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Dynamics of infe ion, mutation, and eradication, in HIV and
other evolving populations

A

is work uses mathematical models of evolutionary dynamics to address

clinical questions about HIV treatment, public health questions about

vaccination, and theoretical questions about evolution of high mutation rates.

Chapters and explore HIV treatment. Despite the high inhibition of viral

replication achieved by anti-HIV drugs, many patients fail treatment, o en with

emergence of drug resistance. e observed relationship between adherence and

likelihood of resistance differs across drug class. Chapter presents a model that

explains these observations by considering drug properties, tness of susceptible

and resistant strains, and adherence. Poor adherence to boosted protease

inhibitors, which have sharp dose-response curves and short half-lives, is shown

to cause failure via growth of susceptible strains, not resistant ones.

Current HIV treatment cannot eradicate the infection due to a reservoir of

latent virus in resting memory CD + T cells. Chapter models infection

dynamics during treatment interruption, in order to assess investigational

therapies that reduce the size of the latent reservoir. Calculations suggest that

reducing the reservoir by , - to , -fold will let half of patients interrupt

treatment for one year without rebound, but that rebound may occur suddenly

a er years of success.

Chapter considers vaccination against seasonal infections. One’s decision to
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vaccinate affords indirect protection to non-vaccinators. Reliance on this

protection may prevent establishment of herd immunity. Here epidemiology is

integrated into a model of adaptive learning, in which individuals use anecdotes

from peers to estimate bene ts of vaccination. Herd immunity is found to

establish in network-structured populations, but to break down if vaccination

costs exceed a critical threshold. is result suggests parallels to historical

“vaccine scares” following periods of high vaccination coverage.

e nal two chapters examine evolution of mutation rates under

frequency-dependent competition. Cyclical “rock-paper-scissors” competition is

found to exert upward selective pressure on mutation rates. Competition

resulting in a stable equilibrium trait distribution exerts downward selective

pressure on mutation rates. Recombination lowers the evolutionarily stable

mutation rate but may permit stable coexistence of rates above and below this

level. Biological scenarios are discussed which may meet theoretical

requirements for the adaptive evolution of high mutation rates.
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1
Introdu ion

M

, explaining and predicting trends in

these populations. In this thesis, I explore a range of biological scenarios with

models of evolutionary dynamics. My work addresses clinical questions of HIV

treatment and evolution of resistance, public health questions regarding

vaccination and herd immunity, and theoretical questions regarding the

evolution of mutation rates.

In Chapters and , I investigate two questions about current and

investigational HIV treatment efforts. Since the early days of HIV treatment,



dynamic modeling approaches have contributed to our understanding of viral

growth and evolution under various treatment regimes [ , , ]. Highly

active antiretroviral therapy (HAART) inhibits HIV replication and canmaintain

a low viral load inde nitely, but it cannot eradicate the infection due to a reservoir

of latent virus present in resting memory CD + T-cells. e treatment ba le

against HIV is therefore a long one that may involve multiple rounds of treatment

modi cation following the development of resistance. Two recent trends in HIV

treatment research have emerged: development of highly potent drugs with

relatively few adverse effects that make it easier for patients to adhere to their

HAART regimen, and investigation of treatments that may deplete the latent

reservoir. I investigate two mathematical models that may be of service in the

design and testing of treatments that arise from these trends.

Adherence is typically measured as the fraction of a patient’s prescribed doses

that he or she takes, though measures such as the frequency of extended

treatment interruptions provide complementary information [ , ]. In the

context of the rst HIV research trend, it is important to understand the

relationship between adherence and treatment outcomes. Despite the high

inhibition of viral replication achieved by current anti-HIV drugs, many patients

fail treatment suffering rebounding viral loads, o en with emergence of

drug-resistant virus. e relationship between adherence and likelihood of

resistance differs dramatically across drug class, with boosted protease inhibitors

generally exhibiting least vulnerability to resistance, even at sub-par adherence

levels [ , ]. In Chapter , I present a mathematical model that explains these



observations and makes novel predictions. is work extends the literature on

viral dynamics by incorporating empirical measurements of antiretroviral

pharmacokinetics and pharmacodynamics into a model considering adherence,

mutation, and tness differences between susceptible and resistant strains. Drug

resistance may emerge either from mutations pre-existing in the latent reservoir

or from mutations arising de novo from reverse transcription during the viral

lifecycle. e model shows that antiviral activity falls quickly for drugs with sharp

dose-response curves and short half-lives, such as boosted protease inhibitors,

limiting the time between doses when resistance can be selected. Poor adherence

to such drugs therefore causes treatment failure via growth of susceptible virus.

is chapter also proposes the hypothesis that particular single-pill combination

therapies may prevent resistance at any patient adherence level, even though the

same drugs administered as separate pills could be vulnerable to resistance. is

hypothesis follows from a calculation that the mutant selection window for a

particular drug combination is small if the drug concentrations are forced to vary

in lockstep as they would be in a coformulated pill.

e number of potential combination regimens grows rapidly with each

investigational compound, yet only a small fraction of these regimens can feasibly

be tested in randomized control trials. Moreover, a patient’s optimal regimen

depends on personal factors such as viral load history, CD count, pre-existing

resistant variants, and adverse effects of and adherence to treatment, meaning

that results of large trials may not generalize to all patients. As standards of care

change over time, these aspects of the overall patient population may change as



well, potentially destabilizing correlations observed in past clinical studies.

Against an evolving adversary, investment in drugs is like investment in the stock

market: Past performance does not guarantee future results. Since the modeling

approach proposed in this chapter incorporates patient characteristics and

underlying presumably stable mechanisms of viral growth, it has the

potential to predict patient outcomes in a broader range of circumstances than

previous approaches.

In the context of the second HIV research trend, great strides are being made

to develop reliable therapies for eradicating cells latently infected with proviral

HIV. While risky and costly stem cell transplantation remains the only veri ed

method for curing HIV by complete eradication of the latent reservoir [ ],

both early treatment initiation [ , , ] and use of drugs to induce targeted

activation of latently infected cells [ – , , , , , , ] may reduce

the size of the latent reservoir. It is not yet known how reservoir reduction, short

of complete eradication, will bene t patients. In Chapter , I address the speci c

question of how much reduction of the reservoir is required to allow a patient to

maintain low viral loads during extended interruption of HAART. By

triangulating measurements of latent reservoir size, activation rate of latently

infected cells, and growth rate of virus issuing from actively infected cells, and

then by incorporating these measurements in a model of infection dynamics, I

offer an initial answer to this question, se ing speci c goals for investigational

therapies that have yet seen limited clinical testing. e model suggests that

reduction of , - to , -fold is required to let a majority of patients



interrupt HAART for one year without rebound and that viral rebound may yet

occur a er multiple years of successful interruption. Investigational drugs thus

far have not been shown to reduce the reservoir even tenfold. Readers who are

daunted by this nding may wish to recall that AZT, the rst antiretroviral drug

approved for HIV treatment, inhibits replication by drug-susceptible virus

roughly -fold as measured in vitro, while the rst protease inhibitor, saquinavir,

approved nine years later, inhibits replication over one million-fold by the same

measurement [ ], rendering virus undetectable by clinical assays. As

mathematical models designed in the early HAART era served to frame debates

about therapeutic goals and virological consequences of antiretroviral

therapy [ , ], so too may models of latency reduction serve investigations

of this emerging therapy. As an important point of contrast with earlier viral

dynamics literature, the work presented in this chapter uses a stochastic model,

appropriate for understanding small populations of actively infected cells, the

time until rst activation, and heterogeneity among patients receiving equally

effective therapy. As data from longer-term clinical trials of latency-reducing

drugs becomes available, the distribution of times until viral rebound generated

by the model may be tested against it, leading to a clearer understanding of the

viral dynamics of activation and small infections.

e work in Chapter takes place in an epidemiological se ing. I examine the

dynamics of the spread of an infection through a community of individuals who

make the recurring seasonal decision whether to vaccinate against the infection.

Successful vaccination campaigns have been known to seed their own demise, for



achievement of herd immunity through vaccination indirectly protects even

those who cannot or who choose not to vaccinate, allowing them to “free-ride”

on vaccination efforts of others [ ]. As memories of the virulent consequences

of a pathogen wane, deniers of vaccination efficacy and safety may gain

prominence and credence [ ]. In the context of a u-like infection, against

which a new vaccination is required each season, individuals have the

opportunity to update their vaccination decision annually and may condition

their decision upon information about vaccination costs and bene ts that they

gathered in previous seasons. In this chapter, I investigated the consequences of a

simple rule by which members of a population update their vaccination

decisions. Under this rule, an individual compares his or her outcome from last

season (sick or healthy) with that of a peer; the individual then switches his or

her strategy (vaccinate or not) to that of the peer with a probability depending on

whether the peer fared be er last season. is rule provides a simple description

of learning, by which individuals seek to improve their own outcomes by

selectively imitating others. Similar learning rules have been investigated

theoretically and experimentally in the context of human cultural

evolution [ ], have been shown to be optimal under certain conditions of

bounded rationality [ ], and have been used to describe learned foraging

behavior adequately in at least one nonhuman species [ ].

e learning rule under investigation gives rise to dueling contagions: a er the

seasonal epidemic spreads through the population, so too may the strategy of

vaccination spread via imitation learning, limiting the following season’s



epidemic. Paradoxically, as individuals become more adept at imitating

successful strategies, the equilibrium level of vaccination falls below the rational

individual optimum. Herd immunity is not established in this se ing. In

network-structured populations where individuals may transmit the vaccination

strategy or infection only to close contacts, the picture is guardedly optimistic:

vaccination is widespread over a range of low vaccination costs, but coverage

plummets a er cost exceeds a critical threshold. is result suggests parallels to

historical scenarios in which vaccination coverage provided herd immunity for

some time, but then rapidly dropped. e model is therefore capable of

representing both the establishment and fragility of herd immunity.

Chapters and explore theoretical issues in the evolution of mutation rates.

e adaptive potential of a population is both enabled and constrained by

random mutation, and numerous studies have investigated the causes and

consequences of mutation rate evolution [ , ]. In the context of infections,

both the mutation rate and intra-host population size of a pathogen govern the

rate at which it may escape host defenses, a phenomenon that has been studied in

great detail in the context of HIV epitope evolution [ , ]. In mammals, the

adaptive CD + T cell response is a form of “domesticated evolution” that

exploits strong selective pressures for antigenic speci city in a large population

(≈ cells in humans) to combat this shi ing pathogen threat. In bacterial

species confronting phage parasites, hypermutation may play a similar protective

role [ ], albeit with the a endant risks of increased mutational load.

eoretical arguments suggest that host-pathogen coevolution may drive



increased mutation rates in both species [ , ]. Stepping beyond

host-pathogen competition, I argue in these two chapters that numerous forms of

frequency-dependent competition may mediate both upward and downward

selective pressures on mutation rates. Chapter uses numerical simulation to

investigate how a basic form of cyclical competition among three or more traits

within a population such as “rock-paper-scissors” competition favors

lineages with high mutation rates that are able to respond quickly to periodic

shi s in trait frequencies. Despite these never-ending shi s, the mutation rate in

this system generally converges to a unique high evolutionarily stable rate. It is

widely known that recombination weakens selection for high mutation by

decoupling the genetic determinants of mutation rate from the adaptive

consequences of mutation [ ]. In agreement with this principle,

recombination lowers the evolutionarily stable mutation rate in the model

presented. is chapter adds a wrinkle to this principle by showing that

recombination also allows for stable coexistence between mutation rates above

and below the evolutionarily stable rate. Even considering strong mutational load

and ignoring the costs of faithful replication, evolution favors positive mutation

rates in the model if the selective advantage of prevailing in competition exceeds

the ratio of recombining to non-recombining offspring. In conclusion, I

hypothesize that local mutation rates may be relatively high on genes in uencing

cyclical competition, and that global mutation rates in asexual species may be

higher in populations subject to strong cyclical competition.

Chapter abstracts from the particular form of cyclical competition studied in



the previous chapter by analyzing a general mathematical framework of mutation

rate evolution under frequency-dependent selection. Using deterministic

population dynamics, the evolution of mutation rates can be studied under any

form of frequency-dependent competition using an adaptive dynamics approach,

whereby a resident mutation rate may be invaded by a small population with a

slightly different mutation rate. is framework adequately re ects the

evolutionary regime where ( ) the mutation rate evolves gradually and slowly

relative to the dynamics of trait competition and ( ) the population as a whole is

expected to produce at least one mutant offspring per generation. Two general

principles can be proven in this framework. First, if frequency-dependent

competition dynamics lead to a stable mutation-selection equilibrium

distribution of traits, then lower mutation rates outcompete higher ones. Second,

if competition leads to a particular type of cyclical trait dynamics (a heteroclinic

cycle), of which the rock-paper-scissors dynamic is a special case, then the zero

mutation rate can be invaded by a range of higher rates. ese theoretical results

suggest that the previous chapter’s conclusions regarding mutation rates on genes

in uencing cyclical competition or in asexual species under cyclical competition

are robust to the quantitative details of competition. e standard-bearer for

cyclical competition observed in nature has been the side-blotched lizardUta

stansburiana, in which male morphotypes of three different colors engage in a

rock-paper-scissors mate competition [ , ]. Cyclical competition should

be common where individuals face tness tradeoffs in multiple interacting

characters [ ], suggesting that frequency dependence-modulated mutation



rate evolution may be of broad evolutionary importance.



2
Antretroviral dynamics determinesHIV

evolution and predi s treatment
outcomes

. I

T HIV has dramatically improved since the

introduction of highly active antiretroviral therapy (HAART), which, when

successful, can bring viral loads below the detection limit, improve immune

function and prevent progression to AIDS [ ]. Although a complete



understanding of how virologic, pharmacologic and host factors interact to

determine therapeutic outcome is still lacking, it is clear that a major obstacle to

successful treatment is suboptimal drug adherence. Non-adherence can lead to

virologic failure and the emergence of drug resistance [ , , , ].

Because of their high antiviral activity, protease inhibitors are crucial in HIV-

treatment and are used in three of the ve recommended initial regimens and

many salvage regimens [ ]. Clinical trials have shown that for many drug

combinations involving protease inhibitors, treatment failure occurs without

resistance mutations in the viral gene encoding protease [ , , , ],

though mutations conferring resistance to other drugs in the regimen are o en

found. It is generally believed that combination therapy works because it is

unlikely that multiple mutations conferring resistance to all drugs in the

combination will appear in the same viral genome. us, failure without protease

inhibitor resistance is puzzling, because it seems to contradict this fundamental

explanation for the success of HAART. It is commonly believed that protease

inhibitors have a higher ‘barrier to resistance’ than other drugs, meaning that

clinically signi cant protease inhibitor resistance requires the accumulation of

multiple mutations in the protease gene [ ]. Protease inhibitor resistance also

typically occurs at a narrower range of adherence levels than resistance to other

drug classes [ , ]. Although these concepts are suggestive, no theory has

been developed to explain why patients fail protease inhibitor-based regimens

without protease inhibitor resistance.

A resistance mutation may exist before treatment in the latent or active viral



populations or may arise during treatment [ ]. Drug resistance develops

clinically if the mutant strain is selected for over the wild-type strain. Selection

depends on the tness costs and bene ts of the mutation, as well as on drug

levels, which vary with the dosing interval, the drug half-life and the patient’s

adherence. Here we use a modeling approach to integrate these factors, enabling

us to determine when a resistance mutation will be selected and to predict the

outcome of therapy with different drugs. Our results explain the unique

adherence-resistance relationship for protease inhibitors and show why patients

fail protease inhibitor-based therapy without protease inhibitor resistance.

. R

. . D

Antiretroviral drugs reduce viral tness in a dose-dependent manner (Fig.

. . a). Viral tness can be summarized as a single parameter, the basic

reproductive ratio R , which encompasses all phases of the viral life-cycle [ ]

(Supplementary Methods). e Hill dose-response curve describes the

relationship between drug concentration and R :

R =
R

+
(

D
IC

)m ( . )

HereD is drug concentration, IC is the concentration at which

inhibition occurs, andm is a parameter determining steepness of the curve
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Figure 2.2.1: Drug concentrations determine the relative fitness of the wild-
type virus and a resistant mutant. (a) The fitness of the wild-type virus (R ,
blue line) decreases with increasing drug concentration (here shown normal-
ized by wild-type IC ), following equation (1). A drug-resistant strain (R′ ,
red line) is less fit than the wild type at low concentrations but more fit at
higher concentrations, owing to an increased IC or a reduced slope. The
MSW is the range of concentrations where a resistant mutant, if present, will
grow faster than the wild type and still has R′ > . The WGW is the range
of low concentrations where the wild type has R > , leading to treatment
failure without the need for resistance. For drug concentrations in the over-
lapping range of these windows, virologic failure can occur even without re-
sistance but will be hastened by the appearance of a faster-growing mutant.
(b) As drug concentrations decay after the last dose is taken, the viral fitness
passes through four different selection ranges. Depending on the drug, dose
level and mutation, not all of these ranges may exist. The time spent in each
selection window is also determined by the drug half-life. WT, wild type.



[ , ]. e numerator R is baseline tness in the absence of treatment.

A drug-resistant mutant is any viral variant that is less inhibited than the wild

type for some drug concentration, described by the altered dose-response curve

that determines viral tness R′ :

R′ =
R ( − s)

+
(

D
ρIC

)m( +σ) ( . )

Mutations have a tness cost, meaning that the drug-free tness of the mutant

virus is reduced by a fraction s ( < s < ). In the presence of the drug, the

mutation confers a bene t, multiplying the IC by a factor ρ (the fold change in

IC , ρ > ). Many mutations also reduce the slope (m) of the dose-response

curve by a fraction σ < (ref. [ ]).

Virologic failure occurs when treatment fails to prevent the growth of virus to

high levels. A viral strain grows when R > . e strain with highest R

outcompetes others [ ]. e range of drug concentrations where a resistant

mutant can cause virologic failure is called the mutant selection window (MSW)

[ , ]. Above the MSW, even replication of the mutant is suppressed

(R′ (D) < ), although toxicity may prevent these drug concentrations from

being achieved clinically. We here de ne the wild-type growth window (WGW),

where drug concentrations are so low that wild-type virus is not adequately

suppressed and failure can occur even without resistance (R (D) > ).



. . T MSW

To predict how well each drug suppresses growth of resistant and susceptible

strains, we computed the time during a treatment interruption that a patient

spends in the MSW and WGW. During treatment interruption, both R and R′

increase. Up to four selection ranges can be identi ed (Fig. . . b). Using

pharmacokinetic and pharmacodynamic data [ , ](Supplementary

Table . . ), we determined the time spent in these ranges for drug-mutation

pairs (Fig. . . a) on the basis of their speci c dose-response curves (Fig.

. . b-e). For each pair, we determined how soon a er the most recent dose the

mutant or wild-type virus starts to grow. is quantity is shorter than the

expected time until virologic failure, which requires plasma HIV RNA to reach

detectable levels andmay also depend on the time until mutant virus appears. We

examined here only single-point mutations that are fully characterized by their

effect on the dose-response curve (Eq. ( . ), Supplementary Tables . . , . . ).

For this reason, we caution that our results may be over-optimistic, as virus with

multiple resistance mutations o en appears during infection. Use of our results

for clinical recommendations is therefore premature. Below, we discuss

extending the model to multiple mutations.

Successful treatment must both minimize the time spent in the MSW and

delay entry into the WGW. ese two goals are in tension, as shortening the time

spent in the MSW (for example, by decreasing drug half-life) can also hasten
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Figure 2.2.2: Selection windows can be calculated for particular drug-
mutation pairs. (a) The distance to the right along each horizontal bar is the
time since the last dose, and the color corresponds to the selection window
during that time interval (described in Fig. 2.2.1b). (b-e) Examples of dose-
response curves (showing drug concentration normalized by wild-type IC ) for
drug-mutation combinations indicated in a. Shading indicates the MSW. If
the cost of a mutation is too high or its benefit (ρ or σ) too low, it is possible
that the MSW does not exist. (f) Rank of each drug for relative risk of wild-
type versus mutant virus growth, independent of the overall risk of therapy
failure. For each drug, we show a ‘synthetic’, worst-case, single-nucleotide mu-
tation (Supplementary Methods and Supplementary Fig. 7.2.12). PI, protease
inhibitors; FI, fusion inhibitors; II, integrase inhibitors; ABC, abacavir; FTC,
emtricitabine; ATV, atazanavir; TPV, tipranavir; EVG, elvitegravir; ENF, en-
fuvirtide. Protease inhibitors are often boosted (co-formulated) with ritonovir
(/r), which interferes with breakdown in the liver and increases half-life.



entry into the WGW (Fig. . . b). Results from our model (Fig. . . a) suggest

that non-nucleoside reverse-transcriptase inhibitors (NNRTIs) are protected

against failure via wild-type virus due to their long half-lives but are vulnerable to

mutation due to the time spent in the MSW. Protease inhibitors are at the

opposite end of the spectrum, with li le time spent in the MSW but rapid entry

into the WGW. is behavior is caused by high slope parameters (extreme

sensitivity to changes in concentration) and short half-lives. ese results explain

the unique trade-off presented by protease inhibitor therapy: greater protection

against the evolution of resistance but vulnerability to wild-type-based virologic

failure a er short treatment interruptions. is feature is depicted schematically

by plo ing the drugs along a single axis, which measures the relative risk of

mutant growth versus wild-type growth, independent of the overall risk of

virologic failure (Fig. . . f and Supplementary Methods).

. . S

Whereas the MSW and WGW concepts describe instantaneous growth of

mutant and wild-type virus for a given drug concentration, virologic failure

depends on sustained growth and, therefore, drug concentrations over time. To

explain clinical observations across drug classes and adherence levels, we

developed a stochastic model of viral evolution (Fig. . . and Methods). Our

model builds on the large body of previous work modeling HIV therapy

[ , , , , ] by integrating new data on class-speci c drug

properties [ ] and realistic costs and bene ts of mutations [ ]. We also



modi ed past approaches by allowing drug concentrations, and hence R , to

uctuate, rather than taking time-averages.

We rst simulated -week trials of single agents in a cohort of patients. e

results are presented in two ways: as outcome versus patient adherence at the

trial endpoint (Fig. . . a) and as outcome versus time for a distribution of

patient adherence levels (Fig. . . b,c).

Consistent with a previous meta-analysis of combination therapy clinical trials

[ ], our model predicts that the level of adherence necessary for mutant

virologic failure differs by drug class (Fig. . . ). Speci cally, for the NNRTIs

efavirenz (EFV) and etravirine (ETV), the risk of mutant virologic failure is

greatest at low adherence levels; for unboosted protease inhibitors, the risk peaks

at a higher adherence level and remains substantial up to adherence; for

boosted protease inhibitors (paired with ritonavir to increase half-life), resistance

occurs infrequently and at intermediate adherence levels. Researchers have

previously argued that drug half-life and tness costs of mutations are key factors

explaining these general trends [ , ]. By incorporating these factors as

parameters, our model formalizes this argument.

In examining simulations of each drug individually (Supplementary

Figs. . . – . . ), we found four qualitative pa erns of outcome, which

correspond closely-but not exactly-to drug class (Fig. . . ).

For most nucleoside reverse-transcriptase inhibitors (NRTIs), the integrase

inhibitors, the fusion inhibitor, and the NNRTI nevirapine (NVP), even perfect
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Figure 2.2.3: Schematic of algorithm for simulating viral dynamics in a pa-
tient undergoing treatment. (a) A single simulated patient takes a particular
drug (or drug combination) with a designated adherence level, starting with
an initial viral load (VL). Over a 48-week clinical trial, drug levels fluctuate
and viral load levels are simulated according to a viral dynamics model. (b)
Drug levels fluctuate according to patient’s dosing pattern and pharmacoki-
netics (dose size, half-life, bioavailability); gaps show missed doses (figure
shows single drug). (c) Wild-type viral fitness (R ) fluctuates in response to
drug concentration depending on the dose-response curve. (d) Fitness of drug-
resistant strain (R′ ) depends on an altered dose-response curve; at high drug
concentrations, mutant fitness exceeds that of the wild type. (e) Wild-type
viral load depends on viral dynamics equations, which account for active repli-
cation, exit from the latent reservoir and competition between strains. (f) A
mutant virus may appear (red star) but be below the threshold for detection
(dotted red line) before eventually leading to virologic failure.
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adherence led to mutant virologic failure in all simulated patients. As adherence

declined, some wild-type virologic failure occurred. Virologic failure and

resistance occurred soon a er the trials started. ese results are consistent with

the notion that monotherapy o en leads to rapid evolution of resistance.

For most protease inhibitors and the NNRTIs EFV and ETV, however, perfect

adherence resulted in treatment success in simulations. Control of viral

replication has been observed in a substantial fraction of patients in protease

inhibitor monotherapy trials [ ], but similar trials with EFV and ETV have not

been carried out. In simulations, declining adherence affected performance of

these two drug classes differently.

For the NNRTIs EFV and ETV, there was a large range of low-to-intermediate

adherence for which mutant virologic failure was likely. Below this range,

wild-type virologic failure became increasingly likely, whereas above this range

the simulated patients succeeded. e size of this range is explained by the low

tness costs of drug-resistant mutations and long half-lives of NNRTIs, which

allowed the patient to remain within the MSW for a substantial duration

(suggested in ref. [ ]).

e protease inhibitor nel navir (NFV) and the NRTI didanosine (ddI)

showed a large range of intermediate adherence leading to mutant virologic

failure. Near-perfect adherence was required for treatment success. Under most

clinical se ings (adherence < ), our model predicts that these drugs perform

similarly to monotherapy with other NRTIs, typically leading to mutant virologic

failure.
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Figure 2.2.5: Our calculated adherence-resistance relations are in agreement
with those observed in clinical trials. (a) Adherence versus simulated prob-
ability of resistance in a 48-week suppression trial for a protease inhibitor, a
boosted protease inhibitor and an NNRTI. The inset shows a qualitative sum-
mary of results from a meta-analysis of clinical trials [15], which agrees with
our simulations. (b) Adherence versus fraction of time spent in the MSW for
the same drugs. Adherence-resistance trends demonstrate that time in MSW
is a good proxy for the risk of mutant-based virologic failure. For both plots,
curves were generated by averaging over all boosted protease inhibitors, all
unboosted protease inhibitors, and the NNRTIs EFV and ETV. Protease in-
hibitor curves in a were fitted to skewed-T distributions to smooth step-like
behavior. NVP, which was excluded from this figure, shows a different pattern
from the other two NNRTIs; specifically, mutant virologic failure can occur
even for perfect adherence (Supplementary Figs. 7.2.1, 7.2.2).



For many protease inhibitors, a decline from perfect adherence led abruptly

from success to wild-type virologic failure, with li le or no intermediate range for

mutant virologic failure. is result explains the outcomes of clinical studies,

which have shown that virologic failure in many boosted protease inhibitor-based

regimens (including monotherapy) does not require the evolution of resistance

[ , , ]. Variations on this pa ern exist for some protease inhibitors:

simulations of lopinavir (LPV/r), saquinavir (SQV, SQV/r), and indinavir (IDV,

IDV/r) showed mutant virologic failure at low and moderate adherence levels,

mainly for trials where initial viral load was high. Still, like all the protease

inhibitors simulated except NFV, as adherence declined from the successful

range, the rst failing outcome observed was wild-type virologic failure

(Supplementary Figs. . . , . . ).

We also examined the sensitivity of our results to changes in the baseline viral

tness, R (Supplementary Figs. . . , . . ). As the intracellular half-lives of

several NRTIs are not de nitively established, we tested a range of half-lives for

lamivudine ( TC), azidothymidine (AZT), stavudine (d T), ddI and tenofovir

disoproxil fumarate (TDF) (Supplementary Fig. . . ). Against a strain with

higher R , higher adherence levels were required for treatment success, and

there was a wider range of adherence levels for which mutant virologic failure

occurred. e effect of increasing half-life was drug-dependent, but for most

NRTIs simulated, it increased the likelihood of mutant virologic failure.



. . E

Equipped with a model of drug interaction, we were able to extend the

simulations to combination therapy (Supplementary Methods and

Supplementary Fig. . . ). For proof of concept, we use a two-drug

combination of the boosted protease inhibitor darunavir (DRV/r) with the

integrase inhibitor raltegravir ( L). e combined effect of these two drugs is

given by a Bliss-independent [ ] interaction pa ern [ ], which describes

drugs acting on different targets, therefore reducing viral replication

multiplicatively. In a recent DRV/r- L clinical trial [ ], patients

experiencing virologic failure had their plasma viral population genotyped.

Although of patients tested positive for L-resistance mutations in the

gene encoding integrase, no patients tested positive for DRV resistance in the

gene encoding protease [ ]. Our simulation is consistent with this study:

treatment failure occurred without DRV resistance (Fig. . . a).

L-resistant mutants were selected for only when the concentration of

DRV/r was low and the concentration of L was moderate to high

(Supplementary Fig. . . ). is state of “effective monotherapy” (ref. [ ])

can occur if the drugs are administered as separate pills. If, however, dual therapy

were administered as a combination pill, then the two concentrations would rise

and fall roughly together, reducing the chance that they reach the discordant

levels that select for resistance. Simulation of dual therapy as a single

combination pill veri ed this hypothesis. However, this protection from



Figure 2.2.6 (following page): Outcomes of DRV/r plus RAL dual suppres-
sion therapy simulations, considering resistant mutants for both drugs. (a)
Each drug is taken independently, and adherence may differ between them.
The brightness of each color at a particular point indicates the probability
of the corresponding outcome, with the black contours showing where each
outcome occurs 95% of the time. Success depends largely on adherence to
DRV/r (success is almost certain if adherence is >50%), whereas the type
of failure is determined by adherence to RAL (resistance is almost certain if
adherence is >30%). All failure via resistance is due to RAL mutant-based vi-
rologic failure. DRV mutant-based virologic failure (virologic failure) never oc-
curs in the simulations. (b,c) Drugs are taken with equal average adherence.
The height of the area shaded indicates probability of the corresponding out-
come at that adherence level. (b) Drugs are taken as separate pills. Average
adherence is the same, but pills are taken independently. (c) Drugs are pack-
aged as a combination pill and are always taken together. Mutant virologic
failure occurs only when the two drugs are given in separate pills; combination
pills eliminate mutant virologic failure but increase the adherence required for
near-certain success.
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resistance came at a cost: higher adherence was required to prevent wild-type

virologic failure. For example, to ensure a chance of success in the

simulation, a patient taking separate pills must be adherent to each pill (Fig.

. . b), but adherent to a combination pill (Fig. . . c). We expect this

trend to apply to other drug combinations.

. D

Recent efforts to quantify pharmacodynamics [ , , ], combined with

insights into patients’ drug-taking behavior [ ], have enabled us to develop what

is to our knowledge the rst explanatory model of virologic failure in agreement

with clinical trials. All parameters in our model have direct physical

interpretations, and their values were taken directly, or derived from, previous

literature. e model was not t or trained to match clinical data. Despite our

model’s simplicity, it can explain the clinically observed drug-class-speci c

relationship between adherence and outcome [ ] (Fig. . . ). Even without full

viral dynamic simulations, a straightforward analysis of the mutant selection

window can explain why certain drugs are more likely to select for resistance

(Figs. . . f and . . b).

In addition, we address a long-standing mystery of antiretroviral therapy. Even

when failure of protease inhibitor-based regimens is documented, mutations that

confer resistance to the protease inhibitor appear infrequently

[ , , , ]. Although it is possible that mutations may occur outside the



protease-encoding gene [ , , , ] and escape routine detection, our

model provides a more straightforward explanation: due to the sharp slope of

protease inhibitor dose-response curves [ ], even relatively strong protease

inhibitor resistance mutations are selected only in a narrow range of drug

concentrations. Moreover, as protease inhibitor concentrations decay rapidly

compared to other drugs, they traverse this narrow range quickly, leaving li le

time for a resistant strain to grow before wild-type-based virologic failure. We

predict that patients who fail protease inhibitor therapy with wild-type virus

should be able to re-suppress the virus if the same drug is taken with improved

adherence. A previous study [ ] observed this outcome in patients who failed

LPV/r without detectable resistance. Even with protease inhibitors that are more

susceptible to resistance, only wild-type virus is detectable when adherence dips

below the level guaranteeing success, providing an antiresistance ‘buffer’ that

may warn clinicians of resistance risk. NFV is the sole exception to this pa ern,

owing to its having the lowest slope and second-highest IC of the protease

inhibitors and consistent with its documented vulnerability to resistance [ ].

e tradeoff between protection from resistant and susceptible strains occurs

not only between drug classes but also between different formulations of the

same drugs. We predict that a new combination pill containing DRV/r and L

would not lead to resistance, even though the current separate-pill formulation

does. is result suggests that some combination pills may be ‘resistance proof ’,

but their known bene t of increasing patient adherence must be weighed against

the fact that they require higher adherence to prevent wild-type-based virologic



failure. is tradeoff results from the possibility that a patient who is prescribed

multiple pills may at times take only some of them [ ], providing partial

protection from the virus but allowing entry into a ‘zone of monotherapy’ [ ]

that can select for resistance.

We can extend our model to a broader range of combination therapies once

interactions between drugs [ ] are characterized; these interactions affect the

evolution of resistance [ ]. Our monotherapy results are a rst step for

examining how pharmacokinetics and pharmacodynamics determine treatment

outcomes. ese results can inform innovations in lower-cost maintenance

therapy among highly adherent patients, for whom monotherapy shows promise

but also poses resistance risks [ ]. Speci cally, on the basis of our simulations,

we propose that EFV and ETV monotherapy may be promising avenues for

further study, despite the disheartening performance of monotherapy with the

rst approved NNRTI, NVP [ ], and the ambiguous performance of

ETV-based HAART for patients with resistance to the NRTI backbone [ ].

Simulations that start with a high viral load (suppression phase) and

simulations that start with an undetectable viral load (maintenance phase)

generally showed similar outcomes; however, for several drugs, failure with

resistance was more likely during the suppression phase. Such differences are

o en a ributed to the presence of preexisting mutants when viral load is high

[ , , , ]. However, in our model, frequent reactivation from the latent

reservoir provides a sufficient source of mutants during both phases

(Supplementary Tables . . , . . ), and ongoing replication is an additional



common cause of resistance (Supplementary Figs. . . , . . ). e key

difference between the two phases is in how virologic failure is de ned. As

patients remained in suppression simulations until the prede ned endpoint,

wild-type growth sometimes preceded (and contributed to) growth of the

mutant. More frequent measurement of viral load in maintenance simulations

improved the chance that virologic failure was diagnosed before resistance

reached detectable levels, consistent with clinical meta-analysis [ ]. Also

consistent with clinical observations [ ], continuation of maintenance trials

a er rebound allowed the possibility of re-suppression, but it sometimes led to

emergence of resistance (Supplementary Fig. . . ).

It is difficult to quantitatively compare our simulations to clinical trials, as

adherence is rarely precisely known. We suspect that our results are biased

toward success for several reasons. First, we considered only single-point

mutations, but strains with multiple mutations may lead to failure at higher

adherence levels. Second, we considered neither correlations between

consecutive missed doses nor variations in the time of day when a dose is taken,

both factors that lead to longer treatment interruptions and increase the chance

of virologic failure [ , , , , ]. ird, as is common in models of

viral dynamics, we assumed that the virus population is homogeneous and well

mixed. Actual infections may include subpopulations that grow faster (higher R ,

for example, owing to cell-to-cell transmission [ ]) or that reside in tissues that

drugs do not fully penetrate [ , , ]. For example, the concentration of

EFV in the cerebrospinal uid is only . of plasma concentrations [ ]. As our



predictions rely on plasma drug concentrations, they may be optimistic in the

case of EFV (see ref. [ ] for further discussion). In the absence of strong

evidence for these effects, suboptimal adherence is the most likely cause of

treatment failure. Given the above limitations, our modeling results should not

be taken as clinical recommendations at this stage.

Patients experiencing virologic failure may not respond to a similar regimen in

the future [ , , ], but the precise reasons for this are not clear. e

simplest explanation is that growth of a resistant strain during prior treatment

makes it more likely this strain will exist in the future [ ]. is explanation

assumes that, in the absence of prior growth, most resistant mutants are relatively

rare. If the diversity (effective population size) of the latent reservoir is not

severely depleted over time, then our calculations contradict this assumption for

single mutations: even in the absence of prior treatment, a majority of mutations

exit the reservoir every few weeks. Resistance is then available to be selected

regardless of prior growth. e occurrence of multiple mutations within the same

viral genome is unlikely, however, without prior growth. To explain generally

how prior virologic failure undermines future treatment, we need to model the

long-term accumulation of multistep mutations in the viral population

[ , ]. To build such models, it will be important to understand interactions

between mutations (including compensatory mutations [ ]) and account for

recombination [ ].

We have emphasized here the variable nature of anti-HIV drug resistance.

Common practice classi es a genotype as resistant if it is associated with



virologic failure in a meta-analysis of clinical outcomes; otherwise it is sensitive.

is categorization is misleading: a mutation’s ability to promote viral growth

depends on all of the drugs in a regimen, adherence and the other mutations

present. As standards of care evolve and study populations change, a mutation

may gain or lose resistant status as a result of shi s in these confounding

variables. Our model provides a rigorous alternative for evaluating resistance, by

using mechanistic parameters to predict clinical outcomes. Our framework can

help researchers prioritize drugs for clinical trials and select regimens for

personalized HIV treatment.

. M

. . P , -

Viral tness followed equation ( . ) with parameters R , IC andm. Fitness of

resistant mutants followed equation ( . ) with parameters s, ρ and σ.

(Supplementary Tables . . – . . ). Relative wild-type and mutant viral tness

values R (D)/R and R′ (D)/R were measured using in vitro assays and were

t to Hill curves to determine the parameters IC ,m, σ, ρ and s; these values

were reported previously [ , ]. We estimated absolute in vivo viral tness in

the absence of drugs (R ) using measurements from previous studies

(Supplementary Methods). We modeled drug concentration as instantaneously

increasing a er a dose to the steady-state peak concentration (Cmax) and then



decaying exponentially (with half-life T / ) to the trough concentration (Cmin)

before the subsequent dose. When doses were missed (representing suboptimal

adherence), the concentration continued to decay, and a subsequent dose

increased the concentration by ΔC = Cmax − Cmin.

We determined the bounds of the MSW by solving forD in R (D) = R′ (D)

and R′ (D) = . We determined the upper bound of the WGW by solving R (D)

= . We computed the time a er a single dose when a particular concentrationD

was reached by solving for t inD = Cmax
−t/T / .

e MSW concept as applied here to antiretroviral therapy was adapted from

the extensive literature on antibiotic resistance. Both in vitro and in vivo, drug

concentrations that uctuate within the MSW lead to the development of

resistance, but those outside it do not (reviewed in ref. [ ]). Although some

studies of antibiotic-resistant Escherichia coli have found no upper limit to the

MSW [ ], no such results are known for antiretroviral resistance. e

de nition of the MSW most commonly used in antibiotic work is slightly

different from the one we use, with the lower limit de ned as R (D) = because

of experimental constraints [ ]. We have chosen to modify this de nition, as

selection for the mutant can occur even at lower drug concentrations where

R (D) > (ref. [ ]). e MSW and WGW can be described for each drug

during combination therapy (Supplementary Methods).



. . S .

Our model for HIV dynamics during antiretroviral drug treatment uses

equations common in the literature [ ]. ese equations track the number of

uninfected CD + cells, amount of free virus and number of infected CD + cells.

A constant number of uninfected cells are produced each day, and they die at a

constant rate. Cells are infected at a rate proportional to the number of

uninfected cells, the amount of virus, and the viral tness. Virion production

from infected cells is described by the burst rate, and virions are cleared at a

constant rate. Infected cells have a higher death rate than uninfected cells.

Additionally, we include a population of long-lived infected cells in the latent

reservoir, which activate at a constant daily rate regardless of viral tness. Because

we are interested only in viral dynamics during treatment and at the initial stages

of failure, we have ignored the effects of the immune response. Viral tness, and

hence the rate of infection of new CD + cells, is determined by the baseline R

and the drug concentration. All equations and parameters are given in the

Supplementary Methods and Supplementary Table . . . In the Supplementary

Methods, we also derive a simpli ed form of HIV dynamics that requires fewer

parameters and only one state variable per viral strain; we used this simpli ed

model to design our simulations. More detailed models that explicitly track

multiple stages of the viral life cycle may more accurately re ect some short-term

dynamics, such as lags in viral growth during acute infection or lags in viral decay

during the early days of treatment [ , ]. Summarizing viral tness by a

single parameter (R ) smoothes out these dynamics.



ere may be multiple strains of virus (wild-type and mutants) and

consequently multiple types of infected cells. Even in the absence of drug,

mutations will arise due to random errors in replication, though they will be

selected against due to their tness cost (s). Eachmutation appears at a rate u that

depends on the particular nucleotide changes required to effect the desired amino

acid substitution (Supplementary Tables . . , . . , . . ). e balance between

these two processes results in all mutations being present in the population at an

expected low level u/s, called mutation-selection equilibrium [ , ]. We

assume that the plasma virus population reaches this equilibrium in each patient

before treatment (that is, that sufficient time has passed between initial infection

and treatment initiation and that no prior treatment has selected for resistance to

the particular drug being studied) and that the population in the latent reservoir

is representative of the plasma population (Supplementary Tables . . , . . ).

De novomutations occur with a probability u during replication.

We used stochastic simulations to study the dynamics of the system described.

Many mutations have been characterized for each drug, and to model a realistic

worst-case scenario we considered a single synthetic mutant de ned as having

the highest bene ts (ρ, negative σ), lowest cost (s), highest mutation rate and

highest equilibrium frequency (due to mutation-selection balance) of all the

single-nucleotide mutants known for that drug. Each monotherapy simulation

therefore tracked only two strains, wild-type and mutant. For dual therapy, we

considered three strains: wild-type, resistant to drug , and resistant to drug .

Simulations modeled -week trials, using discrete time-steps of Δt = min. All



simulations were done in Matlab R b. e full details of the algorithm for

simulating a single patient are given in the Supplementary Methods.

In maintenance trials, patients began with full viral suppression ( RNA copies

per ml, c ml− ) and underwent monotherapy for weeks or until virologic

failure, whichever occurs rst. virologic failure is de ned as ‘con rmed rebound’:

two consecutive weekly measurements (starting at week ) with viral load above

c ml− . In suppression trials, patients began with a realistic distribution of

treatment-naive viral loads (between , and c ml− ) (Supplementary

Fig. . . a) and underwent monotherapy for a full weeks. We tracked

measurements every weeks. Virologic failure is de ned as a viral load above

c ml− at week . In both types of trials, virologic failure is classi ed as ‘with

resistance’ if at least of the viral population at the time of detection is mutant.

We simulated imperfect adherence by allowing each dose to be missed with a

constant probability given by the expected adherence level parameter. In

reporting outcomes versus time, we simulated patients with a distribution of

adherence levels taken from a study using unannounced pill counts . For

simulations with two drugs, the value of adherence may be different for each

drug, allowing for “differential adherence,” which has been observed in many

studies [ ]. Even when adherence to the two drugs has the same average value,

the drugs can be simulated as two separate pills (allowing each pill to be taken or

forgo en independently) or as a single combination pill (causing the two drug

concentrations to rise and fall in lockstep).
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e following system of equations models the dynamics of multiple strains

(i = , , . . . , n) of HIV in a patient:

ẋ = λ −
n∑
i=

βixvi − dxx

ẏi = βixvi + Ai − dyyi

v̇i = kiyi − dvvi

( . )

where state variables x, yi, and vi are the number of infectable CD + T-cells,

the number of actively infected cells of strain i, and the number of free virus

particles of strain i, respectively. e number of latently infected cells is

considered to be constant, as it doesn’t decay signi cantly over the course of a

clinical trial, and so latently infected cells of strain i activate at a constant rate Ai.

Active cells produce virus at rate ki and die at rate dy, and virus is cleared at rate

dv. e infectivity parameter βi determines the rate at which virus of strain i

infects susceptible host cells. Host cell dynamics are determined by production

rate λ and death rate dx.

When Ai = for a strain i, this model reduces to the traditional viral dynamics

model [ ]. For that model we can describe the basic reproductive ratio, which is

de ned as the number of new infections generated by a lone infected cell before it



dies. Strain iwill only have a positive growth rate and be capable of sustaining an

infection if its basic reproductive ratio, R i := λβiki/
(
dxdydv

)
, is greater than .

In the model we present here the latent reservoir provides a constant source of

virus (Ai), which removes the threshold criteria for R , although this value still

describes viral tness and the amount of ongoing viral replication.

For a single strain, the unique non-negative steady-state solution to our model

is

y =
λ

dyR

[
R
(
A
λ
+

)
− +

√
R
(
A
λ
+

)
+ R

(
A
λ
−
)
+

]
( . )

In our model, for R i > , strain i grows to a high steady state that depends on

availability of host cells and the abundance of other strains. ere are several

limiting cases that can be derived from equation ( . ). In the absence of other

strains (or if R j ≪ for all j ̸= i), and for small reactivation Ai ≪ λ, strain i

grows to the steady state yi ≈ Ỹi := λ (R i − ) /
(
dyR i

)
. e value Ỹi is the

setpoint viral load that is maintained by replication alone, without additional

contribution from the latent reservoir. e residual active infection maintained

by the latent reservoir in complete absence of viral replication (R i = ) is

ỹ i := Ai/dy. For positive R i < , strain i reaches a low steady state

yi ≈ ỹi := ỹ i/ ( − R i). Since anti-HIV drugs act by decreasing βi and ki, the

value of R i is understood to depend on the current drug concentration(s).

To eliminate some of the model parameters and smooth the high-frequency



uctuations that may have li le clinical impact over the course of a drug trial, we

study a simpli ed version of the model in equation ( . ). We assume that vi and x

are at equilibrium relative to yi. is allows us to derive a reduced n-dimensional

model:

ẏi = Ai + dyyi

[
λR i

λ +
∑n

j= R jdyyj
−

]
( . )

When the total infection is small, the summation term vanishes, and

ẏi ≈ Ai + dyyi (R i − ). For R i ≪ , nearly all of strain i is produced by exit

from the reservoir; yi therefore approaches a value near ỹ i. As the total infection

grows (assuming R i > for one or more i), the fractional term approaches ,

describing saturation of the limiting resource, at which point new infection events

are balanced precisely by death of infected cells and yi approaches a value near Ỹi.

is reduced model has identical steady state values of virus and CD + cells as

the full model, but smooths out uctuations in infection size caused by the

dynamics of total CD + cells. Because we focus on initial virologic failure, which

occurs at relatively low viral loads, the uctuations in CD + cell levels are minor,

and the approximation captures the full dynamics (equation ( . )) well.

We can account for mutation by including the mutation rate matrixQ, where

Qij describes the probability that an infected cell of type j gives rise to one of type

i:



ẏi = Ai +
λdy
∑n

j= yjR jQij

λ +
∑n

j= R jdyyj
− dyyi ( . )

. . M

e value of R i at each point in time depends on the baseline basic reproductive

ratio (R = , see below), the current drug concentration(s), and parameters

describing resistance of the strain, as described by equations ( . ) and ( . ) in

the main text. e death rate of actively infected cells, dy, is per day [ ].

Supplementary Table . . summarizes the parameters used in the model.

B

e basic reproductive ratio (R ) combines various components of viral tness

into a single number. R > is required for the virus to have a positive growth

rate and sustain an infection. e baseline R , which we denote R , is de ned in

the absence of drug and has been estimated in past studies by measuring the

increase in viral load during the early days of acute infection or during planned

treatment interruption. During the acute phase, before the CTL response

develops, typical values for R are - (ref. ; ). A er this initial phase, R

declines to - , with some outliers as high as - (ref. - ) . Based on these

ndings, we chose a value of R = to present our results. We also checked

sensitivity to this parameter by using larger and smaller R values

(Supplementary Figures . . - . . ).



We can also double-check that our value of R from the literature is consistent

with an independent set of measurements. e growth rate of a mutant strain in

the absence of drug is R ∗ ( − s) (see equation ( . ) in the main text), where s

is the reduction in the replication capacity of the mutant virus. If

R ∗ ( − s) > , then a mutant strain will expand in the absence of drug. If this

condition fails, then themutant strain would never be detected at high abundance

(ignoring secondary or compensatory mutations). Since all the resistance

mutations that we study do occur clinically, we expect that R > /( − s)

should almost always hold. of the mutations studied have s < . , for which

the positive growth condition is satis ed for the value R = .

To maintain consistency with the chosen value R = , we capped the cost

of mutations used in the viral dynamics simulation at s = . , guaranteeing that

no mutant’s baseline R would be less than . Values of s that are negative are also

inappropriate for our model, as they imply that the resistant mutant is more t

than the wild type even in the absence of the drug, causing the mutant to be

prevalent at baseline. Measurements of s that were close to or negative were

assumed to be caused by experimental error, and so we set these values to

s = . to represent a small cost to these mutations.

L

Based on the following argument, we estimate the total reservoir exit rate
∑

i Ai

to be cells per day. e exit rate for a particular mutant strain is determined

by multiplying by the equilibrium frequency of pre-existing mutants, u/s. (Our



simulation treats each exit as an independent event; use of this modeling

approach implicitly assumes that the reservoir was seeded by a large, diverse

population, and that its diversity, or effective population size, is maintained over

time.) Viral loads of around RNA copies per mL are maintained in patients on

maximally suppressive HAART [ ]. e rate of exit from the reservoir must be

enough to account for this residual viral load, since ongoing replication is

negligible. is viral load corresponds to≈ × plasma virions (for a kg

person with L plasma). It has been shown, for a wide range of viral loads, that

the total number of infected cells in a patient is roughly equal to the number of

plasma virions [ ]. e infection size
∑

yi ≈ (
∑

Ai) /dy is therefore × ,

implying a total reservoir exit rate of cells per day.

Alternately, we can estimate the number of infected cells by noting that total

viral production (burst from infected cells) must balance total viral clearance

(breakdown of free virus in lymphatic tissue). Using parameters previously

established [ ], free virus in lymph tissues is times as abundant as virus in

the extracellular uid, and so would be about . × virions (based on L

ECF) for this example. is paper also determined that the ratio of viral burst

size to viral clearance rate is typically virions per cell (e.g., ki = ,

virions per day per cell; dv = per day). ese gures again imply an infection

size of cells.

Our calculations also agree with the results of a model which examined the

many years-long decay of the latent reservoir in HAART patients [ ].

Although this model used different sources for parameter values, it is consistent



with an exit rate of cells per day, as long as the reservoir is not signi cantly

depleted.

H

For a single wild-type strain in the absence of drug, the model (equation ( . ))

provides λ = ỸdyR / (R − ), where Ỹ is the total number of infected cells at

infection setpoint. As established above, this value is approximately equal to the

number of plasma virions at setpoint. We considered setpoint viral loads from

to RNA copies per ml plasma, or . × to . × total plasma

virions. ese values give a range of × to . × cells per day for λ.

R

e mutation rate matrix entryQij describes the probability that strain j

reproduces to create strain i. We include only single step mutations from the wild

type (j = ) to another strain i (at rate ui) and ignore back-mutation. erefore

Qi = ui for i > ,Q , = −
∑n

k= uk,Qii = for i > andQij = for all other

entries.

e overall mutation rate for HIV is × − per base per replication cycle

[ ], and recent work has shown that the rate varies considerably depending on

the speci c base changes involved. e nucleotide mutation matrix used in this

study was derived by normalizing mutation accumulation data from a study of

HIV replication of lacZα reporter sequence [ ]. e normalized data was then

rescaled to convert from the lacZα base composition to the HIV consensus



sequence base composition [ ]. Speci cally:

. De ne the variables:

• u = × − is the average per-site mutation rate of HIV.

• sxy is the total number of single-nucleotide substitutions from base x

to base y, combining data from both the forward and reverse

orientations of lacZα in Table A of Abram et al. [ ].

• sx∗ is the total number of single-nucleotide substitutions from base x

to any other base.

• S is the total number of single-nucleotide substitutions overall.

• nx and n′x are the abundance of base x in the reporter sequence and in

the HIV consensus sequence, respectively. N andN′ are the lengths

of the two sequences, respectively.

– nT = , nC = , nA = , nG = ;N =

– n′T = , n′C = , n′A = , n′G = ;N′ =

. Calculate the relative mutability of each base x in the reporter sequence,

rx = (sx∗/nx) / (S/N). A value rx > indicates that base x is more

mutable than the average, while rx < indicates the opposite.

. e per-site mutation rates from all bases x, denoted ux∗, are assumed to be

proportional to the relative mutabilities rx. To compute the values ux∗,

scale the relative mutabilities so that the sum

n′TuT∗ + n′CuC∗ + n′AuA∗ + n′GuG∗ equalsN′u, the genomic mutation rate



of HIV (about . substitutions per replication). e correct scaling factor

is ux∗/rx = N′u/ (
∑

rxn′x).

. To determine the individual rates uxy, partition each value ux∗ proportional

to the substitutions counted in the reported sequence; that is,

uxy = ux∗
(
sxy/sx∗

)
.

Supplementary Table . . gives the resulting per-site probability (uxy) for

each nucleotide substitution in a single round of viral replication.

Mutation rates were calculated only for those amino acid substitutions which

could be achieved via a single nucleotide change. All drugs studied had at least

one such substitution that conferred resistance. For each possible starting codon,

the rate of substitution equals the sum of all rates of nucleotide substitutions that

achieve the desired amino acid change. e mutation rate u then equals the

average of rates for all possible starting codons, weighted by the probability of

nding that codon (based on the HIV consensus sequence base composition)

(used in Supplementary Tables . . , . . ).

. . S

We used stochastic simulations to study the dynamics of the system described in

equation ( . ) with mutation. Multiple mutations have been characterized for

each drug, and to model a realistic worst-case scenario, we considered a single

“synthetic” mutant de ned as having the highest bene ts (ρ, negative σ), lowest

cost (s), and highest mutation rate of all the single-nucleotide mutants known for

that drug. Each monotherapy simulation therefore tracked only two strains, wild



type y and mutant y . Simulations modeled -week trials, using discrete

timesteps of Δt = minutes. All simulations were done in Matlab R b. e

following steps describe the simulation for a single patient on monotherapy, with

expected adherence value α:

. Draw from the viral load setpoint distribution in Supplementary

Figure . . a. is setpoint is used to determine the value of the λ

parameter, assuming that the patient has L plasma.

• In the suppression phase of therapy, the initial infection size is the

setpoint, rounded to the nearest integer number of cells.

• In the maintenance phase of therapy, the initial infection size is the

fully-suppressed infection size
∑

yi ≈ (
∑

Ai) /dy = c.ml− (RNA

copies per ml).

. Assign each infected cell to the mutant population (y ) with probability

u/s; otherwise the cell is in the wild-type population (y ).

. Identify all scheduled doses for the entire trial. All scheduled doses are

evenly spaced, with the rst dose occurring at the beginning of the trial.

e patient takes each scheduled dose with probability α.

• Exception: in the maintenance phase, the patient is always assumed

to take the rst scheduled dose.

. Calculate the drug concentration every timestep, as described in Methods.



• In the suppression phase, the initial drug concentration is zero.

• In the maintenance phase, the initial drug concentration is Cmax.

. Calculate the basic reproductive ratios for the wild type and the mutant

every timestep, as described in equations ( . ) and ( . ) of the main text

and the Methods.

. For each timestep:

(a) e number of infected cells of strain i to exit the reservoir is drawn

from a Poisson distribution with mean value AiΔt.

(b) e number of newly infected cells generated by strain i is drawn

from a Poisson distribution with mean value dyyiΔt
[

λR i
λ+

∑n
j= R jdyyj

]
.

(c) Each cell newly infected by the wild type enters the mutant

population with probability u; otherwise it remains wild type. Cells

infected by the mutant do not back-mutate.

(d) Each infected cell dies with probability − exp(−dyΔt).

. Determining outcome at weeks:

• In the suppression phase, the patient’s status is observed at the end of

the -week trial. If viral load is below c.ml− , the trial is declared

successful; otherwise virologic failure occurs.

• In the maintenance phase, the patient’s status is observed each week

for weeks, beginning at Week . If any two consecutive



observations show a viral load of at least c.ml− , virologic failure

occurs; otherwise the trial succeeds.

• A failed trial is considered a mutant-based failure if at least of

the viral population is mutant; otherwise it is considered a wild

type-based failure.

. Determining outcome over time:

• Patient’s status was evaluated every weeks, for weeks.

• In the suppression phase, if viral load is below c.ml− at the

evaluation, the patient is classi ed as having “suppressed viral load;”

otherwise the patient has “detectable viral load.”

• In the maintenance phase, the patient’s viral load is measured each

week for weeks, beginning at Week . If any two consecutive

measurements at or before the evaluation show a viral load of at least

c.ml− , the patient is declared to have “detectable viral load,” and

is then removed from the trial, retaining this classi cation for all

future time-points. Otherwise, the patient is declared to have

“suppressed viral load.”

• In the maintenance phase allowing recovery, the patient’s viral load is

measured as in the maintenance phase above. If viral load is at least

c.ml− both at the evaluation and at the immediately preceding

measurement, the patient is declared to have “detectable viral load.”

Patients who were previously “detectable” remain in the trial and



may re-suppress.

• A measurement of “detectable viral load” is considered “via

resistance” if at least of the viral population is mutant; otherwise

it is considered to be “via wild type.”

By using a well-mixed population and by assuming that the processes of

reservoir exit, replication, and death are Poisson, this method implicitly sets the

effective population size of the infection equal to the census size of infected cells.

Population structure, selection on linked loci, and variations in burst size among

infected cells are all mechanisms that could increase variance in viral offspring

number, decreasing the effective population size [ , ]. Estimating the relevant

population size to use for a model of drug resistance is difficult, as most

approaches de ne an effective population size only for neutral loci. Simply

“plugging in” a population size derived from a model without selection would be

misleading in this context [ ], and in lieu of a more informed value, we simply

use the census size. is approach likely overestimates probabilities of mutant

emergence and underestimates variability among patients [ , ].

For dual therapy, we consider three strains: wild type, resistant to Drug ,

resistant to Drug . e two drugs can be simulated as two separate pills

(allowing each pill to be taken or forgo en independently) or as a single

combination pill (forcing the two drug concentrations to rise and fall in

lockstep). In the case of two separate pills, the value of αmay be different for each

drug, allowing for “differential adherence” – which has been observed in some

studies [ ].
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For each monotherapy, , patients were simulated, with expected adherence

α ranging from to (roughly equal numbers of patients were simulated for each

increment, including patients with α = and patients with α = ). e

x-axis measures the ex post adherence for patients that is, the actual percentage

of doses taken, which may differ from the expectation α. Results were plo ed for

overlapping windows, centered every between and , as well as for the

points and themselves.

Analysis of dual therapy with a combination pill was similar to that of

monotherapy, but with , patients (including patients with α = and

patients with α = ).

For dual therapy with separate pills, , patients were simulated, with

expected adherences α , α ranging from to (roughly equal numbers of

patients were simulated for each × increment, including , patients

on the border of the distribution where at least one αi is equal to or .) As with

monotherapy, the axes measure ex post adherence. Results were plo ed for

overlapping × windows, centered every between and ; points

plo ed on the border of the distribution show patients with at least one αi exactly

equal to or .

Note that, for maintenance therapy, the axes do not include zero, as each

patient is guaranteed to take the rst dose (adherence is never zero).
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Analysis was performed separately for each overlapping adherence window,

centered every between and , as well as for the points and themselves.

e resulting graph shows a weighted average of these results, using the

adherence distribution in Supplementary Figure . . . Measurements were

taken every two weeks, and the graphs show the proportion of the population

with each outcome. As there is no censoring of data, the analysis is equivalent to

the Kaplan-Meier method [ ].

. . MSW

For calculations involving combination therapy (limited to two drugs in this

paper), viral tness is in uenced by the dose-response curves of all drugs. DRV

and L belong to different classes and have been shown to reduce tness in a

multiplicative (Bliss-independent) fashion, which is o en expected for drugs

acting on different targets [ , ]. e equation describing viral tness with

two Bliss-independent drugs is given by:

R (D ,D ) =
R(

+
(

D
IC ,

)m )(
+
(

D
IC ,

)m ) ( . )

whereD ,D are the concentrations of each drug in the relevant compartment,

IC , , IC , are the concentrations at which % inhibition occurs, andm ,m

are the slope parameters. e numerator R is the baseline basic reproductive

ratio in the absence of drug treatment. Mutations that confer resistance to a given



drug change the IC , slope and drug-free tness similarly to the way described in

equation ( . ) (main text).

For a two-drug combination where we assume that a viral strain may only be

resistant to a single drug, there are now eight potential selection windows. Drug

levels may be high enough for guaranteed treatment success; in the MSW for one

or both drugs; in the overlapping region for one or both of the MSWs and the

WGW, or strictly in the WGW. Supplementary Figure . . shows the possible

windows for the L+DRV/r combination.

. . D F . . . : -

- VF

Fig . . f ranks drugs by the relative risk of mutant versus wild-type failure,

regardless of the total risk of failure, based on the time spent in each selection

window. e ranks are plo ed along a line with values ranging from - (DRV/r

and d T, highest relative risk of wild-type failure) to (FTC, the highest relative

risk of mutant failure). is plot was constructed based on the data in Fig. . . a.



To devise this scale, we let

x = time until entry into MSW (days) / time until entry into WGW (days)

= length of green bar / length of green + dark red bars,

y = time spent in MSW (days)

= length of both red bars.

( . )

If the drug immediately enters the WGW at day , or if it skips the MSW

completely, then x is de ned to be .

en the scale value to be plo ed, a, is calculated as

a =
y

ymax
− x, ( . )

where ymax ≈ . days, the maximum time that a drug spends in the MSW

(obtained for FTC). Since both x and y/ymax range between and , the scale

ranges between− (failure via wild type only) and (largest relative risk of

resistance).

In this formula, x is a proxy for the rapidity of wild type-caused virologic

failure (“wild-type risk”) relative to mutant-caused virologic failure (“mutant

risk”). When x is small, the MSW window is reached long before the WGW,

meaning that “mutant risk” is high and “wild-type risk” is low. When x is high, the



WGW is reached soon a er the MSW, or without ever entering the MSW, and so

“wild-type risk” is high and “mutant risk” is low. While x considers how quickly

the infection can start to grow, it does not consider the length of time in the

MSW. Even if theMSW begins as soon as a dose is taken (so that x = ), one still

needs to consider for how long the mutant strain is selected over the wild-type to

determine whether mutant-based or wild type-based virologic failure is more

likely to occur. Figure . . shows a sca er plot of y versus x.
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3
Predi ing outcomes of treatments to

eradicate theHIV latent reservoir

. I

T (LR) HIV- of long-lived resting

memory CD + T cells with HIV- DNA integrated into their genomes [ , ].

A er the reservoir is established during acute infection [ ], it increases to

− cells and then remains stable. As only actively replicating virus is

targeted by current anti-HIV drugs, latently infected cells persist even a er years



of effective treatment [ , , , ]. Cellular activation leads to virus

production and, if treatment is interrupted, a rapid increase in viremia is

observed within weeks of discontinuation of therapy. is dynamic prevents cure

of HIV- by HAART alone and thus necessitates lifelong adherence to HAART.

Drugs that speci cally target LR cells for rapid activation may reduce the size of

the LR [ , ]. Collectively called latency reversing agents (L ), this class

includes the histone deacetylase inhibitors such as vorinostat [ , ] and valproic

acid [ , ], the alcoholism drug disul ram [ ], protein kinase C activators

prostratin [ ] and bryostatin [ , ], and quinoline derivatives [ ]. e

hope is that following treatment with these drugs, patients might be able to

discontinue HAART with minimal risk of viral rebound. While the discovery of

L s is now the subject of an intense research effort, it is unclear how much the

LR must be reduced to enable patients to discontinue HAART safely.

Mathematical models of treatment dynamics are urgently needed to inform

clinical trial design, interpret outcomes, and guide further drug discovery.

Mathematical models have been instrumental in understanding the dynamics

of HIV- infection, including the LR. Multi-compartment models of HIV-

infection have successfully been used to describe the phases of viral decay a er

initiation of HAART [ , , ], the role of ongoing replication in slowing

the rate of LR decay [ ], and the appearance of viral “blips” during

treatment [ , , ]. Recent studies have considered the role of the LR in

the development of drug resistance to HAART[ ]. However, no model has

been developed to study the effect of treatment with L s. Here we build and



analyze such a model to predict how in vitro drug efficacy translates to patient

outcomes, measured as the length of time following discontinuation of HAART

before viral rebound occurs.

. M

We consider proposed therapy protocols for latency reversing agents (L s) that

administer the treatment while a patient is on fully suppressive HAART [ ]. It

is believed that L therapy will reactivate transcription at the HIV- LTR,

leading to production of cytotoxic viral products and cell death. While plasma

HIV- levels may increase during this phase, strict adherence to HAART is

expected to prevent new cellular infections. A er a period of treatment with both

L s and HAART, both therapies would be interrupted. Here we provide a

model of the viral infection immediately a er this therapy ends (Fig. . . (A)).

Our goal is to estimate the probability of cure, or, barring that best-case outcome,

to estimate the distribution of times until virologic rebound, in terms of

parameters describing the underlying infection dynamic and the L therapy.

e model tracks two cell types: productively infected active CD + T cells,

and latently infected resting CD + T cells. Cells carrying nonviable HIV-

provirus (which may vastly outnumber cells carrying replication-competent

proviruses) are excluded from these two quantities. e level of plasma virus is

not tracked explicitly, but is assumed to be proportional to the productively

infected cells. Four types of events can occur in this model, which is described
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Figure 3.1.1: Schematic of LRA therapy and stochastic model of rebound
following therapy. A) Proposed treatment protocol, illustrating possible viral
load and size of latent reservoir before and after LRA therapy. When HAART
is started, viral load decreases rapidly and may fall below the limit of detec-
tion. The latent reservoir is established early in infection (not shown) and
decays very slowly over time. When LRA is adminstered (either continuously,
as shown, or in intervals), the latent reservoir declines. Depending on the effi-
cacy of LRA therapy, the infection may be cleared, or viremia may eventually
rebound. B) LRA efficacy is defined by the parameter Q, the number of log -
reductions in LR size. C) Stochastic model of viral dynamics following LRA
therapy, tracking both latently (rectangles) and actively (ovals) infected cells.
Each arrow represents a type of event that occurs in the model and its rate,
described in the text. D) The expected number of “offspring” for each pro-
ductively infected cell is the basic reproductive ratio R = . The “infectivity
variance” parameter λ determines variance of the offspring distribution. The
offspring distribution conditional on event b occurring is given by a Poisson:
P(c) = λce−λ/c!



formally as a two-type branching process (Fig. . . (C)). A latently infected cell

can either activate at rate a, or die at rate dz. An actively infected cell can either

produce a burst of virions at rate b, resulting in the infection of c other cells, a er

which it dies, or it can die without producing virions (at rate d). e number of

cells infected a er each burst event is a Poisson random variable with mean and

variance λ (Fig. . . (D)), see Sec . . .

e total death rate of productively infected cells (dy = b+ d) has been well

characterized to be day− from treatment initiation studies. e rate of

reactivation of cells from the latent reservoir can be estimated based on the size

and composition of the LR (Fig. . . ) and the level of residual plasma virus for

patients on fully suppressive HAART (≈ copies HIV- RNA per milliliter

plasma, c ml− ). We estimate a to be × − day− and consider values in the

range − to × − . e death rate of latently infected cells is estimated from

studies of the rate of decay of the LR to be dz = . × − day−

(corresponding to a month half-life). We also present results for two

extremes: a half-life of only months, and, dz = . e basic reproductive ratio

for this model, de ned as the expected number of new infected cells that a single

actively infected cell produces, is R = λb/(b+ d). e average R value is

estimated from time-to-rebound in HAART-interruption studies to be R =

(which is lower than the values estimated for acute infection). R does not

uniquely determine the dynamics of the stochastic model because b and λ cannot

be simultaneously identi ed. Holding R constant, the parameter λ controls the

strength of random dri in the infection: for high λ, reproduction resembles a



“jackpot” event where a few infected cells give rise to many new infection events,

while many other infected cells die before infecting additional cells. Here we vary

λ in the range – (see Sec. . . ).

e initial conditions depend upon the number of latently infected cells that

survive L therapy. is quantity is de ned by the latent reservoir size prior to

L therapy and the log-efficacy of L therapy (Fig. . . (B)). e model aims

to determine whether or not this population of cells will escape dri and restart

the infection before all the cells die. ese results are independent of the details

of how the drug is administered or the mechanism of action. As the model does

not provide for any limitation of growth as the infection becomes large, it is valid

only for the initial stages of viral rebound. Since clinical viral rebound thresholds

(viral load above – c ml− ) are well below carrying capacity (typical

setpoint viral load of – c ml− ), this model suffices to analyze the

probability and timing of rebound following L therapy and HAART

interruption.

We used several experimental ndings to estimate the size range of the LR,

which we de ne as the number of resting CD + T cells with integrated HIV that

are capable of producing infectious virus upon reactivation (Fig. . . ). We

considered three cases for the LR size distribution among patients. Limiting

dilution co-culture assays [ ] are currently the gold standard for LR size

measurement. In case (i), we assume all patients have a reservoir size equal to the

average measured in these assays (≈ × − cells), and in case (ii) we



Figure 3.2.1 (following page): Experimental scheme for classifying rest-
ing CD4+ T cells based on HIV-1 infection and viral production, using data
from [89, 125]. Scheme starts at the top, with purified resting CD4+ T cells,
and proceeds downward through the experimental analyses listed. The f vari-
ables represent fractions of this resting CD4+ T cell pool with the charac-
teristics listed. “PCR”: Digital droplet PCR identified cells containing HIV-1
DNA, nearly all of which is expected to be integrated. “Co-culture”: PHA
was used to induce viral replication in latently infected cells. “Seq. defect”:
Non-induced cells were analyzed for genetic defects preventing production of
replication-competent virus. A fraction i of these non-induced cells had no ob-
servable defects (all open reading frames intact); this fraction constitutes fNII
of all resting CD4+ T cells. Question marks indicate that it was not possible
to determine by this analysis what fraction of cells would produce replication-
competent virus in vivo, due to integration site effects and undetectable se-
quence defects. Even defective provirus may be able to produce defective
virons that contribute to residual viremia (gray arrow). The latent reservoir
(shaded box) consists of induced and replication-capable non-induced cells.
Values shown are averages and ranges of ≈ patients.



Purified resting 
CD4+ T cells"

HIV-1 DNA+ resting 
CD4+ T cells"

Uninfected resting 
CD4+ T cells"

Induced in 
co-culture"

Non-induced"

Replication-capable 
virions"

Replication-defective 
virions"

Defective provirus"

Latent Reservoir"
fLR!

Virion-producing"
fV"

Co-culture"
fCC ≈ 1 × 10-6  

(0.05, 20)"

DNA+"

fD ≈ 300 × 10-6"
(20, 3000)"

PCR +"PCR –"

Co-culture +"Co-culture –"

Seq. defect +" Seq. defect –"

i  ≈ 0.14 (0.06, 0.36)"

Intact provirus, fNII!
= i (fD – fCC) ≈ 42 × 10-6"

No virion production"

?"
?"

Figure 3.2.1 (continued)



incorporate inter-patient variability in assay results [ ]. PCR measurements

detect cells with HIV- DNA at a higher frequency than co-culture assays, but

much of this virus may be defective. Full genome clonal sequencing of provirus

from cells not induced in co-culture identi es a portion with all open reading

frames intact [ ]. In case (iii), we include these cells in the LR. For all cases we

assume a total resting CD + cell count of . e resulting distributions are

shown in Fig. . . (A), see Sec. . . .

e best-case outcome of L therapy, barring complete eradication of the

reservoir, is that none of the surviving latently infected cells activate and lead to a

resurgent infection. In this case, we say that L has cleared the infection. We

used the model to predict the relationship between L log-efficacy (denoted

Q) and clearance probability (Sec. . . ). Fig. . . (B) shows results for the

three possible reservoir distributions (i) – (iii) described above.In cases (i) and

(ii), where the average pretreatment reservoir size is , the reservoir must be

reduced by three to ve orders of magnitude before half of patients clear the

infection. Including inter-patient variability only causes the clearance probability

to increase more gradually withQ. If co-culture does not detect all cells in the

latent reservoir (case iii), thenQ of four to six is required for clearance. In all

three cases, the clearance probability decreases with reservoir half-life. Clearance

probability also increases with infectivity variance λ, as this parameter controls

the likelihood of viral lineage extinction by dri (Fig. . . B).

If L therapy fails to clear the infection, the next-best outcome is substantial

extension of the time until virologic rebound, de ned as a viral load of c ml−



(Sec. . . ). We computed the relationship between efficacy of L therapy and

the median time until rebound, among the patients who do not clear the

infection (Fig. . . (C)). For an LR size of (case i), only modest increases in

median rebound time are predicted for up to -fold reductions in the size of

the reservoir (Q ≤ ). In this range, the rebound time is independent of latent

cell lifespan, and it is driven mainly by the reactivation rate and the viral

reproductive ratio. e curve in ects upward atQ = (on a log scale) and

reaches a ceiling as clearance of the infection becomes the dominant outcome

(Fig. . . (C)(i)). If cells in the reservoir are extremely long-lived, it is possible

for rebound to occur even a er decades of apparent cure. If the LR size is larger

(case iii), then the median rebound time curve is shi ed rightwards, requiring

higher L efficacy for the same outcomes (Fig. . . (C)(iii)). In all three cases,

the in ection point decreases in λ. In case (i), this point varies betweenQ = .

(for λ = ) andQ = (for λ = ). Accordingly, the median rebound time

increases in λ (Fig. . . C).

e upward in ection observed in median rebound time results from an

important change in the forces governing viral dynamics. If the reservoir is large

enough (lowQ), a surplus of cell activation occurs such that the dominant

component of rebound time is the time that it takes for virus from one of the

many activated cells to grow exponentially to rebound levels; the system is in a

growth-limited regime. If the reservoir is small (high Q), the expected waiting time

until activation of the rst cell fated to establish a rebounding lineage is the



Figure 3.2.2 (following page): Clearance probabilities and rebound
times following LRA therapy predicted from model. A) Three cases for the
population-level distribution of LR size (Sec. 3.4.1). Case i) All patients have
the same latent reservoir size, MLR = , estimated from the geometric
mean number of cells that are capable of producing infection in laboratory
co-culture assays. Case ii) Latent reservoir size is distributed according to
variation observed in co-culture assays, with geometric mean . Case iii)
The latent reservoir includes many cells that fail to be detected in co-culture
but have intact viral genomes. B) Probability that the reservoir is cleared by
LRA. Clearance occurs if all cells in the reservoir die before a reactivating lin-
eage leads to viral rebound. C) Median viral rebound times, among patients
who do not clear the infection. D) Survival curves for patients following LRA
therapy. The percentage of patients who have not yet experienced viral re-
bound is plotted as a function of the time after interruption of LRA therapy
and HAART. Curve color indicates the efficacy of LRA in reducing the size
of the LR (Q = to 6, see legend). Results are shown for a half-life of 44
months; other half-lives are shown in Fig. 7.3.3 Solid lines represent simu-
lations, and open circles represent approximations from a branching process
calculation (Sec. 3.4.3). All simulations included − patients and used
parameters a = × − , λ = and R = .
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dominant component of rebound time; the system is in an activation-limited

regime. Since this waiting time is roughly exponentially distributed, times to

rebound in this regime can vary widely among patients. e “thresholdQ”

de ning the boundary of these two regimes matches the value where upward

in ections are observed (Fig. . . (A)).

e scope of predicted interpatient variability in outcomes can be seen in

survival curves, plo ing the fraction of simulated patients maintaining virologic

suppression over time (Fig. . . D). For small reductions in LR size (Q ≤ )

patients uniformly rebound within a few months, since rebound dynamics are

not in the activation-limited regime (Fig. . . (D)(i)). If L therapy manages

to decrease the reservoir size , -fold (Q = ), then about of patients

remain rebound-free for at least a year. HigherQ leads to clearance in many

patients, though rebound can still occur a er a decade without viremia.

Interpatient variation in LR size makes it more likely to observe long periods

without rebound (Fig. . . (A)(ii)). Rebound delays of over three years are

achieved for of simulated patients atQ = , versus only in case (i). e

fortunate few who completely clear the infection started with an LR smaller than

the average size of prior to treatment. Survival curves decline more rapidly if

the average LR size is larger (case iii) or if λ is lower (Fig. . . ), indiciating a less

bene cial outcome for L therapy.

For all three reservoir size distributions considered, rebound may occur even

a er long periods of virologic suppression. Taking case (ii) for example, among

the patients without rebound at six months post-therapy, , , or suffer
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Figure 3.2.3: Efficacies required for successful LRA therapy. Target LRA
efficacy values based on three different treatment goals are plotted versus
reservoir half-life ( ln( )

a+dz ) and the reservoir reactivation rate (a). A) The target
efficacy Q at which at least 50% of patients still have suppressed viral load
one month after treatment interruption. B) The target efficacy Q at which at
least 50% of patients still have suppressed viral load one year after treatment
interruption. C) The target efficacy Q at which at least 50% of patients have
eradicated the reservoir without experiencing viral rebound. Because some pa-
tients may go for a year without rebound but then rebound later, the target
Q for one year off therapy is always less than that for a lifetime off therapy.
Results were calculated from the branching process description of the stochas-
tic process, which agrees with simulation (Sec. 3.4.3). All calculations used
λ = and varied R to ensure baseline rebound time was constant (12 days).
Worst-case: a = × − ,R = . , high: a = . × − ,R = . , estimated:
a = × − ,R = , best-case: a = − ,R = . .

rebound in the following six months, for efficaciesQ = ,Q = , orQ = ,

respectively (Fig. . . (A)(ii)).

To set goals for treatment efficacy, we calculate three “target values” ofQ,

assuming a pretreatment reservoir size of . One month is near the upper limit

of rebound times without L therapy, and we rst calculate de ne the

log-efficacy for which % of patients exceed this limit (Fig. . . (A)). is

value is insensitive to the estimate for reservoir half-life and increases

logarithmically with the activation rate. For a broad range of activation rates, a



. - to -log reduction is needed for a one-month delay. We next calculate the

target efficacy for one-year delays (Fig. . . (B)). Using estimated parameter

values, this goal requires a -log reduction in reservoir size. is value is only

mildly sensitive to reservoir half-life (declining only for very short half-lives, at

which reservoir clearance is likely) and also scales logarithmically with activation

rate. If activation exceeds the estimated rate, then the targetQ is closer to . – a

, -fold reduction. Finally, since the ultimate goal of L therapy is to clear

the reservoir completely, we determine the log-efficacy for which at least half of

patients clear the infection (Fig. . . (C)). is value consistently exceeds the

more modest one-year target and scales logarithmically with the product of

activation rate and half-life. Parameter scaling relationships follow from a

generating function analysis of the branching process (Sec. . . ). All targetQ

values also scale with the reservoir: a -log increase in reservoir size would

necessitate a unit increase inQ.

We evaluated the robustness of our conclusions to simultaneous changes in

latent cell activation and death rates, pretreatment reservoir size distributions,

and infectivity variance. For a worst-case analysis, the latent cell death rate was

set to zero (such that the reservoir decays only via activation), the pretreatment

reservoir size distribution was set to that of case (iii), and infectivity variance was

set to a low value. e resulting targetQ for a one-month delay increased by ,

and the clearance targetQ increased by versus baseline (Fig. . . (i) versus

(iii)). For a best-case analysis, the latent cell activation rate was set to times

lower than baseline and the death rate was increased to yield a reservoir half-life



of only six months, the pretreatment reservoir size distribution was set to that of

case (i), and infectivity variance was set to a high value. e results were similar to

that of the baseline case, but withQ shi ed upwards by , and with a lower ceiling

rebound time ( days versus over , days) (Fig. . . (i) versus (iii)).

roughout our analysis, we have characterized L drug efficacy by the

log-reduction in reservoir size following therapy, which may not be observable.

Laboratory studies of cellular models of latency may estimateQ, but their

relevance in vivo remains unknown. It may not be possible to measureQ values

above by quantifying reservoir size following L therapy, as current

co-culture assays cannot detect reservoirs smaller than about cells [ ]. Since

current approaches to L therapy seek to reduce reservoir size by inducing

activation of latently infected cells,Qmay be estimated by measuring the

dynamics of viral load during simultaneous HAART/L therapy (Sec. . . ).

Since the effect of L therapy on resting CD + T cell phenotype is not fully

characterized [ , ], there is considerable uncertainty in this relationship;

nonetheless a sharp, transient peak viral load of at least several hundred c ml− is

expected for highly effective therapy (Q ≥ ) (Table . . ).

. D

Our model is the rst to describe the action of investigational latency reversing

agents and set quantitative goals for L therapy, offering guidance for the

design and testing of treatment protocols. ere is currently li le understanding

of the degree of reservoir activation required to provide meaningful bene t. We



analyzed experimental ndings regarding reservoir size and composition to

describe three plausible se ings for L therapy (Fig. . . A). In each se ing,

our model translates a reactivation measure of therapy efficacy (parameterQ),

which may be estimated in vitro, to a prediction of clinical bene ts.

For a wide range of parameters, we nd that L s must reduce the reservoir

by at least . – orders of magnitude to see a meaningful increase in the time to

virologic rebound a er HAART interruption (upward in ection in Fig. . . C

and Fig. . . C), and that – orders of magnitude are needed for half of patients

to clear the infection (Fig. . . C and Fig. . . ). Standard deviations in rebound

times of many months are expected to be the norm for successful therapy, owing

to variation in pretreatment reservoir size and roughly exponentially-distributed

reactivation times a er effective L therapy brings the infection to an

activation-limited regime. While the required L efficacy for these bene cial

outcomes is almost certainly beyond the reach of current drugs, our results do

permit some optimism: reactivation of all cells in the reservoir is unlikely to be

necessary for complete reservoir clearance and safe cessation of HAART. is is

due to the reasonably high probability that a cell in the LR will either die before

reactivating or, following activation, fail to produce a chain of infection events

leading to rebound. On a more cautionary note, the wide distribution in

reactivation times implies that continual monitoring of patients is essential, as

rebound is possible even a er long periods of viral suppression.

Clinical and laboratory ndings constrain the basic reproductive ratio R and

active cell death rate dy in a relatively narrow range. e rebound population size,



while it may vary by over order of magnitude, has li le effect on model outcomes,

especially in the activation-limited regime. Remaining parameters

pretreatment reservoir size, latent cell half-life ln( )
a+dz

, latent cell activation rate a,

and infectivity variance λ have profound impacts on treatment outcome, and

they are not well-established to within an order of magnitude. While LR size is

generally estimated at , recent studies have shown that even co-culture assays

recognized as the gold standard for latency measurement may drastically

underestimate reservoir size (Fig. . . (A)(ii) versus . . (A)(iii)). We

accounted for these studies to show that this underestimate may cause

expectations of L therapy outcomes to be unduly optimistic (Figs.

. . (B,C)(ii) and . . (ii) versus Figs. . . (B,C)(iii) and . . (iii)).

Considering both variation in pretreatment reservoir size and latent cell

half-lives, the log-reduction needed to delay rebound for one year in half of

patients is≈ to≈ . a reduction of , - to , -fold (Fig. . . (C)(ii)

vs. (A)(iii)). When broad variation in a and λ is also considered, the range

expands to≈ to≈ . (Fig. . . (C)(ii) vs. (C)(iii)).

Our analysis characterizing the required efficacy of L therapy does not rely

on the speci c mechanism of action of these drugs, only the amount by which

they reduce the reservoir. We have assumed that the reservoir is a homogeneous

population without variation in activation and death rates. e presence of

reservoir compartments with different drug penetrations does not alter our

results, as they are stated in terms of total reservoir reduction. If, however, these

compartments vary in activation or death rates, or if viral dynamics of activated



cells depends on their source compartment, then our model may need to be

modi ed. In the absence of clear consensus on compartments constituting the

LR, we have considered the simplest scenario with fewest assumptions, which

may be able to t future L therapy outcomes.

To date, laboratory and clinical studies of investigational L s have generally

found weak potential for reservoir reduction, withQ < [ , , ]. We predict

that much higher efficacy will be required for any hope of eradication. While we

have focused on the role of L therapy in reducing the reservoir size, our main

ndings may also serve to interpret viral eradication or delays in rebound caused

by early treatment initiation [ , , ] or stem cell

transplantation [ , ], both of which also reduce the LR size.
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is section details the calculations summarized in Fig. . . .

C

LetM be the total number of resting CD + T cells in an individual. e fraction

of these cells containing HIV- DNA, wri en fD, is measured using PCR on

puri ed resting CD + T cells [ ]. e total number of resting CD + T cells

with HIV- DNA isMD = fDM.

Many of these cells may not be capable of producing infectious virions upon

reactivation. Limiting-dilution co-culture assays [ ] measure the fraction fCC

of resting CD + T cells that produce replication-competent virus following

cellular activation. e total number of these cells isMCC = fCCM.

Experiments show that fD exceeds fCC by more than two orders of magnitude,

but the reasons for this discrepancy are unclear. Some portion of cells with HIV-

DNA may harbor defective provirus that cannot produce viral proteins. Others

may contain intact provirus, but evade co-culture detection for other reasons.

ese two scenarios can be distinguished by full genome clonal sequencing of

integrated provirus, from which defects preventing viral replication may be

identi ed [ ]. Among those cells infected with provirus but undetected in

co-culture, let i be the fraction that nonetheless are shown by sequencing to have

all open reading frames intact. en fNII, de ned as the frequency of



non-induced, intact provirus-containing cells, is fNII = i
(
fD − fCC

)
.

e quantity of interest for our model is the number of resting CD + T cells

harboring proviral DNA capable of causing infection of other cells. is latent

reservoir containsMLR cells, or a fraction fLR ofM. At minimum, it includes those

cells tested positive by co-culture, and at maximum, it includes all cells containing

intact proviruses. It is likely to be less than the upper bound, since even cells with

intact provirus may be incapable of re-starting infection due to integration into a

transcriptionally silent site, or due to other defects that escaped detection.

S

e size and composition of the latent reservoir can vary signi cantly between

patients. is variation is relevant to variation in rebound time. Based on results

in [ , ], we can calculate the average parameters and estimate the population

level distributions:

Quantity Average Distribution
fD × − LogNormal(− . , . )
fCC

− LogNormal(− , . )
i . LogNormal(− . , . )

e distributions were estimated by assuming the ranges observed in these

study of approximately patients represent the center % of the distribution

(ie standard deviations). We examinine three different cases for inter-patient

variability:



Case : All patients have the same LR size, which equals the average value

measured in co-culture assays (fLR = fCC).

Case : e fraction fCC varies among patients as in the table above, and

fLR = fCC for each patient.

Case : e fractions fD, fCC, and i are sampled from the above distributions,

subject to the constraint fCC ≤ fD. en fNII is computed. e value log(fLR) is

then sampled uniformly from the interval
[
log
(
fCC
)
, log (fNII)

]
.

Inter-patient variability in outcomes is lowest for Case and highest for Case

. roughout this paper, we assume the only parameters that vary between

patients are those related the composition of the reservoir.

E -

e value fV is de ned as the fraction of resting memory CD + T cells that are

capable of producing virions that are detected in viral load assays, regardless of

whether these virions are infectious. is value is used to calibrate the

reactivation rate a from observed residual viral load values (Eq. ( . ), below).

While fLR ≤ fV ≤ fD, we cannot establish the relationship between fV and fNII, as

some cells in fNII may harbor transcriptionally silenced provirus, and conversely

some cells in fV may harbor provirus with detectable defects. As an intermediate

estimate we assume fV = fCC + fNII = × − , though we also consider the

two extreme values in the best and worst case scenarios discussed in the main

text.



. . E

D dy

e parameter dy has been measured in many treatment initiation studies to be

day− [ ]. In the stochastic model we constrain b+ d = dy = day− .

A a

Parameter a is estimated from observed viremia during fully supressive HAART

treatment (R = ). Among patients, residual viral load is highly correlated to

LR size [ ]. Since reservoir decay is slow compared to the dynamics of actively

infected cells, the residual viral load reaches a quasi-steady-state relative to the

size of the latent reservoir (Section . . ). At this level, the number of actively

infected cells is

y ≈ az
dy

( . )

Here z is the number of cells in the LR capable of causing productive infection at

the time HAART is interrupted, which is equal to fLRM, as described in

Section . . , above.

e value y may be estimated from residual viral load measurements. Let σ be

the proportionality constant such that v (residual number of infectious virions

during HAART) equals σy . Since viral load measurements do not distinguish

between infectious and noninfectious particles, the only quantity that may be

ascertained is the total number of virions w , which exceeds v . Assuming that



infectiousness of the released virion affects neither viral burst rate nor decay rate,

the same proportionality constant σ applies to the number of cells capable of

producing (infectious or noninfectious) virions, wri en ŷ , resulting in the

relationship w = σŷ . Since ŷ ≈ afVM/dy, the value of a equals:

a =
dyw
σfVM

( . )

A reasonable estimate for the proportionality constant is σ = , as discussed in

Suppl. Materials of [ ]. We use w = HIV- RNA copies per milliliter

plasma, c ml− , corresponding to , plasma virions for a kg person with L

plasma, and we useM = . Based on the observed averages fD = × − ,

fCC = − , and i = . , we estimate fV = . × − and a = × − day− .

is activation rate is below previous estimates [ , ], which would predict a

higher residual viral load than observed for patients on fully suppressive HAART.

However, because the size and composition of the LR are still a ma er of debate,

we consider a range of values. For a worst-case scenario of high activation rate, we

suppose that only cells testing positive in co-culture contribute to residual

viremia (fV = fCC = − and a = × − ). For a best-case scenario of low

activation rate, we suppose that residual viremia is seeded from all cells harboring

HIV- DNA (fV = fD = × − and a = − ). Results for these scenarios are

shown in Figs. . . and . . .



V n

A viral rebound threshold of c ml− corresponds to × plasma virions

(for a kg person with L plasma). Using the estimate σ ≈ above, the

number of actively infected cells at rebound is n ≈ × . Model results are not

sensitive to this value, as rebound probability depends on the logarithm of n

(Section . . , below).

D dz

Resting memory CD + T cells die at a rate dz, which may be estimated from

studies measuring the total decay rate of the reservoir, a+ dz. Given a mean

half-life of months [ ], we estimate dz to be

dz =
ln( )

days
− a

≈ . × − day−
( . )

is parameter is varied to explore a range of half-lives in Figs. . . , . . ,

. . .

V R

e combined viral tness parameter R can be estimated from rebound times

measured in HAART-interruption studies [ , ]. e average rebound time

in these studies is twelve days, which consists of both the time needed for drug



levels to decay such that the infection can grow and the subsequent time needed

for exponential viral growth to rebound levels computed in Equation ( . ). For

estimating the drug decay time, we used the method of [ , ] with a typical

regimen of AZT, TC, and SQV. For Equation ( . ), we used a rebound factor

(described in Section . . ) of r = , , based on residual viral load

w = c ml− , infectious residual viral load v = w fCC
fV

= . c mL− (using

average values of fCC and fV in Section . . , above), and detection at c ml− .

We compute a value of R = , at which it takes about four days for drug levels to

decay and another eight for viral growth to rebound levels.

I λ

Based on the rate at which patients fail therapy due to drug resistance, a previous

study estimated the rate at which cells that are fated to establish a lineage activate

from the latent reservoir to be about per day, in the absence of treatment [ ].

is estimate is highly uncertain, as it is sensitive to measured mutation rates and

tness costs of resistance mutations.

Using our baseline values of a = × − andMLR = , the number of cells

activating per day is . An extinction probability of h = − / = .

(de ned in Equation ( . )) would make our baseline values consistent with the

above estimate. Using R = , the implied λ to obtain this lineage extinction

probability is . To account for uncertainty, we consider λ between and .



B b d

R and dy do not uniquely determine the dynamics of the stochastic model

because b and λ cannot be simultaneously identi ed. A er choosing a value for λ

between and , the parameter b is calculated using the relationship

R = bλ/dy. e parameter d is then obtained from the relationship b+ d = dy.

. . S

S

e stochastic model of viral dynamics described in the text can be formally

represented as the reactions below:

Z→ Y... rate constant: a

Z→ ... rate constant: dz

Y→ cY... rate constant: b ∗ pλ(c)

Y→ ... rate constant: d

( . )

In this notation Y and Z are individual actively or latently infected cells,

respectively, and the arrows represent events that lead one type of cell to become

the other type. We assume that an actively infected cell can either die (at rate d)

or produce a burst of virions (at rate b) that results in the infection of c other cells,

where c is Poisson-distributed random variable with parameter λ,

pλ(c) =
exp(−λ)λc

c! . A er a burst event, the original cell dies. Since each birth event



causes the death of the parent cell, the total death rate is dy := b+ d. is model

describes a two-type branching process. e reproductive ratio for this model is

R = bλ
b+d , where λ ≥ R . We do not explicitly track free virus, but assume it is at

a level proportional to the number of infected cells. is assumption is valid

because the rates governing the production of virus from infected cells and the

clearance rate of free virus are much higher than other rates, allowing a separation

of time scales. Because we are not interested in blips or other intraday viral

dynamics, this assumption does not in uence our results. A method for

calculating the proportionality between free virus and infected cells is provided

in Section . . , above.

G

Let

f (ξ, ζ, t) = E
[
ξy(t)ζz(t) | y( ) = & z( ) =

]
,

f (ξ, ζ, t) = E
[
ξy(t)ζz(t) | y( ) = & z( ) =

] ( . )

be the basic generating functions for the stochastic process, starting with one

active cell and starting with one latent cell, repsectively. Dummy variables ξ and ζ

correspond to active and latent cells, respectively. e backward Kolmogorov

equations [ ] can be represented by the system of coupled ordinary



differential equations

∂f
∂t

= b (exp [λ (f − )]− f ) + d ( − f ) ,

∂f
∂t

= a (f − f ) + dz ( − f ) ,
( . )

with boundary conditions f (ξ, ζ, ) = ξ and f (ξ, ζ, ) = ζ. e birth term

exp (λ (f − )) follows from the Poisson-distributed offspring distribution with

parameter λ.

A er L therapy, the initial reservoir size is z . e residual viremia y is

determined by activation-death equilibrium during HAART, and so it is

Poisson-distributed with mean az
dy

. e probability generating function

corresponding to this initial condition is then

gz (ξ, ζ, t) = f (ξ, ζ, t)z exp
[
az
dy

(f (ξ, ζ, t)− )

]
. ( . )

If the initial reservoir size is heterogeneous, then the relevant generating

function is given by the sum
∑

z pz gz (ξ, ζ, t), where pz is the probability that a

patient has z latently infected cells following L therapy.

P L .

e xed points of the differential equations ( . ) give the ultimate extinction

probabilities h and h , starting with a single active cell and a single latent cell,



respectively. e probability h is the smallest root of the equation

b (h − exp [−λ ( − h )]) = d ( − h ) , ( . )

and the probability h of extinction starting from one latent cell follows,

h =
dz

a+ dz
+

a
a+ dz

h . ( . )

Using the above initial condition
(
y , z

)
, the clearance probability Pclr is

determined by substituting these xed points into the generating function gz :

Pclr = hz exp
[
−az

dy
( − h )

]
. ( . )

De neÆ = a( −h )
a+dz

, the probability that a latently infected cell is fated to

activate and establish a rebounding lineage (assuming no interference from any

prior rebounding lineage). If this probability is small, then clearance probability

is approximately

Pclr ≈ e−
Æz (a+dz+dy)

dy

≈ e−Æz ,

( . )

where the second approximation follows from the fact that active cell dynamics

are faster than latent cell dynamics, dy ≫ a+ dz. e key parameter determining

clearance probability is thereforeÆz , the expected number of latent cells fated

to activate and establish a rebounding lineage.



e observation in the main text that the target value ofQ (Fig. . . A) scales

logarithmically with the product of a and reservoir half-life follows from this

computation, since reservoir half-life is ln( )
a+dz

, andQ ∝ log
(

z

)
.

A .

By approximating the Poisson birth event with a simpler process where only two

new infections result per birth, closed forms for the generating functions can be

derived, allowing easier computation of rebound probabilities. In this

approximation, active cells die at “effective death rate” de and give rise to two new

active cells at “effective birth rate” be. Latent cell dynamics are the same as in the

full model. e two parameters are chosen to have the same extinction

probability as in the original model,

de
be

= h , ( . )

and the same expected growth rate (and thus the same R )

be − de = b(λ − )− d. ( . )

e differential equation for active cells, analogous to the rst line of ( . ), is

then

∂f
∂t

= b (f − f ) + d ( − f ) , ( . )



while the differential equation for latent cells is the same as in ( . ). e basic

generating functions for this simpli ed process can be solved in closed form,

f (ξ, ζ, t) =
beξ − de + de( − ξ) exp [(be − de) t]
beξ − de + be( − ξ) exp [(be − de) t]

,

f (ξ, ζ, t) =
exp [a+ dz] t

ζ t∫
exp [a+ dz] τ (dz + af (ξ, ζ, τ)) dτ

 ,

( . )

for the supercritical case be > de.

e generating function gz (ξ, ζ, t) for the process starting at the initial

condition described above is again de ned as in Eq. ( . ), now using the new

functions f , f . e probability that there are y active cells at time t, wri en

P(y, t), is equal to the coefficient of ξy in the Taylor expansion of g(ξ, ζ, t) around

ξ = , ζ = . Repeated differentiation is computationally costly and subject to

compounded rounding errors, and Cauchy’s integral formula provides an

effective alternative. Following [ ], the probability that there are more than n

active cells at time t equals

P(> n, t) = −
π

π∫
Re
[
gz (e

iθ, , t)
− e−i(n+ )θ

− e−iθ

]
dθ. ( . )

Let f(θ) be the real integrand in this equation, which presents damped

oscillations of period π
n+ , where f

( kπ
n+

)
= for integers ≤ k ≤ n+ . We treat

each half-period separately, de ning a sequence of approximations ak

(k = , , . . . , n) where ak ≈
∫ (k+ ) π

n+
k π
n+

f(θ)dθ. Each ak (k > ) is de ned by a

trapezoidal rule, spli ing the interval
[
k π
n+ , (k+ ) π

n+

]
into equal-width



segments. Since a sharp peak appears at θ = for certain parameter values, the

value a is de ned using a global adaptive numerical integration routine (quadgk

in Matlab R b).

Not every ak must be computed to approximate the integral. In Section . .

below, we describe an efficient method for selecting a small fraction of the ak for

computation, yielding a several hundred-fold speedup. is method is more

reliable for this integral than the Euler summation approach presented in [ ].

E “ Q”

A rough estimate of the initial reservoir size z such that half of patients have

rebounded at time t can be obtained directly from the generating function

gz (ξ, ζ, t) above. We used this rough estimate as an initial guess for the search

algorithm described in Section . . below to identify the targetQ values in

Fig. . . B,C.

e probability that there are no actively infected cells at time t is gz ( , , t). If

sufficient time has passed to allow for substantial exponential growth (i.e.,

e(be−de)t ≫ ), then the integral in Eq. ( . ) is dominated by values at large τ,

and so the fraction within the integral may be treated as a constant, adebe
. e

probability is then

P( , t) = gz ( , , t)

≈ exp
[
− az ( − h )
dy ( − h e−rt)

] [
− a

a+ dz
( − h )

(
− e−(a+dz)t

)]z
,

( . )



where the abbreviation r = be − de is shorthand for the expected growth rate. If,

furthermore, not so much time has passed that the reservoir may be depleted in

many patients, then
(
− e−(a+dz)t

)
≪ and the expression can be

approximated:

P( , t) ≈ exp
[
−az ( − h )

(
t+

dy

)]
. ( . )

Note that dz has dropped out of this estimate; the rate at which active cells

become present is roughly az ( − h ).

To account for growth to the rebound threshold n, we can use a point estimate

for the rebound time based on deterministic exponential growth starting at one

active cell, tgrow ≈ ln(n)
r . e rebound estimate then becomes

P(> n, t) ≈ − exp
[
−az ( − h )

(
t− ln(n)

r
+

dy

)]
. ( . )

e required initial reservoir size and the corresponding targetQ can

then be solved for, using P(> n, t) = / and the desired value of t. It follows

from this computation that the required z scales inversely with a. Since

Q ∝ log
(

z

)
, the targetQ scales logarithmically with a and is relatively

insensitive to dz, as observed in the main text.

S

We use the Gillespie algorithm to track the number of latently and actively

infected cells in a continuous time stochastic process. We start with an intial



number of latent cells z = −QMLR and an initial number of actively infected

cells y chosen from a Poisson distribution with parameter a −QMLR/dy, where

MLR is the pretreatment latent reservoir size (described in Section . . ). e

simulation proceeds until the number of actively infected cells reaches the

threshold for clinical detection given by a viral load of c ml− (equivalent to

y = × cells total). Because stochastic effects are important only for small y,

we switch to a faster deterministic calculation when y reaches a level where the

probability of extinction is very low. is switch occurs when the probability that

no active cell currently alive establishes a growing infection, h y, declines below

− . For eachQ value we perform simulations.

. . A

A E . ( . )

e sum
∑n

k= ak described following Eq. ( . ), above, was approximated using

the following algorithm:

. Compute ak for k = to k = I B S − . Store the sum of

these values as S.

. Set N K = I B S . Set B S = M B S .

Set N T C = M N T C .

. While N K < n, do:

(a) Initialize A = , B = .



(b) Split the block containing the values ak from k = N K to

k = N K + B S − into three sections:

i. F P contains ak for k from N K to

N K + N T C − ;

ii. L P contains ak for k

N K + B S − N T C to

N K + B S − ;

iii. M P contains all ak in between. ese values of ak are

not computed.

(c) Compute an U E for the sum
∑N K+B S −

k=N K ak

by adding together all ak in F P and L P , and then

approximating the value of each ak in M P as the average of

the nal two values in F P .

(d) Compute a L E for the sum similarly, except now

approximating the value of each ak in M P as the average of

the rst two values in L P . Since the sequence ak decreases in

an alternating manner, L E < U E .

(e) If L E and U E are too far apart (see

Notes below), increase N T C by and return to

Step b. Otherwise, add the average of the two estimates to S and

continue.

(f) If N T C = M N T C (indicating that the



error between upper and lower estimates was never so far apart as to

require increasing N T C ), increment A by ; otherwise

increment B by .

(g) Set N K = N K + B S − . Reset N T C

to M N T C .

(h) If A ≥ B + N R B , then increase B S by a

multiplicative factor of B I F , rounding to the

nearest even integer. Reset A = , B = .

N . L E and U E are required to have a

difference of less than π
n ×

− (ensuring a total error in S of under − ), and a

log-ratio of less than . . e parameter B I F is itself

adaptive, increasing by . /( + . ∗ (B I F − )

immediately a er Step h if B = ; but decreasing by . (never dropping below

. ) if B ≥ .

P . I B S = . M B S = .

M N T C = . B I F = . .

N R B = .

B Q

e estimate in Section . . is used as an initial guess for the post-therapy

reservoir size z that would produce a chance of rebound. Survival

probability Psurv was computed for this initial guess, using the method of



Section . . . While Psurv was not within − of . , a new guess for z was made

using a bisection method: If Psurv is too low (high), but a previously computed

value was too high (low), then linear interpolation was used between the current

and previous values to select a new z that is estimated to have Psurv = . . If

Psurv is too low (high), but no previously computed value was too high (low),

then the guess for z was divided (multiplied) by . For all results reported,

between and iterations were required to obtain the desired Psurv. Results were

then converted toQ values for a given pre-treatment reservoir size.

. . D

A deterministic model was used for two purposes: to provide an estimate of R

(described in Section . . , above) and to estimate the thresholdQ separating the

growth-limited and activation-limited regimes. e threshold value is de ned as

that which equalizes the deterministic rebound time and the expected waiting

time until activation of the rst cell fated to establish.

M

A complete model of viral dynamics including the latent reservoir is shown in the

ow diagram of Fig. . . . All variables respresent total amounts present in the

body. State variables x, y, v, and z are the number of infectable CD + T cells, the

number of productively infected cells, the number of free virus particles, and the

number of latently infected cells, respectively. Productively infected cells produce

virus at rate k, die at rate dy, and transition into latency at a rate γ. Virus is cleared



at rate dv. e infectivity parameter β determines the rate at which virus infects

susceptible host cells. Host cell dynamics are determined by production rate θ

and death rate dx. Latently infected cells reactivate at a rate a and die at a rate dz.

When population sizes are large, this model can be described with a set of

differential equations [ , , , ]:

ẋ = θ − βxv− dxx

ẏ = βxv− dyy+ az− γy

v̇ = ky− dvv

ż = γy− az− dzz

( . )

Here we make a number of simplifying assumptions valid for understanding

dynamics leading to rebound. Because the terms k and dv are an order of

magnitude larger than other rates in the system, we can apply a separation of

timescales and assume that free virus particle levels change so quickly that they

track infected cell levels. Formally, this is accomplished by se ing v̇ = , leading

to v = ky/dv and only three differential equations. For viral loads at or below

rebound levels, uninfected CD + T cells do not become limited and can be

assumed to remain at their pre-infection/post-long-term-HAART steady-state

level of x = θ/dx, and hence ẋ = . Moreover, at low viral loads, new in ux into

the latent reservoir can be ignored (γ ≈ ).
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Figure 3.4.1: Schematic of the deterministic viral dynamics model including
the latent reservoir. State variables x, y, v, and z are the number of infectable
CD4+ T cells, the number of productively infected cells, the number of free
virus particles, and the number of latently infected cells, respectively. Pro-
ductively infected cells produce virus at rate k, die at rate dy, and transition
into latency at a rate γ. Virus is cleared at rate dv. The infectivity parame-
ter β determines the rate at which virus infects susceptible host cells. Host
cell dynamics are determined by production rate θ and death rate dx. Latently
infected cells reactivate at a rate a and die at a rate dz.



ese assumptions lead to the reduced set of equations:

ẏ = az+ (R − ) dyy

ż = − (a+ dz) z,
( . )

where R is the combined viral tness parameter (θkβ) /
(
dvdxdy

)
describing the

expected number of secondary infected cells produced by a single infected cell

introduced to an uninfected host. As in the stochastic model described in

Section . . , the initial conditions
(
y , z

)
are such that z is the reservoir size

following L therapy, and assuming that latent cell dynamics are much

slower than active cell dynamics (a+ dz ≪ dy) the residual active infection is

y ≈ az /dy.

C

Following HAART interruption (with or without L therapy), the number of

infected cells (and thus viral load) grows according to Equation ( . ) with

latent cells at a transiently constant value z . Let yr = ry be the infection size at

which rebound is detected (e.g.,≈ c ml− ). e parameter r is the “rebound

factor”, the amount by which the infection must grow in order for rebound to be

detected.

is equation can be solved exactly:

y(t) = y
R edy(R − )t −

R −
, ( . )



giving the time to rebound as

t =
ln
(

+r(R − )
R

)
dy(R − )

. ( . )

is equation is appropriate when cells exit the reservoir frequently (i.e.

without highly effective L therapy). Incorporating reservoir decay negligibly

changes the results because a+ dz ≪ . In Section . . above, this equation was

used to calibrate R based on observed rebound time t .

Following L therapy, the size of the reservoir is reduced to −QMLR. Let

q = −Q. Since the residual active infection y also scales by q, the rebound

factor increases to r/q. e time to rebound is now increased to

t =
ln
(

+(r/q)(R − )
R

)
dy(R − )

( . )

Eradication therapy therefore extends the rebound time by an amount Δt:

Δt = t − t

=
dy(R − )

ln
(

+ (r/q)(R − )

+ r(R − )

)
≈ ln( /q)

dy(R − )

( . )

where the approximation is valid for r(R − ) >> . is order relationship is

very likely to hold as the rebound factor is≈ or more. e only way for the

relationship to fail would be for R to be in a very narrow range just above .



A Q, -

Under the deterministic model, rebound time increases only logarithmically with

the decrease in LR size. e stochastic model agrees with this relationship only in

the growth-limited regime, where activation of fated-to-rebound cells is common.

At higherQ, the waiting time until this activation occurs exceeds the

deterministic growth time; in this activation-limited regime, the stochastic model

predicts rebound times well in excess of those predicted by the deterministic

model (Fig. . . ). As a rough estimate, the waiting time in the stochastic model

is a( −h )z , where h is the probability that a reactivating lineage goes extinct

(de ned in Equation ( . )). e threshold drug efficacyQT de nes the

boundary between the two regimes. It can be estimated by solving numerically

for the log-efficacy that sets deterministic growth time from Equation ( . )

equal to the stochastic waiting time:

ln
(

+r QT (R − )
R

)
dy(R − )

=
a ( − h )MLR

−QT
. ( . )

is threshold can be observed in the upward in ection in the rebound time

curves in Figs. . . C and . . occurring atQ ≈ – .

Fig. . . shows thatQT increases with pretreatment reservoir sizeMLR and

decreases with variance parameter λ, since higher values of λ increase the

extinction probability h . For pretreatment reservoir sizeMLR = , reduction
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Figure 3.4.2: A fully deterministic model is a poor predictor of rebound
times. A) Equation ( . ) was used to calculate the time to rebound for a
given LRA drug efficacy, Q. The deterministic model assumes that LRA re-
duces the size of the reservoir and hence the residual viral load by Q orders of
magnitude and then tracks the time for the viral population to grow to 200 c
ml− . B) Rebound times calculated from the deterministic model for R =
are compared to median rebound times calculated from the stochatic process.
The models agree only for small Q. The Q values where the models diverge
corresponds to the transition between the growth-limited regime and the acti-
vation limited regime.

of approximately - to , -fold is required to reach the activation-limited

regime, in which substantial increases in rebound time may be achieved.

. . V L

If L therapy reduces reservoir size by inducing activation of latently infected

cells, then an increase in viral load during therapy can be expected. e precise

dynamics of viral load during L therapy depend on the efficacy and duration

of therapy. To model these dynamics, we assume L therapy is administered

continuously for a period of time τ (ignoring pharmacokinetics) and increases

the reactivation rate of latently infected cells. During this time HAART is

co-administered, and we assume no new infections can occur. Since transcription
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Figure 3.4.3: Schematic of viral dynamics during LRA therapy. (A) The
model tracks latently infected cells, actively infected cells, and free virus, dis-
tinguishing between cells in which HIV-1 transcription is reactivated by LRA
(y′) or naturally (y). (B) Illustration of typical viral load dynamics during
course of LRA therapy. LRA therapy increases the reactivation rate of cells
from the LR, causing residual viral load to increase. The timing and magni-
tude of this peak allow for an estimation of the efficacy Q. We assume that
HAART is administered for a short while beyond the end point of LRA ther-
apy, preventing the reactivated cells from starting new infections. All symbols
are defined in the text.

at the HIV- LTR may be reactivated in resting CD + T cells while the cell

otherwise retains a resting phenotype, cellular functions in these L -activated

cells may proceed at a slower rate [ ]. We therefore track those cells reactivated

by L separately from those reactivated normally by antigenic stimulus.

e model we use to consider this scenario is shown schematically in

Fig. . . A and described formally in the next section. Since our goal is to track

viral load during a period when HAART is administered, we consider all cells

capable of producing virions, regardless of replication capability. As this

collection of resting cells likely exceeds the LR by an order of magnitude or more

(fV versus fLR, Fig. . . ), and since therapy increases activation rate, large

numbers of cells can be assumed to activate daily, and a deterministic model



similar to the one presented in Section . . , above, suffices. Latent cells (z) die

at a rate dz and can be reactivated naturally (a) or by L -induced mechanisms

(a′). Naturally reactivated cells (y) die at rate dy, and L -reactivated cells (y′)

die at rate d′y (which may be lower than dy) [ ]. Free virus is produced at a rate

k from naturally reactivated cells and a rate k′ from L -reactivated cells. Since

induced cells may have smaller burst sizes [ ], k′ may be less than k.

We use this model to relate change in residual viremia over time to the

log-efficacy of L therapy,Q. De ne αz = a+ a′ + dz, the total rate at which z

decays during treatment. Assuming that this decay affects latent cells regardless

of whether the proviral sequence is able to replicate, the fraction of the latent

reservoir that remains a er treatment duration τ is q = e−αzτ . Log-efficacy of

therapy isQ = log (q), resulting in the relationship αz = ln( ) · Q/τ. Viral

load approximately follows a biexponential curve, generally reaching a peak

quickly (time determined by the faster of the two rates αz and d′y) and then

decaying slowly (at the slower of the two rates) (Fig. . . B).

e height of this peak and the time a er treatment initiation at which it

occurs are

v(tmax) ≈ w
k′

k
a′

a
dy
d′y

≈ w
k′

k
dy
d′y

ln( ) ∗ Q
aτ

,

( . )

tmax =
ln(d′y)− ln(αz)

d′y − αz
, ( . )



where w ≈ c ml− is the residual viral load (not necessarily infectious) before

L therapy. is peak is reached before treatment ends if τ > /d′y and

Q > ln( )
≈ . . Derivations for these results are provided in the next section,

and examples for selected treatment parameters are provied in Table . . . Even

mildly effective therapy (Q = ) can result in large increases in residual viremia

from the baseline level, appearing a er a few days of treatment. Viremia is lower if

the same reservoir reductionQ is achieved over a longer treatment time τ.

Viremia is also decreased if L -induced cells have a lower burst rate than

normally activated cells (k′/k < ). If L -induced cells have a longer lifespan

(dy/d′y > ), then peak viremia increases but is delayed.

In vivo estimates of L therapy efficacy may be obtained from measurement

of viral load during therapy. Highly effective therapy is predicted to result in large,

observable increases in residual viremia during continuous administration (Table

. . ). It is important to note that this conclusion applies only to forms of L

that reactivate latently infected cells without damaging viral production in these

cells.

D

We extend Equations . and . , tracking latently infected cells z,

productively infected cells reactivated naturally y, productively infected cells



Table 3.4.1: The timing and size of peak viremia, as well as viremia at treat-
ment end, depend on the efficacy and duration of LRA therapy, the change
in burst size, and the change in infected cell lifespan. Therapy protocol is
described in the text and illustrated in Fig. 3.4.3. Time to peak viremia
was calculated using Eq. 3.28. Peak viremia was calculated using Eq. 3.34,
of which Eq. 3.27 is an approximation. Symbol definitions are provided in
the text. Parameters used: a = × − day− , dz = . × − day− ,
z = Mv = × cells, dy = day− , and w = c ml− (implying
k
dv = c ml− cell− ).

Log-efficacy Treatment Fold increase Fold increase Time to Peak Viremia at
L (Q) time in burst in lifespan peak viremia treatment

(τ) (days) size (k′/k) (dy/d′y) (days) (c ml− ) end (c ml− )
×

.
×
×

×
× ×

. <

. ×
× <

<

reactivated by L therapy y′, and free virus v:

ż = −(a+ a′)z− dzz

ẏ = az− dyy

ẏ′ = a′z− d′yy
′

v̇ = ky+ k′y′ − dvv

( . )



ese equations incorporate the simplifying assumptions that fully effective

HAART yields R = , that uninfected CD + T cells do not become limited and

remain at their pre-infection/post-long-term-HAART steady state level, and that

new in ux into the LR can be ignored.

Using the separation of timescale for virus dynamics (v) and the initial

conditions z( ) = z , y( ) = az /dy, y′( ) = , these equations can be solved:

z(t) = z e−αzt

y(t) =
az

dy − αz
(e−αzt − e−dyt) +

az
dy

e−dyt

y′(t) =
a′z

d′y − αz
(e−αzt − e−d′yt)

v(t) =
ky(t) + k′y′(t)

dv
,

( . )

where αz = a+ a′ + dz. Note that the timescale separation for v(t) is based on

the assumption that k, k′, and dv greatly exceed other rates, which may be violated

if L -reactivated cells have much smaller burst rate k′ and/or much higher

death rate d′y than normally reactivated cells. In general this approximation may

only slightly overestimate viremia on the rst day a er L is started.

e amount by which L therapy increases the reactivation rate (a′) can be

related to the fraction to which the reservoir is reduced (q), or equivalently, to the

log-efficacyQ = log (q), a er a treatment time τ:

z(τ) = z e−αzτ

= qz ,

( . )



and so the reactivation rate is:

αz =
−ln(q)

τ
− (a+ dz)

=
ln( ) · Q

τ

( . )

Note that some natural activation and cell death contribute toQ, so that the

absence of treatment does not correspond toQ = but to

Q = log (e)(a+ dz)τ, which is generally small.

From these equations, we can determine the expected changes in residual viral

load over time during L therapy. e contribution to residual viremia from

naturally activating cells (initially w = c ml− ) only decreases during

treatment, as the reservoir is depleted. If any increases in observable residual

viremia occur in response to L s, it will come from compartment y′ activated

by the drug. is contribution follows a biexponential curve, increasing to peak

value quickly (at roughly the smaller of the two times /d′y, /αz days), then

decaying more gradually to zero (at the smaller of the two rates d′y, αz per day).

We can calculate precisely the time of the peak in residual viremia due to

contributions from newly reactivated cells :

tmax =
ln(d′y)− ln(αz)

d′y − αz
. ( . )



e viral load at this peak is:

v(tmax) =
k′a′z
dvd′y

u
u
−u

=
k′a′

dva
dy
d′y
y u

u
−u

= w
k′

k
a′

a
dy
d′y
u

u
−u

≈ w
k′

k
a′

a
dy
d′y

≈ w
k′

k
dy
d′y

ln( ) · Q
aτ

,

( . )

where w = ky /dv is the residual viral load before L therapy and u = αz/d′y.

e rst approximation holds when u is small (ifQ/τ is small compared to d′y),

and the second holds when a+ dz ≪ a′ (Q/τ is large compared to a+ dz). e

peak viral load occurs during treatment when tmax < τ, which holds if and only if

both τd′y > and ln( ) · Q > τd′y, which places requirements on both treatment

time (τ > /d′y) and treatment strength (Q > ln( )
≈ . ). When L is

started, viral load approaches the peak linearly with an initial slope of a′z .

Viremia at the end of treatment can be found by substituting in τ for t in

Eq. ( . ).
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4
Imitation dynamics of vaccination

behavior on social networks

. I

P for controlling

infectious diseases [ ]. While there is vigorous debate about the civil liberties

implications of mandatory versus voluntary vaccination policies [ ], mounting

evidence shows that voluntary vaccination plans fail to protect populations

adequately [ – , , , , , , , ]. A recent example of this failure



is the sharp decline in take-up of the combined measles-mumps-rubella

vaccination in Britain soon a er administering it to children was made

voluntary [ ]. Because of declining familiarity with the disease and rising fears

of vaccine complications, parents hoped to avoid the alleged vaccination health

risk to their own children while implicitly relying on enough other children

ge ing vaccinated to provide herd immunity. e “public good” created by herd

immunity gives rise to an enduring social dilemma of voluntary vaccination.

Classical game theory predicts that, when individuals act in their own interests

with perfect knowledge of their infection risk, their vaccination decisions

converge toward a Nash equilibrium, at which no individuals could be be er off

by unilaterally changing to a different strategy [ , ]. Although this

equilibrium is the result of each individual following her self-interest, it may lead

to suboptimal vaccination coverage for the community [ ]. e collective result

of vaccination decisions determines the level of population immunity and thus

the severity of an epidemic strain. With increasing levels of vaccination coverage

in the community, even the individuals who are unvaccinated are less likely to

become infected; therefore, they have less incentive to get the vaccine. is

scenario naturally leads to the “free riding” problem that is commonly observed

in public goods studies [ ].

Previous studies of vaccinating dynamics have typically combined a

game-theoretic model assuming full rationality and complete information with a

model of disease transmission in either homogeneously mixed

populations [ , ] or random networks [ ]. In studies where the



assumption of rationality is relaxed, deterministic evolutionary dynamics still

recover equilibrium states equivalent to those predicted by models of rational

agents [ ]. It is worth noting that aggregate population models have been

parameterized with empirical data to quantitatively predict vaccinating behavior

in some cases [ , , ]. Here we extend this previous work by accounting for

decision-makers’ social networks and their use of anecdotal information in

making vaccination choices. Individuals have incomplete information and tend

to rely on salient anecdotes from friends and the media in order to form opinions

of disease risk and prevention [ , , ]. e rise to prominence in the

British media of isolated cases linking the pertussis vaccine and brain damage

triggered a sharp decline in coverage in the late s, demonstrating the power

of the anecdote [ , ]. Apart from these prominent cases, each person can

encounter different anecdotal evidence, depending on her social

network [ , ]. Illness of a close friend can impact one’s perception of

infection risk and the importance of prevention in far more powerful ways than

media reports can [ ].

Motivated by the above considerations, we propose a simple agent-based

model in the spirit of evolutionary game dynamics [ , , ] to study the

voluntary vaccination dilemma. In order to make precise predictions, we couple

the vaccination dynamics with an epidemiological model, in particular the SIR

model, which tracks populations of susceptible, infected, and

resistant/vaccinated individuals over time, within a single season or epidemic.

Such models have been used, for example, to design clinical trials of vaccines or



to predict whether a vaccination program will halt an epidemic before it spreads

to much of the population [ , ].

Our model captures the strategic interaction between vaccinating and

free-riding individuals in the following way. Individuals decide whether to

vaccinate during a vaccination campaign, before the seasonal epidemic begins.

e epidemiological model then determines whether each susceptible

(unvaccinated) individual becomes infected at some point during the season.

Once the epidemic ends, individuals can revise their vaccination decision for the

next season. Such a model is most appropriate for describing infections such as

in uenza. Flu vaccines are typically available prior to a predicted outbreak and

are effective for only one season due to mutation of pathogens and waning

immunity [ , ].

. M &

Consider a well-mixed population of individuals with a voluntary vaccination

option. We model the vaccination dynamics as a two-stage game (as illustrated in

gure . . ). e rst stage is a public vaccination campaign, which occurs before

any infection. At this stage, each individual decides whether or not to vaccinate.

Vaccination incurs a cost, V, to the vaccinated individual, and it grants perfect

immunity from the seasonal infectious disease. e total cost of vaccination

includes the immediate monetary cost, the opportunity cost of time spent to get

the vaccine, and any perceived or actual adverse health effects. In the second

stage, the epidemic strain infects an initial number of individuals I and then



spreads according to SIR dynamics, with per-day transmission rate r and recovery

rate g (see the supplementary materials for model details). e epidemic

continues until there are no more newly infected individuals (which occurred in

under days for all cases simulated). e nal size equation [ ] gives the

infection risk for an in nite population (see supplementary materials for

derivations):

w(x) =
R(∞)

− x
= − e−R R(∞), ( . )

where R(∞) is the nal size of the epidemic (fraction that have been infected at

some point in the season), which satis es R(∞) = ( − x)( − e−R R(∞)); R is

the basic reproductive ratio; and x is the fraction of vaccinated individuals.

e infection cost I includes health care expenses, lost productivity, and the

possibility of pain or mortality. A er the epidemic, the individuals with the

highest payoffs are those who declined vaccination but avoided infection. We call

these lucky individuals successful free-riders, as they bene t from others’

vaccination efforts. e game dynamics remain unchanged if we rescale the

payoffs by de ning the relative cost of vaccination c = V/I ( < c < ). e

values of c appropriate for modeling a particular disease can be estimated from

surveys of health opinions, behaviors, and outcomes, as done by, e.g., Galvani

et al. [ ], but in general vaccination cost should be low relative to the cost of

infection. e Nash equilibrium of this game can be solved by se ing the

expected cost of vaccination equal to that of non-vaccination, which implies the



Figure 4.2.1: Schematic illustration of our model. We model the vaccination
dilemma as a two-stage game. At Stage 1 (vaccination choice), a proportion x
of the population decides to vaccinate. Vaccination costs V and provides per-
fect immunity from the infectious disease. At Stage 2 (health outcome), we
use the Susceptible-Infected-Recovered model to simulate the epidemiological
process. Each unvaccinated individual faces the risk of infection during the
seasonal epidemic outbreak. The cost of infection is I. Those unvaccinated
individuals who remain healthy are free-riding off the vaccination efforts of
others, and they are indirectly protected by herd immunity.

mixed strategy

x∗ = +
ln( − c)

cR
. ( . )

is level of vaccination uptake falls short of the social optimum xh = − /R ,

which both achieves herd immunity (full protection of unvaccinated individuals)

and minimizes the sum of all individuals’ costs related to both vaccination and

infection (see supplementary materials). e misalignment between individual

and group interests leads to a social dilemma.



Here, we relax the assumption of rationality and study this vaccination

dilemma from an evolutionary perspective. Each season, an individual adopts a

pure strategy, which determines whether or not she vaccinates. At the end of the

season, each individual decides whether to change her strategy for the next

season, depending on her current payoff. Speci cally, individual i randomly

chooses individual j from the population as role model. e strategy of a role

model with higher payoff is more likely to be imitated. We suppose that the

probability that individual i adopts individual j’s strategy is given by the Fermi

function [ , , , ]

f(Pj − Pi) =
+ exp[−β(Pj − Pi)]

, ( . )

where β denotes the strength of selection ( < β <∞).

is updating dynamic diverges from a fully rational model in two ways. First,

individuals adjust their strategies retrospectively, in response only to the

observed payoff outcomes and not the expected payoffs of strategies. In a

population with low vaccination uptake, most non-vaccinators fall ill, but if

individual i happens to choose one of the few successful free-riders as a role

model, then she will be more likely to imitate the free-rider’s strategy. Second, the

strength of selection parameter introduces a stochastic element to the model: for

small β (weak selection), individuals are less responsive to payoff differences, and

an individual with a high payoff may adopt the strategy of a less successful role

model. Large values of β (strong selection) diminish this stochastic effect, and

individuals reliably switch to (or keep) the strategy with the higher observed



payoff, even if the payoff difference is small. Previous work using the same update

dynamic has characterized agents with high β as being more rational [ ]. is

characterization is not appropriate in our context, as higher β only increases an

agent’s sensitivity to the (perhaps unrepresentative) observed payoff, not the

expected payoff.

e model presented here can be conveniently extended to structured

populations by restricting the neighborhood of individuals whom one can infect

or imitate. In addition to the well-mixed case, we simulated populations

structured as square la ices, Erdős-Rényi random graphs [ ], and

Barabási-Albert scale-free networks [ ] (see supplementary materials). e

initial state consists of equal fractions vaccinators and unvaccinators, randomly

distributed throughout the population. Each two-stage iteration (vaccination

strategy updating followed by an epidemic process) updates the frequencies of

each strategy. Since we are interested primarily in the effect of population

structure on vaccination coverage (rather than on infection risk), we calibrated

epidemic parameters to ensure that the infection risk in an unvaccinated

population is equal across all population structures [ ] (see supplementary

materials). Each simulation was run for , iterations. e long run

equilibrium results shown in gures . . – . . represent the average of

frequencies over the last , iterations in independent simulations. Our

presented results are robust to population sizeN for all population structures

examined, as long asN > .



. R

In the vaccination game, if all of one’s neighbors adopt one strategy, then it is

advantageous to adopt the opposite strategy. We therefore always nd persistent

polymorphisms of vaccinated and unvaccinated individuals for intermediate

values of c. Figure . . plots both the equilibrium frequency of (a) vaccinated

and (b) infected individuals for different values of c and β in the well-mixed

imitation dynamics. We nd qualitative agreement between stochastic

simulations and an analytical prediction that uses both the equation for infection

risk ( . ) and an in nite-population approximation of the imitation dynamics

(described in supplementary materials).

For weak selection (β = in gure . . ), the imitation dynamics approximate

the rational equilibrium x∗ given in equation ( . ). One can understand this

observation analytically by noting that the strategy update equation ( . ) is

roughly linear for small β. First-order approximation of the imitation dynamics

closely approximates the replicator dynamics [ , , ], which in this game

converge to the unique evolutionarily stable strategy–the Nash equilibrium (see

supplementary materials). As vaccination falls with increasing c, the nal size of

the epidemic grows. Above a high cost threshold cH ≈ . , no one chooses

vaccination and the epidemic reaches its maximum size.

Strong selection in the imitation dynamics (represented by β = in

gure . . ) can decrease vaccination uptake below the level predicted by the



Figure 4.3.1 (following page): Vaccination dynamics in well-mixed popu-
lations. The fractions (a) vaccinated and (b) infected are shown as functions
of the relative cost of vaccination, c, for the intensity of selection β = and

. The lines are analytical predictions from deterministic equations (see sup-
plementary materials). The deviation between simulation and theory is largely
due to stochasticity in disease transmission: holding vaccination constant at
some level below the herd immunity threshold ( − /R = . ), simulated
infection risk is smaller than the prediction in equation ( . ) (see suppl. fig-
ure 4.5.1b). Individuals in the simulation respond to this decreased risk by
vaccinating less than in the theory, which in turn leads to a larger epidemic
versus the theory. Strong selection magnifies individuals’ responses, producing
larger deviations. For vaccination coverage above the theoretical herd immu-
nity level, the deterministic approximation underestimates infection risk, lead-
ing to an opposite deviation at low c. Parameters: population size N = ,
R = . (realized by setting r = /( N) and g = / ), number of infection
seeds I = .



Figure 4.3.1 (continued)



rational equilibrium. In other words, individuals who carefully a end to peers’

health outcomes and reliably copy the behavior of successful peers will end up

a empting to free-ride more than they rationally “ought” to. If, for example,

infection is twelve times as costly as vaccination (namely, c = . , a reasonable

assumption for in uenza, see supplementary materials), then strong selection in

our model lowers vaccination coverage by percentage points versus weak

selection ( gure . . a), which increases the epidemic size from % of the

population to % of the population ( gure . . b). With increasing cost, the

equilibrium vaccination coverage follows a rotated “S” curve, dropping rapidly

(slope≈ − β) from the herd immunity threshold at low values of c, reaching a

plateau near − ln
R for intermediate values of c, and then dropping rapidly to

zero as c grows large. e threshold cH increases with selection strength

( gure . . a).

Results are qualitatively similar for any basic reproductive ratio R of the

infection. suppl. gures . . , . . compare the cases R = . and R = . e

higher value increases infection risk, making the population respond with

increased vaccination. Increasing R also raises the threshold cH.

Restricting interaction to local neighborhoods partly ameliorates the

free-riding problem, but introduces greater sensitivity to the cost parameter c

( gure . . ). We consider a population of individuals arranged on a square

la ice where each individual has four immediately adjacent neighbors. While the

vaccination coverage in well-mixed populations drops from herd immunity levels
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Figure 4.3.2: Vaccination dynamics in lattice populations. Left panels (a),
(b) show the fractions vaccinated and infected, respectively, as functions of
c for the intensity of selection β = and . right panels (c), (d) show snap-
shots of the system at equilibrium frequencies with weak and strong selection,
respectively. Blue denotes vaccinated individuals, red successful free-riders,
and yellow infected individuals. Strong selection breaks apart clusters of vac-
cinators: % of vaccinated individuals’ neighbors are also vaccinated in (c),
versus only % in (d). Parameters: population size N = × with von
Neumann neighborhood, disease transmission rate r = . , recovery rate
g = / , number of infection seeds I = , (c)(d) c = . , (c) β = , (d)
β = . The lines in (a) and (b) are visual guides.



as soon as c increases above zero, restricted spatial interaction promotes

near-universal coverage at a range of positive c, preventing the epidemic. To give

a simple operational de nition, we say that vaccination “prevents the epidemic”

in a structured population if the average nal epidemic size is less than twice the

size of the initial inoculum. De ne as cL the critical vaccination cost below which

the epidemic is prevented. For weak selection on the la ice (β = in

gure . . ), we get cL ≈ . . Above this threshold, the vaccination level drops

precipitously, causing an epidemic that is even larger than in the well-mixed case.

At higher selection strength, the threshold cL is lower, and vaccination

coverage is even more sensitive to costs rising above cL ( gure . . a). e high

cost threshold cH rises with selection strength, meaning that the transitional

region between cL and cH, where vaccinated and unvaccinated individuals coexist,

widens with larger β. Holding c constant at a value above cL, increasing the

strength of selection leads to more free-riding a empts, breaking apart clusters of

vaccinators, thus allowing a larger epidemic to occur ( gure . . c versus . . d).

Most actual populations are heterogeneous in the sense that different

individuals may have different numbers of neighbors (i.e., degree) [ ]. To

account for this feature, we consider vaccination dynamics on Erdős-Rényi

random graphs, which have moderate degree heterogeneity; on scale-free

networks, which have an even more variable degree distribution, our results are

similar (see supplementary materials).

Higher vaccination coverage is typically required to achieve herd immunity in

populations with greater degree heterogeneity [ ] (see also suppl.



gures . . – . . ). is increased vulnerability to epidemic a acks reduces the

temptation to free-ride, actually making it easier for a population of sel sh

imitators to achieve the high vaccination threshold required for herd immunity.

e threshold cost cL therefore increases versus the la ice case. Vaccination

coverage drops a er cost exceeds this threshold, although the effect is not quite

as extreme as in la ice populations ( gures . . a and . . b). Similarly to la ice

populations, increased selection strength increases the size of the intermediate

region between cL and cH.

Degree heterogeneity triggers a broad spectrum of individual vaccinating

behavior. Speci cally, an individual’s vaccination strategy is now in uenced by

her role in the population, and “hubs” who have many neighbors are most likely

to choose to be vaccinated, as they are at greatest risk of infection ( gures . . c

and . . d). Hubs that do manage to free-ride successfully become victims of

their own success, as their vaccinated neighbors of smaller degree are likely to

imitate them and switch strategies, potentially infecting the hubs in the following

season.

. D &

Our model shows how incomplete information and strong selection (high

payoff-sensitivity, parameterized by β) in a population of imitators causes the

vaccination coverage to fall well short of the social optimum, and even below the

Nash equilibrium. Weak selection in a well-mixed population recapitulates the
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Figure 4.3.3: Vaccination dynamics in random network populations. Left
panels (a), (b) show the fractions vaccinated and infected, respectively, as
functions of c for the intensity of selection β = and . Right panels: (c)
Snapshot of a single simulation on a random network at equilibrium frequen-
cies. The size of a node corresponds to its degree (number of neighbors).
Blue nodes are vaccinated, yellow are infected, and red are successful free-
riders. (d) The frequency of vaccination on a random network, as a function
of the number of neighbors an individual has. The inset in panel (d) shows
the degree distribution of the random network. Parameters: (a)-(d) average
degree k̄ = , disease transmission rate r = . , recovery rate g = / ;
(a)(b)(d) N = , I = ; (c) N = , I = ; (c)(d) c = . , β = . The
lines in (a) and (b) are visual guides.



replicator dynamics, converging to the Nash equilibrium. Strong selection, on

the other hand, drives individuals to imitate successful free-riders based on a

single observation, even when a rational agent with complete information would

realize that a empted free-riding does poorly in expectation. is “paradox of

imitation” is a very general phenomenon [ ] and may in part explain cases

where public vaccination levels are low. In particular, for the range of vaccination

cost appropriate to in uenza (i.e., c ≈ . to . , see supplementary

materials), the imitation dynamics with strong selection in the well-mixed case

falls well short of the rational optimum, leading to over-exploitation of herd

immunity and an increase in preventable infections. Our model describes the

admi edly extreme case in which each individual observes only one randomly

chosen role model each round. Allowing imitators to learn from a somewhat

larger group of peers could lessen the sampling error, but would not eliminate it.

is kind of error is reminiscent of, but distinct from, the phenomenon of

“information cascades” that generate rationalized conformism or “groupthink”

[ , ]. Such cascades may also be obstacles to high vaccination coverage [ ].

To explore conformism (or, alternatively, stubbornness) in the context of our

model, one might include an additional cost τ of switching strategy in the

thermal updating rule [ , ]; that is, f(ΔP) = /[ + exp(β(ΔP+ τ))]. A

large negative (positive) τ would then represent the tendency to copy one’s peers

(stick with the current strategy), regardless of payoff comparisons. Previous

studies have shown in detail how this sort of payoff-neglecting imitation can lead

to widespread conformism and adoption of sub-optimal strategies [ , ].



It is widely known that population structure can promote the evolution of

cooperative behavior [ , , , , , ]. We have shown, however,

that population structure is a “double-edged sword” for public health: It can

promote high levels of voluntary vaccination and herd immunity, but small

increases in cost beyond a certain threshold cL cause vaccination to plummet –

and infections to rise – more dramatically than in well-mixed populations. For

example, the random network population under strong selection (β = ) can

prevent the epidemic completely for costs up to c = . , but % of the

population become infected at cost c = . . In the well-mixed population, the

epidemic grows gradually, from % to %, over the same cost range. is

threshold effect is robust to changes in population structure and exists in la ice

( gures . . a and . . b) and scale-free network (suppl. gures . . a and

. . b) populations as well.

In social networks, individuals’ degrees vary greatly, and highly-connected

individuals (hubs) can spread disease to a large number of peers if infected. e

vaccination of hubs can play a vital role in containing infections [ ], and public

health programs o en try to promote herd immunity by allocating vaccinations

preferentially to these hubs [ ]. Physicians who are hubs in a

disease-transmission network, for instance, have high rates of vaccine

uptake [ ]. Our model shows that even individuals with incomplete

information can self-organize to achieve this pro-social outcome ( gure . . ).

Since hubs generally face greater infection risk than small-degree individuals do,

they have increased incentive to vaccinate; hubs’ self-interest is therefore



relatively well-aligned with overall welfare.

Recent work with a detailed model designed to mimic a smallpox outbreak on

a random network [ ] reaches a complementary conclusion about the fragility

of high-coverage equilibria: voluntary vaccination can contain a disease in

low-degree networks, but as the average degree increases, the system reaches a

critical threshold past which it behaves like a well-mixed population and the

epidemic spreads. is work focused on vaccination decisions made during the

course of an epidemic in response to local disease prevalence, as opposed to

season-by-season updating of preemptive vaccination decisions. Taken together,

our current work and this previous result demonstrate how local disease

transmission and decision-making based on local context change the character of

vaccination dynamics. Voluntary vaccination can be a viable policy for achieving

high coverage and eradicating disease, but the nal outcome is sensitive to small

changes in (actual or perceived) vaccination cost and in the social network. is

sensitivity may in part explain how anecdotal evidence of vaccine-related health

risks has been able to trigger steep declines in coverage and loss of population

immunity [ , , ]. Policy levers that subsidize vaccination can take

advantage of these threshold effects to promote disease containment and

eradication.

Achieving socially optimal coverage through voluntary vaccination is a

problem of cooperation with limited information and uncertainty about

outcomes. e problem is similar to public goods games studied by economists

[ ], as herd immunity provides a communal bene t. Individuals’ use of salient



anecdotes to cope with uncertainty, however, is not a typically studied feature of

public goods games. Two sources of uncertainty face an individual deciding

whether to vaccinate: uncertainty about contracting the infection if

unvaccinated, and uncertainty regarding adverse reactions to the vaccine itself.

Our current work focuses on the former uncertainty, treating the vaccine cost as a

xed quantity, which is a summary of all expected costs. It may also be instructive

to treat vaccine cost as a random variable, as a way of explicitly modeling public

fears concerning vaccine safety. ese fears o en have a tremendous impact on

vaccine take-up and public health [ , ].

. S

. . E

We use the Susceptible-Infected-Recovered (SIR) model for the disease

transmission process. e SIR model is appropriate for a large class of infectious

diseases such as in uenza and measles, and is widely studied in

epidemiology [ ]. In this model, the population is divided to three classes:

susceptible individuals (S), who are healthy but can catch the disease if exposed

to infected individuals; infected individuals (I), who have the disease and can

pass it on; and recovered individuals (R), who acquire immunity to the disease.



SIR -

Suppose the disease transmission rate is r, and the rate of recovery from infection

is g. e fraction of susceptible, infected, and recovered individuals is S, I, and R,

respectively, in a population of sizeN. For well-mixed populations, the time

evolution of the population states can be expressed as the following deterministic

ordinary differential equations:

dS
dt

= −rNSI, ( . )

dI
dt

= rNSI− gI, ( . )

dR
dt

= gI. ( . )

e initial condition for an epidemic introduced by one infected individual is

S( ) = − /N ≈ , I( ) = /N, and R( ) = . Denote rN/g by R , commonly

called the “basic reproductive ratio” [ ]. Here R is the mean number of

secondary infections caused by a single infected individual, during his/her entire

infectious period, in a completely susceptible population.

Dividing Eq. ( . ) by Eq. ( . ), we obtain

dS
dR

= −R S. ( . )

Integrating above equation from time to∞, we get the transcendental equation



for the nal epidemic size R(∞):

S(∞) = S( )e−R [R(∞)−R( )]. ( . )

Using the initial condition S( ) ≈ and R( ) = , and the nal state I(∞) =

and S(∞) = − R(∞), we obtain:

R(∞) = − e−R R(∞). ( . )

R(∞) is the nal fraction of individuals who had been infected during the

epidemic outbreak, i.e., the nal epidemic size, which can be calculated

numerically from the above equation. Differentiating both sides of Eq. ( . ) with

respect to R(∞), we can see that the nal size is positive if and only if R > . If

R < , the disease does not spread.

If we consider preemptive vaccination by supposing that a portion x of the

population initially vaccinated, Eq. ( . ) can be rewri en as

R(∞) = ( − x)( − e−R R(∞)). ( . )

Increasing vaccination decreases the nal size of the epidemic, and if

x > xh = − R , we have R(∞) = . e critical value xh is called the “herd

immunity threshold,” above which the infection does not spread through the

population. For vaccine-preventable diseases, herd immunity therefore grants

indirect protection to unvaccinated individuals; it is a public good that vaccinated
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Figure 4.5.1: Epidemic spreading in well-mixed populations. (a) The frac-
tions of susceptible, infected, and recovered individuals as a function of time.
(b) The fraction of individuals who had been infected as a function of preemp-
tive vaccination level. The solid line in panel (b) is numerically determined
from Eq. ( . ). Parameters: (a) N = , g = / , R = . , the number of
initial infection seeds I = ; (b) N = , R = . , I = , results averaged
over 50 runs.

individuals create and unvaccinated individuals can free-ride on.

We use the Gillespie algorithm in our stochastic simulations (detailed in

section . . ). To lower the chance that an epidemic outbreak fails merely due to

stochastic effects, we make the initial number of infection seeds I more than one.

Figure . . shows the epidemic spreading in well-mixed populations. For

R = . , the nal epidemic size with zero vaccination is∼ . , and the herd

immunity threshold is xh = . . Our simulation results agree with the

deterministic model given by Eqs.( . )–( . ) ( gures . . a and . . b). Note

that for intermediate initial fractions of vaccinated individuals ( . < x < . ),

the nal epidemic size resulting from simulations is lower that than the analytical

prediction (Eq. . ). Stochastic effects due to nite infection size cause this



deviation.

E

It is not typically possible to derive explicit equations for epidemic spreading in

structured populations [ ], so we use stochastic simulations. It is widely

accepted that population structure can substantially alter epidemiological

dynamics from the well-mixed case [ ]. To identify only the effects of

population structure, we must calibrate epidemic parameters to ensure that

infection risk is equal in all structures examined [ ]. We use as the base case a

well-mixed population with R = . , which is within the typical R values for

in uenza ( . < R < ). We x the recovery rate at g = / (rates may be

interpreted as per-day, so the mean infectious period is days), and choose the

transmission rate r such that the nal epidemic size is that of the well-mixed

population without vaccination.

We simulated populations structured as square la ices, Erdős-Rényi random

graphs [ ], and Barabási-Albert scale-free networks [ ]. To account for the

increased risk that individuals with many connections face, we assume that the

infection probability of a susceptible individual i is proportional to the number of

her infected neighborsNI(i). e transition rate from S to I for individual i is

then rNI(i) [ ].

For la ice populations, the nal epidemic size shows a clear phase transition

from zero to one with increasing r values ( gure . . a). For low r values, the

epidemic spreading is inhibited due to local spatial clustering effects. We select
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Figure 4.5.2: Epidemic spreading in lattice populations. (a) The final epi-
demic size is shown as a function of the transmission rate r with zero vacci-
nation coverage. (b) The final epidemic size as a function of vaccination level
(preemptive, random vaccination). The arrow notes where vaccination brings
the final epidemic size below . % (twice the size of initial inoculum), repre-
senting an approximate herd immunity threshold. Parameters: N = ×
with von Neumann neighborhood (four adjacent neighbors), (a)-(b) g = / ,
I = , (b) r = . . Results are averaged over 100 runs.

r = . , which gives a nal epidemic size of∼ . , approximately equal to the

base case. Using this transmission rate, we simulate the effect of preemptive,

random vaccination on the epidemic ( gure . . b). e nal epidemic size

decreases more precipitously than in the well-mixed case (cf. gures . . b and

. . b). At vaccination levels greater than about . , the disease cannot persist in

the population (marked by the arrow in gure . . b).

Compared to spatial la ices, both the absence of local clustering and the

presence of degree heterogeneity (different individuals can have different

numbers of neighbors) in random graphs and scale-free networks make it easier

for the disease to spread at lower transmission rates and higher vaccination rates

( gures . . and . . ). Using the same method as above, we choose r = .
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Figure 4.5.3: Epidemic spreading in Erdős-Rényi random networks. (a) The
final epidemic size as a function of the disease transmission rate r with zero
vaccination coverage. (b) The final epidemic size as a function of the vaccina-
tion level (preemptive, random vaccination). The arrow notes where vaccina-
tion brings the final epidemic size below %, representing an approximate herd
immunity threshold. Parameters: (a)-(b) N = , average degree k̄ = ,
I = , g = / ; (b) r = . . Results are averaged over 100 runs.

for random graphs ( gure . . a) and r = . for scale-free networks ( gure

. . a). Notice that even for vanishingly small r values, scale-free networks are

fragile to epidemic a acks, consistent with previous ndings [ ]. Accordingly,

the vaccination level needed to contain the disease is the highest among all the

population structures we studied ( gure . . ).

S : G

We use the Gillespie algorithm to simulate the epidemiological process [ ].

e simulation procedure works as follows:

Step : At time t, calculate each susceptible and infected individual’s transition

rate, pi(t). e rate at which a susceptible individual becomes infected is
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Figure 4.5.4: Epidemic spreading in Barabási-Albert scale-free networks. (a)
The final epidemic size as a function of the disease transmission rate r with
zero vaccination coverage. (b) The final epidemic size as a function of the
vaccination level (preemptive, random vaccination). The arrow notes where
vaccination brings the final epidemic size below %, representing an approxi-
mate herd immunity threshold. Parameters: (a)-(b) N = , average degree
k̄ = , I = , g = / ; (b) r = . . Results are averaged over 100 runs.

pi(t) = r × number of infected neighbors. e rate at which an infected

individual recovers from the disease is pi(t) = g. e total transition rate is

λ(t) =
∑

i pi(t).

Step : e time at which the next transition event occurs is t′ = t+ Δt,

where Δt is sampled from an exponential distribution with mean λ(t) . (Generate

a uniform random number u ∈ [ , ). en the time interval is Δt = − ln( −u)
λ(t) .)

Step : Choose the individual whose state changes at time t′ by sampling

proportional to pi(t). Generate a uniform random number v ∈ [ , ). If∑k−
j= pj(t)/λ(t) < v <

∑k
j= pj(t)/λ(t), then individual k is chosen to change

state. (De ne
∑

j= pj(t)/λ(t) = .)

Step : Repeat Steps – until the number of infected individuals I(t) is zero,

or stop a er a predetermined time period.



. . C

Values of c are supported by data from [ ], which estimates the cost of health

outcomes: Vaccination costs on average, and the expected cost of infection

for non-vaccinated individuals is given for four cases:

• Young individuals (< years) during normal seasons:

• Elderly individuals (≥ years) during normal seasons: ,

• Young individuals during pandemics (e.g., in uenza): ,

• Elderly individuals during pandemics: ,

To represent the imperfect effectiveness of vaccination (roughly %

effectiveness for the young and % for the elderly), we scaled the vaccination

cost by
%
= . and

%
= . for each group, respectively. e relative

vaccination costs (as a fraction of infection costs) are then:

• Young, normal seasons: c = .

• Elderly, normal seasons: c = .

• Young, pandemics: c = .

• Elderly, pandemics: c = .

Based on these estimates, we propose that it is reasonable to use values of c in

the range . to . in our model to discuss in uenza.



. . N

N

Here we demonstrate the existence and uniqueness of the Nash equilibrium (i.e.,

individual rational optimum) in the vaccination game, provided that individuals

have perfect knowledge of the vaccination coverage level and infection risk.

Propose strategy x (representing the probability of vaccination) to be a Nash

equilibrium: if most of the population plays strategy x, then individuals adopting

a different strategy y can do no be er than the resident. For an ε-size invasion

(ε≪ ), the new vaccination coverage is p := x( − ε) + yε. e expected payoff

to strategy y is then

E(y, p) = −yc+ ( − y) {[ − w(p)] · + w(p) · (− )} , ( . )

where w(p) is the infection risk for an unvaccinated individual, given that a

proportion p of the population is vaccinated. Strategy x is Nash if it is a best

response to itself, which requires the conditions

∂E(y, p)
∂y

∣∣∣∣
y=x

= w(x)− c− ε( − x)w′(x) = , ( . )

∂ E(y, p)
∂y

∣∣∣∣
y=x

= εw′(x)− ( − x)ε w′′(x) ≤ . ( . )

Note that w(x) strictly decreases with x, until x reaches the herd immunity

threshold xh. For x < xh, the inequality ( . ) is therefore strict for a sufficiently

small invasion ε, and so higher-order conditions are not required. Also, for small



invasions, the ε term in Eq. ( . ) can be safely neglected. e vaccination cost

falls into one of three ranges:

• Case , < c ≤ w( ). Since w(x) strictly decreases, there is a unique x∗

that solves w(x∗) = c. is value x∗ is the Nash equilibrium.

• Case , c > w( ). As the derivative in Eq. ( . ) is negative, the best

response is x as small as possible; that is, the pure Nash equilibrium

x∗ = .

• Case , c ≤ . As the derivative in Eq. ( . ) is positive, the best response

is x as large as possible; that is, the pure Nash equilibrium x∗ = .

Moreover, strictness of the inequality ( . ) in Case implies that an

alternative strategy y ̸= x∗ does strictly worse, meaning that the Nash

equilibrium is also evolutionarily stable [ ].

Furthermore, we can show that the unique Nash equilibrium x∗ in this game is

globally stable. For any proportion ε ∈ ( , ) of individuals playing strategy

y ̸= x∗, we always have

ΔE = E(x∗, p)− E(y, p) = (x∗ − y) [w(p)− c] > , ( . )

which means that the strategy x∗ is favored against any alternative strategy at any

frequency.

C N

For well-mixed populations, w(x) is the ratio of the number of individuals who



acquired disease, R(∞), to the total number of susceptible individuals, S( ).

erefore we obtain

w(x) =
R(∞)

− x
= − e−R R(∞). ( . )

Using Eq. ( . ) and the Nash conditionw(x∗) = c, we have e−R R(∞) = − c

and R(∞) = ( − x∗)c. We then obtain the Nash Equilibrium

x∗ = +
ln( − c)

cR
, ( . )

which is plo ed in gure . . . is equation holds for < c ≤ w( ) (recall,

w( ) = − e−R w( )). Cases and above cover the alternatives.

S

e population’s optimal vaccination coverage can be obtained by minimizing

the total expected cost from both vaccination and infection. If a fraction x of the

population is vaccinated, the expected cost is

E(x) = N {xc+ ( − x) { · [ − w(x)] + w(x) · }} , ( . )

= N [xc+ R(∞)] , ( . )

= N
[
xc+ ( − x)( − e−R R(∞))

]
.

We show that the social optimum is exactly the herd immunity threshold,



xh = − /R .

For x above xh, the nal epidemic size R(∞) is zero. E(x) therefore increases

as x rises above xh.

For x below xh, dE(x)dx = N
[
c+ dR(∞)

dx

]
. It is easy to show that dR(∞)

dx < ; that

is, that nal infection size decreases with vaccination coverage. Furthermore,

differentiating both sides of Eq. ( . ) with respect to x, we obtain:

dR(∞)

dx
= − eR R(∞) −

eR R(∞) − ( − x)R
, ( . )

which is guaranteed to be less than− for ( − x)R > ; i.e., x < xh. Hence we

know that dE(x)
dx = N

[
c+ dR(∞)

dx

]
is negative for c < and x < xh.

Since E(x) decreases for x < xh and increases for x > xh, the socially optimal

vaccination level is precisely xh.

For any c ∈ ( , ), the Nash equilibrium falls short of the social optimum,

leading to the well-known dilemma of voluntary vaccination in a population of

sel sh, rational individuals.

E R

For a xed relative cost of vaccination, the Nash equilibrium increases with rising

R ( gure . . ): given a higher risk of infection, rational individuals are more

likely to vaccinate. In the limiting case R →∞, unvaccinated individuals

cannot free-ride on the immunity generated by others, and so they eventually get

infected. In this case, the Nash equilibrium and social optimum converge to

% vaccination. For the opposite limiting case R ≤ , individuals have zero
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Figure 4.5.5: Nash equilibrium as a function of relative cost of vaccination
cost c with different disease transmissibility R . The horizontal lines corre-
spond to socially optimal vaccination levels.

risk of infection, so that the Nash equilibrium and social optimum again agree

no one is vaccinated.

. . E -

Above, we analyzed the vaccination dilemma from the perspective of classical

game theory. Here we consider vaccination dynamics from an evolutionary game

perspective. We derive a diffusion approximation for large populations of sizeN.

Letm/N be the fraction of vaccinated individuals, who are immune from the

seasonal infectious disease. Individuals imitate others based on the pairwise

comparison rule, which preferentially copies others with higher payoffs [ ].

Each round, a randomly chosen individual i selects another random individual j



as role model, and compares her own payoff to that of the role model. Individual i

adopts the strategy of individual jwith the probability given by the Fermi

function

φ(si ← sj) = f(Pj − Pi) =
+ exp[−β(Pj − Pi)]

, ( . )

where β represents the intensity of selection. e population can change only if

individuals i and j have different strategies. Hence, the probability that the

number of vaccinated individuals increases fromm tom+ (denoted T+
m) and

the probability that the number decreases fromm tom− (denoted T−
m) are

T±
m =

m
N
N− m
N

{
[ − w(m/N)]

+ e∓β(PA−PB )
+ w(m/N)

+ e∓β(PA−PB )

}
,

( . )

where PA is the payoff of vaccinated individuals, PB the payoff of unvaccinated

(and healthy) individuals, and PB the payoff of unvaccinated (and infected)

individuals (see Table . . ).

For large populations [ ], this process can be approximated by a stochastic

differential equation with dri T+
m − T−

m and diffusion
√

(T+
m + T−

m)/N,

yielding

ẋ = x( −x)
{
[ − w(x)] tanh

[
β
(PA − PB )

]
+ w(x) tanh

[
β
(PA − PB )

]}
+

√
x( − x)

N
ξ

( . )

where x = m/N is the fraction of vaccinated individuals and ξ is Gaussian white

noise with variance one. ForN→∞, the stochastic term vanishes. As a result,



Table 4.5.1: The fraction of individuals with different states and their corre-
sponding payoffs.

vaccinated unvaccinated and infected unvaccinated and healthy
fraction x R(∞) − x− R(∞)
payoff PA = −c PB = − PB =

for large populations, we can use the deterministic approximation

ẋ = x( − x)
{
[ − w(x)] tanh

[
β
(−c− )

]
+ w(x) tanh

[
β
(−c+ )

]}
.

( . )

At equilibrium where a fraction x is vaccinated, the fraction infected is

expected to be R(∞) (as given in Eq. ( . )), and the fraction that are successful

free-riders (unvaccinated and healthy) is expected to be − x− R(∞) (see Table

. . ).

A. F β, we have tanh(βx) ∼ βx. us Eq. ( . ) simpli es to

ẋ = x( − x)
[
−c[ − w(x)]

β
+ w(x)

β
( − c)

]
=

β
x( − x)[w(x)− c]. ( . )

e replicator dynamics is recovered in this limit, β≪ , but with the time scale

adjusted by a factor β . For any vaccination cost < c < w( ), the system

converges to the interior equilibrium x∗ = + ln( − c)/(cR ), which is

evolutionarily stable as remarked above.



B. F β:

B . F c→ (c < /β),− βc → , Eq. ( . ) becomes

ẋ = x( − x)
[
−β

c[ − w(x)] + w(x)
]
, ( . )

which has a stable interior equilibrium x∗ = − ( + βc) ln( + βc)/( βcR ). For

small c, the rst-order approximation of this expression is − +
βc

R . Comparing

this approximation to the Nash

equilibrium(x∗ = + ln( − c)/(cR ) ≈ − +c/
R ), we note that the effect of

large β can be described as rescaling small values of c by a factor of β .

B . c→ (c > − /β), − β( −c) → , Eq. ( . ) becomes

ẋ = x( − x)
{
−[ − w(x)] +

β
( − c)w(x)

}
. ( . )

e third factor in Eq. ( . ) equals zero for vaccination level

x̃ := −
( +β( −c)) ln( +β( −c)

β( −c) )
R . If this value is positive, then the stable interior

equilibrium is x∗ = x̃; otherwise, x∗ = .

B . F c ( /β < c < − /β), the vaccination level

Eq. ( . ) depends li le on β and can be approximated as

ẋ = x( − x)[ w(x)− ], ( . )



which has a stable interior equilibrium x∗ = − ln
R . erefore the vaccination

level has a plateau at − ln
R for large β and intermediate c values.

Notice that at c = . , x∗ = − ln
R is an equilibrium for any β value

( gure . . ).

Figure . . shows the effects of selection strength β and R on equilibrium

vaccination coverage ( gures . . a versus . . c) and nal epidemic size

( gures . . b versus . . d). We can see that for low β the equilibrium

vaccination level under imitation dynamics converges to the Nash Equilibrium.

Strong selection (large β values) causes the vaccination level to drop below the

Nash equilibrium when vaccination cost is low. Furthermore, greater risk of

infection (higher R ) does prompt higher levels of vaccination among imitating

individuals, shrinking the gap between the utilitarian optimum and the voluntary

outcome (cf. gures . . a and . . c).

. . V -

In addition to random graphs reported in the main text, we consider vaccination

dynamics on scale-free networks. e degree distribution of real-life social

networks follows a power law, which can be represented using a Barabási-Albert

scale-free network model [ ]. Scale-free networks generally possess larger

degree heterogeneity than random graphs, leading to more severe persistence of

epidemic outbreaks, making herd immunity more difficult to achieve (cf. gures

. . and . . ). As a consequence, network heterogeneity further promotes

individuals’ vaccination on scale-free networks ( gure . . ). e range of c that



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 

 

V
ac

ci
na

tio
n 

le
ve

l

 = 1
 = 10

(a)

 

 

 = 1
 = 10

(c)

 
 

Fi
na

l e
pi

de
m

ic
 s

iz
e

Relative cost of vaccination, c

 = 1
 = 10

(b)

 = 1
 = 10

 

 

Relative cost of vaccination, c

(d)

Figure 4.5.6: Imitation dynamics in a large, well-mixed population (diffusion
approximation). Upper panels (a), (c) show the equilibrium vaccination level,
as a function of relative cost of vaccination c with different intensities of se-
lection β. Lower panels (b), (d) show the final epidemic size, as a function of
relative cost of vaccination c with different intensities of selection β. Parame-
ters: (a)(b) R = . , (c)(d) R = .



promotes vaccination is larger than in the case of random graphs (for

β = : c < . for scale-free versus c < . for random; for β = : c < .

versus c < . ).

Despite this difference, the overall pa ern of equilibrium vaccination coverage

in scale-free networks is similar to that of random networks: “hubs” with many

neighbors tend to vaccinate more o en than small-degree individuals do ( gure

. . d). e particular structural characteristics of the Barabási-Albert scale-free

network model seem to complicate this pa ern slightly, in that the most likely

free-riders actually have intermediate degree (k = , , in gure . . d) rather

than lowest degree (k = ). Since many degree-two nodes are connected only to

large hubs, their vaccination decisions are determined by imitation of these hubs.

is peer in uence appears to outweigh the fact that they can easily free-ride on

the hubs’ immunity, increasing the vaccination frequency of degree-two nodes

above that of slightly be er-connected individuals.

Although degree heterogeneity promotes vaccination, the equilibrium

vaccination coverage is still sensitive to the cost of vaccination. Above a critical

cost, the vaccination coverage rapidly falls below both the herd immunity

threshold ( gure . . a) and the nal size of the epidemic grows ( gure . . b).

For in uenza, the estimated relative cost of vaccination to infection is less than

. , which is approximately the threshold found in the β = case. Misperceived

vaccination risks and individual variation in a itudes towards vaccination may,

however, tip the effective value of c above this threshold.
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Figure 4.5.7: Vaccination dynamics on scale-free networks. Left panels show
the fractions of (a) vaccinated and (b) infected individuals as a function of
relative cost of vaccination c with the intensity of selection β = and . Right
panels: (c) Snapshot of a single simulation on a scale-free network. The size
of a node corresponds to its degree. Blue nodes are vaccinated, yellow are in-
fected, and red are successful free-riders. (d) The frequency of vaccination on
a scale-free network, as a function of the number of social contacts an indi-
vidual has (node degree). Parameters: (a)–(d)average degree k̄ = , disease
transmission rate r = . , recovery rate g = / , I = ; (a)(b)(d) N = ,
(c) N = ; (c)(d) c = . , β = . Results in panels (a), (b), and (d) are
averaged over 100 runs. The lines in (a) and (b) are visual guides.
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5
Frequency-dependent sele ion can lead

to evolution of highmutation rates

. I

I - , most

mutations are neutral or deleterious, and we may generally expect mutation rates

to evolve to levels as low as feasible, given physical constraints and costs

associated with faithful DNA replication [ , , , ]. However,

theoretical [ , , , , , , , , ] and



empirical [ , , , ] ndings indicate that in novel or rapidly changing

environments, evolution may select for higher mutation rates. While strains with

higher mutation rates will experience increased mutational load, they also stand a

be er chance of giving rise to bene cial alleles, upon which the linked genes

coding for increased mutation may “hitchhike” to xation. High-rate mutator

alleles can have a competitive advantage if bene cial mutations are strong and

frequent enough to outweigh deleterious load [ , , , , ].

Most studies that examine the role of environmental change in mutation rate

evolution have considered exogenous uctuations in the

environment [ , , ]. More recently, researchers have studied how

host-parasite coevolution may generate an environmental feedback loop that

drives mutation rates upward [ , , ]. Yet the possibility that mutation

rate evolution may be in uenced by evolutionary dynamics within a single

species remains largely unexplored [ ]. Frequency-dependent competition, by

which the composition of the population determines the tness of

phenotypes [ ], can generate complex, unstable trait

dynamics [ , , , , ], which may in turn generate selection

pressures on the mutation rate. Frequency dependence is common in

nature [ ] and occurs in a wide range of interactions: predator-prey

systems [ , , ], host-parasite systems [ , ], niche

competition [ , ], cooperative dilemmas [ , , , , ], and

nontransitive competition dynamics [ , , , ].

e evolution of high mutation rates may be an important force determining



the fate of obligately asexual lineages. When alleles increasing the genomic

mutation rate (“global mutator alleles”) are fully linked to the bene cial

mutations that they promote (as in an ideal asexual population), themutation rate

may quickly rise beyond a maximum tolerable level, dooming the population to

extinction within as few as several thousand generations [ ]. is catastrophe

occurs due to the myopia of natural selection, which can favor a mutator for its

short-term bene cial consequences, despite the increased mutational load that

eventually results as a strain bearing a mutator allele converges to

mutation-selection equilibrium [ , ]. Unlike Muller’s ratchet and the related

“mutational meltdown” phenomenon [ , ], this effect can burden even a

large population, with many available bene cial mutations, with a maximum

possible “lifespan.” e dynamics of mutation rate evolution in large populations

with li le or no recombination should therefore have broad implications for early

microbial evolution, particularly regarding the evolution of sex.

Here we show how frequency-dependent dynamics can promote evolution of

high mutation rates, both in the presence and absence of recombination. Our

framework combines methods of evolutionary game

theory [ , , , , , , , ] and adaptive

dynamics [ , , , , ] to nd and understand evolutionarily stable

mutation rates (ESMRs, ). We previously introduced our mathematical

framework and used it to show that if trait frequencies converge to a stable

equilibrium, then mutation rates evolve downward [ ]. is result extends the

classical observation that mutation rates evolve to zero in constant tness



landscapes, if no new bene cial mutations are available [ , , ]. Outside

this special case, it is not known how mutation rates evolve under

frequency-dependence, or even if they tend toward a single value. We therefore

analyze and numerically simulate competition between strains of different

mutation rates, in which the traits subject to mutation follow

“rock-paper-scissors” dynamics. In most cases, the evolutionary dynamics

converge upon a unique positive ESMR that depends on the rate of trait

substitutions. e emergence of a unique ESMR is perhaps surprising against the

backdrop of trait frequencies that are continually in ux. If mutation rates evolve

in large steps, as can occur through damage to the mismatch-repair

system [ , ], we nd that bistable outcomes may result: a high and a low rate

may each resist invasion by the other. Recombination lowers the ESMR, but it

also allows for stable mutation rate polymorphism, occurring between mutation

rates above and below the ESMR.

e sort of cyclical dynamics that promote evolution of high mutation rates

may be common in many species [ , , – ]. ese dynamics involve

periodic or chaotic transitions between population trait distributions, causing the

favored phenotype(s) to change over time. Each transition provides another

opportunity for a strain with high mutation rate to seize upon a bene cial

mutation, thus giving it a tness advantage over other strains. is scenario, in

which a steady supply of bene cial substitutions can select for high mutation

rates, is similar to those contemplated by other authors investigating constant

selection [ , , ]. We primarily study this scenario in an idealized in nite



population, using replicator-mutator equations to track the expected population

trajectory. Strains with relatively low mutation rates face a disadvantage during

each substitution event, as it takes longer for them to produce the optimal trait at

high frequency. is idealized framework contrasts with nite-population

models in which each strain must wait for a bene cial mutation to arrive

stochastically, a er which the mutator allele associated with that bene cial

mutation may hitchhike to xation [ , ]. To highlight the relevance of our

in nite-population model to nite populations, we demonstrate that both the

ESMR and the invasion dynamics of mutator lineages in the in nite-population

model coincide with a model of a small population (N = ), in the regime

where the ESMR greatly exceeds /N (implying that population waiting times for

bene cial mutations are minimal).

Recombination inhibits the evolution of high mutation rates by separating the

genetic determinants of the mutator phenotype from the bene cial mutations it

produces [ , , , ]. To analyze the effect of recombination under

frequency-dependent selection, we introduce the replicator-mutator-recombinator

equations. For a wide range of plausible recombination rates and frequencies of

unconditionally deleterious mutations, the model supports local mutator alleles

with ESMR values far above rates in the − – − range that is typical for

cellular division in most species. In the Discussion, we outline a diverse set of

genetic mechanisms that may meet our model’s criteria for producing favored

local hypermutation. We also nd that the ESMR concept supports global

hypermutation in asexual populations, as mutator hitchhiking is not disrupted by



recombination. More generally, while sufficiently strong recombination can drive

the ESMR to zero, there still exist, for any frequency of recombination less than

unity, evolutionary games that select for positive mutation rates. is nding

bears similarity to the result of Ishii, et al. ( ) that for strongly bene cial

mutations, recombination decreases the ESMR, but does not drive it to zero. In

the rock-paper-scissors game we discover an elegant rule for recombination:

evolution favors positive mutation rates if the selective advantage of bene cial

mutants exceeds the ratio of recombining to non-recombining offspring. is

rule holds regardless of the frequency of unconditionally deleterious mutation.

. M

We explore the evolution of mutation rates with a two-locus, many-allele model:

the trait locus encodes the phenotype under frequency-dependent selection,

while themodi er locus controls the rate at which the trait locus mutates. For

simplicity, we assume that mutation on the modi er locus occurs on a slower

time-scale than trait mutation, which puts aside the extinction risk presented by

rapid evolution of mutation rates [ , ]. Appealing to this separation of

time-scales, we focus on competition between just two mutation rates at a time,

following the approach of adaptive dynamics [ , , , ]. We call a

collection of individuals with the same modi er allele a strain. When a small

strain of mutation rate u′ (the “invader”) appears in a population of mutation rate

u (the “resident”), these two rates act as “meta-traits,” as each strain can consist of

different trait distributions. Competition between these mutation rates emerges



from the dynamics of the resident and invader trait distributions.

. . S - :

Frequency-dependent competition is studied using evolutionary game

theory [ , , , , ], in which the reproductive tness of an

individual depends on the average of tness payoffs obtained from interacting

with other individuals according to a game. e distribution of traits found in the

population evolves over time through the processes of interaction, reproduction,

mutation, and death.

A game is characterized by a nonnegative payoff matrix A, where Aij is the

tness that an individual of trait i obtains by interacting with an individual of trait

j. Given a randomly interacting population with trait frequencies described by

the nonnegative column vector x = (x , . . . , xn)T, the tness of trait i is (Ax)i.

is de nition of tness ignores random deviations from the total population

trait distribution in the subset that an individual meets for interaction. Note that

the special case where each trait has a constant (frequency-independent) tness is

recovered by se ing all columns of the matrix A equal. We assume reproduction

is proportional to tness and death occurs at the same rate for all traits.

e replicator equations describe the deterministic, in nite-population model

without mutation, approximating the situation where all phenotypes are typically

present in the population, though possibly at very low frequency [ , ]:

ṙi = ri(Ar)i − φri, ( . )



Fig. . . (A) depicts one possible trajectory of the replicator equations where

payoffmatrix A describes a rock-paper-scissors game (formally de ned below, Eq.

( . )). is is the simplest model of cyclical population dynamics.

e replicator-mutator equations modify this basic model by assuming that

each offspring adopts the trait of its parent with probability − u and otherwise

chooses from among all traits (including that of its parent) with equal

probability [ , , ]:

ẋi = ( − u)xi(Ax)i +
u
n
φ− φxi, ( . )

Fig. . . (B) depicts one possible trajectory of the replicator-mutator

equations with the same cyclical payoff matrix. Compared to the case without

mutation, the population in (B) is always highly polymorphic. Mutation is only

one possible mechanism that can preserve trait coexistence in rock-paper-scissors

interactions; spatial population structure [ , ] and alterations in the payoff

matrix [ ] also promote coexistence.

. . C

To extend this model to competition between two mutation rates, we describe

the system state by two nonnegative vectors r = (r , . . . , rn) and

z = (z , . . . , zn), giving the relative abundances (with respect to the whole

population) of residents and invaders of each trait. We denote the total relative
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ScissorsScissors!

Rock! Paper! Rock Paper

ScissorsScissors!

Rock! Paper!(A) Without mutation (B) With mutation

Figure 5.2.1: Example trajectories depicting evolution of the population ac-
cording to (A) the replicator equations ( . ) and (B) the replicator-mutator
equations ( . ) with n = traits. Payoff matrix A determines a rock-paper-
scissors game (described in Eq. ( . )). Each trajectory is drawn on the “pop-
ulation simplex,” where each point represents the trait distribution of the
population at a particular time: points close to a vertex represent popula-
tions consisting mostly of one trait, while points close to the center of the
simplex represent populations with a nearly equal mixture of traits. The tra-
jectory in panel (A) starts near the center of the simplex and proceeds for 50
timesteps, spiraling outward and converging to the simplex boundaries. Once
near the simplex boundaries, the population spends most of the time consist-
ing mostly of one trait, and it transitions infrequently to the next trait in the
cycle. The trajectory in panel (B) starts at the lower-left vertex, representing
a population of 100% rock, and proceeds for 100 timesteps, spiraling inward
and converging to a limit cycle. Once on this cycle, the population is always
highly polymorphic, and the trait frequencies oscillate periodically. Compar-
ing this limiting behavior to that of panel (A) shows that mutation acts to
maintain trait diversity. The light blue vectors in both panels show the action
of selection, directing the population counterclockwise around the simplex as
determined by the game. The short red vector in panel (B) shows the action
of mutation, pointing toward the center of the simplex, generating increased
trait diversity. The trajectory determined by the replicator equations follows
the selection vectors (A). The trajectory determined by the replicator-mutator
equations follows the sum of the selection and mutation vectors — the re-
sultant vector, in purple (B). Thin gray lines are axis guides meeting at the
center of the simplex. Parameters: Fitness benefit for winning a = . (both
panels); mutation rate u = . (panel B only).



abundances of residents and invaders by R and Z respectively,

R =
n∑
i=

ri, Z =
n∑
i=

zi.

We note that at every point in time, R+ Z = . ese assumptions lead to the

dynamical equations

ṙi = ( − u)ri(A(r+ z))i +
u
n
Rφr − φri,

żi = ( − u′)zi(A(r+ z))i +
u′

n
Zφz − φzi,

( . )

where

φ = (r+ z)TA(r+ z),

φr = R
rTA(r+ z),

φz = Z
zTA(r+ z)

( . )

are the average tnesses of the whole population and of the two strains,

respectively.

Initial success of the invading strain when it rst appears in the population is

measured by its invasion tness su(u′). is value is de ned as the time-averaged

exponential growth rate of the frequency of the invading strain when rare [ ].

Taking the time-average is required in this se ing, as growth rate at each point in

time depends on the current trait distributions, which themselves evolve. is



concept is formalized as

su(u′) = lim
T→∞ T

∫ T Ż(t)
Z(t)

dt, ( . )

or equivalently,

su(u′) = lim
T→∞ T

∫ T (
φz − φ

)
dt. ( . )

ese de nitions coincide with other notions of tness as time-averaged

exponential growth rate [ , ]. As a practical ma er, the dynamics ( . ) can

be used to compute positive invasion tness values only if the limiting value of T

used in equations ( . ), ( . ) is not so large as to allow Z to reach a substantial

frequency. In Eq. ( . ) in Methods we describe modi ed dynamics that keep

the invader forever rare, avoiding this complication.

Replicator-mutator dynamics can yield a wide variety of behaviors, including

multiple a ractors, limit cycles, and chaos [ , , ]. Invasion tness is

therefore difficult to compute in general and may depend on initial trait

distributions. In certain cases, the limits taken in Eqs. ( . ), ( . ) do not even

exist [ ]. To minimize these complications, we focus on the simplest type of

payoff matrix A that supports the evolution of high mutation rates: n-trait

rock-paper-scissors interactions where no stable equilibrium trait distribution

exists. is form of competition is simple enough that the dynamics have global,

nonchaotic a ractors; invasion tness is readily computed; and ESMRs can be

approximated analytically.



Many researchers have observed that the evolution of high mutation rates is

particularly sensitive to population size effects, as mutator alleles must o en wait

long periods before giving rise to a bene cial mutation on which they can

hitchhike, and they may dri to extinction before that time

comes [ , , , , , ]. Although invasion tness and the ESMR are

here de ned with respect to a deterministic model in which dri plays no role,

the same concepts can be recast in a stochastic model; to do so, we impute an

effective invasion tness from the xation probability in simulation of a small

population (N = ) (see Methods).

. . L - :

Strain u′ is favored to invade strain u if su(u′) > . In all cases examined in this

article, if the invading rate u′ is sufficiently close to u, an initially successful

invasion leads to the eventual xation of u′. is principle, central to adaptive

dynamics theory, is known as “invasion implies substitution” and has been

proven for simpler models of evolving quantitative characters [ , Appendix B].

In order to understand the long-term behavior of a gradually evolving trait that

adheres to this principle, it suffices to analyze invasion tness alone. Curiously,

this principle fails for mutation rate evolution in general, and even a simple

two-trait frequency-dependent interaction can support the coexistence of two

arbitrarily close mutation rates [ ].

An evolutionarily stable mutation rate (ESMR) ũ is de ned as one that is favored

against invasion by any other mutation rate; that is, for all u′ ̸= ũ, it is the case



that sũ(u′) < . While it is possible for multiple ESMRs to exist, all examples

that we explore have no more than one ESMR. When it exists, the ESMR can be

thought of as the unique mutation rate favored by evolution [ ].

. . U

e two-strain replicator-mutator equations ( . ) treat the modi er locus as

determining the mutation rate on a single trait locus. In an actual genetic se ing,

a mutator allele may target other genomic regions to cause unconditionally

deleterious mutations. is effect is known to weaken or eliminate

selection for high mutation rates [ , , ]. To capture the aggregate effect

of a modi er determining a mutation rate u on other parts of the genome, we

subtract a mutational load uℓ from the tness of each individual in the strain,

representing the cost that the strain bears at mutation-selection

equilibrium [ ]. To ensure nonnegative tness, we also add a sufficiently large

baseline value f to all tnesses. Here, ℓ represents the size of the region targeted

by the modi er relative to the size of the frequency-dependent trait locus. We

assume that no bene cial mutations occur at this target in the time-scale under

consideration. We also assume that deleterious mutations are strong enough so

that the population’s approach to mutation-selection equilibrium occurs more

rapidly than trait substitution does; otherwise, the full cost uℓwould not be

realized [ , , ].



. . R

Recombination between the mutation-controlling locus and the trait locus is also

known to weaken or eliminate selection for high mutation

rates [ , , , ]. Recombination can be modeled using the following

simple scheme: A er adults interact and reproduce proportional to tness, the

(possibly mutant) offspring pair randomly with one another. Each pair

exchanges traits with probability c. e offspring then disperse and join the adult

population. is lifecycle implies the following dynamics, which we dub the

replicator-mutator-recombinator equations:

ṙi =
(
− c+ c

Rφr
φ

)[
( − u)fi,uri +

(u
n

)
Rφr
]

+

(
c
Rφr
φ

)[
( − u′)fi,u′zi +

(
u′

n

)
Zφz

]
− φri,

żi =
(
− c+ c

Zφz
φ

)[
( − u′)fi,u′zi +

(
u′

n

)
Zφz

]
+

(
c
Zφz
φ

)[
( − u)fi,uri +

(u
n

)
Rφr
]

− φzi,

( . )

where fi,u is the tness of trait i subject to mutation rate u,

fi,u = A(r+ z)i + f − uℓ. e rst two lines of each equation provide the

contribution from non-recombinant and recombinant individuals, respectively.



. R

. . C

Rock-paper-scissors games are a simple class of interactions that can exhibit

cyclical replicator-mutator dynamics [ ]. We study an n-trait generalization of

the game (n ≥ ), with n× n payoff matrix A given by



· · · + a

+ a · · ·

+ a · · ·
...

...
... . . . ...

...

· · ·

· · · + a


. ( . )

For each trait, there is another trait that gets a tness bene t a > from it (that

is, there is a “scissors” for every “paper”), while all other traits do worse. e

traditional rock-paper-scissors game corresponds to n = . Selection causes the

population to cycle through successive traits, while mutation increases

polymorphism in the population (Fig. . . ). If all traits are present in equal

proportion (that is, at the frequency vector
(
n , . . . , n

)
), neither selection nor

mutation causes the trait distribution to change. In the absence of mutation

(using Eq. ( . )), this xed point is stable if a > n− . We focus on the case

a < n− , which guarantees that a nonmutating population will produce

unstable cyclical dynamics: any population that starts as a mix of all traits (but



not at the xed point), converges to a heteroclinic orbit [ ], meaning that it

cycles between nearly-monomorphic states in order, as each trait is displaced by

the one that defeats it [ , ]. Long-term average population tness

approaches in this case since, as the system converges to the heteroclinic orbit, it

spends progressively more time near each monomorphic state, with transitions

between them taking relatively li le time. Increasing mutation draws this cyclical

trajectory closer to the xed point (i.e., towards greater polymorphism), causing

long-term average tness to fall. As the mutation rate crosses a threshold value of

uΩ =
+ ( + a) cos

( π
n

)
+ a+ ( + a) cos

( π
n

) , ( . )

the interior xed point becomes a stable equilibrium (calculation in Online

Appendix B), at which each trait has tness +a
n .

M

Before carrying out any numerical simulations of mutation rate competition, we

show that the zero mutation rate is evolutionarily unstable in the absence of

recombination and unconditionally deleterious mutations when a < n− ; that

is, there always exists some positive mutation rate u′ that can invade a resident

strain of nonmutators.

As noted above, the resident strain exists for long periods of time effectively

consisting of a single trait, which has tness φr = , given by the diagonal entries

of payoffmatrix A. While the invading strain is of negligible size, trait tnesses are

therefore constant: for the resident trait, + a for the favored trait, and for all



other traits. e dynamics of the invading strain, given by ( . ), can then be

rewri en in matrix form as

ż = (Qu′F− I) z, ( . )

where I is the identity matrix,Qu′ is the mutation matrix

Qu′ =



− n−
n u′ u′

n · · · u′
n

u′
n − n−

n u′ · · · u′
n

...
... . . . ...

u′
n

u′
n · · · − n−

n u′


, ( . )

and F is a diagonal matrix with fi, the tness of the ith trait, as the ith diagonal

entry.

Based on this dynamic, invasion tness s (u′), de ned by ( . ), is equal to the

largest eigenvalue of the product matrixQu′F, minus . Since this matrix has only

two nonzero columns, the condition for invader success, s (u′) > , can be

computed directly as

< u′ <
a (n− )

( + a) (n− )
. ( . )

In the limit of large n, most mutations are deleterious. Mutant offspring face a

near-certain chance of mutating to a trait of zero tness, while the nonmutator

strain faces no such risk. Despite this large cost of mutation, mutators with



mutation rate less than a
+a can invade nonmutators for any combination of a and

n. is condition can be derived by taking the limit as n→∞ of Eq. ( . ), or

alternatively, by recognizing that the mutating strain incurs a tness cost equal to

the mutation rate u′, but a ains tness advantage a
+a versus the resident (relative

to the tness of the optimal trait). e mutator can invade whenever this bene t

exceeds the cost.

e analysis is similar if recombination c and load ℓ are introduced, again

assuming a < n− . e equation describing invader dynamics, analogous to

( . ), is now

ż =
(
CQu′Ff − I ( + f + u′ℓ)

)
z, ( . )

whereQu′ is as above, Ff is a diagonal tness matrix where the baseline tness f

is included, and C is a matrix whose ijth entry gives the probability that an

invader of trait jwill have trait i a er recombination,

cij =


− c+ cri for i = j ,

cri otherwise.

In the present scenario, recall that r = and ri = for all i > . Invasion now

succeeds if and only if the largest eigenvalue of CQu′Ff exceeds + f + u′ℓ. In



the case f = , this condition simpli es to

< u′ <
a( − c)(M+ )−Mc

a( − c)(M− ℓ) +M( − c+ ℓ)
, ( . )

whereM = nℓ+ ( − c)(n− ). Selection favors positive mutation rates if this

threshold value of u′ is positive, which occurs when a
M

M+
+a > c. For arbitrarily

high n and ℓ, this bound can be no worse than a
+a > c. If the baseline tness f is

positive, however, the expression for the maximum invading u′ admits no simple

formula. Selection is guaranteed to favor positive mutation rates if the largest

eigenvalue of CQ Ff exceeds + f , which is equivalent to

a
+ f + a

> c. ( . )

at is, the selective advantage as a fraction of maximum possible tness

must exceed the recombination rate in order for positive mutation to be favored.

e above calculations can be carried out for any game in which competition

is nontransitive (each pure strategy is bested by another) and the dynamics cycle

between nearly-monomorphic states (formally, the monomorphic states

constitute an a racting heteroclinic cycle). In all such games, there exist positive

mutation rates that can invade nonmutating residents [ ].



C ,

Interaction between two strains of nonzero mutation rates u < u introduces

new features into the evolutionary dynamics. Our numerical analysis of ( . )

(see Methods) has shown three possible outcomes:

(i) e higher-rate strain can invade and replace the lower, and not vice-versa,

su (u ) > > su (u );

(ii) e lower-rate strain can invade and replace the higher, and not vice-versa,

su (u ) > > su (u );

(iii) Bistability (neither can invade the other), su (u ) < and su (u ) < .

Absent recombination, we have not observed any cases of coexistence between

strains of different mutation rate in the rock-paper-scissors game.

To show a representative example of outcome (i), we consider competition

between strains with mutation rates u = . and u′ = . , using n = and

a = . . e faster-mutating strain succeeds because it is be er able to adapt to

the changing tness landscape created by the population dynamics, shown in Fig.

. . . Fig. . . shows that the rise in abundance of an invading strain is not

necessarily monotonic: there may be an initial decrease if the invader is initially

in a disadvantageous state, and there may be periodic decreases as the tnesses of

traits shi . Each episode of trait substitution (e.g., scissors replacing paper) is

accompanied by a rise in invader abundance; there are such episodes between



timesteps∼ and∼ in the scenario depicted, during which time the

invader reaches : parity with the resident. At the end of each episode, the

substitution has occurred in the resident strain as well, causing mutation rate

evolution to pause, but also se ing the stage for frequency-dependent selection

to favor a new substitution. e average slope of invader growth in Fig. . . in

this initial growth phase equals the invasion tness su(u′). A er timestep∼ ,

the invader is a large majority of the population, and its growth rate relative to the

resident is nearly constant: instead of discrete episodes of substitution and stasis

as before, the prevailing mutation rate in the population is so high that the

slower-mutating strain never manages to “catch up” to the favored trait.

is example scenario illustrates an important possibility: competition

between mutation rates o en takes the form of a cooperative dilemma [ ], with

the strain of higher mutation rate playing the role of defector. When such a strain

invades and grows, it increases polymorphism in the population, decreasing

overall population tness. Fig. . . shows how tness depends on the

frequencies of A and B. Speci cally, when A is abundant and B is rare, the two

strains have time-averaged tnesses φA = . , φB = . . When B is abundant

and A is rare, the tnesses are φA = . , φB = . . Wri en in matrix form, this

“Mutator’s Dilemma” is
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Figure 5.3.1: Dynamics of a faster-mutating strain successfully invading a
slower-mutating resident. Trait distributions of residents (blue trajectories)
and invaders (red trajectories) are shown at time intervals (A) to , (B)
to , (C) to , and (D) to . For each interval, the trajectories
proceed counter-clockwise, indicated by shading from darker to lighter. Thick-
ness of each curve indicates relative abundance of the corresponding strain;
the thicker trajectories of the invaders in (C) and (D) partially obscure the
resident trajectories. At t = , the resident strain is at the point on its stable
limit cycle where frequency of Rock is greatest, and the invading strain is at
100% Scissors with a total frequency of . . Invaders initially decline due to
their disadvantageous trait distribution, but eventually sweep to fixation. Thin
gray lines are axis guides meeting at the center of the simplex. Parameters:
Resident mutation rate u = . , invader mutation rate u′ = . , fitness
benefit for winning a = . , and n = traits.
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Figure 5.3.2: Ratio of faster-mutating invader frequency to slower-mutating
resident frequency (log-scaled), showing the indirect route to fixation of a mu-
tator allele. The slope equals the relative fitness of the invading strain. The
shaded regions correspond to the panels of Fig. 5.3.1, highlighting the four
phases of a successful mutator invasion: (A) a possible initial decline due to
disadvantageous invader trait distribution, (B) a first growth phase in which
fitness fluctuations result from trait dynamics of the slower-mutating residents,
(C) a rapid transition as invader abundance surpasses resident abundance, and
(D) a second growth phase in which fluctuations are due to the now-abundant
invaders. The top-left inset shows one fluctuation during (B), corresponding
to one trait substitution; this fluctuation includes a small dip and a rapid rise
in invader frequency. The bottom-right inset shows one fluctuation during
(D), also corresponding to a substitution of the predominant trait; here fre-
quency increases smoothly since trait substitutions are less dramatic. Both
insets use a linear scale. Parameters (same as Fig. 5.3.1): Resident mutation
rate u = . , invader mutation rate u′ = . , fitness benefit for winning
a = . , and n = traits.



0.0 0.2 0.4 0.6 0.8 1.0
0.65

0.70

0.75

0.80

0.85

0.90

0.95

0! 0.2! 0.4! 0.6! 0.8! 1.0!
0.65!

0.95!

0.70!

0.75!

0.80!

0.90!

0.85!

Frequency of invader!

Time-averaged 
fitness!

0 100 200 300 400 500 6000.65

0.70

0.75

0.80

0.85

0.90

0.95

Time

Po
pu
la
tio
n
A
ve
ra
ge
Fi
tn
es
s

!
Time!

0! 100! 200! 300! 400! 500! 600!

Population 
average  
fitness!

0.65!

0.95!

0.70!

0.75!

0.80!

0.90!

0.85!

Figure 5.3.3: Time-averaged fitnesses of fast-mutating invaders (upper
curve) and slow-mutating residents (lower curve), as functions of invader fre-
quency. To calculate the strain fitnesses at a particular invader frequency,
equation ( . ) was modified so that the resident / invader frequency remains
constant, permitting only trait fluctuations within a strain (see equation ( . )
in Methods). Evolution always favors the invading strain, but each strain’s fit-
ness decreases monotonically with invader frequency; mutator competition is
therefore a cooperative dilemma. Inset: Average fitness of the population os-
cillates and falls over time, as invader abundance increases. Parameters (same
as Figs. 5.3.1, 5.3.2): Resident mutation rate u = . , invader mutation rate
u′ = . , fitness benefit for winning a = . , and n = traits.
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is interaction differs from matrix games as typically considered in evolutionary

game theory, since the tnesses of the two strains depend nonlinearly on their

frequencies and uctuate in time. It does, however, exhibit a key feature of the

Prisoner’s Dilemma: competition unequivocally favors a strategy that reduces

average population tness.

Considering the entire range of possible mutation rates, the pairwise

invasibility plot Fig. . . (A) shows invasion tness su(u′) as a function of u and

u′ for a representative example with n = , a = . (see Methods). is plot

shows that, in general, residents of very low mutation rate can be invaded by

slightly higher mutation rates, and residents of very high mutation rate can be

invaded by slightly lower rates. Bistability can occur between strains of low and

high rates. It appears in these cases that the lower-rate strain is not able to adapt

to the uctuating tness landscape created by the higher-rate strain, while the

higher-rate strain mutates too rapidly away from advantageous traits when the

tness landscape is more stable.

For the traditional rock-paper-scissors game (n = ) with < a < , our

simulations show that any resident strain of mutation rate u < uΩ = +a
+a can be

invaded by a strain of rate u′ slightly larger than u. For u ≥ uΩ, the resident

distribution converges to the equilibrium frequencies
(

, ,
)
, at which all
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Figure 5.3.4: Pairwise invasibility plots describe the adaptive dynamics of
mutator competition (A) without recombination and (B) with recombination.
Panels show contour plots of invasion fitness su(u′), computed using Eq. ( . )
in Methods, as a function of resident and invader mutation rates u and u′.
The white x’s in (A) mark the region of bistability, where neither mutation
rate in a pair can successfully invade the other (negative invasion fitness at
a point and at its reflection across the diagonal). The black +’s in (B) mark
the region of coexistence, where both mutation rates in a pair can successfully
invade the other (positive invasion fitness at a point and at its reflection).
Recombination reduces the ESMR from ũ ≈ . to ũ ≈ . . Since dynamics
are discontinuous at resident mutation rate u = , invasion fitness against
resident nonmutators is plotted separately, in Suppl. Fig. 7.4.1. Parameters:
n = , a = . , c = (A) or . (B).



traits are equally t and the invasion tness of any other strain is zero. So uΩ is

stable against invaders from below, and it is neither favored nor disfavored against

invaders from above. Strictly speaking, there is no ESMR in this instance, though

perturbation of the system by introducing rare deleterious mutations would

make uΩ the unique evolutionary endpoint.

For the generalized game with n > , our simulations consistently show a

single ESMR ũ between and uΩ, which is also an evolutionary endpoint [ ], as

plo ed in Fig. . . . e value of ũ increases with a (up to the point where

ũ = uΩ), as the potential bene t of a change in trait increases. It decreases with n,

as the probability that a mutation is disadvantageous increases.

If mutations are common, the qualitative invasion dynamics appear insensitive

to population size, as an analogous nite-populationmodel returns similar results.

Fig. . . plots the effective invasion tness implied by the xation probability of

the invading strain, in a population of sizeN = , where the invader starts as a

single individual. is effective tness parameter is de ned as the constant

selective advantage in a Moran model that would produce the same xation

probability as observed in the simulation (see Methods). In a nite population,

although an invader may replace the ESMR, it does so only with probability less

than the neutral value /N. e ESMR is approximately the same in both the

in nite-population and nite-population scenarios (ũ ≈ . , see Figs. . . and

. . ). e magnitudes of the effective invasion tnesses are overall smaller in the

nite case, likely owing to additional stochastic effects introduced by mutator

dynamics; for instance, the time that a lone invader must wait before it produces
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Figure 5.3.5: The ESMR increases with fitness benefit a (plotted on a log
scale) and decreases with number of traits n; no recombination is shown in
this figure. Points show simulated ESMR values (see Methods), and solid lines
show approximations using Eq. ( . ). Dashed lines plot uΩ, which is “quasi-
stable” for cases where an actual ESMR is not defined (see text). For the case
n = (black), there is no ESMR and only uΩ is shown. For n = (dark red)
and n = (not shown), the ESMR increases with a until it reaches uΩ; for
higher values of a there is no ESMR. For n = (medium red), the ESMR
appears to converge to uΩ as a increases. For n > (n = in pink), the
ESMR is bounded below uΩ, which is greater than . .



a bene cial mutation varies between runs. In general, this factor substantially

in uences survival and xation of an invading mutator strain [ , ].

R ESMR

Fig. . . (B) shows the effect of recombination on an invasion tness landscape,

using the replicator-mutator-recombinator equations ( . ). In the case

illustrated, the value of the ESMR decreases but remains positive when

recombination is introduced. One important effect of recombination is that

coexistence between mutation rates above the ESMR and below the ESMR

becomes possible. In this case, the two rates appear to serve complementary

functions: bene cial mutations acquired by the higher-rate mutators are

transferred by recombination to lower-rate mutators, which faithfully replicate

them. Numerical simulations show, however, that a third, intermediate mutation

rate can invade this polymorphic state. If the mutation rate evolves in small steps

(such that an intermediate rate is a ainable), then the ESMR is still the unique

endpoint of evolution in this game [ ]. Moreover, if two competing strains

have very similar mutation rates, coexistence is never observed. In other words,

even with recombination, the rock-paper-scissors game appears to behave

according to the “invasion implies substitution” principle of adaptive

dynamics [ ].
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Figure 5.3.6: Stochastic simulation confirms that deterministic replicator-
mutator-recombinator equations can be used to determine the structure of
mutator competition in finite populations without (A) and with (B) recom-
bination, as long as ũN ≫ . Panels show contour plots of effective invasion
fitness se,u(u′), computed using Eq. ( . ) in Methods, as a function of res-
ident and invader mutation rates u and u′. If se,u(u′) > , then the invader
has fixation probability greater than neutral probability /N; the opposite is
true for se,u(u′) < . The white x’s in (A) mark the region of bistability, where
neither mutation rate in a pair is favored to invade the other (negative effec-
tive invasion fitness at a point and at its reflection across the diagonal). The
black +’s in (B) mark the region of coexistence, where both mutation rates
in a pair are favored to invade the other (positive effective invasion fitness at
a point and at its reflection). The black region between positive and negative
fitness shows nearly neutral competition (effective invasion fitnesses within (A)
× − or (B) × − of zero). Population size N = , other parameters

(same as Fig. 5.3.4): n = , a = . , c = (A) or . (B).



U ESMR

Introduction of unconditionally deleterious mutation with a target size ℓ further

decreases the ESMR. In the absence of recombination, the ESMR scales roughly

as /ℓ. With recombination, it decreases by a larger negative power of ℓ (Fig.

. . ).

E ESMR

To gain insight into how the ESMR depends on the costs and bene ts of

mutation, we develop an analytical approximation of the ESMR as a function of

tness bene t for winning a and deleterious target size ℓ. We adapt an argument

made in a frequency-independent se ing [ ] that itself has its roots in an

earlier model of trade-offs between time required for adaptive substitutions

(minimized by a high mutation rate) and mutational load (minimized by a low

mutation rate) [ , ].

We rst consider the case without unconditionally deleterious mutation,

ℓ = . For values of a and u that are not too large, the trait frequencies transition

between consecutive nearly-monomorphic states, each of which is a temporary

balance between mutation and selection. For each state, there is a newly favored

trait that starts to grow. e long-term performance of a strain therefore depends

on how quickly its frequency within a newly favored trait increases.

At one of these temporary mutation-selection equilibria, each minority trait is

present essentially only due to the action of mutation; we suppose that the next
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Figure 5.3.7: The ESMR declines with the target size of unconditionally dele-
terious mutation (ℓ) and the recombination rate (c). Solid trend lines (shown
for all series except c = . ) on the log-log axes track the decline of ESMR
with ℓ; the slope for the series c = is approximately − , as predicted by
Eq. ( . ). Series with higher c have steeper slopes and lower intercepts. The
horizontal dashed line at u = × − represents a typical per-site, per-
replication mutation rate for eukaryotes; below this level, simulation was not
reliable due to numerical error in the stiff system. The dotted line for the se-
ries c = . is a rough estimate; only one reliable ESMR value was com-
puted. Though the ESMR falls rapidly with increasing c and ℓ, Eq. ( . )
guarantees a positive ESMR for any c < a

+a = . Parameters: n = traits,
fitness benefit for winning a = . , baseline fitness f = .



round of frequency-dependent selection has not yet made an appreciable

contribution to the abundance of the newly favored trait. e frequency of the

newly favored trait within a strain is therefore proportional to that strain’s

mutation rate. If trait i has just been selected, then the ratio of invader to resident

within trait i+ is u′
u . is ratio represent’s the invader’s relative advantage due to

mutation; if u′ > u, then the invader has a “head start” in the race to increase its

frequency within the soon-to-be-majority trait.

As trait i+ grows, its representatives in each strain experience a mutational

load per generation equal to their respective deleterious mutation rates un−
n

for the resident, u′ n−n for the invader [ , ]. Since nearly all mutations away

from the optimal trait are lethal, this cost is fully realized, with negligible delay

(c.f. ). If the entire limit cycle has period T, then one substitution in the cycle

takes time T
n . e total multiplicative effect of mutational load on the invader

population (i.e., the factor by which it shrinks, relative to the ideal case without

load) during this leg is e−u′̄fT n−
n , where f̄ is the geometric mean tness of the

favored trait. Note that both f̄ and T depend only on the resident’s mutation rate,

as the invader has negligible effect on the tness landscape and dynamics.

Combining both the advantageous and disadvantageous effects of mutation,

the relative performance of the invading strain is proportional to u′e−u′̄f(u)T(u) n−n .

is expression a ains its maximum at

u′ =
n

T(u)̄f(u)(n− )
. ( . )

If the rate ũ is an ESMR, then the mutation rate best equipped to invade ũ is ũ



itself. us ũ satis es

ũ̄f(ũ) ≈ n
T(ũ)(n− )

. ( . )

Both f̄(u) (calculated as the geometric mean of the optimal trait’s tness) and

T(u) can be obtained numerically as functions of u through simulation of the

resident replicator-mutator equations ( . ) (see Methods). is method yields

an accurate prediction of ESMR values, particularly for small a (Fig. . . ). e

ESMR increases with a, unless it reaches uΩ, a er which there is no ESMR, as

invaders u′ > uΩ have zero invasion tness against the resident uΩ. For n ≥ ,

the ESMR never reaches uΩ, and so it always exists and increases with a.

As an alternative to numerical simulation, the tness f̄(u) can be approximated

by

f̄(u) ≈ ( + a)
(
− u

n−
n

)
+

u
n
. ( . )

is approximation is based on the notion that the transient equilibrium state

describes the typical trait distribution and represents a mutation-selection

balance, at which one trait has frequency≈ − u+ u
n and the remaining

population is divided roughly equally among the other strategies. Using this

approximation in Eq. ( . ) gives an ESMR estimator that only requires

measurement of the period. is approach is appropriate for n ≥ and a≪ ,

but Eq. ( . ) substantially overestimates tness for larger a or smaller n,

producing an ESMR prediction well below the actual value (Suppl. Fig. . . ).



If the deleterious target size ℓ is positive, then the above argument is modi ed

slightly. e mutational load per generation is instead u
( n−

n + ℓ
)
for the

resident, with u replaced by u′ for the invader. e ESMR ũ then satis es

ũ̄f(ũ) ≈ n
T(ũ)(n( + ℓ)− )

, ( . )

which scales as /ℓ in the limit of large ℓ. Numerical simulation con rms this

asymptotic relationship between ũ and ℓ (Fig. . . , c = ).

. D

. . O

Sustained adaptive evolution of high mutation rates requires neither exogenous

environmental variation nor an inexhaustible pool of possible adaptive

mutations; rather, it may result from cyclical competition dynamics taking place

within a population. e tness bene t for prevailing in competition, the number

of possible deleterious mutations, and the recombination rate together determine

the evolutionarily stable mutation rate, or ESMR. is mutation rate can exceed

typical per-generation mutation rates by several orders of magnitude. Strong

cyclical competition such as that considered in Fig. . . ( tness bonus a = .

as a fraction of maximum tness f + + a = . corresponding to a selection

coefficient of . %) selects for particularly high mutation rates in the absence of

recombination, even for lethal mutation target sizes of – sites (Fig. . . ).

is mechanism is one means by which global hypermutators may be selected



for, and it may help explain the prevalence in the wild of mismatch

repair-de cient bacterial strains with genome-wide mutation rates - to

, -fold that of wild type [ , ]. Recent experimental and theoretical work

suggests that host-pathogen competition, which can be thought of as a type of

cyclical competition with two separate populations, also supports evolution of

high mutation rates [ , , ].

Whether a mutator strain can invade a resident with low mutation rate

depends on the period of the resident’s trait substitutions; a shorter period favors

faster-mutating invaders (Eq. ( . )). If the mutator achieves xation, it

generally does so in a succession of “mini-sweeps,” each one corresponding to a

single trait substitution (Fig. . . ). Pa erns of episodic partial sweeps have also

been observed in stochastic models of mutator evolution [ , ]. Given the

in nite population in our model, the limiting factor on sweep timing is not the

appearance of mutations, but rather the time it takes for the

frequency-dependent tness landscape to shi , favoring the next trait in the

cycle. is timing depends on the strength of selection itself. One aspect of

frequency-dependent competition that we did not explore is that an ESMR need

not be unique. Since the favored mutation rate depends on the period of trait

cycling, we expect that systems with multiple cyclical a ractors of different

periods will have multiple ESMRs, such that long-term mutation rate evolution

would depend on initial trait distributions.

Recombination is known to temper selection for global mutator

alleles [ , , , ], and our model agrees with others in this respect. We



introduced and analyzed replicator-mutator-recombinator equations ( . ) to

conclude that the selective advantage from winning the cyclical competition

must exceed the recombination frequency between the trait and mutator loci in

order for a mutating strain to be favored over nonmutators (Eq. ( . )). is

conclusion holds regardless of the deleterious load incurred. e favored positive

mutation rates may, however, become very small as load and recombination

increase: For a selection coefficient of . % and deleterious target size of ,

introducing recombination at a distance of . centimorgans between the two

loci causes the ESMR to drop from × − to − . Doubling the distance to

. centimorgans brings the ESMR below − (Fig. . . ). At this value, the

infeasibility of achieving perfectly faithful replication would enforce a oor on

the mutation rate, rather than any adaptive bene t of the ESMR. Recombination

also permits stable coexistence between multiple mutation rates

(Figs. . . (B), . . (B)) by allowing a “division of labor” in adaptation:

bene cial traits arise more frequently within the high-rate strain, but they are

more likely to persist a er crossing into the low-rate strain. If ne-tuning of the

mutation rate to the ESMR is not possible, the next-best state of affairs may

involve such coexistence. A previous modeling study demonstrated that even the

low rates of recombination found in bacterial species are sufficient for

non-mutating lineages to “steal” adaptive mutations generated by a mutator

strain, increasing the population’s rate of adaptation while severely limiting the

mutator’s chance of xation [ ]. Stable coexistence was not observed in that

study, however, as the simulated genome contained few sites at which bene cial



mutations could appear, and simulation ended once most of the population

carried all favorable alleles at these sites. e adaptive complementarity of

mutator and non-mutator phenotypes is also suggested by evidence that

mismatch repair genes in Escherichia coli have undergone frequent horizontal

transfer [ ].

. . L

Our model is situated in an adaptive dynamics framework that we introduced for

studying evolution of mutation rates under general cases of frequency-dependent

competition [ ]. Within this framework, adaptive evolution of high mutation

rates may occur only in the absence of a stable equilibrium trait distribution

hence our choice to analyze “rock-paper-scissors” competition, the simplest

unstable case. Our framework relies on two simplifying assumptions:

competition between two mutation rates follows deterministic population

dynamics and is fully resolved before a third mutation rate is introduced. ese

two formal assumptions constrain the biological scenarios to which the

framework applies. First, population size must be sufficiently large that both

bene cial and deleterious mutations appear with some regularity (as in

Fig. . . ); if there are many generations between mutations (even those caused

by the high-rate strain), then tness differences between the two strains will be

negligible for long periods of time, during which mutation rate competition

would be governed by neutral dri [ ]; this scenario is not contemplated by

our model. Second, the framework rules out cases of runaway selection for high



mutation rates: if the mutation rate is itself labile and most deleterious mutations

are mild, it is possible for rapid increases in the mutation rate to occur, subjecting

the population to rapid tness declines (or error catastrophe) when mutational

load equilibrates [ , ]. Since our framework assumes that deleterious

mutations are strong, all mutational load costs are fully realized by the prevailing

mutation rate. ough our framework makes strong assumptions, we anticipate

selection pressures for increased mutation rates to be a general consequence of

cyclical and other unstable frequency-dependent interactions.

. . T ’

ough mutator alleles are commonly viewed as mechanisms for increasing the

adaptation rate and tness of populations, our model postulates a mechanism by

which a high mutation rate, though favored by evolution, can cause average

population tness to decrease over time (Fig. . . ). If, as in the payoff matrix

considered, population tness declines with trait diversity, then a successful

mutator allele essentially behaves as a sel sh variant in a cooperative dilemma.

Prior ndings that mutator lineages generate “social cheats” in microbial

populations demonstrated that mutator evolution can lead to a breakdown in

cooperative scavenging behaviors [ ]. Our model broadens the concept of

mutator-mediated sel shness by showing how a cooperative dilemma may

emerge from the dynamics of mutator competition, even though the underlying

interaction does not involve cooperative or sel sh traits. Together with the case

of runaway selection described above, our model represents a third possible



mechanism by which mutator alleles may prevail but subvert natural selection.

. . M

Our model can represent a range of different biological mechanisms controlling

mutation rates. Mechanisms that modulate the genome-wide mutation rate, such

as altered DNA polymerases, would have large associated rates of deleterious

mutation and recombination (large ℓ and c values), suggesting that their role in

adaptive mutation may be limited in sexual species [ , , ]. On the other

hand, mechanisms affecting local mutation rates correspond to lower ℓ and c

values, and should be more responsive to selection for increased mutation rate on

a trait locus. A number of such mechanisms have been identi ed, typically

involving features of the immediately surrounding sequence.

First, the rates of different types of nucleotide substitutions appear to be

modulated by the frequency of certain short ( bp) sequences up to bp

away [ , ] and by GC content up to bp away [ , , , ]. In the

la er case, each individual site contributing to local GC content may act as a

“ ne-tuning” local mutator allele. One consequence not explored in our model is

that certain features have a directional effect; e.g., low GC content promotes

methylation-dependent mutation of C to T (G with A), but not the

reverse [ , , , ].

Second, short DNA repeats, which can experience frequent duplication and

deletion events caused by slipped-strand mispairing, may be potent local

mutators. If a repeat originates within an open reading frame and its subsequent



duplication or deletion would result in a downstream frame shi , the increased

mutation rate can cause rapid switching between alternate gene

products [ , , , , , ]. Even if the repeat itself does not appear in

a coding region, the sequence length heterozygosity that it generates can increase

nucleotide substitution rates by an order of magnitude within a bp radius,

with smaller noticeable effects out to bp [ , , ].

Since a local mutator tends to remain linked to the nearby mutations that it

causes, recombination is unlikely to substantially impede selection for increased

mutation. Consider the -trait competition in Fig. . . with a trait-controlling

site at the end of a bp effect radius of a local mutator. e deleterious target

size ℓwould be on the order of , the sequence length afflicted by increased

deleterious mutation. e ESMR in this scenario is ũ = × − . To obtain

ve-fold reduction in the ESMR, the recombination probability would need to be

c = × − ; over bp, this value requires a recombination rate of

cM/Mb, extraordinarily high among multicellular eukaryotes, even at

hotspots [ , , , , , ].

Our model can also describe migration of a trait-controlling gene to a region

with a different mutation rate. Mutation rates vary across regions of the genome

due to features such as DNA structure, conformation, and replication

timing [ , , , , ]. In the asexual (c = ) case, our model can treat

individuals affected by the gene movement as the invading strain. Parameter ℓ

then describes the deleterious target size of the region that is transferred to the

new mutational milieu, including the trait-controlling gene. Recombination



would introduce genetic incompatibilities, requiring modi cations to the model.

. . O

e predictions of our model apply broadly, as cyclical competition is present in

diverse biological scenarios. e strategic dynamics among male mating

strategies in the side-blotched lizard,Uta stansburiana [ , ], is a

well-documented example. e three male morphotypes of this species vary in

aggressiveness, territoriality, and cooperation in territory defense, generating a

rock-paper-scissors game and cyclical population dynamics among the

types [ – ]. Similar dynamics have also been observed in the viviparous

lizard, Lacerta vivipara [ ]. E. coli also exhibits rock-paper-scissors dynamics

with regard to production of and resistance to colicins, a form of

bacteriotoxin [ , ]. More generally, cyclical competition should be

common wherever individuals face tness tradeoffs on multiple interacting

dimensions, such as life history characters, sexual behaviors, and social

behaviors [ ]. Since selection coefficients for social or sexual traits tend to be

large, we believe that the . advantage considered in Fig. . . is quite

reasonable. Our model predicts elevated levels of mutation on the loci

contributing to behavior in these cyclical interactions, as compared with the

genome-wide average. Moreover, global mutation rates are generally predicted to

be higher in asexual species where cyclical dynamics are common.



. M

. . N ODE

Numerical analysis of the replicator-mutator-recombinator equations ( . ) was

done using Mathematica version . for Linux x ( -bit), using default options

unless otherwise speci ed. To compute invasion tness, the following modi ed

dynamics were used to treat the invader strain as forever rare:

ṙi = ( − u)fi,uri +
(u
n

)
φr − φrri,

żi = ( − c)
[
( − u′)fi,u′zi +

(
u′

n

)
φz

]
+ c
[
( − u)fi,uri +

(u
n

)
φr
]

− φzzi.

( . )

Here, ri and zi are interpreted as the proportion of trait iwithin the resident strain

and invader strain, respectively, not within the total population. Accordingly, the

nal term of each equation uses φr or φz, not φ, ensuring that
∑

i ri =
∑

i zi =

at all times. Fitness computation ignores the rare invader, and so fi,u = Ar− uℓ.

From the resident perspective, recombination with an invader never occurs, and

so the equation for ṙi recapitulates the form of the replicator-mutator equation.

From the invader perspective, all of the fraction c offspring that recombine do so

with a resident. e dynamics were simulated using the NDSolve option,

“MaxSteps -> ”, and numerical integration of equation ( . ) was done



using the NIntegrate option, “Method -> LocalAdaptive”. e population started

with only trait , and the rst timesteps were discarded to ensure

convergence to the limiting trajectory. e time limits of integration in ( . )

were then chosen to contain an integer number of oscillations (at least as

counted by the method below, and not more than timesteps). In the case

where the resident was a nonmutator, there are no oscillations, and the limits of

integration were [ , ].

For the time-averaged tness calculation in Fig. . . , a modi ed version of

( . ) was used to keep the invader/resident ratio constant:

ṙi = ( − u)ri (A (( − Z) r+ Zz))i +
u
n
φr − φrri

żi = ( − u′)zi (A (( − Z) r+ Zz))i +
u′

n
φz − φzzi.

( . )

As above, ri and zi are interpreted as trait frequencies within the respective strain.

e value of Z determines the invader/resident ratio and is constant. Numerical

integration proceeded as above to obtain the time-average values of φr and φz.

. . M

To measure the period of oscillations when just the resident strain is present, a

piecewise projection function π was devised to track the resident population



vector’s progress around the cycle:

π(r) =


m+ rm+ −rm−

rm+rm+ − rm−
if rm− < rm+ ,

m− rm− −rm+
rm+rm− − rm+

if rm− > rm+ ,

m if rm− = rm+ ,

( . )

wherem = argmax(r),m+ is replaced with ifm = n, andm− is replaced

with n ifm = . is quantity progresses from to n+ , though not

monotonically or continuously, as the vector r traverses the cycle. For the

purpose of counting the number of oscillations, the small discontinuities and

declines can be handled by the following algorithm: Data from the rst

timesteps were not used, to allow the period to stabilize, and then the value of

π(r)was calculated from timestep to , in increments of . . Each

timestep where π(r) ∈ ( . , . )was marked with an A, each timestep where

π(r) ∈ ( . , . )was marked with a B. Each yet-unmarked timestep was then

marked with the symbol of the most recent marked timestep. A new oscillation is

then deemed to start at each transition from A to B. e average period of all

oscillations was then used.

. . ESMR

A binary search algorithm was used to nd the ESMR via simulation of ( . ).

Mutation rates strictly between and uΩ were explored to nd a value ũ that

could resist invasion both by . × ũ and by ũ/ . . is analysis is justi ed for

the generalized rock-paper-scissors game based on the observations that ( ) if u



can be invaded from slightly above, then ũ > u, ( ) if u can be invaded from

slightly below, then ũ < u, ( ) if u resists nearby invaders, then u resists all

invaders. ese observations need not hold for more complicated games. e

rate uΩ/( + ℓ)was used as an initial guess for ũ. At time , all individuals were

of trait and the invading strain frequency was − . Invasion was deemed to fail

if the invader frequency a er timesteps was less than this initial value.

. . F

Finite population dynamics were simulated as a frequency-dependent Moran

process with constant population size . Each timestep, every individual

interacted with every individual (including itself), receiving tness from

interaction with another of the same trait, tness + a from interaction with one

of the trait that it defeats, and from all other interactions. One individual was

chosen proportional to tness to reproduce, its offspring replacing one randomly

chosen (regardless of tness) individual (possibly the parent). At each

reproduction event, the offspring inherited its parent’s trait with probability − u

and selected a random trait with probability u, where u is the parent’s mutation

rate. e offspring’s mutation rate always equaled that of the parent. e

offspring then replaced a randomly chosen individual in the population (possibly

its parent).

For simulations with recombination, with probability c each timestep, two

(possibly mutated) offspring are generated and produce a recombinant, which

has the mutation rate of one and the trait of the other. is recombinant then



replaces a randomly chosen individual in the population (possibly one of its

parents).

e Moran simulation was rst run with only the resident strain, to create

representative initial trait distributions in which the invader would appear:

starting from a population with of each trait, the resident population evolved

for timesteps, a er which the population frequencies were sampled every

timesteps therea er. frequency distributions were sampled in all. In

each of the sampled populations, one individual was randomly designated to be

the initial invader, with mutation rate u′.

Next, to determine the xation probability of an invading strain for a particular

pair of values (u, u′), , , separate invasion a empts were simulated, each

starting at a trait frequency distribution randomly selected from the

distributions created previously. Each simulation progresseed until one of the

two strains reached xation.

Effective invasion tness se,u(u′)was computed by solving for s in the equation

ρ =
−

+s

−
( +s)N

, ( . )

(see [ ], Eq. . ) whereN = is the population size and ρ is the fraction of

the , , simulations for which the invader went to xation.

While it may be more plausible to suppose that the initial invader is a

randomly chosen offspring that had just mutated to the new mutation rate u′,

rather than a randomly chosen individual, this method would unduly favor the

invading strain, as it would be more likely to start as the high- tness offspring of a



high- tness parent. In that case, a strain would be favored to invade against a

resident of the very same mutation rate, invalidating the ESMR concept.

All nite population simulations were carried out using Matlab R b.
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6
Mutation rate evolution in replicator

dynamics

. I

T ,

and therefore evolves [ , , , , , , , ]. In populations that

are well-adapted to a static environment, most mutations are neutral or

deleterious, and mutation rates are therefore expected to evolve to levels as low as

feasible, given the constraints and costs associated with faithful



replication [ , , , ]. However,

theoretical [ , , , , , , , , ] and

empirical [ , , , ] evidence is growing that in novel or rapidly

changing environments, evolution may select for higher mutation rates. While

strains with higher mutation rates are susceptible to increased mutational load,

they are also more likely to produce bene cial mutations, upon which the linked

genes coding for increased mutation may “hitchhike” to xation. e success of

mutator strains depends on whether bene cial mutations occur with sufficient

frequency and strength to outweigh load [ ].

eoretical study of mutation rate evolution has focused principally on cases

where the environment is either static or uctuates independently of the evolving

population. Cases of tness uctuations generated by the evolving population

itself remain unexplored. Such uctuations may arise through

frequency-dependent selection [ , ] in scenarios such as predator-prey

systems [ , , ] (including Red Queen dynamics [ , , , ])

host-parasite systems [ , ], cooperative dilemmas [ , , , ], and

nontransitive competition systems [ , , , , , ].

is work introduces a theoretical framework for studying the evolution of

mutation rates in a large population subject to frequency-dependent selection.

Our framework combines two major approaches to evolutionary modeling:

replicator dynamics [ , , , , , ], which studies the

demographic dynamics of trait frequencies in a large population, and adaptive

dynamics [ , , , ], which studies long-term evolution through



sequences of trait substitutions.

e model we describe considers two loci, a trait locus determining the

phenotypic traits that are affected by frequency-dependent selection, and a

mutation rate locus determining the rate of mutation on the trait locus. Replicator

dynamics with mutation [ , , ] are used to model evolution on the trait

locus, while evolution on the mutation rate locus is studied using the adaptive

dynamics approach. We assume that that evolution is faster on the trait locus

than on the mutation locus, allowing a separation of timescales. Classic

theoretical works on the evolution of mutation rates [ , , ] implicitly

make a similar assumption, by focusing their analysis on the fate of a given

mutation rate modi er over long periods of time involving multiple selective

sweeps of bene cial mutations.

We present results on both the upward and downward evolution of mutation

rates. We show that when frequency dependence leads to a stable

mutation-selection equilibrium, mutation rates will evolve downward. However,

when trait dynamics converge to a heteroclinic cycle, as can occur in

“rock-paper-scissors” scenarios and other cases of non-transitive competition,

positive mutation rates can arise and persist. is suggests that genetic loci

coding for such rock-paper-scissors traits may have abnormally high mutation

rates.

We also show, perhaps surprisingly, that mutating and non-mutating strains

can coexist inde nitely. is coexistence is possible and occurs

generically whenever there exists an evolutionarily stable state of the replicator



dynamics in which all traits are present in a selective balance.

We caution that since our model focuses on just a single trait locus, it does not

incorporate the broader (o en deleterious) effects that mutation can have on the

rest of the genome. Our work therefore most clearly addresses cases such as short

sequence motifs and DNA repeats that modify only the mutation rate in the

immediate genetic

neighborhood [ , , , , , , , , , , , , , ].

Mutator alleles of global effect, as have been discovered in a number of bacteria

[ , , , , , ], could be incorporated into our model by adding

terms that describe genome-wide mutational load [ ]; however, we do not

pursue this avenue here.

We rst review necessary background on dynamical systems theory and

standardize our notation in Sect. . . Section . presents our two-locus model

and describes how evolution proceeds on each locus. Our results on the

evolution of mutation rates are discussed in Sect. . .

. D

We rst introduce several notions from dynamical systems theory that are used in

our work. For this section, letD be the closure of a bounded open set inRd.

Consider a differential equation onD of the form ẋ = g(x), where g : D→ Rd is

smooth. e solution to this equation can be described by a smooth ow onD,

that is, a collection of smooth maps ψt : D→ D satisfying ψs+t = ψs ◦ ψt. e

orbit associated with a given initial condition x( ) = x ∈ D is described by



x(t) = ψt(x ). We assume g is such that ψt(x) ∈ D for all x ∈ D, t ∈ R (that is,

solutions persist inde nitely both forwards and backwards in time).

. . ω-L

e ω-limit set of a point x ∈ D, which we denote ω(x) ⊂ D, is the set of points

y ∈ D for which there exists an increasing sequence of real numbers {ti}∞i= with

• lim
i→∞

ti =∞,

• lim
i→∞

ψti(x) = y.

In words, ω(x) is the set of points that are asymptotically approached by the orbit

ψt(x) as t→∞. ω-Limit sets are invariant (both forwards and backwards); that

is, if y ∈ ω(x) then ψt(y) ∈ ω(x) for all t ∈ R (e.g., .

. . A

An a ractor is a set to which an open set of points converge under a ow as

t→∞. is notion has been mathematically formalized in various ways. e

de nition we use is adopted from Gyllenberg et al. [ ] and Geritz et al. [ ].

We de ne an a ractor as a subset A ⊂ D satisfying the following conditions:

. ere exists an open neighborhoodU of A for which

lim
t→∞

dist(ψt(x),A) = ,

for all x ∈ U.



. For each open neighborhood V of A, there exists an open neighborhoodW

of A for which ψt(x) ∈ V for all x ∈ W and t ≥ .

. . T

We will be also be interested in describing the asymptotic behavior of an orbit in

statistical terms. To this end, we de ne a probability measure that captures,

roughly, the probability that an orbit occupies a certain region ofD a er a long

amount of time has passed. is measure was introduced by Takens [ ] and

was named the sojourn time measure by Bonneuil [ ].

Given an initial point x ∈ D, and a closed subsetU ⊂ D, the sojourn time

measure ofU is de ned by

σx(U) = lim
ε→

lim
T→∞ T

λ
({

t : ≤ t ≤ T, dist(ψt(x),U) < ε
})

, ( . )

where λ is the Lebesgue measure onR. e closed subsets ofD for which the

above limits exist are taken as a basis for a σ-algebra, to which the measure σx is

extended. Informally, σx(U) quanti es the asymptotic proportion of time that

the orbit ψt(x) spends in or nearU, as t→∞.

e sojourn time measure is a probability measure, meaning that σx(D) = ,

for each x ∈ D. Moreover, it satis es σx(ω(x)) = ; that is, it is concentrated

entirely on the ω-limit set of x. e sojourn time measure is also invariant: for

each measurableU ⊂ D, σx(ψt(U)) is constant in t.

As a trivial example, we observe that if the orbit associated with x converges to

a xed point x̃, then the sojourn time measure is a point mass (Dirac



δ-distribution) at x̃.

. M

Here we outline a mathematical framework for studying the evolution of

mutation rates under frequency-dependent selection. Section . . introduces

the two loci in our model: one controlling the traits subject to

frequency-dependent selection, and the other controlling the mutation rate.

Section . . presents our model for evolution on the trait locus, using the

framework of replicator dynamics. e model for evolution of the mutation rate,

based on the adaptive dynamics approach, is presented in Sect. . . .

. . T -

Our model considers two evolving loci:

• e trait locus controls the traits that are directly affected by

frequency-dependent selection. We consider n competing alleles on the

trait locus, indexed i = , . . . , n. Each allele produces a distinct trait.

• emutation rate locus controls the rate of mutation on the trait locus.

Alleles on the mutation rate locus are represented by the mutation rate

u ∈ [ , ].

We assume that mutation on the mutation rate locus is rare, compared to

typical mutation rates on the trait locus. us, evolution of the mutation rate u

occurs on a longer timescale than evolution of the traits i = , . . . , n. (Here and



henceforth, the term “mutation rate” refers to the rate of mutation on the trait

locus, as determined by the mutation rate locus.) Appealing to this separation of

timescales, we suppose that at most two mutation rates are present at any given

time. at is, we assume that competition between any twomutation rates will be

resolved before any third mutation rate can appear.

To standardize terminology, we use the term “strain” to refer to a

subpopulation with a given mutation rate (e.g. “a strain of mutation rate u”).

Multiple traits may be present within one strain. e frequency distribution of

traits within each strain evolves over time, due to frequency-dependent selection.

. . S -

We model frequency-dependent selection on the trait locus using replicator

dynamics [ , , , , , ], which describe the dynamics of

competing traits in a large population by a system of ordinary differential

equations.

R

Replicator dynamics study the dynamics of the frequency vector

x = (x , . . . , xn), where xi is the frequency of trait i. e state space is the

n-simplex

△n =

{
(x , . . . , xn) : xi ≥ ,

∑
i

xi =

}
.

Frequency dependence is described by the tness functions fi : △n → R for

i = , . . . , n, where fi(x) gives the tness of trait iwhen the population state is



x ∈ △n. We require that each fi be smooth and positive for all x ∈ △n.

Replicator dynamics are most o en studied using linear fi; however, none of the

results of this work requires linearity.

When mutation is absent, trait dynamics are governed by the replicator

equations

ẋi = xi(fi(x)− φ), ( . )

for i = , . . . , n, with φ =
∑n

i= xifi denoting average population tness.

Equation . can also be wri en in vector form as

ẋ = (F(x)− φI)x,

where F(x) is the n× n diagonal matrix with ith diagonal entry fi(x).

R -

Incorporating mutation of rate u into the replicator equation yields the

replicator-mutator equations [ , , ]:

ẋi = ( − u)xifi(x) +
u
n
φ− φxi, ( . )

or in vector form:

ẋ = (QuF(x)− φI)x. ( . )



Above, the matrixQu describes mutation:

Qu =



− n−
n u u

n · · · u
n

u
n − n−

n u · · · u
n

...
... . . . ...

u
n

u
n · · · − n−

n u


= ( − u)I+

u
n
.

e symbol above denotes the square matrix of all ones. In Eq. . , and in the

remainder of this work, it is assumed that each mutation on the trait locus is

equally likely to result in any one of the n traits. We will refer to the xed points of

Eq. . as mutation-selection equilibria.

. . L -

We study the long-term evolution of the mutation rate under the assumptions of

the adaptive dynamics framework [ , , , ]. is framework assumes

that long-term evolution proceeds by a sequence of substitution events. In each

such event, an invading strain successfully displaces the resident strain and

becomes the new resident. Mutation (on the mutation rate locus, in our case) is

assumed rare, so that the possibility of concurrent invasions by multiple strains

can be disregarded.

Section . . extends the replicator-mutator equations to competition

between two strains of different mutation rates. en in Eq. . . we formally

state our model for evolution on the mutation rate locus, inspired by adaptive

dynamics. Items . . and . . introduce the concept of invasion tness, and



discuss the extent to which it predicts the outcome of invasion events.

C

Here we extend the replicator-mutator equations, Eq. . , to the case of two

competing strains: a resident strain of mutation rate u, and an invading strain of

mutation rate u′. We denote the resident trait frequencies by r = (r , . . . , rn),

and the invader trait frequencies by z = (z , . . . , zn). ese frequencies are

relative to the whole population; hence the state space is the simplex

△ n =

{
(r, z) : ri ≥ , zi ≥ ,

∑
i

(ri + zi) =

}
.

Evolutionary dynamics are described by the system of equations

ṙi = ( − u)rifi(r+ z) +
u
n
Rφr − φri

żi = ( − u′)zifi(r+ z) +
u′

n
Zφz − φzi,

( . )

where R and Z, respectively, are the total frequencies of residents and invaders,

R =
n∑
i=

ri, Z =
n∑
i=

zi,



and

φ =
n∑
i=

(ri + zi)fi(r+ z),

φr = R

n∑
i=

rifi(r+ z),

φz = Z

n∑
i=

zifi(r+ z),

( . )

are the average tness functions of the whole population and the two strains,

respectively.

Note that when restricted to either of the subsets

△ n |Z= = {(r, z) ∈ △ n|z = },

△ n |R= = {(r, z) ∈ △ n|r = },
( . )

then Eq. . reduces to Eq. . (with u := u′ in the la er case).

For a given orbit of Eq. . , we say that the invading (resp., resident) strain

xates if Z(t)→ , (resp., R(t)→ ) as t→∞. e question of whether

invaders or residents xate depends, in general, on the initial conditions

(r( ), z( )) ∈ △ n that de ne this orbit. It is also possible for neither strain to

xate, as we discuss in Eq. . . .

T

is section presents a model of mutation rate evolution as an iterative process.

In each iteration, an invading strain arises, competes with the resident strain, and



either displaces the resident strain (becoming the new resident) or goes extinct.

is process is motivated by the adaptive dynamics framework discussed in the

beginning of Sect. . . .

is process depends on the following data:

• the tness functions fi : △n → R≥ for i = , . . . , n,

• the initial mutation rate u ∈ [ , ],

• the initial trait distribution x ∈ △n,

• the initial frequency α ∈ ( , ) of invading strains,

• a probability measureM giving the probability that mutation on the

mutation rate locus yields a change Δu in the mutation rate.

We require thatM be supported on the interval [−ν, ν] for some constant

ν > . We also require thatM assign positive probability to the intervals [−ν, )

and ( , ν], and zero probability to { }. (In other words, mutation on the

mutation rate locus can either increase or decrease the mutation rate, but does

not leave it unchanged.)

To formally de ne this iterative process, let uk and xk be the mutation rate and

trait distribution, respectively, a er k ≥ iterations of this process. e next

iteration then proceeds as follows:

. A trait distribution x∗k ∈ △n is sampled from the sojourn time measure σxk

associated with the ow on△n de ned by the replicator-mutator



equations, Eq. . . ( e point x∗k represents the trait distribution state of

the resident population when an invading strain appears.)

. A vertex v∗k of△n is randomly chosen, with the probability that vertex i is

chosen given by

( − uk)(x∗k)i
fi(x

∗
k)

φ(x∗k)
+

uk
n
.

( e vertex v∗k represents the initial trait distribution within the invading

strain. is distribution is monomorphic, re ecting the biological fact that

the invading strain must be seeded by a single individual. e probability

associated to vertex i represents the probability that a randomly chosen

offspring from the current resident population will have trait i.)

. A mutation rate change Δuk is sampled fromM. e mutation rate u′k of

the invading strain is de ned as

u′k :=


uk + Δuk if uk + Δuk ∈ [ , ],

if uk + Δuk < ,

if uk + Δuk > .

. A point (r∗k , z∗k) ∈ △ n is sampled from the sojourn time measure

σ(( −α)x∗k ,αv
∗
k )

associated with the ow on△ n de ned by Eq. . , with

u := uk and u′ := u′k. ( e point (r∗k , z∗k) represents the state of the system

a er resident-invader competition is resolved.)

. e (k+ )st mutation rate and trait distribution are de ned as follows:



• if r∗k = , then xk+ := z∗k and uk+ := u′ (invaders replace

residents),

• if z∗k = , then xk+ := r∗k and uk+ := u (invaders go extinct).

Iterating this process yields a sequence {(uk, xk)}∞k= . e sequence {uk}∞k=

describes the long-term evolution of the mutation rate.

It is possible for neither r∗k = nor z∗k = to be satis ed in Step , as we

discuss in Eq. . . . In this case, the process ceases to adequately describe

mutation rate evolution, and is formally terminated.

Although this process is well-de ned for any values of the required data, we

will be most interested in the case where ν and α are small. is means that we

consider mutation on the mutation rate locus to be incremental, and invading

strains to initially comprise only a small fraction of the population.

I

e invasion tness of a strain is de ned as its exponential growth rate when rare

[ , , , , ]. Invasion tness is used in adaptive dynamics to predict

the outcomes of invasion events.

For so long as the invading strain remains rare, the trait distribution among

invaders has negligible effect on the trait dynamics within the resident strain. e

resident trait dynamics are in this case closely approximated by the single-strain

replicator-mutator equations, Eq. . .

We can therefore quantify invasion tness by assuming that x = x(t) has

dynamics given by Eq. . , and that z evolves according to the time-dependent



linear equation,

ż =
(
Qu′F(x(t))− φr(t)I

)
z, ( . )

where φr(t) =
∑n

i= fi(x(t))xi(t) is the average tness of the resident strain at

time t. e state space for Eq. . is the set of all nonnegative vectors inRn.

Using this simpli cation, we de ne the invasion tness of an invading strain

with mutation rate u′, which appears with internal trait distribution x′ when the

resident strain (of mutation rate u) has trait distribution x, by

su,x(u′, x′) = lim
T→∞ T

∫ T Ż(t)
Z(t)

dt, ( . )

if this limit exists (otherwise the invasion tness is unde ned). Above,

Z(t) =
∑n

i= zi(t), the dynamics of z are given by Eq. . with initial condition

z( ) = x′, and x gives the initial condition for Eq. . . is extends previous

de nitions [ , , ] to the case in which both the resident and invading

strains contain a number of sub-populations (in our case, bearers of different

traits), which are themselves evolving on a fast timescale. We caution, however,

that time-averaged quantities of the form . may be unde ned for orbits

approaching heteroclinic or strange a ractors; see Ref. [ ] for a general

discussion.

T

Positive invasion tness does not necessarily imply that the invading strain will

ultimately displace the resident strain. e two strains may evolve towards a



stable or dynamic coexistence.

is issue arises more generally in studying the adaptive dynamics of an

arbitrary quantitative trait x. In general, coexistence of resident and invader

strains is possible. However, it is reasonable to suppose that if the invasion tness

function sx(x′) is nonsingular at x′ = x, and if x′ is sufficiently close to x, then

positive invasion tness implies xation of the invading strain [ ]. is

proposition, known as “invasion implies xation” (herea er, IIF), was a

long-standing conjecture until proofs were discovered by Dercole [ ] and

Geritz [ ].

Neither proof applies directly to our situation of two loci evolving on different

timescales, though it appears likely that the techniques used in these proofs might

extend to the present case. For our purposes, we state IIF as a formal conjecture:

Conjecture (Invasion Implies Fixation; IIF). Consider given tness functions

fi : △n → R, mutation rate u ∈ [ , ], and trait distributions x, x′ ∈ △n. Suppose

that

• x lies in the basin of a raction of an a ractor of the replicator-mutator

equations, Eq. . , with mutation rate u,

• there is a δ > such that su,x(u′, x′) is strictly monotonic (either increasing or

decreasing) in u′, on the interval u′ ∈ (u− δ, u+ δ) ∩ [ , ].

en there exists ε > such that for all u′ with |u′ − u| < ε and all < α < ε,

invaders (resp., residents) xate in Eq. . om the initial conditions

(r( ), z( )) = (( − α)x, αx′), ( . )



if su,x(u′, x′) > (resp., su,x(u′, x′) < ).

We will specify, in the remainder of this work, those of our results that depend

on this conjecture.

. R

Replicator-mutator dynamics can yield a wide variety of behaviors, including

multiple a ractors, limit cycles, and chaos [ , , ]. Invasion tness is

difficult to compute analytically when the replicator-mutator dynamics are

complex. We therefore limit our focus to simple cases for which analytical results

can be obtained.

We rst consider cases in which the mutation rate evolves downwards.

Section . . shows that such downward evolution can be expected whenever

residents are at mutation-selection equilibrium. is downward evolution

continues until either this equilibrium is lost or the mutation rate reaches zero.

We then investigate the upward evolution of mutation rates in Sect. . . . We

derive conditions under which a mutator strain can invade and persist in a

non-mutating resident population initially at equililbrium. We then show that if

the replicator dynamics, Eq. . , admits a globally a racting heteroclinic cycle

between monomorphic states, the zero mutation rate is evolutionarily unstable.

Last, Sect. . . explores cases in which mutators and non-mutators can stably

coexist. is coexistence can occur when the replicator dynamics, Eq. . , admits

a stable polymorphic xed point.



. . D -

is section shows that mutation-selection equilibria lead to the downward

evolution of mutation rates. is extends the classical observation that mutation

rates evolve to zero in constant tness landscapes, if no new bene cial mutations

are available [ , , ].

We start by showing how invasion tness can be related to an eigenvalue

characterizing the growth rate of the invading strain. Consider a resident strain of

mutation rate u ≥ , and suppose the trait distribution within this resident strain

is at a xed point x̃ of the replicator-mutator equations, Eq. . . We introduce the

notation f̃i = fi(x̃) for the tness of trait i at this equilibrium, φ̃r =
∑

i f̃ix̃i for the

average tness of the resident strain, and F̃ for the diagonal matrix with entries f̃i.

Lemma . For any invading strain with trait distribution x′ ∈ △n and mutation rate

u′ > , the invasion tness of this strain is given by

su,x̃(u′, x′) = φ̂z − φ̃r,

where φ̂z denotes the largest eigenvalue of the matrix Qu′ F̃.

Proof. Since the resident strain is at equilibrium, Eq. . for invader dynamics is

time-independent:

ż =
(
Qu′ F̃− φ̃rI

)
z. ( . )



e solution is given by

z(t) = exp
(
t(Qu′ F̃− φ̃rI)

)
x′Z .

Above, Z is the (small) initial frequency of invaders.

Since u′ > and f̃i > for each i, thenQu′ F̃ has strictly positive entries. By

the Perron-Frobenius theorem,Qu′ F̃ has a positive simple largest eigenvalue φ̂z,

with associated strictly positive eigenvector ẑ (which we normalize so that∑
i ẑi = ). e matrix exp

(
Qu′ F̃

)
is also strictly positive, has Perron-Frobenius

eigenvector ẑ, and associated largest eigenvalue eφ̂z . Applying the

Perron-Frobenius theorem to exp
(
Qu′ F̃

)
further yields that

lim
t→∞

exp
(
tQu′ F̃

)
etφ̂z

x′ = kẑ,

where k ∈ R is a constant. (Speci cally, kẑ is the Perron projection of x′; that is,

the eigenspace projection of x′ onto ẑ.)

We now consider the limit

lim
t→∞

z(t)
exp
(
t(φ̂z − φ̃r)

) = lim
t→∞

exp
(
t(Qu′ F̃− φ̃rI)

)
x′Z

exp
(
t(φ̂z − φ̃r)

)
= Z lim

t→∞

exp
(
tQu′ F̃

)
etφ̂z

x′

= Z kẑ.

( . )



Summing Eq. . over all components yields

lim
t→∞

Z(t)
exp
(
t(φ̂z − φ̃r)

) = Z k. ( . )

Separately, le -multiplying both sides of Eq. . byQu′ F̃− φ̃rI and

comparing to Eq. . yields

lim
t→∞

ż(t)
exp
(
t(φ̂z − φ̃r)

) = Z k(Qu′ F̃− φ̃rI)ẑ

= Z k(φ̂z − φ̃r)ẑ.

( . )

Summing Eq. . over all components, we obtain

lim
t→∞

Ż(t)
exp
(
t(φ̂z − φ̃r)

) = Z k(φ̂z − φ̃r). ( . )

Finally, dividing Eq. . by Eq. . yields

lim
t→∞

Ż(t)
Z(t)

= φ̂z − φ̃r.

Comparing to the de nition of invasion tness, Eq. . , we conclude that

su,x̃(u′, x′) = φ̂z − φ̃r,

as desired.

Intuitively, the Perron-Frobenius eigenvector ẑ represents the invader trait

distribution that is stable under mutation and selection when the invader



frequency is small. e corresponding eigenvalue φ̂z equals the average tness of

invaders at this trait distribution. us Lemma con rms that an invading strain

succeeds when its average tness exceeds that of the resident.

Using the above lemma, we now show that, when the resident trait

distribution is at a mutation-selection equilibrium, an invading strain succeeds if

and only if its mutation rate is lower than that of the resident population. e

only exception is the non-generic case in which all traits are equally t, in which

case all invading strains are selectively neutral (we will discuss this case later in

this section and in Sect. . . ).

eorem . Consider a resident strain of mutation rate u > , and suppose the trait

distribution within this resident strain is at a xed point x̃ of the replicator-mutator

equations, Eq. . . en for all x′ ∈ △n and u′ > ,

• If the f̃i = fi(x̃) are all equal, su,x̃(u
′, x′) = .

• If the f̃i are not all equal, su,x̃(u
′, x′) > ⇔ u′ < u.

Proof. We claim, and prove below, that dφ̂z
du′ ≤ , with equality if and only if all the

f̃i are equal. us by Lemma , su,x̃(u′, x′) = φ̂z − φ̃r is decreasing in u′ if the f̃i are

not all equal, and constant in u′ otherwise. We also note that by Eq. . , the xed

point x̃ is an eigenvector of the (strictly positive) matrixQuF̃, with eigenvalue φ̃r.

By the Perron-Frobenius theorem, φ̃r is the unique eigenvalue ofQuF̃whose

associated eigenvector is nonnegative. In the case u′ = u, this eigenvalue is, by

de nition, φ̂z. us for u′ = u, φ̂z = φ̃r, and therefore su,x̃(u, x′) = . Combining

this with the above-mentioned decreasing behavior of su,x̃(u′, x′) in u′ proves the



theorem.

To demonstrate the claim regarding dφ̂z
du′ , we rst observe that the positive and

symmetric matrix F̃ / Qu′ F̃ / has Perron-Frobenius eigenvalue φ̂z and associated

eigenvector F̃ / ẑ. Applying a standard formula for the derivative of the

eigenvalues of a real symmetric matrix [ , ], we write

dφ̂z
du′

=

(
F̃ / ẑ

)T F̃ /
( d
du′Qu′

)
F̃ /

(
F̃ / ẑ

)(
F̃ / ẑ

)T (F̃ / ẑ
)

=
ẑTF̃
( d
du′Qu′

)
F̃ẑ

ẑTF̃ẑ

=
−
∑n

i=

(̃
fiẑi
)

+ n

(∑n
i= f̃iẑi

)
ẑTF̃ẑ

. ( . )

But Jensen’s inequality implies that

(∑
i f̃iẑi
n

)
≤
∑

i(̃fiẑi)
n

.

Hence the numerator of Eq. . is≤ , with equality if and only if the terms f̃iẑi

are equal for all i. In the la er case, we write F̃ẑ = α , for some constant α, where

denotes the vector with each entry equal to one. We then have

φ̂zẑ = Qu′ F̃ẑ = Qu′(α ) = α . us the trait abundances ẑi = α/φ̂z are constant

over i, and the tness functions f̃i must be constant over i as well. We also note

that the denominator of Eq. . is positive in all cases, since F̃ is a diagonal

matrix with strictly positive elements and is therefore positive de nite. is

proves the claim that dφ̂z
du′ ≤ , with equality if and only if the f̃i are all equal.



A similar result holds when the invading strain is non-mutating (u′ = ).

However, in this case, the invasion tness su,x̃( , x′) depends on the initial

distribution x′ of traits within the invading strain, as we state in the following

proposition.

Proposition . Consider a resident strain of mutation rate u > , and suppose the

trait distribution within this resident strain is at a xed point x̃ of the

replicator-mutator equations, Eq. . . For any x′ ∈ △n, su,x̃( , x′) > if and only if

max{̃fi : x′i > } exceeds φ̃r =
∑

i f̃ix̃i.

Proof. is follows immediately from observing that for u′ = , Eq. .

simpli es to

żi = zi(̃fi − φ̃r),

for each i = , . . . , n.

In particular, if x′ ∈ int△n, then the condition max{̃fi : x′i > } > φ̃r of

Proposition becomes equivalent to the condition of eorem that the f̃i are

not all equal. is is because for x′ ∈ int△n, max{̃fi : x′i > } > φ̃r holds if and

only if there is any i for which f̃i > φ̃r. Since x̃must also be in int△n by the fact

that x̃ is a xed point of Eq. . with u > , then φ̃r is a weighted average of the f̃i

with positive weighting for each component. us f̃i > φ̃r for some i if and only if

the f̃i are not all equal.

At the other extreme, if x′ is a vertex of△n (as is always the case for invading

strains that appear in the mutation rate evolution process described in Eq. . . ),

then the condition of Proposition becomes simply fi > φ̃r, where i is the index



of the trait represented by x′.

We remark that, according to eorem , if the trait tness functions fi(x̃) are

all equal at a mutation-selection equilibrium x̃, then all invading strains of

different mutation rate are selectively neutral. is can be explained by observing

that when all traits are equally t, all mutations are themselves selectively neutral.

is situation can only occur in very particular circumstances. Indeed, se ing

fi(x̃) = φ for each i at a xed point x̃ of the replicator-mutator equations, Eq. . ,

yields

= uφ
(
n
− x̃i

)
,

for each i. e average tness φ is positive since fi(x̃) ≥ for each i and∑n
i= fi(x̃) > . Hence if all traits are equally t at x̃, then either u = (mutation

is absent) or x̃ is located at the centroid /n = ( /n, . . . , /n) ∈ △n (all traits are

equally abundant). We explore the u = case further in Sect. . . .

Our next result applies eorem to the mutation rate evolution process

de ned in Eq. . . . It shows that if, at some step k in the process, the resident

trait distribution is at a stablemutation-selection equilibrium, and if ν and α are

sufficiently small, then not only will the mutation rate at step k+ be less than or

equal to the mutation rate at step k, but the new resident trait distribution will

again be at a stable mutation-selection equilibrium.

eorem . In the process of mutation rate evolution outlined in Eq. . . , suppose

that for some k ≥ , uk > and that xk ̸= /n is a stable hyperbolic xed point of the

replicator-mutator equations, Eq. . , with mutation rate uk. en if ν and α are

sufficiently small and IIF is assumed, then uk+ ≤ uk and xk+ is a stable hyperbolic



xed point of Eq. . with mutation rate uk+ .

Proof. We begin by noting that, as a consequence of the implicit function

theorem, there is some relatively open neighborhoodU ⊂ [ , ] of uk, and a

differentiable curve γ : U→△n such that for each u ∈ U, γ(u) is a stable

hyperbolic xed point of Eq. . with mutation rate u.

We will prove that, for the mutational step Δuk sampled in Step ,

(a) If Δuk < and u′k > , then uk+ = u′k with probability one.

(b) If Δuk < and u′k = then uk+ = with positive probability (otherwise

uk+ = uk).

(c) If Δuk > then uk+ = uk with probability one.

(d) In all cases, xk+ = γ(uk+ ).

e claims of the theorem follow from the above statements.

We note that since xk is a xed point of Eq. . , then x∗k = xk. By the remarks

following Proposition , since x∗k ̸= /n and uk > , then the tness functions

fi(x
∗
k) are not all equal. erefore, in the case u′k > , eorem implies that

suk,x∗k (u
′
k, v∗k) > if and only if Δuk < , regardless of which vertex v∗k is sampled

in Step . In the case u′k = , Proposition implies that there is at least one vertex

v of△n such that suk,x∗k (u
′
k, v∗k) > , and this vertex has nonzero probability of

being sampled in Step since x∗k ∈ int△n. In summary,

• If Δuk < and u′k > , then suk,x∗k (u
′
k, v∗k) > with probability one.

• If Δuk < and u′k = , then suk,x∗k (u
′
k, v∗k) > with positive probability.



• If Δuk > then suk,x∗k (u
′
k, v∗k) < with probability one.

IIF now guarantees that (a), (b), and (c) are satis ed as long as ν and α are

sufficiently small.

To verify claim (d), we invoke the Tube eorem [ ]. Applied to Eq. .

and Eq. . , the Tube eorem guarantees the following: Let x̃ be a stable

hyperbolic xed point of Eq. . . en for each ε > there exists a δ > such

that if |u′ − u| < δ and |r( ) + z( )− x̃| < ε, then |r(t) + z(t)− x̃| < ε for all

t ≥ under the dynamics of Eq. . . In words, the trait distribution in the whole

population (residents and invaders combined) stays close to the xed point x̃, as

long as the difference in mutation rates |u′ − u| is sufficiently small.

Consider the ω-limit set ωk := ω(( − α)x∗k , αv∗k) ⊂ △ n associated with the

ow de ned by Eq. . with u := uk and u′ := u′k (that is, the ow considered in

Step ). IIF and the Tube eorem jointly imply that for each ε > there exists

δ > such that if ν < δ and α < δ, then


ωk ⊂

{
(r, z) ∈ △ n : r = and |z− γ(uk)| < ε

}
if suk,x∗k (u

′
k, v∗k) > ,

ωk ⊂
{
(r, z) ∈ △ n : z = and |r− γ(uk)| < ε

}
if suk,x∗k (u

′
k, v∗k) < .

( . )

Let ω̄k ⊂ △n denote the image of ωk under the identi cations△n ↔△ n|R=

or△n ↔△ n|Z= , in the cases suk,x∗k (u
′
k, v∗k) > and suk,x∗k (u

′
k, v∗k) < ,

respectively. By Eq. . , ω̄k is a subset of the open ball B(γ(uk), ε) of radius ε

around γ(uk). Additionally, since ωk is an invariant set of Eq. . , then ω̄k is an

invariant set of Eq. . . Since γ(uk+ ) is a nondegenerate xed point of Eq. . ,



there is some neighborhood ofU ⊂ △n of γ(uk+ ) such that {γ(uk+ )} is the

only invariant subset ofU. e continuity of γ implies that B(γ(uk), ε) ⊂ U for

sufficiently small ε. Consequently there exists a δ > such that |Δuk| < δ

implies ω̄k ⊂ U. Since ω̄k is an invariant set of Eq. . and a subset ofU, then ω̄k

must consist only of the single point γ(uk+ ). Finally, since sojourn time

distributions are concentrated on the corresponding ω-limit sets, the point xk+

assigned in Step can only be γ(uk+ ), as long as ν is sufficiently small. is

proves claim (d), completing the proof.

One can guarantee that the downward evolution of mutation rate will

continue for any desired nite number of steps by se ing ν and α sufficiently

small and applying eorem inductively. However, it is not possible in general

to guarantee that this downward evolution will continue inde nitely or until the

zero mutation rate is reached. is is because the bounds on ν and α needed to

guarantee that uk+ ≤ uk and xk+ = γ(uk+ ) are not necessarily uniform in uk.

In less technical language, for any xed values of ν and α, the mutation rate may

evolve downwards to the point that the mutation-selection equilibrium

disappears or loses stability, at which point upward mutation rate evolution is

again possible.

. . E

Having identi ed conditions under which mutation rates evolve downwards, we

now turn our a ention to the upward evolution of mutation rates. In Sect. . . ,

eorem and Corollary give conditions under which a strain of positive



mutation rate can invade a non-mutating resident population which is at a

(possibly unstable) selection-induced equilibrium. eorem shows that, in this

case, successful invasion implies persistence of the mutator strain.

Equations . . focuses on the case where the replicator equations, Eq. . , admit

a globally a racting heteroclinic cycle. In this case, the zero mutation rate is

evolutionarily unstable.

C - -

In this section we ask whether a strain of positive mutation rate u′ can invade a

non-mutating resident strain at equilibrium. As discussed in the proof of

eorem (and using the notation de ned there), the invasion tness is equal to

the largest eigenvalue ofQu′ F̃− φ̃rI. e following theorem gives necessary and

sufficient conditions for this invasion tness to be positive, avoiding the need for

an eigenvalue calculation:

eorem . Let x̃ be a xed point of the replicator equations, Eq. . , and let

f̃i = fi(x̃) and φ̃r =
∑n

i= f̃ix̃i. en for any x′ ∈ △n and u′ > , s ,x̃(u′, x′) > if

and only if either

(a) ( − u′)̃fi ≥ φ̃r for some i, or

(b)
n∑
i=

φ̃r
φ̃r − ( − u′)̃fi

>
n
u′
.

Proof. Let the matrix F̃, the Perron-Frobenius eigenvalue φ̂z ofQu′ F̃, and the

associated eigenvector ẑ be de ned as in Sect. . . . e eigenvector equation



Qu′ F̃ẑ = φ̂zẑ can be rewri en as

n
u′
ẑi =

φ̂z
φ̂z − ( − u′)̃fi

, ( . )

for each i. Summing over all i yields

n
u′

=
n∑
i=

φ̂z
φ̂z − ( − u′)̃fi

. ( . )

Equation . and the positivity of ẑ and φ̂z imply that ( − u′)̃fi < φ̂z for all i.

us, if ( − u′)̃fi ≥ φ̃r for any i, then φ̂z > φ̃r and hence s ,x̃(u′, x′) > by

Lemma . is proves that condition (a) is sufficient.

We now restrict to the case that condition (a) is false (that is, ( − u′)̃fi < φ̃r

for all i), and show that in this case condition (b) is necessary and sufficient.

Consider the real-valued function

g(y) =
n∑
i=

y
y− ( − u′)̃fi

.

As long as ( − u′)̃fi < y for all i, g(y) is monotone decreasing in y. Equation .

implies that g(φ̂z) = n/u; hence, φ̂z > φ̃r if and only if g(φ̃r) > n/u, which is

equivalent to condition (b). Since φ̂z > φ̃r is equivalent to s ,x̃(u′, x′) > , this

proves the theorem.

We can also ask whether there exists any strain of positive mutation rate that

can invade non-mutating residents at the equilibrium x̃. is question has a much

simpler answer: if there is any trait whose tness is larger than the average



resident tness, then there exists a mutator strain that can invade. We state this

formally as:

Corollary . Let x̃ be a xed point of the replicator equations, Eq. . . en f̃i > φ̃r

for some i ∈ { , . . . , n} if and only if there exists u′ > such that s ,x̃(u′, x′) > for

all x′ ∈ △n.

Proof. e “only if ” direction follows immediately from eorem . For the “if ”

direction, suppose f̃i ≤ φ̃r for all i. en φ̂z =
∑

i f̃iẑi and ẑ ∈ △n imply that

φ̂z ≤ φ̃r, and hence s ,x̃(u′, x′) ≤ for all x′ ∈ △n.

e IIF conjecture does not necessarily apply to the scenarios considered in

eorem and Corollary . In particular, if the non-mutating resident strain is

monomorphic (that is, if x̃ = v is a vertex of△n) and s ,v(u′, v) > , then the

monotonicity condition of the IIF conjecture is not satis ed: there is no δ >

for which s ,v(u′, v) is monotonic in u′ for u′ ∈ [ , δ). is follows from

observing that (a) s ,v( , v) = , (b) s ,v(u′, v) > for all sufficiently small

u′ > by eorem , and (c) s ,v(u′, v) is decreasing in u′ for u′ ∈ ( , ] by the

proof of eorem .

We therefore cannot use IIF to argue that a mutator strain that successfully

invades a monomorphic non-mutating resident strain (in the sense of having

positive invasion tness) will eventually rise to xation. We can, however, prove a

weaker result: if s ,v(u′, v) > , then an invading strain of mutation rate u′ will

persist inde nitely. We state this formally in the following theorem:



eorem . Let v be a vertex of△n and suppose s ,v(u′, v) > for some u′ > .

en, for the orbit of the two-strain replicator-mutator equation, Eq. . , with u =

and initial conditions (r( ), z( )) = (( − α)v, αv), the resident strain does not

xate.

Proof. Without loss of generality, suppose v = ( , , . . . , ). Note that for i ̸= ,

ri(t) = for all times t ≥ . We can therefore disregard the coordinates

r , . . . , rn and rewrite Eq. . as

ṙ = r
(
f (r+ z)− φ

)
żi = ( − u′)zifi(r+ z) +

u′

n
Zφz − φzi,

( . )

for i = , . . . , n.

Assume for contradiction that the resident strain xates; then the orbit in

question must converge to the xed point (r , z) = ( , ). By the

Hartman-Grobman theorem, the dynamics of Eq. . are, in a neighborhood of

this xed point, conjugate to the dynamics of the linearized system

ṙ = φ̃( − r )−
n∑
i=

f̃izi

ż = (Qu′ F̃− φ̃I)z.

( . )

Above, f̃i, φ̃ and F̃ are the values of fi, φ and F, respectively, at the xed point

(r , z) = ( , ).

From any initial conditions (r ( ), z( ))with z( ) ̸= , the dynamics of



Eq. . will converge to (r , z) = ( , ) if and only if the dynamics of

ż = (Qu′ F̃− φ̃I)z,

with initial condition z( ), converge to z = . By the reasoning used in the rst

part of the proof of eorem , this can only occur if the Perron-Frobenius

eigenvalue φ̂z ofQu′ F̃ is less than or equal to than φ̃, which contradicts

s ,v(u′, v) > .

R

Another interesting case occurs when the replicator dynamics admit a globally

a racting heteroclinic cycle, the xed points of which are vertices of△n. Such

cycles may occur in “rock-paper-scissors” systems, in which each trait is bested by

another [ , ].

Let the tness functions fi be such that the replicator equations, Eq. . , admit

a globally a racting heteroclinic cycle whose xed points are vertices of△n. In

this case, the invariance of the sojourn time measure implies that for each

x ∈ △n, σx is concentrated entirely on the xed points of this cycle, i.e. the

vertices of△n.¹

Consider the mutation rate evolution process de ned in Eq. . . , and suppose

¹Perhaps contrary to intuition, the value of σx is in general unde ned on the individual xed
points of such a heteroclinic cycle. is is because, if v is a xed point on this cycle, and if all
xed points are hyperbolic the generic case then σx({v})will not converge according to the

limit de nition . [ , ]. us, according to our de nition, the singleton {v} is a non-
measurable subset, as is any proper subset of the vertex set. However, this does not affect our
current argument, which requires only that the entire vertex set is assigned probability one.



that uk = for some k ≥ . By the above remarks, the state x∗k sampled in Step

will be a vertex of△n. By eorem , the invading strain of mutation rate u′k >

that arises in Step will persist inde nitely, so long as u′k is small enough that the

conditions of eorem are satis ed. In this case, either the invading strain will

xate, or neither strain will xate and the process will be formally terminated.

In short, the zero mutation rate is evolutionarily unstable for such tness

functions. Any non-mutating strain is vulnerable to invasion by strains of positive

but sufficiently small mutation rate. is result is intuitive: in rock-paper-scissors

type scenarios, any pure strategy is bested by another. us if a non-mutating

resident population converges to a monomorphic state, there must be at least one

bene cial mutation available, upon which mutator alleles may hitchhike.

is result raises the question of how mutation rates ultimately evolve under

the process outlined in Eq. . . , in the case that the tness functions fi induce an

a racting heteroclinic cycle in the replicator system, Eq. . . In our preliminary

simulations, using n-strategy games of rock-paper-scissors type, we have found

that mutation rates tend to converge under this process to a stable intermediate

rate. We will report these results in full in forthcoming work.

. . C -

An interesting situation occurs when the replicator equations, Eq. . , admit an

equilibrium x̃ at which all types are present (that is, x̃ ∈ int△n). In this case,

Eq. . implies that all trait tness functions fi(x̃) are equal.

Stable coexistence between mutating and non-mutating strains is possible in



this case. To see this, consider the two-strain replicator-mutator equation,

Eq. . , and suppose that only the invading strain has positive mutation rate (i.e.

u = , u′ > ). en the point (r, z) ∈ △ n is a xed point of Eq. . whenever

z/Z = /n (that is, all traits are equally present in the invading strain), and

r+ z = x̃. Note that the set of all such xed points of Eq. . comprise a

one-dimensional submanifold of△ n; therefore these xed points are all

non-hyperbolic.

e linear snowdri game (also known as the hawk-dove game) is a simple

example admi ing such stable coexistence. In this game there are two traits,

cooperator (C) and defector (D), and the tness functions of the types are given

by fC(x)

fD(x)

 =

R S

T P


xC

xD

 , ( . )

with T > R > S > P > . is game admits a mixed evolutionarily stable

state that is, a stable hyperbolic xed point of the replicator equations,

Eq. . with trait frequencies

x̃C =
S− P

T− R+ S− P
, x̃D =

T− R
T− R+ S− P

.

en the xed points of Eq. . that describe coexistence between a resident



non-mutating strain and an invading mutator strain are given by

r̃C =
S− P

T− R+ S− P
− Z

z̃C =
Z

r̃D =
T− R

T− R+ S− P
− Z

z̃D =
Z
,

( . )

valid for any value of Z for which all of the above quantities are positive.

is raises the question of whether an invading strain of positive mutation rate

will generally coexist inde nitely with a non-mutating resident strain in such

situations, or whether one of the two strains will generally xate. e IIF

conjecture is uninformative on this question, since if x̃ is a xed point of Eq. .

for which all traits are present, then all traits must be equally t according to

Eq. . , and thus eorem implies that s ,x̃(u′, x′) = , for any u′ ∈ [ , ],

x′ ∈ △n. So such an invading strain will have zero invasion tness.

To investigate this question, we simulated Eq. . numerically in the case of the

snowdri game discussed above (see Fig. . . ). We found that whenever both

traits are present in the initial non-mutating resident population (rC( ) > and

rD( ) > ), the dynamics of invading mutators and resident non-mutators

converge to a xed point of the form . . In this system, the asymptotic

frequency of invaders depends on the initial conditions. is result is robust to

variations in the payoff matrix, initial strain abundances, initial trait distributions,

and the mutation rate of the invading strain.
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Figure 6.4.1: Numerical simulation of the two-strain replicator-mutator equa-
tions, Eq. 6.5, for the snowdrift game, varying the initial proportion of trait C
(cooperation) within the non-mutating resident strain (rC( )/( − α)). Panels
show features of the stable equilibrium (r̃, z̃). (a) Equilibrium proportion of
strategy C within the resident strain

(̃
rC/R̃ , dashed line and circle), within the

invading mutator strain
(
z̃C/Z̃ , dotted line and triangle), and within the popu-

lation overall (̃rC + z̃C, solid line). The value x̃C = r̃C + z̃C = / is the stable
fixed point of the replicator equations, Eq. 6.2. (b) Equilibrium frequency of
the invading mutator strain

(
Z̃ , solid line and square). The open/closed sym-

bols in both panels indicate the discontinuity at rC( )/( − α) = ; at this
point, the non-mutating resident strain contains only trait C and goes extinct,
while the invading strain converges to the mutation-selection equilibrium of
the single-strain replicator-mutator equations, Eq. 6.3. Parameters: game pay-
offs R = , S = , T = , P = ; mutation rates u = , u′ = . ; initial invader
frequency α = . ; initial invader trait distribution zC( ) = , zD( ) = α (i.e.,
the invading strain starts with only trait D, defection).



. D

Our work investigates how frequency-dependent selection within a population

affects the evolution of mutation rates. e framework we present in Sect. . for

studying this question merges the elds of replicator dynamics (including

mutation) and adaptive dynamics. is framework is simple to state, but complex

in the variety of behaviors it can yield.

Our work shows that frequency-dependent selection can induce either upward

or downward selective pressure on the mutation rate. Speci cally, when

frequency dependence leads to a stable equilibrium trait distribution, mutation

rates evolve downwards (possibly converging to zero); but when these dynamics

converge to a heteroclinic cycle, the zero mutation rate is evolutionarily unstable.

Our ndings extend the general understanding that stable (resp., unstable) tness

landscapes lead to downward (resp., upward) mutation rate evolution

[ , , , , , , , , , , , ] to the case where the

tness landscape depends on the population itself.

Our work also highlights an interesting scenario of coexistence between

mutating and non-mutating strains. While previous work [ , ] has

considered coexistence of mutation rates due to mutation-selection balance

between them, we show that such coexistence can occur in the absence of

mutation between the mutation rates. is coexistence occurs only at equilibria

of frequency-dependent selection, in which all traits have equal tness. Since it

relies on one strain having an exactly zero mutation rate a biologically unlikely



scenario the relevance of this result remains to be shown.

Of course, the replicator and replicator-mutator equations can yield a wide

variety of dynamics beyond the cases examined here [ , , ]. It will be

especially interesting to see whether cyclical or chaotic dynamics lead to the

upward evolution of the mutation rate. Such questions may be beyond the reach

of analytical treatment, and are perhaps best studied using simulations.

Of particular theoretical interest is the identi cation of evolutionarily stable

mutation rates, which cannot be invaded by strains of either lower or higher

mutation rate. is extends the concept of an evolutionarily stable strategy (ESS)

[ ] to mutation rate evolution. More generally, adaptive dynamics can lead to

a wide variety of behaviors, including limit cycles, chaos, and evolutionary

branching [ , ]. Identifying which of these behaviors can occur for mutation

rate evolution, and then relating these behaviors back to the underlying trait

dynamics, is a promising avenue for future research.

Our framework makes use of the mathematical notion of invariant measures

[ , ]. Invariant measures are a formal mathematical representation of the

ergodic principle: that the long-time behavior of a dynamical system can be

understood from a statistical point of view by studying an invariant probability

distribution over the set of possible states. Ergodic theory has long been applied

to many areas of physics, but has seen only sporadic application in ecology and

evolution [ , , , ]. Invariant measures arise naturally when considering

two dynamical processes on different timescales. An invariant measure can serve

as probability distribution for the state of a fast process (e.g., demographic



dynamics) when a rare event (e.g., mutation, environmental change) occurs.

Finally, our work suggests new empirical hypotheses. A number of species,

including Escherichia coli [ , ], the common side-blotched lizardUta

stansburiana [ , ], and the yeast Saccharomyces cerevisiae [ ], show

nontransitive competition between bearers of different traits. We have shown in

Eq. . . that in some cases, such nontransitive competition can induce upward

evolutionary pressure on the mutation rate. We therefore conjecture that in such

species, the mutation rate on loci coding for these traits may be abnormally high.
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Table 7.1.1: Pharmacokinetic and pharmacodynamic parameters for anti-HIV
drugs used in the study [265]

Class Drug IC (μMol) slope Cmax (μMol) half-life (hrs) dosing (d− )
NRTI TC . . . .

ABC . . . .
AZT . . . .
d T . . . .
ddI . . . .
FTC . . . .
TDF . . . .

NNRTI EFV . . . .
ETV . . .
NVP . . . .

PI ATV . . . .
ATV/r . . . .
DRV/r . . . .
IDV . . . .

IDV/r . . . .
LPV/r . . . .
NFV . . . .
SQV . . . .

SQV/r . . . .
TPV/r . . . .

II EVG . . . .
L . . . .

FI ENF . . . .



Table 7.1.2: Parameters for all single-point mutations considered in the study
[265]

Class Mutation Cost (s) u Drug ρ σ
NRTI K R . . × − TC - .

ABC .
ddI - .
FTC - .
TDF .

M V . . × − TC - .
ABC . - .
AZT . - .
ddI . - .
FTC - .
TDF . - .

M L . . × − AZT . .
d T . .

T Y . * AZT . - .
d T . - .

NNRTI G S . . × − EFV - .
NVP - .

K P . * ETV . - .
K N . . × − EFV - .

NVP - .
Y C . . × − EFV . - .

ETV - .
NVP - .

Y I . * ETV - .
NVP - .

* Indicates mutation that requires two nucleotide changes;
mutation rate depends on prevalence of intermediate states.



Table 7.1.3: Parameters for all single-point mutations considered in the study
(Cont’d) [265]

Class Mutation Cost (s) u Drug ρ σ
PI D N . . × − NFV . - .

G V . . × − SQV . - .
I A . * LPV . - .
I V . . × − LPV . - .
I L . . × − ATV . - .
I V . . × − DRV . - .
I L . . × − DRV . - .
I V . . × − ATV . - .

DRV . - .
IDV . - .
TPV . - .

L F . . × − TPV . .
L M . . × − NFV . .

SQV . - .
M I . . × − IDV . - .
M L . . × − IDV . - .
N S . . × − ATV . - .
V I . . × − LPV . - .
V A . . × − LPV . - .
V F . . × − IDV . - .

LPV . - .
V T . * IDV . - .

LPV . - .
TPV . - .

II G S . . × − L . .
N H . . × − EVG .

L .
Q H . . × − EVG . - .

L .
Q K . . × − EVG .

L - .
Q R . . × − EVG .

L .
Y C . . × − L . .
Y H . . × − L . - .
Y R . * L - .

FI G D . . × − ENF . - .
N T . . × − ENF . - .
N D . . × − ENF - .
Q H . . × − ENF - .
V A . . × − ENF - .

* Indicates mutation that requires two nucleotide changes;
mutation rate depends on prevalence of intermediate states.



Table 7.1.4: Parameters for pre-existing frequency of mutations and exit rate
from the latent reservoir. See Methods and Supplementary Methods for
explanations.

class mutation equilibrium frequency reservoir exit (days)
NRTI K R . × −

M V . × −

M L . × −

T Y * *
NNRTI G S . × −

K P * *
K N . × −

Y C . × −

Y I * *
PI D N . × −

G V . × −

I A * *
I V . × −

I L . × −

I V . × −

I L . × −

I V . × −

L F . × −

L M . × −

M I . × − < .
M L . × −

N S . × −

V I . × −

V A . × −

V F . × −

V T * *
II G S . × −

N H . × −

Q H . × −

Q K . × −

Q R . × −

Y C . × −

Y H . × −

Y R * *
FI G D . × −

N T . × −

N D . × −

Q H . × −

V A . × −

* Indicates mutation that requires two nucleotide changes;
equilibrium frequency depends on prevalence of intermediate states.



Table 7.1.5: Parameters for pre-existing frequency and exit rate from the
latent reservoir for best “synthetic” mutation for each drug. See Methods and
Supplementary Methods for explanations.

class drug equilibrium frequency reservoir exit (days)
NRTI AZT . × −

d T . × −

TC . × −

FTC . × −

ABC . × −

ddI . × −

TDF . × −

NNRTI EFV . × −

NVP . × −

ETV . × −

PI DRV . × −

NFV . × −

SQV . × −

LPV . × −

ATV . × −

IDV . × − < .
TPV . × −

II L . × −

EVG . × −

FI ENF . × −



Table 7.1.6: Viral dynamics parameters in the absence of drug therapy

Parameter Value Units Reference
R Baseline basic reproduction ratio (unitless) See text
dy Death rate of actively infected cells d− [ ]
v Residual plasma viral load RNA copies [ ]

maintained by activation from per ml plasma
latent reservoir, absent

viral replication
A Latent reservoir exit rate cells.d− Based on v ,

see text

Table 7.1.7: Nucleotide substitution rate parameters for HIV. Each entry
gives the per-site transition probability from row base to column base in one
round of viral replication. For derivation and source see Section 2.5.2. The
extraordinary skew of this matrix (the largest entry, G-to-A mutation, is more
than 300 times the smallest, C-to-G mutation) reflects the base composition
of the genome, particularly the bias towards A. Values less than − are par-
ticularly uncertain, as they were computed from fewer than 5 substitution ob-
servations each.

U C A G
U . × − . × − . × −

C . × − . × − . × −

A . × − . × − . × −

G . × − . × − . × −
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Figure 7.2.1: Simulated clinical outcomes versus adherence for all drugs. In
“Suppression” trials, patients begin with a realistic distribution of treatment-
naive viral loads (between and c.ml− ) and undergo monotherapy
for a full 48 weeks. Virologic failure (VF) is defined as a viral load above 50
c.ml− at Week 48. VF is classified as “via resistance” if at least 20% of the
viral population at the time of detection is mutant. Adherence (x-axis) is
measured as the fraction of scheduled doses taken. The height of the area
shaded indicates probability of the corresponding outcome at that adher-
ence level. 3TC, lamivudine; ABC, abacavir; AZT, zidovudine; d4T, stavu-
dine; ddI, didanosine, FTC, emtricitabine; TDF, tenofovir disoproxil fumarate;
EFV, efavirenz; ETV, etravirine; NVP, nevirapine; ATV, atazanavir; DRV,
darunavir; IDV, indinavir; LPV, lopinavir; NFV, nelfinavir; SQV, saquinavir;
TPV, tipranavir; EVG, elvitegravir; RAL, raltegravir; ENF, enfuvirtide.
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Figure 7.2.2: Simulated clinical outcomes versus adherence for all drugs. In
“Maintenance” trials, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at week 5) with viral load above 200 c.ml− . VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of scheduled
doses taken. The height of the area shaded indicates probability of the corre-
sponding outcome at that adherence level.
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Figure 7.2.3: Simulated clinical outcomes versus time for all drugs. In “Sup-
pression” trials, patients begin with a realistic distribution of treatment-naive
viral loads (between and c.ml− ) and undergo monotherapy for a vari-
able time (x-axis). “Detectable viral load” is defined as above 50 c.ml− and is
classified as “via resistance” if at least 20% of the viral population at the time
of detection is mutant. The height of the area shaded indicates prevalence of
the corresponding outcome at that time. Patients have a realistic distribution
of adherence levels with an average of 70%.
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Figure 7.2.4: Simulated clinical outcomes versus time for all drugs. In
“Maintenance” trials, patients begin the trial with full viral suppression and
undergo monotherapy for a variable amount of time (x-axis) or until “de-
tectable viral load” is observed, whichever occurs first. “Detectable viral load”
is defined as “confirmed rebound”: two consecutive weekly measurements
(starting at Week 5) above 200 c.ml− . It is classified as “via resistance” if
at least 20% of the viral population at the time of detection is mutant. The
height of the area shaded indicates prevalence of the corresponding outcome
at that time. Patients have a realistic distribution of adherence levels with an
average of 70%.
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Figure 7.2.5: Simulated clinical outcomes versus time for all drugs. In
“Maintenance with recovery” trials, patients begin the trial with full viral sup-
pression and undergo monotherapy for a variable amount of time (x-axis).
“Detectable viral load” is defined as “confirmed rebound”: two consecutive
weekly measurements (starting at Week 5) with viral load above 200 c.ml− .
It is classified as “via resistance” if at least 20% of the viral population at the
time of detection is mutant. We allow recovery, meaning that patients stay in
the trial to see if they will re-suppress, instead of being removed immediately
like in regular “Maintenance” trials. The height of the area shaded indicates
prevalence of the corresponding outcome at that time-point. Patients have a
realistic distribution of adherence levels with an average of 70%.
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Figure 7.2.6: Simulated clinical outcomes versus adherence for all drugs,
distinguishing pre-existing from de novo mutations. In the “Suppression” tri-
als shown, patients begin with a realistic distribution of treatment-naive vi-
ral loads (between and c.ml− ) and undergo monotherapy for a full
48 weeks. Virologic failure (VF) is defined as a viral load above 50 c.ml− at
Week 48. VF is classified as “via resistance” if at least 20% of the viral pop-
ulation at the time of detection is mutant. Resistance is classified as de novo
if the majority of mutants at the time of failure descended from a mutation
event that occurred during replication since the start of the trial. Otherwise,
resistance is classified as “pre-existing,” which includes mutants arising from
both the pre-treatment plasma population and the latent reservoir. Adherence
(x-axis) is measured as the fraction of scheduled doses taken. The height of
the area shaded indicates probability of the corresponding outcome at that
adherence level.
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Figure 7.2.7: Simulated clinical outcomes versus adherence for all drugs, dis-
tinguishing pre-existing from de novo mutations. In the “Maintenance” trials
shown, patients begin with full viral suppression and undergo monotherapy
for 48 weeks or until virologic failure (VF), whichever occurs first. VF is de-
fined as “confirmed rebound”: two consecutive weekly measurements (starting
at Week 5) with viral load above 200 c.ml− . VF is classified as “via resis-
tance” if at least 20% of the viral population at the time of detection is mu-
tant. Resistance is classified as de novo if the majority of mutants at the time
of failure descended from a mutation event that occurred during replication
since the start of the trial. Otherwise, resistance is classified as “pre-existing,”
which includes mutants arising from both the pre-treatment plasma popula-
tion and the latent reservoir. Adherence (x-axis) is measured as the fraction of
scheduled doses taken. The height of the area shaded indicates probability of
the corresponding outcome at that adherence level.
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Figure 7.2.8: Simulated clinical outcomes versus adherence for all drugs,
R =20. Results are shown for “Maintenance” trials only. In the “Mainte-
nance” trials shown, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at Week 5) with viral load above 200 c.ml− . VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of sched-
uled doses taken. The height of the area shaded indicates probability of the
corresponding outcome at that adherence level. As compared to R =10, in-
creasing R to 20 leads to higher adherence levels being required for treat-
ment success, and it extends the range of adherence levels (in both directions)
for which resistant strains can cause failure. Mutant VF becomes a possible
outcome for the PIs ATV, ATV/r, IDV, IDV/r, and SQV/r, and treatment
success cannot occur at any adherence level for ddI and NFV.
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Figure 7.2.9: Simulated clinical outcomes versus adherence for all drugs,
R =5. Results are shown for “Maintenance” trials only. In the “Mainte-
nance” trials shown, patients begin with full viral suppression and undergo
monotherapy for 48 weeks or until virologic failure (VF), whichever occurs
first. VF is defined as “confirmed rebound”: two consecutive weekly measure-
ments (starting at Week 5) with viral load above 200 c.ml− . VF is classified
as “via resistance” if at least 20% of the viral population at the time of de-
tection is mutant. Adherence (x-axis) is measured as the fraction of sched-
uled doses taken. The height of the area shaded indicates probability of the
corresponding outcome at that adherence level. As compared to R =10, de-
creasing R to 5 leads to lower adherence levels being required for treatment
success, and it reduces the range of adherence levels for which resistant strains
can cause failure. A range of high adherence levels appears where there is
treatment success for ABC and AZT, and near-perfect adherence is no longer
required for ddI and NFV success. Mutant VF no longer occurs for SQV, and
for AZT and ddI, wild-type failure may be the first outcome to occur as ad-
herence levels decrease from the successful range.
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Figure 7.2.10: Simulated clinical outcomes versus adherence for NRTIs with
large inter-experimental variation in half-life. The ranges included were {10,
16, 22} for 3TC, {4, 8.5, 11} for AZT, {3.5, 7, 10} for d4T, {15, 18, 20}
for ddI, and {60, 120, 180} for TDF. Results are shown for “Maintenance”
trials only. In the “Maintenance” trials shown, patients begin with full viral
suppression and undergo monotherapy for 48 weeks or until virologic failure
(VF), whichever occurs first. VF is defined as “confirmed rebound”: two con-
secutive weekly measurements (starting at Week 5) with viral load above 200
c.ml− . VF is classified as “via resistance” if at least 20% of the viral popu-
lation at the time of detection is mutant. Adherence (x-axis) is measured as
the fraction of scheduled doses taken. The height of the area shaded indicates
probability of the corresponding outcome at that adherence level. Compared
to the half-lives used throughout the rest of the paper (see Supplementary
Table 7.1.1), the results barely change for 3TC or d4T. For AZT, varying the
half-life changes the adherence level where wild-type failure becomes more
likely than mutant failure. For ddI, the adherence level where treatment suc-
cess occurs shifts. For higher TDF half-lives, mutant VF becomes the only
outcome, with the exception of rare (< %) wild-type failure at the lowest
adherence levels for t / = hours.
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Figure 7.2.11: Selection regimes for DRV/r-RAL two-drug therapy. Depend-
ing on the length of a treatment interruption to one or both drugs, treatment
may be fully suppressive or select for the wild-type strain, a mutant resistant
to DRV, a mutant resistant to RAL, or combinations of these strains. The yel-
low region, where the MSW for both drugs overlap, is barely visible, and it is
located where the other MSW regions meet, near the center of the graph.
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Figure 7.2.12: Relative risk of wild type- vs. mutant-caused virologic failure
for anti-HIV drugs, considering the best “synthetic” mutation defined in Sec-
tion 2.5.3. Two metrics can be used to compare the risk of resistance to the
likelihood of wild-type growth, shown on both axes. The x-axis measures the
time until a patient interrupting treatment reaches the MSW, divided by the
time until that patient reaches the WGW. The y-axis measures the number
of days that a patient spends in the MSW during a treatment interruption.
Drugs tend to cluster near the endpoints of the x-axis: most NRTIs, the IIs,
and the FI are on the left, meaning that the patient enters the MSW immedi-
ately or soon after interruption, and most PIs are on the right, meaning that
the patient waits relatively long to enter the MSW. Section 2.5.7 further de-
scribes the two metrics and explains how they were used in Fig 2.2.2f in the
main text to rank the drugs by relative risk of mutant-based versus wild type-
based VF. Note that the symbol for DRV/r is obscured behind the symbol for
d4T at ( , ).
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Figure 7.2.13: Distribution of a) viral load setpoints [160] (data available at
www.hiv.lanl.gov/content/immunology) and b) adherence levels [16] used in
simulations.
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Figure 7.3.1: Clearance probabilities and rebound times following LRA ther-
apy predicted from model, versus infectivity variance λ. A) Three cases for
the population-level distribution of LR size (see Section 3.4.1). Case i) All
patients have the same latent reservoir size, MLR = , estimated from the
geometric mean number of cells that are capable of producing infection in lab-
oratory co-culture assays. Case ii) Latent reservoir size is distributed according
to variation observed in co-culture assays, with geometric mean . Case iii)
The latent reservoir includes many cells that fail to be detected in co-culture
but have intact viral genomes. B) Probability that the reservoir is cleared by
LRA. Clearance occurs if all cells in the reservoir die before a reactivating lin-
eage leads to viral rebound. C) Median viral rebound times, among patients
who do not have clearance. Each point shows the average of − sim-
ulated patients. D) Survival curves for patients following LRA therapy. The
percentage of patients who have not yet experienced viral rebound is plot-
ted as a function of the time after LRA therapy and interruption of HAART.
Curves are colored based on the efficacy of LRA in reducing the size of the LR
(Q = to 6, see legend). Results are shown for − patients, a half-life of
44 months, R = , and a = × − day− .
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Figure 7.3.2: LRA therapy efficacies required for different goals, plotted ver-
sus reservoir size MLR for different infectivity variances λ. A) The threshold
Q that takes the patient into the activation-limited regime, where stochastic
waiting time contributes substantially to rebound time (defined in Sec. 3.4.5).
B) The target efficacy Q at which at least 50% of patients still have sup-
pressed viral load one month after treatment interruption. C) The target ef-
ficacy Q at which at least 50% of patients still have suppressed viral load one
year after treatment interruption. D) The target efficacy Q at which at least
50% of patients have eradicated the reservoir without experiencing viral re-
bound. Because some patients may go for a year without rebound but then
rebound later, the target Q for one year off therapy is always less than that for
a lifetime off therapy. Results are shown for − patients, a half-life of 44
months, R = , and a = × − day− .
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Figure 7.3.3: Survival curves for patients following LRA therapy depend on
the size of the latent reservoir and the reservoir half-life (varying dz).The per-
centage of patients who have not yet experienced viral rebound (viral load
> c ml− ) is plotted as a function of the time after LRA therapy and
interruption of HAART. Curves are colored based on the efficacy of LRA in re-
ducing the size of the LR (Q = to 6, see legend). A) dz = day− , half-life
is 330 months (27 years). B) dz = . × − day− , half-life is 44 months.
C) dz = × − day− , half-life is 6 months. Decreasing the LR half-life
(increasing dz) makes survival times longer and clearance more likely. Includ-
ing interpatient variation (ii) makes the survival curves fall off more gradually,
while allowing for higher reservoir sizes (iii) increases the required drug effi-
cacy. Solid lines represent simulations, and open circles represent approxima-
tions from a branching process calculation (Section 3.4.3). Results are shown
for − patients, λ = , R = , and a = × − day−
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Figure 7.3.4: Survival curves for patients following LRA therapy depend on
the size of the latent reservoir and the infectivity variance λ. The percentage
of patients who have not yet experienced viral rebound (viral load > c
ml− ) is plotted as a function of the time after LRA therapy and interruption
of HAART. Curves are colored based on the efficacy of LRA in reducing the
size of the LR (Q = to 6, see legend). Increasing the infectivity variance λ
makes survival times longer and clearance more likely. Including interpatient
variation (ii) makes the survival curves fall off more gradually, while allow-
ing for higher reservoir sizes (iii) increases the required drug efficacy. Solid
lines represent simulations, and open circles represent approximations from a
branching process calculation (Section 3.4.3). Results are shown for a half-life
of 44 months, R = , and a = × − day− .



Figure 7.3.5 (following page): Clearance probabilities and rebound times
after LRA predicted from model for alternate parameter choices. i) Best-
estimate parameter values shown in the main text: reservoir size is pre-
dicted by the distribution of co-culture results (case ii), a = × − day− ,
dz = . × − day− (half-life of 44 months), R = . ii) Best-case-scenario,
where reservoir size is predicted by mean co-culture results (case i), half-life
is short and strong stochastic effects decrease clearance probability. Param-
eter values are a = − day− , dz = × − day− (half-life 6 months),
R = . , λ = , and MLR = . This low estimate for a follows from the
assumption that all cells with HIV-DNA contribue to the residual viral load
observed during HAART. iii) Worst-case-scenario, when LR is large (case iii),
cells reactivate frequently, are extremely long lived, and smaller stochastic
effects mean most reactivating cells lead to rebound. Parameter values are
a = × − day− , dz = day− , R = , λ = , median MLR ≈ × .
This high estimate for a follows from the assumption that all virions in the
residual viral load come from cells with virus with intact provirus. The lower
limit on dz is realized if homeostatic proliferation or other mechanisms balance
reservoir decay caused by mechanisms other than reactivation. R is always
adjusted to ensure that the baseline rebound time following HAART interrup-
tion was constant. All results are for − simulated patients.
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Figure 7.4.1: Invasion fitness of a mutating invader against a nonmutating
resident, for varying levels of recombination c, computed as the largest eigen-
value of the matrix CQu′F minus , from Eq. ( . ). There is a discontinuity
at u′ = not shown in the graph: the invasion fitness s ( ) is zero for all
parameter values. Parameters are as in Fig. 5.3.4: n = , a = . .
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Figure 7.4.2: ESMR (plotted on a log scale) versus fitness benefit a and
number of traits n, comparing the estimate presented in Fig. 5.3.5 (thick solid
lines) to an alternate estimate (thick lines with white stripe in middle). Points
show simulated ESMR values (see Methods) and dashed lines plot uΩ. The
alternate estimate uses Eq. ( . ) to approximate fitness of the optimal trait
within the resident strain; it only requires simulation to measure the resident
strain’s period. The fitness approximation is accurate if n ≥ and a ≪ . No
recombination is shown in this figure.
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