs 

How can heightened sensory activity be transmitted to body wall muscles and enhance 

cholinergic transmission at NMJs in npr-1 mutants? Glutamate and neuropeptides are two 

major types of neurotransmitters expressed in sensory neurons in the RMG circuit. In C. 

elegans, glutamate transmission is mostly utilized at synapses between sensory neurons 

and downstream interneurons including command interneurons that further make 

synapses onto motor neurons and modulate locomotion of animals (Brockie and Maricq, 

2006). Glutamate-mediated fast synaptic transmission at sensory-interneuron synapses is 

required for behavioral responses to noxious stimuli such as nose touch, hyperosmotic 

stress, and chemical repellents (Hart et al., 1999; Hart et al., 1995; Maricq et al., 1995; 

Mellem et al., 2002). To determine if glutamate transmission mediates the enhancement 

of cholinergic transmission in body muscles of npr-1 mutants, we examined mutants 

lacking eat-4 vGLUT (vesicular Glutamate Transporter) in which glutamate transmission 

is disrupted. Inactivating EAT-4 suppressed aldicarb hypersensitivity and abolished 

cholinergic transmission defect of npr-1 mutants (Fig. 3.6), indicating that glutamate 

transmission is indeed required for sensory-evoked enhancement of cholinergic 

transmission at NMJs. 

Among sensory neurons in the RMG circuit, ASH and ASK neurons release 

glutamate as well as neuropeptides for transmission to downstream interneurons, as 

evidenced by expression of EAT-4/vGLUT in these two neurons (Lee et al., 1999). Two  
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Figure 3.6. Glutamate transmission mediates sensory-evoked enhancement 

of cholinergic transmission in npr-1 mutants. 

(A) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=5 trials for all the genotypes, and 20-30 worms per trial; 

wild-type, npr-1(ky13), eat-4(ky5), and eat-4;npr-1). The npr-1 aldicarb 

hypersensitivity was suppressed by mutations inactivating EAT-4/vGLUT. (B-

D) Endogenous EPSCs were recorded from body wall muscles of the adult 

worms for the indicated genotypes. Representative traces of endogenous EPSCs 

(B) and summary data are shown (C, D). The npr-1 cholinergic transmission 

defect was abolished by mutations inactivating EAT-4. The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. Values that 

differ significantly are indicated (*, p <0.05). 

  

lines of evidence support the idea that glutamate release from ASH and ASK mediates 

sensory-evoked enhancement of cholinergic transmission at NMJs. First, eat-4 transgene 

expressed in either ASH or ASK sensory neurons (using the sra-6 promoter and the sra-9  
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Figure 3.7. Glutamate release from ASH and ASK sensory neurons 

mediates sensory-evoked enhancement of cholinergic transmission in npr-1 

mutants. 

(A-B) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=4, 3, 4, 4, 5, and 5 trials for npr-1(ky13), eat-

4(ky5);npr-1, ASH rescue, ASK rescue, [ASH::TRPV1] (mock), and 

[ASH::TRPV1] (capsaicin 2hrs), respectively, and 20-30 worms per trial). (A) 

The npr-1 aldicarb hypersensitivity was reinstated by transgenes expressing 

EAT-4 in ASH (sra-6 promoter) and ASK (sra-9 promoter), using the indicated 

promoters. (B) Forced depolarization of ASH increased aldicarb sensitivity. 

Time course of paralysis of transgenic worms expressing rat TRPV1 channels 

in ASH were analyzed with or without capsaicin treatment (2 hours).  

  

promoter, respectively) reinstated aldicarb hypersensitivity in eat-4;npr-1 double mutants 

(Fig. 3.7A). Second, chronic activation of ASH sensory neurons induced aldicarb 

hypersensitivity. A prior study showed that capsaicin treatment depolarizes ASH neurons 

expressing rat TRPV1 channels and induces backing responses in these transgenic 

animals (Tobin et al., 2002). Prolonged treatment of capsaicin induced aldicarb  

hypersensitivity in these transgenic animals (Fig. 3.7B), suggesting that forced 

depolarization of ASH sensory neurons was sufficient to enhance cholinergic 

transmission at NMJs. Electrophysiological recordings on capsaicin treated animals 

should further confirm this idea.  
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GLR-2 is the major glutamate receptor that mediates sensory-evoked enhancement 

of cholinergic transmission at NMJs 

Similar to glutamate transmission in vertebrates, glutamate-gated current in C. elegans 

consists of two components with different kinetic properties. A large and rapid 

component is dependent on GLR-1 and GLR-2/AMPA-type glutamate receptors, while a 

small and long-lasting component is dependent on NMR-1/NMDA-type glutamate 

receptors (Mellem et al., 2002). Mutants lacking each type of glutamate receptor show 

differences in sensory behaviors, suggesting that glutamate receptor composition and 

function can dictate distinct behavioral outcomes. For example, mutants lacking either 

GLR-1 or GLR-2 have defects in both nose touch responses and osmotic avoidance, 

whereas mutants lacking NMR-1 has a subtle defect only in osmotic avoidance (Mellem 

et al., 2002). In order to identify which glutamate receptors play a major role in mediating 

sensory-evoked enhancement of cholinergic transmission at NMJs, we first examined 

aldicarb sensitivity of glr-1, glr-2, and nmr-1 single mutants as well as each double 

mutant with npr-1 mutations. Two different mutations inactivating GLR-2 consistently 

blocked aldicarb hypersensitivity in npr-1 mutants, whereas mutations inactivating GLR-

1 or NMR-1 had a subtle or no effect, respectively (Fig. 3.8). These results suggest that 

GLR-2 is a major glutamate receptor that mediates sensory-evoked enhancement of 

cholinergic transmission at NMJs, although electrophysiological recordings should 

confirm these results. 
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Figure 3.8. GLR-2 is the major glutamate receptor that mediates sensory-

evoked enhancement of cholinergic transmission in npr-1 mutants. 

(A-D) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=5, 6, 4, 4, 7, 3, 4, 3, 4, 2, 4, 3, 4, and 2 trials for 

wild-type (A), wild-type (B), wild-type (C, D), npr-1(ky13) (A), npr-1(ky13) 

(B), npr-1(ky13) (C, D), glr-1(n2461), nmr-1(ak4), glr-2(ok2342), glr-2(ak10), 

glr-1;npr-1, nmr-1;npr-1, glr-2(ok2342);npr-1, glr-2(ak10);npr-1 animals, 

respectively, and 20-30 worms per trial). (A, B) The npr-1 aldicarb 

hypersensitivity was minimally and not affected by mutations inactivating 

GLR-1 (A) and NMR-1 (B), respectively. (C, D) The npr-1 aldicarb 

hypersensitivity was greatly suppressed by two different mutations inactivating 

GLR-2. 

  

Neuropeptides also mediate sensory-evoked increase in cholinergic transmission 

Neuropeptides modulate neuronal activity, animal behaviors, and diverse physiological 

processes in both vertebrate and invertebrate nervous system (Taghert and Nitabach, 

2012; van den Pol, 2012). C. elegans expresses over 110 neuropeptide genes encoding  
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Figure 3.9. Neuropeptides mediate sensory-evoked enhancement of 

cholinergic transmission in npr-1 mutants. 

(A-B) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=12, 12, 6, 6, 4, and 4 trials for wild-type, npr-

1(ky13), egl-3(nr2090), egl-3;npr-1, egl-3;[ASH::TRPV1] (mock), and egl-

3;[ASH::TRPV1] (capsaicin 2hrs), respectively, and 20-30 worms per trial). 

(A) The npr-1 aldicarb hypersensitivity was blocked by mutations inactivating 

EGL-3/PC2. (B) Forced depolarization of ASH had no effect on aldicarb 

sensitivity in egl-3 mutants. Time course of paralysis of transgenic worms were 

analyzed with or without capsaicin treatment (2 hours). (C-E) Endogenous 

EPSCs were recorded from body wall muscles of the adult worms for the 

indicated genotypes. Representative traces of endogenous EPSCs (C) and 

summary data are shown (D, E). The npr-1 cholinergic transmission defect was 

abolished by mutations inactivating EGL-3. The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (***, p <0.001). 
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over 250 distinct neuropeptides (Li and Kim, 2008), and their role in modulating neural 

circuits and behaviors such as locomotion, feeding, and reproduction have been recently 

studied at the circuit level (Barrios et al., 2012; Beets et al., 2012; Chalasani et al., 2010; 

Garrison et al., 2012; Hu et al., 2011b).  

Most of sensory neurons and interneurons, including neurons in the RMG circuit, 

release one or more neuropeptides. Thus, it is possible that heightened sensory activity in 

npr-1 mutants might increase the secretion of neuropeptides from the RMG circuit that 

modulate neurotransmitter release at cholinergic synapses in body muscles. Consistent 

with this idea, the npr-1 aldicarb hypersensitivity and cholinergic transmission defect 

were eliminated by mutations inactivating egl-3 PC2 (Fig. 3.9A and C-E), which is 

required for pro-neuropeptide processing (Husson et al., 2006; Kass et al., 2001). In 

addition, forced depolarization of ASH failed to enhance aldicarb sensitivity in egl-3 

mutants (Fig. 3.9B). These results suggest that the npr-1 cholinergic transmission defect 

was mediated by an endogenous neuropeptide.  

 

Sensory-evoked enhancement of cholinergic transmission is partially mediated by 

PDF-1 and PDFR-1 

We first hypothesized that PDF-1 secreted from the RMG circuit might enhance 

cholinergic transmission at NMJs in npr-1 mutants for two reasons. First, PDF-1 

secretion was increased in npr-1 adult animals (Fig. 2.15). Second, in addition to touch 

neurons and body wall muscles, pdfr-1 promoter is also expressed in AVD and PVC 

command interneurons that make synapses onto cholinergic motor neurons (Barrios et al., 

2012). Consistent with this idea, both mutations inactivating PDF-1 and PDFR-1  
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Figure 3.10. PDF-1 and PDFR-1 partially mediate sensory-evoked 

enhancement of cholinergic transmission in npr-1 mutants. 

(A-C) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=6, 3, 6, 3, 6, 3, 3, 6, 3, and 3 trials for wild-type (A), 

wild-type (B, C), npr-1(ky13) (A), npr-1(ky13) (B, C), pdf-1(tm1996), pdfr-

1(ok3425), pdf-2(tm4393), pdf-1;npr-1, pdfr-1;npr-1, pdf-2 npr-1 animals, 

respectively, and 20-30 worms per trial). The npr-1 aldicarb hypersensitivity 

was partially suppressed by mutations inactivating PDF-1 (A) and PDFR-1 (B), 

but not by those inactivating PDF-2 (C). (D-F) Endogenous EPSCs were 

recorded from body wall muscles of the adult worms for the indicated 

genotypes. Representative traces of endogenous EPSCs (D) and summary data 

are shown (E, F). The npr-1 cholinergic transmission defect was partially 

suppressed by mutations inactivating PDFR-1, although more animals should 

be analyzed to test statistical significance. The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (ns, not significant). 

  



74 

partially suppressed aldicarb hypersensitivity in npr-1 mutants, whereas inactivating 

PDF-2 had no effect on the npr-1 defect (Fig. 3.10A-C). Furthermore, mutations 

inactivating PDFR-1 also partially suppressed the npr-1 cholinergic transmission defect 

(Fig. 3.10D-F). Although more animals should be analyzed to test statistical significance, 

these results suggest a possibility that sensory-evoked enhancement of cholinergic 

transmission is partially mediated by PDF-1.  

 

Identification of potential neuropeptides that mediate sensory-evoked enhancement 

of cholinergic transmission 

In C. elegans, mature neuropeptides are produced by a series of posttranslational 

modifications of precursor peptides, which involve activation of EGL-3/PC2 by SBT-

1/Chaperonin, cleavages of precursors by EGL-3/PC2, and removal of basic residues by 

EGL-21/Carboxypeptidase (Jacob and Kaplan, 2003; Kass et al., 2001; Lindberg et al., 

1998). In addition to EGL-3, mutations inactivating EGL-21 and SBT-1 also suppressed 

aldicarb hypersensitivity of npr-1 mutants (Fig. 3.11). However, inactivating SBT-1 was 

much less effective in blocking the npr-1 defect than inactivating EGL-3 or EGL-21 (Fig. 

3.9A and 3.11). According to mass spectrometry studies on neuropeptide expression 

profile in egl-3, egl-21, and sbt-1 mutants, neuropeptides encoded by 16 nlp and flp 

neuropeptide genes were still present in sbt-1 mutants, but not in egl-3 and egl-21 

mutants (Husson et al., 2006; Husson et al., 2007; Husson and Schoofs, 2007). Based on 

these results, we reasoned that one or more of neuropeptides encoded by these 16 genes 

might mediate sensory-evoked enhancement of cholinergic transmission. Thus, we 

performed a small-scale RNAi screen for neuropeptide genes whose knockdown causes  
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Figure 3.11. SBT-1 minimally affects the npr-1 aldicarb hypersensitivity. 

(A-B) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=6, 6, 5, 6, 4, 6, and 5 trials for wild-type, npr-

1(ky13) (A), npr-1(ky13) (B), egl-21(n476), sbt-1(ok901), egl-21;npr-1, and 

sbt-1;npr-1 animals, respectively, and 20-30 worms per trial). Mutations 

inactivating SBT-1 (A) had much less effect on the npr-1 aldicarb 

hypersensitivity than inactivating EGL-21 (B).  

  

Figure 3.12. RNAi screen for neuropeptide genes whose knockdown 

suppresses the npr-1 aldicarb hypersensitivity. 

(A) Percentages of worms paralyzed at 80 minutes on 1 mM aldicarb were plotted 

following treatment with the indicated RNAi clones. RNAi was carried out using 

RNAi hypersensitive strains (nre-1 lin-15b). Knockdown of osm-9 and ocr-2 was 

served as positive control. Knockdown of nlp-40 significantly suppressed the npr-

1 aldicarb hypersensitivity, whereas knockdown of 15 other neuropeptides had 

little effect the npr-1 defect. L4440 indicates the empty vector control. The 

number of trials is indicated for each RNAi clone. Error bars indicate SEM. 

Values that differ significantly are indicated (*, p <0.05; ***, p <0.001). 
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 suppression of aldicarb hypersensitivity of npr-1 mutants. Only one, nlp-40, out of 16 

neuropeptide genes showed whose knockdown significantly suppressed aldicarb 

hypersensitivity of npr-1 mutants (Fig. 3.12). To validate the RNAi screen results, we 

examined aldicarb sensitivity of nlp-40;npr-1 double mutants as well as nlp-12;npr-1 and 

flp-1;npr-1, which showed slight suppression of npr-1 aldicarb hypersensitivity in the 

RNAi screen. All showed only small suppression of npr-1 aldicarb hypersensitivity (Fig. 

3.13), suggesting that these neuropeptides either partially mediate or have no effect on 

the npr-1 cholinergic transmission. However, further electrophysiological analyses 

should lead to more solid conclusion.  

 

 

Figure 3.13. Potential neuropeptide genes that might mediate sensory-evoked 

enhancement of cholinergic transmission in npr-1 mutants. 

(A-C) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=3, 2, 7, 2, 1, 4, 3, 2, 4, 3, 3, and 4 trials for wild-type (A), 

wild-type (B), wild-type (C), npr-1(ky13) (A), npr-1(ky13) (B), npr-1(ok1447) 

(C), nlp-12(ok335), nlp-40(tm4085), flp-1(yn4), nlp-12;npr-1, nlp-40;npr-1, and 

flp-1;npr-1 animals, respectively, and 20-30 worms per trial). Each mutation 

inactivating NLP-12 (A), NLP-40 (B), and FLP-1 (C) had a small suppression of 

the npr-1 aldicarb hypersensitivity.   
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DISCUSSION 

 

We describe a circuit mechanism controlling sensory-evoked enhancement of cholinergic 

transmission at C. elegans NMJs. Heightened RMG circuit activity in npr-1 mutants 

increases endogenous cholinergic transmission in body muscles. Both glutamate and 

neuropeptide mediate the sensory-evoked enhancement of cholinergic transmission. 

Glutamate released from the RMG circuit neurons (ASH and ASK) activates GLR-2 in 

the postsynaptic neurons, and eventually increases cholinergic transmission at NMJs. 

Below we discuss the significance and future directions of these results. 

Our results suggest that heightened sensory activity in the RMG circuit increases 

glutamate release from ASH and ASK sensory neurons. What postsynaptic neurons are 

target of glutamate released from these neurons? Inactivating GLR-2 had a much greater 

effect on suppression of the npr-1 aldicarb hypersensitivity than inactivating GLR-1 (Fig 

3.8). Thus, neurons in which GLR-2, not GLR-1, carries most of the glutamate-gated 

currents are potential targets. Expression analyses on ionotropic glutamate receptors in C. 

elegans revealed that 3 neurons (AIA, RIA, and DVA) express GLR-2, but not GLR-1, 

and that GLR-2 may form homomeric receptors in these neurons (Aronoff et al., 2004; 

Brockie et al., 2001). Among these neurons, AIA, an amphid interneuron, receives direct 

synaptic inputs from both ASH and ASK sensory neurons. Thus, GLR-2 may function in 

AIA to mediate sensory-evoked enhancement of cholinergic transmission at NMJs. PLM 

touch neurons that mediate touch sensation in the posterior half of worms also release 

glutamate. Interestingly, DVA, a stretch sensitive sensory neuron, receives direct synaptic 

inputs from PLM. Considering that PDF-1 enhances touch-evoked calcium transients in 
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ALM (touch neuron that mediates touch sensation in the anterior half of worms) in npr-1 

mutants (Fig 2.21 and 2.22), touch-evoked calcium transients in PLM may also be 

increased in npr-1 mutants through the action of PDF-1 secreted from the RMG circuit. 

Therefore, in npr-1 mutants, GLR-2 mediated fast transmission in DVA may also be 

indirectly increased by sequential action of PDF-1 activation of PLM and glutamate 

release from PLM. Consistent with this idea, inactivating PDFR-1 partially suppressed 

the npr-1 cholinergic transmission defect (Fig 3.11). Together, these results suggest that 

GLR-2 may mediate sensory-evoked enhancement of cholinergic transmission by 

functioning in AIA and DVA neurons. This idea should be further addressed by site-of-

action experiments, using AIA and DVA specific expression of GLR-2 in glr-2;npr-1 

double mutants.  

Inactivating EGL-3/PC2 completely abolished the npr-1 cholinergic transmission 

defect (Fig 3.9), suggesting that neuropeptides are required for sensory-evoked 

enhancement of cholinergic transmission in body muscles. Then what neuropeptides 

mediate this process? First, PDF-1 may be involved in this process in a way that it 

increases touch neuron activity as discussed above. Second, given that AIA and DVA are 

potential recipients of glutamatergic output from the RMG circuit, neuropeptides 

expressed in these neurons may mediate sensory-evoked enhancement of cholinergic 

transmission. AIA expresses FLP-1, FLP-2, and INS-1 neuropeptides, while DVA 

expresses NLP-12. In the previous RNAi screen, both flp-1 and nlp-12 were identified 

whose inactivation caused resistance to aldicarb (Sieburth et al., 2005). (In this study, flp-

1 mutations had no effect on aldicarb sensitivity (Fig 3.13), perhaps because the flp-1 

deletion allele (yn4) also inactivates a neighboring gene daf-10 encoding an intraflagellar 
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transport complex component). Furthermore, stretch-induced secretion of NLP-12 from 

DVA neuron increases endogenous EPSC frequency by activating its receptor CKR-2 in 

cholinergic motor neurons (Hu et al., 2011b). Interestingly, NLP-12 secretion from DVA 

was increased in npr-1 mutants (Hu et al., 2011b). These results suggest that FLP-1 from 

AIA and NLP-12 from DVA may mediate the npr-1 cholinergic transmission defect. 

However, inactivating FLP-1 and NLP-12 showed rather a small suppression of the npr-1 

aldicarb hypersensitivity (Fig. 3.13). Thus, electrophysiological recordings should further 

clarify the idea. 

What is the physiological role of sensory-evoked enhancement of cholinergic 

transmission at NMJs? Excitatory synaptic inputs are provided by cholinergic synapses in 

body muscles in C. elegans. Thus, the strength of cholinergic transmission determines 

body muscle excitability, thereby altering speed of worms. For example, goa-1 Go protein 

mutants have increased endogenous EPSC rate and concomitant increase in locomotion 

rate (Segalat et al., 1995; Vashlishan et al., 2008). Conversely, unc-57 Endophilin 

mutants have decreased endogenous EPSC rate and concomitant decrease in locomotion 

rate (Bai et al., 2010). These results provide a potential correlation between the frequency 

of endogenous cholinergic transmission and speed of worms. Likewise, npr-1 mutants 

have increased locomotion rate as adults, which is rescued by transgenes expressing 

NPR-1 in the RMG circuit, and suppressed by inactivating TAX-4/CNG, OSM-9 and 

OCR-2/TRPV sensory transduction channels (Coates and de Bono, 2002; de Bono et al., 

2002; Macosko et al., 2009). Thus, enhanced cholinergic transmission may contribute to 

the increase in locomotion rate in npr-1 mutants.  
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NPR-1 inhibits activity of sensory neurons in the RMG circuit that mediate 

responses to repellent cues such as hyperoxia, pheromone, and aversive odor and 

chemicals. Fast synaptic transmission carried by glutamate mediates acute avoidance 

responses to aversive stimuli (Hart et al., 1999; Hart et al., 1995; Maricq et al., 1995; 

Mellem et al., 2002). By contrast, our results suggest that concerted action of glutamate 

and neuropeptide may cause long-term change in body muscle activity and speed of 

worms in response to prolonged exposure to noxious environment. Both inactivation of 

NPR-1 and forced activation of ASH neurons (Fig 3.7) would mimic the prolonged 

exposure to aversive stimuli.  

One of the interesting future experiments is to examine the effect of forced 

activation of other sensory neurons on synaptic transmission in body muscles. AWC 

neurons detect attractive odors and mediate chemotactic behavior (Bargmann et al., 

1993). The attractive odors that AWC can sense include volatile organic compounds such 

as benzaldehyde, butanone, and isoamyl alcohol, which correspond to almond, 

butterscotch, and banana odors, respectively (Bargmann et al., 1993). Preliminary 

experiments showed that prolonged capsaicin treatment of transgenic animals expressing 

TRPV1 in AWC neurons decreased aldicarb sensitivity (Fig 3.14). These preliminary 

results suggest that forced activation of AWC may cause decrease in cholinergic 

transmission in body muscles, although electrophysiological recordings should further 

identify the source of the aldicarb resistance. These results also suggest a possibility that 

body muscle activity and locomotion rate may be decreased in response to prolonged 

exposure to attractive sensory cues such as food odors. 
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Figure 3.14. Chronic activation of AWC neurons decreases aldicarb 

sensitivity. 

(A) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=4 trials for all the genotypes, and 20-30 worms per 

trial). Forced depolarization of AWC decreased aldicarb sensitivity. Time 

course of paralysis of transgenic worms expressing rat TRPV1 channels in 

AWC were analyzed with or without capsaicin treatment (2 hours). 

  

Together, our results suggest that C. elegans may adapt to new environment by 

changing synaptic activity in body muscles and altering locomotion rate. Increased body 

muscle activity and locomotion would be beneficial for escaping from noxious 

environment. Conversely, decreased body muscle activity and locomotion would be 

beneficial for staying in attractive environment. This study will provide insight on circuit 

mechanism underlying sensory-evoked long-term synaptic plasticity and corresponding 

behavioral changes.  
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MATERIALS AND METHODS 

Strains 

Strain maintenance and genetic manipulation were performed as described (Brenner, 

1974). Animals were cultivated at 20°C on agar nematode growth media (NGM) seeded 

with OP50 (for imaging and behavior) or HB101 E.coli (for electrophysiology). Wild 

type reference strain was N2 Bristol. Strains used in this study are as follows: 

Mutant strains and integrants 

KP6048 npr-1(ky13) X 

DA609 npr-1(ad609) X 

KP6064 npr-1(ok1447) X 

KP6072 flp-18(tm2179) X 

KP6077 flp-21(pk1601) V 

PR678 tax-4(p678) III 

KP3183 osm-9(ky10) IV 

CX4544 ocr-2(ak47) IV 

MT6308 eat-4(ky5) III 

KP0004 glr-1(n2461) III 

VM487 nmr-1(ak4) II 

KP6590 glr-2(ok2342) III 

KP5966 egl-3(nr2090) V 

LSC27 pdf-1(tm1996) III 

KP6340 pdfr-1(ok3425) III 

KP6416 pdf-2(tm4393) X 
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KP2018 egl-21(n476) IV 

KP3387 sbt-1(ok901) V 

KP5994 nlp-12(ok335) I 

KP6347 nlp-40(tm4085) I 

KP6073 flp-21(pk1601) V;flp-18(tm2179) X 

KP6067 flp-18(tm2179) npr-1(ky13) X. 

KP6071 flp-21(pk1601) V;npr-1(ky13) X 

KP6057 ocr-2(ak47) IV;npr-1(ok1447) X 

KP6058 ocr-2(ak47) IV;npr-1(ky13) X 

KP6059 osm-9(ky10) IV;npr-1(ok1447) X 

KP6060 tax-4(p678) III;npr-1(ky13) X 

KP6061 tax-4(p678) III;npr-1(ok1447) X 

KP6349 eat-4(ky5) III; npr-1(ky13) X 

KP6414 nmr-1(ak4) II; npr-1(ky13) X 

KP6415 glr-1(n2461) III;npr-1(ky13) X 

VM1123 dpy-19(n1347) glr-2(ak10) III 

KP6591 glr-2(ok2342) III; npr-1(ky13) X 

KP6740 dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X 

KP6054 egl-3(nr2090) V;npr-1(ky13) X 

KP6100 pdf-1(tm1996) III;npr-1(ky13) X 

KP6410 pdfr-1(ok3425) III;npr-1(ky13) X 

KP6417 pdf-2(tm4393) npr-1(ky13) X 

KP6065 egl-21(n476) IV;npr-1(ky13) X  
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KP6055 sbt-1(ok901) V;npr-1(ky13) X 

KP5364 nre-1(hd20) lin-15b(hd126) X 

KP6050 npr-1(ky13) nre-1(hd20) lin15b(hd126) X 

KP6413 nlp-12(ok335) I;npr-1(ky13) X 

KP6348 nlp-40(tm4085) I;npr-1(ky13) X 

KP6076 daf-10 flp-1(yn4) IV 

KP6082 daf-10 flp-1(yn4) IV;npr-1(ok1447) X 

CX4978 kyIS200[sra-6p::VR1, elt-2p::NLS-gfp] (Gift from Cori Bargmann) 

KP6093 egl-3(nr2090) V;kyIS200[sra-6p::VR1, elt-2p::gfp] 

Strains containing extrachromosomal arrays 

CX9396 npr-1(ad609) X;kyEX1966[flp-21p::npr-1 SL2 GFP, ofm-1p::dsRed] (Gift from 

Cori Bargmann) 

KP6051 npr-1(ad609) X;nuEX1519[unc-25p::npr-1::gfp, myo-2p::NLS-mCherry] 

KP6053 npr-1(ad609) X;nuEX1520[unc-30p::npr-1::gfp, myo-2p::NLS-mCherry] 

KP7149, KP7150 eat-4(ky5) III; npr-1(ky13) X; nuEX1613-1614[sra-6p::eat-4, myo-

2p::NLS-mCherry] 

KP7176, KP7177 eat-4(ky5) III; npr-1(ky13) X; nuEX1615-1616[sra-9p::eat-4, vha-

6p::mCherry] 

KP6430 nuEX1532[odr-3p::VR1, vha-6p::mCherry] 

 

Constructs 

eat-4 rescue constructs (sra-6p::eat-4 (KP#1940) and sra-9p::eat-4 (KP#1941)) 
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eat-4 cDNA was amplified by PCR and ligated into expression vectors (pPD49.26) 

containing the sra-6 (~3.8kb 5’ regulatory sequence: ASH expression) or the sra-9 (~3kb 

5’ regulatory sequence: ASK expression) promoters. 

 

Transgenes and germline transformation 

Transgenic strains were generated by microinjection of various plasmids with coinjection 

markers (myo-2p::NLS-mCherry (KP#1480) and vha-6p::mcherry (KP#1874)). Injection 

concentration was 40 - 50 ng/µl for all the expression constructs and 10 ng/µl for 

coinjection markers. The empty vector pBluescript was used to bring the final DNA 

concentration to 100 ng/µl.  

 

Aldicarb assay 

Sensitivity to aldicarb was determined by analyzing the time course of paralysis 

following treatment with 1 mM aldicarb (Sigma-Aldrich) as previously described 

(Nurrish et al., 1999). Briefly, movement of animals was assessed by prodding animals 

with a platinum wire every 10 minute following exposure to aldicarb. 20-30 animals were 

tested for each trial. 

 

RNAi feeding screen 

A small-scale RNAi feeding screen was performed as described (Kamath et al., 2003). 

The screen was performed in the neuronal RNAi hypersensitive mutant background (nre-

1 lin-15b)(Schmitz et al., 2007). 16 neuropeptide genes whose corresponding 

neuropeptides are present in sbt-1 mutants, but absent in egl-3 and egl-21 mutants were 
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selected for the screen (Husson et al., 2006; Husson et al., 2007; Husson and Schoofs, 

2007). After 5 days of RNAi treatment (2 generation) at 20°C, 20-30 young adult animals 

were transferred to 1 mM aldicarb plates, and percentages of worms paralyzed at 80 

minutes were scored for each RNAi clone. For comparisons to L4440 empty vector 

control, statistical significance was determined using two-tailed Student’s t test.  

 

Electrophysiology 

Electrophysiology was performed on dissected adult worms as previously described 

(Richmond et al., 1999). Worms were superfused in an extracellular solution containing 

127 mM NaCl, 5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 20 mM glucose, 1 mM 

CaCl2, and 4 mM MgCl2, bubbled with 5% CO2, 95% O2 at 20°C. Whole cell recordings 

were carried out at –60 mV using an internal solution containing 105 mM CsCH3O3SC3, 

10 mM CsCl, 15 mM CsF, 4mM MgCl2, 5mM EGTA, 0.25mM CaCl2, 10mM HEPES, 

and 4 mM Na2ATP, adjusted to pH 7.2 using CsOH. Under these conditions, we only 

observed endogenous acetylcholine EPSCs. For endogenous GABA IPSC recordings the 

holding potential was 0 mV, at which we only observe GABAergic postsynaptic currents. 

All recording conditions were as described (McEwen et al., 2006). Stimulus-evoked 

EPSCs were stimulated by placing a borosilicate pipette (5–10 µm) near the ventral nerve 

cord (one muscle distance from the recording pipette) and applying a 0.4 ms, 30 µA 

square pulse using a stimulus current generator (WPI). Statistical significance was 

determined using one-way ANOVA with Tukey test for multiple comparison and two-

tailed Student’s t test for pairwise comparison.  
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Chapter 4 

Concluding Remarks and Future Directions 

 

 

 

 

The experiments discussed in this chapter are unpublished work resulting from 

collaboration between Seungwon Choi and Zhitao Hu. 

 

Zhitao Hu performed all of the electrophysiological recordings in this chapter, and 

Seungwon Choi performed all of the other experiments.  
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IMPLICATIONS OF REGULATING BEHAVIORAL QUIESCENCE AND 

AROUSAL BY NPR-1 

 

Animals undergo changes in behavioral states such as quiescence and arousal in response 

to environmental, circadian, or developmental cues. Switch between different behavioral 

states must be tightly controlled for survival and health of animals. Our study has focused 

on lethargus behavior, a molting-associated behavioral quiescence in C. elegans, and 

demonstrated that a neuropeptide receptor NPR-1 regulates behavioral quiescence and 

arousal by modulating the secretion of arousal peptide PDF-1 from central sensory 

circuit. This study provides new insight on neuropeptide-mediated modulation of 

sensory-motor circuitry and its role in the precise control of switch between different 

behavioral states.   

 

Sensory regulation of motor circuit and behavior  

Sensory inputs from environment modulate and trigger a variety of behavioral responses 

in animals. There have been many studies focusing on either the physiology of sensory 

organs or the motor function of animals. However, it was largely unknown what circuit 

mechanisms underlie specific sensory-regulated motor behaviors and how and what 

signaling molecules convey the sensory information to motor circuit.  

In this thesis study, we identified two sensory-regulated changes in motor 

function and behavior, and determined the underlying circuit mechanisms. First, NPR-1 

and its ligands, FLP-18 and FLP-21, inhibit PDF-1 secretion from central sensory circuit 

(the RMG circuit) and dampen peripheral touch neuron activity, thereby promoting 
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behavioral quiescence during lethargus (Chapter 2). Second, NPR-1 inhibits release of 

both glutamate and an unknown neuropeptide from central sensory circuit, and reduces 

cholinergic transmission in body muscles, thereby decreasing locomotion rate in adults 

(Chapter 3). These results suggest that sensory-evoked neurotransmitter release from 

central sensory circuit plays a key role in modulating locomotive behavior by adjusting 

the activity of peripheral motor circuits (touch neurons and body muscles) in C. elegans. 

Our study will contribute to a better understanding of circuit mechanism underlying 

diverse sensory-regulated motor behavior.  

 

Neuropeptide regulation of neural circuit and behavior 

While anatomical connectivity between neurons provides a framework of neural 

circuitry, unraveling hidden connections between neurons that are mediated by the long-

range action of neuromodulators should make the neural circuitry complete. Therefore, 

study on the neuromodulatory circuitry in the nervous system will lead to a better 

understanding of circuit function and mechanism for diverse animal physiology and 

behavior.  

Neuromodulators such as neuropeptides, dopamine, and serotonin have a variety 

of functions in the nervous system from adjusting synaptic strength to altering animal 

behavior (Marder, 2012). In particular, there is an emerging interest in studying 

neuropeptide regulation of behavior and underlying circuit mechanism, and many of the 

recent findings came from studies with genetic model organisms such as flies and worms 

that are comprised of rather simpler nervous system (Taghert and Nitabach, 2012).  
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Our study shows that two different neuropeptides play an opposing role in molt-

associated behavioral quiescence and arousal. FLP-21 (and FLP-18) promotes behavioral 

quiescence during molts by activating NPR-1 expressed in the central sensory circuit. 

Conversely, PDF-1 promotes arousal from behavioral quiescence by activating PDFR-1 

expressed in peripheral motor circuits including touch neurons and body muscles. The 

action of ‘arousal peptide’ PDF-1 is controlled by ‘quiescence peptide’ FLP-21 in that 

NPR-1 (FLP-21 receptor) inhibits PDF-1 secretion from central sensory circuit, thereby 

blocking the targeted action of PDF-1 on peripheral motor circuit. These results suggest 

that switch between behavioral states - quiescence and arousal - is tightly controlled by 

concerted action of two distinct neuropeptide signaling pathways. Hence, our study will 

provide new insight on neuropeptide modulation of neural circuits controlling animal 

physiology and behaviors. 

 

AREAS FOR FUTURE INVESTIGATION 

 

Sensory modalities that promote arousal from lethargus 

Our results show that heightened sensory activity in the RMG circuit causes abnormally 

aroused locomotion during lethargus in npr-1 mutants. Sensory neurons in the RMG 

circuit largely mediate responses to environmental repellents such as pheromone, oxygen, 

and aversive odors and chemicals (Fig 1.1). This sensory gate-keeping function of NPR-1 

raises question about which sensory neurons and corresponding sensory modalities play a 

major role in arousing animals from the molting-associated behavioral quiescence. An 

approach to address this question is to specifically stimulate each sensory neuron with 
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known stimulants and see if the stimulation arouses worms from behavioral quiescence. 

For example, ASK neurons can be stimulated by diverse repertoire of ascarosides (worm 

pheromone), URX by hyperoxia, ASH by hyperosmolarity or chemical repellents such as 

copper, and ADL and AWB by aversive odors such as 2-nonanone.  

Another approach is to take advantage of inactivating sensory receptor genes that 

are required for specific sensory perception. Preliminary results suggest a possibility that 

oxygen can contribute to arousal from lethargus. gcy-35 encodes a soluble guanylate 

cyclase that directly binds to molecular oxygen, and regulates foraging behavior by 

transducing sensory information about ambient oxygen (Cheung et al., 2004; Cheung et 

al., 2005; Gray et al., 2004). Inactivating GCY-35 blocked the npr-1 lethargus 

locomotion defect (Fig 4.1), suggesting that oxygen sensation is required for the npr-1  

 

 

Figure 4.1. Oxygen sensation is required for the npr-1 lethargus locomotion 

defect. Locomotion behavior of single worms during the L4/A lethargus was 

recorded for 30-75 seconds and velocity was measured (2 Hz sampling). 

Average motile fraction (A), and average locomotion velocity (B) are plotted. 

The npr-1 L4/A locomotion quiescence defect was suppressed in double 

mutants lacking GCY-35/Guanylate cyclase. The number of animals analyzed 

is indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (***, p <0.001).  
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lethargus locomotion defect. Pheromone contribution to arousal from lethargus may be 

determined by inactivating putative pheromone receptor genes such as srbc-64, srbc-66, 

srg-36, and srg-37 (Kim et al., 2009; McGrath et al., 2011).  

 

Regulation of NPR-1 and the ligands 

Our results show that NPR-1 and the ligands, FLP-21 and FLP-18, regulate locomotion 

of worms in and out of lethargus by altering secretion of PDF-1 from the RMG circuit. 

Then, does lethargus regulate NPR-1 and the ligands, too? If so, expression of NPR-1 and 

the ligands or secretion of ligands (FLP-18 and FLP-21) should be upregulated during 

lethargus, when animals are quiescent. We first examined expression level of npr-1, flp- 

 

Figure 4.2. The abundance of npr-1, flp-18, and flp-21 mRNAs is increased 

during lethargus. 

The abundance of npr-1, flp-18, and flp-21 mRNAs in worm extracts was 

analyzed by quantitative PCR. For each gene, values reported were normalized to 

those observed in wild type (A), pdfr-1 (B), or pdf-1 mutant (C) young adults. 

(A) The abundance of npr-1, flp-18, and flp-21 mRNAs in lethargus was 

significantly higher than in young adults. (B) The abundance of npr-1 mRNAs 

was much lower than that of pdfr-1 mRNAs. (C) The abundance of flp-18 and 

flp-21 mRNAs was much lower than that of pdf-1 mRNAs. 6 biological 

replicates were analyzed for each genotype and mRNA. Error bars indicate SEM. 

Values that differ significantly are indicated (***, p <0.001; ns, not significant). 
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21, and flp-18 in and out of lethargus. The abundance of npr-1, flp-21, and flp-18 mRNAs 

(assayed by quantitative PCR) was increased (~1.5 fold) during the L4/A lethargus (Fig 

4.2A). It is hard to believe that ~50% change in the expression of npr-1 and the ligands 

exert the huge difference in locomotion in and out of lethargus. However, the basal 

expression level (in young adults) of npr-1 mRNA was much lower (~118 fold) than that 

of pdfr-1 mRNA (Fig 4.2B). Similarly, expression level of flp-21, and flp-18 mRNAs was 

much lower (~7 fold) than pdf-1 mRNA (Fig 4.2C). Thus, ~50% change in the expression 

of low-abundance genes may exert rather big effect on physiology and behavior of 

animals. Interestingly, expression of Drosophila NPF, a NPY homolog in flies, correlates 

with locomotion state of flies. NPF expression is greatly decreased when fly larvae 

switch their behavior from continuous feeding (low mobility) to wandering (high 

mobility) (Wu et al., 2003). Inactivation of NPF signaling increased wandering and 

decreased feeding, whereas overexpression of NPF extended feeding phase and delayed 

wandering (Wu et al., 2003). These results suggest that change in NPF expression causes 

corresponding switch between behavioral states. Nonetheless, the secretion of NPR-1 

ligands, FLP-21 and FLP-18, during lethargus should also be further examined.  

 

Downstream effector of PDFR-1 that regulates arousal from behavioral quiescence 

Our results show that PDFR-1 functions in both touch neurons and body wall muscles to 

regulate locomotion of animals. Particularly, in touch neurons, PDFR-1 regulates touch-

evoked calcium transients. What molecular mechanism underlies PDFR-1 regulation of 

touch sensitivity? Because PDFR-1 is coupled to Gs (Janssen et al., 2008), Gs pathway 

including cAMP and PKA may mediate PDFR-1 regulation of touch sensitivity. 
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Consistent with this idea, mutants that have high level of cAMP such as pde-4 

Phosphodiesterase and acy-1(gf) Adenylate cyclase (gain-of-function) exhibited higher 

locomotion during the L4/A lethargus than wild type animals (Fig 4.3), although the 

extent was not as severe as npr-1 mutants. Consistently, these mutants exhibited 

increased sensory responsiveness to a repellent odor, 1-octanol, during lethargus in the 

previous study (Raizen et al., 2008). Furthermore, reduction-of-function mutation of acy-

1 partially suppressed the npr-1 lethargus locomotion defect, while gain-of-function 

mutation did not worsen the npr-1 defect (Fig 4.3). These results suggest that cAMP is a  

 

 

Figure 4.3. cAMP signaling mediates the npr-1 lethargus locomotion defect. 

Locomotion behavior of single worms during the L4/A lethargus was recorded 

for 30-75 seconds and velocity was measured (2 Hz sampling). Average motile 

fraction (A), and average locomotion velocity (B) are plotted. pde-4 

(Phosphodiesterase) and acy-1gf (Adenylate cyclase) mutants showed increased 

locomotion during the L4/A lethargus. The npr-1 L4/A locomotion quiescence 

defect was partially suppressed by reduction-of-function mutation of acy-1, while 

not altered by gain-of-function mutation of acy-1. gf, gain-of-function; hy, 

hypomorph. The number of animals analyzed is indicated for each genotype. 

Error bars indicate SEM. Values that differ significantly are indicated (*, p 

<0.05; **, p <0.01; ***, p <0.001; ns, not significant). 
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downstream effector of the npr-1 lethargus locomotion defect. Site-of-action of PDE-4 

and ACY-1 should be further addressed to see if cAMP pathway is indeed the 

downstream of PDFR-1 in touch neurons and/or body wall muscles.  

L-type calcium channels mediate calcium currents in cardiac muscles in a PKA-

dependent manner (Kamp and Hell, 2000). Interestingly, touch-evoked calcium responses 

in ALM touch neurons rely on EGL-19/L-type voltage gated calcium channels (VGCCs) 

(Suzuki et al., 2003). Therefore, PDFR-1 may regulate touch-evoked calcium transients 

through PKA and VGCCs. 

 

Synaptic basis of sleep and wakefulness 

Synaptic structure and activity are changed during sleep/wakefulness cycles, as 

demonstrated by biochemistry, imaging and electrophysiological recordings in fly and 

mammalian brain (Bushey et al., 2011; Gilestro et al., 2009; Nitz et al., 2002; Vyazovskiy 

et al., 2008). Considering that synaptic activity at NMJs affects locomotion of worms, it 

will be an interesting question to ask if synaptic activity at NMJs changes between 

quiescent and aroused state in C. elegans. Since it is technically difficult to dissect worms 

for electrophysiological recordings during the L4/A lethargus, we decided to investigate 

on other forms of behavioral quiescence in C. elegans. There have been two more forms 

of behavioral quiescence studied in adult stage of worms. First, after prolonged exposure 

to high-quality food, worms get quiescent in both feeding and movement (called satiety-

induced behavioral quiescence), although the quiescence is not as strong as in lethargus 

(You et al., 2008). Second, overexpression of LIN-3 (epidermal growth factor) induces 

behavioral quiescence - cessation of feeding and movement - in adult worms, which is as  
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Figure 4.4. LIN-3 overexpression increases endogenous GABA transmission at 

NMJs. 

(A) Time courses of paralysis of worms on 1 mM aldicarb were plotted for the 

indicated genotypes (n=6 trials for all the genotypes, and 20-30 worms per trial). 

Heat shock-induced overexpression of LIN-3 decreased aldicarb sensitivity. (B-I) 

Stimulus-evoked EPSCs (B, C), endogenous EPSCs (D-F), and endogenous IPSCs 

(G-I) were recorded from body wall muscles of the adult worms for the indicated 

genotypes. Averaged traces of stimulus-evoked EPSCs (B), representative traces of 

endogenous EPSCs (D) and IPSCs (G), and summary data are shown (C, E, F, H, 

and I). The amplitude of endogenous EPSCs were increased in npr-1 mutants (D-

F), whereas stimulus-evoked EPSCs and endogenous IPSCs were normal (B, C, G, 

H, and I). The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (***, p <0.001). 
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strong as in lethargus (Van Buskirk and Sternberg, 2007). We tested if the latter form of 

quiescence involves changes in synaptic activity in body muscles. Heat shock promoter-

driven overexpression of LIN-3 increased amplitude of endogenous IPSCs, whereas it 

had no effect on endogenous and stimulus-evoked EPSCs (Fig 4.4). Since endogenous 

IPSC rate was not significantly altered, LIN-3 overexpression may specifically affect 

postsynaptic GABAA receptors that mediate inhibitory currents in body wall muscles in 

C. elegans. Further analyses on LIN-3 overexpression- and satiety-induced behavioral 

quiescence will provide insight on synaptic basis of behavioral quiescence and arousal.  

 

Pathogen effect on arousal 

Numerous studies have shown that sleep and immune function affect each other. Sleep 

loss interferes with normal immune function, and infection alters sleep pattern (Imeri and 

Opp, 2009). In particular, it has been shown that infection with various pathogens leads 

to fragmented NREM (non-rapid eye movement) sleep and reduced REM (rapid eye 

movement) sleep in mammals including humans (Krueger and Majde, 1994; Krueger et 

al., 2001). Similarly, in C. elegans, npr-1 mutant animals show increased susceptibility to 

pathogen Pseudomonas aeruginosa strains PA14 (Reddy et al., 2009; Styer et al., 2008) 

and decreased sleep-like behavior during molts (Chapter 2). These studies suggest that 

pathogen may disrupt normal quiescence behavior in C. elegans. Consistent with this 

idea, long-term (6-7 hours) exposure to PA14 increased locomotion of worms during the 

L4/A lethargus (Fig 4.5). PA14 lacking gacA (a virulence factor) also significantly 

increased locomotion during the L4/A lethargus, although the extent to which worms 

were aroused was slightly lower than PA14 harboring gacA (Fig 4.5). These results 
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suggest that PA14 infection can arouse worms during lethargus, with both virulence 

factor gacA-mediated and non-mediated processes. Interestingly, inactivating PDFR-1 

blocked PA14-induced arousal, but not PA14 gacA mutant-induced arousal (Fig 4.5), 

suggesting that PDFR-1 may be specifically required for PA14 gacA-mediated arousal 

during lethargus. Further study on PA14-induced arousal in C. elegans will provide 

insight on interplay between immune and nervous system function.  

 

 

Figure 4.5. PA14 treatment increases locomotion during lethargus. 

Locomotion behavior of single worms during the L4/A lethargus was recorded 

for 30-75 seconds and velocity was measured (2 Hz sampling). Average motile 

fraction (A), and average locomotion velocity (B) are plotted. Lethargus 

locomotion was increased by treatment with both PA14 and PA14 lacking 

gacA, a virulence factor, in wild type animals. Mutations inactivating PDFR-1 

suppressed hyperlocomotion in PA14 treated worms, but not in worms treated 

with PA14 lacking gacA. The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. Values that differ significantly are indicated 

(*, p <0.05; ***, p <0.001; ns, not significant).  
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Appendix A 

Screen (RNAi screen and Mutant screen) for Identification of Neuropeptides 

Regulating Lethargus Locomotion Behavior 

 

 

 

 

 

Seungwon Choi and Kelsey Taylor, a graduate student in Joshua Kaplan lab, performed 

the RNAi and mutant screens discussed in this appendix when Kelsey was rotating in the 

lab.  
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npr-1 suppressor RNAi screen 

Even though inactivating PDF-1 and PDFR-1 suppressed the npr-1 lethargus locomotion 

defect well, the locomotion of pdf-1;npr-1 and pdfr-1;npr-1 double mutants was slightly 

higher than pdf-1 and pdfr-1 single mutants, respectively (Fig 2.10). In contrast, 

inactivating EGL-3 completely suppressed the npr-1 lethargus locomotion defect (Fig 

2.9). Prompted by these results, we performed RNAi screen for additional neuropeptide 

genes whose inactivation suppresses the npr-1 lethargus locomotion defect. We screened 

113 neuropeptide genes including 30 flp (FMRFamide-related peptides), 39 ins (Insulin-

like peptides), 43 nlp (non-insulin, non-FMRFamide-related peptides) genes, and pdf-1, 

and used egl-3 RNAi as a positive control. The RNAi screen was performed as described 

in chapter 2. In the primary screen, 16 genes including pdf-1 were identified whose 

inactivation suppressed the npr-1 lethargus locomotion defect significantly more than did 

the empty vector control (L4440) (p <0.05, Chi-square test) (Table A.1). To validate the 

results from the primary screen, we subjected 11 out of the 16 positive genes to the 

secondary screen. We confirmed that inactivation of 5 neuropeptide genes caused 

significant suppression of the npr-1 lethargus locomotion defect compared to empty 

vector controls (Table A.2). The positive genes include flp-8, nlp-5, nlp-10, flp-33, and 

pdf-1. Further analyses on double mutants with npr-1 mutations should confirm the RNAi 

screen results. 

 

Neuropeptide mutant screen 

Inactivating EGL-3 caused a small, but significant decrease in locomotion quiescence 

during lethargus (Fig 2.9), suggesting a possibility that there may be a quiescence- 
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              Table A.1 

 

Table A.1. npr-1 suppressor RNAi screen: Lethargus locomotion behavior (Primary 

screen). RNAi was carried out using RNAi hypersensitive strains in npr-1 mutant 

background (npr-1 nre-1 lin-15b). 113 neuropeptide genes were screened. After 2 

generation RNAi treatment, worms in lethargus (determined by cessation of pharyngeal 

pumping) were scored as ‘wild type-like’ (No or little movement) or ‘npr-1-like’ 

(significant movement). 16 genes were identified whose inactivation suppressed the npr-

1 lethargus locomotion defect significantly more than did the empty vector control 

(L4440) (p <0.05, Chi-square test).  
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                           Table A.2 

 

Table A.2. npr-1 suppressor RNAi screen: Lethargus locomotion behavior 

(Secondary screen). 11 positive genes from the primary screen were subjected to the 

secondary screen. Inactivation of 5 neuropeptide genes caused significant suppression of 

the npr-1 lethargus locomotion defect compared to empty vector controls (L4440) (p 

<0.05, Chi-square test).  

  

promoting neuropeptide whose inactivation decreases lethargus locomotion quiescence. 

Although inactivating either FLP-21 or FLP-18 significantly decreased locomotion 

quiescence in a Bristol strain expressing low affinity NPR-1(215F) receptors (npr-

1(g320) mutants) (Fig. 2.5), inactivating FLP-18 and FLP-21, and double mutants 

inactivating both ligands, had no effect on the L4/A locomotion behavior of worms 

expressing high affinity NPR-1(215V) receptors (Fig. 2.5). Thus, we carried out an 

unbiased mutant screen for neuropeptide genes whose inactivation causes decrease in 

lethargus quiescence. C. elegans mutant strains are available for more than half of ~120 

identified neuropeptide genes. In the primary screen, 68 neuropeptide mutants were 

screened, and an only 1 (flp-1) out of 68 genes was identified whose inactivation 
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decreases lethargus quiescence significantly more than did wild type controls (p <0.05, 

Chi-square test) (Table A.3). However, the effect of flp-1 mutations on lethargus 

quiescence was rather subtle compared to npr-1 mutations. In addition, the deletion allele 

(yn4) that we used to inactivate flp-1 in the screen also inactivates a neighboring gene 

daf-10 (intraflagellar transport complex component). Thus, further analyses on the new 

allele that specifically inactivate flp-1 should confirm the screen results. In addition, the 

effect of the rest of neuropeptides on lethargus behavior should also be further addressed 

by mutant analyses or RNAi.   
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             Table A.3 

 

Table A.3. Neuropeptide mutant screen: Lethargus locomotion behavior. 

68 neuropeptide mutants were screened, and worms in lethargus (determined by cessation 

of pharyngeal pumping) were scored as ‘wild type-like’ (No or little movement) or ‘npr-

1-like’ (significant movement). Only 1 (flp-1) out of 68 genes was identified whose 

inactivation decreases lethargus quiescence significantly more than did wild type controls 

(p <0.05, Chi-square test). 
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Appendix B 

Mutant Screen for Identification of Neuropeptides Altering Aldicarb Sensitivity  

 

 

 

 

 

 

Seungwon Choi (Dissertation author) performed all of the experiments discussed in this 

appendix.   
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Neuropeptide mutant screen 

Inactivating NPR-1 ligands, FLP-18 and FLP-21, and double mutants inactivating both 

ligands, had no effect on the aldicarb sensitivity in worms expressing high affinity NPR-

1(215V) receptors (Fig. 3.2). These results suggest that there may be other endogenous 

NPR-1 ligands whose inactivation mimics the aldicarb hypersensitivity of npr-1 mutants, 

although it is possible that FLP-18 and FLP-21 may function as endogenous ligands in a 

Bristol strain expressing low affinity NPR-1(215F) receptors (npr-1(g320) mutants). 

Thus, I carried out a mutant screen for neuropeptide genes whose inactivation causes 

aldicarb hypersensitivity. To identify neuropeptide genes whose inactivation causes 

aldicarb resistance in the same screen, the aldicarb-induced paralysis of worms was 

scored at two time points; at 70 minutes for hic (hypersensitivity to inhibitors of 

cholinesterase) genes and at 120 minutes for ric (resistance to inhibitors of 

cholinesterase) genes. In the primary hic screen, 27 out of 51 genes (55 alleles) were 

identified whose inactivation caused significantly higher aldicarb sensitivity than wild 

type controls (p <0.05, two tailed student t test), and 16 out of the 27 mutants were strong 

positive hits that exhibited statistically similar extent of aldicarb hypersensitivity to npr-1 

mutants (hic controls) (p > 0.05 compared to npr-1 mutants, student t test) (Table B.1). In 

the primary ric screen, 3 (4 alleles) out of 51 genes (55 alleles) were identified whose 

inactivation caused significantly lower aldicarb sensitivity than wild type controls (p 

<0.05, two tailed student t test), and 2 out of the 3 mutants were strong positive hits that 

exhibited statistically similar extent of aldicarb resistance to egl-3 mutants (ric controls) 

(p > 0.05 compared to egl-3 mutants, student t test) (Table B.2). Most of the screened 

mutants were collected from C. elegans Genetics Center (CGC) or Mitani lab, and were  
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           Table B.1 

 

Table B.1. Neuropeptide mutant screen: hic (hypersensitivity to inhibitors of 

cholinesterase) genes. The aldicarb-induced paralysis of worms was scored at 70 

minutes. Average percentage and SEM of paralyzed worms at 70 minutes after the onset 

of aldicarb treatment are indicated for each mutant. 27 out of 51 genes (55 alleles) were 

identified whose inactivation caused significantly higher aldicarb sensitivity than wild 

type controls (p <0.05, two tailed student t test) (indicated in green and yellow), and 16 

out of the 27 mutants exhibited statistically similar extent of aldicarb hypersensitivity to 

npr-1 mutants (hic controls) (p > 0.05 compared to npr-1 mutants, student t test) 

(indicated in yellow). 
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            Table B.2 

 

Table B.2. Neuropeptide mutant screen: ric (resistance to inhibitors of 

cholinesterase) genes. The aldicarb-induced paralysis of worms was scored at 120 

minutes. Average percentage and SEM of paralyzed worms at 120 minutes after the onset 

of aldicarb treatment are indicated for each mutant. 3 (4 alleles) out of 51 genes (55 

alleles) were identified whose inactivation caused significantly lower aldicarb sensitivity 

than wild type controls (p <0.05, two tailed student t test) (indicated in green and yellow), 

and 2 out of the 3 mutants exhibited statistically similar extent of aldicarb resistance to 

egl-3 mutants (ric controls) (p > 0.05 compared to egl-3 mutants, student t test) (indicated 

in yellow). 
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not outcrossed to wild type (N2 Bristol) strains after mutagenesis. Therefore, many of 

those mutant strains may have background mutations that can contribute to alteration in 

aldicarb sensitivity. To validate the primary screen results, 6 out 16 strong positive hic 

mutants and 2 out of 3 strong positive ric mutants were 4 times outcrossed to wild type 

(N2 Bristol) strains, and time course of paralysis on 1 mM aldicarb was analyzed every 

10 minute for 120 minutes for each mutant. 3 mutants (ins-6, ins-27, and nlp-9) were 

confirmed to exhibit hypersensitivity to aldicarb, whereas the other 3 positive hic mutants 

and 2 positive ric mutants had no effect on aldicarb sensitivity (Figure B.1). Inactivating 

NLP-9 did not worsen the npr-1 aldicarb hypersensitivity (Figure B.2), suggesting a 

possibility that NPR-1 and NLP-9 act in the same genetic pathway to inhibit cholinergic 

transmission at NMJs, although electrophysiological recordings should confirm this idea. 

  

 

Figure B.1. Aldicarb sensitivity of outcrossed neuropeptide mutants. 

(A-C) Time courses of paralysis of worms on 1 mM aldicarb were plotted for 

the indicated genotypes (n=4 trials for wild-type, ins-6(tm2416), ins-

27(ok2474), nlp-9(tm3572), and flp-20(ok2964), and n=3 trials for ins-3(ok2478 

and ok2488), ins-15(ok3444), and ins-34(tm3095), and 20-30 worms per trial). 

Mutants lacking INS-6, INS-27, and NLP-9 were hypersensitive to aldicarb. 

Mutations inactivating FLP-20, INS-3, INS-15, and INS-34 had no effect on 

aldicarb sensitivity.  
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Figure B.2. NPR-1 and NLP-9 inhibit aldicarb sensitivity in the same 

genetic pathway. (A) Time courses of paralysis of worms on 1 mM aldicarb 

were plotted for the indicated genotypes (n=8 trials for all the genotypes, and 

20-30 worms per trial; wild-type, npr-1(ky13), nlp-9(tm3572), and nlp-9;npr-1). 

npr-1 single mutants and nlp-9;npr-1 double mutants showed a similar extent of 

aldicarb hypersensitivity.  
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