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Abstract  

Somatosensory neurons are essential for detecting diverse environmental stimuli, thus critical for 

survival of mammals. In order to achieve sensory modality specificity, many somatosensory 

subtypes emerge with various receptor and ion channel expression, as well as terminal 

morphologies. How the somatosensory system achieves such a high variety of neuronal subtypes is 

unknown. In this thesis, I used a newly discovered subtype, VGLUT3-expressing unmyelinated 

low-threshold mechanoreceptors (C-LTMRs), as a model to try to answer this question. C-LTMRs 

have been proposed to play a role in pleasant touch in humans or pain in mice. Previously, our lab 

has identified the Runt domain transcriptional factor Runx1 to be pivotal for the development of a 

cohort of sensory neurons such as pain related nociceptors, thermal receptors, as well as itch 

related pruriceptors. Here I found that Runx1 is also required to establish all known features 

associated with C-LTMRs. In search of the mechanism of how Runx1 controls C-LTMR 

development, I found that the zinc finger protein Zfp521 is predominantly expressed in C-LTMRs 

and its expression is Runx1 dependent. By generating and analyzing Zfp521 conditional knock out 

animals, I found Zfp521 is required for part of C-LTMR molecular identities and nerve terminal 

morphologies. Our studies suggest that Runx1 acts through Zfp521-dependent and Zfp521-

independent pathways to specify C-LTMR identities. To study C-LTMR functions, we performed 

a series of behavioral analysis and found the loss of VGLUT3 and mechanosensitivities in C-

LTMRs does not markedly affect acute or chronic mechanical pain measured from the hind 

paws, which argues against the proposed role of VGLUT3 in C-LTMRs in mediating mechanical 
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pain in mice. In the future, we will continue to use our mutant mice to study physiological 

functions of C-LTMRs.   
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Chapter I. Introduction 

General introduction of somatosensory circuitry 

The somatosensory system is essential for human beings in detecting the environment and 

making appropriate responses. The somatosensory system can only respond to a narrow range of 

sensory stimuli, called sensory modalities. The modalities can be generally divided into 

proprioception (sense of positioning), mechanoreception (touch, pressure, texture, etc.), 

nociception (pain, chemicals), thermal perception (temperature), and itch sensation. Each sensory 

modality has its own specific somatosensory pathways achieved by specialized receptors and 

circuitries.  

Most somatic sensory neurons are located in the dorsal root ganglia (DRG) and the 

trigeminal ganglia (TG). DRG neurons are pseudo-unipolar neurons that have one neurite 

extending from the cell body which bifurcates into two neurites: one neurite is called the 

peripheral terminal and projects to the skin and other innervated organs (such as muscle, bone 

and internal organs etc.), and the other neurite is called the central terminal and projects to the 

dorsal horn of the spinal cord (Figure 1.1). This bipolar anatomical structure enables sensory 

neurons to receive the stimuli applied to sensory organs and transduce the action potentials 

generated by the sensors along the fibers and arrive at the central terminals in the spinal cord, 

which project to the secondary neurons.  
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The spinal cord is composed of neuron-enriched grey matter and neurite-enriched white 

matter. The grey matter in the spinal cord could be divided into 10 lamina. The nociceptors 

mainly project to the secondary neurons in the most superficial lamina including the marginal 

zone (Lamina I) and substantia gelatinosa (Lamina II). The second-order neurons send afferents 

contralaterally to the anterolateral column of the spinal cord. The fibers then segregate into three 

ascending pathways: the spinothalamic pathway goes to the ventral posterior lateral (VPL) 

nucleus of the brain thalamus, where it connects to third-order neurons. The spinaoreticular and 

spinomesencephalic pathways project to the third-order neurons in medulla and the pons, of 

which the third-order neurons further project to the thalamus or hypothalamus. Human brain 

imaging techniques show multiple places in the brain that respond to nociceptive stimuli, 

including primary somatosensory cortex (S1), secondary somatosensory cortex (S2), the insula, 

the anterior cingulate cortex (ACC), the amygdala, posterior parietal cortex (PPC), the prefrontal 

cortex (PFC), and supplementary motor area (SMA), all of which belong to the central network 

of transmission and procession of pain signals, called the pain matrix (Iannetti and Mouraux, 

2010; Jones, 1998; May, 2009; Rainville et al., 1997; Talbot et al., 2008) (pathway shown in red 

line, Figure 1.1). The itch neurons project to medial lamina II and since it is a relatively newly 

discovered subtype, the projection in the central nervous system is not clear yet (Jessell, 2000; 

Nolte, 2002).  

Mechanoreceptors in the lower thoracic, lumber and sacral levels partially project to the 

secondary neurons in Lamina III-IV of the spinal cord, but mostly ascend ipsilaterally and 

project to the gracile nucleus in the caudal medulla, while the secondary neurons that receive 

projections from mechanoreceptors locate in the upper thoracic and cervical levels project to the 
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cuneate nucleus. The secondary neurons cross contralaterally in the medulla from gracile or 

cuneate nuclei, forming medial lemniscus, and relaying to the thalamus; while the third-order 

neurons in the thalamus relay to S1, which is located in the postcentral gyrus of the parietal lobe, 

usually in area 3b and 1. The fourth-order neurons then project to S2 for information processing. 

Some of the neurons in S2 project to the insular cortex for tactile memory. The proprioceptors, 

which carry the information of joints and muscle, terminate in Lamina V-IX of the spinal cord, 

and share most of the pathways with the tactile sensory neurons.  

The various sensory modalities that I mentioned earlier appear to be best explained by the 

population-coding model, in which most of the sensory afferents participate in corresponding 

circuitry (or labeled line), thus generating specific sensations, with the individual circuitries 

crosstalking with each other by connecting to interneurons. Since most of the sensory neurons 

are polymodal, an environmental stimulus can activate more than one labeled line. The specific 

sensation is achieved by the crosstalk and suppression. During pathological conditions, when the 

suppression is impaired, the normally suppressed lines can be unmasked, leading to allodynia 

and hyper-sensitizations (Ma, 2010, 2012).    
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Figure 1.1 Somatosensory Circuitry   
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Categories of somatosensory neurons 

To achieve the acuities of the sensory modalities, there are various subtypes of somatosensory 

neurons that have different molecular markers (such as peptides and ion channels), various fiber 

transmission speeds, and distinct target innervations. As a consequence, there are also different 

ways to categorize them.  

According to their diameters and transmission speeds, there are four afferent fibers types: 

1) A-alpha (Aα), thickly myelinated fibers that are 12-20µm in diameter, conducting signals at a 

speed of 72-120m/s; 2) A-beta (Aβ), medium myelinated fibers that are 6-12µm in diameter, 

conducting at 36-72m/s; 3) A-delta (Aδ), thinly myelinated fibers, that are 1-6µm in diameter, 

conducting at 4-36m/s; 4) C, unmyelinated fibers, with a diameter of 0.2-1.5 µm and conducting 

at 0.4-2.0m/s. The sizes of the neurons are controlled by neurofilaments, which are 10 nm 

intermediate filaments found specifically in the neurons. The large size DRG neurons are usually 

correlated to heavy neurofilament (NF-H, 200-220 KDa) that could be labeled by NF200 

antibodies. The NF200+ DRG neurons also express axon-myelin interaction protein Ncl-1, thus 

they are more likely to be myelinated. The small diameter neurons can usually be labeled by 

peripherin (Cojen Ho, 2011; Spiegel I, 2007). The Aα and Aβ nerve fibers are both NF200+ and 

are wrapped by S100+ Schwann cells; while Aδ fibers are rarely NF200+ but S100+ myelination 

is still visible in the neurites. Finally, C fibers are both S100 and NF200 negative. The 

myelination patterns and speed of signal transmission are closely correlated. Generally the 

heavier the myelination is, the bigger the cells are and the faster the transmission will be. Most of 

the proprioceptors are large in diameter and thickly myelinated Aα fibers, but also include Aβ 
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and Aδ fibers. Most of the mechanoreceptors are also myelinated fibers (with Aα, Aβ or Aδ 

fibers), with the exception of C-tactile low threshold mechanoreceptors (C-LTMRs) that I will 

discuss in this thesis. Nociceptors and thermo receptors are usually small in cell body and are 

mostly thinly and unmyelinated fiber neurons (Aδ and C). Itch sensitive neurons are mostly C 

fibers (Han et al., 2012; Liu et al., 2009).  

According to the adaptation patterns, DRG neurons could be arbitrarily divided into rapidly 

adapting neurons (RAM) that have τ (half time current reduction) ≤ 10ms in response to constant 

stimuli, intermediate adapting neurons that have τ between 10ms and 20ms, and slowly adapting 

neurons (SAM) that exceed 20ms (Smith and Lewin, 2009).  

Morphologically, proprioceptors are mostly distinct in their nerve innervation compares to 

other sensory neuron types. Proprioceptors innervate the muscle spindles to signal the muscle 

stretch and Golgi tendon organs to signal muscle tensions. Mechanoreceptors enjoy the largest 

varieties of nerve terminal morphologies and mostly innervate the skin. Nociceptors, itch 

receptors and thermal receptors also innervate the skin as well as internal organs, such as colon, 

bladder and muscles etc.  

 

Mechanoreceptor subtypes 
 

The categorization of mechanoreceptors is usually dependent on their specialized sensory 

terminal organs located in the skin. The skin is the biggest sensory organ in human body and 

could be divided into two general areas: hairy skin (that is covered by hair follicles) and glabrous 



 7 

 

skin (with rare hair follicles). These two skin areas not only differ by the hair coverage, but also 

differ by types of nerve endings, which might be the mechanisms for distinct mechanical 

sensitivities (Hamalainen et al., 1985; Kakuda, 1992; Verrillo and Bolanowski, 1986).  

Mechanoreceptors in the hairy skin include Merkel cell complexs, circumferential, and 

longitudinal hair follicle innervations. In the glabrous skin, there are slightly more dispersed 

Merkel cell complexes, Meissner’s corpuscles, and occasionally, the dermal papillae epidermis 

(DPE), which is an ending that forms free nerve endings in the beginning, but changes to 

varicosities at the end of the nerve penetration entering the thick glabrous skin (Ridley, 1969). In 

the deep dermis of both hairy and glabrous skin, there are pacinian corpuscles as well as 

Ruffini’s endings.  (Figure 1.2. nerve terminals)(Lallemend and Ernfors, 2012). 

 

 

Figure 1.2 Sensory neuron innervations in the skin 
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Merkel cells (or Merkel disks) are located on the border between epidermis and dermis, 

with their cell bodies in the epidermal side (Figure 1.2 Light blue). In the superficial hairy skin, 

Merkel cells form a cluster of 30-70 Merkel cells, which is also called a touch dome. In the 

centers of glabrous skin papillary ridges, Merkel cells form a much smaller Merkel cell complex, 

with only 1-20 cells. Merkel cells are derived from epidermal lineage and their development is 

Atoh1 (Math1) dependent just like hair cells in the auditory system (Morrison and Maricich, 

2009). It was also found that transcriptional factor Pax6 can regulate Merkel cell maturation 

(Parisi and Collinson, 2012). The Merkel cells are mechanically sensitive and are excitable cells. 

Innervation of Merkel cells happen at birth, much later than the formation of touch domes 

(Vielkind et al., 2010). Merkel cell complexes are innervated mainly by Aα and Aβ fibers. 

Electrophysiological recordings show that they belong to slow-adapting type I (SAI) subtype 

with small receptive fields (Haeberle and Lumpkin, 2004; Maricich et al., 2012; Maricich et al., 

2009; Nunzi, 2004). It is suggested that Merkel cells could be activated mechanically and release 

ATP, glutamate or neuropeptide to activate the sensory nerves innervating them (Haeberle and 

Lumpkin, 2004). The loss of Merkel cells led to impairment of light touch in Atoh1 conditional 

knock out mice (Maricich et al., 2009). It is noticeable that there are some other specialized skin 

cells such as keratinocytes, melanocytes and Langerhans cells, which express sensor protein, 

neuropeptides and could activate surrounding nerve endings (Boulais and Misery, 2008). 

However it will not be discussed in detail in this thesis. 

Meissner corpuscles are mainly found in the glabrous skin in mammals (Fig 1.2, red). They 

have a globular, fluid filled structure that encloses a stack of flattened epithelial cells, with the 

sensory nerve terminals entwined between the various layers of the corpuscles (Takahashi-
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Iwanaga and Shimoda, 2004). Meissner corpuscles are innervated mainly by Aβ fibers and are 

RA-LTMRs (Gonzalez-Martinez et al., 2005; Gonzalez-Martinez et al., 2004; Kandel, 2006; 

Takahashi-Iwanaga and Shimoda, 2004). Functionally, they are coupled mechanically to the 

edge of the papillary ridge in primates and respond to grip and shape detection in humans 

(Westling and Johansson, 1987).  

Pacinian corpuscles are located in the deep dermis (Fig 1.2, purple). They are abundant in 

human palms and fingers but cluster in periosteum (the membrane in the outer surface of the 

bones) in rodents (Zelená, 1976). Structurally, pacinian corpuscles have connective tissues called 

lamellae that surround the nerve endings. The large capsules flexibly attach to the skin, allowing 

the receptor to sense vibration occurring centimeters away. The deformation of the lamellar end 

organs initiates axon firing. Like Meissner corpuscles, pacinian corpuscles are also innervated by 

RA-LTMRs, but with large receptive fields instead of small receptive fields. They respond to 

rapid indentation of skin (but not to steady pressure) and are activated selectively by vibration 

generated by the common neurologist’s test of holding a tuning fork (20-30hz) to the skin (Bell 

et al., 1994; Loewenstein and Mendelson, 1965).  

Ruffini’s endings are also found deep in the dermis (Fig1.2, light green). They link the 

subcutaneous tissues to folds in the skin at the joints and in the palm or to the finger nails (El-

oteify and Mubarak, 2011). Ruffini’s endings are innervated by SAII-LTMRs, and sense skin 

stretch or bending of the finger nails as they compress the nerve endings. The mechanical 

information sensed by Ruffini endings contributes to our perception of the shape of the grasped 

objects (Vallbo et al., 1999; Westling and Johansson, 1987). 
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The hair follicles in rodents can be divided into three types depending on the hair 

morphology: 1) Guard hairs compose 1% of all hairs, are the longest of all types and usually 

associated with touch domes; 2) awl/auchene hairs are shorter and contains several rows of 

medulla cells and constitute 23% of all hairs; 3) Zigzag hairs are the most abundant (76%) and 

have only a single row of medulla cells (Driskell et al., 2009). The hair follicles are developed 

from the thickening of the epithelial skin, at the embryonic day 14.5 (E14.5). The epithelial cells 

develop into dermal papilla (DP), which instruct the surrounding epithelial cells to proliferate 

and differentiate into hair shaft and inner root sheath (Driskell et al., 2011). The three different 

hair follicles develop at different stages: guard hairs develop the earliest around E14.5; 

Awl/Auchene hairs develop at E16.5; Zigzag hairs initiates development around E18.5 (Schlake, 

2007). Noticeably, the sensory neuron innervation of the hair cells happens around the same time 

as the hair follicle development initiates (Chang and Nathans, 2013). In mice, loss of function in 

Frizzled (Fz)6 or Celsr1, or the semidominant Loop-tail gain-of function in Vangl2, leads to 

aberrant hair follicle orientations. Fz6 has been found to also affect the morphologies of the hair 

follicle sensory neuron innervations by changing the hair follicle orientations perinatally(Chang 

and Nathans, 2013). It is worth noting that a re-orientation happens during the first 3 postnatal 

weeks, which is not Fz6 dependent and can override the consequences of loss of Fz6 in the 

perinatal stages (Chang and Nathans, 2013). Recently it was found that all three types of hair are 

innervated by lanceolate endings as well as circumferential endings (Fig 1.2 black and dark 

green). Guard hair lanceolate endings are mainly Aβ fibers that are RA-LTMR; Awl/auchene 

hairs are innervated by Aβ, Aδ and C fibers; and zigzag hairs are innervated by Aδ and C fibers 

(Li et al., 2011). Meanwhile, it was also found that some hair follicles are innervated by circular 
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endings, such as MrgB4+ nerve endings and occasionally high threshold polymodal nociceptor 

MrgD+ nerve endings (Liu et al., 2007; Zylka and Anderson, 2004).  

There are also mechanoreceptors that form free nerve endings in the epidermis. However, 

not many myelinated conventional mechanoreceptors have been found to form free nerve 

endings in epidermis, instead they are mostly unmyelinated C-LTMRs (Fig 1.2, dark blue).  

The molecular identities for each mechanosensory neuron subtypes was still unclear, 

despite some recent progress in identifying mechanosensory specific molecular markers. For 

example, TrkB has been used to label Aδ fibers lanceolate endings innervating the hair follicles; 

C-LTMRs with VGLUT3/TH expression specifically mark the lanceolate endings innervating 

the zigzag and Awl/Auchene hairs. And finally, the early wave of Ret+/GFRα2+ neurons could 

also mark Meissner corpuscles and pacinian corpuscles. The clear molecular identities for 

various mechanoreceptor subtypes will be helpful for further developmental and functional 

studies.  
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Table 1.1 Subtypes of cutaneous mechanoreceptors 

 

Modified from (Kandel, 2006) chapter 22 
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Mechanical channels in the DRG sensory neurons 

 

Though many different subtypes of mechanosensory neurons have been identified, the 

mechanism of mechanical transduction is not well known(Árnadóttir and Chalfie, 2010; Chalfie, 

2009; Christensen and Corey, 2007). There are four criteria for mechanical receptor/channels to 

be mechanical transducers (or mechanotransducers): 1) it needs to be expressed in mechanically 

sensitive neurons; 2) loss of the protein will lead to loss of mechanical sensitivity; 3) 

heterogeneously expressing the protein will confer non-mechanically sensitive neurons with 

mechanically sensitivities; 4) the protein should participate in forming the direct component for 

transducing cation.   

Mechanical sensitivity appears at very early evolutionary stages. Ectopic expression of E. 

coli. MscL channels enables the transfected system to respond to osmolarity caused membrane 

tension (Sukharev et al., 1994). In invertebrates, several ion channels have been shown to play a 

role in mechanical transduction, such as no mechanoreceptor potential C (NOMPC) (Kang et al., 

2010; Li et al., 2006; Walker et al., 2000; Yan et al., 2012) and degenerin/epithelial sodium 

channel (DEG/ENaC) (Árnadóttir and Chalfie, 2010; O'Hagan et al., 2005; Zhong et al., 2010). 

In vertebrates, two proteins in the Piezo family, Piezo1 and Piezo2, have been discovered and 

meet all four criteria for mechanical channels (Coste et al., 2010; Coste et al., 2012; Dubin et al., 

2012; Kim et al., 2012). They are the only proteins discovered to belong to the vertebrate 

mechanical transducers so far. Piezo2 is found in a subset of DRG neurons. Later, I will discuss 

Piezo2 and its correlation with C-LTMRs.  
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Other mechanosensitive channels have been shown to play a role in modifying the 

eletrophysiological properties of mechanosensitive neurons, including their adaptation properties 

as well as firing frequencies. For example, the Kv1.1 channel encoded by Kcna1 gene has been 

shown to contribute to the high mechanical threshold in C mechano-nociceptors and tunes 

adaptation in rapid-adapting Aβ mechanoreceptors (Hao et al., 2013). Another example shows 

that TrpA1 mediates the slow-adapting mechanically activated IB4- small sensory neuron, but is 

not sufficient to confer the mechanical sensitivity (Vilceanu and Stucky, 2010). Changes of these 

modifying components could also affect mechanical allodynia in physiological conditions. 

Other structures in the somatosensory circuitry in addition to DRG neurons also play 

important roles in mechanical transduction, such as Merkel cells and keratinocytes (Huang et al., 

2008; Maricich et al., 2009; Vallbo et al., 1995). It is possible that some mechanoreceptors do 

not have mechanical channels expressed but function by connecting with the mechanically 

sensitive skin cells. 

 

Molecular identifications of nociceptors, thermal receptors and itch sensitive neurons 

 

Nociceptors, thermal receptors and itch receptors appear to have less variable terminal 

morphologies than the mechanoceptors, and they are more commonly categorized by molecular 

markers. These late-born sensory neurons can be classified into two categories: peptidergic and 

non-peptidergic neurons. Both peptidergic and non-peptidergic neurons are composed of highly 

heterogeneous subtypes that are distinguished by expression of different sensory 
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channels/receptors and that respond to noxious stimuli. Most channels/receptors have been 

shown to have specialized functions, which make the neurons expressing them have narrow 

modalities. Neurons expressing more than one of the channels and thus respond to multiple 

sensory stimuli are called poly-modal neurons. Channels/receptors can also sometimes respond 

to a wide range of sensory stimuli, though some of them are very specific. Many channels have 

not yet shown clear function, and it remains to be seen how they contribute to nociception (Dong 

and Anderson, 2001; Hjerling-Leffler et al., 2007; Story and Patapoutian, 2003; Zylka and 

Anderson, 2003).  

There are 9 different voltage-gated sodium channels expressed in the mammalian muscle 

and nerve, of which Nav1.7, 1.8 and 1.9 were shown to be most physiologically relevant in 

sensory neurons. Nav1.7 (or PN1) is found to be expressed in nociceptors, Aδ fiber neurons, as 

well as LTMs (Djouhri et al., 2003). High-level expression of Nav1.7 was found in the growth 

cones of small diameter neurons (Toledo-Aral et al., 1997). Mutation of Nav1.7 in human leads 

to edema, redness, warmth and bilateral pain (Yang et al., 2004). Conditional knock out of 

Nav1.7 greatly affects all inflammatory pain responses evoked by formalin, carrageenan, CFA or 

NGF (Nassar and Wood, 2004). Both peptidergic and non-peptidergic small sensory neurons 

express sodium channel Nav1.8 (SNS/PN3). Nav1.8 is a Tetrodotoxin (TTX) insensitive sodium 

channel and produces slowly inactivating current when expressed ectopically (Aguayo and 

White, 1992). Nav1.8 expression in nociceptors is necessary for cold pain and pain in the cold 

(Zimmermann et al., 2007). Excitability of Nav1.8 was found to be altered after axonal injury 

and inflammation. Capsaicin treatment of the sensory neurons also led to loss of Nav1.8 

transcripts (Anakopian et al., 1997). Because of Nav1.8 expression in most nociceptors, it has 
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been widely used as a nociceptor marker. Recently it was shown that Nav1.8 expression is not 

restricted in nociceptors, but also in C-LTMRs and Aβ LTMRs (Shields et al., 2012). Nav1.8Cre 

transgenic mice are usually used to generate conditional knockout mice in nociceptors (Agarwal 

et al., 2004). Nav1.9 (or NaN) also produces TTX insensitive currents. Nav1.9 is preferentially 

expressed in small diameter neurons, while there are low levels of Nav1.9 in a small portion of 

large diameter neurons. Like Nav1.8, Nav1.9 expression is also downregulated after axotomy 

and has been indicated to play a role in inflammatory hyperalgesia (Dib-Hajj et al., 1998). 

The peptidergic neurons make two additional peptide transmitters not present in non-

peptidergic neurons: CGRP (Calcitonin gene-related peptide) and SP (substance P), and express 

the NGF (nerve growth factor) receptor TrkA (Neurotrophic Tyrosine Kinase, Receptor, type 1, 

also known as NTRK1) (Molliver and Snider, 1997; Snider and McMahon, 1998). These 

peptidergic nociceptors have their peripheral terminals in the skin, bones, joints and visceral 

organs, and their central terminals mainly in lamina I or outer lamina II (IIO) of the spinal cord 

(Christianson and Davis, 2006; Ivanavicius, 2004; Mach and Mantyh, 2002). There are several 

other molecular markers that are expressed exclusively within the peptidergic neurons, such as 

acid sensing channel DRASIC (or ASIC3) that respond to acid stimuli. DRASIC is also 

expressed in the large diameter RAM and SAMs such as Ruffini’s Endings in Mouse incisors, in 

which DRASIC respond to cutaneous touch stimuli (Rahman et al., 2011). ASIC2, another 

family member of ASICs, also have similar expression patterns with DRASIC (Bassilana et al., 

1997; Price et al., 2001; Waldmann et al., 1997a; Waldmann et al., 1997b; Waldmann and 

Lazdunski, 1998). Another important molecular marker is the Mu-Opioid receptor (MOR), 

which is found to be expressed in the majority of SP+ and CGRP+ peptidergic neurons, and has 
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been found to be in the axon terminal of the spinal cord innervation. It was proposed that 

endogenous opioids act through MOR to regulate the release of SP or CGRP (Li et al., 1998).  

The non-peptidergic neurons can be labeled by Isolectin B4 (IB4: glycoprotein isolated 

from the seeds of the tropical African legume Griffonia simplicifolia). They predominantly 

innervate the skin epidermis and have their central terminals in the inner lamina II of the spinal 

cord (Christianson and Davis, 2006; Zylka, 2005). 

Several gene families are expressed in non-peptidergic neurons in overlapping and non-

overlapping ways. In Mas Related G protein coupled receptor (Mrgpr) family, member D, 

member A3, member B4, member B5 and member C11 are all found in non-peptidergic neurons 

(though the majority of MrgprA3+ and MrgprC11+ neurons are peptidergic neurons). MrgprD is 

expressed in polymodal nociceptors that respond to heat and mechanical pain (Mishra et al., 

2010; Wang and Zylka, 2009; Zylka and Anderson, 2004). A proportion of MrgprD+ neurons 

also specifically responds to β-alanine, which induce itch sensations (Liu, 2012)(Shinohara, 

2004). MrgprB4+ neurons innervate hairy skin, and were recently suggested to play a role in 

massage-like stroke (Vrontou et al., 2013).  MrgprA3+ neurons innervate the hairy skin, and were 

found to contribute to itch sensation (Han et al., 2012). It is hard to distinguish MrgprA3 and 

MrgprB4 neurons, since MrgprB4+ neurons also express low levels of MrgprA3. Both MrgprB4 

and A3 co-express with MrgprC11 (Liu et al., 2008). Recently, MrgprA3+ neurons have been 

found to express both IB4 and CGRP, using a MrgA3Cre; Rosa-Tomato reporter line (Han et al., 

2012).  The function of MrgB5 remains unknown. 
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TRP (Transient receptor potential cation channel) channel class, TrpA1, TrpC3, TrpC6, 

TrpM8, TrpV1 and TrpV2 are polymodal sensors in DRG neurons. TrpA1 (TRP, subfamily A, 

member 1) is the integrator of noxious cold, diverse chemical and mechanical stimuli (Brierley et 

al., 2011; Knowlton et al., 2010; Kwan et al., 2009; Wilson et al., 2011). TrpC3 and TrpC6 are 

exclusively expressed in small diameter sensory neurons. TrpC3 is thought to contribute to cell 

excitability by interacting with K+ channel activity (Crozier et al., 2007), while both TrpC3 and 

TrpC6 are suggested to be essential for mechanotransduction (Quick et al., 2012). TrpM8 (TRP, 

subfamily M, member 8) responds to cold, menthol and icilin (Story and Patapoutian, 2003), and 

has recently shown to be mechanically sensitive . Most TrpM8+ neurons are not labeled by IB4 

or CGRP, so belong to non-conventional nociceptors (Bautista et al., 2007; Dhaka et al., 2008; 

Knowlton et al., 2010). TrpV1 (Vanilloid receptor 1) is a receptor that opens in response to 

temperatures above 43oC, low pH (Tominaga et al., 1998) and capsaicin (Caterina et al., 1997). 

Recently it was shown that TrpV1 channels are intrinsically heat sensitive and can be regulated 

by phosphoinositide lipids (Cao et al., 2013). It has been suggested that they play a role in injury 

or inflammation-induced hyperalgesia (Davis et al., 2000). TrpV1 has high and low expression 

levels in mouse DRG. TrpV1 immunostaining showed its expression in both peptidergic and 

non-peptidergic neurons, which respond to warm and mild heat. (Chen et al., 2006; Samad et al., 

2010). TrpV2 responds to even higher temperatures than TrpV1 (53oC), as well as to changes in 

osmolarity and to membrane stretch (Caterina et al., 1999; Muraki et al., 2003). However the 

function of TrpV2 in vivo is not known. TrpV4 is a calcium-permeable swell-activated channel 

and indicated to play a role in mechanosensation. It is found to be expressed in both small (low 
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threshold) and large (high threshold) DRG neurons, as well as keratinocytes and Merkel cells 

(Suzuki et al., 2003). 

Ablation of MrgD+ neurons led to significant reduction of mechanical nociception, while 

ablation of TrpV1+ nerve endings in the spinal cord specifically affect noxious heat pain 

(Cavanaugh et al., 2009), suggesting the sensory modalities of nociception are transduced in 

labeled line (Ma, 2010, 2012). 

The ATP cation dependent P2X purinoceptor P2X3 was found to be specifically expressed 

in IB4+ non-peptidergic neurons (Bradbury et al., 1998; Chen et al., 1995). P2X3 expression was 

also reduced upon axotomy, which could be rescued by GDNF (Bradbury et al., 1998). In 

conclusion, this channel is enriched in non-peptidergic neurons and mediates ATP evoked 

nociceptor activation. 

The classification and variety of sensory neuron subtypes makes sensory acuity possible 

and also plays the foundation for studying the differentiation of neuronal subtypes. Despite the 

advances in revealing molecular markers of the sensory neurons, there are several big questions 

to be answered: first of all, how are the sensory neuron progenitors specified into so many 

different types of sensory neuron? Second, how does one specific type of sensory neuron make 

the correct projections? And finally how does the system maintain the identities of the neurons 

after differentiation? To elucidate the development and maintenance of different subtypes of 

sensory neuron is the goal of this thesis. The large varieties of nociceptors, the accessibility of 

DRG, and the quantitative behavioral tests make nociceptors an ideal model to study the 

mechanism of neural development.  
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Somatosensory neuron development 

The development of neurons generally undergoes several steps: early cell fate determination, 

neuronal migration, initial axon outgrowth, axon extension towards specific targets and target 

invasion, branching and synaptogenesis. During these processes, the neurons are instructed by 

both intrinsic and extrinsic signals.  

 

Sensory neuron genesis 

Somatic sensory neurons originate from neural crest stem cells (NCCs). Two basic helix-loop-

helix transcription factors, neurogenin 1 (NGN1) and neurogenin 2 (NGN2), are required for 

neurogenesis and bias NCCs towards the sensory rather than autonomic lineage (which is 

dependent on Mash1) (Ma et al., 1998; Ma et al., 1999; Ma et al., 1996). The migration and 

neurogenesis of NCCs happens during embryonic day 8.5 (E8.5)- E11 (in mouse) in three waves 

to form the DRG (Kasemeier-Kulesa, 2005; Serbedzija and Bronner-Fraser, 2005). The Ngn2-

dependent first wave mainly contributes to TrkC+ proprioceptive precursors and TrkB+, TrkC+ 

and/or Ret+ mechanoreceptors precursors (Zirlinger et al., 2002). The NGN1-dependent second 

wave, is the largest contributor to DRG neuron population, and develop into nociceptors, thermo-

receptors and itch receptors, all of which initially express TrkA and respond to NGF (Marmigère 

and Ernfors, 2007). The third wave is the smallest contributor, which forms about 5% of all DRG 

neurons. These late born neurons come from the boundary cap, also express TrkA, and mostly 

become nociceptors, with 40% of them being IB4+, and 47% being CGRP+(Maro et al., 2004). 

NGN1 and NGN2 are required for neurogenesis of all DRG neurons, since NGN1 and NGN2 
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knock out mice do not form DRG (Bertrand et al., 2002; Lo et al., 2002; Ma et al., 1999; Perez et 

al., 1999). In the absence of NGN2, NGN1+ cells can still give rise to all neuronal subtypes. 

However, in the absence of NGN1, the small TrkA neurons are missing (Ma et al., 1999). 

Before and during NCC migration, sensory neuron precursors express the multipotent 

marker, the high-mobility group transcription factor SRY (sex determining region Y) box 10 

(Sox10). Sox10 is downregulated after proliferation finishes and specification initiates. Brn3a, 

Foxs1 and Isl1 are among the earliest markers and functional transcriptional factors for sensory 

neurons. Isl1 acts together with Brn3a to drive the transition from sensory neurogenesis to 

terminal differentiation (Lanier et al., 2009; Montelius et al., 2007) (Dykes et al., 2011; Sun et 

al., 2008). 

Neurotrophin Receptors 

During the sensory subtype specification, the first class of molecular markers present are the trk 

signaling receptor family TrkA/B/C, which binds to different neurotrophins: TrkA responds to 

NGF, TrkB to BDNF and NT4, and TrkC to NT3 (Ginty, 2002; Philips and Armanini, 2008; 

Postigo, 2002). TrkC (1st wave) is the earliest expressing subtype marker, followed by TrkB 

(also 1st wave) and later TrkA (the 2nd and 3rd waves) in the sensory neurons. During the process 

of specification, all three markers experience dynamic expression patterns and segregations. In 

the adult DRG neurons, most of TrkC and TrkB expressing neurons become proprioceptors 

and/or mechanoreceptors, while the TrkA lineage neurons become nociceptors, thermal receptors 

and itch receptors. Trk receptors are more than mere markers, but also functional during 

development. Trk signaling is important for neuronal survival, maturation, and target innervation 
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(Pezet and McMahon, 2006). The genetic replacement of TrkA with TrkC switches the cell fate 

from unmyelinated sensory neurons to proprioceptors (Moqrich et al., 2004).  

From E11.5 to E14.5, several distinct populations arise within TrkC+ precursors: the TrkC+ 

only, TrkB+/TrkC+, TrkB+ only, TrkB+/Ret+ and Ret+ only populations. The TrkC+ population 

maintains TrkC expression and later become proprioceptors. Between E11.5-E12.5, TrkB+/TrkC+ 

population neurons experience downregulation of TrkC+ and become a TrkB+ only population. 

Between E12.5-E14.5, TrkB+/Ret+ population neurons also downregulate TrkB expression and 

become exclusively Ret+ (Kramer et al., 2006). These two populations later turn into 

mechanoreceptors. The specification of the first wave of molecular markers happens before 

terminal target innervation and thus might be a consequence of local signals or of innate 

developmental programs.  

TrkA expression was found in most sensory neurons at E12. From E16, a subset of TrkA+ 

neurons starts expressing RET. The RET expression has been found to be NGF/TrkA signaling 

dependent. Between P0 –P14, the RET+/TrkA+ neurons experience gradual downregulation of 

TrkA and turn into RET+ only, non-peptidergic neurons. Meanwhile, TrkA+ only neurons 

become peptidergic neurons. The distinction of TrkA within RET+/TrkA+ neurons is RET 

dependent. Loss of RET signaling was found to lead to disruption of non-peptidergic neuron 

differentiation and also influence peripheral but not central projections of the non-peptidergic 

sensory neurons (Luo et al., 2007). 
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Specification of Proprioceptors 

As mentioned before, the development of proprioceptors is Runx3 dependent. From E11.5-

E14.5, the TrkC+ neurons that remain Runx3 expression during differentiation become 

proprioceptors. Runx3 suppresses mechanoreceptor identities by inhibiting transcriptional factor 

Shox2, biasing sensory neurons towards proprioceptor fate. Without Runx3, Shox2 controls the 

development of NGN2+ neurons and biases them toward the mechanoreceptor specifications 

(Abdo et al., 2011). Loss of Runx3 leads to disruption of proprioceptor markers, such as TrkC 

and Parvalbumin, proprioception circuit formation, as well as proprioceptive function (Inoue et 

al., 2003; Inoue et al., 2002; Levanon and Groner, 2002). 

Specification of myelinated Mechanoreceptors 

The development of mechanoreceptors seems more complicated as there are multiple subtypes of 

mechanoreceptors. Both intrinsic and extrinsic factors have been found to play important roles in 

mechanoreceptor specification. 

Mice lacking BDNF-TrkB signaling completely lose the Meissner corpuscles and have 

modest morphological disorganization of lanceolate endings (Gonzalez-Martinez et al., 2005; 

Gonzalez-Martinez et al., 2004; Perez-Pinera et al., 2008; Rice et al., 1998). Using the temporal 

specific Ret reporter line, it was shown that early Ret+ neurons that co-express GFRα2 are 

mostly rapidly adapting mechanoreceptors (RAM) and form the termination of Meissner 

Corpuscles of the glabrous skin, lanceolate endings in the hairy skin as well as the pacinian 

corpuscles in deep tissues (Luo et al., 2009). The development of early RET RAM is mostly 

dependent on NRTN-GFRα2/Ret signaling, as shown with a conditional knockout of RET 
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leading to disorganization of Meissner corpuscles and lanceolate endings, while the pacinian 

corpuscles are totally lost (although the signaling is not required to maintain pacinian corpuscles 

once they are formed) (Luo et al., 2009).  

MafA was found to exclusively express within the early RET/GFRα2+ population. Upon 

loss of MafA, there is a disruption of development in a subtype of MafA and Ret only neurons, 

changes of Merkel Cell complex and lanceolate endings, as well as changes of the terminal 

innervations in the spinal cord. Loss of MafA also impairs the downregulation of TrkB 

expression within the Ret+ only population (Bourane et al., 2009; Luo et al., 2007). C-Maf is 

another transcriptional factor in the same family as MafA. Early c-Maf is found to be expressed 

in RET+/MafA+ RAMs. Loss of c-Maf leads to elongation of adaptation of RAMs while the 

SAM and D-hair receptor functions remain unchanged. Meanwhile, a disruption of terminal 

morphologies of heavily-myelinated and guard-hair-innervating lanceolate endings, 

circumferential endings, Meissner’s corpuscles and Pacinian corpuscles was observed.  This is 

consistent with human c-Maf mutations, as the Pacinian corpuscle dependent high frequency 

vibration sensation was affected (Wende et al., 2012). There are no other detailed reports about 

how each individual mechanoreceptor subtype differentiates. It is possible that the specification 

of Meissner corpuscles, Ruffini corpuscles, lanceolate endings, Merkel cell complex and 

pacinian corpuscles are determined by target-derived signals (Rice et al., 1998). 

Segregation of TrkA lineage neurons 

The TrkA lineage neurons form nociceptors, thermoreceptors, pruritic receptors et al. Between 

E12.5-E14.5, most TrkA+ neurons co-express with Runx1. After sensory neuron genesis, a 
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segregation of peptidergic versus non-peptidergic nociceptor phenotype happens, with some 

DRG neurons extinguishing TrkA expression and up-regulating Ret expression while the rest 

retain TrkA expression (Molliver and Snider, 1997). This segregation takes place around 

perinatal stages and finishes at postnatal day 14 (P14). It was found that the transcription factor 

Runx1 plays a pivotal role in this segregation. Runx1 is a runt domain transcription factor with 

an activation domain and a repression domain (Dhaka et al., 2006). In wild-type mice, Runx1 is 

first detected at the age of E12.5. From E12.5-E14.5, Runx1 is found in almost all nociceptors 

and is co-expressed with TrkA. From E14.5 to P14, some of the nociceptors that maintain TrkA 

expression extinguish Runx1 expression. The other subset of nociceptors maintains Runx1 

expression, switch off TrkA and turn on Ret. It was found that hepatocyte growth factor (HGF)-

Met signaling acts synergistically with TrkA to promote peptidergic identity and to suppress 

Runx1 expression in the peptidergic neurons (Gascon et al., 2010).  

To determine the function of Runx1 in peptidergic versus non-peptidergic cell fate 

segregation, a conditional Runx1 knockout mouse line was generated by crossing Runx1f/f mice 

with Wnt1-Cre mice, which eliminates Runx1 expression in DRG neurons (Chen et al., 2006). In 

these Runx1 conditional knock out mice (Runx1f/f; WntCre/+, Cre initiates at E8.5), at P60, the 

percentage of TrkA+ neurons in lumbar DRG is doubled compared to control mice, while the 

percentage of Ret+ DRG neurons decreases to half of the controls, many remaining Ret+ neurons 

are early born mechanoceptors. CGRP, which is expressed only in TrkA+ neurons, also shows 

significantly increased expression. By examining central projections, IB4+ non-peptidergic 

terminals are seen shifted to the outer lamina layer, where CGRP+ peptidergic projections usually 

terminate. These results indicate that Runx1 promotes a non-peptidergic over a peptidergic 
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nociceptor identity. Meanwhile, expression of many sensory channels/receptors is eliminated or 

greatly reduced in the Runx1 mutant, including Trp channels (TrpM8, TrpV2, TRPC3, and 

TrpV1 highly expressing channel (TpV1High)), the ATP-gated P2X3 receptor, the sodium channel 

Nav 1.9 and a dozen of the Mrgpr class GPCRs. This suggests the requirement of Runx1 

expression for sensory modality specification. Accompanying the molecular and morphological 

abnormalities in the Runx1 knockout mice, behavioral studies showed impairment in thermal, 

neuropathic and inflammatory pain.   

Like many other molecular markers and transcriptional factors expressed in the DRG 

neurons, the Runx1 expression pattern is quite dynamic. Not only was it switched off in adult 

Runx1-independent TrkA+ peptidergic neurons, Runx1-dependent neurons can also be divided 

into Runx1 persistent and Runx1 transient populations. Using Runx1 late knockout (SNSCre ; 

Runx1f/f, in which Runx1 is knocked out between E16-E17), the Runx1 persistent and Runx1 

transient populations were segregated. MrgD, MrgB5, GluR5, PKCq, TrpC3, TrpM8 and most of 

TrpV1High are expressed in Runx1-persistent neurons that are lost in both early and late Runx1 

knockout mouse. MrgA3, MrgB4 and MrgC11 belong to the second population of markers that 

are expressed in Runx1-transient neurons and are lost in the early Runx1 knockout but unaffected 

in late Runx1 knockout mouse (Samad et al., 2010).  

Recently, another transcriptional factor Tlx3 has been found to be required to establish 

most of the Runx1 dependent phenotypes, including the segregation of peptidergic and non-

peptidergic neuronal fates as well as dozens of the sensory channels and receptors mentioned 

above. Tlx3 is expressed more widely than Runx1 (in both peptidergic and non-peptidergic 

neurons) in adult mice DRG neurons. The expression of Tlx3 and Runx1 are independent with 
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each other; and co-expression of these two transcriptional factors is sufficient to drive several 

channel/receptor expressions in the open book assay of spinal cord. (Lopes et al., 2012). 

Other studies showed that Runx1 first acts as an activator of MrgA3, B4 and C11, but later 

switches to become a repressor for these genes. As a result, expression of A3, B4 and C11 can 

only be sustained in Runx1-transient neurons. To explain the transition of Runx1 functions, it 

was found that the dynamic expression and functions of Runx1 might be due to the activation 

and inhibition domain of this transcriptional factor. Mutation of the Runx1 inhibition domain led 

to expansion of MrgA3, B4 and C11 into the MrgD population (Liu et al., 2008) (Figure 1.3 B).  
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Figure 1.3 Scheme of DRG neuron diversification during development 

Modified from (Liu and Ma, 2011) 
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Target derived signals and subtype specification 

It is widely acknowledged that the cellular survival, specification as well as circuit formation are 

closely related with target-derived signals (da Silva and Wang, 2011; Ginty, 2002; Hippenmeyer 

et al., 2004). Within Runx1 dependent subtypes, neurons have wide range of target innervation 

patterns. MrgD neurons form free nerve endings in the epidermis throughout the skin (Zylka and 

Anderson, 2004); MrgA3/MrgB4+ neurons form free nerve endings only in the hairy skin 

epidermis (Han et al., 2012); MrgB4+ neurons were also found to form circular endings in the 

neck of hair follicles (Liu et al., 2007); VGLUT3+ C-LTMRs, which we will talk about in this 

thesis, form longitudinal lanceolate endings in the zigzag and Awl/Auchene hair follicles (Li et 

al., 2011). These evidence suggest that target derived signals might play an important role in 

sensory neuron subtype specifications. 

Here we use the example of BMP signaling to explain the mechanism of how target derived 

signals control the specification of individual sensory neuron subtypes. BMP signaling has been 

shown to be important for cellular identity specification in many animal models and multiple 

tissue development. In Drosophila, target derived BMPs homologs Glass Bottom Boat (Gbb) 

signaling induces the phosphorylation of Smad homolog Mothers against decapentaplegic (Mad), 

which eventually directs the Tv neurons that target on the Gbb secreting neurohemal organ 

(NHO) to take up neuropeptidergic character that expresses FMRFamide (Allan et al., 2003; 

Eade and Allan, 2009; Marqués et al., 2003; Miguel-Aliaga et al., 2004).  

In mammals, BMP family derived from the dorsal aorta induces expression of several 

transcriptional factors, such as mouse achaete-scute homologue 1(Mash1) and paired-like 

homeodomain transcriptional factor Phox2a/b, which control autonomic neuron-
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specifications(Guillemot et al., 1993; Pattyn et al., 1999; Schneider et al., 1999; Stanke et al., 

1999).  

In the mouse sensory system, BMP signaling has been shown to be critical both for the 

subtype identity establishment, as well as circuit formation. BMP signaling from the peripheral 

innervation of the whisker hair follicle is required to maintain the topographic map of the 

trigeminal ganglia projection. Deletion of Smad4 at late embryonic stages led to loss of 

topography of the barrelettes (da Silva et al., 2011).  For trigeminal ganglia, BMP4 signals act 

through Onset 2 to determine trigeminal sensory neuron specification and formation of 

somatosensory map (Liberty K. Hodge, 2007). In Smad4 conditional knockout mice, MrgB4 

expression is lost, suggesting the role of BMP signaling in specifying MrgB4+ neurons (Liu et 

al., 2008).  

However, it was unknown what the downstream effector of BMP signaling is. Using 

trigeminal ganglia in vitro cell culture, it was found that neuron specification requires two 

sequential actions: BDNF induces axonal translation of SMAD1/5/8 and that BMP4 induces 

phosphorylation of SMAD1/5/8 (Ji and Jaffrey, 2012; Takatoh and Wang, 2012). This suggests 

that the retrograde signals can interact with each other to achieve a more precise subtype 

specification. 
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Central innervations of sensory neurons 

 

Extrinsic cues such as semaphorin Sema3A are responsible for sensory neuron lamina formation 

in the spinal cord. Sema3A acts as a diffusive chemorepulsive cue to the axon projections by 

interacting with neuropilin 1 (NRP1) plexinA3 or plexinA4. During sensory neuron projection 

into the spinal cord, Sema3a is concentrated in the ventral horn of the spinal cord. Since TrkC+ 

proprioceptors express lower level of NRP1, while the TrkA+ small neurons express higher level 

of NRP1, TrkC+ neuron afferents could enter and synapse in the ventral horn, whereas TrkA+ 

nerve afferents are repelled and innervate the dorsal horn of the spinal cord (Behar et al., 1996; 

Bron et al., 2004; Gu et al., 2003; Messersmith et al., 1995). Developing muscles release NT3 

and GDNF. NT3 promotes the expression of ER81, which is important for TrkC expression in 

the proprioceptors; while GDNF promotes the expression of PEA3 in the motor neurons. It was 

shown by removal of the target derived signals (GDNF and NT3) using limb ablation, that the 

proprioceptor central projections and target innervations are greatly compromised (Lin et al., 

1998). Using NT3-/-; Bax-/- mice, it was shown that TrkC+ proprioceptors could no longer project 

to the ventral horn of the spinal cord, and failed to synapse with the motor neurons to form the 

circuitry (Arber et al., 2000; Ernfors et al., 1995; Ernfors et al., 1994; Levanon and Groner, 

2002; Patel et al., 2003). Other local cues such as cell adhesion molecules axonin 1 and transient 

axonal glycoprotein for the axons of small neurons, and coagulation factor 11 (F11) were all 

shown to contribute to proprioceptor longitudinal and retrocaudal axonal trajectory (Perrin et al., 

2001).   
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In conclusion, intrinsic and extrinsic factors reciprocally function to regulate the survival, 

specification and initiation of circuitry formation of the sensory neurons. However, little is 

known about the further specification and synaptogenesis of specific subtypes of sensory neuron. 

The working model is that subtype sensory neurons acquire distinct expression of neurotrophic 

receptor combinations after the initial differentiation, and that the temporal and spatial 

differences of their target innervations leads to differences in target-derived signals. The distinct 

receptors, the innate transcriptional program status, as well as the different signals will trigger 

expression of downstream transcriptional factors necessary for differentiation events to turn on 

various ion channels and ligand receptors.  
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Discovery of C-LTMRs 

Traditionally, it was believed that all the low-threshold mechanoreceptors are myelinated. 

Unmyelinated low threshold mechanoreceptors (C-LTMR) were first discovered by Zotterman in 

cats over 70 years ago (Zotterman, 1939), and were subsequently found in all tested mammals, 

including humans (Björnsdotter et al., 2010; Brown and Hayden, 1971; Brown and Iggo, 1967; 

Olausson et al., 2010; Vallbo et al., 1993). The C-LTMRs were mostly found in the face and 

forearm skin (hairy skin).  

Functionally, Zotterman proposed that human C-LTMRs might be involved with ticklish 

sensation (Zotterman, 1939). More recent studies in humans suggested that C-LTMRs signal 

pleasant touch associated with affiliative social body contact (Björnsdotter et al., 2010; Olausson 

et al., 2010). Microneurography recording showed that C-LTMR exhibit bell-shape responses to 

the speed of moving stimuli, whose peak activity correlates well with the perception of touch-

evoked pleasantness (Löken et al., 2009). Consistently, human patients lacking myelinated A-

fibers were still able to sense pleasant touch (Björnsdotter et al., 2010; Löken et al., 2009; 

Morrison et al., 2011). It was also found that human C-LTMRs project to the dorsal posterior 

part of the insular, bypassing SI, as shown by a lack of activation in SI when stroking the patient 

without Aβ fiber (Olausson et al., 2002). The dorsal posterior insular, interesting, has been 

shown to involve in pain, itch and other sensory related emotions (Bartels and Zeki, 2000; 

Brooks et al., 2002; Craig et al., 2000; Stoleru et al., 2000).  

Since the studies of human C-LTMRs, two types of C-LTMRs have been discovered in 

mice: the VGLUT3+ C-LTMRs discovered by Seal et al (Seal et al., 2009) and the MrgB4+ C-
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LTMRs discovered by Liu and Vrontou et al. more recently (Liu et al., 2007; Vrontou et al., 

2013).  

VGLUT3+ C-LTMRs represent ~10% of total DRG neurons in mice, can be marked by the 

expression of VGLUT3, a vesicular glutamate transporter (Seal et al., 2009). A large subset of 

VGLUT3+ neurons are TH+. Li et al. showed that TH+ C-LTMRs form longitudinal lanceolate 

endings exclusively around zigzag, Awl/Auchene hairs (Li et al., 2011). Each TH+ C-LTMR 

seems to innervate 18±1.7 hair follicles. Centrally VGLUT3+ C-LTMRs project to inner lamina 

II in the spinal cord and the afferents overlap with interneurons expressing the γ isoform of 

protein kinase C (PKCγ) (Seal et al., 2009).  

Ex-vivo recordings showed that VGLUT3+ C-LTMRs have a slow conduction velocity 

(0.58±0.02m/s), a small receptive field (0.2-0.4mm2) and respond to as low as 0.07mN of Von 

Frey stimuli in the rodents. C-LTMRs have the trend to fire higher in respond to stronger stimuli 

than lower stimuli and exhibit after discharges following mechanical stimuli and have an 

intermediate adaptation to stationery stimuli. They also respond to cooling with a threshold of 25 

oC, but no response to heat. And finally, they respond to slow motion across the skin better than 

fast moving stimuli (Bessou and Taylor, 2003; Iggo, 1960; Li et al., 2011; Seal et al., 2009). 

Seal et al. further proposed that mouse C-LTMRs are required for the expression of 

mechanical allodynia (pain evoked by innocuous mechanical stimuli) induced by inflammation, 

tissue injury, chemicals (capsaicin), and nerve injury, based on behavioral analyses in VGLUT3 

complete null mice (Seal et al., 2009). A number of questions remained to be addressed, which 

became the focus of this study. Firstly, the mechanical pain defects were measured from the 

glabrous skin in the hindpaw plantar. However it was shown that C-LTMRs exclusively 
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innervate the hairy skin rather than the glabrous skin. Furthermore, VGLUT3 has been shown to 

express in the spinal cord as well as the brain, with which the somatosensory circuitry is closely 

related (see this chapter). Conventional knockout of VGLUT3 will lead to disruption of the other 

parts of the sensory circuitry. As a result more extensive characterization and specific conditional 

ablation of VGLUT3+ C-LTMR in the sensory neurons are required and the physiological 

functions of VGLUT3+ C-LTMRs are unknown. 

MrgB4+ C-LTMRs represent ~2% of total DRG neurons, and most MrgB4+ neurons also 

express MrgC11 and low levels of MrgA3 (Liu et al., 2007; Liu et al., 2008; Vrontou et al., 

2013).  Peripherally, MrgB4+ neurons innervate the epidermis of the hairy skin in the form of 

free nerve endings, as well as circular nerve endings in the neck of hair follicles. The anatomic 

analysis of peripheral innervations showed that MrgB4+ neurons have large dendritic 

arborization mimicking the receptive field features of C-LTMRs in human (Liu et al., 2007). 

Centrally, MrgB4+ neurons project to the IB4+ lamina II. Electrophysiological recordings of 

MrgB4+ sensory neurons in vitro and ex vivo fail to show any response to thermal or mechanical 

stimuli. However, in vivo calcium imaging analysis of MrgB4+ neurons showed that they 

respond to massage-like strokes. Using conditioned place preference (CPP), it was shown that 

pharmacological activation of MrgB4+ neurons could promote the coupling of the place 

preferences with the neuronal activations (Vrontou et al., 2013). However, since MrgB4 does not 

have close homologs in human, it raises the question what is the MrgB4 comparable sensory 

neurons in human being and if there are such kind of neurons, if they will function as C-LTMRs 

as they do in mice.  
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Chapter II. Runx1 controls terminal morphology and mechanosensitivity of C-

LTMRs1 

Chapter II is modified from the paper that is published in Journal of Neuroscience Jan 2013 

Volume 33, page 870, entitled “Runx1 Controls Terminal Morphology and Mechanosensitivity of 

VGLUT3-expressing C-Mechanoreceptors”. It is co-authored by Shan Lou, Bo Duan, Linh Vong, 

Bradford B. Lowell, and Qiufu Ma. The electrophysiology experiments as well as the behavior 

experiments are mainly carried out by Bo Duan. 

                                                

1 ‘C-LTMR(s)’ in this chapter all refers to VGLUT3+ C-LTMRs, unless indicated otherwise. 
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Chapter II. Abstract 

VGLUT3-expressing unmyelinated low-threshold mechanoreceptors (C-LTMR) are proposed to 

mediate pleasant touch and/or pain, but the molecular programs controlling C-LTMR 

development are unknown. Here, we performed genetic fate mapping, showing that VGLUT3 

lineage sensory neurons are divided into two groups, based on transient or persistent VGLUT3 

expression. VGLUT3-transient neurons are large- or medium-diameter myelinated 

mechanoreceptors that form the Merkel cell-neurite complex. VGLUT3-persistent neurons are 

small-diameter unmyelinated neurons that are further divided into two subtypes: (1) tyrosine 

hydroxylase (TH)-positive C-LTMRs that form the longitudinal lanceolate endings around hairs, 

and (2) TH-negative neurons that form free nerve endings in the skin epidermis. We then found 

that VGLUT3-persistent neurons express the runt domain transcription factor Runx1. Analyses 

of mice with a conditional knockout of Runx1 in VGLUT3 lineage neurons demonstrate that 

Runx1 is pivotal to the development of VGLUT3-persistent neurons, such as the expression of 

VGLUT3 and TH and the formation of longitudinal lanceolate endings. Furthermore, Runx1 is 

required to establish mechanosensitivity in C-LTMRs, by controlling the expression of the 

mechanically gated ion channel Piezo2. Surprisingly, both acute and chronic mechanical pain 

were largely unaffected in these Runx1 mutants. These findings appear to argue against the 

recently proposed role of VGLUT3 in C-LTMRs in mediating mechanical hypersensitivity 

induced by nerve injury or inflammation. Thus, our studies provide new insight into the genetic 

program controlling C-LTMR development and call for a revisit to the physiological functions of 

C-LTMRs. 
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Introduction 

Unmyelinated low threshold mechanoreceptors (C-LTMRs) were first discovered by 

Zotterman in cats over 70 years ago (Zotterman, 1939), and were subsequently found in all tested 

mammals, including humans (Björnsdotter et al., 2010; Olausson et al., 2010). Zotterman 

initially proposed that C-LTMRs might be involved with ticklish sensation (Zotterman, 1939). 

More recent studies in humans suggested that C-LTMRs signal pleasant touch associated with 

affiliative social body contact (Björnsdotter et al., 2010; Löken et al., 2009; Olausson et al., 

2010). In mice, C-LTMRs in the dorsal root ganglia (DRG) are marked by the expression of 

VGLUT3, a vesicular glutamate transporter (Seal et al., 2009), and by the expression of the 

tyrosine hydroxylase (TH) (Li et al., 2011). The TH+ subset of C-LTMRs form longitudinal 

lanceolate endings around hairs (Li et al., 2011). Mice lacking VGLUT3 showed marked deficits 

in mechanical allodynia (pain evoked by innocuous mechanical stimuli) induced by 

inflammation, tissue injury, chemicals (capsaicin), and nerve injury (Seal et al., 2009). Based on 

these behavioral phenotypes, C-LTMRs were proposed to mediate mechanical pain under 

pathological conditions (Seal et al., 2009). However, this interpretation is complicated by 

VGLUT3 expression in many parts of the nervous system besides C-LTMRs (Boulland et al., 

2004; El Mestikawy, 2011). 

In recent years, a number of transcription factors have been identified that control the 

development of myelinated low threshold mechanoreceptors, including the formation of 

specialized mechanoreceptor nerve endings and end organs (Abdo et al., 2011; Arber et al., 

2000; Inoue et al., 2002; Kucera, 2002; Levanon and Groner, 2002; Scott et al., 2011; Sedý, 
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2006; Senzaki K, 2010; Wende et al., 2012). However, the genetic program controlling C-LTMR 

development is entirely unknown. The runt domain transcription factor Runx1 is known to play a 

pivotal role in controlling the development of a diverse array of unmyelinated sensory neurons, 

such as pain-related nociceptors, itch-related pruriceptors, and thermoceptors (Lallemend and 

Ernfors, 2012; Liu et al., 2011). Runx1 is initially expressed in most embryonic neurons marked 

by the expression of the nerve growth factor receptor TrkA (Chen et al., 2006; Kramer et al., 

2006; Levanon and Groner, 2002; Marmigere et al., 2006; Yoshikawa, 2007). In adult mice, 

persistent Runx1 expression is confined to those sensory neurons that have switched off TrkA 

and activated the expression of the Ret receptor tyrosine kinase (Chen et al., 2006; Kramer et al., 

2006). Since C-LTMRs belong to the unmyelinated sensory neuron population, we hypothesized 

that the development of C-LTMRs is also Runx1 dependent. Here we demonstrate that Runx1 

indeed coordinates C-LTMR development. Furthermore, by creating mice with selective defects 

in C-LTMRs, we were able to reassess the physiological functions of C-LTMRs.  
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Results 

Genetic marking of VGLUT3 lineage sensory neurons  

To mark VGLUT3 lineage DRG neurons, we crossed Vglut3-Cre mice, in which an IRES-Cre 

cassette was inserted into the 3’ end of the Vglut3 locus, with ROSA26-CAG-LSL-tdTomato 

reporter mice (Madisen et al., 2010), with the resulting double heterozygous mice referred to as 

ROSATomato/+;Vglut3Cre/+ mice (Figure 2.1 A). In ROSATomato/+;Vglut3Cre/+ mice, VGLUT3 lineage 

neurons are permanently marked by red fluorescent Tomato expression, irrespective of persistent 

or transient VGLUT3 expression. We found that 18.9% (674/3574) of adult lumbar DRG 

neurons, visualized with the expression of the pan neuronal marker SCG10, were Tomato-

positive (data not shown). All neurons with detectable VGLUT3 mRNA coexpressed Tomato 

(Figure 2.1 B), suggesting that VGLUT3-Cre faithfully marks VGLUT3-expressing (VGLUT3+) 

sensory neurons in the DRG. However, we did note that only 85.4% of Tomato+ neurons showed 

detectable VGLUT3 mRNA (Fig.2.1B, arrow). VGLUT3-positive Tomato+ neurons belong 

predominantly to small-diameter DRG neurons (Fig. 2.1B, arrow), whereas the remaining 14.6% 

of VGLUT3-negative Tomato+ neurons represent medium- (Fig. 2.1B, arrowhead) or large- (Fig. 

1B, dashed circle) diameter neurons. At P0.5, some large neurons did show detectable VGLUT3 

expression (Fig. 2.1C, dashed circle), indicating that adult VGLUT3-negative Tomato+ neurons 

represent neurons with transient VGLUT3 expression. It should also be noted that at P0.5, 

Tomato expression had not yet established in some neurons with detectable VGLUT3 mRNA 

(Fig. 2.1C, arrowhead), suggesting that VGLUT3 expression was initiated at prenatal or neonatal 
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stages. Thus, adult Tomato+ neurons are divided into two groups: small VGLUT3-persistent 

versus large/medium VGLUT3-transient.  

VGLUT3-persistent neurons are unmyelinated (Seal et al., 2009). Consistently, NF200, a 

marker for myelinated DRG neurons, was not expressed in small Tomato+ neurons (Fig. 2.1D, 

arrows). In contrast, NF200 expression was detected in medium/large Tomato+ neurons (Fig. 

2.1D, arrowheads and dashed circles). Thus, VGLUT3-persistent and VGLUT3-transient 

Tomato+ neurons represent unmyelinated and myelinated neurons, respectively. 

A subset of VGLUT3-persistent neurons can also be marked by the expression of TH, and 

electrophysiological recording shows that they represent C-LTMRs (Li et al., 2011; Seal et al., 

2009). We found that in adult lumbar DRG of ROSATomato/+; Vglut3Cre/+ mice, TH mRNA was 

detected in 57.9% of small diameter Tomato+ neurons (Fig. 2.1E, arrow). Thus, VGLUT3-

persistent neurons (representing 85.4% of total Tomato+ neurons) are divided into TH+ C-

LTMRs (~58%) and TH-negative (TH–) neurons (~27%).  

Thus, the genetic fate mapping experiments reveal four subsets of VGLUT3 lineage 

neurons in DRG (Fig. 2.1F): medium- and large-diameter subsets of VGLUT3-transient 

myelinated A-mechanoreceptors (for mechanosensitivity, see below), TH+ VGLUT3-persistent 

C-LTMRs, and TH– VGLUT3-persistent neurons. 
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Figure 2.1 Genetic Marking of VGLUT3 lineage neurons 
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Figure 2.1 (Continued) 

Figure 2.1 Genetic marking of VGLUT3 lineage sensory neurons. A, Scheme of making 

ROSATomato/+; Vglut3Cre/+ mice. B, D, E, Double staining of Tomato with VGLUT3 mRNA, NF200 

protein, or TH mRNA on sections through lumbar DRG of adult ROSATomato/+; Vglut3Cre/+ mice. 

(B-E) Arrow, arrowhead, and dashed circle indicate the small-, medium-, and large-diameter 

Tomato+ neurons, respectively. (C) Double staining of VGLUT3 mRNA on sections at P0.5 of 

ROSATomato/+; Vglut3Cre/+ mice. (E) Arrow and arrowhead indicating TH-positive and TH-negative 

small Tomato+ cells, respectively. Dashed circles indicate large TH-negative Tomato+ neurons. F, 

Summary of distinct molecular identities of VGLUT3-persistent versus VGLUT3-transient DRG 

neurons, based on data shown here and Fig. 3. That all VGLUT3-persistent neurons function as C-

LTMR is based on a previous report (Seal et al., 2009). Scale bars, 50 µm. 

Skin innervations by VGLUT3 lineage sensory neurons 

To examine peripheral innervations, we took advantage of ROSATomato/+; Vglut3Cre/+ mice, in 

which Tomato expression can be used to directly visualize axonal endings. From transverse 

sections through hairy back skin, we sampled 266 hair follicles from 5 different mice and found 

that Tomato+ fibers innervated 64.2% (171/266) of these hair follicles (Fig. 2.2A, arrow). The 

actual percentage of hairs with Tomato+ fibers is likely higher since transverse sections may cut 

through parts of the hairs that do not contain Tomato+ fibers. Most of these Tomato+ fibers form 

longitudinal lanceolate endings (Fig. 2.2A, 2.2B). A double staining with NF200, a marker for 

myelinated fibers, showed that these Tomato+ lanceolate endings were NF200-negative (Fig. 
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2.2A, 2.2B, arrows), and were wrapped with NF200+ circumferential endings (Fig. 2.2A, 

arrowheads) and in some cases intertwined with NF200+ longitudinal lanceolate endings (Fig. 

2.2B, arrowheads). These unmyelinated Tomato+ lanceolate endings are most likely derived from 

the TH+ subset of VGLUT3-persistent C-LTMRs, as reported previously (Li et al., 2011). 

We also observed two other types of unmyelinated Tomato+ nerve endings. In the hairy 

skin, NF200– (thereby unmyelinated) Tomato+ free nerve endings were observed in the 

epidermis adjacent to hair follicles (Fig. 2.2C, arrow). In the glabrous skin, we observed another 

type of Tomato+ epidermal free nerve (Fig. 2.2D, arrow). These fibers entered the epidermis 

through the dermal papillae and extended all the way to the stratum corneum (or the cornified 

layer) of skin (Fig. 2.2D). Within the dermal papillae, Tomato+ fibers were continuous and 

sometimes intertwined with NF200+ Meissner’s corpuscles (Fig. 2.2D, arrowhead). However, in 

the outer layers of the epidermis, we observed strings of varicosities (Fig. 2.2D, arrow). The 

resolution of our microscope failed to distinguish if these varicosities were linked with nerve 

segments, or represented fibers dying back from the cornified layer. We referred to these 

previously un-described nerve fibers as “Dermal Papillae-Epidermis ” or “D.P.E.” nerve endings. 

Because TH+ C-LTMRs only innervate hairs (Li et al., 2011), these unmyelinated epidermal 

nerve endings are most likely derived from the TH- subset of VGLUT3-persistent neurons. 

VGLUT3-transient A-mechanoreceptors appear to form Merkel-cell neurite complex. First 

of all, VGLUT3 itself was expressed in Merkel cells, as indicated by the co-expression of 

Tomato with the Merkel cell marker CK20 in the touch dome of the hairy skin (Fig. 2.2E, 

arrowheads). This VGLUT3 expression was further confirmed by immunostaining (see below) 

and is consistent with previous reports (Haeberle and Lumpkin, 2004; Nunzi, 2004). Whole 
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mount preparation of the hairy skin from ROSATomato/+; Vglut3Cre/+ mice revealed Tomato+ fibers 

innervating the touch domes (Fig. 2.2E, arrow). These Tomato+ fibers were myelinated, as 

suggested by the association of S100+ Schwann cells (Fig. 2.2F, arrow) and by the coexpression 

of NF200 (data not shown). Thus, these myelinated Tomato+ fibers are most likely derived from 

medium/large VGLUT3-transient A-mechanoreceptors. 

To conclude this section of the results, each type of VGLUT3 lineage neurons has its 

specific terminal morphology (summarized in Fig. 2.2G). TH+ VGLUT3-persistent C-LTMRs 

form longitudinal lanceolate endings around hairs. TH– VGLUT3-persistent neurons form 

epidermal free nerve endings adjacent to hairs or the “D.P.E.” ending passing through the dermal 

papillae in the thick glabrous skin. VGLUT3-transient A-mechanoreceptors form the Merkel 

cell-neurite complex.  
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Figure 2.2 Skin innervations by VGLUT3 lineage sensory neurons 

 



 47 

 

Figure 2.2 (Continued) 

Figure 2.2 Skin innervations by VGLUT3 lineage sensory neurons. A-D, Double staining of 

Tomato with NF200 on sections through the hairy skin (A-C) or the glabrous skin (D). (A,B), 

Arrow indicating Tomato+; NF200– longitudinal lanceolate endings wrapped by NF200+ 

circumferential ending (A, arrowhead) or intertwined with NF200+ longitudinal lanceolate endings 

(B, arrowhead). (C), Arrow indicating NF200–;Tomato+ free nerve endings in the epidermis 

(“epi.”) adjacent to a hair (“h”). (D), Arrow indicating a Tomato+ fiber passing through the dermal 

pappilae (“d.p.”) and then entering the epidermis (“epi.”) and the stratum corneum (“s.c”), referred 

to as the “D.P.E” ending (summarized in G). Arrowhead in (D) indicating a NF200+ Meissner’s 

corpuscle. E, Whole mount double staining of Tomato with the Merkel cell marker CK20 within a 

touch dome around a guard hair. Arrowhead indicating Merkel cells in the touch dome. F, Arrows 

indicating Tomato+ fibers innervating the touch dome of the hairy skin are wrapped by S100+ 

Schwann cells (green). G, Schematic summary of nerve endings from VGLUT3 lineage sensory 

neurons. “F.N.”: free nerve endings. “L.L.E”: longitudinal lanceolate endings. “M.C.”: Merkel Cell 

complex. Red and blue indicating fibers derived from TH+ and TH– VGLUT3-persistent neurons, 

respectively; Green indicates fibers derived from myelinated VGLUT3-transient 

mechanoreceptors. Scale bars, 20 µm. 

Runx1 controls VGLUT3 expression and other molecular identities in C-LTMRs  

We next asked how C-LTMRs are specified during development. Runx1 is a transcriptional factor 

that coordinates the development of a large cohort of unmyelinated DRG neurons (Liu et al., 
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2011). We found that Runx1 mRNA was detected in most, if not all, small-diameter Tomato+ 

neurons in lumbar DRG of adult ROSATomato/+; Vglut3Cre/+ mice (Fig. 2.3A, arrows). In contrast, 

Runx1 expression was not detected in medium/large Tomato+ neurons (Fig. 2.3A, arrowheads and 

dashed circles). In other words, Runx1 is associated exclusively with C-LTMRs within VGLUT3 

lineage DRG neurons (summarized in Fig. 2.1F). 

To determine the role of Runx1 in controlling C-LTMR development, we crossed Vglut3Cre/+ 

mice with mice carrying a floxed allele of Runx1 (Runx1F/+) (Growney, 2005), with the resulting 

conditional null mice referred to as Runx1F/F; Vglut3Cre/+. In these mutants, Cre-mediated 

recombination selectively removed Runx1 from VGLUT3 lineage sensory neurons. To monitor 

VGLUT3 lineage neurons by Tomato expression, we further created mutants carrying the 

ROSA26-CAG-LSTOPL-tdTomato reporter allele, referred to as 

Runx1F/F;ROSATomato/+;Vglut3Cre/+. In situ hybridization showed that VGLUT3 mRNA, detected in 

adult lumbar DRG from control mice, was not detected in DRG from Runx1F/F;ROSATomato/+; 

Vglut3Cre/+ mice (Fig 2.3B). Mutant sensory neurons survived, as indicated by similar percentages 

of lumbar DRG neurons that were Tomato+ in mutant mice (20.8%) versus control mice (18.9%). 

Because Vglut3Cre/+ mice were used to make Runx1 (in other words, Runx1 knockout occurred 

after onset of VGLUT3 expression), VGLUT3 expression was observed in some DRG neurons at 

P4.5, but not after P7 (data not shown). Thus, Runx1 is required to maintain VGLUT3 expression. 

TH expression was also eliminated (Fig. 2.3C and data not shown), further indicating an 

impairment of C-LTMRs in Runx1F/F;ROSATomato/+; Vglut3Cre/+ mice.  

Other than DRG neurons, Runx1 expression is rarely detected in the nervous system 

(Levanon and Groner, 2002; Zagami, 2010). Consistently, we have not yet detected a loss of 
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VGLUT3 expression in other neural cells in Runx1 knockouts. Firstly, the VGLUT3 protein 

detected by immunostaining was still present in CK20+ Merkel cells in the thick glabrous skin of 

Runx1F/F;ROSATomato/+; Vglut3Cre/+ mice (Fig. 2.3D). Secondly, VGLUT3 is expressed transiently 

in the dorsal spinal cord in wild type mice, detectable at P4 and downregulated at P56 (Allen 

mouse spinal cord atlas, http:// mousespinal.brain-map.org). We found that at P7, normal VGLUT3 

expression was still detected in the dorsal spinal cord of Runx1F/F;ROSATomato/+; Vglut3Cre/+ mice 

(Fig. 2.3E), despite that VGLUT3 expression was already lost in lumbar DRG at this stage (data 

not shown).  Finally, normal VGLUT3 expression was detected in serotonergic neurons in the 

adult hindbrain raphe nuclei (Fig. 2.3F) and in many other parts of the brain (data not shown). 

Thus, in Runx1F/F;ROSATomato/+; Vglut3Cre/+ mice, VGLUT3 expression appears to be selectively 

eliminated in VGLUT3-expressing DRG neurons.  
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Figure 2. 3 Runx1 controls VGLUT3 and TH expression in C-LTMRs 

Figure 2.3 Runx1 controls VGLUT3 and TH expression in C-LTMRs. A, Runx1 in situ 

hybridization on a lumbar DRG section from a ROSATomato/+; Vglut3Cre/+ mouse. Runx1 mRNA was 

detected in small (arrows), but not medium (arrowheads) or large (dashed circles) Tomato+ 

neurons. B, C, Double staining of Tomato with VGLUT3 mRNA (B) or TH mRNA (C) detected 

by in situ hybridization on lumbar DRG sections from the ROSATomato/+; Vglut3Cre/+ control mice 

(“Ctrl”) or Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant mice (“CKO”). D, Double staining of 

Tomato with VGLUT3 immunostaining on sections through the thick glabrous skin from Ctrl and 

CKO mice. Red indicates Merkel cells, and the inserts are the higher magnification of the dashed 

boxes. E, F, VGLUT3 in situ hybridization on sections through P7 spinal dorsal horn (E) or the 

adult dorsal raphe nuclei of the brainstem (F) of the Ctrl and CKO mice. Scale bars, 50µm. 
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Runx1 controls the formation of lanceolate endings by C-LTMR 

 

We next examined how peripheral terminal morphologies of VGLUT3 lineage neurons were 

affected in Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant mice, using ROSATomato/+; Vglut3Cre/+ 

littermates as the control. A whole mount view on the hairy skin showed that in control mice, most 

Tomato+ fibers innervating hair follicles showed clear longitudinal lanceolate endings (Fig. 4A, B, 

left column, arrows). In contrast, while Tomato+ fibers in Runx1F/F;ROSATomato/+; Vglut3Cre/+ 

mutant mice still innervated hair follicles, most of them did not form longitudinal lanceolate 

endings (Fig. 2.4A, B, right column), and instead circumferential Tomato+ endings were observed 

(Fig. 2.4A, B, right column, arrowheads). Thus, either the loss of longitudinal lanceolate endings 

unmasks Tomato+ circumferential endings, or a transformation from longitudinal to circumferential 

endings had occurred (Fig 2.4C). A double staining with NF200 further showed that these Tomato+ 

circumferential endings (Fig. 2.4B, small arrowheads) were located ventral to Tomato-negative 

NF200+ myelinated circumferential endings (Fig. 2.4B, big arrowheads).  

In the epidermis around hairs, no obvious reduction of Tomato+ free nerve endings was 

observed (data not shown). The morphology of the unmyelinated D.P.E endings in the thick 

glabrous skin was also unchanged (data not shown). Also unchanged was the innervation of the 

touch dome by Tomato+ myelinated mechanoreceptors (data not shown), consistent with a lack of 

Runx1 expression in VGLUT3-transient A-mechanoreceptors. Thus, despite Runx1 controlling 

VGLUT3 expression in both TH+ and TH– neurons, Runx1 is required selectively for TH+ C-

LTMRs to form unmyelinated lanceolate endings. 

 



 52 

 

 

Figure 2. 4 Runx1 controls the formation of C-LTMR lanceolate endings 
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Figure 2.4 (Continued) Runx1 controls the formation of C-LTMR lanceolate endings. A, 

Wholemount view of Tomato+ nerve endings innervating hair follicles in the back skin of adult 

ROSATomato/+; Vglut3Cre/+ control (“Ctrl”), and Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant (“CKO”) 

mice. Arrows indicating longitudinal lanceolate endings and arrowheads for circumferential 

endings. B, A double staining of Tomato and NF200 on transverse skin sections. Arrowheads 

indicating NF200+ circumferential endings. Arrow in the left panel indicating lanceolate endings in 

wild type control mice, while arrowheads in the right panel indicating a Tomato+ circumferential 

ending in mutant mice. C, Schematic diagrams illustrating the change from the lanceolate to the 

circumferential ending in mutant mice. 

Runx1 controls mechanosensitivity in VGLUT3+ C-LTMRs 

To examine mechanosensitivity, we performed whole-cell patch recordings on cultured DRG 

neurons (Coste et al., 2010; Drew, 2002; Hu, 2006; McCarter, 1999; Vilceanu and Stucky, 2010). 

We first tried ROSATomato/+; Vglut3Cre/+ control mice, by applying mechanical forces to the cell 

surface of Tomato+ neurons (visualized under a fluorescent microscope) via a piezo-electrically 

driven glass probe, while another pipette was used for patch-clamp recording of mechanically 

evoked currents (Fig. 2.5A). First, we determined activation curves for each mechanosensitive 

current by applying incremental mechanical forces (Fig. 2.5B) and found that membrane 

displacement evoking half of the maximum mechanical current (Stim50) was 6.9 µm (Fig. 2.5C). 

We then grouped currents on the basis of half-inactivation times (τinac) during 8 µm-displacement 

stimulation, and revealed three classes of currents (Fig. 2.5D): rapidly adapting (τinac < 10 ms), 
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slowly adapting (τinac >10 ms, including intermediate and ultra-slow) and mixed adapting.  The 

mixed adapting current was well fitted by two exponentials, instead of one exponential fitting 

(Drew, 2004): τinac1 < 10 ms and τinac2 >10 ms (Fig. 2.5D). In other words, mixed adapting neurons 

are composed of both slowly and rapidly adapting mechanical currents. In contrast, some neurons 

did not respond to mechanical probing and were referred to as non-responders.  

For 51 recorded small-diameter (<25 µm) Tomato+ neurons from 4 individual mice, 

corresponding to VGLUT3-persistent neruons, rapidly adapting (35.8 ± 2.4%) and mixed adapting 

(31.8 ± 4.8%) currents are predominant, followed by slowly adapting (7.8 ± 2.8%) and non-

responders (24.5 ± 3.4%) (Fig. 2.5E). For 13 recorded medium/large-diameter (>35 µm) Tomato+ 

neurons (representing VGLUT3-transient neurons) from 3 individual mice, mixed adapting 

currents are predominant, followed by slowly adapting rapidly adapting, and non-responders (data 

not shown). Thus, different subtypes of VGLUT3 lineage neurons may contain distinct mechanical 

channel components.  

We next asked if mechanosensitivity was affected in Runx1 conditional knockouts. 

Recording from 55 cultured small-diameter (<25 µm) Tomato+ neurons from 5 individual 

Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant mice showed a marked loss of mechanosensitive 

neurons in comparison with ROSATomato/+; Vglut3Cre/+ control mice, with rapidly adapting neurons 

reduced from 35.8 ± 2.4% to 7.7 ± 5.6%, and mixed adapting neurons reduced from 31.8 ± 4.8% to 

2.0 ± 2.0% (Fig. 2.5E). Because of the rarity of neurons expressing slowly adapting currents, it 

remains uncertain if these neurons were significantly reduced (Fig. 2.5E). Accordingly, there was a 

marked increase in non-responders, from 24.5 ± 3.4% in control mice to 88.3 ± 5.6% in mutants 

(Fig. 2.5E). Moreover, the average current density in the remaining 7 (out of 55) mechanosensitive 
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small Tomato+ neurons was significantly reduced in comparison with that in control mice (from 

31.8 ± 5.3 pA/pF to 12.8 ± 4.2 pA/pF, P < 0.01). In contrast, no change in average current density 

was detected in medium/large (>35 µm) Tomato+ neurons (data not shown), consistent with a lack 

of Runx1 expression in medium/large VGLUT3-transient A-mechanoreceptors. Thus, Runx1 is 

selectively required to establish mechanosensitivity in small-diameter VGLUT3-persistent 

neurons.  

 

Figure 2. 5 Runx1 controls mechanosensitivity in VGLUT3-expressing C-LTMRs 

Figure 2.5. Runx1 controls mechanosensitivity in VGLUT3+ C-LTMRs. A, photograph showing 

mechanical stimulation of a patch-clamped Tomato+ DRG neuron from ROSATomato/+; Vglut3Cre/+ 

control (“Ctrl”) mice. B, Families of rapidly adapting mechanosensitive current traces evoked by a 
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(Figure 2.5 continued) series of mechanical steps in 2 µm increments for the DRG cells from Ctrl 

mice. C. Relationship between stimulation displacement and relative currents from B (n = 6). D, 

Representative traces of rapidly adapting, mixed adapting and slowly adapting currents evoked by 

a short mechanical stimulus of 8 µm. E, Histograms showing the proportions of distinct 

mechanosensitive currents observed in small-diameter VGLUT3 neurons from control “Ctrl”  (n = 

4 mice, 51 neurons totally) and Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant (“CKO”) mice (n = 5 

mice, 55 neurons totally), respectively. **, P < 0.01, ***, P < 0.001. Ctrl vs. CKO, Student’s 

unpaired t test. “NS”: non-significant.  

 

Runx1 controls mechanosensitivity by regulating piezo2 expression  

 

Piezo2 mediates mechanically evoked currents in a subset of cultured DRG neurons in mice (Coste 

et al., 2010). In situ hybridization on lumbar DRG sections from ROSATomato/+; Vglut3Cre/+ fate-

mapping mice showed that 83.7 ± 1.9% of Tomato+ neurons expressed Piezo2 at a relatively high 

level (Piezo2high) (Fig. 2.6A). Most small-diameter and medium-diameter Tomato+ neurons 

expressed Piezo2high (Fig. 2.6A), and only large Tomato+ neurons showed Piezo2low expression 

(Fig. 2.6A).  

We next examined Piezo2 expression in lumbar DRGs of Runx1 mutant and control mice. 

Double staining showed that the percentage of Tomato+ neurons with detectable Piezo2 was 

markedly reduced in mutants (Fig. 2.6A), from 83.7 ± 1.9% in control mice to 13.6 ± 2.9% in 

Runx1F/F;ROSATomato/+; Vglut3Cre/+ mice (P < 0.001). Most small-diameter Tomato+ neurons, 

representing VGLUT3-persistent neurons, lost Piezo2 expression (Fig. 2.6A). In contrast, medium-
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diameter Tomato+ neurons retained Piezo2high expression in mutant mice (Fig. 2.6A), consistent 

with the lack of Runx1 expression in these neurons (Fig. 2.3A).   

To determine if Piezo2 is required to mediate mechanical responses in VGLUT3 lineage 

neurons, we used the same set of siRNAs (a mixture of four) used by Coste et al. (Coste et al., 

2010) to knock down Piezo2 expression in cultured DRG neurons from ROSATomato/+; Vglut3Cre/+ 

mice. By solution electroporation, we found that nearly 98.3% of Tomato+ neurons were 

transfected with siRNAs, monitored by the inclusion of a fluorescence-conjugated scrambled 

siRNA (data not shown). In 4 paired mice, compared with the results from 33 small Tomato+ 

neurons transfected with control siRNA, transfection with Piezo2 siRNAs in 38 neurons led to a 

marked reduction of small Tomato+ neurons expressing rapidly adapting currents (from 35.8 ± 

6.3% with control siRNA to 4.4 ± 2.6% with Piezo2 siRNAs), which in turn resulted in a marked 

increase in non-responders (from 29.2 ± 3.2% to 74.0 ± 6.3%) (Fig. 2.6B). Piezo2 knockdown 

appeared to lead to a reduction of mixed adapting neurons (from 28.8 ± 12.3% to 6.9 ± 4.2%), and 

an increase of slowly adapting neurons (from 6.2 ± 4.0% to 14.6 ± 6.4%), but these changes did 

not reach statistical significance (Fig. 2.6B). These findings suggest that Runx1-dependent Piezo2 

is required to mediate mechanosensitivity in small-diameter Tomato+ neurons. 
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Figure 2. 6 Runx1 controls C-LTMR mechanosensitivity 

Figure 2.6 Runx1 controls C-LTMR mechanosensitivity by regulating Piezo2 expression. A, 

Piezo2 in situ hybridization on lumbar DRG sections from ROSATomato/+; Vglut3Cre/+ control 

(“Ctrl”) mice or Runx1F/F;ROSATomato/+; Vglut3Cre/+ mutant (“CKO”) mice. Arrows, arrowheads, 

and dashed circles indicating small, medium, and large Tomato+ neurons, respectively. B, 

Histograms showing the percentages of neurons exhibiting different types of mechanosensitive 

currents upon transfection with scrambled control siRNA (Ctrl, n = 4 mice, 33 neurons totally) or 

Piezo2 siRNAs (n = 4 mice, 38 neurons totally). **, P < 0.01. Ctrl vs. Piezo2 siRNAs, Student’s 

unpaired t test. 
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Mechanical pain from glabrous skin was largely unaffected in Runx1f/f; Vglut3cre/+ 

mutant mice.  

The selective impairment in C-LTMRs in Runx1F/F; Vglut3Cre/+ mutant mice offered a unique 

opportunity to reassess the physiological functions of these mechanoreceptors. We therefore 

performed a series of acute and chronic pain assays in Runx1F/F; Vglut3Cre/+ mutant mice, using 

Runx1F/F or Runx1F/+ littermates as control. The thresholds in response to light and intense 

mechanical stimuli delivered by Randall-Selitto apparatus and the von Frey filaments, respectively, 

were unchanged between mutant and control mice (Fig. 2.7A,B). Similarly, Runx1F/F; Vglut3Cre/+ 

mutant mice showed no difference in paw withdrawal latencies in response to radiation heat 

stimuli, in comparison with control littermates (Fig. 2.7C). Thus, acute mechanical and heat pain 

remains intact in Runx1F/F; Vglut3Cre/+ mutant mice.   

Intradermal injection of capsaicin into the plantar of the hindpaw induces not only acute 

nociception but also secondary mechanical allodynia (Campbell, 2006; LaMotte, 1991; Torebjörk, 

1992). We found that duration of licking following capsaicin injections, a measurement of acute 

chemical pain, was comparable between Runx1F/F; Vglut3Cre/+ mutant mice and control littermates 

(Fig. 2.7D). Capsaicin also induced similar degrees of secondary mechanical hypersensitivity on 

the adjacent plantar area, as indicated by similar reduction in withdrawal thresholds in response to 

von Frey stimuli (Fig. 2.7D). Thus, capsaicin-induced secondary mechanical allodynia in the 

glabrous skin also remained intact in mutants.  

To assess neuropathic pain, we used the spared nerve injury (SNI) model (Decosterd and 

Woolf, 2000b). We found that both control and mutant mice showed indistinguishable mechanical 
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hypersensitivity following SNI (Fig. 2.7E), indicating that neuropathic mechanical pain is 

unaffected in mutant mice.  

To assess inflammatory pain, we first performed intraplantar injection of the Complete 

Freund’s Adjuvant (CFA). Three day after intraplantar injection of CFA, both thermal 

hypersensitivity (measured by the radiant heat assay) and mechanical allodynia (measured by the 

von Frey assay) remained intact in Runx1F/F; Vglut3Cre/+ mice in comparison with control mice 

(Fig. 2.7F). We next performed intraplantar injection of carrageenan (Kayser, 1987). Thermal 

hypersensitivity was again unchanged in mutant mice (Fig. 2.7G). However, although mechanical 

hypersensitivity induced by carrageenan still developed in mutants, the mutants showed a modest, 

yet significant, increase in mechanical thresholds, in comparison with control littermates (Fig. 

2.7G), suggesting a minor impairment of inflammatory mechanical pain.  Collectively, these 

studies suggest that developmental impairment of VGLUT3-persistent neurons in Runx1F/F; 

Vglut3Cre/+ mice does not markedly affect acute or chronic mechanical pain measured from the 

glabrous skin. 

Since TH+ C-LTMRs only innervate the hairy skin (Li et al., 2011), we further examined 

mechanical allodynia following capsaicin injection into the hairy skin of the dorsal hindpaw. We 

again did not find any difference between Runx1F/F; Vglut3Cre/+ mice versus control mice (data not 

shown). All together, we conclude that mechanical allodynia is largely unaffected in Runx1F/F; 

Vglut3Cre/+ mutant mice. 
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Figure 2. 7 Pain behavior analysis of Runx1 conditional knockout mice 
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Figure 2.7 (Continued) Pain behavioral analyses. A, The Randall-Selitto assay. Runx1F/F; 

Vglut3Cre/+ mutant (“CKO”) and control (Ctrl) mice showed the same thresholds to tail withdrawal 

(Ctrl, n = 10, 61.2 ± 1.8 g; CKO, n = 8, 62.8 ± 2.2 g; P > 0.05, Student’s unpaired t test). B, The 

von Frey assays for acute mechanical pain measurement. No difference in withdrawal thresholds 

(Ctrl, n = 10, 0.44 ± 0.05 g; CKO, n = 8, 0.45 ± 0.06 g; P > 0.05, Student’s unpaired t test). C, The 

Hargreaves radiant heat test. No difference in withdrawal thresholds (Ctrl, n = 10, 12.4 ± 0.4 s; 

CKO, n = 8, 11.9 ± 0.5 s; P > 0.05, Student’s unpaired t test). D, In both Ctrl and CKO mice, 

capsaicin injection into the hindpaw produced similar licking response in the first 5 min (Ctrl, n = 

6, 40.3 ± 4.0 s; CKO, n = 5, 47.6 ± 9.4 s; P > 0.05, Student’s unpaired t test). Both CKO and Ctrl 

mice showed similar decrease in mechanical threshold at a distance from the injection site at 15, 30 

and 60 min after injection (n = 7, p > 0.05, one-way ANOVA). E, SNI-induced neuropathic pain. 

After SNI, a similar reduction in mechanical thresholds by von Frey assay was observed in Ctrl 

versus CKO mice (Ctrl, n = 7; CKO, n = 10; P > 0.05, by one-way ANOVA). F, CFA-induced 

inflammatory pain. Both Ctrl and CKO mice were injected with CFA in one hindpaw. Tested at 

before (naive) and 3 day after (CFA) injection (Ctrl, n = 7; CKO, n = 8; P > 0.05, Student’s 

unpaired t test). G, Carrageenan-induced inflammatory pain. Ctrl and CKO mice were injected 

with carrageenan in the hindpaw. Tested at 2, 4, 24 h after injection. Both genotypes show a 

similar withdrawal threshold to radiant heat at all times tested (Ctrl, n = 10; CKO, n = 8; P > 0.05, 

Student’s unpaired t test). Both Ctrl and CKO mice showed significant reduction in mechanical 

thresholds (**, P < 0.01; #, P < 0.05), but CKO mice exhibited a small but significant increase in 

mechanical threshold at all times tested in comparison with Ctrl mice (Ctrl, n = 10; CKO, n = 8; *, 

P < 0.05, Ctrl vs. CKO, Student’s unpaired t test).  
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Discussion 

By investigating the ontogeny, mechanosensitivity, developmental control and physiological 

functions of VGLUT3 lineage sensory neurons, we have gained novel insight into several areas on 

mammalian mechanoreceptors. First, the genetic fate mapping shows that VGLUT3 lineage 

mechanoreceptors are composed of multiple subgroups, including 1) medium/large VGLUT3-

transient myelinated A-mechanoreceptors forming the Merkel cell-neurite complex, and 2) small-

diameter VGLUT3-persistent unmyelinated neurons that are further divided into two sub-

populations: TH+ C-LTMRs forming the lanceolate endings around hairs and TH– neurons forming 

epidermal free nerve endings. Secondly, with great excitement generated from the recent 

identification of Piezo2 as a mechanically gated ion channel, we now show that Piezo2 is 

expressed in VGLUT3 lineage C-LTMRs, and Piezo2 mediates mechanosensitivity in these 

neurons. Thirdly, the runt domain transcription factor Runx1 plays a pivotal role in controlling C-

LTMR development, including the formation of terminal morphologies, the expression of 

VGLUT3 and Piezo2, and the establishment of mechanosensitivity. Fourthly, with selective loss of 

VGLUT3 and mechanosensitivity in C-LTMRs, behavioral analyses in this new line of Runx1 

conditional knockouts allow us to revisit the roles of these neurons in sensing mechanical pain.  
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Distinct transcription factors control the formation of specialized mechanoreceptor 

terminal nerve endings  

Most known low threshold mechanoreceptors form specialized nerve endings that allow them to 

respond to specific types of mechanical stimuli (Bautista and Lumpkin, 2011; Delmas, 2011; 

Johnson, 2001). Our studies consolidate the idea that distinct transcription factors control the 

formation of these nerve endings. The basic leucine-zipper transcription factor c-Maf and the ETS 

domain protein Er81 are required for the formation of the Pacinian corpuscles that are specialized 

to sense high-frequency vibrations (Hu, 2012; Sedý, 2006; Wende et al., 2012). Both c-Maf and 

the homeobox protein Shox2 are necessary for the formation of the Meissiner corpuscles that 

respond to skin motions and detect low-frequency vibration (Abdo et al., 2011; Scott et al., 2011; 

Wende et al., 2012).  In the hairy skin, the longitudinal lanceolate endings respond to hair 

defection, and two recent studies reveal heterogeneity of mechanoreceptors forming these endings 

(Li et al., 2011; Wende et al., 2012). Formation of NF200+ myelinated lanceolate endings is 

dependent on c-Maf (Wende et al., 2012). We demonstrate here that Runx1 is required for the TH+ 

subset of C-LTMRs to form unmyelinated lanceolate endings. In the absence of Runx1, 

prospective unmyelinated lanceolate endings are either lost or transformed to become 

circumferential endings. The Merkel cell-neurite complex is specialized for fine tactile 

discrimination, thereby the perception of form and texture (Bautista and Lumpkin, 2011; Delmas, 

2011; Johnson, 2001). The basic helix-loop-helix protein Atoh1 controls the genesis of the Merkel 

cells (Maricich et al., 2012; Maricich et al., 2009). Among mechanoreceptors innervating the 

Merkel cells, Shox2 and the Runx1-related protein Runx3 appear to be required for proper 
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development of the TrkB+ and TrkC+ subsets, respectively (Abdo et al., 2011; Senzaki K, 2010). 

We show here that VGLUT3-transient myelinated mechanoreceptors innervate the Merkel cells, 

and we further found that among them 55% and 45% express the neurotrophin receptors TrkB and 

TrkC, respectively (Supplementary Figure 2.1). Further studies will be warranted to determine if 

Runx3 and Shox2 specify distinct subsets of VGLUT3-transient A-mechanoreceptor. All together, 

the emerging theme is that distinct transcription factors act alone or in combination to control the 

formation of distinct mechanoreceptor nerve endings and/or end organs. 

Runx1-dependent Piezo2 mediates mechanosensitivity in C-LTMRs 

Piezo proteins have been shown to be the long sought mechanically gated ion channels in 

mammals and in flies (Coste et al., 2010; Coste et al., 2012; Kim et al., 2012), a channel that is 

distinct from those found in C.elegans (Geffeney, 2012). In mice, elevated Piezo2 (Piezo2high) 

expression is detected in ~20% of DRG neurons (Coste et al., 2010). Here we found that a large 

subset of Piezo2high neurons represent VGLUT3 lineage neurons, including small-diameter 

VGLUT3-persistent neurons and medium-diameter A-mechanoreceptors. Knock down of Piezo2 

leads to a marked loss of rapidly adapting mechanical current in small VGLUT3-persistent 

neurons, and a concurrent increase of mechano-insensitive neurons (Fig. 2.6). The loss of Piezo2 

expression should at least partly contribute to the marked loss of mechanosensitivity in VGLUT3-

persistent neurons of Runx1 mutants, although our data do not rule out that Runx1 may control 

other molecular components involved with mechanotransduction. 
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Notably, the adaption rates of mechanically evoked currents recorded from cultured neurons 

are different from those recorded from ex-vivo skin-nerve preparations. By ex-vivo skin-nerve 

preparations, C-LTMR neurons exhibit intermediate adaption rates in response to stationary 

mechanical stimuli (Li et al., 2011; Seal et al., 2009), and Merkel cells are innervated by type I 

slowly adapting Aβ-LTMRs, or SA1 Aβ-fibers (Bautista and Lumpkin, 2011; Delmas, 2011; 

Lumpkin, 2010). In contrast, mechanically evoked currents from cultured VGLUT3 lineage 

neurons mainly exhibit rapid or mixed adaption rates. The simplest interpretation is that adaption 

rates are modulated by specialized nerve endings/structures or the extracellular matrix molecules in 

the skin (Lumpkin, 2010). For example, laminin-332 released from keratinocytes is able to 

suppress the rapidly adapting mechanosensitive current (Chiang and Lewin, 2011). Similarly, 

Merkel cells themselves are mechanosensitive, and the SA1 current is selectively lost in mice 

lacking Merkel cells, despite the continuous innervation of Aβ-fibers to prospective touch domes 

(Maricich et al., 2009).  

 

What are the physiological functions of VGLUT3-persistent DRG neurons? 

Seal et al. reported that mechanical allodynia induced by inflammation, capsaicin, or nerve injury 

was all markedly impaired in mice lacking Vglut3 (Seal et al., 2009). They further proposed that 

VGLUT3-persistent C-LTMRs are required for the execution, but not the induction, of mechanical 

allodynia (Seal et al., 2009). This interpretation is, however, complicated by the VGLUT3 

expression in many parts of the nervous system (El Mestikawy, 2011) (Fig. 2.3). By using Vglut3-
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Cre mice to knock out Runx1, we have now created a new line of mutant mice (Runx1F/F; 

Vglut3Cre/+) with a selective loss of VGLUT3 and mechanosensitivity in VGLUT3-persistent 

neurons, which offered a unique opportunity to reassess the physiological functions of these 

neurons. 

We found that Runx1-dependent VGLUT3-persistent neurons do modestly contribute to the 

inflammatory mechanical hypersensitivity induced by carrageenan and measured from the hindpaw 

plantar. Among VGLUT3-persistent neurons, the TH+ C-LTMRs innervates the hairy skin (Li et 

al., 2011), and only the TH– subset innervates the thick glabrous skin, forming the “D.P.E” endings 

that pass through the dermal papillae to enter the epidermis. Previous electrophysiological 

recording showed that most if, not all, VGLUT3-persistent neurons are C-LTMRs (Li et al., 2011). 

Thus, the TH– subset of VGLUT3-persistent neurons might also function as C-LTMRs, although 

further studies are needed to consolidate this hypothesis. Regardless, a defect in TH–neurons could 

in principle contribute to the minor inflammatory pain deficit measured from the glabrous skin in 

Runx1F/F; Vglut3Cre/+ knockout mice. 

Surprisingly, mechanical allodynia induced by nerve lesions, capsaicin and another 

inflammatory reagent CFA in Runx1F/F; Vglut3Cre/+ knockout mice is unaffected in Runx1F/F; 

Vglut3Cre/+ knockout mice. Even carrageenan-induced mechanical pain is only modestly impaired. 

How could we explain the marked loss of this type of pain in Vglut3 complete null mice? Two 

possibilities are worthy for consideration.  

Firstly, VGLUT3 may only play a developmental role in VGLUT3-persistent neurons. 

VGLUT3 expression was initiated at prenatal and neonatal stages (Fig. 2.1). In Runx1F/F; 

Vglut3Cre/+ knockout mice, a transient VGLUT3 expression was still preserved at neonatal stages 
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since Vglut3-Cre mice were used for Runx1 knockout. Transient VGLUT3 expression has been 

shown to play a role in circuit maturation in the brain (Noh et al., 2010), and it is well known that 

spinal circuits also undergo maturation processes during postnatal development (Fitzgerald, 2005). 

Thus, if VGLUT3-dependent glutamate release from VGLUT3-persistent DRG neurons plays a 

role in circuit maturation and if this process only requires a transient VGLUT3 expression, 

maturation of sensory circuits would be impaired in Vglut3 null mice, but not in Runx1F/F; 

Vglut3Cre/+ knockout mice.  

Secondly, VGLUT3 activity in other parts of the nervous system may control mechanical 

hypersensitivity, such as neurons forming the Merkel cell-neurite complex, neurons located in the 

dorsal spinal cord, and hindbrain 5-HT neurons. Accordingly, the normal VGLUT3 expression in 

these neural cells in Runx1F/F; Vglut3Cre/+ knockout mice might explain why mechanical pain is 

unaffected. This interpretation is consistent with reports that VGLUT3 expression is confined to 

Nav1.8 lineage DRG neurons, and neuropathic mechanical pain is unaffected upon ablation of 

these neurons (Abrahamsen et al., 2008; Shields, 2012). Future conditional knockout of VGLUT3 

in various parts of the nervous system will be needed to clarify where VGLUT3 operates to 

mediate mechanical pain.  
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Methods 

Animals  

The generation of mice carrying the floxed Runx1 allele and ROSA26-CAG-LSTOPL-tdTomato 

reporter mice have been described previously (Chen et al., 2006; Madisen et al., 2010). The 

generation of Vglut3-Cre mice will be described elsewhere by Vong L and Lowell BB. For 

histochemical studies, 2-3 pairs of control and mutant mice of 1-2 month old were used. For each 

behavioral analysis, 6-10 pairs of two-month-old mutant and control littermates were used. 

Animals were assigned in treatment groups in a blinded fashion and pain response was measured 

in a blinded manner. All behavioral test protocols were approved by the Institutional Animal 

Care and Use Committee at Dana-Farber Cancer Institute. 

In situ hybridization (ISH) and immunohistochemistry (IHC) 

In situ hybridization procedures have been described previously(Chen et al., 2006). Anti-sense 

Piezo2 probe (0.928 kb) was amplified from cDNA prepared from adult DRG, and was labeled 

with digoxigenin (Roche Dignostics). Immunohistochemistry on DRG sections was performed 

using rabbit anti-CGRP (1/1000, Santa Cruz), rabbit anti-NF200 (1/500, millipore), rabbit anti-

VGLUT3 (1/100, Sys), mouse anti CK20 (1/20, Abcam), and rabbit anti-S100 (1/400, Dako), 

diluted in 0.1% of Triton X-100 plus 10% of goat serum in PBS. The binding of IB4-biotin (10 

mg/ml, Sigma) was carried out as previously described33. The ISH/Tomato double staining was 
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performed as previously described46; the Tomato fluorescent signal was first photographed, 

followed by ISH. The pseudo fluorescent ISH signals (for VGLUT3, TH, Piezo2, and GFRa2) 

were converted from bright field images and then merged onto the Tomato images. For 

Tomato/IHC double staining (Tomato combined with anti-NF200, anti-S100, anti-VGLUT3, or 

anti CK20), different parts of skin (e.g. the dorsal hairy hindpaw, glabrous hindpaw and hairy 

back skin) were dissected in Zamboni’s fixation solution, cryoprotected and embedded in OCT 

compound. 30 µm frozen sections were cut, washed with PBS, and made into floating sections. 

The floating sections were washed with PBS, blocked with 10% goat serum, and incubated with 

various antibodies overnight at 4oC. Following incubation with the primary antibodies, sections 

were washed and incubated with the appropriate secondary antibodies. 

Cell and innervation quantification 

L4/L5 lumbar DRG from two to three mutant and control mice were dissected. For each marker, 

three mutant and/or control DRG were used to prepare six adjacent sections at 14-µm thickness. 

Each set was processed for immunostaining or used for ISH with the marker of interest, and 

positive cells with nuclei were counted. For the innervation quantification, 1.5X 1.5 cm2 back 

skin from two pairs of mutant and control mice were collected. Back skins were fixed in 4% 

PFA, cryoprotected in 20% sucrose, embedded in OCT, and cut into 30um thick sections. 30 hair 

follicles were randomly chosen from each animal, and the innervation pattern of Tomato+ nerve 

endings were documented to see if there are any longitudinal lanceolate endings.  
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DRG neuron culture and RNAi 

Mice at P14-16 were killed by CO2 inhalation and DRGs from T10-L6 were collected in Ca2+ 

and Mg2+-free Hank’s buffered salt solution (HBSS). DRGs were subsequently treated with 

papain (1.5 mg/ml, Roche) and collagenase/dispase (1 mg/ml, Roche) for 15 and 20 min, 

respectively, at 37 °C.  Digested DRGs were washed twice with growth medium (Dulbecco’s 

modified Eagle’s medium (DMEM)-F12, Invitrogen) supplemented with GlutaMAX 

(Invitrogen) and 10% fetal bovine serum (HyClone), triturated using fire-polished Pasteur 

pipettes and plated in a droplet of growth medium on a glass coverslip pre-coated with poly-D-

lysine (20 µg/ml, Sigma) and laminin (20 µg/ml, Sigma). To allow neurons to adhere, coverslips 

were kept for 2 h at 37 °C in a humidified 5% incubator before being flooded with fresh growth 

medium. To increase the survival of DRG neurons, recombinant human GDNF (2 ng/ml, R&D) 

was added in the growth medium. Cultures were used for patch-clamp experiments on the next 

day. Small interference RNA-mediated knockdown of Piezo2 was achieved by electroporation of 

a pool of 4 different siRNA (250 nM totally) purchased from Qiagen (Target sequences: 

GAATGTAATTGGACAGCGA, TCATGAAGGTGCTGGGTAA, 

GATTATCCATGGAGATTTA, GAAGAAAGGCATGAGGTAA) into freshly dissociated DRG 

neurons using the nucleofector kit with the nucleofector type II device (DRG, O-003 program; 

Lonza AG) based on the previous study9. A scrambled siRNA (250 nM, Qiagen) was transfected 

as control. To test the efficiency of electroporation, a 3’-Alexa Fluor 488-conjugated scramble 

siRNA (5 nM, Qiagen) was co-transfected. Further patch-clamp experiments were performed at 

48-72 hours after electroporation. 
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Electrophysiology 

The electrophysiological recordings were performed in the conventional whole-cell patch 

recording configuration under voltage clamp condition. Membrane currents were measured using 

Axoclamp 200B with Digidata 1320A and the pClamp 9 software (Molecular Devices). Patch 

pipettes (3-4 MΩ) were filled with (mM): 140 KCl, 1 CaCl2, 2 MgCl2, 10 EGTA, 2 MgATP and 

10 HEPES, pH 7.2. The standard extracellular solution contained (mM): 150 NaCl, 5 KCl, 1 

MgCl2, 2 CaCl2, 10 glucose, 10 HEPES, pH7.4. The membrane potential was voltage clamped at 

–60 mV throughout the experiments under voltage clamp conditions. All experiments were 

carried out at room temperature (22–25 °C). 

Mechanical stimulation 

For whole-cell recordings, mechanical stimulation was achieved using a fire-polished glass 

pipette (tip diameter ~2 µm) positioned at an angle of 40° to the surface of the dish. Downward 

movement of the probe toward the cell was driven by a Clampex-controlled piezoelectric 

stimulator (Corey and Hudspeth, 1980; Coste et al., 2010; Hao and Delmas, 2011). The stimulus 

was applied for 100 ms. To assess the mechanical sensitivity of a cell, a series of mechanical 

steps in 2 µm increments were applied every 20 s, which allowed full recovery of 

mechanosensitive currents. For recordings of mechanically evoked currents in DRG neurons, the 

inactivation kinetics of traces of currents reaching at least 75 % of the maximal amplitude of 

current elicited per cell were fitted with mono- or bi- (if mono-exponential function cannot fit 
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well) exponential functions (Drew et al., 2004) and classified as rapidly adapting-, mixed 

adapting- and slowly adapting-type currents according to their inactivation time constant. 

Capsaicin-induced acute pain and secondary hyperalgesia 

Capsaicin (3 µg/10 µl, Tocris) was injected into the plantar or hindpaw and the amount of time 

spent licking the hindpaw was counted for 5 minutes. To measure secondary hyperalgesia, 

mechanical thresholds in response to von Frey filaments were determined at a distance from the 

capsaicin injection site of the hindpaw 0, 15, 30 and 60 minutes after injection.  

Neuropathic pain (spared nerve injury) 

Unilateral spared nerve injury was done by exposing the sciatic nerve in the thigh region of the 

adult mouse (2 months), cutting and ligating the tibial and common peroneal nerves, and leaving 

the remaining sural nerve intact (Decosterd and Woolf, 2000a). Animals were subjected to 

testing at 3-15 days after lesion, in the plantar region of the left hind foot that was innervated by 

the sural nerve. 

Inflammatory pain (carrageenan) 

Carrageenan (20 µl, 1%, Sigma) was injected into the plantar of hindpaws, and both mechanical 

threshold and radiant heat sensitivity (paw withdrawal latency) were measured 2-24 hours later. 
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Pain behavioral test 

All animals were acclimatized to the behavioral testing apparatus on three to five ‘habituation’ 

sessions. After habituation, two baseline measures were recorded on two consecutive days for 

each of the behavioral tests prior to the surgery or the CFA injection. After the surgical 

procedure or the chemical compounds injection (considered as day 0), the behavioral tests were 

performed at defined intervals (Fig. 2.7). The experimenter was blinded to the genotype of the 

animals. For tests using the Randall-Selitto device (IITC), mice were placed in a restraining 

plastic tube and allowed 5 min to acclimatize. Slowly ascending pressure was then applied to a 

point midway along the tail until the animal showed a clear sign of discomfort or tried to escape, 

and this pressure was taken as the pain threshold. For the von Frey test, we placed the animals on 

an elevated wire grid and the lateral plantar surface of the hindpaw was stimulated with 

calibrated von Frey monofilaments (0.008-1.4 g). The 50% paw withdrawal threshold for the von 

Frey assay was determined using Dixon’s up-down method (Chaplan et al., 1994). To measure 

radiant heat pain, animals were put in plastic boxes and the plantar paw surface was exposed to a 

beam of radiant heat (IITC) according to the Hargreaves method (Hargreaves et al., 1988). Paw 

withdrawal latency was then recorded (beam intensity was adjusted to result in a latency of 8-12 

seconds for control animals baselines). The heat stimulation was repeated 5 times at an interval 

of 10 min for each animal and the mean calculated. A cutoff time of 30 seconds was set to 

prevent tissue damage. 
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Statistics 

Results are expressed as mean ± SE (s.e.m.). For acute pain and capsaicin-induced licking 

behavior, data were subjected to the Student’s t test. For capsaicin-induced secondary 

hyperalgesia, carrageenan-induced inflammatory and SNI-induced neuropathic pain, time-course 

measurements were analyzed by both analyses of variance between groups (ANOVA), with P < 

0.05 accepted as statistically significant. 
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Chapter III. Abstract 

Runx1 controls the development of multiple sensory neuron subtypes, such as nociceptors, 

thermal receptors, itch receptors, and C-LTMRs. Each Runx1 dependent subtype neuron has 

specific molecular and cellular identities. To find out how Runx1 specifies sensory neuron 

subtypes, I focused on one Runx1 dependent subtype, VGLUT3+ C-LTMR, to answer this 

question. VGLUT3+ C-LTMRs express TH, Ret signaling components, mechanical channel 

Piezo2, and form lanceolate endings around the hair shafts. In chapter III, I found that a Runx1-

dependent transcriptional factor, zinc finger protein Zfp521, is predominantly expressed in TH+ 

C-LTMRs in adult mice. Since Zfp521 has been shown to control bone development and neural 

stem cell differentiation, I hypothesized that Zfp521 also controls C-LTMR development. To test 

this hypothesis, I generated Zfp521 conditional knock out mice. Loss of Zfp521 led to partial 

loss of Runx1 dependent molecular markers, such as VGLUT3, while other phenotypes such as 

Piezo2 expression within C-LTMRs remain unchanged. Loss of Zfp521 also led to change of 

TH+ C-LTMR skin innervations，disrupting the longitudinal lanceolate endings. Furthermore, 

we found that Runx1 and Zfp521 are required for suppressing alternative cell fates in VGLUT3+ 

C-LTMRs. Loss of Runx1 led to expansion of MrgA3 and MrgB4, while loss of Zfp521 led to 

MrgD expression within VGLUT3+ C-LTMR lineage. 

In conclusion, my study reveals a new transcriptional factor Zfp521 that acts downstream 

of Runx1 to control TH+ C-LTMR development. Runx1 might work through Zfp521-dependent 

and Zfp521-independent pathways to control VGLUT3+ C-LTMR development. Both Runx1 

and Zfp521 are required to suppress alternative cell fates.  
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Introduction 

Introduction of C-LTMR (discovery, development and functions) 

C-LTMR is a type of unmyelinated, C fiber, low threshold mechanoreceptor neuron that has been 

proposed to play a role in affiliative social touch in human (Björnsdotter et al., 2010; Löken et al., 

2009; Olausson et al., 2010). Molecularly, there are two types of C-LTMRs found in mice so far: 

one is marked by VGLUT3, with the majority expressing TH (Li et al., 2011; Seal et al., 2009); the 

other is marked by MrgB4, which contribute to massage-like stroke feelings (Liu et al., 2007; 

Vrontou et al., 2013). Previous fate mapping studies showed that C-LTMRs also express GDNF 

and neurturin receptor RET and GFRα2, as well as mechanical channel Piezo2. Morphologically, 

TH+ C-LTMRs form longitudinal lanceolate endings, while TH- C-LTMRs form free nerve 

endings and innervate the epidermis (Li et al., 2011; Lou et al., 2013). Developmentally, 

VGLUT3+ C-LTMR is Runx1-dependent. Loss of Runx1 led to loss of VGLUT3, TH, Ret, 

GFRa2, and Piezo2 expression. Furthermore, Runx1 controls the terminal morphologies of TH+ C-

LTMRs. In Runx1 conditional knockout, TH+ C-LTMRs still reach the hair shafts, but form 

circumferential endings instead of longitudinal lanceolate endings. Loss of Runx1 also led to loss 

of mechanical sensitivity in VGLUT3+ C-LTMRs in in vitro cell culture environment, which is 

likely to be Piezo2-dependent. However, unlike VGLUT3 conventional knockout mice, no 

significant change of pain behavior was observed in Runx1 conditional knockout mice (Lou et al., 

2013). 
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Runx1 controls development of multiple sensory neuron subtype 

Runx1 controls development of a large cohort of nociceptors, thermal receptors and itch receptors. 

Loss of Runx1 led to loss of TRP receptors, Na+-gated, ATP-gated, and H+-gated channels, as well 

as Mrgpr class G protein coupled receptors (Chen et al., 2006). During the development, some of 

the Runx1 dependent neurons remain Runx1-persistent, such as MrgD+, TrpM8+, TrpV1high 

neuron, as well as VGLUT3+ C-LTMRs, and are lost in Runx1 late knockout; some of Runx1 

dependent neurons extinguish Runx1 expression and become Runx1-transient neurons, such as 

MrgC11+, MrgA3+ and MrgB4+ sensory neurons, which are expanded in Runx1 late knockout (Lou 

et al., 2013; Samad et al., 2010).  

MrgD expression starts as early as E16.5. Initially all MrgD+ neurons co-express MrgC11. 

From E16.5 to P14, the MrgD lineage neurons segregate into Runx1-persistent MrgD+ nociceptors, 

and Runx1-transient MrgC11+ neurons, including both MrgA3+ and MrgB4+ neurons (Figure 1.3 

B) (Liu et al., 2008; Samad et al., 2010). Mature MrgD and MrgA/B/C neurons innervate the 

cutaneous skin in the form of free nerve endings and occasionally circumferential endings in the 

hair follicles (Liu et al., 2007; Zylka and Anderson, 2004). Centrally they project to lamina II of 

the spinal cord. Functionally MrgD+ neurons are necessary for mechanical pain and itch (Liu et al., 

2012; Wang and Zylka, 2009), MrgA3 neurons are dedicated to itch and MrgB4+ neurons play a 

role in sensing massage-like strokes in the hairy skin of mice (Han et al., 2012; Liu et al., 2007; 

Vrontou et al., 2013; Zylka and Anderson, 2004).  
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In chapter II, we learnt that VGLUT3+ C-LTMRs are Runx1-dependent and Runx1-

persistent, which is one of they many subtypes of sensory neurons that are Runx1-dependent. The 

question of how Runx1 controls the specification of the large varieties of sensory neuron subtypes 

remain unanswered. There are several hypotheses, of which I will mainly discuss two.  

Firstly, that Runx1 could interact with different transcriptional factors or co-factors to 

directly activate or inhibit different promoters of the genes. This hypothesis is supported by the fact 

that in Runx1 Δ466 mouse line, of which the Runx1 repressor domain is mutated, there is an 

expansion of MrgB4 and MrgA3 expressions into the MrgD+ neurons (Liu et al., 2008). This 

suggests that while Runx1 might be required to maintain MrgD expression, it switches from 

activator to repressor in regulating MrgA/B/C expressions. As a result, MrgD will persist in 

Runx1-persistent neurons but be transient in Runx1-transient neurons such as MrgA+/B+/C+ 

neurons. Conversely, MrgA/B/C can only be maintained in Runx1-transient neurons.  

The second hypothesis is that Runx1 could interact with target-derived signals, which leads 

to different functions of Runx1. This hypothesis is supported by the finding that BMP signaling is 

important for MrgB4 expression, that in BMP signaling component Smad4 conditional knock out 

mice MrgB4 expression is selectively eliminated (Liu et al., 2008). Conceivably, Runx1 could 

interface with other factors to control downstream transcriptional factors and initiate a cascade to 

lead to sensory neuron specifications, although such transcriptional factors have not yet been 

identified.  
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Zfp521 plays a role in development in many tissues 

In an in situ hybridization screen of transcriptional factors that work downstream of Runx1, Zinc 

Finger Protein 521 (Zfp521) turned out to be a possible candidate. Zfp521/evi3 gene locates to 

chromosome 18 and spans 284kb in mouse. The 3936nt long mRNA comprises 8 exons. The 

coding sequence of Zfp521 is highly identical to both its family member OAZ/Zfp423 and 

human orthologue EHZF/ZNF521. The Zfp521 protein is comprised of 1311 amino acids and 

contains 30 kruppel like zinc fingers.  Zfp521 is highly expressed in haematopoietic cells, neural 

stem cells, cerebellar granule neuron precursors and developing striatum (Bond and Morrone, 

2008). In bone development, studies showed that Zfp521 inhibits Runx2 (a family member of 

Runx1) activity by physically binding with Runx2 and HDAC3, which leads to delays of 

osteoblast differentiation (Wu et al., 2009). Recently, Zfp521 was found to work with co-

activator p300 to promote embryonic stem cell (ES) differentiation into a neuroectodermal 

lineage in the absence of BMP signaling. A chromatin immunoprecipitation assay (CHIP) 

showed that Zfp521 directly binds with neuroectoderm-specific genes and functions as an 

activator, though it contains a NuRD (co-repressor complex) binding motif at its amino terminal. 

Overexpression of Zfp521 in ES could override BMP signaling in specifying neuronal cell fate 

differentiation, but it does not directly interact with BMP signaling as shown by luciferase assay 

(Kamiya et al., 2011).  

In this chapter, I found that Zfp521 was expressed within Runx1-expressing sensory 

neurons and appeared to be Runx1 dependent. Zfp521 also colocalized well with TH+ C-LTMR 

in adult mice. Loss of Zfp521 led to loss of VGLUT3 expression, as well as loss of lanceolate 
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endings, but did not affect RET, GFRa2, TH or Piezo2 expressions, which are lost in Runx1 

conditional knockouts, suggesting Zfp521 act downstream of Runx1 in regulating TH+ C-LTMR 

development. Furthermore, I found that while in the Runx1 conditional knock out there is 

expansion of MrgA3 and MrgB4 in VGLUT3+ C-LTMR, upon loss of Zfp521 there is, instead, 

an expansion of MrgD within VGLUT3+ C-LTMR lineage neurons. This suggests that 

VGLUT3+ C-LTMR specification could be a result of transcriptional cross-repression, in which 

Runx1 is needed for the segregation of MrgD and VGLUT3+ C-LTMR cell identities from 

MrgA3+/B4+ neurons, while Zfp521 is needed for segregation of TH+ C-LTMR cellular identities 

from MrgD+ neurons.  Our study reveals a new transcriptional factor that could regulate the 

specification of C-LTMRs and proposes a model of hierarchical control of sensory neuron 

lineage segregation. 
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Results 

Zfp521 expression in the DRG neurons is Runx1 dependent 

To characterize Zfp521 expression, I made a Zfp521 mRNA probe and did in situ hybridization on 

the DRG neurons of wild type mice. Using SCG10 as a pan neuronal marker in adjacent sections, it 

was found that Zfp521 was expressed in a subset of adult DRG neurons, 9.6%±0.8% in lumbar 1-3 

levels. Since Zfp521 is a homolog of Zfp423, which is also expressed in DRG, I compared the 

expression pattern of Zfp521 with Zfp423, but saw no similarities since Zfp423 is expressed in 

almost all the DRG neurons (data not shown). It was also noticeable that the expression of Zfp521 

was restricted in the small diameter neurons (Figure 3.1 A, red fluorescence). Since most small 

diameter sensory neurons are nociceptors, I hypothesized that Zfp521 is expressed within 

nociceptors. Because a big portion of non-peptidergic nociceptors express Runx1, I carried out 

double in situ hybridization with Runx1 (green) and Zfp521 (red) probes (Figure 3.1 A) and 

showed that almost all the Zfp521 (96.6%±4.7%) expressing neurons also express Runx1 in DRG, 

while about a third of Runx1+ neurons express Zfp521 (34.5% ± 11%) in adult wild type mice 

(Figure 3.1A. arrows).  

Since Runx1 controls the development of a large cohort of sensory neurons and that Zfp521 

is exclusively expressed within Runx1+ neurons, I asked the question of whether Zfp521 is also 

Runx1 dependent. To test this hypothesis, I used Runx1 conditional knock out mice in which 

Runx1 with floxp cassete was crossed with Wnt1-Cre (Runx1f/f;Wnt1-Cre), so that all the Runx1 is 

deleted before any Runx1 expression. In situ hybridization showed that there was a significant loss 
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of Zfp521 in Runx1 conditional knock out mice (Figure 3.1B, right panel) compared to control 

DRG (Figure 3.1B, left panel). These data suggest that Zfp521 is expressed within Runx1 

persistent DRG neurons and its expression is Runx1 dependent. 
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Figure 3. 1 Zfp521 expression is Runx1 dependent 

 

Figure 3.1 Zfp521 expression in DRG is Runx1 dependent. A) Runx1 and Zfp521 double 

fluorescent in situ hybridization on P30 lumber 1-3 DRG neurons. Green fluorescence indicates 

Runx1. Red fluorescence indicates Zfp521. Arrows indicate the double fluorescent neurons that 

express both Runx1 and Zfp521. B) Zfp521 fluorescent in situ hybridization on adult DRG 

neurons in lumber 1-3 in control and Runx1 conditional knockout mice. Scale bar =50µm. 
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Zfp521 is predominantly expressed in adult Tyrosine Hydroxylase expressing (TH+) C-

LTMRs  

Runx1-persistent neurons could be divided into several categories: MrgD+ neurons, TrpV1High 

neurons, TrpM8+ and VGLUT3+ C-LTMRs. I asked whether Zfp521 is restricted in a specific 

subtype. Since Zfp521 was expressed in about 10% of DRG neurons in lumbar level, which is 

similar to C-LTMR, I hypothesized that Zfp521 colocalizes with C-LTMRs. To answer this 

question, I did Zfp521 in situ hybridization on C-LTMR reporter mice which used VGLUT3-Cre 

to drive tomato fluorescence expression (ROSATomato/+;Vglut3Cre/+) (Figure 3.2). Previous studies 

had shown that there are three different populations of Tomato+ neuron subtypes in Vglut3 reporter 

mouse DRG (ROSATomato/+;Vglut3Cre/+): Vglut3 reporter line labels ~19% of all DRG neurons, of 

which 58% are TH+ VGLUT3+ neurons, 27% TH- VGLUT3+ neurons, and 15% Tomato+ neurons 

that transiently express VGLUT3 (Lou et al., 2013) (As shown in chapter II). Most Zfp521+ 

neurons (76.5%±4.4% of all Zfp521+ neurons) were also Tomato+, while 57.4%±3.4% of Vglut3-

Tomato+ neurons expressed Zfp521 mRNA. The percentage of Vglut3-Tomato+ neurons that 

express Zfp521 coincides with that of TH+ VGLUT3+ C-LTMRs, suggesting that Zfp521 might be 

expressed within that population. To find out the relationship between Zfp521 and TH+ C-LTMRs, 

I applied double in situ hybridization of Zfp521 and TH on ROSATomato/+;Vglut3Cre/+ reporter line 

DRG neurons. It was found that the majority of Th+/Tomato+ neurons (90.8% 218/240) expressed 

Zfp521 (Figure 3.2, vertical arrows), while only a small portion (14.3% 19/133) of TH-/Tomato+ 

neurons expressed Zfp521 (Figure 3.2 arrow heads). In another way, 92% (218/237) 

Zfp521+/Tomato+ neurons expressed TH. Thus Zfp521 is mainly expressed in TH+ C-LTMRs.    
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Figure 3.2 Zfp521 colocalizes with TH+ C-LTMRs 

Figure 3.2 Zfp521 colocalizes with TH+ C-LTMR. TH, Zfp521 and Vglut3 triple staining on 

Vglut3-Tomato reporter DRG sections. Horizontal arrows indicating the Zfp521+ (Green) neurons 

that are not within Vglut3-tomato＋ neurons. Arrowhead indicating a very small percentage of 

Zfp521+/Vglut3+/Th- neurons. Vertical arrow indicating Zfp521+/Vglut3+/Th+ neurons. Scale 

bar=50 um. 

Zfp521 acts downstream of Runx1 to control TH+ C-LTMR cellular identities.  

Zfp521 has been shown to play a role in development in multiple systems including bone 

formation as well as stem cell differentiation (Correa et al., 2010; Hesse et al., 2010; Kamiya et al., 

2011; Seriwatanachai et al., 2011; Shen et al., 2011; Wu et al., 2009). Since Zfp521 colocalizes 

with TH+ C-LTMRs, I hypothesized that Zfp521 also controls TH+ C-LTMR development. To 

study the function of Zfp521 in C-LTMRs, I generated a Zfp521f/f mouse line by inserting two 

floxp cassettes flanking the biggest exon (exon 4 455-3807bp) of Zfp521 (Figure 3.3 A). By 

crossing Zfp521f/f mouse line with Vglut3Cre/+ and ROSATomato/+ mouse line, I created a conditional 

knock out mouse that specifically deleted Zfp521 exon2 (the longest exon, 455-3807 bp of cDNA) 
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within C-LTMRs, while labeling all the VGLUT3 lineage neurons. To verify the knock out of 

Zfp521, Zfp521 in situ hybridization was applied to the sections of Zfp521 conditional knockout 

mouse DRG. While in control mouse DRG, there were clear Zfp521 mRNA signals (Figure 3.3B 

arrows left panel), the signals were greatly reduced in Zfp521 conditional knockout mice (Figure 

3.3B arrows right panel). The leftover signals could be explained by the fact that 20% of Zfp521 

expressing neurons were not within VGLUT+ neurons by the fate mapping mentioned in the 

previous section. In conclusion, I successfully generated a Zfp521 conditional knockout mouse line 

to study its function within C-LTMRs. 

Firstly, I asked if Zfp521 contributes to neuronal survival for C-LTMRs. To answer this 

question, I quantified the Tomato+ neurons in the lumbar level DRG in both control and mutant 

mice, while labeling all the neurons with pan-neuronal marker SCG10. I found no change of the 

percentage of Tomato+ neurons in all DRG neurons (19.6%±1.2% in control, comparing with 

19.1%±2.4%, p>0.5, n=2, Figure 3.3C).  

Second, I did in situ hybridization using a Vglut3 mRNA probe on the DRG tissue, and 

found that there was a dramatic decrease of Vglut3+ neurons comparing Zfp521 CKO with control 

DRG (Figure 3.3 D). There were still some Vglut3+ neurons in the mutant DRG, which is 

consistent with the fact that Zfp521 is only expressed within ~60% of C-LTMR. On the other 

hand, the number of Tomato+ neurons that express molecular markers of C-LTMRs such as TH, 

GFRa2 or Piezo2 were not greatly changed.  

A lot of transcriptional factors have feedback regulations (Alon, 2007). I asked the question if 

there is a feedback loop between Zfp521 and Runx1 interaction, in other words, if Zfp521 controls 
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VGLUT3 expression by regulating Runx1. To answer these questions, I applied Runx1 in situ 

hybridization and compared Runx1 expression within Tomato+ C-LTMR on the Zfp521 mutant 

and control DRGs. It turned out that no significant change of Runx1 was observed, with 

78.2%±4.1% of tomato+ neurons expressing Runx1 in controls, comparing to 67.7%±3.9% of 

tomato+ neurons expressing Runx1 in Zfp521 mutant (P>0.1 Figure 3.3E). This suggests that the 

interaction of Runx1 and Zfp521 might be uni-directional, and that Zfp521 acts downstream of 

Runx1 to regulate the development of VGLUT3+ C-LTMR. However, it does not rule out the 

possibility that the expression level of Runx1 might have been changed, while the number of 

neurons expressing Runx1 has not. However, combined with the observation that there was no 

change of other Runx1 dependent gene expression, that scenario is unlikely to be the case. 
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Figure 3.3 Zfp521 acts downstream of Runx1 to control C-LTMR development 

  



 92 

 

Figure 3.3 (Continued) 

Figure 3.3 Zfp521 acts downstream of Runx1 to control VGLUT3+ C-LTMR development. A) On 

the left panel is the scheme of Zfp521f/f mouse line. Floxp cassettes were inserted around the 

longest exon of Zfp521, the exon2. On the right side, genotyping results using Zfp521 primers, 

showing homozygous, heterozygous and wild type. B) Zfp521 fluorescence in situ hybridization 

on control and Zfp521 CKO DRG sections, arrow heads indicating Zfp521 mRNA signals. C) 

Quantifications of Vglut3Cre/+; ROSATomato/+ neuron percentage in SCG10+ neurons in DRG. D) 

VGLUT3 fluorescence in situ hybridization on control and Zfp521 CKO DRG sections, arrow 

heads indicating Vglut3 mRNA signals. E) Runx1 fluorescence in situ hybridization on control and 

mutant Vglut3Cre/+; ROSATomato/+ reporter line DRG neurons.   
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Zfp521 controls C-LTMR terminal morphologies  

It was shown previously that Runx1 controls C-LTMR terminals (Lou et al., 2013). Since Zfp521 

is expressed within the lanceolate ending innervating TH+ C-LTMRs, I asked the question whether 

Zfp521 also controls the terminal morphology of C-LTMRs. Using fluorescence microscopy, I 

visualized the Tomato+ nerve endings in cross sections of the back skin of the Vglut3Cre/+; 

ROSATomato/+ mice. It was observed that in both control and Zfp521 conditional knock out mice, 

hair follicle number innervations by Tomato+ nerve endings is comparable, with 66.8%±6.1% of 

control hair follicle innervated by Tomato+ nerve endings, and 64.8%±8.9% of Zfp521 conditional 

knockout (p>0.7, not significant different). While in control mice, there were clear lanceolate 

endings in most of the hair follicles that were innervated, with 68% of the innervated hair follicles 

having obvious longitudinal lanceolate endings; in Zfp521 CKO mice, there were very few 

longitudinal lanceolate endings, with only 22% of the hair follicles that have obvious longitudinal 

lanceolate endings (Figure 3.4A, arrows indicating lanceolate endings, arrow head indicating 

innervations with out lanceolate endings, Figure 3B, n=6).  

I then asked the question if the lanceolate endings in the Zfp521 mutant mice are simply 

disorganized or systematically changed into other morphologies. To answer that question, we 

carried out 2-photon microscopy to visualize defined structures of the nerve terminals. It was found 

that the Zfp521 mutant mouse hair follicle innervations resemble another specialized nerve 

terminal: circumferential (circular) endings (Fig 3.4B left panel shows lanceolate ending in 

controls, Fig 3.4B right panel and Fig 3.4C shows changed nerve terminal in mutant). This 
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observation was similar to Runx1 conditional knockout nerve terminal morphology changes (Lou 

et al., 2013). Thus, it is possible that Runx1 controls the C-LTMR lanceolate ending through 

Zfp521. It does not exclude the possibility that Runx1 and Zfp521 control TH+ C-LTMR 

lanceolate ending formation in parallel pathways and both are necessary for normal C-LTMRs 

lanceolate ending formations. Furthermore, it remained unclear whether the change of morphology 

is due to a switch of cell fates or loss of function, as there are other types of sensory neurons that 

form circumferential endings, such as MrgD+ neurons and MrgB4+ neurons.  

 

Figure 3.4 Zfp521 controls C-LTMR skin innervation morphologies 
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Figure 3.4 (Continued) 

Figure 3.4 Zfp521 controls C-LTMR skin innervation morphologies A) Skin innervations of 

Vglut3-Tomato+ nerve fibers. Hairy skins taken from the back of control and the mutant mice. 

Arrows indicating lanceolate endings. Arrowheads indicating disrupted nerve endings. B) Higher 

magnification of a single hair follicle in control (left) and mutant (right). Arrows indicating 

lanceolate endings, while arrowheads indicating circumferential endings. C) Quantification of loss 

of lanceolate innervations. D) Confocal image showing a higher magnification of circumferential 

ending in the Zfp521 CKO hair follicles. Arrowheads indicating circumferential endings. Scale 

bar=50µm in B, D, E and F; Scale bar=20µm in G and I 

Runx1 and Zfp521 are required to suppress alternative cell fates  

The transcriptional factor conditional knock out animal models, in which development has been 

interrupted, provided a unique opportunity to look into the lineage questions. For example, MrgA3 

and MrgB4 lineage neurons are derived from MrgD lineage. Using the transgenic mice in which 

Runx1 lost its suppression domain, it was shown that MrgA3 and MrgB4 expanded in MrgD+ 

neurons in adult mouse DRG (Liu et al., 2008), suggesting the failure of lineage segregation.   

Since both Runx1 and Zfp521 CKO mice show changes in the C-LTMRs terminal 

morphologies from longitudinal lanceolate endings to circumferential endings, which resemble the 

MrgD+ and/or MrgB4+ hair follicle innervations, I hypothesized that loss of Runx1 and Zfp521 

could lead to switch of cell fate. To test this hypothesis, I applied MrgA3, MrgB4 and MrgD in situ 
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hybridizations on the Runx1f/f;Vglut3Cre/+ and Zfp521f/f;Vglut3Cre/+  mutant mouse DRG sections 

(Figure 3.5), followed by quantification and analysis of the in situ hybridization images. 

Mrpgr family member MrgA3, is the receptor for anti-malaria drug chloroquine and mediates 

chloroquine induced scratch(Liu et al., 2009). MrgA3 was found in ~4% of all DRG neurons in 

control adult mice DRG (Han et al., 2012). In the control RosaTomato/+;Vglut3Cre/+ reporter line, 

there was little overlap between MrgA3 probe and Tomato+ neurons (only 2.4% Tomato+ neurons 

express MrgA3 (n=2, lumber DRG)) (Figure 3.5 A). However in Runx1f/f;RosaTomato/+;Vglut3Cre/+ 

mice, there were 34.2% Tomato+ neurons that also express MrgA3, which is significantly higher 

than control (p<0.05, n=2, lumber DRG). This was not capitulated in 

Zfp521f/f;RosaTomato/+;Vglut3Cre/+ mice, as there are only 2.5% of Tomato+ neurons that express 

MrgA3, similar to the control mice (p>0.9, Figure 3.5 A, arrows indicating colocalization). 

MrgB4 is expressed within about 4% of all the DRG neurons (Liu, 2008). Recently MrgB4 

expressing neurons were found to contribute to detecting massage-like stroking of hairy skin 

(Vrontou et al., 2013). In my experiments, there were 0.1% Tomato+ neurons that also express 

MrgB4 in control mice (Figure 3.5 B, first row). However, there were 51.3% of Tomato+ neurons 

that express MrgB4 in Runx1f/f;RosaTomato/+;Vglut3Cre/+ mice, indicating an expansion of MrgB4 

upon loss of Runx1, which was more significant than MrgA3 expansion (p<0.001, Figure 3.5 B, 

second row). In Zfp521f/f;RosaTomato/+;Vglut3Cre/+ mice, there were only 1% of Tomato+ neurons 

that express MrgB4, which is not significantly different from the control (Figure 3.5 B, third row, 

arrows indicating MrgB4 expression within Tomato+ neurons). 
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Finally, I looked into the expression of MrgD. MrgD is the most abundant Mrgpr family 

member, which is expressed within 31% of the DRG neurons (Liu, 2008). MrgD expressing 

neurons are polymodal and respond to noxious thermal, mechanical and itch stimuli (Rau, 

2009)(Liu et al., 2012). Ablation of MrgD+ neurons produces selective deficits in behavioral 

responses to mechanical stimuli (Cavanaugh, 2009). There appeared to be 2.0% of Tomato+ 

neurons that express MrgD in control DRG (Figure 3.5 C first row).  There were 4.8% of Tomato+ 

neurons that express MrgD in Runx1f/f;RosaTomato/+;Vglut3Cre/+ mice, which is slightly higher but 

not significantly different from the control (p>0.4, Figure 3.5 C middle row). Surprisingly, there 

were about 34.2% (the number coincides with MrgB4+ expression in 

Runx1f/f;RosaTomato/+;Vglut3Cre/+ Tomato+ neurons) of Tomato+ neurons that express MrgD in 

Zfp521f/f;RosaTomato/+;Vglut3Cre/+,  Zfp521 CKO mouse, DRG (p<0.05 Figure 3.5 C last row). 

In summary, MrgA, MrgB and MrgD subfamily proteins have expression changes in C-

LTMRs upon loss of Runx1 or Zfp521. MrgA and B tended to expand in C-LTMRs in absence of 

Runx1, while MrgD tended to expand in C-LTMRs in the absence of Zfp521. This suggests that in 

C-LTMRs, Runx1 controls C-LTMR identity by suppressing MrgA/B expression through Zfp521 

independent manner, while Runx1 dependent Zfp521 acts to suppress MrgD identity (in an 

incoherent feed-forward loop (Alon, 2007) ). Thus both Runx1 and Zfp521 are required for the 

normal development of C-LTMRs.  

Figure 3.5  Runx1 and Zfp521 are required to suppress alternative cell identities in C-LTMRs 

A) MrgA3 in situ hybridization on Runx1 and Zfp521 CKO mice DRG.  B) MrgB4 in situ 

hybridization on Runx1 and Zfp521 CKO mice DRG. C) MrgD in situ hybridization on Runx1 and 
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Figure 3.5 (Continued) Zfp521 CKO mice DRG. Arrows indicating expression of indicating Mrgpr 

probe within Tomato+ neurons. Scale bar = 50µm.  

 

Figure 3.5 Runx1 and Zfp521 suppress alternative cell fates in C-LTMRs 
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Discussion 

In this chapter, I focused on the development of VGLUT3+ C-LTMR and found that a zinc finger 

protein transcriptional factor Zfp521 is specifically expressed within TH+/ VGLUT3+ C-LTMRs in 

adult murine DRG. I further found that Zfp521 acts downstream of Runx1 to control the VGLUT3 

expression and cellular morphologies of VGLUT3+ C-LTMRs. Finally I showed that Runx1 and 

Zfp521 are both required for alternative cell fates suppression and C-LTMR specification. 

Runx1 controls C-LTMR development through Zfp521 dependent and independent 

pathways 

Runx1 is known to control the development of most nociceptors, thermal receptors and itch 

receptors (Chen et al., 2006; Kramer et al., 2006). The mechanism of how Runx1 specifies each 

subtype is unknown, but it was suggested that Runx1 might interact with target-derived signals to 

specify subtypes. For example, it was found that Runx1 interacts with RET signaling and BMP 

signaling to regulate sensory channels and receptors. It was also suggested that Runx1 could 

activate a downstream transcription factor cascade to specify subtype differentiations. In 

accordance with that hypothesis, I show that Zfp521 is a downstream transcription factor of Runx1 

to control proper development of C-LTMRs (Luo et al., 2007).   

C-LTMRs co-express with Ret, GFRα2, as well as other molecular markers, such as Runx1, 

VGLUT3, TH, Piezo2, etc. C-LTMR development is Runx1-dependent. Loss of Runx1 affected 

almost all the C-LTMR expressing markers. Zfp521 is specifically expressed in VGLUT3+/TH+ 
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CLTMRs. Loss of Zfp521 led to loss of only VGLUT3 and lanceolate ending morphologies, while 

GFRa2, RET, TH and Piezo2 expressions remain intact (Figure 3.3, 3.4, Supplementary Figure 

3.1). This evidence suggests that the Runx1 controls C-LTMR development in both Zfp521 

dependent and independent pathways (Figure 3.6).  

The mechanism of how Runx1 activates Zfp521 expression specifically in C-LTMRs is 

unknown. But the studies in other Zfp521 expressing systems might shed some light on this 

question. During bone development, parathyroid hormone-related peptide PTHrP increases the 

expression of Zfp521 through parathyroid hormone receptor 1 (PthR1)(Correa et al., 2010; 

Seriwatanachai et al., 2011). PTHrP has been found in normal skin and overexpression of PTHrP 

in mouse skin showed disturbance of hair follicle development (Wysolmerski et al., 1994). Could 

the skin-expressing PTHrP retrogradely induce and activates Zfp521? It is a hypothesis worth 

exploring. Another possibility is that the RET signaling contributes to Zfp521 expression. 

However RET is not specifically expressed in VGLUT3+ C-LTMRs but also in some other Runx1 

dependent subtypes, so it is unlikely to play such a role. 

Molecular segregation of different sensory subtypes through cross-repression 

I have shown that Runx1 and Zfp521 are not only required to establish C-LTMR features, but also 

required to suppress alternative cellular fates. Surprisingly, loss of Runx1 and Zfp521 unmasked 

different cellular competence in C-LTMR lineage neurons: loss of Runx1 led to expansion of 

MrgA3 and MrgB4, while loss of Zfp521 led to expansion of MrgD. 
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Yet the fate switch was not complete in either Runx1 or Zfp521 CKO.  In Runx1 CKO, the 

new MrgA3+ and MrgB4+ neurons do not express RET or GFRa2, which is different from the 

normal MrgA3+/B4+ neurons. This suggests that though Ret signaling might be required to 

establish MrgA3 and B4 expression (Luo et al., 2007) it is not necessary to maintain their 

expression. Meanwhile, in Zfp521 CKO, the new MrgD expressing neurons in C-LTMR lineage 

now co-express with TH, which is not normally found in the wild type MrgD+ neurons. 

The ensuing question is to what extent did fate switch happen upon loss of Runx1 and 

Zfp521? Did other molecular features of MrgA3/B4+ neurons expand in to C-LTMR lineage, 

including TrpV1, TrpA1 etc.? Did the central projection of C-LTMRs change upon loss of Runx1 

and Zfp521, so that they now project to the alternative pathway?  Did the lanceolate endings of C-

LTMR turn to MrgA/B/D like nerve ending structures? And furthermore, did MrgA3 and MrgB4 

expansion in C-LTMR in Runx1 CKO happen in the same population of C-LTMR lineage 

neurons? If yes, what leads to a different extent of expansions of the two molecular markers (less 

MrgA3 expansion than MrgB4 expansion)? These are all interesting questions, and will be looked 

at in future experiments.  

Conclusion 

In conclusion, we identified a new transcriptional factor Zfp521 that acts downstream of Runx1 to 

regulate the development of VGLUT3+/TH+ C-LTMRs. Runx1 controls all features of VGLUT3+ 

C-LTMRs including molecular identities, terminal morphologies as well as electrophysiology, 

while Zfp521 controls part of the molecular identities and the terminal morphology. Thus Runx1 
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functions through Zfp521-dependent and Zfp521-independent pathways. Both Runx1 and Zfp521 

are required to suppress alternative cell fates in VGLUT3+ C-LTMRs, while Runx1 supresses 

MrgA3/B4 expression, Zfp521 supresses MrgD expression in VGLUT3+ C-LTMRs. As a result, 

we identified a new cross-repression mechanism for a subtype segregation in sensory neuron 

development (summarized in Figure 3.6).  



 103 

 

 

 

Figure 3.6 Molecular Control of TH+ C-LTMR identities 

Figure 3.6 Scheme of molecular control of TH+ C-LTMR identity. Runx1 promotes MrgD 

identities while suppressing MrgA3/B4 identities. Runx1 is also required for Zfp521 expression as 

well as all the known features of VGLUT3+ CLTMRs. Zfp521 is required for VGLUT3 expression 

and longitudinal lanceolate ending (L.L.E.) formations within TH+/VGLUT3+ C-LTMRs, but it is 

not required for TH, RET, GFRα2, Piezo2 expressions. Zfp521 inhibits MrgD expression, which 

forms an incoherent feedforward loop with Runx1 (black pathway). 
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Methods 

Gene targeting in ES cells and generation of knock-in mice 

 

The floxp knock in mouse line was generated following the protocol of a highly efficient 

recombineering-based method for generating conditional knock out mutations, published in 2003 

(Liu et al., 2003). In brief, using homologous recombination mediated by the phage Red proteins, 

DNA from BACs was sub-cloned into high-copy plasmids by gap repair, and together with Cre or 

Flpe recombinases, loxP sites were inserted into sub-cloned DNA in the upstream and downstream 

of Zfp521 exon2. The conditional knockout vector was verified and sent to transgenic core 

laboratory in Children’s Hospital in Boston for gene targeting in embryonic stem cells. ES cells 

were genotyped and positive ES cell clones were injected into 129J/v blastocysts to obtain 

chimeric mice following standard procedures. Chimeric founder mice were bred with C57BL/6 

mice at least two generations to obtain germline transmission for characterization. 

Animals 

The generation of mice carrying the floxed Runx1 allele and ROSA26-CAG-LSTOPL-tdTomato 

reporter mice have been described previously (Chen et al., 2006; Growney, 2005; Madisen et al., 

2010). The generation of Vglut3-Cre mice will be described elsewhere by Vong L and Lowell 

BB. PCR-based genotyping for conditional null mice has been described previously (Chen et al., 

2006; Liu et al., 2008). The following primers were used for the Runx1 mutant and wild type 
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allele, 5’-GAG TCC CAG CTG TCA ATT CC-3’ and 5’-GGT GAT GGT CAG AGT GAA GC-

3’, with floxed allele showing a larger size of DNA band after gel electrophoresis; for the 

VGLUT3-Cre allele, 5’-TAT CTC ACG TAC TGA CGG TG-3’ and 5’-AGA CTA ATC GCC 

ATC TTC CAG C-3’; for the ROSA26-CAG-LSTOPL-tdTomato allele, 5’- GGC ATT AAA 

GCA GCG TAT CC -3’ and 5’- CTG TTC CTG TAC GGC ATG G -3’; and for the mutant and 

wild type Zfp521 allele, 5’- AGT GAG CAT CGC AGA TCT GA -3’ and 5’- TGA GGA AAA 

CCT GGT TGT CT -3’, with floxed allele showing a larger size of DNA band after gel 

electrophoresis. The morning that vaginal plugs were observed was considered as E0.5. For 

histochemical studies, 2-3 pairs of control and mutant mice of 1-2 month old were used.  

In situ hybridization (ISH) and immunohistochemistry (IHC) 

Detailed In situ hybridization procedures are attached in the appendix. Anti-sense Zfp521 probe 

(1.001kb), Runx1 probe (0.858 kb), VGLUT3 probe (0.771 kb), TH probe (0.788 kb), Piezo2 

probe (0.977 kb), GFRa2 probe (0.941 kb), TrkA probe (0.7kb), MrgA3 probe (1.15kb), MrgB4 

(0.888 kb) and MrgD probes (1.058kb) were amplified from cDNA prepared from adult DRG, 

and was labeled with digoxigenin (Roche Dignostics). Ret probe, CGRP probe, SCG10 probe 

were digested from prepared plasmid and labeled with digoxigenin (Chen et al., 2006). The 

pseudo fluorescent ISH signals (for Zfp521 and TH) were converted from bright field images 

and then merged onto the Tomato images. For Tomato skin innervation imaging, back skins of 

corresponding adult mice (males and females) were dissected, fixed in Zamboni’s fixation 

overnight and cryoprotected in 20% sucrose overnight and embedded in OCT compound. 30 µm 
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frozen sections were cut, washed with PBS for 10 min and PBS with DAPI for 5min to 

counterstain nuclei, then mounted in glycerol and photographed within 1 hour after sectioning 

(Lou et al., 2013).  

Cell and innervation quantification 

L1-L3 lumbar DRG from two to three mutant and control mice were dissected, fixed, and 

embedded. For each marker, three mutant and/or control DRG were used to prepare six adjacent 

sections at 14-µm thickness. Each set was processed for immunostaining or used for ISH with 

the marker of interest, and positive cells with nuclei were counted.  

For the innervation quantification, after imaging, all visible hair follicles by DAPI staining were 

counted, and total number of Tomato+ nerve endings innervated hair follicles, the obvious 

lanceolate ending ones and obvious circumferential endings ones were documented and 

analyzed. 2 controls and 2 mutant animals were used. The quantification was double blinded.  

Statistics 

Results are expressed as mean ± SE (s.e.m.). For acute pain and capsaicin-induced licking 

behavior, data were subjected to the Student’s t test. For capsaicin-induced secondary 

hyperalgesia, carrageenan-induced inflammatory and SNI-induced neuropathic pain, time-course 

measurements were analyzed by both analyses of variance between groups (ANOVA), with P < 

0.05 accepted as statistically significant. 
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Chapter IV General Discussion 
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Varieties of C-LTMRS 

There are at least two subtypes within VGLUT3+ C-LTMRs: TH+ and TH- subtypes. Anatomical 

analysis showed that these two subtypes have distinct nerve terminal morphologies: 1) TH+ C-

LTMRs predominantly form longitudinal lanceolate endings innervating Awl/Auchene and Zigzag 

hairs; 2) TH- C-LTMRs form free nerve endings that innervate the epidermis in both hairy and 

glabrous skin, of which VGLUT3+ free nerve endings in the glabrous skin are further specialized to 

be D. P. E. endings.  

Developmentally, though both TH+ and TH- C-LTMRs are Runx1-dependent and Runx1-

persistent, they are slightly different during specification: while TH+ C-LTMRs development is 

controlled by Runx1-dependent transcription factor Zfp521, TH-/VGLUT3+ C-LTMRs lack 

Zfp521 expression, thus are likely to be Zfp521 independent. Meanwhile, Runx1 controls TH+ C-

LTMR longitudinal lanceolate ending morphologies, though TH-/VGLUT3+ C-LTMR free nerve 

endings do not seem to change much in Runx1 CKO.  

in vitro whole cell patch recordings also showed variance in mechanosensitivities in 

VGLUT3+ neurons. It was shown that not all VGLUT3+ neurons are mechanically sensitive.  Three 

types exist within the mechanically sensitive population, including fast-adapting, slow-adapting 

and mixed-adapting (Lou et al., 2013). Do different channel expression levels contribute to 

variations in adaptation patterns? Piezo2 in situ hybridization showed that Piezo2 mRNA is 

enriched in VGLUT3+ C-LTMRs, though with uneven expression levels from cell to cell. 

Furthermore, Piezo2 knock down experiment showed a significant increase of mechanically 

insensitive VGLUT3+ neurons upon loss of Piezo2 comparing to controls, as well as a decrease of 
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rapid-adapting mechanical neurons, while the mixed adapting and slow-adapting neurons number 

remain unchanged. As a result, it is likely that Piezo2 might contribute to the rapid-adapting 

components, and that other mechanical channels might exist within VGLUT3+ C-LTMRs. 

In conclusion, VGLUT3+ C-LTMRs have multiple subtypes that have different molecular 

identities, morphologies, developmental ontogenies, as well as electrophysiology properties. The 

variations within the VGLUT3+ neurons call for further investigation and characterization of 

subtypes within C-LTMRs. Gene profiling using a VGLUT3Cre; RosaTomato reporter line will be 

useful to identify the molecular markers as well as different subtypes.  

 

A second large population of C-LTMRs, which are MrgB4+, has recently been identified 

(Vrontou et al., 2013). While 19% of DRGs belong to VGLUT3+ C-LTMRs, only 4% of DRGs are 

MrgB4+ C-LTMRs. VGLUT3+ and MrgB4+ sensory neurons are different molecularly, 

morphologically, electro-physiologically and developmentally. Morphologically, TH+ VGLUT3+ 

sensory neurons form longitudinal lanceolate endings in zigzag and Awl/Auchene hair follicles 

while MrgB4+ neurons for free nerve endings in the hairy skin epidermis and circular nerve 

endings in the neck of hair follicles. Centrally, while MrgB4+ neurons innervate the outer layer of 

Lamina II, VGLUT3+ C-LTMRs innervate the inner Lamina II (Li et al., 2011; Vrontou et al., 

2013). Ex-vivo electrophysiological recordings showed that mouse VGLUT3+ neurons are 

extremely sensitive to mechanical stimuli, which is similar with human C-LTMRs, while MrgB4+ 

neurons failed to do so in ex vivo preparations (Liu et al., 2007). Developmentally, though both 

VGLUT3+ and MrgB4+ neurons are Runx1 dependent, VGLUT3+ neurons are Runx1 persistent, 

while MrgB4+ neurons are Runx1-transient (Chen et al., 2006; Liu et al., 2008; Lou et al., 2013).  
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In human beings, there is no MrgB4 homolog. The human Mrg genes are more similar to 

murine MrgA subfamily than MrgB subfamily in the phylogenic tree and are referred to as MrgX 

genes. (Choi and Lahn, 2003; Lembo et al., 2002). Ectopic expression of hMrgX genes in HEK 

cells showed that like mMrgAs and mMrgC11 (Han et al., 2002; Lembo et al., 2002), they respond 

to Bam22, a peptide-evoking itch. As of now, the molecular identities of human C-LTMRs remain 

unknown.  

Logic of sensory neuron diversification 

It was shown in Chapter I that there is a large cohort of sensory subtypes, defined by different 

channels and receptor expressions, and thus different modalities. The diversification of sensory 

neuron subtypes is achieved by hierarchical developmental controls. The timing of neurogenesis 

determines the general modalities of the sensory neurons, so that the NGN2-dependent first wave 

of sensory neurons become proprioceptors and mechanoreceptors, while the NGN1-dependent 

second wave of sensory neurons become nociceptors, itch receptors and thermal receptors, as well 

as C-LTMRs (Figure 1.3 A).   

After the first wave of sensory neurogenesis, Runx3 is required for differentiation of 

proprioceptors. Shox2 and MafA/c-Maf are required for the differentiation of TrkB+ and RET+ 

mechanoreceptors. For the specializations of each individual mechanoreceptors and proprioceptor 

organs, the basic leucine-zipper transcription factor c-Maf and the ETS domain protein Er81 are 

required for the formation of the Pacinian corpuscles that are specialized to sense high-frequency 

vibrations (Hu, 2012; Sedý, 2006; Wende et al., 2012). And c-Maf and Shox2 are necessary for the 
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formation of the Meissner’s corpuscles that respond to skin motions and detect low-frequency 

vibration (Abdo et al., 2011; Scott et al., 2011; Wende et al., 2012) (Figure 1.3 A).  

Within the NGN1-dependent second wave of sensory neurons, Runx1-dependent neurons 

become non-peptidergic neurons that mostly innervate the skin, while Runx1 independent neurons 

become peptidergic neurons that innervate throughout the body. Within Runx1-dependent neurons, 

persistent Runx1 is associated with MrgD+ polymodal nociceptors for mechanical pain and itch 

sensations, TrpM8+ neurons for cold sensations, TrpV1High neurons for warm and mild heat, as 

well as VGLUT3+ C-LTMRs that are suggested to be involved with pleasant touch, while transient 

Runx1 expression is associated with MrgA3+ and MrgC11+ pruritic neurons for itch, and MrgB4+ 

neurons for massage-like strokes (Figure 1.3 B).  

How exactly subtype specification is achieved within Runx1-dependent neurons is unknown. 

There are several hypotheses: 1) Runx1 activates different transcriptional factors in the 

downstream to trigger the programs for subtype specialization; 2) Runx1 interacts with the target-

derived signals to initiate the subtype specification. The two hypotheses are not necessarily 

exclusive. Previously, it was found that BMP4 signaling is required for RUNX1 dependent 

MrgB4+ neuron development. Now I have shown that Zfp521 acts downstream of Runx1 to 

regulate VGLUT3+/TH+ C-LTMR development, and Runx1 works through Zfp521 dependent and 

independent pathways to specialize VGLUT3+/TH+ C-LTMRs. These two examples suggest that 

the both mechanisms are likely. 

Cross-repression is another mechanism that has been widely used in sensory neuron 

specializations. It was found in the specification of mechanoreceptors, loss of Shox2 causes a 
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switch from TrkB+ to TrkC+ neurons. Loss of Runx1 in the early stages was shown to cause a 

switch from non-peptidergic RET+ neurons to TrkA+ peptidergic neurons. Loss of Runx1 within 

VGLUT3+ neurons leads to depression of MrgA3 and MrgB4. Here, I further showed that Zfp521 

is required to suppress MrgD-like cell fate in VGLUT3+ C-LTMRs, with a loss of Zfp521 leading 

to de-repression of MrgD as well as MrgD like terminal morphologies. Thus, Runx1 and Zfp521 

are not only required to establish identities belonging to C-LTMRs, but are also required to 

suppress features that belong to other neurons, thereby providing an effective way for the 

emergence of molecularly distinct sensory neuron subtypes.  

Meanwhile, it is notable that the emotion-related sensory modalities (negative and annoying 

stimuli, such as pain, itch, and pleasant stimuli, such as massage, stroke and social affiliated 

behavior) are predominantly transduced by Runx1-dependent, late-wave, sensory subtypes (so far). 

As animal body plans emerged during the half billion years evolution, the role of individual 

development scheme and evolutionary events were apparently sometimes closely intertwined in 

phylogenic, comparative and functional biology. The late emergence of emotional-related sensory 

subtypes during developmental stages suggests that they could have appeared in later and higher 

intelligence forms of species during evolution.   

Physiological functions of C-LTMRs 

Human studies showed that C-LTMR exhibit bell-shape responses to the speed of moving stimuli, 

whose peak activity correlates well with the perception of touch-evoked pleasantness (Löken et al., 

2009). Furthermore, human patients lacking myelinated A-fibers were still able to sense pleasant 
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touch, but this sensation was impaired upon a loss of C-fibers (Björnsdotter et al., 2010; Löken et 

al., 2009; Morrison et al., 2011). These evidences suggested that they could signal pleasant touch 

associated with affiliative social body contact (Björnsdotter et al., 2010; Olausson et al., 2010). 

In mice, VGLUT3+ C-LTMR were suggested to play a role in mechanical allodynia (pain 

evoked by innocuous mechanical stimuli) induced by inflammation, tissue injury, chemicals 

(capsaicin), and nerve injury, based on behavioral analyses in VGLUT3 complete null mice (Seal 

et al., 2009). However, the mechanical pain defects were measured from the glabrous skin in the 

hindpaw plantar, while VGLUT3+ C-LTMRs mostly innervate the hairy skin (with the exception 

of scarce VGLTU3+ free nerve endings called D.P.E.). Furthermore, VGLUT3 expression has 

been found in the spinal cord as well as the brain, where the somatosensory circuitry is closely 

related. Conventional knockout of VGLUT3 will lead to disruption of the central parts of the 

sensory circuitry. Thus the cellular basis of mechanical allodynia deficits in VGLUT3 null mice 

is not clear. In other words, the functions of VGLUT3+ C-LTMR remain unknown. 

Using Runx1F/F; Vglut3Cre/+ conditional knock out mice, I showed that VGLUT3+ C-LTMR 

development is greatly disrupted (loss of molecular identities, change of terminal morphologies, 

loss of mechanical sensitivities in vitro). Behaviorally, this conditional knockout mouse line 

showed little phenotype in inflammatory or neuropathic mechanical pain assays. Only a mild 

impairment in carrageenan induced mechanical allodynia was observed, suggesting VGLUT3+ C-

LTMRs might play a minor role in mechanical allodynia in pathological conditions.  

However, the Runx1 conditional knockout mouse line has its own disadvantages, since there 

is not only disruption of the C-LTMR development, but also gain of function of alternative cell 



 114 

types. Loss of Runx1 led to de-repression of MrgA3 and MrgB4 expression. Even though there is a 

loss of mechanical channel Piezo2, as well as loss of mechanical sensitivity in vitro, it does not 

exclude the possibility that VGLUT3+ C-LTMRs are switched to MrgB4-like C-LTMRs, which do 

not respond to mechanical stimuli in vitro or ex vivo, but are mechanosensitive in vivo. Since the 

mechanisms of mechanical sensitivity in MrgB4+ C-LTMRs are unknown, it is hard to test if the 

whole mechanical sensitive machineries are also expanded into VGLUT3+ C-LTMRs in Runx1 

mutants. In vivo calcium imaging of VGLUT3+ neurons in Runx1 conditional knockout mice might 

be necessary to find out if the VGLUT3+ C-LTMRs indeed lost mechanical sensitivities in 

physiological conditions. Alternatively, future experiments using ablation of VGLUT3+ C-LTMRs 

would be needed to find out if VGLUT3+ C-LTMRs actually contribute to mechanical allodynia or 

not. 

Remaining questions and future directions 

One important unsolved issue concerns central nerve projections. I was also very interested in 

learning if the central nerve projections of VGLUT3+ C-LTMRs are changed upon loss of Runx1 

and Zfp521. In this thesis, due to the fact that VGLUT3 is also expressed in the spinal cord, 

VGLUT3 reporter line exhibits VGLUT3-Tomato positive signals also in the spinal cord neurons. 

As a result, I could not analyze the central projections in detail. To resolve this problem, we have 

imported THCreER mice in which we can induce Th expression spatially and temporally. Using 

THCreER mice I can investigate if Runx1 and Zfp521 can regulate the central nerve innervations, 
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and furthermore, which subset of C-LTMR (TH+ or TH-) still maintains the competence to be 

switched to MrgA3/B4 or MrgD. 

Equally interesting are the longitudinal lanceolate endings that TH+ C-LTMRs have, which 

are a highly organized structure seen in most of the hair follicles, or the zigzag hairs. Though 

dramatically different from a developmental point of view, the Aδ and Aβ LTMRs also form 

identical structures around Awl/Auchene and guard hair. It will be interesting to determine if there 

is a common signal shared by Aδ, Aβ and C fiber neurons that controls the formation of lanceolate 

endings. 

Though VGLUT3+ C-LTMRs were suggested to be similar to the C-LTMRs found in human 

beings due to their electrophysiological similarities (low threshold, slow conduction, cool sensing, 

etc.), there is a lack of direct evidence to show that VGLUT3+ C-LTMRs do contribute to light 

touch sensation, and light touch induced pleasant feelings. Even for the electrophysiology carried 

out in VGLUT3+ C-LTMRs, no neuronal activation correlation with the stroke speed has been 

examined, while the preference firing of C-LTMRs to the optimum slow stoking speed is a 

signature of the human C-LTMRs. There are several criteria to consider the C-LTMR as pleasant 

touch neurons: 1) light touch could evoke their neuronal activities; 2) the loss of function of C-

LTMRs leads to loss of light touch induced pleasant sensation; 3) the activation of C-LTMRs will 

leads to pleasant touch pathway activation, thus pleasant sensation. So far, we are unable to test 

these criteria in our Runx1 conditional knock out mice due to lack of efficient behavioral assays. 

As a result, it is still an open question whether VGLUT3+ C-LTMR contribute to pleasant touch. 
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Several experiments carried out in humans as well as mice could enlighten our behavioral 

assay designs. The human brain fMRI is one example. fMRI has been carried out in normal 

volunteers comparing to the patients who specifically lost myelinated fibers, while their forearms 

were being stroked with various speeds and intensity settings. Mice fMRI could be challenging as 

fMRI has limited resolution, and the mice generally need anesthetizations. Recently, several 

studies have been using awake mice and achieved high resolution of fMRI images (Ahrens and 

Dubowitz, 2001; Desai et al., 2011; Jonckers et al., 2011; Lee et al., 2010; Pautler, 2004). It 

remains to see if rodent fMRI will be as efficient as human fMRI and if the brain regions are the 

same areas.  

To test the mechanical sensitivities of mice, a sand paper assay has been reported before 

(Maricich et al., 2012). With rough and smooth sand papers on each side of a chamber where mice 

could move freely, it was found that female C57 mice always prefer the rough side, while male 

C57 mice don’t have this preference. And the female mice preference is lost in the mutant mice 

that lack Merkel cells. However, it was also found that the mice could compensate the loss of 

Merkel cells and mechanical sensitivities with whiskers, introducing some complications to this 

assay. 

The MrgB4+ neuron activation assays set a good example for potential behavioral assays 

(Vrontou et al., 2013). To generate a mouse model whose C-LTMR neurons could be drug induced, 

we will use VGLUT3-Cre mice and inject the mice with AAV virus that carries Cre dependent 

DREADD vectors (DREADD standing for designer receptors exclusively activated by designer 

drugs) (Alexander et al., 2009; Dong et al., 2010; Vrontou et al., 2013). The DREADD vector 
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carries the coding of a GRPR sequence that is mutated (hM3Dq) and can only be activated by 

exogenous drug clozapine-N-oxide (CNO). The vector also includes a stop cassette that is flanked 

by floxp and mCherry, so that the expression of hM3Dq could be monitored. When hM3Dq is 

properly expressed and activated by CNO, the neurons with the expression will be activated and 

fire action potentials.  

The mice will then be put into conditioned place preference (CPP) chambers combined with 

CNO activation of the C-LTMRs. CPP was a behavior assay developed more than forty years ago 

to test the rewarding effects of environmental factors, such as drugs, water, food or sex. The 

principle of CPP is to create a coupling between contextual stimuli and primary reinforcement 

(Bardo et al., 1995). So far, CPP assays were shown to be significant in multiple addictive drug 

applications, including dopaminergic drugs, amphetamine, morphine, cocaine, opioids etc. 

(Tzschentke, 2007).  If VGLUT3+ C-LTMRs indeed contribute to pleasant touch and positive 

emotions, activation of C-LTMRs should be able to reflect a positive coupling of the conditioned 

chamber. As a result, the mice will bias toward the chamber cues where their C-LTMRs are 

activated, just as what MrgB4+ neuron activated mice do (Vrontou et al., 2013). 

Meanwhile, though functional C-LTMR studies were mostly from human being (Löken et 

al., 2009; McGlone et al., 2007; Morrison et al., 2011; Olausson et al., 2008; Olausson et al., 2002; 

Olausson et al., 2010; Vallbo and Kakuda, 2005; Vallbo et al., 1999; Vallbo and Wessberg, 1999; 

Wessberg et al., 2003), the molecular identities of human C-LTMRs are largely unknown. 

VGLUT3 and Zfp521 both have human homologs (Bond et al., 2004; Hesse et al., 2010). It will be 

interesting to find if VGLUT3 and Zfp521 are expressed and functional in human C-LTMRs. But 
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so far, VGLUT3 has been suggested to link to nonsyndromic hearing impairments (Smith et al., 

1993), no Zfp521 natural mutations have been reported. 

As more and better genetic and behavioral assays become available, we will expect to have 

better tools to decipher the somatosensory circuitry, to understand how environmental stimuli 

could be converted to cognitions, emotions and corresponding responses.  
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Appendix 

Supplementary Figures:  
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Supplementary Figure 2.1 TrkA and TrkB are expressed in VGLUT3 transient DRG 
neurons 

Supplementary Figure 2.1 The VGLUT3 transient DRG neurons express TrkA and/or TrkB. 

Arrows indicating medium Tomato+ neurons overlapping with TrkB. Dotted circle indicating large 

and dim Tomato+ neurons, which are also TrkC+.  
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Supplementary Figure 3.1 C-LTMR molecular markers that are not Zfp521 dependent 

 

Supplementary Figure 3.1 Other molecular markers that are expressed in VGLUT3+ sensory 

neurons that do not change in Zfp521 CKO by in situ hybridizations. Controls were using wild 

type animals. Mutants are Zfp521f/f;Vglut3Cre/+; ROSATomato/+ mice. Scale bar 50µm. 
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Supplementary Figure 3.2 TH and Zfp521 colocalization increases during postnatal stages 

 

Supplementary Figure 3.2 TH+/ Zfp521+ neurons increase during first several postnatal week 

development. A. Double fluorescence in situ hybridization of TH (green) and Zfp521 (red). 

Arrows indicating overlapping neurons, while arrowheads indicating non-overlapping neurons. B. 

The trends of overlay over the first several weeks. Scale 50µm 

 

Probe sequences: 

MrgB4 

Gtcctgcatggctctctgaagaagtagcttcagagactgccatcgcaacctgtgttgtctaatggagccaacaaggaagtaaatgatgggattg

gcacagctgttaacacaggacaggaattctattatttcataaacattgttaaagaaaatgctatcaaactccataatccttgataagaggaaccagc

agataccaaagggcatgccaaagtatatgaagaccaccactgtgagagcaatggtcacaaagaacctggtcacaggaatcctgtgtgacccc
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cacacaatcttcaccaacagggccaggctagatacagaaagaaccacagataacactattaaaaatgcagcagtgataaaattcaaagtaata

cagaaataataatcataataactgaacagaaaaccacagcctagccctaccacgaggctcaacaatagagaggaaacccagaccagagcac

acatgatggctgatgtgtgtcttggtctttggcagtgataccagataggccacataacagataggcagcgttcagcactgatggctgcaatcata

cacaaacctgcaaggtaagcaaacattgttacaatgaggagaatataaaaggagttattatctaactgaaggacacattccagggaatgcacaa

cttgagtgaaaaggtacaagaaatcagcaccagccagattgaggacatagacagagaaggcattcctatgcaggtggaaggctagaagcca

tagcactatgccgtttcctgccaggccaaccacagctatgatgacagtaagaaaattcagggtattgaacttggtgatacaggagaacatttcag

tgtaacttccattttcagcggtgttgttaatgttccaggccagggt 

MrgA3 
Gtgttggtggaccagtgaggcatgtcaagtcagtaagctgagaggagagtggacagtggtcaagtgcagcagggcagtgctcactccaaat

ccacctctgaagtctaggcagaggctcttcatcacggctctgctttgtttcttgacatctccaccatgttttcaggtgtctcaggagtgtcctgcagg

gctttctggagaaccattttgagggtctgtttattcaaccgttgcctgaaggagcccacgaagaagtaaataatggggttggcacagctgttaata

gcagttaggaccagaagagggctataatctagtacaaacacaccaggtgcaatccagaataacaggaaccaggtgatgccccagggcaacc

cacagagaagaaaaaccaaaacggtcagcatgatggtcacgaataatctggtaaatttcatattcctagcaccacagaacaacctggccagta

gagccagggtggacagacagaggactacaaacaaaaacatcaggtatgctccgataaagatgtcccatgcctgacacacagagtaattgaaa

taatggttatctaagtaaccgcagaaataaccatccagaatgcagatcaacagggacaggacccagatcacagcacacatgacagttgatgtg

tgttctgggcggcggcagtgataccagatggggcacaggacagacaggcagcgctcagtgctgatggcactgagcatgctcaggcctgtga

tatagagaacccttttgatagtgtgaaaacaaaaggcaaaaattcctttgggtagggtaaacttgagaagatccactgtggaatttatgatgtgac

agagaaggaagaggaagtcagccagggccaagtttaggatgtagactaagaaggcagtcctgtgcatgcggaagccaaggagccagaac

acaatcgcatttcctgtcagcccgaccagtccgaagatgatgatcatcaagtctgggatcagggtctcgatgtcaatacttccagggatggtttc

gttcattgaatttgttgttgtgggtgtcattgtcgaggctgaggtgtttcgggccagaaaccctgcactggtgttgctttctcccattcctcttgctgg

atgtagcttgctggcttgtgtagaag 

MrgD 

gaggatggtgctggtcaggatcatgaccggcatgaagatccccaggataagactgttgaaaacaatgtccaccttgaagcactggtgtttgttg

ggatgccagaattggacgcagaagaaagaagccaggaagttcatcaggaaggccagtgcccagagtgcaccagataccactgatgacagg

tgccggggccggtggcacttataccagatggggaaaagcacggagaggcagcgctgggtgctgatggctgtcagcaggctcaggcctgct

gtataggcaaagtacttgattctcctcatcccttcatagattttggcagaaatgttgactatgagcaggggccctgtttccaggctgagcatggag

gccatgcagaataagaagaggaagtcagccaccgccaggttgagcacatagacacagaagggagacctctgcatgccattgcagctcagg

agccaaatcaccaatgagttgcctgccatcccccccacacacgtggccatggcgaggaatgtcactgaaaagtagatccaggtcacaaggtc
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catggtgggactgatggtcagacctggagctgggctgctgtcaagagtggagttcattcctgctcctgagtgtgccaatctgtccttccgcaaag

atggtgatccctcttggctgtgatccctagaagtgtttccagcagcaccgtgaggcctgggcttctcagctgcttctgcaggtcctgactcagtgt

ctcttccactaagcaaggatggtcctgtctgtctctactgctcccagccacatagaacccttgatttgggggacccccctcaaggaccttggcttc

ctttcagaagtgtgagaaggaatcctagatataagtgccggaaagatgcccgtccaccctgtggagacctgcgcccacaggagcctagctga

agactaatgggcctccccagtatggccctctcctgccccacccagattcctttgatactgggggcttttgaggattctagcaaggaccactccttc

tggcatcatcctggtagcctctcccttctca 

VGLUT3  

Tgagaggacgaccttgggtagaccaacctattgtaaaacaggtataactgtattagggtgtgagtgttaaataatgttcacaaagcacctggca

caaccaagggcccccatgagtgattcccttcattaggtttaggaaactcctctacatgagtatcctaagagatgtgatggcaaccaccatgtactc

ttctccagaacaaagagggatttcttccagtgtttatttgagcaacatgctactccttattcttctcaccattaattcctgaataactagttcttttgagag

aaggctcaacggccaatgcccaatccacaccccaaccccaaatatgatcaactattttatcaactgagaccaaggtccatattcccatctttgtaa

gaaggcgtgtttcttttctctgttgttaatttaatctccccctttcccacgatttggccccctggcaagacgcagtatgggaaaggcgatgggtgcg

atacttccagttgtaagctgaggtgaagccagacatttaggatgtttctgagaagtctccttcggcctggtaggataatggctcctccccgtcgaa

ggcagattctctctgttgtctccactccgtcttctggacctcacaattctgggtggtggctccataagacatcttctttctgggacttacgaaagtctc

gtggttgagttctgtctcctcagctaactcatcttggtcaatgattccacatttgtcctcagagagattctctgggtcagcccag 

GFRα2 

Gggttggagtccacatagttcggtgtcatatcaaacccaatcatgccagcataggagcccagacatgcctggtagttgtccgcagggcagctg

gtgattgtccggtaggaggctcgacagttggcgtggaagtctgccaggcgggaccggcacaagtggtctgtacgacacaggctgcgcaggt

ccaagcagttgggcttctccttgtcctcataggaacagctgggcaggatggtttgccggcgacgctcggcgcatgcctggtcctgacaggagc

agaagagcatgcggtaggtatactcgctgggcacacggtcgaagaactggcgcagggccttgtggcacttgcggcggttgcagcgttcagt

gggagagatctcgcggttgcagatggagatgtaggaggagcggagcttcttgcagttgtcgttcaggttgcaggccttggcggcatccaggc

agtggttgctcttggcactgaccaccgggtctgcccctgtccctgagaagattgaagcgagcctgaagatgtccgagaggcgggaggtcaca

ggctcatagggcgaagcttcgtagaactcctcaccctccgtcagccccagatggatgctccaatagatctgcagacactgcagctccttcttcat

gccccgcttgcagcggcagtcatacaatgggctttcctgcaagacctccagggccgcctggcactccttattggccagcatggtattgcgatcc

cggccggccaggcactgccgaagggtgcggtacctggagctgcagttggattcagccgcacacagctcattggcccggacacagtccactt

gggggcgccagccgtggagctcagagccctgcggagaggaagggctggccaaagagcggagggtttcgtctaaaaagaagaagaggca

gaaggcgtttgccaagatcat 
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Piezo2 

Taccggaacgcacatgctactgccaggcagatgggaagcagcagcctgaagatcagcccgcacaccacttccgaagccatcgtgtcgtgg

gaccttgctagtccgagcagtagggcgacgctcaggggttcctagagctgggatgtcaggcccatgtctacctagggcctcgtgcgcccggc

tgctcgtagccaccctggcatcgcgtcggctggcgcggcgctctctgccccgagggcgcgctcgacgggcgggagccgctcagctcacgg

ggctccaggcagccacctaaccaggcgcccgagcccctgtggcccgcccatgaagtgtggaatcggaatccagcggcagcggctccagg

ggtcgcctgggaaggagccaagggagggacactctgggagtggagaagaatgggggcggtgaggagaggggatggaggaggatagct

gtcctctgcctgctctggaggcggcgttccgggatggccgagagtttctagctgaacccttccgaagtaagtgagtctgggcggcgcagccc

gggctccgagtccacgcggactgaggcgctcccggtgcgctaaagacccgccgggcgccctggaagccgcgtcctggagccccagcctc

cgggcggatcgctgaattgctgctccgctcagcctcagcgcccccaagcttcaggccagggagagccgggcgccagttgcagggcgcgg

agaaacattcccgacccggcggggtcgcgctgccagcccgcggggatgcgagtccagtcctccccgtgaggagctgtgcgagtctgggcc

ggaaccaagacccagacgcggagcgcgcggcgctaccaccgcgactttagtgagaaaagaaagcccaggagccctgcagaggtccccg

cgtccccaacggagcagcctctcccgagccaagcagcccgggctccccggagggcgcgagctcctccaccttcaatgaaac 

Runx1 
Ttgggattcctcacgaccacatctaacacttgccacatgtgtgggcagtagctggaggctggagaactgcattttctgaggtgtgttttttttttttttt

tttacccccaatacatgtgttttactgctatttcaatttggaagtttgtttttttgttttttgttttccattgatctttttccatccagagtaacagaaataccca

acagttcatttgaagattgatttttttttttgcacattcatttctcctagaacataaggtgaacttaaaaaaaacccattggaaccatgcttgtttattatgt

ttataaaagtgagtaagaagtagcttggtttttttaaaatctaaaataaacaagttaagagaagcatttttcttctacaatatttagcgaacataagaaa

aagtccttagaaacacacacaaaatgtgaaaaaagttattacaggcattaacaatattttataatgaagcatgaaatctatttacatacataaataca

attgagtttgtggatacaactcttctgaggaaaaaaaagaaaaaacagacaaatgatcagctttggctataccgacctggctgaaagagggaag

gcatttccgaccaacagccaaacccaccaaataaaggtgtactgtagagtaaacaaaacagtactttgttcaaataaggaaaaaatatattctga

gattgctgtcaaactatttattttcatgtatgaaagaccctcaacatctcatgccttctcctacaaagaaaatgagaagaaccaaaaaaaccaaaac

aaaacaaaacccatcaaaaccaaaaaatccctaagaccgaatgtccctgggggaaagttatttca 

 

Zfp521 

Acagctgtaggtgactttcgcctgcttactagaggggccagtcatatcggaggtctgctgagcagctcgcttcctcccgcggctctttggaatc

ggtggtgcagcctctaccatggtcgagctgtccactgagaggttcgagtctggagtcgtgctggacactgaggtgtaacccacagtgaccagg
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gaagggctgttgctgtgattgcaggactctggctgctggtgactgtccatgtggctatacagctcctcgaccgtgaggaagctctctgagcaaat

gctgcaagagttcttcttctcacccccgtgtacctgctcgatgtggttcatgagggacgtctcctccacaaacagctcgtggcagtacatgcactg

gagggctgctcggtcctcattaggggagcactcggggtggcattctgcaatgtgcttctggaggtcttccgggaagtcaaagccttcctcgcac

tggctgcacttctgagtgtccttcatcttccagtcctccatcctggagccagactgggagccgtccttgttccgctcatgaacctgcatatgtccgt

gcaaggagctagaggagaggaaccctctgcggcagacggcacatttatatggcttgttggaggtgtgagtctttaagtggatcttgagatgatc

gctccgggagaaggctgcgtcacactcgctacagtgatacttcttatccccagtgtggagctttatgtggcggtcacggctccgcttgtgtttgaa

cagccgactgcagtaggtgcacttgaagggcagcttgtcactgtggctctgttcatggtgctttaggtagctgaggcggctaaaggacttgtcac

agaactggcatgggtaaggcagtccagggccaccttcttcctctccgaaatcacacccttctccatggctgggggaagtctggtccttactgga

aggcgaggaggctggccaagagcagctggggtcgtcctcaacgtcaacgccat 

TH 
Tctctgacacgaagtacaccggctggtaggtttgatcttggtagggctgcacggctgctgtgtctgggtcaaaggcccggacctcgggctcct

ctgacagggagtgcaggagctctccataggaagacagcagccctgcaccgtaagccttcagctccccattctgtttacacagcccaaactcca

cagtgaaccagtacaccgtggagagtttttcaatttcttcatctgaagcccccagagatgcaagtccaatgtcctgggagaactgggcaaatgtg

cggtcagccaacatgggtacgtgtcccagcagctcgtggcagcagtctggctcgggtgagtgcataggtgaggaggcatgacggatgtact

gtgtgcactgaaacacacggaaggccagactggccagaaaatcacgggcagacagtagaccggccacgggtcgcagctggaagccagtc

cgttccttcaagaagtgagacacatcctccagctgtggaatgctgtcctctcggtagccacagtaccgttccagaagctggaaagcctccaggt

gttcccggcaggcatgggtagcatagaggcccttcagcgtggcgtatacctccttccaggtagcaatttcctcctttgtgtattccacgtgggga

attggctcaccctgcttgtattggaaggcaatctctgcaatcagcttccggcgctggcgatacgcctggtcagagaagcccggatggtccaggt

ccaggtcagggtcaaacttggtgaccaggtggtgacacttatcc 

 

In situ hybridization protocols: 

Day 1 
Reagents: 
4% PFA in PBS (30 ml/mailer) 
DEPC-PBS (60 ml/mailer) 
10µg/ml protein K in PK buffer (15 ml/mailer) 
DEPC dH2O (30 ml/mailer) 
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0.1 M TEA/0.25% acetic anhydride (15 ml/mailer), add acetic anhydride just before use 
Pre-hybridization buffer (15 ml/mailer) 
1-2 µg/ml probes in hybridization buffer (10-15 ml/mailer) 
2X SSC (30 ml/mailer + 600 ml/large trough + 400 ml/small trough) 

Method: 
1. Warm slides to RT and dry at 50°C for 15 minutes. 
2. Fix in PFA for 20 minutes. 
3. Wash in DEPC-PBS for 5 minutes 2X. 
4. Treat with protein K. 

8 minutes for E9.5 – E11.5 
12 minutes for ≥ E12.5 
11 minutes for mixed sections 

5. Wash in DEPC-PBS for 5 minutes. 
6. Fix in PFA for 15 minutes. 
7. Rinse in DEPC-dH2O twice. 
8. Add TEA/acetic anhydride for 10 minutes. 
9. Wash in DEPC-PBS for 5 minutes. 
10. Pre-hybridization at Room Temperature for 1 hour. 
11. Heat water bath to 80 degree. Prepare the hybridization cocktail, 250ul for each slide: 

a. Dilute the probe into the final concentration of 1ng/ml 
b. Add 4% Dextran Sulfate from 50% stock solution 

12. Heat probe cocktail for 5min at 80 degree, cool down in ice for 5 min 
13. Cut the paraffin and apply the cocktail, put into the humid chamber, sealed. Incubate at 68 
degree overnight. 
14. Meanwhile, warm up 30 ml/mailer, 300 ml/large trough, and 200 ml/small trough 2X 
SSC to 64°C and 300 ml/large trough and 200 ml/small trough to 37°C. 
 
Day 2 
Reagents: 
2X SSC (see reagents under Day 1) 
RNase A 
0.2X SSC (900 ml/large trough + 600 ml/small trough) 
TNT: 100mM Tris pH7.5, 150mM NaCl, 0.05% Tween 20 
TNB: TNT without Tween, with 0.5% blocking powder 
DIG Ab solution (15 ml/mailer) 
 
Method: 
1. Prewarm 0.2X SSC at 64°C. 
2. Pour the probes into the original tubes. Rinse mailers with prewarmed 2X SSC twice. 
3. Transfer slides to troughs containing 2X SSC. Incubate at 64°C for 15 minutes. 
4. Add RNaseA to a concentration of 1.5 µg/ml to 37 °C 2X SSC and incubate slides at 37°C for 
30 minutes. 
5. Wash slides in 0.2X SSC at 64°C briefly once, then for 30 minutes 2X. 
6. Transfer slides to mailers and equilibrate in TNT for 5min. 
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7. Block in TNB solution for 30 minutes. 
8. Incubate in antibody solution overnight at 4°C or 2 hours at RT. 
 
Day 3 
Reagents: 
AP buffer (45 ml/mailer) 
Levamisole 
NBT/BCIP 
PBS (45 ml/mailer) 
4% PFA in PBS (15 ml/mailer) 
Glycerol 
Clear nail polish 
 
Method: 
1. In new mailers, wash in TNT for 30 minutes 3X. 
2. Wash in AP buffer for 5 minutes. The second time, add levamisole to the concentration of 1.2 
g/L. 
3. Add 1µl NBT and 3.5 µl BCIP per ml AP buffer and levamisole. Incubate slides in NBT/BCIP 
solution in the dark for up to 3 days. First check after 2 hours, then every day thereafter. Replace 
the NBT/BCIP solution daily. 
4. In new mailers, wash in PBS 3X. 
5. Fix in PFA for ≥ 15 minutes at 4°C. 
6. Coverslip with glycerol. Let dry for at least an hour standing upright on paper towels. 
7. Quickly rinse in dH2O. 
8. Seal with clear nail polish. 
 
Making probe 

Probe preparation 
1. PCR amplify template from cDNA or plasmid in a 50-µl reaction. 
2. Run 10 µl on a gel to check that only one band is present. 
3. DIG labeling reaction: 

15 µl DNA 
10 µl 5X transcription buffer 
5 µl 0.1 M DTT 
4.5 µl T7 polymerase (20 U/µl) 
0.5 µl RNase Inhibitor (40 U/µl) 
3 µl DIG labeling mix (10X) 
12 µl dH2O 
50 µl 
Incubate at 37°C for 2 h. 

4. Add 2 µl DNase I (20 U). Incubate at 37°C for 10 min. 
5. Save 2 µl to run on a gel. 
6. Add 52 µl stop buffer (8 % SDS, 20 mM EDTA, 20 mM Tris, pH 7.5, 100 mM 
NaCl). 
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7. Spin through a Sephadex G50 column. 
8. Add 1/10 volume 3 M NaOAc, pH 4.8 and 2.5 volume 100 % EtOH. 
9. Precipitate at -80°C for 30 min. 
10. Spin 15 min at 4°C. 
11. Wash with 2.5 volume 75 % EtOH. 
12. Air dry for 5 min. 
13. Resuspend in 50 µl DEPC dH2O. 
14. Dilute to 1-2 µg/ml in 10-15 ml hybrdization solution. 
15. Store at -20°C.  
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Reagents: 

Name Company Catolog 
100X Denhardt's Solution Amresco E257-50ML 

Strapavidin 488 invitrogen S32354, 748200 
Anti-DIG_AP Roche 11093274910 

1X Plus amplification diluent Perkin Elmer 511196 
Biotinyl tyramide reagent Perkin Elmer 560549 

BCIP Roche 11383221001 
NBT Roche 11383213001 

DIG RNA labeling mix 10x Roche 11277073910 
T7 RNA Polymerase Roche 10881775001 

Fluorescein RNA labeling mix 10x Roche 1675619 
RNase inhibitor Roche 3335339001 

Dextran sulfate 50% Amresco E516-100ML 
Acetic anhydride Sigma A6404-200ML 

Formamide Sigma 47671-1L-F 
Triethanolamine Sigma 90279-500ML 

Tween 20 Sigma  P9416-50ML 
Ribonucleic Acid Ambion  AM7118 

Heparin sodium salt Sigma H3393-250KU 
CHAPS Fisher 986734-36 

5 Place Slide holder with flip Globe 513062 
Blocking reagent Perkin Elmer FP 1020 

Tetramisole hydrochloride Sigma L95975610G 
Biotinyl tyramide reagent Perkin Elmer 560549 

Fluorescein RNA labeling mix 10x Roche 1675619 
DIG RNA labeling mix 10x Roche 11277073910 

Anti DIG POD Roche 11207733910 
Anti FLU POD Roche 11426346910 

Streptavidin, Rhodamine Red™-X conjugate invitrogen S-6366 
Alexa Fluor® 488 tyramide invitrogen T-20922 

1X Plus amplification diluent Perkin Elmer 511196 
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